US20030207882A1 - Aminoheterocyclic derivatives as antithrombotic or anticoagulant agents - Google Patents

Aminoheterocyclic derivatives as antithrombotic or anticoagulant agents Download PDF

Info

Publication number
US20030207882A1
US20030207882A1 US10/427,991 US42799103A US2003207882A1 US 20030207882 A1 US20030207882 A1 US 20030207882A1 US 42799103 A US42799103 A US 42799103A US 2003207882 A1 US2003207882 A1 US 2003207882A1
Authority
US
United States
Prior art keywords
formula
group
pyridyl
alkyl
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/427,991
Inventor
Andrew Stocker
John Preston
Michael Smithers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AstraZeneca UK Ltd
Syngenta Ltd
Original Assignee
Zeneca Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeneca Ltd filed Critical Zeneca Ltd
Priority to US10/427,991 priority Critical patent/US20030207882A1/en
Assigned to ZENECA LIMITED reassignment ZENECA LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SMITHERS, MICHAEL JAMES, PRESTON, JOHN, STOCKER, ANDREW
Publication of US20030207882A1 publication Critical patent/US20030207882A1/en
Assigned to ASTRAZENECA UK LIMITED reassignment ASTRAZENECA UK LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZENECA LIMITED (NOW SYNGENTA LIMITED)
Assigned to SYNGENTA LIMITED reassignment SYNGENTA LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ZENECA LIMITED
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D237/00Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
    • C07D237/02Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
    • C07D237/06Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D237/10Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D237/20Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the invention relates to aminoheterocyclic derivatives and pharmaceutically-acceptable salts thereof, which possess antithrombotic and anticoagulant properties and are accordingly useful in methods of treatment of the human or animal body.
  • the invention also relates to processes for the preparation of said aminoheterocyclic derivatives, to pharmaceutical compositions containing them and to their use in the manufacture of medicaments for use in the production of an antithrombotic or anticoagulant effect.
  • Factor Xa is one of a cascade of proteases involved in the complex process of blood coagulation.
  • the protease known as thrombin is the final protease in the cascade and Factor Xa is the preceding protease which cleaves prothrombin to generate thrombin.
  • the compounds of the present invention possess activity in the treatment or prevention of a variety of medical disorders where anticoagulant therapy is indicated, for example in the treatment or prevention of thrombotic events associated with coronary artery and cerebro-vascular disease.
  • medical disorders include various cardiovascular and cerebrovascular conditions such as myocardial infarction, the formation of atherosclerotic plaques, venous or arterial thrombosis, coagulation syndromes, disseminated intravascular coagulation, vascular injury including reocclusion and restenosis following angioplasty and coronary artery bypass surgery, thrombus formation after the application of blood vessel operative techniques or after general surgery such as hip replacement surgery, the introduction of artificial heart valves or on the recirculation of blood, cerebral infarction, cerebral thrombosis, stroke, cerebral embolism, pulmonary embolism, ischaemia and angina (including unstable angina).
  • myocardial infarction the formation of atherosclerotic plaques, venous or arterial thrombosis, coagul
  • the compounds of the invention are also useful as inhibitors of blood coagulation in an ex-vivo situation such as, for example, the storage of whole blood or other biological samples suspected to contain Factor Xa and in which coagulation is detrimental.
  • G 1 is CH or N
  • G 2 is CH or N
  • m is 1 or 2;
  • R 1 is hydrogen, halogeno, trifluoromethyl, trifluoromethoxy, cyano, amino, hydroxy, nitro, (1-4C)alkyl, (1-4C)alkoxy, (1-4C)alkylamino or di-(1-4C)alkylamino;
  • L 1 is (1-4C)alkylene, (3-6C)cycloalkane-1,2-diyl or (1-3C)alkylene-carbonyl,
  • T 1 is CH or N
  • R 1 is hydrogen or (1-4C)alkyl and R 3 is hydrogen or (1-4C)alkyl, or R 2 and R 3 together form a (1-4C)alkylene or methylenecarbonyl group,
  • 1 or 2 methylene groups within L 1 or the ring formed when R 2 and R 3 are linked optionally bear 1 or 2 substituents selected from carboxy, carbamoyl, (1-4C)alkyl, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl, N,N-di-(1-4C)alkylcarbamoyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, piperazin-1-ylcarbonyl, 4-(1-4C)alkylpiperazin-1-ylcarbonyl, hydroxy-(1-4C)alkyl, (1-4C)alkoxy-(11C)alkyl, carboxy-(1-4C)alkyl, (1 C)alkoxycarbonyl-(1-4C)alkyl, carbamoyl-(1-4C)alkyl, N-(1-4C)alkylcarbamoyl-(1-4C)
  • any heterocyclic group in said substituent optionally bears 1 or 2 (1-4C)alkyl substituents, provided that, when T 1 is N, L 1 is not optionally substituted methylene and R 2 and R 3 together do not form an optionally substituted methylene group;
  • X 1 is a group of the formula SO, SO 2 , C(R 4 ) 2 , CO, C(R 4 ) 2 O, C(R 4 ) 2 S, C(R 4 ) 2 SO, C(R 4 ) 2 SO 2 , COC(R 4 ) 2 , SOC(R 4 ) 2 or SO 2 C(R 4 ) 2 when T 1 is CH or N, or, in addition, X 1 is a group of the formula O, S, OC(R 4 ) 2 or SC(R 4 ) 2 when T 1 is CH, and wherein each R 4 is independently hydrogen or (1-4C)alkyl;
  • Ar is phenylene, or a 5- or 6-membered monocyclic heteroaryl ring containing up to 3 heteroatoms selected from nitrogen, oxygen and sulphur,
  • phenylene or heteroaryl ring is optionally substituted with 1 or 2 substituents selected from halogeno, trifluoromethyl, trifluoromethoxy, cyano, nitro, (1-4C)alkyl, (2-4C)alkenyl and (2-4C)alkynyl,
  • substituent Y 1 which is selected from hydroxy, amino, (1-4C)alkoxy, (2-4C)alkenyloxy, (2-4C)alkynyloxy, (1-4C)alkylamino, di-(1-4C)alkylamino, pyrrolidin-1-yl, piperidino, morpholino, thiamorpholino, 1-oxothiamorpholino, 1,1-dioxothiamorpholino, piperazin-1-yl, 4-(1-4C)alkylpiperazin-1-yl, (1-4C)alkylthio, (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl, (24C)alkanoylamino, benzamido, (1-4C)alkanesulphonamido and benzenesulphonamido, from the substituent Y 2 which is selected from carboxy, carbamoyl, (1-4C)alkoxycarbonyl
  • Y 1 has any of the meanings defined immediately hereinbefore and each R 5 is independently hydrogen or (1-4C)alkyl, and wherein any heterocyclic group in said substituent optionally bears 1 or 2 substituents selected from carboxy, carbamoyl, (1-4C)alkyl, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl and N,N-di-(1-4C)alkylcarbamoyl, and wherein any phenyl group in said substituent optionally bears 1 or 2 substituents selected from halogeno, trifluoromethyl, cyano, (1-4C)al
  • X 2 is a group of the formula S, SO, SO 2 , C(R 6 ) 2 , CO, N(R 7 )SO 2 , N(R 7 )CO, C(R 6 ) 2 S, C(R 6 ) 2 SO, C(R 6 ) 2 SO2, C(R 6 ) 2 —C(R 6 ) 2 or C(R 6 ) 2 CO, or, in addition, X 2 is a group of the formula O, SO 2 N(R 7 ), CON(R 7 ) or C(R 7 ) 2 O when Q is other than phenyl-(2-4C)alkenyl or phenyl-(24C)alkynyl and wherein each R 6 is independently hydrogen or (1-4C)alkyl and R 7 is hydrogen, (1-4C)alkyl or a group of the formula —X 4 -Q wherein X 4 is SO 2 or CO and Q has any of the meanings defined immediately hereinafter; and
  • Q is phenyl, naphthyl, phenyl-(1-4C)alkyl, phenyl-(2-4C)alkenyl, phenyl-(2-4C)alkynyl or a heterocyclic moiety containing up to 4 heteroatoms selected from nitrogen, oxygen and sulphur, and Q optionally bears 1, 2 or 3 substituents selected from halogeno, trifluoromethyl, trifluoromethoxy, cyano, hydroxy, amino, nitro, trifluoromethanesulphonyl, carboxy, carbamoyl, (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (1-4C)alkoxy, (2-4C)alkenyloxy, (2-4C)alkynyloxy, (1-4C)alkylthio, (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl, (1-4C)alkylamino, di-
  • said heteroaryl substituent or the heteroaryl group in a heteroaryl-containing substituent comprises a 5- or 6-membered monocyclic heteroaryl ring containing up to 3 heteroatoms selected from nitrogen, oxygen and sulphur, and wherein said phenyl, heteroaryl, phenoxy, phenylthio, phenylsulphinyl, phenylsulphonyl, heteroaryloxy, heteroarylthio, heteroarylsulphinyl, heteroarylsulphonyl, benzyl or benzoyl substituent optionally bears 1, 2 or 3 substituents selected from halogeno, trifluoromethyl, cyano, hydroxy, amino, nitro, carboxy, carbamoyl, (1-4C)alkyl, (1-4C)alkoxy, (1-4C)alkylamino, di-(1-4C)alkylamino, (1-4C)alkoxycarbdnyl, N-(1-4C)alkyl
  • X 1 is CO and Ar is phenylene which optionally bears 1 or 2 substituents selected from halogeno, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy then X 2 is not N(R 7 )SO 2 , N(R 7 )CO, C(R 6 ) 2 S, C(R 6 ) 2 SO, C(R 6 ) 2 SO 2 , C(R 6 ) 2 —C(R 6 ) 2 , C(R 6 ) 2 CO or C(R 6 ) 2 O.
  • alkyl includes both straight and branched chain alkyl groups but references to individual alkyl groups such as “propyl” are specific for the straight chain version only. An analogous convention applies to other generic terms.
  • optically active or racemic forms by virtue of one or more asymmetric carbon atoms
  • the invention encompasses any such optically active or racemic form which possesses Factor Xa inhibitory activity.
  • the synthesis of optically active forms may be carried out by standard techniques of organic chemistry well known in the art, for example by synthesis from optically active starting materials or by resolution of a racemic form.
  • each R 1 is independently selected from the list of substituents defined hereinbefore.
  • a suitable value for R 1 when it is a halogeno group or for a halogeno substituent on Ar, on a phenyl group within any substituent on Ar, on Q or on a phenyl- or heteroaryl-containing substituent on Q is, for example, fluoro, chloro, bromo or iodo.
  • a suitable value for R 1 when it is a (1-4C)alkyl group or for a (1-4C)alkyl substituent on Ar, on a heterocyclic or phenyl group within any substituent on Ar, on Q or on a phenyl- or heteroaryl-containing substituent on Q is, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl or tert-butyl.
  • a suitable value for R 1 when it is a (1-4C)alkoxy group or for a (1-4C)alkoxy substituent on Ar, on a phenyl group within any substituent on Ar, on Q or on a phenyl- or heteroaryl-containing substituent on Q is, for example, methoxy, ethoxy, propoxy, isopropoxy or butoxy.
  • a suitable value for R 1 when it is a (1-4C)alkylamino group or for a (1-4C)alkylamino substituent on Ar, on Q or on a phenyl- or heteroaryl-containing substituent on Q is, for example, methylamino, ethylamino or propylamino.
  • a suitable value for R 1 when it is di-(1-4C)alkylamino or for a di-(1-4C)alkylamino substituent on Ar, on Q or on a phenyl- or heteroaryl-containing substituent on Q is, for example, dimethylamino, N-ethyl-N-methylamino or diethylamino.
  • a suitable value for R 2 , R 3 , R 4 , R 5 , R 6 or R 7 when it is (1-4C)alkyl is, for example, methyl, ethyl, propyl, isopropyl, butyl or se-butyl.
  • a suitable value for a (1-4C)alkylene group formed by R 2 and R 3 together is, for example, methylene, ethylene, trimethylene or tetramethylene.
  • a suitable value for L 1 when it is (1-4C)alkylene is, for example, methylene, ethylene, trimethylene or tetramethylene;
  • (3-6C)cycloalkane-1,2-diyl is, for example, cyclopropane-1,2-diyl, cyclobutane-1,2-diyl, cyclopentane-1,2-diyl or cyclohexane-1,2-diyl; and when it is (1-3C)alkylene-carbonyl is, for example, methylenecarbonyl, ethylenecarbonyl or trimethylenecarbonyl.
  • a suitable value for a substituent which may be present on 1 or 2 methylene groups within L 1 or the ring formed when R 1 and R 3 are linked is, for example, as follows:— for (1-4C)alkyl: methyl, ethyl and propyl; for (1-4C)alkoxycarbonyl: methoxycarbonyl, ethoxy- carbonyl, propoxycarbonyl and tert-butoxycarbonyl; for N-(1-4C)alkylcarbamoyl: N-methylcarbamoyl, N-ethyl- carbamoyl and N-propyl- carbamoyl; for N,N-di-[(1-4C)alkyl]carbamoyl: N,N-dimethylcarbamoyl, N-ethyl-N-methylcarbamoyl and N,N-diethylcarbamoyl; for 4-(1-4C)alkylpiperazin-1-ylcarbony
  • a (1-4C)alkyl group which may be present on a heterocyclic group in a substituent on L 1 or the ring formed when R 2 and R 3 are linked is, for example, methyl, ethyl or propyl.
  • a suitable value for Ar when it is phenylene is, for example, 1,2-, 1,3- or 1,4-phenylene.
  • a suitable value for Ar when it is a 5- or 6-membered monocyclic heteroaryl ring containing up to 3 heteroatoms selected from nitrogen, oxygen and sulphur is, for example, furandiyl, thiophenediyl, pyridinediyl, pyrazinediyl, pyrimidinediyl, pyridazinediyl, pyrrolediyl, pyrazolediyl, imidazolediyl, oxazolediyl, isoxazolediyl, thiazolediyl, isothiazolediyl, 1,2,3-triazolediyl, 1,2,4-triazolediyl, oxadiazolediyl, furazandiyl, thiadiazolediyl and 1,3,5-triazinediyl which may be attached through any available position including through any available nitrogen atom.
  • Convenient values for Ar include 2,4- or 2,5-furandiyl, 2,4- or 2,5-thiophenediyl, 2,4-, 2,5-, 2,6- or 3,5-pyridinediyl, 2,4-, 2,5- or 4,6-pyrimidinediyl, 1,4-, 2,4-, 2,5-, 4,1- or 5,2-imidazolediyl, 2,4- or 2,5-oxazolediyl, 2,4- or 2,5-thiazolediyl, 2,5-oxadiazolediyl, 2,5-thiadiazolediyl and 1,3,5-triazine-2,4-diyl.
  • a suitable value for L 2 when it is (1-4C)alkylene is, for example, methylene, ethylene, trimethylene or tetramethylene; and for L 3 when it is (2-4C)alkylene is, for example, ethylene, trimethylene or tetramethylene.
  • Suitable values for substituents which may be present on Ar, on a heterocyclic or phenyl group within a substituent on Ar, on Q or on a phenyl- or heteroaryl-containing substituent on Q include, for example:— for (2-4C)alkenyl: vinyl and allyl; for (2-4C)alkynyl: ethynyl and prop-2-ynyl; for (2-4C)alkenyloxy: vinyloxy and allyloxy; for (2-4C)alkynyloxy: ethynyloxy and prop-2- ynyloxy; for 4-(1-4C)alkylpiperazin-1-yl: 4-methylpiperazin-1-yl and 4-ethylpiperazin-1-yl; for (1-4C)alkylthio: methylthio, ethylthio and propylthio; for (1-4C)alkylsulphinyl: methylsulphinyl, ethyl
  • a suitable heterocyclic group in a substituent which may be present on Ar includes, for example, pyrrolidin-1-yl, piperidino, morpholino, piperazin-1-yl and 4-(1-4C)alkylpiperazin-1-yl whether directly attached or attached by way of a linking group as in, for example, pyrrolidin-1-ylcarbonyl.
  • a suitable value for Q when it is naphthyl is for example, 1-naphthyl or 2-naphthyl; when it is phenyl-(1-4C)alkyl is, for example, benzyl, phenethyl and 3-phenylpropyl, when it is phenyl-(2-4C)alkenyl is, for example, styryl, cinnamyl or 3-phenylprop-2-enyl; and when it is phenyl-(2-4C)alkynyl is, for example, 2-phenylethynyl, 3-phenylprop-2-ynyl and 3-phenylprop-1-ynyl.
  • a suitable value for Q when it is a heterocyclic moiety containing up to 4 heteroatoms selected from nitrogen, oxygen and sulphur is, for example, a 5- or 6-membered heterocyclic moiety which is a single ring or is fused to one or two benzo rings such as furyl, benzofuranyl, tetrahydrofuryl, chromanyl, thienyl, benzothienyl, pyridyl, piperidinyl, quinolyl, 1,2,3,4-tetrahydroquinolinyl, isoquinolyl, 1,2,3,4-tetrahydroisoquinolinyl, pyrazinyl, piperazinyl, pyrimidinyl, pyridazinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pyrrolyl, pyrrolidinyl, indolyl, indolinyl, imidazolyl,
  • a suitable value for the heteroaryl substituent on Q or the heteroaryl group in a heteroaryl-containing substituent on Q which comprises a 5- or 6-membered monocyclic heteroaryl ring containing up to 3 heteroatoms selected from oxygen, nitrogen and sulphur is, for example, furyl, thienyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, oxadiazolyl, furazanyl and thiadiazolyl which may be attached through any available position including through any available nitrogen atom.
  • L 1 is a (1-3 C)alkylene-carbonyl group, for example a methylenecarbonyl group, it is the methylene group thereof which is attached to the N atom and the carbonyl group thereof which is attached to T 1 .
  • a suitable pharmaceutically-acceptable salt of an aminoheterocyclic derivative of the invention is, for example, an acid-addition salt of an aminoheterocyclic derivative of the invention which is sufficiently basic, for example, an acid-addition salt with, for example, an inorganic or organic acid, for example hydrochloric, hydrobromic, sulphuric, phosphoric, trifluoroacetic, citric or maleic acid.
  • a suitable pharmaceutically-acceptable salt of an aminoheterocyclic derivative of the invention which is sufficiently acidic is an alkali metal salt, for example a sodium or potassium salt, an alkaline earth metal salt, for example a calcium or magnesium salt, an ammonium salt or a salt with an organic base which affords a physiologically-acceptable cation, for example a salt with methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.
  • Particular compounds of the invention include, for example, aminoheterocyclic derivatives of the formula I, or pharmaceutically-acceptable salts thereof, wherein, unless otherwise stated, each of G 1 , G 2 , m, R 1 , R 2 , R 3 , L 1 , T 1 , X 1 , Ar, X 2 and Q has any of the meanings defined hereinbefore or in this section concerning particular compounds of the invention:—
  • each of G 1 and G 2 is CH;
  • G 1 is CH and G 2 is N, or G 1 is N and G 2 is CH;
  • L 1 is (1-4C)alkylene
  • T 1 is CH or N
  • R 2 and R 3 together form a (1-4C)alkylene group
  • 1 or 2 methylene groups within L 1 and the ring formed when R 1 and R 3 are linked optionally bears 1 or 2 (1-4C)alkyl substituents, provided that, when T 1 is N, L 1 is not optionally substituted methylene and R 2 and R 3 together do not form an optionally substituted methylene group;
  • L 1 is ethylene
  • T 1 is CH
  • R 2 and R 3 together form a methylene or ethylene group
  • L 1 is ethylene
  • T 1 is N
  • R 1 and R 3 together form an ethylene group
  • L 1 is ethylene
  • T 1 is N
  • R 2 and R 3 together form an ethylene or propylene group
  • L 1 is ethylene
  • T 1 is CH or N
  • R 2 and R 3 together form an ethylene group
  • X 1 is a group of the formula SO 2 , CH 2 , CO, CH 2 O, CH 2 S, CH 2 SO 2 , COCH 2 or SO 2 CH 2 , or, when T 1 is CH, X 1 is, in addition, a group of the formula O, S, OCH 2 or SCH 2 ;
  • Ar is 1,3-phenylene or 1,4-phenylene which is optionally substituted with 1 or 2 substituents selected from halogeno, trifluoromethyl, cyano, (1-4C)alkyl, hydroxy, amino, (1-4C)alkoxy, (1-4C)alkylamino, di-(1-4C)alkylamino, (1-4C)alkylthio, (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl, (2-4C)alkanoylamino, carboxy, carbamoyl, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl, N,N-di-(1-4C)alkylcarbamoyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, thiamorpholinocarbonyl, 1-oxothiamorpholinocarbonyl, 1,1-
  • Ar is 1,3-phenylene or 1,4-phenylene which is optionally substituted with a substituent of the formula -L 2 -Y 1 or of the formula -L 2 -Y 2 wherein L 2 is (1-4C)alkylene, Y 1 is selected from hydroxy, amino, (1-4C)alkoxy, (1-4C)alkylamino, di-(1-4C)alkylamino, pyrrolidin-1-yl, piperidino, morpholino, piperazin-1-yl, 4-(1-4C)alkylpiperazin-1-yl, (1-4C)alkylthio, (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl and (2-4C)alkanoylamino, and Y 2 is selected from carboxy, carbamoyl, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl, N,N-di-(1-4C
  • Ar is 1,3-phenylene or 1,4-phenylene which is optionally substituted with a substituent of the formula —X 3 -L 2 -Y 2 wherein X 3 is a group of the formula CONH, CON(Me), CH 2 O or O, L 2 is methylene, ethylene or trimethylene and Y 2 is selected from carboxy, carbamoyl, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl, N,N-di-(1-4C)alkylcarbamoyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, piperazin-1-ylcarbonyl and 4-(1-4C)alkylpiperazin-1-yl;
  • Ar is 1,3-phenylene or 1,4-phenylene which is optionally substituted with a substituent of the formula —X 3 -L 3 -Y 1 wherein X 3 is a group of the formula CONH, CH 2 O, O or NH, L 3 is ethylene or trimethylene and Y 1 is hydroxy, amino, (1-4C)alkoxy, (1-4C)alkylamino, di-(1-4C)alkylamino, pyrrolidin-1-yl, piperidino, morpholino, piperazin-1-yl, 4-(1-4C)alkylpiperazin-1-yl, (1-4C)alkylthio, (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl and (2-4C)alkanoylamino;
  • X 2 is a group of the formula SO 2 , CH 2 , CO, NHSO 2 , N(R 7 )SO 2 , NHCO, N(R 7 )CO, CH 2 SO 2 , CH 2 CH 2 or CH 2 CO wherein R 7 is (1-4C)alkyl or a group of the formula —X 4 -Q wherein X 4 is SO 2 and Q has any of the meanings defined hereinafter in this section of particular compounds of the invention;
  • X 2 is a group of the formula SO 2 or NHSO 2 ;
  • X 2 is a group of the formula SO 2 ;
  • X 2 is a group of the formula NHSO 2 ;
  • Q is phenyl, naphthyl or phenyl-(1-4C)alkyl which optionally bears 1, 2 or 3 substituents selected from hydroxy, halogeno, cyano, trifluoromethyl.
  • Q is phenyl which bears a phenyl substituent and optionally bears 1 or 2 substituents selected from hydroxy, halogeno, cyano, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy, and wherein the phenyl substituent optionally bears up to 3 substituents selected from halogeno, trifluoromethyl, cyano, (1-4C)alkyl and (1-4C)alkoxy;
  • Q is phenyl-(1-4C)alkyl, phenyl-(2-4C)alkenyl or phenyl-(2-4C)alkynyl which optionally bears 1, 2 or 3 substituents selected from halogeno, cyano, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy;
  • Q is phenyl-(2-4C)alkenyl which optionally bears 1, 2 or 3 substituents selected from halogeno, cyano, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy;
  • Q is phenyl or phenyl-(1-4C)alkyl which bears 1 substituent selected from heteroaryl, heteroaryloxy, heteroarylthio, heteroarylsulphinyl and heteroarylsulphonyl, wherein the heteroaryl substituent or the heteroaryl group in a heteroaryl-containing substituent comprises a 5- or 6-membered monocyclic heteroaryl ring containing up to 3 heteroatoms selected from nitrogen, oxygen and sulphur, and wherein said heteroaryl or heteroaryl-containing substituent optionally bears 1 or 2 substituents selected from halogeno, (1-4C)alkyl and (1-4C)alkoxy;
  • Q is phenyl which bears 1 substituent selected from heteroaryl, heteroaryloxy, heteroarylthio and heteroarylsulphonyl, wherein the heteroaryl substituent or the heteroaryl group in a heteroaryl-containing substituent is selected from thienyl, pyridyl, pyrimidinyl, pyrazolyl, oxazolyl, thiazolyl, 1,2,3-triazolyl and 1,2,4-triazolyl, and wherein said heteroaryl or heteroaryl-containing substituent optionally bears 1 or 2 substituents selected from halogeno and (1-4C)alkyl;
  • (x) Q is naphthyl which optionally bears 1 or 2 substituents selected from hydroxy, halogeno, cyano, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy;
  • Q is a heterocyclic moiety containing up to 2 heteroatoms selected from benzofuranyl, quinolyl, tetrahydroquinolyl, isoquinolyl, quinoxalinyl, quinazolinyl, cinnolinyl, indolyl, benzimidazolyl, indazolyl, benzoxazolyl and benzothiazolyl, and Q optionally bears 1 or 2 substituents selected from halogeno, cyano, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy;
  • Q is a heterocyclic moiety containing up to 2 heteroatoms selected from benzofuranyl, quinolyl, tetrahydroquinolyl, isoquinolyl, quinoxalinyl, quinazolinyl, cinnolinyl, indolyl, benzimidazolyl, indazolyl, benzoxazolyl, benzothiazolyl, dibenzofuranyl and dibenzothienyl, and Q optionally bears 1 or 2 substituents selected from halogeno, cyano, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy;
  • Q is a heterocyclic moiety containing up to 4 heteroatoms selected from furyl, thienyl, pyridyl, pyrimidinyl, pyrrolyl, pyrrolidinyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, oxadiazolyl, thiadiazolyl and tetrazolyl, and Q optionally bears 1 or 2 substituents selected from halogeno, cyano, carboxy, carbamoyl, (1-4C)alkoxycarbonyl, (1-4C)alkyl, (1-4C)alkoxy, N-(1-4C)alkylcarbamoyl and N,N-di-(1-4C)alkylcarbamoyl;
  • Q is a heterocyclic moiety containing up to 2 heteroatoms selected from thienyl, pyridyl, pyrimidinyl, imidazolyl, pyrazolyl, oxazolyl and thiazolyl, and Q optionally bears 1 or 2 substituents selected from halogeno, (1-4C)alkyl, (1-4C)alkoxy, phenyl, heteroaryl, phenoxy, phenylthio, phenylsulphinyl, phenylsulphonyl, heteroaryloxy, heteroarylthio, heteroarylsulphinyl, heteroarylsulphonyl, benzyl and benzoyl, wherein the heteroaryl substituent or the heteroaryl group in a heteroaryl-containing substituent is selected from thienyl, pyridyl, pyrimidinyl, pyrazolyl, oxazolyl and thiazolyl, and wherein
  • Q is a heterocyclic moiety containing up to 2 heteroatoms selected from thienyl, pyridyl, oxazolyl and thiazolyl, and Q bears a substituent selected from phenyl, thienyl, pyridyl, pyrimidinyl, oxazolyl and thiazolyl, which substituent optionally bears 1 or 2 substituents selected from halogeno, (1-4C)alkyl and (1-4C)alkoxy, and Q optionally bears a further substituent selected from halogeno and (1-4C)alkyl;
  • X 1 is CO and Ar is phenylene which optionally bears 1 or 2 substituents selected from halogeno, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy then X 2 is not N(R 7 )SO 2 , N(R 7 )CO, C(R 6 ) 2 S, C(R 6 ) 2 SO, C(R 6 ) 2 SO 2 , C(R 6 ) 2 —C(R 6 ) 2 , C(R 6 ) 2 CO or C(R 6 ) 2 O.
  • a particular compound of the invention is an aminoheterocyclic derivative of the formula I
  • each of G 1 and G 2 is CH, G 1 is CH and G 2 is N, or G 1 is N and G 2 is CH;
  • m is 1 and R 1 is hydrogen;
  • L 1 is ethylene
  • T 1 is CH or N
  • R 2 and R 3 are independently hydrogen or together form a methylene, ethylene or propylene group
  • X 1 is a group of the formula CH 2 , CO, CH 2 O or SO 2 , or, when T 1 is CH, X 1 is, in addition, a group of the formula O;
  • Ar is 1,2-phenylene, 1,3-phenylene, 1,4-phenylene or pyridyl group which is optionally substituted with 1 or 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, cyano, methyl, hydroxy, amino, methoxy, methylamino, dimethylamino, methylthio, methylsulphinyl, methylsulphonyl, acetamido, carboxy, carbamoyl, methoxycarbonyl, ethoxycarbonyl, N-methylcarbamoyl, N,N-dimethylcarbamoyl, 2-(ethylthio)ethylamino-carbonyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, piperazin-1-ylcarbonyl and 4-methylpiperazin-1-ylcarbonyl;
  • X 2 is a group of the formula S, SO 2 , CONH, NHSO 2 or N(R 7 )SO 2 wherein R 7 is methyl or a group of the formula —SO 2 Q wherein Q has any of the meanings defined immediately hereinafter;
  • Q is phenyl, styryl, 1,2,3,4-tetrahydroisoquinolinyl, indolyl, 4-biphenylyl or 2-naphthyl which optionally bears 1 or 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, 4-chlorophenoxy, methyl and methoxy;
  • X 1 is CO and Ar is 1,2-, 1,3- or 1,4-phenylene which optionally bears 1 or. 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, methyl and methoxy then X 2 is not NHSO 2 or N(R 7 )SO 2 wherein R 7 is methyl or a group of the formula —SO 2 -Q wherein Q has any of the meanings defined immediately hereinbefore.
  • a preferred compound of the invention is an aminoheterocyclic derivative of the formula I
  • each of G 1 and G 2 is CH, G 1 is CH and G 2 is N, or G 1 is N and G 2 is CH;
  • m is 1 and R 1 is hydrogen;
  • L 1 is ethylene, T 1 is CH or N, and R 1 and R 1 together form an ethylene group;
  • X 1 is a group of the formula CH 2 , CO or CH 2 O, or, when T 1 is CH, X 1 is, in addition, a group of the formula O;
  • Ar is 1,3,phenylene or 1,4-phenylene which is optionally substituted with 1 or 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, cyano, methyl, hydroxy, amino, methoxy, methylamino, dimethylamino, methylthio, methylsulphinyl, methylsulphonyl, acetamido, carboxy, carbamoyl, methoxycarbonyl, ethoxycarbonyl, N-methylcarbamoyl, N,N-dimethylcarbamoyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, piperazin-1-ylcarbonyl and 4-methylpiperazin-1-ylcarbonyl;
  • X 2 is a group of the formula SO 2 , NHSO 2 or N(R 7 )SO 2 wherein R 7 is methyl or a group of the formula —SO 2 Q wherein Q has any of the meanings defined immediately hereinafter;
  • Q is phenyl, styryl, 4-biphenylyl or 2-naphthyl which optionally bears 1 or 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, methyl and methoxy;
  • X 1 is CO and Ar is 1,3- or 1,4-phenylene which optionally bears 1 or 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, methyl and methoxy then X 2 is not NHSO 2 or N(R 7 )SO 2 wherein R 7 is methyl or a group of the formula —SO 2 -Q wherein Q has any of the meanings defined immediately hereinbefore.
  • a further preferred compound of the invention is an aminoheterocyclic derivative of the formula I
  • each of G 1 and G 2 is CH, G 1 is CH and G 2 is N, or G 1 is N and G 2 is CH;
  • m is 1 and R 1 is hydrogen;
  • L 1 is ethylene
  • T 1 is N
  • R 2 and R 3 together form an ethylene or propylene group
  • X 1 is a group of the formula CO
  • Ar is 1,4-phenylene, 2-carboxy-1,4-phenylene or 2-piperidinocarbonyl-1,4-phenylene (with the X 1 group in the 1-position and the X 2 group in the 4-position);
  • X 2 is a group of the formula SO 2 ; and Q is 2-naphthyl, styryl or 4-biphenylyl which optionally bears 1 or 2 substituents selected from fluoro, chloro and bromo;
  • a particularly preferred compound of the invention is an aminoheterocyclic derivative of the formula I
  • each of G 1 and G 2 is CH;
  • m is 1 and R 1 is hydrogen;
  • L 1 is ethylene
  • T 1 is N
  • R 2 and R 3 together form an ethylene group
  • X 1 is a group of the formula CO
  • Ar is 1,4-phenylene, 2-carboxy-1,4-phenylene or 2-piperidinocarbonyl-1,4-phenylene (with the X 1 group in the 1-position and the X 2 group in the 4-position);
  • X 2 is a group of the formula SO 2 ; and Q is 2-naphthyl, styryl or 4-biphenylyl which optionally bears 1 or 2 substituents selected from fluoro, chloro and bromo;
  • An aminoheterocyclic derivative of the formula I, or pharmaceutically-acceptable salt thereof, may be prepared by any process known to be applicable to the preparation of structurally-related compounds. Such procedures are provided as a further feature of the invention and are illustrated by the following representative processes in which, unless otherwise stated G 1 , G 2 , m, R 1 , R 2 , L 1 , T 1 , R 3 , X 1 , Ar, X 2 and Q have any of the meanings defined hereinbefore, provided that when there is an amino, alkylamino, hydroxy or carboxy group in R 1 , L 1 , R 2 , R 3 , Ar or Q then any such group is protected by a conventional protecting group as necessary which may be removed when so desired by conventional means.
  • Necessary starting materials may be obtained by standard procedures of organic chemistry.
  • a suitable reactive derivative of an acid of the formula III is, for example, an acyl halide, for example an acyl chloride formed by the reaction of the acid and an inorganic acid chloride, for example thionyl chloride; a mixed anhydride, for example an anhydride formed by the reaction of the acid with a chloroformate such as isobutyl chloroformate or with an activated ketone such as 1,1′-carbonyldiimidazole; an active ester, for example an ester formed by the reaction of the acid and a phenol such as pentafluorophenol, an ester such as pentafluorophenyl trifluoroacetate or an alcohol such as N-hydroxybenzotriazole or N-hydroxysuccinimide; an acyl azide, for example an azide formed by the reaction of the acid and an azide such as diphenylphosphoryl azide; an acyl cyanide, for example a cyanide formed by the reaction of an acid
  • the reaction is conveniently carried out in the presence of a suitable base such as, for example, an alkali or alkaline earth metal carbonate, alkoxide, hydroxide or hydride, for example sodium carbonate, potassium carbonate, sodium ethoxide, potassium butoxide, sodium hydroxide, potassium hydroxide, sodium hydride or potassium hydride, or an organometallic base such as an alkyl-lithium, for example n-butyl-lithium, or a dialkylamino-lithium, for example lithium di-isopropylamide, or, for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, morpholine or diazabicyclo[5.4.0]undec-7-ene.
  • a suitable base such as, for example, an alkali or alkaline earth metal carbonate, alkoxide, hydroxide or hydride, for example sodium carbonate,
  • the reaction is also preferably carried out in a suitable inert solvent or diluent, for example methylene chloride, chloroform, carbon tetrachloride, tetrahydrofuran, 1,2-dimethoxyethane, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidin-2-one, dimethylsulphoxide or acetone, and at a temperature in the range, for example, ⁇ 78° to 150° C., conveniently at or near ambient temperature.
  • a suitable inert solvent or diluent for example methylene chloride, chloroform, carbon tetrachloride, tetrahydrofuran, 1,2-dimethoxyethane, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidin-2-one, dimethylsulphoxide or acetone
  • a suitable protecting group for an amino or alkylamino group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an alkoxycarbonyl group, for example a methoxycarbonyl, ethoxycarbonyl or tert-butoxycarbonyl group, an arylmethoxycarbonyl group, for example benzyloxycarbonyl, or an aroyl group, for example benzoyl.
  • the deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group.
  • an acyl group such as an alkanoyl or alkoxycarbonyl group or an aroyl group may be removed for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • an acyl group such as a tert-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid such as hydrochloric, sulphuric or phosphoric acid or trifluoroacetic acid and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon, or by treatment with a Lewis acid for example boron tris(trifluoroacetate).
  • a suitable alternative protecting group for a primary amino group is, for example, a phthaloyl group which may be removed by treatment with an alkylamine, for example dimethylaminopropylamine, or with hydrazine.
  • a suitable protecting group for a hydroxy group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an aroyl group, for example benzoyl, or an arylmethyl group, for example benzyl.
  • the deprotection conditions for the above protecting groups will necessarily vary with the choice of protecting group.
  • an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • an arylmethyl group such as a benzyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
  • a suitable protecting group for a carboxy group is, for example, an esterifying group, for example a methyl or an ethyl group which may be removed, for example, by hydrolysis with a base such as sodium hydroxide, or for example a tert-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
  • a base such as sodium hydroxide
  • a tert-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
  • n 0 or 1 and Z is a displaceable group, with a phenolic compound the formula V
  • a suitable value for the displaceable group Z is, for example, a halogeno or sulphonyloxy group, for example a fluoro, chloro, bromo, mesyloxy or 4-tolylsulphonyloxy group.
  • a suitable reagent for the coupling reaction when Z is a halogens or sulphonyloxy group is, for example, a suitable base, for example, an alkali or alkaline earth metal carbonate, hydroxide or hydride, for example sodium carbonate, hydroxide or hydride, for example sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium hydride or potassium hydride.
  • a suitable base for example, an alkali or alkaline earth metal carbonate, hydroxide or hydride, for example sodium carbonate, hydroxide or hydride, for example sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium hydride or potassium hydride.
  • the alkylation reaction is preferably performed in a suitable inert solvent or diluent, for example N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulphoxide, acetone, 1,2-dimethoxyethane or tetrahydrofuran, and at a temperature in the range, for example, ⁇ 10° to 150° C., conveniently at or near ambient temperature.
  • a suitable inert solvent or diluent for example N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulphoxide, acetone, 1,2-dimethoxyethane or tetrahydrofuran, and at a temperature in the range, for example, ⁇ 10° to 150° C., conveniently at or near ambient temperature.
  • a suitable reagent for the coupling reaction of the alcohol of the formula IV wherein Z is a hydroxy group is, for example, the reagent obtained when said alcohol is reacted with a di-(1-4C)alkyl azodicarboxylate in the presence of a triarylphosphine or tri-(1-4C)alkylphosphine, for example with diethyl azodicarboxylate in the presence of triphenylphosphine or tributylphosphine.
  • the reaction is preferably performed in a suitable inert solvent or diluent, for example acetone, 1,2-dimethoxyethane or tetrahydrofuran, and at a temperature in the range, for example, 10° to 80° C., conveniently at or near ambient temperature.
  • a suitable inert solvent or diluent for example acetone, 1,2-dimethoxyethane or tetrahydrofuran
  • the reaction is conveniently performed in a suitable inert solvent or diluent, for example tetrahydrofuran and diethyl ether for the more powerful reducing agents such as lithium aluminium hydride, and, for example, methylene chloride or a protic solvent such as methanol and ethanol for the less powerful reducing agents such as sodium triacetoxyborohydride.
  • a suitable inert solvent or diluent for example tetrahydrofuran and diethyl ether for the more powerful reducing agents such as lithium aluminium hydride, and, for example, methylene chloride or a protic solvent such as methanol and ethanol for the less powerful reducing agents such as sodium triacetoxyborohydride.
  • the reaction is performed at a temperature in the range, for example, 10° to 80° C. conveniently at or near ambient temperature.
  • reaction is conveniently performed in a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the range, for example, 0° to 150° C., conveniently at or near ambient temperature.
  • reaction is conveniently performed in a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the range, for example, 0° to 150° C., conveniently at or near ambient temperature.
  • reaction is conveniently performed in a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the range, for example, 0° to 150° C., conveniently at or near ambient temperature.
  • reaction is conveniently performed in a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the range, for example, 0° to 150° C., conveniently at or near ambient temperature.
  • reaction is conveniently performed in a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the range, for example, 0° to 150° C., conveniently at or near ambient temperature.
  • the hydrolysis reaction may conveniently be carried out in a conventional manner using, for example, acidic or basic catalysis.
  • a suitable acid for the acidic hydrolysis of an ester group is, for example, an inorganic acid such as hydrochloric or sulphuric acid.
  • a suitable base for the basic hydrolysis of an ester group is, for example, an alkali or alkaline earth metal hydroxide such as sodium hydroxide or potassium hydroxide.
  • reaction is conveniently performed in a suitable solvent or diluent such as an alcohol, for example methanol or ethanol, and at a temperature in the range, for example 0° to 120° C., conveniently in the range of 15° to 60° C.
  • a suitable solvent or diluent such as an alcohol, for example methanol or ethanol
  • reaction is conveniently performed in a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the range, for example, 0° to 120° C., conveniently in the range 15° to 600.
  • a suitable oxidising agent is, for example, any agent known in the art for the oxidation of thio to sulphinyl and/or sulphonyl, for example, hydrogen peroxide, a peracid (such as 3-chloroperoxybenzoic or peroxyacetic acid), an alkali metal peroxysulphate (such as potassium peroxymonosulphate), chromium trioxide or gaseous oxygen in the presence of platinum.
  • the oxidation is generally carried out under as mild conditions as possible and with the required stoichiometric amount of oxidising agent in order to reduce the risk of over oxidation and damage to other functional groups.
  • the reaction is carried out in a suitable solvent or diluent such as methylene chloride, chloroform, acetone, tetrahydrofuran or tert-butyl methyl ether and at a temperature, for example, at or near ambient temperature, that is in the range 15 to 35° C.
  • a milder oxidising agent may also be used, for example sodium or potassium metaperiodate, conveniently in a polar solvent such as acetic acid or ethanol.
  • a compound of the formula I containing a sulphonyl group it may be obtained by oxidation of the corresponding sulphinyl compound as well as of the corresponding thio compound.
  • L is a displaceable group as hereinbefore defined with a compound of the formula XIX:
  • L is halo for example fluoro or chloro and the reaction is performed in a substantially inert solvent, as hereinbefore defined, at an ambient or elevated temperature, and in the presence of a suitable base for example an, organic amine such as triethylamine.
  • a suitable base for example an, organic amine such as triethylamine.
  • the compounds of the formula II-XIX inclusive may be prepared by any process known to be applicable to the preparation of structurally related compounds, for example, where applicable, by methods related to those described hereinbefore for preparing compounds of the formula I. Particular reference may be made to the methods of the Examples described hereinafter.
  • G 1 , G 2 , R 1 , m, R 2 , L 1 , T 1 , R, X 1 , Ar, X 2 and Q are as defined in relation to formula I.
  • a pharmaceutically-acceptable salt of a compound of the formula I may be obtained, for example, by reaction of said compound with a suitable acid or base using a conventional procedure.
  • an optically active form of a compound of the formula I When an optically active form of a compound of the formula I is required, it may be obtained, for example, by carrying out one of the aforesaid procedures using an optically active starting material or by resolution of a racemic form of said compound using a conventional procedure.
  • the compounds of the formula I are inhibitors of the enzyme Factor Xa.
  • the effects of this inhibition may be demonstrated using one or more of the standard procedures set out hereinafter:—
  • test compound was administered intravenously or orally to a group of Alderley Park Wistar rats. At various times thereafter animals were anaesthetised, blood was collected and PT coagulation assays analogous to those described hereinbefore were conducted. In addition the plasma concentration of compounds is determined by comparison with the anti-Factor Xa activity of a standard compound.
  • Thrombus formation was induced using an analogous method to that described by Vogel et al., Thromb. Research, 1989, 54, 399-410.
  • a group of Alderley Park Wistar rats was anaesthetised and surgery was performed to expose the vena cava. Collateral veins were ligated and two loose sutures were located, 0.7 cm apart, round the inferior vena cava.
  • Test compound was administered intravenously or orally.
  • tissue thromboplastin (30 ⁇ l/kg) was administered via the jugular vein and, after 10 seconds, the two sutures were tightened to induce stasis within the ligated portion of vena cava. After 10 minutes the ligated tissue was excised and the thrombus therein was isolated, blotted and weighed.
  • fasted male Alderley Park rats (360-410 g) are pre-dosed at various times by oral (5 ml/kg) or subcutaneous (1 ml/kg) routes before being anaesthetised with Intraval (120 mg/kg i.p.).
  • the left jugular vein and the right carotid artery are exposed and cannulated with a polypropylene catheters 12 cm in length.
  • An arterio-venous shunt is completed by connecting the two catheters with a 6 cm length of tubing (i.d. 0.3 cm) which contains a 5 cm length of pre-weighed cotton.
  • the plasma concentration of the compound is extrapolated from the standard curve and expressed in Anti-Factor Xa units. Thrombus weight is measured following dosing of vehicle or test compound. Data is expressed as % inhibition of thrombus formation in the presence of compound when compared to thrombus weight from a group of control animals.
  • the compound of Example 1 as disclosed hereinafter has an IC 50 of 0.013 ⁇ M against Factor Xa in test a), an IC 50 , of greater than 40 ⁇ M against thrombin in test b) and a CT2 (PT) of 5 ⁇ M in test c).
  • composition which comprises an aminoheterocyclic derivative of the formula I, or a pharmaceutically-acceptable salt thereof, in association with a pharmaceutically-acceptable diluent or carrier.
  • the composition may be in a form suitable for oral use, for example a tablet, capsule, aqueous or oily solution, suspension or emulsion; for topical use, for example a cream, ointment, gel or aqueous or oily solution or suspension; for nasal use, for example a snuff, nasal spray or nasal drops; for vaginal or rectal use, for example a suppository; for administration by inhalation, for example as a finely divided powder such as a dry powder, a microcrystalline form or a liquid aerosol; for sub-lingual or buccal use, for example a tablet or capsule; or for parenteral use (including intravenous, subcutaneous, intramuscular, intravascular or infusion), for example a sterile aqueous or oily solution or suspension.
  • the above compositions may be prepared in a conventional manner using conventional excipients.
  • the amount of active ingredient (that is an aminoheterocyclic derivative of the formula I, or a pharmaceutically-acceptable salt thereof) that is combined with one or more excipients to produce a single dosage form will necessarily vary depending upon the host treated and the particular route of administration.
  • a formulation intended for oral administration to humans will generally contain, for example, from 0.5 mg to 2 g of active agent compounded with an appropriate and convenient amount of excipients which may vary from about 5 to about 98 percent by weight of the total composition.
  • Dosage unit forms will generally contain about 1 mg to about 500 mg of an active ingredient.
  • the invention also includes the use of such an active ingredient in the production of a medicament for use in:—
  • the invention also includes a method of producing an effect as defined hereinbefore or treating a disease or disorder as defined hereinbefore which comprises administering to a warm-blooded animal requiring such treatment an effective amount of an active ingredient as defined hereinbefore.
  • the size of the dose for therapeutic or prophylactic purposes of a compound of the formula I will naturally vary according to the nature and severity of the medical condition, the age and sex of the animal or patient being treated and the route of administration, according to well known principles of medicine.
  • compounds of the formula I are useful in the treatment or prevention of a variety of medical disorders where anticoagulant therapy is indicated.
  • a compound of the formula I for such a purpose it will generally be administered so that a daily dose in the range, for example, 0.5 to 500 mg/kg body weight is received, given if required in divided doses.
  • lower doses will be administered when a parenteral route is employed, for example a dose for intravenous administration in the range, for example, 0.5 to 50 mg/kg body weight will generally be used.
  • lower doses will be employed, for example a daily dose in the range, for example, 0.5 to 10 mg/kg body weight.
  • the compounds of the formula I are primarily of value as therapeutic or prophylactic agents for use in warm-blooded animals including man, they are also useful whenever it is required to produce an anticoagulant effect, for example during the ex-vivo storage of whole blood or in the development of biological tests for compounds having anticoagulant properties.
  • the compounds of the invention may be administered as a sole therapy or they may be administered in conjunction with other pharmacologically active agents such as a thrombolytic agent, for example tissue plasminogen activator or derivatives thereof or streptokinase.
  • a thrombolytic agent for example tissue plasminogen activator or derivatives thereof or streptokinase.
  • the compounds of the invention may also be administered with, for example, a known platelet aggregation inhibitor (for example aspirin, a thromboxane antagonist or a thromboxane synthase inhibitor), a known hypolipidaemic agent or a known anti-hypertensive agent.
  • melting points were determined using a Mettler SP62 automatic melting point apparatus or an oil-bath apparatus; melting points for the end-products of the formula I were generally determined after crystallisation from a conventional organic solvent such as ethanol, methanol, acetone, ether or hexane, alone or in admixture; and
  • 1,1′-Carbonyldiimidazole (0.15 g) was added to a stirred solution of 4-(6-chloronaphth-2-ylsulphonyl)benzoic acid (0.29 g) in DMF (10 ml) which had been cooled to 0° C. and the mixture was stirred at 0° C. for 30 minutes.
  • N-(4-Pyridyl)piperazine (0.164 g) was added, the cooling bath was removed and the mixture was stirred at ambient temperature for 16 hours. The solvent was removed by evaporation and the residue was partitioned between ethyl acetate and water.
  • 6-Chloronaphth-2-ylsulphonyl chloride (2.61 g) was added in one portion to a stirred mixture of sodium sulphite heptahydrate (4.71 g), sodium bicarbonate (1.64 g) and water (25 ml) which had been heated to 70° C. The resultant mixture was heated to that temperature for 3 hours and then allowed to cool slowly to ambient temperature. The crystalline precipitate was isolated giving sodium 6-chloronaphth-2-ylsulphinate (2.4 g) which was used without further purification.
  • potassium permanganate (0.4 g) was added in small portions during 1 hour to a stirred mixture of 4-(6-chloronaphth-2-ylsulphonyl)-benzaldehyde (0.58 g), cetyltrimethylammonium bromide (0.056 g) and water (25 ml) which had been heated to 60° C.
  • the mixture was heated to 60° C. for a further 2 hours.
  • the mixture was cooled to ambient temperature and acidified by the addition of 2M aqueous hydrochloric acid. Ethyl acetate was added. The mixture was filtered through a pad of diatomaceous earth.
  • the 4-(2-naphthylsulphonyl)benzoic acid used as a starting material was prepared from 4-fluorobenzaldehyde and sodium 2-naphthylsulphinate using analogous procedures to those described in the fourth and fifth paragraphs of the portion of Example 1 which is concerned with the preparation of starting materials. There was thus obtained 4-(2-naphthylsulphonyl)benzoic acid in 28% yield;
  • Glacial acetic acid (0.178 g) was added to a mixture of N-(4-pyridyl)piperazine (0.121 g), 4-(6-bromonaphth-2-ylsulphonyl)benzaldehyde (0.278 g) and methylene chloride (10 ml) and the mixture was stirred at ambient temperature for 30 minutes.
  • Sodium triacetoxyborohydride (0.236 g) was added and the mixture was stirred at ambient temperature for 16 hours.
  • Water 50 ml was added and the mixture was acidified by the addition of 2M aqueous hydrochloric acid. The resultant mixture was washed with diethyl ether.
  • the aqueous phase was basified by the addition of 2M aqueous sodium hydroxide solution and extracted with methylene chloride.
  • the resultant organic phase was dried (MgSO4), and evaporated.
  • the residue was purified by column chromatography using increasingly polar, mixtures of methylene chloride and methanol as eluent. There was thus obtained 1-[4-(6-bromonaphth-2-ylsulphonyl)benzyl]4-(4-pyridyl)piperazine (0.127 g) as a gum;
  • 6-Bromonaphth-2-ylsulphonyl chloride was obtained in 22% yield from 6-amino-2-naphthalenesulphonic acid using an analogous procedure to that described in the first two paragraphs of the portion of Example 1 which is concerned with the preparation of starting materials except that hydrobromic acid and cuprous bromide were used in place of hydrochloric acid and cuprous chloride respectively.
  • the material gave the following NMR signals: 7.65 (m, 1H), 7.75-8.0 (m, 3H), 8.15-8.2 (m, 2H).
  • 6-Bromonaphth-2-ylsulphonyl chloride (9.4 g) was added in small portions over 3 hours to a stirred mixture of sodium sulphite heptahydrate (14.46 g), sodium bicarbonate (5.08 g) and water (100 ml) which had been heated to 70° C. The resultant mixture was allowed to cool slowly to ambient temperature. The crystalline precipitate was isolated giving sodium 6-bromonaphth-2-ylsulphinate (8.07 g) which was used without further purification.
  • 6-Bromonaphth-2-ylsulphonyl chloride (0.1 g) was added to a mixture of 4-[1-(4-pyridyl)piperidin-4-yloxy]aniline (0.1 g), triethylamine (0.168 g) and methylene chloride (5 ml) and the mixture was stirred at ambient temperature for 16 hours. The mixture was evaporated and the residue was purified on a C-18 60 ⁇ preparative reversed-phase HPLC column using 0.1% trifluoroacetic acid in aqueous acetonitrile and a gradient of 60% to 95% acetonitrile as eluent.
  • N-methyl-4-[1-(4-pyridyl)piperidin-4-yloxy]aniline used as a starting material was prepared as follows:—
  • Acetic formic anhydride (1.5 g; pre-formed by heating acetic anhydride and 98% formic acid at 60° C. for 2 hours) was cooled to 5° C. and 4-[1-(4-pyridyl)piperidin-4-yloxy]aniline (1.0 g) was added. The mixture was stirred at ambient temperature for 16 hours and then evaporated. The residue was dissolved in water (50 ml) and the mixture was basified to pH 110 by the addition of a 2M aqueous sodium hydroxide solution.
  • N-(4-Pyridyl)piperazine (0.163 g) was added, in one portion, to a stirred solution of 5-(6-bromonaphth-2-ylsulphonyl)phthalic anhydride (0.417 g.) in DMF (10 ml.) and the mixture was stirred at ambient temperature for 1 hour. Diethyl ether (40 ml.) was added and the mixture was stirred rapidly. The resultant white, amorphous precipitate was recovered by filtration. There was thus obtained a 1:1 mixture (0.474 g., 81%) of:—
  • Triethylamine (3.1 ml) was added dropwise to a stirred mixture of 5-bromophthalic anhydride (5-bromo-1,3-dihydro-2-benzofuran-1,3-dione; 4.54 g), 6-bromo-2-naphthalenethiol (European Patent Application No. 0409413, Example 19; 5.25 g) and DMF (50 ml) and the mixture was stirred at ambient temperature for 10 minutes. The mixture was heated at 60° C. for 1 hour and then stirred at ambient temperature for 16 hours. The solvent was evaporated and the residue was suspended in methanol (60 ml).
  • the mixture was basified by the addition of 2M aqueous sodium hydroxide solution and the mixture was heated to reflux for 1 hour.
  • the mixture was cooled ambient temperature and partitioned between water (300 ml) and diethyl ether.
  • the aqueous layer was acidified by the addition of concentrated hydrochloric acid and extracted with ethyl acetate (2 ⁇ 100 ml).
  • the combined extracts were washed with water and with brine, dried (MgSO4) and evaporated.
  • the residue was triturated under diethyl ether to give 4-(6-bromonaphth-2-ylthio)phthalic acid (6 g, 74%) as a pale yellow solid;
  • step (b) To a solution of the product of step (a) (849 mg) in methanol (15 ml) was added 2N sodium hydroxide (6.8 ml) and the resulting mixture was stirred for 3 hours. The mixture was evaporated to dryness. The resulting gum was dissolved in water (7 ml) and acidified with acetic acid. The mixture was filtered to give 4-(4-(4-pyridyl)piperazin-1-ylmethyl)benzoic acid (429 mg);
  • step (c) To a suspension of the product from step (b) (5.19 g) in dichloromethane (100 ml) was added thionyl chloride (7.3 ml). The resulting mixture was stirred for 3 hours and then evaporated to give the acid chloride as a solid (7.66 g) which was used without further purification.
  • reaction mixture was concentrated to a gum which was purified by column chromatography on silica eluting with methanol/dichloromethane (10:90) to give the tert-butyloxycarbonyl protected derivative of 2-[1-(4-pyridyl)piperidin-4-ylmethoxy]aniline (1.05 g);
  • step (c) To a solution of the product from step (b) (1.39 g) in methanol (50 ml) was added methanolic HCl (5 ml) and the resulting mixture was stirred for 4 days. The reaction mixture was partitioned between sodium bicarbonate solution and dichloromethane. The organic extracts were dried (MgSO 4 ) and evaporated to give 2-[1-(4-pyridyl)piperidin-4-ylmethoxy]aniline as a solid (971 mg) which was used without further purification;
  • Aluminium chloride (3.33 g) was added portionwise over 30 minutes to a stirred mixture of 6-30 bromonaphth-2-ylsulphonyl chloride (6.11 g) and anisole (3.33 g) in dry methylene chloride (35 ml). The resultant mixture was stirred for 24 hours. Methylene chloride (75 ml) was added, the mixture cooled to 4° C. and water (100 ml) added cautiously. The mixture was acidified with 2M hydrochloric acid, separated and the aqueous phase extracted with methylene chloride (30 ml). The combined organic phases were washed with water, dried (MgSO 4 ) and evaporated. Recrystallisation of the residue from an ethyl acetate/ethanol mixture gave 4-(6-bromonaphth-2-ylsulphonyl)anisole (1.74 g), m.p. 180-181° C.;
  • 6-Bromo-2-naphthylenethiol (2.39 g) was slowly added to a stirred suspension of sodium hydride (60% w/w suspension in mineral oil, 404 mg) in DMF (10 ml) at 4° C. After 1 hour, a portion (569 mg) 4-(4-fluorobenzoyl)-1-(4-pyridyl)piperidine and further dimethylformamide (8 ml) were added. The mixture was stirred at 50° for 24 hours and then 16 hours at ambient temperature. The mixture was added to water (50 ml) and extracted with methylene chloride (3 ⁇ 50 ml). The combined organic extracts were washed with water, dried (Mg SO 4 ) and evaporated.
  • NMR Spectrum (CDCl 3 ) 1.70-2.02 (m, 4H+H 2 O), 3.03 (td, 2H), 3.43 (m, 1H), 3.92, (dm, 2H), 6.68 (d, 2H), 7.25 (s, 2H), 7.51 (d, 1H), 7.60 (d, 1H), 7.67 (d, 1H), 7.77 (d, 1H), 7.84 (d, 2H), 8.01 (d, 2H), 8.25 (bs, 2H);
  • the 6-(bromo-2-(4-(2-aminoethylaminocarbonyl)phenylsulphonyl)naphthalene used as starting material may be prepared as follows.
  • 4-(6-Bromonaphth-2-ylsulphonyl-2-trifluoromethylbenzoic acid used as starting material may be prepared as follows.
  • reaction mixture was diluted with ethyl acetate (100 ml), washed with water (2 ⁇ 50 ml) and brine (25 ml), dried (MgSO4) and evaporated to give an oil which was further purified by chromatography on silica gel (Mega Bond Elut column, eluted with dichloromethane containing increasing proportions of methanol, 0-4%) to give 1-[4-(6-bromonaphth-2-ylthio)-2-trifluoromethylbenzoyl]-4-(4-pyridyl)piperazine (128 mg);
  • the benzoic acid used as starting material was prepared as follows.
  • NMR Spectrum (CDCl 3 , 300 MHz) 2.66 (t, 2H), 3.22 to 3.58 (s, 6H), 3.41 (t, 2H), 3.93 (s, 2H) 4.28 (s, 2H), 6.68 (m. 2H, 6.98 (d, 1H), 7.09 (s, 1H), (dd, 1H, quinoline 6-H), 7.58 and 7.90 (dd, 4H, phenyl Ar H's), 8.33 (d, 2H, pyridyl 2-H & 6-H);
  • 6-Chloro-1,2,3,4-tetrahydroisoquinoline may be prepared as follows:
  • the 1-(4-pyridyl)-3-(5-amino-2-pyridyloxy)pyrrolidine starting material may be prepared as follows:
  • NMR Spectrum (CDCl 3 ) 2.0-2.2 (m, 2H); 3.3 (m, 1H); 3.4-3.5 (m, 1H); 3.6-3.8 (bm, 5H); 4.0 (m, 1H); 6.7 (d, 2H); 7.05 (m, 1H); 7.4 (dd, 1H); 7.7 (m, 1H); 7.9 (m, 3H); 8.0 (m, 2H); 8.1 (m, 1H); 8.15-8.5 (m, 2H); 8.55 (s, 1H).
  • the 1-(4-pyridyl)hexahydro-1,4-diazepine used as starting material may be prepared as follows:
  • the above formulations may be obtained by conventional procedures well known in the pharmaceutical art.
  • the tablets (a)-(c) may be enteric coated by conventional means, for example to provide a coating of cellulose acetate phthalate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Dental Preparations (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Compounds of formula (I), wherein G1 is CH or N; G2 is CH or N; R1 is a variety of optional substituents, L1 is (1-4C)alkylene; T1 is CH or N; R2 and R3 are independently hydrogen or (1-4C)alkyl or are joined to form a ring; X1 and X2 represent various linking groups; Ar is phenylene or certain heteroaryl rings and Q represents a variety of aromatic or heterocyclic rings systems, and pharmaceutically acceptable salts thereof are described as useful antithrombotic and anticoagulant agents, and are selective Factor Xa inhibitors. Processes for their preparation and pharmaceutical compositions containing them are also described.
Figure US20030207882A1-20031106-C00001

Description

  • The invention relates to aminoheterocyclic derivatives and pharmaceutically-acceptable salts thereof, which possess antithrombotic and anticoagulant properties and are accordingly useful in methods of treatment of the human or animal body. The invention also relates to processes for the preparation of said aminoheterocyclic derivatives, to pharmaceutical compositions containing them and to their use in the manufacture of medicaments for use in the production of an antithrombotic or anticoagulant effect. [0001]
  • The antithrombotic and anticoagulant effect produced by the compounds of the invention is believed to be attributable to their strong inhibitory effect against the activated coagulation protease known as Factor Xa. Factor Xa is one of a cascade of proteases involved in the complex process of blood coagulation. The protease known as thrombin is the final protease in the cascade and Factor Xa is the preceding protease which cleaves prothrombin to generate thrombin. [0002]
  • Certain compounds are known to possess Factor Xa inhibitory properties and the field has been reviewed by R. B. Wallis, [0003] Current Opinion in Therapeutic Patents, 1993, 1173-1179. Thus it is known that two proteins, one known as antistasin and the other known as tick anticoagulant protein (TAP), are specific Factor Xa inhibitors which possess antithrombotic properties in various animal models of thrombotic disease.
  • It is also known that certain non-peptidic compounds possess Factor Xa inhibitory properties. Of the low molecular weight inhibitors mentioned in the review by R. B. Wallis, all possessed a strongly basic group such as an amidinophenyl or amidinonaphthyl group. [0004]
  • It is the object of the present invention to provide a new class of agent which lacks the amidino group previously believed to be an essential feature for a Factor Xa inhibitor. [0005]
  • We have now found that certain amino-substituted heterocyclic derivatives possess Factor Xa inhibitory activity and in particular also possess the advantage of being selective Factor Xa inhibitors, that is the enzyme Factor Xa is inhibited strongly at concentrations of test compound which do not inhibit or which inhibit to a lesser extent the enzyme thrombin which is also a member of the blood coagulation enzymatic cascade. [0006]
  • The compounds of the present invention possess activity in the treatment or prevention of a variety of medical disorders where anticoagulant therapy is indicated, for example in the treatment or prevention of thrombotic events associated with coronary artery and cerebro-vascular disease. Further examples of such medical disorders include various cardiovascular and cerebrovascular conditions such as myocardial infarction, the formation of atherosclerotic plaques, venous or arterial thrombosis, coagulation syndromes, disseminated intravascular coagulation, vascular injury including reocclusion and restenosis following angioplasty and coronary artery bypass surgery, thrombus formation after the application of blood vessel operative techniques or after general surgery such as hip replacement surgery, the introduction of artificial heart valves or on the recirculation of blood, cerebral infarction, cerebral thrombosis, stroke, cerebral embolism, pulmonary embolism, ischaemia and angina (including unstable angina). [0007]
  • The compounds of the invention are also useful as inhibitors of blood coagulation in an ex-vivo situation such as, for example, the storage of whole blood or other biological samples suspected to contain Factor Xa and in which coagulation is detrimental. [0008]
  • According to one aspect of the invention there is provided an aminoheterocyclic derivative of the formula I [0009]
    Figure US20030207882A1-20031106-C00002
  • wherein G[0010] 1 is CH or N;
  • G[0011] 2 is CH or N;
  • m is 1 or 2; [0012]
  • R[0013] 1 is hydrogen, halogeno, trifluoromethyl, trifluoromethoxy, cyano, amino, hydroxy, nitro, (1-4C)alkyl, (1-4C)alkoxy, (1-4C)alkylamino or di-(1-4C)alkylamino;
  • L[0014] 1 is (1-4C)alkylene, (3-6C)cycloalkane-1,2-diyl or (1-3C)alkylene-carbonyl,
  • T[0015] 1 is CH or N,
  • R[0016] 1 is hydrogen or (1-4C)alkyl and R3 is hydrogen or (1-4C)alkyl, or R2 and R3 together form a (1-4C)alkylene or methylenecarbonyl group,
  • and wherein 1 or 2 methylene groups within L[0017] 1 or the ring formed when R2 and R3 are linked optionally bear 1 or 2 substituents selected from carboxy, carbamoyl, (1-4C)alkyl, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl, N,N-di-(1-4C)alkylcarbamoyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, piperazin-1-ylcarbonyl, 4-(1-4C)alkylpiperazin-1-ylcarbonyl, hydroxy-(1-4C)alkyl, (1-4C)alkoxy-(11C)alkyl, carboxy-(1-4C)alkyl, (1 C)alkoxycarbonyl-(1-4C)alkyl, carbamoyl-(1-4C)alkyl, N-(1-4C)alkylcarbamoyl-(1-4C)alkyl, N,N-di-(1-4C)alkylcarbamoyl-(1-4C)alkyl, pyrrolidin-1-ylcarbonyl-(1-4C)alkyl, piperidino-(1-4C)alkyl, morpholino-(1-4C)alkyl, piperazin-1-yl-(1-4C)alkyl and 4-(1-4C)alkylpiperazin-1-yl-(1-4C)alkyl,
  • and wherein any heterocyclic group in said substituent optionally bears 1 or 2 (1-4C)alkyl substituents, provided that, when T[0018] 1 is N, L1 is not optionally substituted methylene and R2 and R3 together do not form an optionally substituted methylene group;
  • X[0019] 1 is a group of the formula SO, SO2, C(R4)2, CO, C(R4)2O, C(R4)2S, C(R4)2SO, C(R4)2SO2, COC(R4)2, SOC(R4)2 or SO2C(R4)2 when T1 is CH or N, or, in addition, X1 is a group of the formula O, S, OC(R4)2 or SC(R4)2 when T1 is CH, and wherein each R4 is independently hydrogen or (1-4C)alkyl;
  • Ar is phenylene, or a 5- or 6-membered monocyclic heteroaryl ring containing up to 3 heteroatoms selected from nitrogen, oxygen and sulphur, [0020]
  • and wherein said phenylene or heteroaryl ring is optionally substituted with 1 or 2 substituents selected from halogeno, trifluoromethyl, trifluoromethoxy, cyano, nitro, (1-4C)alkyl, (2-4C)alkenyl and (2-4C)alkynyl, [0021]
  • from the substituent Y[0022] 1 which is selected from hydroxy, amino, (1-4C)alkoxy, (2-4C)alkenyloxy, (2-4C)alkynyloxy, (1-4C)alkylamino, di-(1-4C)alkylamino, pyrrolidin-1-yl, piperidino, morpholino, thiamorpholino, 1-oxothiamorpholino, 1,1-dioxothiamorpholino, piperazin-1-yl, 4-(1-4C)alkylpiperazin-1-yl, (1-4C)alkylthio, (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl, (24C)alkanoylamino, benzamido, (1-4C)alkanesulphonamido and benzenesulphonamido, from the substituent Y2which is selected from carboxy, carbamoyl, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl, N,N-di-(1-4C)alkylcarbamoyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, thiamorpholinocarbonyl, 1-oxothiamorpholinocarbonyl, 1,1-dioxothiamorpholinocarbonyl, piperazin-1-ylcarbonyl, 4-(1-4C)alkylpiperazin-1-ylcarbonyl, (1-4C)alkanesulphonamidocarbonyl, benzenesulphonamidocarbonyl and benzylsulphonamidocarbonyl,
  • from a substituent of the formula -L[0023] 2-Y1 wherein L2 is (1-4C)alkylene and Y1 has any of the meanings defined immediately hereinbefore, from a substituent of the formula -L2-Y2 wherein L2 is (1-4C)alkylene and Y2 has any of the meanings defined immediately hereinbefore, from a substituent of the formula —X3-L2-Y2 wherein X3 is a group of the formula CON(R5), CON(L2-Y2), C(R5)2O, O, N(R5) or N(L2-Y2), L2 is (1-4C)alkylene, Y2 has any of the meanings defined immediately hereinbefore and each R5 is independently hydrogen or (1-4C)alkyl, and
  • from a substituent of the formula —X[0024] 3-L3-Y1 wherein X3 is a group of the formula CON(R5), CON(L3-Y1), C(R5)2O, O, N(R5) or N(L3-Y1), L3 is (2-4C)alkylene, Y1 has any of the meanings defined immediately hereinbefore and each R5 is independently hydrogen or (1-4C)alkyl, and wherein any heterocyclic group in said substituent optionally bears 1 or 2 substituents selected from carboxy, carbamoyl, (1-4C)alkyl, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl and N,N-di-(1-4C)alkylcarbamoyl, and wherein any phenyl group in said substituent optionally bears 1 or 2 substituents selected from halogeno, trifluoromethyl, cyano, (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (1-4C)alkoxy, (2-4C)alkenyloxy and (2-4C)alkynyloxy;
  • X[0025] 2 is a group of the formula S, SO, SO2, C(R6)2, CO, N(R7)SO2, N(R7)CO, C(R6)2S, C(R6)2SO, C(R6)2SO2, C(R6)2—C(R6)2 or C(R6)2CO, or, in addition, X2 is a group of the formula O, SO2N(R7), CON(R7) or C(R7)2O when Q is other than phenyl-(2-4C)alkenyl or phenyl-(24C)alkynyl and wherein each R6 is independently hydrogen or (1-4C)alkyl and R7 is hydrogen, (1-4C)alkyl or a group of the formula —X4-Q wherein X4 is SO2 or CO and Q has any of the meanings defined immediately hereinafter; and
  • Q is phenyl, naphthyl, phenyl-(1-4C)alkyl, phenyl-(2-4C)alkenyl, phenyl-(2-4C)alkynyl or a heterocyclic moiety containing up to 4 heteroatoms selected from nitrogen, oxygen and sulphur, and Q optionally bears 1, 2 or 3 substituents selected from halogeno, trifluoromethyl, trifluoromethoxy, cyano, hydroxy, amino, nitro, trifluoromethanesulphonyl, carboxy, carbamoyl, (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (1-4C)alkoxy, (2-4C)alkenyloxy, (2-4C)alkynyloxy, (1-4C)alkylthio, (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl, (1-4C)alkylamino, di-(1-4C)alkylamino, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl, N,N-di-(1-4C)alkylcarbamoyl, (2-4C)alkanoyl, (2-4C)alkanoylamino, hydroxy-(1-4C)alkyl, (1-4C)alkoxy-(1-4C)alkyl, carboxy-(1-4C)alkyl, (1-4C)alkoxycarbonyl-(1-4C)alkyl, carbamoyl-(1-4C)alkyl, N-(1-4C)alkylcarbamoyl-(1-4C)alkyl, N,N-di-(1-4C)alkylcarbamoyl-(1-4C)alkyl, phenyl, heteroaryl, phenoxy, phenylthio, phenylsulphinyl, phenylsulphonyl, benzyl, benzoyl, heteroaryloxy, heteroarylthio, heteroarylsulphinyl and heteroarylsulphonyl, [0026]
  • and wherein said heteroaryl substituent or the heteroaryl group in a heteroaryl-containing substituent comprises a 5- or 6-membered monocyclic heteroaryl ring containing up to 3 heteroatoms selected from nitrogen, oxygen and sulphur, and wherein said phenyl, heteroaryl, phenoxy, phenylthio, phenylsulphinyl, phenylsulphonyl, heteroaryloxy, heteroarylthio, heteroarylsulphinyl, heteroarylsulphonyl, benzyl or benzoyl substituent optionally bears 1, 2 or 3 substituents selected from halogeno, trifluoromethyl, cyano, hydroxy, amino, nitro, carboxy, carbamoyl, (1-4C)alkyl, (1-4C)alkoxy, (1-4C)alkylamino, di-(1-4C)alkylamino, (1-4C)alkoxycarbdnyl, N-(1-4C)alkylcarbamoyl, N,N-di-(1-4C)alkylcarbamoyl and (2-4C)alkanoylamino; [0027]
  • or a pharmaceutically-acceptable salt thereof; [0028]
  • provided that when X[0029] 1 is CO and Ar is phenylene which optionally bears 1 or 2 substituents selected from halogeno, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy then X2 is not N(R7)SO2, N(R7)CO, C(R6)2S, C(R6)2SO, C(R6)2SO2, C(R6)2—C(R6)2, C(R6)2CO or C(R6)2O.
  • In this specification the term “alkyl” includes both straight and branched chain alkyl groups but references to individual alkyl groups such as “propyl” are specific for the straight chain version only. An analogous convention applies to other generic terms. [0030]
  • It is to be understood that certain aminoheterocyclic derivatives of the present invention can exist in solvated as well as unsolvated forms such as, for example, hydrated forms. It is to be understood that the invention encompasses all such solvated forms which possess Factor Xa inhibitory activity. [0031]
  • It is further to be understood that, insofar as certain of the compounds of the formula defined above may exist in optically active or racemic forms by virtue of one or more asymmetric carbon atoms, the invention encompasses any such optically active or racemic form which possesses Factor Xa inhibitory activity. The synthesis of optically active forms may be carried out by standard techniques of organic chemistry well known in the art, for example by synthesis from optically active starting materials or by resolution of a racemic form. [0032]
  • Suitable values for the generic terms referred to above include those set out below. [0033]
  • When m is 2, each R[0034] 1 is independently selected from the list of substituents defined hereinbefore.
  • A suitable value for R[0035] 1 when it is a halogeno group or for a halogeno substituent on Ar, on a phenyl group within any substituent on Ar, on Q or on a phenyl- or heteroaryl-containing substituent on Q is, for example, fluoro, chloro, bromo or iodo.
  • A suitable value for R[0036] 1 when it is a (1-4C)alkyl group or for a (1-4C)alkyl substituent on Ar, on a heterocyclic or phenyl group within any substituent on Ar, on Q or on a phenyl- or heteroaryl-containing substituent on Q is, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl or tert-butyl.
  • A suitable value for R[0037] 1 when it is a (1-4C)alkoxy group or for a (1-4C)alkoxy substituent on Ar, on a phenyl group within any substituent on Ar, on Q or on a phenyl- or heteroaryl-containing substituent on Q is, for example, methoxy, ethoxy, propoxy, isopropoxy or butoxy.
  • A suitable value for R[0038] 1 when it is a (1-4C)alkylamino group or for a (1-4C)alkylamino substituent on Ar, on Q or on a phenyl- or heteroaryl-containing substituent on Q is, for example, methylamino, ethylamino or propylamino.
  • A suitable value for R[0039] 1 when it is di-(1-4C)alkylamino or for a di-(1-4C)alkylamino substituent on Ar, on Q or on a phenyl- or heteroaryl-containing substituent on Q is, for example, dimethylamino, N-ethyl-N-methylamino or diethylamino.
  • A suitable value for R[0040] 2, R3, R4, R5, R6 or R7 when it is (1-4C)alkyl is, for example, methyl, ethyl, propyl, isopropyl, butyl or se-butyl.
  • A suitable value for a (1-4C)alkylene group formed by R[0041] 2 and R3 together is, for example, methylene, ethylene, trimethylene or tetramethylene.
  • A suitable value for L[0042] 1 when it is (1-4C)alkylene is, for example, methylene, ethylene, trimethylene or tetramethylene;
  • when it is (3-6C)cycloalkane-1,2-diyl is, for example, cyclopropane-1,2-diyl, cyclobutane-1,2-diyl, cyclopentane-1,2-diyl or cyclohexane-1,2-diyl; and when it is (1-3C)alkylene-carbonyl is, for example, methylenecarbonyl, ethylenecarbonyl or trimethylenecarbonyl. [0043]
  • A suitable value for a substituent which may be present on 1 or 2 methylene groups within L[0044] 1 or the ring formed when R1 and R3 are linked is, for example, as follows:—
    for (1-4C)alkyl: methyl, ethyl and propyl;
    for (1-4C)alkoxycarbonyl: methoxycarbonyl, ethoxy-
    carbonyl, propoxycarbonyl
    and tert-butoxycarbonyl;
    for N-(1-4C)alkylcarbamoyl: N-methylcarbamoyl, N-ethyl-
    carbamoyl and N-propyl-
    carbamoyl;
    for N,N-di-[(1-4C)alkyl]carbamoyl: N,N-dimethylcarbamoyl,
    N-ethyl-N-methylcarbamoyl
    and N,N-diethylcarbamoyl;
    for 4-(1-4C)alkylpiperazin-1-ylcarbonyl: 4-methylpiperazin-1-
    ylcarbonyl and 4-ethyl-
    piperazin-1-ylcarbonyl;
    for hydroxy-(1-4C)alkyl: hydroxymethyl, 1-hydroxy-
    ethyl, 2-hydroxyethyl and
    3-hydroxypropyl;
    for (1-4C)alkoxy-(1-4C)alkyl: methoxymethyl, ethoxy-
    methyl, 1-methoxymethyl,
    2-methoxyethyl, 2-ethoxy-
    ethyl and 3-methoxypropyl;
    for carboxy-(1-4C)alkyl: carboxymethyl, 1-carboxy-
    ethyl, 2-carboxyethyl and
    3-carboxypropyl;
    for (1-4C)alkoxycarbonyl-(1-4C)alkyl: methoxycarbonylmethyl,
    ethoxycarbonylmethyl, tert-
    butoxycarbonylmethyl,
    1-methoxycarbonyl ethyl,
    1-ethoxycarbonylethyl,
    2-methoxycarbonylethyl,
    2-ethoxycarbonylethyl,
    3-methoxycarbonylpropyl and
    3-ethoxycarbonylpropyl;
    for carbamoyl-(1-4C)alkyl: carbamoylmethyl,
    1-carbamoylethyl,
    2-carbamoylethyl and
    3-carbamoylpropyl;
    for N-(1-4C)alkylcarbamoyl-(1-4C)alkyl: N-methylcarbamoylmethyl,
    N-ethylcarbamoylmethyl,
    N-propylcarbamoylmethyl,
    1-(N-methylcarbamoyl)ethyl,
    1-(N-ethylcarbamoyl)ethyl,
    2-(N-methylcarbamoyl)ethyl,
    2-(N-ethylcarbamoyl)ethyl
    and 3-(N-methyl-
    carbamoyl)propyl;
    for N,N-di-[(1-4C)alkyl]carbamoyl- N,N-dimethylcarbamoyl-
    (1-4C)alkyl: methyl, N-ethyl-N-methyl-
    carbamoylmethyl, N,N-
    diethylcarbamoylmethyl,
    1-(N,N-dimethylcarbamoyl)
    ethyl, 1-(N,N-diethyl-
    carbamoyl)ethyl, 2-(N,N-
    dimethylcarbamoyl)ethyl,
    2-(N,N-diethylcarbamoyl)
    ethyl and 3-(N,N-dimethyl-
    carbamoyl)propyl;
    for pyrrolidin-1-ylcarbonyl-(1-4C)alkyl: pyrrolidin-1-ylcarbonyl-
    methyl, 1-(pyrrolidin-1-
    ylcarbonyl)ethyl and 2-
    (pyrrolidin-1-ylcarbonyl)ethyl;
    for piperidinocarbonyl-(1-4C)alkyl: piperidinocarbonylmethyl,
    1-(piperidinocarbonyl)ethyl
    and 2-(piperidinocarbonyl)
    ethyl;
    for morpholinocarbonyl-(1-4C)alkyl: morpholinocarbonylmethyl,
    1-(morpholinocarbonyl)ethyl
    and 2-(morpholinocarbonyl)
    ethyl;
    for piperazin-1-ylcarbonyl-(1-4C)alkyl: piperazin-1-ylcarbonylmethyl,
    1-(piperazin-1-ylcarbonyl)
    ethyl and 2-(piperazin-1-
    ylcarbonyl)ethyl;
    for 4-(1-4C)alkylpiperazin-1-ylcarbonyl- 4-methylpiperazin-1-
    (1-4C)alkyl: ylcarbonylmethyl,
    4-ethylpiperazin-1-
    ylcarbonylmethyl, 2-(4-
    methylpiperazin-1-
    ylcarbonyl)ethyl and 2-(4-
    ethylpiperazin-1-
    ylcarbonyl)ethyl.
  • For suitable value for a (1-4C)alkyl group which may be present on a heterocyclic group in a substituent on L[0045] 1 or the ring formed when R2 and R3 are linked is, for example, methyl, ethyl or propyl.
  • A suitable value for Ar when it is phenylene is, for example, 1,2-, 1,3- or 1,4-phenylene. [0046]
  • A suitable value for Ar when it is a 5- or 6-membered monocyclic heteroaryl ring containing up to 3 heteroatoms selected from nitrogen, oxygen and sulphur is, for example, furandiyl, thiophenediyl, pyridinediyl, pyrazinediyl, pyrimidinediyl, pyridazinediyl, pyrrolediyl, pyrazolediyl, imidazolediyl, oxazolediyl, isoxazolediyl, thiazolediyl, isothiazolediyl, 1,2,3-triazolediyl, 1,2,4-triazolediyl, oxadiazolediyl, furazandiyl, thiadiazolediyl and 1,3,5-triazinediyl which may be attached through any available position including through any available nitrogen atom. Convenient values for Ar include 2,4- or 2,5-furandiyl, 2,4- or 2,5-thiophenediyl, 2,4-, 2,5-, 2,6- or 3,5-pyridinediyl, 2,4-, 2,5- or 4,6-pyrimidinediyl, 1,4-, 2,4-, 2,5-, 4,1- or 5,2-imidazolediyl, 2,4- or 2,5-oxazolediyl, 2,4- or 2,5-thiazolediyl, 2,5-oxadiazolediyl, 2,5-thiadiazolediyl and 1,3,5-triazine-2,4-diyl. [0047]
  • A suitable value for L[0048] 2 when it is (1-4C)alkylene is, for example, methylene, ethylene, trimethylene or tetramethylene; and for L3 when it is (2-4C)alkylene is, for example, ethylene, trimethylene or tetramethylene.
  • Suitable values for substituents which may be present on Ar, on a heterocyclic or phenyl group within a substituent on Ar, on Q or on a phenyl- or heteroaryl-containing substituent on Q include, for example:— [0049]
    for (2-4C)alkenyl: vinyl and allyl;
    for (2-4C)alkynyl: ethynyl and prop-2-ynyl;
    for (2-4C)alkenyloxy: vinyloxy and allyloxy;
    for (2-4C)alkynyloxy: ethynyloxy and prop-2-
    ynyloxy;
    for 4-(1-4C)alkylpiperazin-1-yl: 4-methylpiperazin-1-yl and
    4-ethylpiperazin-1-yl;
    for (1-4C)alkylthio: methylthio, ethylthio and
    propylthio;
    for (1-4C)alkylsulphinyl: methylsulphinyl,
    ethylsulphinyl and
    propylsulphinyl;
    for (1-4C)alkylsulphonyl: methylsulphonyl,
    ethylsulphonyl and
    propylsulphonyl;
    for (2-4C)alkanoylamino: acetamido, propionamido and
    butyramido;
    for (1-4C)alkanesulphonamido: methanesulphonamido and
    ethanesulphonamido;
    for (1-4C)alkoxycarbonyl: methoxycarbonyl,
    ethoxycarbonyl,
    propoxycarbonyl and
    tert-butoxycarbonyl;
    for N-(1-4C)alkylcarbamoyl: N-methylcarbamoyl,
    N-ethylcarbamoyl and
    N-propylcarbamoyl;
    for N,N-di-[(1-4C)alkyl]carbamoyl: N,N-dimethylcarbamoyl,
    N-ethyl-N-methylcarbamoyl
    and N,N-diethylcarbamoyl;
    for 4-(1-4C)alkylpiperazin-1-ylcarbonyl: 4-methylpiperazin-1-
    ylcarbonyl and 4-ethyl-
    piperazin-1-ylcarbonyl;
    for (1-4C)alkanesulphonamidocarbonyl: methanesulphonamido-
    carbonyl and ethane-
    sulphonamidocarbonyl;
    for (2-4C)alkanoyl: acetyl, propionyl and butyryl;
    for hydroxy-(1-4C)alkyl: hydroxymethyl, 1-hydroxy-
    ethyl, 2-hydroxyethyl and
    3-hydroxypropyl;
    for (1-4C)alkoxy-(1-4C)alkyl: methoxymethyl, ethoxy-
    methyl, 1-methoxymethyl,
    2-methoxyethyl, 2-ethoxy-
    ethyl and 3-methoxypropyl;
    for carboxy-(1-4C)alkyl: carboxymethyl, 1-carboxy-
    ethyl, 2-carboxyethyl and
    3-carboxypropyl;
    for (1-4C)alkoxycarbonyl-(1-4C)alkyl: methoxycarbonylmethyl,
    ethoxycarbonylmethyl,
    tert-butoxycarbonylmethyl,
    1-methoxycarbonylethyl,
    1-ethoxycarbonylethyl,
    2-methoxycarbonylethyl,
    2-ethoxycarbonylethyl,
    3-methoxycarbonylpropyl and
    3-ethoxycarbonylpropyl;
    for carbamoyl-(1-4C)alkyl: carbamoylmethyl,
    1-carbamoylethyl,
    2-carbamoylethyl and
    3-carbamoylpropyl;
    for N-(1-4C)alkylcarbarnoyl-(1-4C)alkyl: N-methylcarbamoylmethyl,
    N-ethylcarbamoylmethyl,
    N-propylcarbamoylmethyl,
    1-(N-methylcarbamoyl)ethyl,
    1-(N-ethylcarbamoyl)ethyl,
    2-(N-methylcarbamoyl)ethyl,
    2-(N-ethylcarbamoyl)ethyl
    and 3-(N-methylcarbamoyl)
    propyl;
    for N,N-di-[(1-4C)alkyl]carbamoyl- N,N-dimethylcarbamoyl-
    (1-4C)alkyl: methyl, N-ethyl-N-methyl-
    carbamoylmethyl, N,N-
    diethylcarbamoylmethyl,
    1-(N,N-dimethylcarbamoyl)
    ethyl, 1-(N,N-diethyl
    carbamoyl)ethyl, 2-(N,N-
    dimethylcarbamoyl)ethyl,
    2-(N,N-diethyl-
    carbamoyl)ethyl and
    3-(N,N-dimethylcarbamoyl)
    propyl;
  • For the avoidance of doubt it is stated that a suitable heterocyclic group in a substituent which may be present on Ar includes, for example, pyrrolidin-1-yl, piperidino, morpholino, piperazin-1-yl and 4-(1-4C)alkylpiperazin-1-yl whether directly attached or attached by way of a linking group as in, for example, pyrrolidin-1-ylcarbonyl. [0050]
  • A suitable value for Q when it is naphthyl is for example, 1-naphthyl or 2-naphthyl; when it is phenyl-(1-4C)alkyl is, for example, benzyl, phenethyl and 3-phenylpropyl, when it is phenyl-(2-4C)alkenyl is, for example, styryl, cinnamyl or 3-phenylprop-2-enyl; and when it is phenyl-(2-4C)alkynyl is, for example, 2-phenylethynyl, 3-phenylprop-2-ynyl and 3-phenylprop-1-ynyl. [0051]
  • A suitable value for Q when it is a heterocyclic moiety containing up to 4 heteroatoms selected from nitrogen, oxygen and sulphur is, for example, a 5- or 6-membered heterocyclic moiety which is a single ring or is fused to one or two benzo rings such as furyl, benzofuranyl, tetrahydrofuryl, chromanyl, thienyl, benzothienyl, pyridyl, piperidinyl, quinolyl, 1,2,3,4-tetrahydroquinolinyl, isoquinolyl, 1,2,3,4-tetrahydroisoquinolinyl, pyrazinyl, piperazinyl, pyrimidinyl, pyridazinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pyrrolyl, pyrrolidinyl, indolyl, indolinyl, imidazolyl, benzimidazolyl, pyrazolyl, indazolyl, oxazolyl, benzoxazolyl, isoxazolyl, thiazolyl, benzothiazolyl, isothiazolyl, morpholinyl, 4H-1,4-benzoxazinyl, 4H-1,4-benzothiazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, oxadiazolyl, furazanyl, thiadiazolyl, tetrazolyl, dibenzofuranyl and dibenzothienyl, which may be attached through any available position including, for an appropriate X[0052] 2 group such as, for example, SO2, C(R6)2 or CO, through any available nitrogen atom and which may bear up to three substituents including a substituent on any available nitrogen atom.
  • A suitable value for the heteroaryl substituent on Q or the heteroaryl group in a heteroaryl-containing substituent on Q which comprises a 5- or 6-membered monocyclic heteroaryl ring containing up to 3 heteroatoms selected from oxygen, nitrogen and sulphur is, for example, furyl, thienyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, oxadiazolyl, furazanyl and thiadiazolyl which may be attached through any available position including through any available nitrogen atom. [0053]
  • For the avoidance of any doubt it is to be understood that, in the portion of the structure of formula I which has the formula —N(R[0054] 2)-L1-T1(R3)—X1—, it is the N atom which is attached to L1 and it is the T1 group which is attached to X1 i.e. neither of the R2 and R3 groups are attached to L1. It is further to be understood that, within the structure of formula I, when R2 and R3 together form a methylenecarbonyl group, it is the methylene group thereof which is attached to the N atom and the carbonyl group thereof which is attached to T1. Similarly when L1 is a (1-3 C)alkylene-carbonyl group, for example a methylenecarbonyl group, it is the methylene group thereof which is attached to the N atom and the carbonyl group thereof which is attached to T1.
  • It is also to be understood that, within the structure of formula I, when X[0055] 1 is, for example, a group of the formula C(R4)2O, it is the C atom which is attached to T1 and the O atom which is attached to Ar. Likewise, when X2 is, for example, a group of the formula N(R7)SO2, it is the N atom which is attached to Ar and the SO2 group which is attached to Q. Likewise, when X3 is, for example, a group of the formula CON(R5), it is the CO group which is attached to Ar and the N atom which is attached to L2 or L3 as appropriate. Likewise when X3 is, for example a group of the formula CON(L2-Y2), it is the L2 group which is attached to the N atom of the CON group.
  • A suitable pharmaceutically-acceptable salt of an aminoheterocyclic derivative of the invention is, for example, an acid-addition salt of an aminoheterocyclic derivative of the invention which is sufficiently basic, for example, an acid-addition salt with, for example, an inorganic or organic acid, for example hydrochloric, hydrobromic, sulphuric, phosphoric, trifluoroacetic, citric or maleic acid. In addition a suitable pharmaceutically-acceptable salt of an aminoheterocyclic derivative of the invention which is sufficiently acidic is an alkali metal salt, for example a sodium or potassium salt, an alkaline earth metal salt, for example a calcium or magnesium salt, an ammonium salt or a salt with an organic base which affords a physiologically-acceptable cation, for example a salt with methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine. [0056]
  • Particular compounds of the invention include, for example, aminoheterocyclic derivatives of the formula I, or pharmaceutically-acceptable salts thereof, wherein, unless otherwise stated, each of G[0057] 1, G2, m, R1, R2, R3, L1, T1, X1, Ar, X2 and Q has any of the meanings defined hereinbefore or in this section concerning particular compounds of the invention:—
  • (a) each of G[0058] 1 and G2 is CH;
  • (b) G[0059] 1 is CH and G2 is N, or G1 is N and G2 is CH;
  • (c) m is 1 and R[0060] 1 is hydrogen;
  • (d) L[0061] 1 is (1-4C)alkylene, T1 is CH or N, and R2 and R3 together form a (1-4C)alkylene group, and wherein 1 or 2 methylene groups within L1 and the ring formed when R1 and R3 are linked optionally bears 1 or 2 (1-4C)alkyl substituents, provided that, when T1 is N, L1 is not optionally substituted methylene and R2 and R3 together do not form an optionally substituted methylene group;
  • (e) L[0062] 1 is ethylene, T1 is CH, and R2 and R3 together form a methylene or ethylene group;
  • (f) L[0063] 1 is ethylene, T1 is N, and R1 and R3 together form an ethylene group;
  • (ff) L[0064] 1 is ethylene, T1 is N, and R2 and R3 together form an ethylene or propylene group;
  • (g) L[0065] 1 is ethylene, T1 is CH or N, and R2 and R3 together form an ethylene group;
  • (h) when T[0066] 1 is CH or N, X1 is a group of the formula SO2, CH2, CO, CH2O, CH2S, CH2SO2, COCH2 or SO2CH2, or, when T1 is CH, X1 is, in addition, a group of the formula O, S, OCH2 or SCH2;
  • (i) when T[0067] 1 is CH or N, X1 is a group of the formula CH2, CO or CH2O, or, when T1 is CH, X1 is, in addition, a group of the formula O;
  • (j) Ar is 1,3-phenylene or 1,4-phenylene which is optionally substituted with 1 or 2 substituents selected from halogeno, trifluoromethyl, cyano, (1-4C)alkyl, hydroxy, amino, (1-4C)alkoxy, (1-4C)alkylamino, di-(1-4C)alkylamino, (1-4C)alkylthio, (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl, (2-4C)alkanoylamino, carboxy, carbamoyl, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl, N,N-di-(1-4C)alkylcarbamoyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, thiamorpholinocarbonyl, 1-oxothiamorpholinocarbonyl, 1,1-dioxothiamorpholinocarbonyl, piperazin-1-ylcarbonyl and 4-(1-4C)alkylpiperazin-1-ylcarbonyl; [0068]
  • (k) Ar is 1,3-phenylene or 1,4-phenylene which is optionally substituted with a substituent of the formula -L[0069] 2-Y1 or of the formula -L2-Y2 wherein L2 is (1-4C)alkylene, Y1 is selected from hydroxy, amino, (1-4C)alkoxy, (1-4C)alkylamino, di-(1-4C)alkylamino, pyrrolidin-1-yl, piperidino, morpholino, piperazin-1-yl, 4-(1-4C)alkylpiperazin-1-yl, (1-4C)alkylthio, (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl and (2-4C)alkanoylamino, and Y2 is selected from carboxy, carbamoyl, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl, N,N-di-(1-4C)alkylcarbamoyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, piperazin-1-ylcarbonyl and 4-(1-4C)alkylpiperazin-1-ylcarbonyl;
  • (l) Ar is 1,3-phenylene or 1,4-phenylene which is optionally substituted with a substituent of the formula —X[0070] 3-L2-Y2 wherein X3 is a group of the formula CONH, CON(Me), CH2O or O, L2 is methylene, ethylene or trimethylene and Y2 is selected from carboxy, carbamoyl, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl, N,N-di-(1-4C)alkylcarbamoyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, piperazin-1-ylcarbonyl and 4-(1-4C)alkylpiperazin-1-yl;
  • (m) Ar is 1,3-phenylene or 1,4-phenylene which is optionally substituted with a substituent of the formula —X[0071] 3-L3-Y1 wherein X3 is a group of the formula CONH, CH2O, O or NH, L3 is ethylene or trimethylene and Y1 is hydroxy, amino, (1-4C)alkoxy, (1-4C)alkylamino, di-(1-4C)alkylamino, pyrrolidin-1-yl, piperidino, morpholino, piperazin-1-yl, 4-(1-4C)alkylpiperazin-1-yl, (1-4C)alkylthio, (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl and (2-4C)alkanoylamino;
  • (n) X[0072] 2 is a group of the formula SO2, CH2, CO, NHSO2, N(R7)SO2, NHCO, N(R7)CO, CH2SO2, CH2CH2 or CH2CO wherein R7 is (1-4C)alkyl or a group of the formula —X4-Q wherein X4 is SO2 and Q has any of the meanings defined hereinafter in this section of particular compounds of the invention;
  • (nn) X[0073] 2 is a group of the formula S;
  • (o) X[0074] 2 is a group of the formula SO2 or NHSO2;
  • (p) X[0075] 2 is a group of the formula SO2;
  • (q) X[0076] 2 is a group of the formula NHSO2;
  • (r) Q is phenyl, naphthyl or phenyl-(1-4C)alkyl which optionally bears 1, 2 or 3 substituents selected from hydroxy, halogeno, cyano, trifluoromethyl. (1-4C)alkyl, (1-4C)alkoxy, phenyl, phenoxy, phenylthio, phenylsulphinyl, phenylsulphonyl, benzyl and benzoyl, and wherein the phenyl substituent or the phenyl group in a phenyl-containing substituent optionally bears-1 or 2 substituents selected from halogeno, (1-4C)alkyl and (1-4C)alkoxy; [0077]
  • (s) Q is phenyl which bears a phenyl substituent and optionally bears 1 or 2 substituents selected from hydroxy, halogeno, cyano, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy, and wherein the phenyl substituent optionally bears up to 3 substituents selected from halogeno, trifluoromethyl, cyano, (1-4C)alkyl and (1-4C)alkoxy; [0078]
  • (t) Q is phenyl-(1-4C)alkyl, phenyl-(2-4C)alkenyl or phenyl-(2-4C)alkynyl which optionally bears 1, 2 or 3 substituents selected from halogeno, cyano, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy; [0079]
  • (u) Q is phenyl-(2-4C)alkenyl which optionally bears 1, 2 or 3 substituents selected from halogeno, cyano, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy; [0080]
  • (v) Q is phenyl or phenyl-(1-4C)alkyl which bears 1 substituent selected from heteroaryl, heteroaryloxy, heteroarylthio, heteroarylsulphinyl and heteroarylsulphonyl, wherein the heteroaryl substituent or the heteroaryl group in a heteroaryl-containing substituent comprises a 5- or 6-membered monocyclic heteroaryl ring containing up to 3 heteroatoms selected from nitrogen, oxygen and sulphur, and wherein said heteroaryl or heteroaryl-containing substituent optionally bears 1 or 2 substituents selected from halogeno, (1-4C)alkyl and (1-4C)alkoxy; [0081]
  • (w) Q is phenyl which bears 1 substituent selected from heteroaryl, heteroaryloxy, heteroarylthio and heteroarylsulphonyl, wherein the heteroaryl substituent or the heteroaryl group in a heteroaryl-containing substituent is selected from thienyl, pyridyl, pyrimidinyl, pyrazolyl, oxazolyl, thiazolyl, 1,2,3-triazolyl and 1,2,4-triazolyl, and wherein said heteroaryl or heteroaryl-containing substituent optionally bears 1 or 2 substituents selected from halogeno and (1-4C)alkyl; [0082]
  • (x) Q is naphthyl which optionally bears 1 or 2 substituents selected from hydroxy, halogeno, cyano, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy; [0083]
  • (y) Q is a heterocyclic moiety containing up to 2 heteroatoms selected from benzofuranyl, quinolyl, tetrahydroquinolyl, isoquinolyl, quinoxalinyl, quinazolinyl, cinnolinyl, indolyl, benzimidazolyl, indazolyl, benzoxazolyl and benzothiazolyl, and Q optionally bears 1 or 2 substituents selected from halogeno, cyano, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy; [0084]
  • (z) Q is a heterocyclic moiety containing up to 2 heteroatoms selected from benzofuranyl, quinolyl, tetrahydroquinolyl, isoquinolyl, quinoxalinyl, quinazolinyl, cinnolinyl, indolyl, benzimidazolyl, indazolyl, benzoxazolyl, benzothiazolyl, dibenzofuranyl and dibenzothienyl, and Q optionally bears 1 or 2 substituents selected from halogeno, cyano, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy; [0085]
  • (aa) Q is a heterocyclic moiety containing up to 4 heteroatoms selected from furyl, thienyl, pyridyl, pyrimidinyl, pyrrolyl, pyrrolidinyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, oxadiazolyl, thiadiazolyl and tetrazolyl, and Q optionally bears 1 or 2 substituents selected from halogeno, cyano, carboxy, carbamoyl, (1-4C)alkoxycarbonyl, (1-4C)alkyl, (1-4C)alkoxy, N-(1-4C)alkylcarbamoyl and N,N-di-(1-4C)alkylcarbamoyl; [0086]
  • (bb) Q is a heterocyclic moiety containing up to 2 heteroatoms selected from thienyl, pyridyl, pyrimidinyl, imidazolyl, pyrazolyl, oxazolyl and thiazolyl, and Q optionally bears 1 or 2 substituents selected from halogeno, (1-4C)alkyl, (1-4C)alkoxy, phenyl, heteroaryl, phenoxy, phenylthio, phenylsulphinyl, phenylsulphonyl, heteroaryloxy, heteroarylthio, heteroarylsulphinyl, heteroarylsulphonyl, benzyl and benzoyl, wherein the heteroaryl substituent or the heteroaryl group in a heteroaryl-containing substituent is selected from thienyl, pyridyl, pyrimidinyl, pyrazolyl, oxazolyl and thiazolyl, and wherein said phenyl, phenyl-containing, heteroaryl or heteroaryl-containing substituent optionally bears 1 or 2 substituents selected from halogeno, (1-4C)alkyl and (1-4C)alkoxy; or [0087]
  • (cc) Q is a heterocyclic moiety containing up to 2 heteroatoms selected from thienyl, pyridyl, oxazolyl and thiazolyl, and Q bears a substituent selected from phenyl, thienyl, pyridyl, pyrimidinyl, oxazolyl and thiazolyl, which substituent optionally bears 1 or 2 substituents selected from halogeno, (1-4C)alkyl and (1-4C)alkoxy, and Q optionally bears a further substituent selected from halogeno and (1-4C)alkyl; [0088]
  • or a pharmaceutically-acceptable salt thereof; [0089]
  • provided that when X[0090] 1 is CO and Ar is phenylene which optionally bears 1 or 2 substituents selected from halogeno, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy then X2 is not N(R7)SO2, N(R7)CO, C(R6)2S, C(R6)2SO, C(R6)2SO2, C(R6)2—C(R6)2, C(R6)2CO or C(R6)2O.
  • A particular compound of the invention is an aminoheterocyclic derivative of the formula I [0091]
  • wherein each of G[0092] 1 and G2 is CH, G1 is CH and G2 is N, or G1 is N and G2 is CH;
  • m is 1 and R[0093] 1 is hydrogen;
  • L[0094] 1 is ethylene, T1 is CH or N, and R2 and R3 are independently hydrogen or together form a methylene, ethylene or propylene group;
  • when T[0095] 1 is CH or N, X1 is a group of the formula CH2, CO, CH2O or SO2, or, when T1 is CH, X1 is, in addition, a group of the formula O;
  • Ar is 1,2-phenylene, 1,3-phenylene, 1,4-phenylene or pyridyl group which is optionally substituted with 1 or 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, cyano, methyl, hydroxy, amino, methoxy, methylamino, dimethylamino, methylthio, methylsulphinyl, methylsulphonyl, acetamido, carboxy, carbamoyl, methoxycarbonyl, ethoxycarbonyl, N-methylcarbamoyl, N,N-dimethylcarbamoyl, 2-(ethylthio)ethylamino-carbonyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, piperazin-1-ylcarbonyl and 4-methylpiperazin-1-ylcarbonyl; [0096]
  • X[0097] 2 is a group of the formula S, SO2, CONH, NHSO2 or N(R7)SO2 wherein R7 is methyl or a group of the formula —SO2Q wherein Q has any of the meanings defined immediately hereinafter; and
  • Q is phenyl, styryl, 1,2,3,4-tetrahydroisoquinolinyl, indolyl, 4-biphenylyl or 2-naphthyl which optionally bears 1 or 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, 4-chlorophenoxy, methyl and methoxy; [0098]
  • or a pharmaceutically-acceptable salt thereof; [0099]
  • provided that when X[0100] 1 is CO and Ar is 1,2-, 1,3- or 1,4-phenylene which optionally bears 1 or. 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, methyl and methoxy then X2 is not NHSO2 or N(R7)SO2 wherein R7 is methyl or a group of the formula —SO2-Q wherein Q has any of the meanings defined immediately hereinbefore.
  • A preferred compound of the invention is an aminoheterocyclic derivative of the formula I [0101]
  • wherein each of G[0102] 1 and G2 is CH, G1 is CH and G2 is N, or G1 is N and G2 is CH;
  • m is 1 and R[0103] 1 is hydrogen;
  • L[0104] 1 is ethylene, T1 is CH or N, and R1 and R1 together form an ethylene group;
  • when T[0105] 1 is CH or N, X1 is a group of the formula CH2, CO or CH2O, or, when T1 is CH, X1 is, in addition, a group of the formula O;
  • Ar is 1,3,phenylene or 1,4-phenylene which is optionally substituted with 1 or 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, cyano, methyl, hydroxy, amino, methoxy, methylamino, dimethylamino, methylthio, methylsulphinyl, methylsulphonyl, acetamido, carboxy, carbamoyl, methoxycarbonyl, ethoxycarbonyl, N-methylcarbamoyl, N,N-dimethylcarbamoyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, piperazin-1-ylcarbonyl and 4-methylpiperazin-1-ylcarbonyl; [0106]
  • X[0107] 2 is a group of the formula SO2, NHSO2 or N(R7)SO2 wherein R7 is methyl or a group of the formula —SO2Q wherein Q has any of the meanings defined immediately hereinafter; and
  • Q is phenyl, styryl, 4-biphenylyl or 2-naphthyl which optionally bears 1 or 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, methyl and methoxy; [0108]
  • or a pharmaceutically-acceptable salt thereof; [0109]
  • provided that when X[0110] 1 is CO and Ar is 1,3- or 1,4-phenylene which optionally bears 1 or 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, methyl and methoxy then X2 is not NHSO2 or N(R7)SO2 wherein R7 is methyl or a group of the formula —SO2-Q wherein Q has any of the meanings defined immediately hereinbefore.
  • A further preferred compound of the invention is an aminoheterocyclic derivative of the formula I [0111]
  • wherein each of G[0112] 1 and G2 is CH, G1 is CH and G2 is N, or G1 is N and G2 is CH;
  • m is 1 and R[0113] 1 is hydrogen;
  • L[0114] 1 is ethylene, T1 is N, and R2 and R3 together form an ethylene or propylene group;
  • X[0115] 1 is a group of the formula CO;
  • Ar is 1,4-phenylene, 2-carboxy-1,4-phenylene or 2-piperidinocarbonyl-1,4-phenylene (with the X[0116] 1 group in the 1-position and the X2 group in the 4-position);
  • X[0117] 2 is a group of the formula SO2; and Q is 2-naphthyl, styryl or 4-biphenylyl which optionally bears 1 or 2 substituents selected from fluoro, chloro and bromo;
  • or a pharmaceutically-acceptable salt thereof. [0118]
  • A particularly preferred compound of the invention is an aminoheterocyclic derivative of the formula I [0119]
  • wherein each of G[0120] 1 and G2 is CH;
  • m is 1 and R[0121] 1 is hydrogen;
  • L[0122] 1 is ethylene, T1 is N, and R2 and R3 together form an ethylene group;
  • X[0123] 1 is a group of the formula CO;
  • Ar is 1,4-phenylene, 2-carboxy-1,4-phenylene or 2-piperidinocarbonyl-1,4-phenylene (with the X[0124] 1 group in the 1-position and the X2 group in the 4-position);
  • X[0125] 2 is a group of the formula SO2; and Q is 2-naphthyl, styryl or 4-biphenylyl which optionally bears 1 or 2 substituents selected from fluoro, chloro and bromo;
  • or a pharmaceutically-acceptable salt thereof. [0126]
  • Specific compounds of the invention include the following aminoheterocyclic derivative of the formula I:—[0127]
  • 1-[4-(6-chloronaphth-2-ylsulphonyl)benzoyl]4-(4-pyridyl)piperazine, [0128]
  • 1-[4-(6-bromonaphth-2-ylsulphonyl)benzoyl]-4-(4-pyridyl)piperazine, [0129]
  • 1-[4-(2-naphthylsulphonyl)benzoyl]-4-(4-pyridyl)piperazine, [0130]
  • 1-{4-[(E)-4-chlorostyrylsulphonyl]benzoyl}-4-(4-pyridyl)piperazine, [0131]
  • 1-[4-(4′-bromo-4-biphenylylsulphonyl)benzoyl]-4-(4-pyridyl)piperazine, [0132]
  • 1-[4′-chloro-4-biphenylylsulphonyl)benzoyl]-4-(4-pyridyl)piperazine, [0133]
  • 1-[4-(4-biphenylylsulphonyl)benzoyl]4-(4-pyridyl)piperazine, [0134]
  • 5-(6-chloronaphth-2-ylsulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoic acid, [0135]
  • 5-(2-naphthylsulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoic acid, [0136]
  • 5-(4′-bromo-4-biphenylylsulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoic acid, [0137]
  • 5-[(E)-4-chlorostyrylsulphonyl]-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoic acid, [0138]
  • 1-{5-(6-bromonaphth-2-ylsulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoyl}-piperidine, [0139]
  • 1-{5-(6-chloronaphth-2-yisulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoyl}-piperidine, [0140]
  • 1-{5-(4′-bromo-4-biphenylyisulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoyl}-piperidine, [0141]
  • 1-{5-[(E)-4-chlorostyrylsulphonyl]-2-[4-(4-pyridyl)piperazin-ylcarbonyl]benzoyl}piperidine, [0142]
  • 4′-bromo-N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-4-biphenylylsulphonamide, [0143]
  • 4-chloro-N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-(E)-styryisulphonamide, [0144]
  • 6-bromo-N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-2-naphthalenesulphonamide, [0145]
  • N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-4-toluenesulphonamide, [0146]
  • N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-N-(4-tolylsulphonyl)-4-toluenesulphonamide, [0147]
  • 4-chloro-N-methyl-N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-(E)-styrylsulphonamide, [0148]
  • 4′-bromo-N-methyl-N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-4-biphenylylsulphonamide, [0149]
  • 4′-bromo-N-{4-[-(4-pyridyl)piperidin-4-ylmethoxy]phenyl}-4-biphenylylsulphonamide, [0150]
  • 6-bromo-N-{4-[1-(4-pyridyl)piperidin-4-ylmethoxy]-phenyl}-2-naphthalenesulphonamide, [0151]
  • 4-chloro-N-{4-[1-(4-pyridyl)piperidin-4-ylmethoxy]phenyl}-(E)-styrylsulphonamide, [0152]
  • 4′-bromo-N-(4′-bromo-4-biphenylylsulphonyl)-N-{4-[1-(4-pyridyl)piperidin-4-ylmethoxy]phenyl}-4-biphenylylsulphonamide, [0153]
  • 6-bromo-N-(6-bromonaphth-2-ylsulphonyl)-N-{4-[1-(4-pyridyl)piperidin-4-ylmethoxy]phenyl}-2-naphthalenesulphonamide, [0154]
  • 6-bromo-N-{3-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-2-naphthalenesulphonamide, [0155]
  • 4-[4-chlorophenylsulphonyl)phenoxy]-1-(4-(pyridyl)piperidine, [0156]
  • 5-(6-bromonaphth-2-ylsulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoic acid, [0157]
  • 4-(6-bromonaphth-2-ylsulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoic acid, [0158]
  • 1-[4-(4-(4-chlorophenoxy)phenylaminocarbonyl)benzyl]-4-(4-pyridyl)piperazine, [0159]
  • 6-bromo-N-{2-[1-(4-pyridyl)piperidin-4-ylmethoxy]phenyl)-2-naphthalenesulphonamide, [0160]
  • 4-chloro-N-{3-[1-(4-pyridyl)piperidin-4yloxy]phenyl}-(E)-styrylsulphonamide, [0161]
  • 4-[4-(6-bromonaphth-2-ylsulphonyl)phenoxy]-1-(4-pyridyl)piperidine, [0162]
  • 4-[4-(6-bromonaphth-2-ylsulphonyl)benzoyl]-1-(4-pyridyl)piperidine, [0163]
  • 4-[4-(6-bromonaphth-2-ylthio)benzoyl]-1-(4-pyridyl)piperidine, [0164]
  • 1-[4-(6-bromonaphth-2-ylsulphonyl)phenylsulphonyl]-1-(4-pyridyl)piperazine, [0165]
  • 6-(bromo-2-(4-(2-pyrimidin-4-yl)aminoethylaminocarbonyl)phenylsulphonyl)naphthalene, [0166]
  • 1-[4-(6-bromonaphth-2-ylthio)benzoyl]-4-(4-pyridyl)piperazine, [0167]
  • 1-[4-(6-bromonaphth-2-ylsulphonyl)benzoyl]-4-(4-pyridyl)piperazine, [0168]
  • 1-[4-(6-bromonaphth-2-ylsulphonyl)benzoyl]-4-(4-pyrimidinyl)-piperazine, [0169]
  • 1-[4-(6-bromonaphth-2-ylsulphonyl)benzoyl]-4-(4-pyridazinyl)piperazine, [0170]
  • 1-[4-(6-bromonaphth-2-ylsulphonyl-2-trifluoromethylbenzoyl]-4-(4-pyridyl)piperazine, [0171]
  • 1-[4-(6-bromonaphth-2-ylthio)-2-trifluoromethylbenzoyl]-4-(4-pyridyl)piperazine, [0172]
  • 1-[4-(6-bromonaphth-2-ylthio)-2-carboxybenzoyl]-4-(4-pyridyl)piperazine [0173]
  • 1-[5-(6-bromonaphth-2-ylthio)-2-carboxybenzoyl]-4-(4-pyridyl)piperazine, [0174]
  • 1-[5-(6-bromonaphth-2-ylsulphonyl)-2-methoxycarbonylbenzoyl]-4-(4-pyridyl)piperazine, [0175]
  • 1-[4-(6-bromonaphth-2-ylsulphonyl)-2-methoxycarbonylbenzoyl]-4-(4-pyridyl)piperazine, [0176]
  • 1-[4-(6-bromonaphth-2-ylsulphonyl)-2-(2-(ethylthio)-ethylaminocarbonyl)benzoyl]-4-(4-pyridyl)piperazine, [0177]
  • 1-[5-(6-bromonaphth-2-ylsulphonyl)-2-(2-ethylthio)ethylaminocarbonyl)benzoyl]-4-(4-pyridyl)piperazine, [0178]
  • 1-[4-(6-bromonaphth-2-ylsulphonyl)-2-(piperidin-1-ylcarbonyl]-4-(4-pyridyl)piperazine, [0179]
  • 1-[5-(6-bromonaphth-2-ylsulphonyl)-2-(piperidin-1-ylcarbonyl]-4-(4-pyridyl)piperazine, [0180]
  • 1-[4-(4-(3-chlorophenyl)piperazin-1-ylsulphonyl)benzoyl]-4-(4-pyridyl)piperazine, [0181]
  • 1-[4-(6-chloro-1,2,3,4-tetrahydroisoquinolin-2-ylsulphonylbenzoyl]-4-(4-pyridyl)piperazine, [0182]
  • 1-(4-pyridyl)-(5-(6-methoxyindol-2-ylcarbonylamino)pyrid-2-yloxy)pyrrolidine, [0183]
  • 1-[4-(6-bromonaphth-2-ylsulphonyl)benzoyl]-4-(2-methylpyrid-4-yl)piperazine, [0184]
  • 1-[4-(6-bromonlaphth-2-ylsulphonlyl)benzoyl]-4-(4-pyridyl)hexahydro-1,4-diazepine, [0185]
  • or a pharmaceutically-acceptable salt thereof. [0186]
  • An aminoheterocyclic derivative of the formula I, or pharmaceutically-acceptable salt thereof, may be prepared by any process known to be applicable to the preparation of structurally-related compounds. Such procedures are provided as a further feature of the invention and are illustrated by the following representative processes in which, unless otherwise stated G[0187] 1, G2, m, R1, R2, L1, T1, R3, X1, Ar, X2 and Q have any of the meanings defined hereinbefore, provided that when there is an amino, alkylamino, hydroxy or carboxy group in R1, L1, R2, R3, Ar or Q then any such group is protected by a conventional protecting group as necessary which may be removed when so desired by conventional means.
  • Necessary starting materials may be obtained by standard procedures of organic chemistry. [0188]
  • (a) For the production of those compounds of the formula I wherein T[0189] 1 is N and X1 is CO, the reaction, conveniently in the presence of a suitable base, of an amine of the formula II
    Figure US20030207882A1-20031106-C00003
  • with an acid of the formula III [0190]
  • HO2C—Ar—X2-Q  III
  • or a reactive derivative thereof. [0191]
  • A suitable reactive derivative of an acid of the formula III is, for example, an acyl halide, for example an acyl chloride formed by the reaction of the acid and an inorganic acid chloride, for example thionyl chloride; a mixed anhydride, for example an anhydride formed by the reaction of the acid with a chloroformate such as isobutyl chloroformate or with an activated ketone such as 1,1′-carbonyldiimidazole; an active ester, for example an ester formed by the reaction of the acid and a phenol such as pentafluorophenol, an ester such as pentafluorophenyl trifluoroacetate or an alcohol such as N-hydroxybenzotriazole or N-hydroxysuccinimide; an acyl azide, for example an azide formed by the reaction of the acid and an azide such as diphenylphosphoryl azide; an acyl cyanide, for example a cyanide formed by the reaction of an acid and a cyanide such as diethylphosphoryl cyanide; or the product of the reaction of the acid and a carbodiimide such as N,N′-dicyclohexylcarbodiimide or N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide. [0192]
  • The reaction is conveniently carried out in the presence of a suitable base such as, for example, an alkali or alkaline earth metal carbonate, alkoxide, hydroxide or hydride, for example sodium carbonate, potassium carbonate, sodium ethoxide, potassium butoxide, sodium hydroxide, potassium hydroxide, sodium hydride or potassium hydride, or an organometallic base such as an alkyl-lithium, for example n-butyl-lithium, or a dialkylamino-lithium, for example lithium di-isopropylamide, or, for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, morpholine or diazabicyclo[5.4.0]undec-7-ene. The reaction is also preferably carried out in a suitable inert solvent or diluent, for example methylene chloride, chloroform, carbon tetrachloride, tetrahydrofuran, 1,2-dimethoxyethane, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidin-2-one, dimethylsulphoxide or acetone, and at a temperature in the range, for example, −78° to 150° C., conveniently at or near ambient temperature. [0193]
  • An analogous procedure may be employed for the preparation of those compounds of the formula I wherein T[0194] 1 is N and X1 is a group of the formula COC(R4)2.
  • A suitable protecting group for an amino or alkylamino group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an alkoxycarbonyl group, for example a methoxycarbonyl, ethoxycarbonyl or tert-butoxycarbonyl group, an arylmethoxycarbonyl group, for example benzyloxycarbonyl, or an aroyl group, for example benzoyl. The deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or alkoxycarbonyl group or an aroyl group may be removed for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide. Alternatively an acyl group such as a tert-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid such as hydrochloric, sulphuric or phosphoric acid or trifluoroacetic acid and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon, or by treatment with a Lewis acid for example boron tris(trifluoroacetate). A suitable alternative protecting group for a primary amino group is, for example, a phthaloyl group which may be removed by treatment with an alkylamine, for example dimethylaminopropylamine, or with hydrazine. [0195]
  • A suitable protecting group for a hydroxy group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an aroyl group, for example benzoyl, or an arylmethyl group, for example benzyl. The deprotection conditions for the above protecting groups will necessarily vary with the choice of protecting group. Thus, for example, an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide. Alternatively an arylmethyl group such as a benzyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon. [0196]
  • A suitable protecting group for a carboxy group is, for example, an esterifying group, for example a methyl or an ethyl group which may be removed, for example, by hydrolysis with a base such as sodium hydroxide, or for example a tert-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon. [0197]
  • (b) For the production of those compounds of the formula I wherein T[0198] 1 is CH and X1 is O or C(R4)2O, the reaction, conveniently in the presence of a suitable coupling agent, of a compound of the formula IV
    Figure US20030207882A1-20031106-C00004
  • wherein n is 0 or 1 and Z is a displaceable group, with a phenolic compound the formula V [0199]
  • HO—Ar—X2-Q  V
  • A suitable value for the displaceable group Z is, for example, a halogeno or sulphonyloxy group, for example a fluoro, chloro, bromo, mesyloxy or 4-tolylsulphonyloxy group. [0200]
  • A suitable reagent for the coupling reaction when Z is a halogens or sulphonyloxy group is, for example, a suitable base, for example, an alkali or alkaline earth metal carbonate, hydroxide or hydride, for example sodium carbonate, hydroxide or hydride, for example sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium hydride or potassium hydride. The alkylation reaction is preferably performed in a suitable inert solvent or diluent, for example N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulphoxide, acetone, 1,2-dimethoxyethane or tetrahydrofuran, and at a temperature in the range, for example, −10° to 150° C., conveniently at or near ambient temperature. [0201]
  • A suitable reagent for the coupling reaction of the alcohol of the formula IV wherein Z is a hydroxy group is, for example, the reagent obtained when said alcohol is reacted with a di-(1-4C)alkyl azodicarboxylate in the presence of a triarylphosphine or tri-(1-4C)alkylphosphine, for example with diethyl azodicarboxylate in the presence of triphenylphosphine or tributylphosphine. The reaction is preferably performed in a suitable inert solvent or diluent, for example acetone, 1,2-dimethoxyethane or tetrahydrofuran, and at a temperature in the range, for example, 10° to 80° C., conveniently at or near ambient temperature. [0202]
  • An analogous procedure may be employed for the preparation of those compounds of the formula I wherein T[0203] 1 is CH and X1 is a group of the formula S or C(R4)2S.
  • (c) For the production of those compounds of the formula I wherein T[0204] 1 is N and X1 is CH(R4), the reductive amination of a keto compound of the formula VI
  • R4—CO—Ar—X2-Q  VI
  • with an amine of the formula VII [0205]
    Figure US20030207882A1-20031106-C00005
  • Any reducing agent known in the art for promoting a reductive amination reaction may be employed. A suitable reducing agent is, for example, a hydride reducting agent, for example an alkali metal aluminium hydride such as lithium aluminium hydride or, preferably, an alkali metal borohydride such as sodium borohydride, sodium cyanoborohydride, sodium triethylborohydride, sodium trimethoxyborohydride and sodium triacetoxyborohydride. The reaction is conveniently performed in a suitable inert solvent or diluent, for example tetrahydrofuran and diethyl ether for the more powerful reducing agents such as lithium aluminium hydride, and, for example, methylene chloride or a protic solvent such as methanol and ethanol for the less powerful reducing agents such as sodium triacetoxyborohydride. The reaction is performed at a temperature in the range, for example, 10° to 80° C. conveniently at or near ambient temperature. [0206]
  • (d) For the production of those compounds of the formula I wherein X[0207] 2 is a group of the formula N(R7)SO2, the reaction, conveniently in the presence of a suitable base as defined hereinbefore, of an amine of the formula VIII
    Figure US20030207882A1-20031106-C00006
  • with a compound of the formula IX [0208]
  • Z-SO2-Q  IX
  • wherein Z is a displaceable group as defined hereinbefore. [0209]
  • The reaction is conveniently performed in a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the range, for example, 0° to 150° C., conveniently at or near ambient temperature. [0210]
  • An analogous procedure may be employed for those compounds of the formula I wherein X[0211] 2 is a group of the formula N(R7)CO.
  • (e) For the production of those compounds of the formula I wherein X[0212] 2 is a group of the formula N(R7)SO2, the reaction, conveniently in the presence of a suitable base as defined hereinbefore, of a sulphonamide of the formula X
    Figure US20030207882A1-20031106-C00007
  • with a compound of the formula XI [0213]
  • R7-Z  XI
  • wherein Z is a displaceable group as defined hereinbefore. [0214]
  • The reaction is conveniently performed in a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the range, for example, 0° to 150° C., conveniently at or near ambient temperature. [0215]
  • An analogous procedure may be employed for those compounds of the formula I wherein X[0216] 2 is a group of the formula N(R7)CO.
  • (f) For the production of those compounds of the formula I wherein X[0217] 2 is a group of the formula SO2N(R7) the reaction, conveniently in the presence of a suitable base as defined hereinbefore, of a compound of the formula XII
    Figure US20030207882A1-20031106-C00008
  • wherein Z is a displaceable group as defined hereinbefore, with an amine of the formula XIII [0218]
  • (R7)NH-Q  XIII
  • The reaction is conveniently performed in a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the range, for example, 0° to 150° C., conveniently at or near ambient temperature. [0219]
  • An analogous procedure may be employed for the preparation of those compounds of the formula I wherein X[0220] 2 is a group of the formula CON(R7).
  • (g) For the production of those compounds of the formula I wherein T[0221] 1 is CH and X1 is a group of the formula OC(R4)2, the reaction conveniently in the presence of a suitable coupling agent as defined hereinbefore, of an alcohol of the formula XIV
    Figure US20030207882A1-20031106-C00009
  • with a compound of the formula XV [0222]
  • Z-C(R4)2—Ar—X2-Q  XV
  • wherein Z is a displaceable group as defined hereinbefore. [0223]
  • The reaction is conveniently performed in a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the range, for example, 0° to 150° C., conveniently at or near ambient temperature. [0224]
  • An analogous procedure may be employed for the preparation of those compounds of the formula I wherein T[0225] 1 is CH and X1 is a group of the formula SC(R4)2.
  • (h) For the production of those compounds of the formula I wherein X[0226] 2 is a group of the formula C(R6)2S, the reaction, conveniently in the presence of a suitable base as defined hereinbefore, of a compound of the formula XVI
    Figure US20030207882A1-20031106-C00010
  • wherein Z is a displaceable group as defined hereinbefore with a thiol of the formula XVII [0227]
  • HS-Q  XVII
  • The reaction is conveniently performed in a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the range, for example, 0° to 150° C., conveniently at or near ambient temperature. [0228]
  • (i) For the production of those compounds of the formula I wherein L[0229] 1, R2, R3, Ar or Q bears a carboxy or carboxy-containing group, the hydrolysis of a compound of the formula I wherein L1, R2, R3, Ar or Q bears a (1-4C)alkoxycarbonyl group.
  • The hydrolysis reaction may conveniently be carried out in a conventional manner using, for example, acidic or basic catalysis. A suitable acid for the acidic hydrolysis of an ester group is, for example, an inorganic acid such as hydrochloric or sulphuric acid. A suitable base for the basic hydrolysis of an ester group is, for example, an alkali or alkaline earth metal hydroxide such as sodium hydroxide or potassium hydroxide. [0230]
  • The reaction is conveniently performed in a suitable solvent or diluent such as an alcohol, for example methanol or ethanol, and at a temperature in the range, for example 0° to 120° C., conveniently in the range of 15° to 60° C. [0231]
  • (j) For the production of those compounds of the formula I wherein L[0232] 1, R2, R3, Ar or Q bears a carbamoyl, N-alkylcarbamoyl, N,N-dialkylcarbamoyl or other aminocarbonyl group for example piperidinocarbonyl or 2-(ethylthio)aminoethylaminocarbonyl, the reaction of a compound of the formula I wherein L1, R2, R3, Ar or Q bears a carboxy group, or a reactive derivative thereof as defined hereinbefore, with ammonia, an alkylamine, dialkylamine or an appropriate amino compound.
  • The reaction is conveniently performed in a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the range, for example, 0° to 120° C., conveniently in the range 15° to 600. [0233]
  • Similarly compounds of the formula I bearing ester groups may be prepared by esterification of the corresponding carboxy compound. [0234]
  • (k) For the production of those compounds of the formula I wherein X[0235] 1 is a group of the formula SO, SO2, C(R4)2SO, C(R4)2SO2, SOC(R4)2 or SO2C(R4)2, wherein Ar bears a (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl, 1-oxothiamorpholino or 1,1-dioxothiamorpholino group or a substituent which contains a (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl, 1-oxothiamorpholino or 1,1-dioxothiamorpholino group, wherein X2 is a group of the formula SO, SO2, C(R6)2SO or C(R6)2SO2, or wherein Q bears a (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl, phenylsulphinyl, phenylsulphonyl, heteroarylsulphinyl or heteroarylsulphonyl group, the oxidation of the corresponding compound of the formula I which contains a thio group. A suitable oxidising agent is, for example, any agent known in the art for the oxidation of thio to sulphinyl and/or sulphonyl, for example, hydrogen peroxide, a peracid (such as 3-chloroperoxybenzoic or peroxyacetic acid), an alkali metal peroxysulphate (such as potassium peroxymonosulphate), chromium trioxide or gaseous oxygen in the presence of platinum. The oxidation is generally carried out under as mild conditions as possible and with the required stoichiometric amount of oxidising agent in order to reduce the risk of over oxidation and damage to other functional groups. In general the reaction is carried out in a suitable solvent or diluent such as methylene chloride, chloroform, acetone, tetrahydrofuran or tert-butyl methyl ether and at a temperature, for example, at or near ambient temperature, that is in the range 15 to 35° C. When a compound carrying a sulphinyl group is required a milder oxidising agent may also be used, for example sodium or potassium metaperiodate, conveniently in a polar solvent such as acetic acid or ethanol. It will be appreciated that when a compound of the formula I containing a sulphonyl group is required, it may be obtained by oxidation of the corresponding sulphinyl compound as well as of the corresponding thio compound.
  • (l) The reaction of an activated derivative of a compound of the formula XVIII: [0236]
    Figure US20030207882A1-20031106-C00011
  • wherein L is a displaceable group as hereinbefore defined with a compound of the formula XIX: [0237]
  • NH(R2)-L1-T1(R3)—X1—Ar—X2-Q  XIX
  • Typically L is halo for example fluoro or chloro and the reaction is performed in a substantially inert solvent, as hereinbefore defined, at an ambient or elevated temperature, and in the presence of a suitable base for example an, organic amine such as triethylamine. The compounds of the formula II-XIX inclusive are useful intermediates in the processes for making the compounds of the formula I. In another aspect the present invention provides novel compounds and classes of compound within the generic formulae II-XIX inclusive. [0238]
  • The compounds of the formula II-XIX inclusive may be prepared by any process known to be applicable to the preparation of structurally related compounds, for example, where applicable, by methods related to those described hereinbefore for preparing compounds of the formula I. Particular reference may be made to the methods of the Examples described hereinafter. [0239]
  • Intermediates of particular interest include those of the formula XX and XXI: [0240]
    Figure US20030207882A1-20031106-C00012
     HOOC—Ar—X2-Q  XXI
  • and active derivatives thereof, wherein G[0241] 1, G2, R1, m, R2, L1, T1, R, X1, Ar, X2 and Q are as defined in relation to formula I.
  • When a pharmaceutically-acceptable salt of a compound of the formula I is required, it may be obtained, for example, by reaction of said compound with a suitable acid or base using a conventional procedure. [0242]
  • When an optically active form of a compound of the formula I is required, it may be obtained, for example, by carrying out one of the aforesaid procedures using an optically active starting material or by resolution of a racemic form of said compound using a conventional procedure. [0243]
  • As stated previously, the compounds of the formula I are inhibitors of the enzyme Factor Xa. The effects of this inhibition may be demonstrated using one or more of the standard procedures set out hereinafter:—[0244]
  • a) Measurement of Factor Xa Inhibition [0245]
  • An in vitro assay system was carried out based on the method of Kettner et al., [0246] J. Biol. Chem., 1990, 265, 18289-18297, whereby various concentrations of a test compound were dissolved in DMSO and diluted in a pH 7.5 buffer containing 0.5% of a polyethylene glycol (PEG 6000) and incubated at 37° C. with human Factor Xa (0.001 Units/ml, 0.3 ml) for 15 minutes. The chromogenic substrate S-2765 (KabiVitum AB, 20 μM) was added and the mixture was incubated at 37° C. for 20 minutes whilst the absorbance at 405 nm was measured. The maximum reaction velocity (Vmax) was determined and compared with that of a control sample containing no test compound. Inhibitor potency was expressed as an IC50 value.
  • b) Measurement of Thrombin Inhibition [0247]
  • The procedure of method a) was repeated except that human thrombin (0.005 Units/ml) and the chromogenic substrate S-2238 (KabiVitum AB, 7 μM) were employed. [0248]
  • c) Measurement of Anticoagulant Activity [0249]
  • An in vitro assay whereby human, rat or rabbit venous blood was collected and added directly to a sodium citrate solution (3.2 g/100 ml, 9 parts blood to 1 part citrate solution). Blood plasma was prepared by centrifugation (1000 g, 15 minutes) and stored at 2-4° C. Conventional prothrombin time (PT) tests were carried out in the presence of various concentrations of a test compound and the concentration of test compound required to double the clotting time, hereinafter referred to as CT2, was determined. In the PT test, the test compound and blood plasma were incubated at 37° C. for 10 minutes. Tissue thromboplastin with calcium (Sigma Limited, Poole, England) was added and fibrin formation and the time required for a clot to form were determined. [0250]
  • d) An Ex Vivo Assay of Anticoagulant Activity [0251]
  • The test compound was administered intravenously or orally to a group of Alderley Park Wistar rats. At various times thereafter animals were anaesthetised, blood was collected and PT coagulation assays analogous to those described hereinbefore were conducted. In addition the plasma concentration of compounds is determined by comparison with the anti-Factor Xa activity of a standard compound. [0252]
  • e) An In Vivo Measurement of Antithrombotic Activity [0253]
  • Thrombus formation was induced using an analogous method to that described by Vogel et al., [0254] Thromb. Research, 1989, 54, 399-410. A group of Alderley Park Wistar rats was anaesthetised and surgery was performed to expose the vena cava. Collateral veins were ligated and two loose sutures were located, 0.7 cm apart, round the inferior vena cava. Test compound was administered intravenously or orally. At an appropriate time thereafter tissue thromboplastin (30 μl/kg) was administered via the jugular vein and, after 10 seconds, the two sutures were tightened to induce stasis within the ligated portion of vena cava. After 10 minutes the ligated tissue was excised and the thrombus therein was isolated, blotted and weighed.
  • f) An In Vivo Measurement of Antithrombotic Activity [0255]
  • Using a method similar to that of Smith J R et al Br. J. Pharmacol. 1982, 77: 29-38, fasted male Alderley Park rats (360-410 g) are pre-dosed at various times by oral (5 ml/kg) or subcutaneous (1 ml/kg) routes before being anaesthetised with Intraval (120 mg/kg i.p.). The left jugular vein and the right carotid artery are exposed and cannulated with a polypropylene catheters 12 cm in length. An arterio-venous shunt is completed by connecting the two catheters with a 6 cm length of tubing (i.d. 0.3 cm) which contains a 5 cm length of pre-weighed cotton. All tubes were filled with saline prior to the establishment of the circuit. Clamps are removed from the catheters and blood is allowed to flow through the polypropylene tubing for 20 mins. During this time the effect of the test compound on template bleeding time is assessed. The shunt is then closed and the thrombus which has developed on the cotton thread is removed, blotted dry and weighed. Blood samples are also taken at this point by cardiac puncture into 3.2% tri-sodium citrate, plasma is prepared by centrifugation (5 mins 20000 g) and frozen for subsequent prothrombin time and drug level determinations. [0256]
  • The plasma concentration of the compound is extrapolated from the standard curve and expressed in Anti-Factor Xa units. Thrombus weight is measured following dosing of vehicle or test compound. Data is expressed as % inhibition of thrombus formation in the presence of compound when compared to thrombus weight from a group of control animals. [0257]
  • Although the pharmacological potencies of the compounds of formula I vary with structural changes as expected, in general compounds of the formula I possess activity at the following concentrations or doses in at least one of the above tests a) to c):—[0258]
  • test a): IC[0259] 50 (Factor Xa) in the range, for example, 0.001-25 μM;
  • test b): IC[0260] 50 (thrombin), for example, greater than 40 μM;
  • test c): CT2 (PT) in the range, for example, 0.1-50 μM. [0261]
  • By way of example, the compound of Example 1 as disclosed hereinafter has an IC[0262] 50 of 0.013 μM against Factor Xa in test a), an IC50, of greater than 40 μM against thrombin in test b) and a CT2 (PT) of 5 μM in test c).
  • According to a further feature of the invention there is provided a pharmaceutical composition which comprises an aminoheterocyclic derivative of the formula I, or a pharmaceutically-acceptable salt thereof, in association with a pharmaceutically-acceptable diluent or carrier. [0263]
  • The composition may be in a form suitable for oral use, for example a tablet, capsule, aqueous or oily solution, suspension or emulsion; for topical use, for example a cream, ointment, gel or aqueous or oily solution or suspension; for nasal use, for example a snuff, nasal spray or nasal drops; for vaginal or rectal use, for example a suppository; for administration by inhalation, for example as a finely divided powder such as a dry powder, a microcrystalline form or a liquid aerosol; for sub-lingual or buccal use, for example a tablet or capsule; or for parenteral use (including intravenous, subcutaneous, intramuscular, intravascular or infusion), for example a sterile aqueous or oily solution or suspension. In general the above compositions may be prepared in a conventional manner using conventional excipients. [0264]
  • The amount of active ingredient (that is an aminoheterocyclic derivative of the formula I, or a pharmaceutically-acceptable salt thereof) that is combined with one or more excipients to produce a single dosage form will necessarily vary depending upon the host treated and the particular route of administration. For example, a formulation intended for oral administration to humans will generally contain, for example, from 0.5 mg to 2 g of active agent compounded with an appropriate and convenient amount of excipients which may vary from about 5 to about 98 percent by weight of the total composition. Dosage unit forms will generally contain about 1 mg to about 500 mg of an active ingredient. [0265]
  • According to a further feature of the invention there is provided an aminoheterocyclic derivative of the formula I, or a pharmaceutically-acceptable salt thereof, for use in a method of treatment of the human or animal body by therapy. [0266]
  • The invention also includes the use of such an active ingredient in the production of a medicament for use in:—[0267]
  • (i) producing a Factor Xa inhibitory effect; [0268]
  • (ii) producing an anticoagulant effect; [0269]
  • (iii) producing an antithrombotic effect; [0270]
  • (iv) treating a Factor Xa mediated disease or medical condition; [0271]
  • (v) treating a thrombosis mediated disease or medical condition; [0272]
  • (vi) treating coagulation disorders; and/or [0273]
  • (vii) treating thrombosis or embolism involving Factor Xa mediated coagulation. [0274]
  • The invention also includes a method of producing an effect as defined hereinbefore or treating a disease or disorder as defined hereinbefore which comprises administering to a warm-blooded animal requiring such treatment an effective amount of an active ingredient as defined hereinbefore. [0275]
  • The size of the dose for therapeutic or prophylactic purposes of a compound of the formula I will naturally vary according to the nature and severity of the medical condition, the age and sex of the animal or patient being treated and the route of administration, according to well known principles of medicine. As mentioned above, compounds of the formula I are useful in the treatment or prevention of a variety of medical disorders where anticoagulant therapy is indicated. In using a compound of the formula I for such a purpose, it will generally be administered so that a daily dose in the range, for example, 0.5 to 500 mg/kg body weight is received, given if required in divided doses. In general lower doses will be administered when a parenteral route is employed, for example a dose for intravenous administration in the range, for example, 0.5 to 50 mg/kg body weight will generally be used. For preferred and especially preferred compounds of the invention, in general, lower doses will be employed, for example a daily dose in the range, for example, 0.5 to 10 mg/kg body weight. [0276]
  • Although the compounds of the formula I are primarily of value as therapeutic or prophylactic agents for use in warm-blooded animals including man, they are also useful whenever it is required to produce an anticoagulant effect, for example during the ex-vivo storage of whole blood or in the development of biological tests for compounds having anticoagulant properties. [0277]
  • The compounds of the invention may be administered as a sole therapy or they may be administered in conjunction with other pharmacologically active agents such as a thrombolytic agent, for example tissue plasminogen activator or derivatives thereof or streptokinase. The compounds of the invention may also be administered with, for example, a known platelet aggregation inhibitor (for example aspirin, a thromboxane antagonist or a thromboxane synthase inhibitor), a known hypolipidaemic agent or a known anti-hypertensive agent. [0278]
  • The invention will now be illustrated in the following Examples in which, unless otherwise stated:—[0279]
  • (i) evaporations were carried out by rotary evaporation in vacuo and work-up procedures were carried out after removal of residual solids by filtration; [0280]
  • (ii) operations were carried out at room temperature, that is in the range 18-25° C. and under an atmosphere of an inert gas such as argon; [0281]
  • (iii) column chromatography (by the flash procedure) and medium pressure liquid chromatography (MPLC) were generally performed on Merck Kieselgel silica (Art. 9385) or Merck Lichroprep RP-18 (Art. 9303) reversed-phase silica obtained from E. Merck, Darmstadt, Germany; alternatively high pressure liquid chromatography (HPLC) was performed on a Dynamax C-18 60 Å preparative reversed-phase column; [0282]
  • (iv) yields are given for illustration only and are not necessarily the maximum attainable; [0283]
  • (v) the end-products of the formula I have satisfactory microanalyses and their structures were confirmed by nuclear magnetic resonance (NMR) at 200, 250 or 300 MHz and mass spectral techniques; unless otherwise stated, CD[0284] 3SOCD3 solutions of the end-products of the formula I were used for the determination of NMR spectral data, chemical shift values were measured on the delta scale; the following abbreviations have been used: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet;
  • (vi) intermediates were not generally fully characterised and purity was assessed by thin layer chromatographic, infra-red (IR) or NMR analysis; [0285]
  • (vii) melting points were determined using a Mettler SP62 automatic melting point apparatus or an oil-bath apparatus; melting points for the end-products of the formula I were generally determined after crystallisation from a conventional organic solvent such as ethanol, methanol, acetone, ether or hexane, alone or in admixture; and [0286]
  • (viii) the following abbreviations have been used:— [0287]
    DMF N,N-dimethylformamide;
    THF tetrahydrofuran;
    DMSO dimethylsulphoxide.
    EDAC 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
    BOC tert-butyloxycarbonyl
  • EXAMPLE 1
  • 1,1′-Carbonyldiimidazole (0.15 g) was added to a stirred solution of 4-(6-chloronaphth-2-ylsulphonyl)benzoic acid (0.29 g) in DMF (10 ml) which had been cooled to 0° C. and the mixture was stirred at 0° C. for 30 minutes. N-(4-Pyridyl)piperazine (0.164 g) was added, the cooling bath was removed and the mixture was stirred at ambient temperature for 16 hours. The solvent was removed by evaporation and the residue was partitioned between ethyl acetate and water. The ethyl acetate extract was washed with water and with brine, dried (MgSO4) and evaporated. The residue was triturated under diethyl ether to give 1-[4-(6-chloronaphth-2-ylsulphonyl)benzoyl]-4-(4-pyridyl)piperazine (0.085 g), m.p. 267-269° C.; [0288]
  • NMR Spectrum 3.25-3.5 (m, 6H), 3.6-3.9 (m, 2H), 6.75 (d, 2H), 7.65 (d, 2H), 7.77 (m, 1H), 8.0 (m, 1H), 8.05-8.25 (m, 6H), 8.3 (d, 1H), 8.6 (s, 1H); [0289]
  • Mass Spectrum m/z 492 (M+H); [0290]
  • Elemental Analysis Found C, 63.1; H, 4.7; N, 8.2; C26H22ClN3O3S 2H2O requires C, 63.5; H, 4.5; N, 8.5%. [0291]
  • The 4-(6-chloronaphth-2-ylsulphonyl)benzoic acid used as a starting material was prepared as follows:—[0292]
  • A solution of sodium nitrite (2.7 g) in water (5 ml) was added during 2 hours to a stirred mixture of 6-amino-2-naphthalenesulphonic acid (8.8 g), dilute aqueous hydrochloric acid (2.8% weight/volume, 20 ml) and water (15 ml) which had been cooled to 0° C. The mixture was stirred at 0° C. for 30 minutes and then poured onto a stirred suspension of cuprous chloride (3.96 g) in dilute aqueous hydrochloric acid (2.8%, 20 ml). The mixture was evaporated to give 6-chloro-2-naphthalenesulphonic acid which was used without further purification. [0293]
  • The material was suspended in DMF (40 ml) and cooled to 5° C. Thionyl chloride (8.6 ml) was added dropwise and the mixture was stirred at 5° C. for 3 hours. The mixture was poured onto ice and extracted with methylene chloride. The organic solution was dried (MgSO4) and evaporated. The residue was purified by column chromatography using a 20:1 mixture of hexane and ethyl acetate as eluent. There was thus obtained 6-chloronaphth-2-ylsulphonyl chloride (2.49 g); [0294]
  • NMR Spectrum 7.45 (m, 1H), 7.8 (m, 1H), 7.85 (d, 1H), 8.05 (m, 2H), 8.2 (s, 1H). [0295]
  • 6-Chloronaphth-2-ylsulphonyl chloride (2.61 g) was added in one portion to a stirred mixture of sodium sulphite heptahydrate (4.71 g), sodium bicarbonate (1.64 g) and water (25 ml) which had been heated to 70° C. The resultant mixture was heated to that temperature for 3 hours and then allowed to cool slowly to ambient temperature. The crystalline precipitate was isolated giving sodium 6-chloronaphth-2-ylsulphinate (2.4 g) which was used without further purification. [0296]
  • A mixture of a portion (0.5 g) of the material so obtained, 4-fluorobenzaldehyde (0.25 g) and DMSO (10 ml) was stirred and heated to 110° C. for 5 hours. A second portion (0.5 g) of the sodium 6-chloronaphth-2-ylsulphinate was added and the mixture was heated to 110° C. for a further 10 hours. The mixture was cooled to ambient temperature and partitioned between ethyl acetate and water. The organic extract was washed with water and with brine, dried (MgSO4) and evaporated. The residue was purified by column chromatography using a 1:1 mixture of hexane and ethyl acetate as eluent. There was thus obtained 4-(6-chloronaphth-2-ylsulphonyl)benzaldehyde (0.25 g); [0297]
  • NMR Spectrum 7.7 (m, 1H), 8.0 (m, 1H), 8.1-8.3 (m, 7H), 8.8 (s, 1H), 10.0 (s, 1H). [0298]
  • After repetition of the previous steps, potassium permanganate (0.4 g) was added in small portions during 1 hour to a stirred mixture of 4-(6-chloronaphth-2-ylsulphonyl)-benzaldehyde (0.58 g), cetyltrimethylammonium bromide (0.056 g) and water (25 ml) which had been heated to 60° C. The mixture was heated to 60° C. for a further 2 hours. The mixture was cooled to ambient temperature and acidified by the addition of 2M aqueous hydrochloric acid. Ethyl acetate was added. The mixture was filtered through a pad of diatomaceous earth. The solid was washed thoroughly in turn with methylene chloride and with ethyl acetate. The organic solutions were combined, dried (MgSO4), and evaporated. The residue was purified by column chromatography using increasingly polar mixtures of methylene chloride and methanol as eluent. There was thus obtained 4-(6-chloronaphth-2-ylsulphonyl)benzoic acid (0.376 g); [0299]
  • NMR Spectrum 7.7 (m, 1H); 7.95 (m, 1H); 8.1-8.2 (m, 6H); 8.6 (s, 1H). [0300]
  • EXAMPLE 2
  • Using an analogous procedure to that described in Example 1, N-(4-pyridyl)piperazine was reacted with 4-(2-naphthylsulphonyl)benzoic acid to give 1-[4-(2-naphthylsulphonyl)-benzoyl]-4-(4-pyridyl)piperazine in 32% yield; [0301]
  • NMR Spectrum 3.25-3.5 (m, 6H), 3.6-3.9 (m, 2H), 6.8 (d, 2H), 7.7 (d, 2H), 7.77 (m, 1H), 7.95 (m, 1H), 8.05-8.25 (m, 8H), 8.77 (d, 1H); [0302]
  • Mass Spectrum m/z 457 (M+H); [0303]
  • Elemental Analysis Found C, 63.5: H, 5.5: N, 8.6; C26H23N3O3S 2H2O requires C, 63.5: H, 5.5: N, 8.6%. [0304]
  • The 4-(2-naphthylsulphonyl)benzoic acid used as a starting material was prepared from 4-fluorobenzaldehyde and sodium 2-naphthylsulphinate using analogous procedures to those described in the fourth and fifth paragraphs of the portion of Example 1 which is concerned with the preparation of starting materials. There was thus obtained 4-(2-naphthylsulphonyl)benzoic acid in 28% yield; [0305]
  • NMR Spectrum 7.7 (m, 1H), 7.95 (m, 1H), 8.1-8.2 (m, 8H), 8.7 (d, 1H). [0306]
  • EXAMPLE 3
  • Glacial acetic acid (0.178 g) was added to a mixture of N-(4-pyridyl)piperazine (0.121 g), 4-(6-bromonaphth-2-ylsulphonyl)benzaldehyde (0.278 g) and methylene chloride (10 ml) and the mixture was stirred at ambient temperature for 30 minutes. Sodium triacetoxyborohydride (0.236 g) was added and the mixture was stirred at ambient temperature for 16 hours. Water (50 ml) was added and the mixture was acidified by the addition of 2M aqueous hydrochloric acid. The resultant mixture was washed with diethyl ether. The aqueous phase was basified by the addition of 2M aqueous sodium hydroxide solution and extracted with methylene chloride. The resultant organic phase was dried (MgSO4), and evaporated. The residue was purified by column chromatography using increasingly polar, mixtures of methylene chloride and methanol as eluent. There was thus obtained 1-[4-(6-bromonaphth-2-ylsulphonyl)benzyl]4-(4-pyridyl)piperazine (0.127 g) as a gum; [0307]
  • NMR Spectrum 3.2-3.4 (m, 8H), 3.6 (s, 2H), 6.75 (d, 2H), 7.6 (d, 2H), 7.75 (m, 1H), 7.95 (m, 3H), 8.1-8.2 (m, 4H), 8.3 (d, 1H), 8.75 (s, 1H); [0308]
  • Mass Spectrum m/z 522 (M+H); [0309]
  • Elemental Analysis Found C, 58.6: H, 4.5: N, 7.8; C26H24BrN3O2S 0.15CH2Cl2 requires C, 58.7: H, 4.6: N, 7.9%. [0310]
  • The 4-(6-bromonaphth-2-ylsulphonyl)benzaldehyde used as a starting material was obtained as follows:—[0311]
  • 6-Bromonaphth-2-ylsulphonyl chloride was obtained in 22% yield from 6-amino-2-naphthalenesulphonic acid using an analogous procedure to that described in the first two paragraphs of the portion of Example 1 which is concerned with the preparation of starting materials except that hydrobromic acid and cuprous bromide were used in place of hydrochloric acid and cuprous chloride respectively. The material gave the following NMR signals: 7.65 (m, 1H), 7.75-8.0 (m, 3H), 8.15-8.2 (m, 2H). [0312]
  • 6-Bromonaphth-2-ylsulphonyl chloride (9.4 g) was added in small portions over 3 hours to a stirred mixture of sodium sulphite heptahydrate (14.46 g), sodium bicarbonate (5.08 g) and water (100 ml) which had been heated to 70° C. The resultant mixture was allowed to cool slowly to ambient temperature. The crystalline precipitate was isolated giving sodium 6-bromonaphth-2-ylsulphinate (8.07 g) which was used without further purification. [0313]
  • A mixture of a portion (1.47 g) of the material so obtained, 4-fluorobenzaldehyde (0.72 g) and DMSO (20 ml) was stirred and heated to 110° C. for 4 hours and at 80° C. for 12 hours. The mixture was cooled to ambient temperature and partitioned between ethyl acetate and water. The organic extract was washed with water and with brine, dried (MgSO4) and evaporated. The residue was purified by column chromatography using increasingly polar mixtures of hexane and ethyl acetate as eluent. There was thus obtained 4-(6-bromonaphth-2-ylsulphonyl)benzaldehyde (0.28 g); [0314]
  • NMR Spectrum 7.8 (m, 1H), 8.0 (m, 1H), 8.1-8.2 (m, 6H), 8.4 (d, 1H), 8.8 (s, 1H), 10.1 (s, 1H). [0315]
  • EXAMPLE 4
  • A solution of 4′-bromo-4-biphenylylsulphonyl chloride (0.33 g) in methylene chloride (5 ml) was added dropwise to a stirred solution of 4-[1-(4-pyridyl)piperidin-4-yloxy]aniline (0.269 g) in methylene chloride (20 ml) and the mixture was stirred at ambient temperature for 16 hours. The precipitated solid was collected by filtration and triturated under methanol (5 ml). The resultant solid was washed with diethyl ether. There was thus obtained 4′-bromo-N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-4-biphenylylsulphonamide, hydrochloride salt, (0.508 g), m.p. 302-304° C.; [0316]
  • NMR Spectrum 1.66 (m, 2H), 1.99 (m, 2H), 3.58 (m, 2H), 3.86 (m, 2H), 4.60 (m, 1H), 6.89 (d, 2H), 7.03 (d, 2H), 7.18 (d, 2H) 7.67 (s, 4H), 7.76 (d, 2H), 7.84 (d, 2H), 8.19 (d, 2H), 10.05 (s, 1H); [0317]
  • Mass Spectrum m/z 564/566 (M+H); [0318]
  • Elemental Analysis Found C, 54.6; H, 4.7; N, 6.9; S, 5.2; C[0319] 28H26BrN3O3S 1HCl 1H2O requires C, 54.3; H, 4.7; N, 6.8; S, 5.2%.
  • The 4-[1-(4-pyridyl)piperidin-4-yloxy]aniline used as starting material was obtained as follows:—[0320]
  • 1,1′-(Azodicarbonyl)dipiperidine (20.03 g), tributylphosphine (16.06 g) and 1-(4-pyridyl)piperidin-4-ol (Chemical Abstracts, vol. 113, abstract 23121 In; European Patent Application No. 0 359 389; 9.43 g) were added in turn to a stirred solution of 4-(N-tert-butoxycarbonylamino)phenol ([0321] J. Med. Chem., 1995, 38, 3983; 11.08 g) in THF (300 ml) which was cooled to 10° C. The mixture was stirred at ambient temperature for 20 hours. The precipitate was removed by filtration and the filtrate was evaporated. The residue was purified by column chromatography using initially ethyl acetate and then increasingly polar mixtures of methylene chloride and methanol as eluent. There was thus obtained tert-butyl N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}carbamate (7.38 g), m.p. 192-195° C., which was used without further purification.
  • A solution of a portion (4.22 g) of the material so obtained in methylene chloride (400 ml) was treated with a saturated solution of hydrogen chloride in diethyl ether (50 ml). The mixture was stirred at ambient temperature for 64 hours. The mixture was evaporated and the residue was crystallised under a mixture of diethyl ether and methanol to give the hydrochloride salt of the required starting material (2.85 g), m.p. 289-291° C. A portion (1.5 g) of the material was dissolved in water (10 ml) and a 2M aqueous sodium hydroxide solution was added until precipitation was complete. There was thus obtained 4-[1-(4-pyridyl)piperidin-4-yloxy]aniline (1.03 g), m.p. 214-215° C.; [0322]
  • NMR Spectrum 1.57 (m, 2H), 1.86 (m, 2H), 3.24 (m, 2H), 3.67 (m, 2H), 4.31 (m, 1H), 6.47 (d, 2H), 6.66 (d, 2H), 6.87 (d, 2H), 8.13 (d, 2H). [0323]
  • The 4′-bromo-4-biphenylylsulphonyl chloride used as a starting material was obtained as follows:—[0324]
  • Chlorosulphonic acid (8.3 ml) was added dropwise to a stirred solution of 4-bromobiphenyl (23.3 g) in chloroform (200 ml) and the mixture was stirred at ambient temperature for 30 minutes. The precipitate was isolated and washed with chloroform. There was thus obtained 4′-bromo-4-biphenylylsulphonic acid (30.3 g). [0325]
  • Thionyl chloride (21.2 ml) was added dropwise to a stirred solution of 4′-bromo-4-biphenylylsulphonic acid (30.3 g) in DMF (120 ml) which had been cooled to 5° C. The mixture was stirred at ambient temperature for 3 hours. The mixture was poured into a mixture of ice and water (1L) and the resultant precipitate was isolated, dissolved in diethyl ether, dried (MgSO4) and re-isolated by evaporation of the solvent. There was thus obtained 4′-bromo-4-biphenylyl-sulphonyl chloride (24.1 g) [after crystallisation of the residue from a 1:1 mixture of isohexane and toluene], m.p. 125-127° C. [0326]
  • EXAMPLE 5
  • Using an analogous procedure to that described in Example 4, 4-[1-(4-pyridyl)-piperidin-4-yloxy]aniline was reacted with (E)-4-chlorostyrylsulphonyl chloride. The reaction product was purified by column chromatography on a C-18 60 Å preparative reversed-phase HPLC column using 0.1% trifluoroacetic acid in aqueous acetonitrile and a gradient of 30% to 70% acetonitrile as eluent. There was thus obtained 4-chloro-N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-(E)-styrylsulphonamide, trifluoroacetate salt, as a gum in 10% yield; [0327]
  • NMR Spectrum 1.64 (m, 2H), 1.99 (m, 2H), 3.62 (m, 2H), 3.91 (m, 2H), 4.64 (m, 1H), 6.82-7.42 (m, 8H), 7.46 (d, 2H), 7.72 (d, 2H), 8.23 (d, 2H), 9.75 (s, 1H); [0328]
  • Mass Spectrum m/z 470/472 (M+H). [0329]
  • The (E)-4-chlorostyrylsulphonyl chloride used as a starting material was obtained as follows:—[0330]
  • Sulphuryl chloride (1.37 ml) was added dropwise to DMF (1.55 ml) which was stirred and cooled to a temperature in the range 0 to 5° C. The mixture was then stirred at ambient temperature for 30 minutes. 4-Chlorostyrene (1.2 ml) was added and the mixture was stirred and heated to 90° C. for 3.5 hours. The mixture was cooled to ambient temperature and poured onto a mixture (25 ml) of ice and water. The precipitate was isolated, washed with water and dried. There was thus obtained (E)-4-chloro-p-styrylsulphonyl chloride (1.8 g); [0331]
  • NMR Spectrum 6.95 (s, 2H), 7.4 (d, 2H), 7.55 (d, 2H). [0332]
  • EXAMPLE 6
  • 6-Bromonaphth-2-ylsulphonyl chloride (0.1 g) was added to a mixture of 4-[1-(4-pyridyl)piperidin-4-yloxy]aniline (0.1 g), triethylamine (0.168 g) and methylene chloride (5 ml) and the mixture was stirred at ambient temperature for 16 hours. The mixture was evaporated and the residue was purified on a C-18 60 Å preparative reversed-phase HPLC column using 0.1% trifluoroacetic acid in aqueous acetonitrile and a gradient of 60% to 95% acetonitrile as eluent. There were thus obtained in turn:—6-bromo-N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-2-naphthalenesulphonamide, trifluoroacetate salt, as a gum (0.026 g); [0333]
  • NMR Spectrum 1.64 (m, 2H), 1.97 (m, 2H), 3.57 (m, 2H), 3.87 (m, 2H), 4.58 (m, 1H), 6.83 (d, 2H) 6.99 (d, 2H), 7.19 (d, 2H), 7.75 (q, 1H), 7.80 (q, 1H), 8.07 (d, 2H), 8.20 (d, 2H), 8.33 (d, 2H), 10.07 (s, 1H), 13.27 (broad s, 1H); [0334]
  • Mass Spectrum m/z 538/540 (M+H); [0335]
  • and 6-bromo-N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-N-(6-bromonaphth-2-ylsulphonyl)-2-naphthalenesulphonamide, trifluoroacetate salt, as a waxy solid (0.031 g), m.p. 130-135° C.; [0336]
  • NMR Spectrum 1.67 (m, 2H), 2.07 (m, 2H), 3.62 (m, 2H), 3.94 (m, 2H), 4.76 (m, 1H), 6.99 (m, 4H), 7.22 (d, 2H), 7.86 (m, 41), 8.06-8.27 (m, 6H), 8.45 (d, 4H); [0337]
  • Mass Spectrum m/z 808 (M+H). [0338]
  • EXAMPLE 7
  • Using an analogous procedure to that described in Example 4, 4-[1-(4-pyridyl)piperidin-4-yloxy]aniline was reacted with 4-toluenesulphonyl chloride to give N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-4-toluenesulphonamide, hydrochloride salt, in 54% yield, m.p. 270-272° C.; [0339]
  • NMR Spectrum 1.63 (m, 2H), 1.97 (m, 2H), 2.31 (s, 3H), 3.57 (m, 2H), 3.88 (m, 2H), 4.60 (m, 1H), 6.84 (d, 2H), 6.98 (d, 2H), 7.20 (d, 2H), 7.31 (d, 2H), 7.57 (d, 2H), 8.19 (d, 2H), 9.88 (s, 1H); [0340]
  • Mass Spectrum i/z 424 (M+H); [0341]
  • Elemental Analysis Found C, 57.7; H, 5.5; N, 8.7; C[0342] 23H25N3O3S 1HCl 1H2O requires; C, 57.8; H, 5.9; N, 8.8%.
  • EXAMPLE 8
  • Using an analogous procedure to that described in Example 6, N-{4-[1*4-pyridyl)-piperidin-4-yloxy]phenyl}4-toluenesulphonamide, hydrochloride salt, was reacted with 4-toluenesulphonyl chloride. The crude reaction product was triturated under water. There was thus obtained N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-N-(4-tolylsulphonyl)-4-toluenesulphonamide in 85% yield, m.p. 196-198° C.; [0343]
  • NMR Spectrum 1.65 (m, 2H), 2.02 (m, 2H), 2.46 (s, 6H), 3.20 (m, 2H), 3.72 (m, 2H), 4.68 (m, 1H), 6.84 (m, 4H), 7.02 (d, 2H), 7.48 (d, 4H), 7.68 (d, 4H), 8.16 (d, 2H); [0344]
  • Mass Spectrum n/z 578 (M+H). [0345]
  • EXAMPLE 9
  • Sodium hydride (60% dispersion in mineral oil, 0.06 g) was added to a stirred mixture of 4′-bromo-N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-4-biphenylylsulphonamide, hydrochloride salt (0.309 g), THF (10 ml) and DMF (1 ml), and the mixture was stirred at ambient temperature for 45 minutes. Methyl iodide (0.142 g) was added and stirring was continued for 16 hours. The mixture was evaporated. The residue was triturated under water and the resultant solid was purified by column chromatography using increasingly polar mixtures of methylene chloride and methanol as eluent. There was thus obtained 4′-bromo-N-methyl-N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-4-biphenylylsulphonamide, as a foam (0.045 g); [0346]
  • NMR Spectrum (CDCl[0347] 3) 2.00 (m, 4H), 3.20 (s, 3H), 3.41 (m, 2H), 3.65 (m, 2H), 4.57 (m, 1H), 6.74 (d, 2H), 6.84 (d, 2H), 7.05 (d, 2H), 7.47 (d, 2H), 7.61 (m, 6H), 8.25 (d, 2H);
  • Mass Spectrum m/z 578/580 (M+H). [0348]
  • EXAMPLE 10
  • Using an analogous procedure to that described in Example 4, N-methyl-4-[1-(4-pyridyl)piperidin-4-yloxy]aniline was reacted with (E)-4-chlorostyrylsulphonyl chloride. The yellow reaction liquor was decanted from a brown gum (which was discarded) and evaporated. The resultant foam was purified by column chromatography on alumina (ICN alumina N, grade 3) using methylene chloride as eluent. There was thus obtained 4-chloro-N-methyl-N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-(E)-styrylsulphonamide, as a gum in 34% yield; [0349]
  • NMR Spectrum 1.63 (m, 2H), 1.97 (m, 2H), 2.25 (m, 2H), 3.19 (s, 3H), 3.68 (m, 2H), 4.62 (m, 1H), 6.80 (d, 2H), 6.96 (d, 2H), 7.25 (d, 2H) 7.26 (d, 1H), 7.36 (d, 1H), 7.47 (d, 2H), 7.76 (d, 2H), 8.12 (d, 2H); [0350]
  • Mass Spectrum m/z 484/486 (M+H). [0351]
  • The N-methyl-4-[1-(4-pyridyl)piperidin-4-yloxy]aniline used as a starting material was prepared as follows:—[0352]
  • Acetic formic anhydride (1.5 g; pre-formed by heating acetic anhydride and 98% formic acid at 60° C. for 2 hours) was cooled to 5° C. and 4-[1-(4-pyridyl)piperidin-4-yloxy]aniline (1.0 g) was added. The mixture was stirred at ambient temperature for 16 hours and then evaporated. The residue was dissolved in water (50 ml) and the mixture was basified to pH 110 by the addition of a 2M aqueous sodium hydroxide solution. The resultant mixture was extracted with methylene chloride, washed with water and with brine, dried (MgSO4) and evaporated to give N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}formamide as a foam (0.72 g); [0353]
  • NMR Spectrum 1.63 (m, 2H), 1.96 (m, 2H), 3.22 (m, 2H), 3.67 (m, 2H), 4.56 (m, 1H), 6.82 (d, 2H), 6.94 (d, 2H), 7.48 (d, 2H), 8.12 (d, 2H), 8.20 (d, 1H), 9.96 (broad s, 1H); [0354]
  • Mass Spectrum m/z 298 (M+H). [0355]
  • The material so formed was dissolved in THF (5 ml) and added to a stirred suspension of lithium aluminium hydride (0.18 g) in THF (5 ml). The mixture was stirred at ambient temperature for 16 hours. The minimum volume of a saturated aqueous ammonium chloride solution was added to destroy the excess of reducing agent. THF (50 ml) was added, the mixture was filtered and the filtrate was evaporated to give N-methyl-4-[1-(4-pyridyl)piperidin-4-yloxy]aniline as a pale yellow solid (0.62 g), m.p. 161-164° C.; [0356]
  • NMR Spectrum (CDCl[0357] 3) 1.82 (m, 2H), 1.98 (m, 2H), 2.82 (s, 3H), 3.27.(m, 2H), 3.64 (m, 2H), 4.34 (m, 1H), 6.57 (d, 2H), 6.66 (d, 2H), 6.82 (d, 2H), 8.25 (d, 2H);
  • Mass Spectrum m/z 284 (M+H). [0358]
  • EXAMPLE 11
  • Using an analogous procedure to that described in Example 4, 4-[1-(4-pyridyl)piperidin-4-ylmethoxy]aniline was reacted with 4′-bromo-4-biphenylylsulphonyl chloride. The crude reaction product was washed with methylene chloride. There was thus obtained 4′-bromo-N-{4-[1-(4-pyridyl)piperidin-4-ylmethoxy]phenyl}4-biphenylylsulphonamide, hydrochloride salt, as a white solid in 77% yield, m.p. 293-295° C.; [0359]
  • NMR Spectrum 1.30 (q, 2H), 1.87 (d, 2H), 2.21 (m, 1H). 3.18 (m, 2H), 3.78 (d, 2H), 4.22 (d, 2H), 6.81 (d, 2H), 7.01 (d, 2H), 7.18 (d, 2H) 7.67 (s, 4H), 7.77 (d. 2H), 7.84 (d, 2H), 8.18 (d, 2H), 10.0 (s, 1H), 13.3 (broad s, 1H); [0360]
  • Mass Spectrum m/z 578/580 (M+H); [0361]
  • Elemental Analysis Found C, 55.8; H, 4.9; N, 6.6; C[0362] 29H28BrN3O3S 1HCl 1.5H2O requires C, 55.8; H, 4.9; N, 6.7%.
  • The 4-[1-(4-pyridyl)piperidin-4-ylmethoxy]aniline used as starting material was obtained as follows:—[0363]
  • Using an analogous procedure to that used in the first paragraph of the portion of Example 4 which is concerned with the preparation of starting materials, 1-(4-pyridyl)-piperidin-4-ylmethanol (Chemical Abstracts, vol. 113, abstract 23121 In; European Patent Application No. 0 359 389) was reacted with 4-(N-tert-butoxycarbonylamino)phenol. The resultant product was treated with a saturated solution of hydrogen chloride in diethyl ether using an analogous procedure to that used in the second paragraph of the portion of Example 4 which is concerned with the preparation of starting materials. There was thus obtained 4-[1-(4-pyridyl)piperidin-4-ylmethoxy]aniline in 22% yield, m.p. 210-211° C. [0364]
  • EXAMPLE 12
  • Using an analogous procedure to that described in Example 4, 4-[1-(4-pyridyl)piperidin-4-ylmethoxy]aniline was reacted with 6-bromonaphth-2-ylsulphonyl chloride. There was thus obtained 6-bromo-N-{4-[1-(4-pyridyl)piperidin-4-ylmethoxy]-phenyl}-2-naphthalenesulphonamide, hydrochloride salt, as a white solid in 76% yield, m.p. 167-169° C.; [0365]
  • NMR Spectrum 1.26 (m, 2H), 1.84 (d, 2H), 2.10 (m, 1H), 3.15 (m, 2H), 3.72 (d, 2H), 4.20 (d, 2H), 6.75 (d, 2H), 6.96 (d, 2H), 7.16 (d, 2H), 7.76 (m, 2H), 8.05 (d, 2H), 8.16 (d, 2H), 8.31 (d, 2H), 10.05 (s, 1H); [0366]
  • Mass Spectrum m/z 552/554 (M+H); [0367]
  • Elemental Analysis Found C, 53.7; H, 4.9; N, 7.1; C[0368] 27H26BrN3O3S 1HCl 1H2O requires C, 53.3; H, 5.0; N, 6.9%.
  • EXAMPLE 13
  • Using an analogous procedure to that described in Example 4, 4-[1-(4-pyridyl)piperidin-4-ylmethoxy]aniline was reacted with (E)-4-chlorostyrylsulphonyl chloride. There was thus obtained 4-chloro-N-{4-[1-(4-pyridyl)piperidin-4-ylmethoxy]phenyl}-(E)-styrylsulphonamide, hydrochloride salt, in 34% yield, m.p. 220-223° C.; [0369]
  • NMR Spectrum 1.30 (m, 2H), 1.88 (d, 2H), 2.13 (m, 1H), 3.14 (m, 2H), 3.79 (d, 2H), 4.22 (d, 2H), 6.84 (d, 2H), 7.10 (d, 2H), 7.15 (d, 2H), 7.17 (d, 1H), 7.32 (d, 1H), 7.43 (d, 2H), 7.68 (d, 2H), 8.17 (d, 2H), 9.69 (s, 1H); [0370]
  • Mass Spectrum m/z 484/486 (M+H); [0371]
  • Elemental Analysis Found C, 54.7; H, 5.2; N, 7.7; C[0372] 25H26ClN3O3S 1HCl 1.5H2O requires C, 54.9; H, 5.5; N, 7.7%.
  • EXAMPLE 14
  • Using an analogous procedure to that described in Example 6. 4′-bromo-N-{4-[1-(4-pyridyl)piperidin-4-ylmethoxy]phenyl}-4-biphenylylsulphonamide, hydrochloride salt, was reacted with 4′-bromo-4-biphenylylsulphonyl chloride. There was thus obtained 4′-bromo-N-(4′-bromo-4-biphenylylsulphonyl)-N-{4-[1-(4-pyridyl)piperidin-4-ylmethoxy]phenyl}-4-biphenylylsulphonamide in 91% yield, m.p. 136-140° C.; [0373]
  • NMR Spectrum 1.31 (m, 2H), 1.84 (d, 2H), 2.05 (m, 1H), 2.89 (t, 2H). 3.88 (d, 2H), 3.98 (d, 2H), 6.83 (d, 2H), 6.99 (s, 4H), 7.73 (s, 8H), 7.89 (d, 4H), 7.99 (d, 4H), 8.12 (d, 2H); [0374]
  • Mass Spectrum m/z 874 (M+H). [0375]
  • EXAMPLE 15
  • Using an analogous procedure to that described in Example 6, 6-bromo-N-{4-[1-(4-pyridyl)piperidin-4-ylmethoxy]phenyl}-2-naphthalenesulphonamide, hydrochloride salt, was reacted with 6-bromonaphth-2-ylsulphonyl chloride. There was thus obtained 6-bromo-N-(6-bromonaphth-2-ylsulphdnyl)-N-{4-[1-(4-pyridyl)piperidin-4-ylmethoxy]phenyl}-2-naphthalenesulphonamide in 99% yield, m.p. 246-252° C.; [0376]
  • NMR Spectrum 1.47 (m, 2H), 1.93 (d, 2H), 2.07 (m, 0.1H), 2.91 (t, 2H), 3.82 (d, 2H), 3.94 (d, 2H), 6.67 (d, 2H), 6.81 (d, 2H), 6.94 (d, 2H), 7.71 (d, 2H), 7.82 (d, 2H), 7.90 (d, 2H), 7.99 (d, 2H), 8.13 (s, 2H), 8.26 (d, 2H), 8.43 (s, 2H); [0377]
  • Mass Spectrum m/z 822 (M+H). [0378]
  • EXAMPLE 16
  • Using an analogous procedure to that described in Example 4 except that the reaction mixture was stirred at ambient temperature for 71 hours, 3-[1-(4-pyridyl)piperidin-4-yloxy]aniline was reacted with 6-bromonaphth-2-ylsulphonyl chloride. The product was washed with methylene chloride and dried. There was thus obtained 6-bromo-N-{3-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-2-naphthalenesulphonamide, hydrochloride salt, in 77% yield, m.p. 298-300° C.; [0379]
  • NMR Spectrum 1.63 (m, 2H), 1.92 (m, 2H), 3.57 (m, 2H), 3.81 (m, 2H), 4.57 (m, 1H), 6.70 (m, 3H), 7.18 (m, 3H), 7.77 (m, 2H), 8.08 (m, 2H), 8.21 (d, 2H), 8.30 (s, 1H), 8.47 (s, 1H), 10.41 (s, 1H), 13.47 (broads, 1H); [0380]
  • Mass Spectrum m/z 538/540 (M+H); [0381]
  • Elemental Analysis Found C, 53.8; H, 4.5; N, 7.2; C[0382] 26H24N3O3S 1HCl 0.25H2O requires: C, 53.9; H, 4.4; N, 7.25%.
  • The 3-[1-(4-pyridyl)piperidin-4-yloxy]aniline used as a starting material was prepared as follows:—[0383]
  • Diethyl azodicarboxylate (3 ml) was added over 15 minutes to a stirred mixture of 1-(4-pyridyl)piperidin-4-ol (3.39 g), 3-(N-tert-butoxycarbonylamino)phenol (Chemical Abstracts, vol. 119, abstract 139113; PCT Patent Application WO 9306085; 3.98 g), triphenylphosphine (4.99 g) and THF (150 ml) which had been cooled to 4° C. The resultant mixture was stirred for 48 hours at ambient temperature. The solvent was evaporated and the residue was purified by column chromatography using a 9:1 mixture of methylene chloride and methanol as eluent. The resultant foam was crystallised from diethyl ether to give tert-butyl N-{3-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}carbamate (4.65 g), m.p. 165-166° C. [0384]
  • A 2.2M solution of hydrogen chloride in methanol (45 ml) was added over 15 minutes to a stirred solution in methanol (25 ml) of a portion (2.53 g) of the carbamate so obtained. The mixture was stirred at ambient temperature for 24 hours. The solvent was evaporated and the residue was dissolved in water (50 ml). A 1M aqueous sodium hydroxide solution (25 ml) was added and the mixture was stirred for 1 hour. The precipitate was collected, washed with water and with diethyl ether and dried. There was thus obtained 3-[1-(4-pyridyl)piperidin-4-yloxy]aniline (1.71 g), m.p. 184-186° C.; [0385]
  • NMR Spectrum 1.60 (m, 2H), 1.96 (m, 2H), 3.23 (m, 2H+H2O), 3.65 (m, 2H) 4.48 (m, 1H), 5.00 (s, 2H), 6.16 (m, 3H), 6.82 (d, 2H), 6.88 (t, 1H), 8.15 (d, 2H). [0386]
  • EXAMPLE 17
  • Diethyl azodicarboxylate (0.157 ml) was added over 15 minutes to a stirred mixture of 1-(4pyridyl)piperidin-4-ol (0.178 g), 4-(4-chlorophenylsulphonyl)phenol ([0387] J. Amer. Chem. Soc., 1956, 78, 3400; 0.269 g), triphenylphosphine (0.265 g) and THF (10 ml) which had been cooled to 4° C. The resultant mixture was stirred for 42 hours at ambient temperature. The solvent was evaporated and the the residue was purified by column chromatography using a 9:1 mixture of methylene chloride and methanol as eluent. The residue was triturated under diethyl ether to give 4-[4-chlorophenylsulphonyl)phenoxy]-1-(4-(pyridyl)piperidine (0.134 g), m.p. 151-152° C.;
  • NMR Spectrum 1.68 (m, 2H), 2.02 (m, 2H), 3.24 (m, 2H+H2O), 3.67 (m, 2H), 4.78 (m, 1H), 6.81 (d, 2H), 7.17 (d, 2H), 7.65 (d, 2H), 7.89 (m, 4H), 8.13 (d, 2H); [0388]
  • Mass Spectrum m/z 429/431 (M+H); [0389]
  • Elemental Analysis Found C, 60.6; H, 4.8; N, 6.6; C22H21ClN2O3S 0.5H2O requires C, 60.3; H, 5.1; N, 6.4%. [0390]
  • EXAMPLE 18
  • N-(4-Pyridyl)piperazine (0.163 g) was added, in one portion, to a stirred solution of 5-(6-bromonaphth-2-ylsulphonyl)phthalic anhydride (0.417 g.) in DMF (10 ml.) and the mixture was stirred at ambient temperature for 1 hour. Diethyl ether (40 ml.) was added and the mixture was stirred rapidly. The resultant white, amorphous precipitate was recovered by filtration. There was thus obtained a 1:1 mixture (0.474 g., 81%) of:—[0391]
  • 5-(6-bromonaphth-2-ylsulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoic acid and 4-(6-bromonaphth-2-ylsulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoic acid; the mixture giving the following characterising data; [0392]
  • NMR Spectrum 3.2-3.8 (m, 16H), 6.8 (m, 4H), 7.5 (d, 1H), 7.8-7.9 (m, 3H), 8.0 (m, 2H), 8.05 (s, 2H), 8.1-8.25 (m, 10H), 8.4 (d, 2H), 8.45 (d, 1H), 8.8 (s, 1H); [0393]
  • Mass Spectrum m/z 579 (M+H); [0394]
  • Elemental Analysis Found C, 52.9; H, 4.5; N, 6.8; C27H22BrN3O5S 2H2O requires C, 52.6; H, 4.3; N, 6.8%. [0395]
  • The 5-(6-bromonaphth-2-ylsulphonyl)phthalic anhydride used as a starting material was prepared as follows:—[0396]
  • Triethylamine (3.1 ml) was added dropwise to a stirred mixture of 5-bromophthalic anhydride (5-bromo-1,3-dihydro-2-benzofuran-1,3-dione; 4.54 g), 6-bromo-2-naphthalenethiol (European Patent Application No. 0409413, Example 19; 5.25 g) and DMF (50 ml) and the mixture was stirred at ambient temperature for 10 minutes. The mixture was heated at 60° C. for 1 hour and then stirred at ambient temperature for 16 hours. The solvent was evaporated and the residue was suspended in methanol (60 ml). The mixture was basified by the addition of 2M aqueous sodium hydroxide solution and the mixture was heated to reflux for 1 hour. The mixture was cooled ambient temperature and partitioned between water (300 ml) and diethyl ether. The aqueous layer was acidified by the addition of concentrated hydrochloric acid and extracted with ethyl acetate (2×100 ml). The combined extracts were washed with water and with brine, dried (MgSO4) and evaporated. The residue was triturated under diethyl ether to give 4-(6-bromonaphth-2-ylthio)phthalic acid (6 g, 74%) as a pale yellow solid; [0397]
  • NMR Spectrum (CDCl[0398] 3/DMSO) 7.02 (m, 1H), 7.18 (m, 1H), 7.2-7.55 (m, 5H), 7.65 (s, 1H), 7.72 (s, 1H).
  • A portion (4.5 g) of the material so obtained was suspended in glacial acetic acid (50 ml.) and sodium perborate tetrahydrate (5.13 g) was added in small portions. The reaction mixture was then stirred at ambient temperature for 16 hours. A further portion (1.72 g) of sodium perborate tetrahydrate was added and the mixture was stirred for a further 6 hours. The reaction mixture was poured into water (500 ml.) and extracted with ethyl acetate. The extracts were washed with water and with brine, dried (MgSO4) and evaporated to give 4-(6-bromonaphth-2-ylsulphonyl)phthalic acid as a white solid (5.31 g); [0399]
  • NMR Spectrum 7.85 (m, 2H), 8.0 (m, 1H), 8.1-8.3 (m, 4H), 8.35 (d, 1H), 8.8 (s, 1H). [0400]
  • A mixture of a portion (0.538 g) of the material so obtained was suspended in acetic anhydride (5 ml) and the mixture was heated to 100° C. until a clear solution was obtained. The mixture was cooled to ambient temperature. The resultant white solid was recovered by filtration, washed with diethyl ether and dried to give 5-(6-bromonaphth-2-ylsulphonyl)-phthalic anhydride (0.362 g); [0401]
  • Mass Spectrum m/z 416 (M+H). [0402]
  • Elemental Analysis Found C, 52.0; H, 2.1; C18H9BrO5S requires C, 51.8; H, 2.17%. [0403]
  • EXAMPLE 19
  • To a solution of 4-((4-(4-pyridyl)piperazin-1-ylmethyl)benzoic acid chloride (510 mg) in dichloromethane (20 ml) was added triethylamine (1 ml), followed by a solution of 4-(4-chlorophenoxy)aniline (265 mg). The resulting mixture was stirred at room temperature for 18 hours. The mixture was partitioned between water and dichloromethane. The organic extracts were dried (MgSO[0404] 4) and evaporated to give a gum which was purified by column chromatography on silica eluting with increasing concentrations of methanol and dichloromethane to givel-[4-(4-(4-chlorophenoxy)phenylaminocarbonyl)benzyl]-4-(4-pyridyl)piperazine as a glass (32 mg);
  • NMR Spectrum 8.15 (d, 2H), 7.95 (d, 2H), 7.8 (d, 2H)7.4-7.5 (m, 4H), 6.95-7.1 (m, 4H), 6.85 (d, 2H), 3.6 (s, 2M), 3.2-3.4 (m, 8H); [0405]
  • Mass Spectrum m/z 499 (M+H)[0406] +;
  • Elemental Analysis Found C, 66.3; H, 5.4; N, 10.7; C[0407] 29H27ClN4O2.1.5H2O requires C, 66.2; H, 5.7; N, 10.65%.
  • The acid chloride used as a starting material was prepared as follows:—[0408]
  • (a) To a suspension of 4-(4-pyridyl)piperazine (13.1 g) in ethyl acetate (200 ml) was added triethylamine (56 ml) followed dropwise, over 5 hours, by a solution of methyl 4-bromomethylbenzoate (18.41 g). The mixture was stirred at room temperature for 18 hours. The mixture was partitioned between water and ethyl acetate. The organic extracts were dried (MgSO[0409] 4) and evaporated to give a gum, which was purified by column chromatograhy on silica eluting with increasing concentrations of methanol/dichloromethane to give methyl 4-(4-(4-pyridyl)piperazin-1-ylmethyl)benzoate (13.1 g) as a solid;
  • NMR Spectrum 8.15 (d, 2H), 7.95 (d, 2H), 7.5 (d, 2H), 6.8 (d, 2H), 3.85 (s, 3H), 3.6 (s, 2H), 3.25-3.35 (m, 4H), 2.45-2.55 (m, 4H); [0410]
  • Mass Spectrum m/z 311 (M+H)[0411] +;
  • Elemental Analysis Found C, 69.2; H, 6.6; N, 13.5 C[0412] 18H21N3O2 requires C, 69.4; H, 6.8; N, 13.5%.
  • (b) To a solution of the product of step (a) (849 mg) in methanol (15 ml) was added 2N sodium hydroxide (6.8 ml) and the resulting mixture was stirred for 3 hours. The mixture was evaporated to dryness. The resulting gum was dissolved in water (7 ml) and acidified with acetic acid. The mixture was filtered to give 4-(4-(4-pyridyl)piperazin-1-ylmethyl)benzoic acid (429 mg); [0413]
  • NMR Spectrum (CD[0414] 3SOCD3+CD3COOD) 8.15 (d, 2H), 8.0 (d, 2H), 7.5 (d, 2H), 7.1 (d, 2H), 3.7-3.8 (m, 6H), 2.7-2.8 (m, 4H);
  • Mass Spectrum m/z 298 (M+H)[0415] +;
  • Elemental Analysis Found C, 68.3; H, 6.4; N, 14.0; C[0416] 17H19N3O2 requires: C, 68.7; H, 6.4; N, 14.1%.
  • (c) To a suspension of the product from step (b) (5.19 g) in dichloromethane (100 ml) was added thionyl chloride (7.3 ml). The resulting mixture was stirred for 3 hours and then evaporated to give the acid chloride as a solid (7.66 g) which was used without further purification. [0417]
  • EXAMPLE 20
  • To a solution of 2-[1-(4-pyridyl)piperidin-4-ylmethoxy]aniline (131 mg) in pyridine (5 ml) was added 6-bromonaphthyl-2-sulphonyl chloride (148 mg). The resulting mixture was heated to 120° C. for 18 hours. The mixture was concentrated to a gum, which was purified by column chromatography on silica eluting with increasing concentrations of methanol and dichloromethane to give 6-bromo-N-{2-[-(4-pyridyl)piperidin-4-ylmethoxy]phenyl}-2-naphthalenesulphonamide (177 mg), m.p. 197-200° C.; [0418]
  • NMR Spectrum 8.15 (s, 2H), 8.0-8.1 (m, 4H), 7.8 (dd, 1H), 7.55 (dd, 1H), 7.3 (dd, 1H), 7.05-7.1 (m, 1H), 6.8-6.9 (m, 2H), 6.7 (d, 2H), 3.7 (d, 2H), 3.3-3.4 (m, 2H), 2.4-2.4 (m, 2H), 1.3-1.4 (m, 3H), 0.7-0.9 (m, 2H); [0419]
  • Mass Spectrum m/z=552/554 (M+H[0420] +);
  • Elemental Analysis Found C, 56.5; H, 4.6; N, 7.5; C[0421] 27H26BrN3O3S.H2O requires C, 56.8; H, 4.9; N, 7.4%.
  • The 2-[1-(4-pyridyl)piperidin-4-ylmethoxy]aniline used as a starting material was prepared as follows:—[0422]
  • (a) To a solution of 2-aminophenol (2.84 g) in dichloromethane (120 ml) was added di-tert-butyl dicarbonate (6.55 g). The mixture was stirred at room temperature for 18 hours. The mixture was partitioned between water and dichloromethane. The organic extracts were dried (MgSO[0423] 4) and evaporated to give a solid which was purified by column chromatography on silica eluting with a mixture of ethyl acetate and hexane (20:80) to give 2-tert-butyloxycarbonylaminophenol (1.80 g);
  • NMR Spectrum 9.7 (s, 1H), 7.7 (s, 1H), 7.6 (d, 1H), 6.7-6.9 (m, 3H), 1.45 (s, 9H); [0424]
  • Mass Spectrum m/z=210 (M+H). [0425]
  • (b) To a solution of 1-(4-pyridyl)piperidin-4-ylmethanol (357 mg) and 2-tert-butyloxycarbonylaminophenol (328 mg) in tetrahydrofuran (15 ml) was added triphenylphosphine (447 mg) followed by diethyl azodicarboxylate (0.27 ml). The mixture was stirred at room temperature for 18 hours. The reaction mixture was concentrated to a gum which was purified by column chromatography on silica eluting with methanol/dichloromethane (10:90) to give the tert-butyloxycarbonyl protected derivative of 2-[1-(4-pyridyl)piperidin-4-ylmethoxy]aniline (1.05 g); [0426]
  • NMR Spectrum 8.2 (d. 2H), 7.5-7.7 (m, 2H), 6.95-7.05 (m, 2H), 6.8 (d, 2H), 3.85-4.1 (m. 4H), 2.8-2.95 (m, 2H), 1.8-1.9 (m, 1H), 1.45 (s, 9H), 1.15-1.25 (m, 5H); [0427]
  • Mass Spectrum m/z=384 (M+H). [0428]
  • (c) To a solution of the product from step (b) (1.39 g) in methanol (50 ml) was added methanolic HCl (5 ml) and the resulting mixture was stirred for 4 days. The reaction mixture was partitioned between sodium bicarbonate solution and dichloromethane. The organic extracts were dried (MgSO[0429] 4) and evaporated to give 2-[1-(4-pyridyl)piperidin-4-ylmethoxy]aniline as a solid (971 mg) which was used without further purification;
  • NMR Spectrum 8.1-8.15 (m, 2H), 6.6-6.8 (m, 6H), 3.74.0 (m, 6H), 2.85-3.0 (m, 2H), 1.8-2.2 (m, 5H), 1.2-1.3 (m, 2H). [0430]
  • EXAMPLE 21
  • Using an analogous procedure to that described in Example 4 except that the reaction mixture was stirred at ambient temperature for 26 hours, 3-[1-(4-pyridyl)piperidin-4-yloxy]aniline was reacted with (E)-4-chlorostyrylsulphonyl chloride. The product was washed with methylene chloride and dried. There was thus obtained 4-chloro-N-{3-[1-(4-pyridyl)piperidin-4yloxy]phenyl}-(E)-styrylsulphonamide, hydrochloride salt, in 73% yield, m.p. 147-150 C; [0431]
  • NMR Spectrum 1.59 (m, 2H), 2.00 (m, 2H), 3.58 (m, 2H), 3.86 (m, 2H), 4.63 (m, 1H), 6.70 (d, 1H), 6.77 (m, 2H), 7.20 (m, 3H), 7.30 (d, 1H), 7.49 (m, 3H), 7.73 (d, 2H), 8.22 (d, 2H), 10.10 (bs, 1H); [0432]
  • Mass Spectrum m/z 470/472 (M+H); [0433]
  • Elemental Analysis Found C, 56.2; H 5.1; N, 8.4; C[0434] 24H24ClN3O3S 1HCl 0.25H2O requires: C, 56.4; H, 5.0; N, 8.2%.
  • The 3-[1-(4-pyridyl)piperidin-4-yloxy]aniline used as starting material was prepared in Example 16. [0435]
  • EXAMPLE 22
  • Using an analogous procedure to that described in Example 17, 1-(4-pyridyl)piperidin-4-ol was reacted with 4-(6-bromonaphth-2-ylsulphonyl)phenol. There was thus obtained 4-[4-(6-bromonaphth-2-ylsulphonyl)phenoxy]-1-(4-pyridyl)piperidine in 62% yield, m.p. 180-183° C.; [0436]
  • NMR Spectrum 1.62 (m, 2H), 1.97 (m, 2H), 3.24 (m, 2H+H[0437] 2O), 3.65, (m, 2H), 4.77 (m, 1H), 6.80 (d, 2H), 7.19 (d, 2H), 7.80 (d, 1H), 7.91 (d, 3H), 8.05-8.19 (m, 4H), 8.34 (s, 1H), 8.70 (s, 1H);
  • Mass Spectrum m/z 523/525 (M+H); [0438]
  • Elemental Analysis Found C, 59.3; H, 4.4; N, 5.7; C[0439] 26H23BrN2O3S requires: C, 59.7; H, 4.4; N, 5.4%.
  • The 4-(6-bromonaphth-2-ylsulphonyl)phenol used as a starting material was prepared as follows:—[0440]
  • Aluminium chloride (3.33 g) was added portionwise over 30 minutes to a stirred mixture of 6-30 bromonaphth-2-ylsulphonyl chloride (6.11 g) and anisole (3.33 g) in dry methylene chloride (35 ml). The resultant mixture was stirred for 24 hours. Methylene chloride (75 ml) was added, the mixture cooled to 4° C. and water (100 ml) added cautiously. The mixture was acidified with 2M hydrochloric acid, separated and the aqueous phase extracted with methylene chloride (30 ml). The combined organic phases were washed with water, dried (MgSO[0441] 4) and evaporated. Recrystallisation of the residue from an ethyl acetate/ethanol mixture gave 4-(6-bromonaphth-2-ylsulphonyl)anisole (1.74 g), m.p. 180-181° C.;
  • NMR spectrum 3.80 (s, 3H), 7.12 (d, 2H), 7.80 (d, 1H), 7.92 (m, 3H), 8.08 (d, 1H), 8.16 (d, 1H), 8.32 (s, 1H), 8.69 (s, 1H); [0442]
  • Mass spectrum m/z 377/379 (M+H). [0443]
  • A 1M solution of boron tribromide in methylene chloride (9.65 ml) was slowly added to a stirred, cooled (−78° C.), methylene chloride (25 ml) solution of a portion (1.21 g) of the anisole derivative so obtained. The mixture was stirred for 20 hours at ambient temperature, then cooled to −0° C., diethyl ether (4 ml) slowly added, and stirring continued for 10 minutes. Water (25 ml) was added and the mixture extracted with ethyl acetate (2×25 ml). The combined organic extracts were washed with water, dried (MgSO[0444] 4) and evaporated. Trituration of the residue under ether gave 4-(6-bromonaphth-2-ylsulphonyl)phenol (1.03 g), m.p. 178-180° C.;
  • NMR Spectrum 6.92 (d, 2H), 7.77-7.91 (m, 4H), 8.06 (d, 1H), 8.14 (d, 1H), 8.32 (s, 1H), 8.68 (s, 1H), 10.62 (s, 1H); [0445]
  • Mass Spectrum m/z 361/363 (M−H); [0446]
  • Elemental Analysis Found C, 52.3; H, 3.2; S, 8.3; C[0447] 16H11BrO3S 0.25H2O requires: C, 52.3; H, 3.15; S, 8.7%.
  • EXAMPLE 23
  • 6-Bromo-2-naphthylenethiol (2.39 g) was slowly added to a stirred suspension of sodium hydride (60% w/w suspension in mineral oil, 404 mg) in DMF (10 ml) at 4° C. After 1 hour, a portion (569 mg) 4-(4-fluorobenzoyl)-1-(4-pyridyl)piperidine and further dimethylformamide (8 ml) were added. The mixture was stirred at 50° for 24 hours and then 16 hours at ambient temperature. The mixture was added to water (50 ml) and extracted with methylene chloride (3×50 ml). The combined organic extracts were washed with water, dried (Mg SO[0448] 4) and evaporated. The residue was purified by column chromatography using increasingly polar mixtures of methanol and methylene chloride as eluent. There was thus obtained 4-[4-(6-bromonaphth-2-ylthio)benzoyl]-1-(4-pyridyl)piperidine (613 mg);
  • NMR Spectrum (CDCl[0449] 3) 1.70-2.02 (m, 4H+H2O), 3.03 (td, 2H), 3.43 (m, 1H), 3.92, (dm, 2H), 6.68 (d, 2H), 7.25 (s, 2H), 7.51 (d, 1H), 7.60 (d, 1H), 7.67 (d, 1H), 7.77 (d, 1H), 7.84 (d, 2H), 8.01 (d, 2H), 8.25 (bs, 2H);
  • Mass Spectrum m/z 503/505 (M+H). [0450]
  • The 4-(4- fluorobenzoyl)-1-(4-pyridyl)piperidine used as a starting material was prepared as follows:—[0451]
  • A stirred mixture of 4-(4-fluorobenzoyl)piperidine, hydrochloride salt (3.90 g), 4-chloropyridine, hydrochloride salt (2.85 g) and triethylamine (4.90 ml) in xylene (75 ml) was heated at 145° C. for 27 hours. The solvent was evaporated and the residue partitioned between methylene chloride (150 ml) and water (100 ml), the pH being adjusted to 10 with 0.880 ammonia. The aqueous phase was extracted with a further methylene chloride (50 ml). The combined organic phases were washed with water, dried (Mg SO[0452] 4) and evaporated. The residue was purified by column chromatography using a 19:1 mixture of methylene chloride and methanol as eluent to give 4-(4- fluorobenzoyl)-1-(4-pyridyl)piperidine (1.89 g);
  • NMR Spectrum (CDCl[0453] 3) 1.80-2.06 (m, 4H+H2O), 3.03 (t, 2H), 3.48 (m, 11H), 3.94, (d, 2H), 6.68 (d, 2H), 7.18 (t, 2H), 8.01 (m, 2H), 8.28 (d, 2H);
  • Mass Spectrum m/z 285 (M+H). [0454]
  • EXAMPLE 24
  • Sodium perborate tetrahydrate (614 mg) was added to a stirred solution of 4-[4-(6-bromonaphth-2-ylthio)benzoyl]-1-(4-pyridyl)piperidine (505 mg) in glacial acetic acid (25 ml). After 4 hours further sodium perborate tetrahydrate (614 mg) was added and stirring continued for 27 hours. The reaction mixture was poured into an ice/water mixture (50 ml) and extracted with methylene chloride (4×25 ml)., The combined extracts were washed with water and with brine, dried (Mg SO[0455] 4) and evaporated. The residue was purified by column chromatography using a 19:1 methylene chloride and methanol mixture as eluent and the resultant foam triturated under is-hexane. There was thus obtained 4-[4-(6-bromonaphth-2-ylsulphonyl)benzoyl]-1-(4-pyridyl)piperidine (21 mg);
  • NMR Spectrum (CDCl[0456] 3) 1.77-2.05 (m, 4H), 3.15 (td, 2H), 3.52 (m, 1H), 4.00, (m, 2H), 6.71 (d, 2H), 7.72 (dd, 1H), 7.85 (m, 3H), 8.08 (m, 5H), 8.24 (d, 2H), 8.57 (s, 1H);
  • Mass Spectrum m/z 535/537 (M+H). [0457]
  • EXAMPLE 25
  • A stirred mixture of 4-chloropyridine hydrochloride (78.3 mg), 1-[4-(6-bromonaphth-2-ylsulphonyl)phenylsulphonyl]piperazine hydrochloride (185 mg), triethylamine (0.145 ml) and xylene (3.0 ml) was heated at 140° C. for 16 hours. The solvent was evaporated and the residue purified by column chromatography on a C-18 60 Å preparative reversed-phase HPLC column using 0.1% trifluoroacetic acid in aqueous acetonitrile and a gradient of 30% to 70% acetonitrile. There was thus obtained 4-[4-(6-bromonaphth-2-ylsulphonyl)phenylsulphonyl]-1-(4-pyridyl)piperazine, trifluoroacetate salt (29.1 mg), m.p. 236-238° C.: [0458]
  • NMR Spectrum 3.10 (t, 4H), 3.74 (t, 4H), 7.10 (d, 2H), 7.82 (d, 1H), 7.98 (d, 3H), 8.08-8.29 (m, 6H), 8.36 (s, 1H), 8.78 (s, 1H); [0459]
  • Mass Spectrum m/z 572/574 (M+H). [0460]
  • The 1-[4-(6-bromonaphth-2-ylsulphonyl)phenylsulphonyl]piperazine used as a starting material was prepared as follows:—[0461]
  • 4-Fluorobenzenesulphonyl chloride (1.95 g) was added to a stirred solution of N-=-butyloxycarbonylpiperazine (1.86 g) and triethylamine (6.9 ml) in methylene chloride (100 ml) at 4° C. and stirring continued at ambient temperature for 16 hours. The solvent was evaporated and the residue purified by column chromatography using methylene chloride and 1% methanol in methylene chloride as eluent. There was thus obtained 4-(4-fluorophenylsulphonyl)-1-(tert-butyloxycarbonyl)piperazine (3.09 g), m.p. 163-164° C.; [0462]
  • NMR Spectrum (CDCl[0463] 3) 1.42 (s, 9H), 2.98 (t, 4H), 3.51 (t, 4H), 7.23 (m, 2H), 7.77 (m, 2H);
  • Mass Spectrum m/z 362 (M+NH[0464] 4);
  • Elemental Analysis Found C, 52.1; H, 6.1; N, 8.0; C[0465] 15H21FN2O4S requires: C, 52.3; H, 6.15; N, 8.1%.
  • Sodium hydride (60% w/w suspension in mineral oil, 88 mg) was slowly added to a stirred solution of 6-bromo-2-naphthylenethiol (478 mg) in dry DMF (5 ml) at 4° C. and stirring continued for 30 minutes. A portion of the piperazine derivative (688 mg) prepared in the previous paragraph was added and stirring continued for 1 hour at 4° C. and for 64 hours at ambient temperature. The mixture was added to an ice/water mixture and the precipitated solid collected by filtration. Purification by column chromatography using initially a 10% then a 15% mixture of ethyl acetate and iso-hexane as eluent gave 4-[4-(6-bromonaphth-2-ylthio)phenylsulphonyl]-1-(=-butyloxycarbonyl)piperazine (630 mg), m.p. 99-101° C.; [0466]
  • NMR Spectrum (CDCl[0467] 3) 1.42 (s, 9H), 2.97 (t, 4H), 3.49 (t, 4H), 7.25 (m, 2H), 7.5-7.8 (m, 6H) 8.06 (d, 2H);
  • Mass Spectrum m/z 507/509 (M+H—C[0468] 4H8);
  • Elemental Analysis Found C, 53.6; H, 5.1; N, 5.0; C[0469] 25H27BrN2O4S2 requires: C, 53.3; H, 4.8; N, 5.0%.
  • Sodium perborate tetrahydrate (308 mg) was added to a stirred solution of a portion (282 mg) of the material prepared above in glacial acetic acid (2 ml). After stirring for 16 hours, further acetic acid (2 ml) and sodium perborate tetrahydrate (308 mg) were added, stirring continued for 16 hours when a final addition of acetic acid (10 ml) and sodium perborate tetrahydrate (308 mg) was made. After stirring for a further 16 hours the reaction mixture was poured into an ice/water mixture. The precipitated solid was isolated giving 4-[4-(6-bromonaphth-2-ylsulphonyl)phenylsulphonyl]-1-(=-butyloxycarbonyl)piperazine (295 mg), m.p. 213-215° C., which was used without further purification. [0470]
  • A solution of the material so obtained (295 mg) in methylene chloride (10 ml) was treated with a 2.2M solution of hydrogen chloride in diethyl ether (1.2 ml). The mixture was stirred at ambient temperature for 48 hours. The precipitated solid was collected by filtration and washed with methylene chloride giving 1-[4-(6-bromonaphth-2-ylsulphonyl)phenyl-sulphonyl]piperazine hydrochloride salt, (205 mg), m.p. 250-260° C. (decomposition); [0471]
  • NMR Spectrum 3.12 (s, 8H), 7.83 (d, 1H), 8.01 (m, 3H), 8.15 (d, 1H), 8.20 (d, 1H), 8.28 (d, 2H), 8.36 (s, 1H), 8.81 (s, 1H), 8.98 (bs, 2H); [0472]
  • Mass Spectrum m/z 495/497 (M+H). [0473]
  • EXAMPLE 26
  • To a solution of 6-(bromo-2-(4-(2-aminoethylaminocarbonyl)phenyl sulphonyl)naphthalene (400 mg) in ethanol (15 ml) was added 4-chloropyrimidine hydrochloride (131 mg) and triethylamine (294 mg). The mixture was heated to reflux for 3 hours. Further portions of 4-chloropyrimidine (131 mg) and triethylamine (108 mg) were added and heating continued for a further 1 hour. [0474]
  • After cooling, the reaction mixture was diluted with ethyl acetate (100 ml.), washed with water (2×25 ml) and brine (25 ml), dried (MgSO4) and evaporated to give a solid. This was purified by chromatography on a Mega Bond Elut silica column, eluting with dichloromethane containing increasing proportions of methanol (0%-5%) to give 6-(bromo-2-(4-(2-pyrimidin-4-yl)aminoethylaminocarbonyl)phenylsulphonyl)naphthalene (140 mg); [0475]
  • NMR spectrum 3.3-3.5 (m, 4H); 6.45 (m, 1H); 7.3-7.5 (m, 1H); 7.8 (dd, 1H); 7.9-8.05 (m, 4H); 8.05-8.2 (m, 3H)1; 8.25 (d, 1H); 8.4 (d, 2H); 8.8 (s, 2H); [0476]
  • Mass spectrum m/z 511 (m+H); [0477]
  • Elemental Analysis Found C: 50.2;.H: 3.7; N: 10.0; C23H19BrN4O3S. 0.6 CH2Cl2 requires C: 50.4; H: 3.6; N: 9.9. [0478]
  • The 6-(bromo-2-(4-(2-aminoethylaminocarbonyl)phenylsulphonyl)naphthalene used as starting material may be prepared as follows. [0479]
  • i) To a suspension of sodium hydride 48% dispersion (960 mg, 20 mmol) in dimethylformamide (50 ml), cooled to 5° C. and stirred under nitrogen, was added in small portions 6-bromonaphthalene-2-thiol (4.78 g, 20mmol). The mixture was allowed to warm to ambient temperature over 1 hour. 4-Fluorobenzonitrile (2.66 g, 22 mmol) was then added, the mixture heated to 90° C. for a further 1 hour and then poured into water (600 ml). The resulting solid was purified by recrystallisation from methanol to give 6-(bromo-2-(4-cyanophenylthio)naphthalene (5.7 g); [0480]
  • NMR Spectrum 7.3 (dd, 2H); 7.55 (dd, 0.1H); 7.7-7.8 (m, 314); 7.9 (d, 1H); 8.0 (d, 1H); 8.2 (s, 1H); 8.3 (s, 11H). [0481]
  • (ii) A mixture of the product from i) above (5.7 g), potassium hydroxide (3 g), water (I 5 ml) and ethylene glycol (100 ml.).was heated to 160° C. for 7 hours. After cooling to ambient temperature the mixture was diluted with water (500 ml.), acidified with concentrated HCl (pH 2) and extracted with ethyl acetate (2×200 ml). The combined extracts were washed with water (2×100 ml) and brine (100 ml), dried (MgSO4) and evaporated to give 4-(6-bromonaphth-2-ylthio)benzoic acid (5.3 g); [0482]
  • NMR Spectrum 7.2 (dd, 2H); 7.5 (dd, 1H); 7.7 (dd, 2H); 7.9 (dd, 2H); 7.95 (d, 1H); 8.0 (d, 1H); 8.1 (s, 1H); 8.2 (s, 1H); [0483]
  • Mass Spectrum m/z 357 m−H. [0484]
  • (iii) The acid from ii) above (5.3 g) was suspended in glacial acetic acid (100 ml). Sodium perborate (9 g) was added and the mixture stirred at ambient temperature for 24 hours. A further portion of sodium perborate (9 g) was added and the mixture heated to 55° C. for 6 hours. After cooling to ambient temperature, water (200 ml) was added and the resulting white solid precipitate recovered by filtration to give 4-(6-bromonaphth-2-ylsulphonyl)benzoic acid (4.1 g); [0485]
  • NMR Spectrum 7.8-7.9 (m, 2H); 7.95 (d, 1H); 8.05-8.15; (m, 4H); 8.2 (d, 1H); 8.3 (s, 1H); 8.8 (s, 1H); [0486]
  • iv) The acid from iii) above (7.16) was dissolved in dimethylformamide (100 ml.). N-hydroxysuccinamide (2.88 gm) was added and the mixture cooled to 5° C. EDAC (4.2 g) was added in one portion and the mixture stirred 16 hours at ambient temperature. Ethyl acetate (50 ml) was added and after washing with water (3×100 ml.) and brine (100 ml.) the reaction mixture was evaporated to give a white solid. This was further purified by flash column chromatography on silica gel, eluting with dichloromethane, to give the succinimide ester of the acid product of iii) (6.3 g), mp 287-290° C.; [0487]
  • NMR Spectrum (CDCl[0488] 3) 2.9 (s, 4H); 7.7 (dd, 1H); 7.8-7.9 (m, 3H); 8.1 (s, 1H); 8.15 (d, 2H); 8.25 (d, 2H); 8.6 (s, 1H);
  • Mass Spectrum m/z 389 m−H. [0489]
  • v) The ester from iv) above (976 mg) was treated with N-BOC ethylenediamine (320 mg) in dimethylformamide (10 ml) and stirred at ambient temperature for 18 hours. After diluting with ethyl acetate (150 ml), washing with 2M sodium hydroxide (2×25 ml), 1M citric acid (25 ml), water (25 ml) and brine (25 ml), the reaction mixture was dried (MgSO4) and evaporated to give the tert-butoxycarbonyl derivative of the desired starting material as a white solid. This was dissolved in trifluroacetic acid (5 ml), stirred at ambient temperature for 2 hours and then evaporated to give an oil. Ether (50 ml) was added and the mixture stirred vigorously to give 6-(bromo-2-(4-(2-aminoethylaminocarbonyl)phenylsulphonyl)naphthalene as a white solid which was recovered by filtration (893 mg); [0490]
  • NMR spectrum 2.95 (t, 2H); 3.4-3.5 (m, 2H); 7.7-7.9 (m, 4H); 7.95 (dd, 1H); 8.1 (d, 2H); 8.15-8.25 (m, 4H); 8.35 (s, 1H); 8.75-8.85 (m, 2H); [0491]
  • Mass spectrum m/z 433 m+H; [0492]
  • Elemental Analysis Found C: 45.6; H: 3.1; N: 5.2; C19H17BrN2O3S. 1.1 TFA requires C: 45.6; H: 3.27; N: 5.01. [0493]
  • EXAMPLE 27
  • A mixture of the acid from part (ii) of Example 26 (358 mg), hydroxybenztriazole (202 mg), N-(4-pyridyl)piperazine (163 mg) and EDAC (210 mg) was dissolved in dimethylformamide (10 ml) and stirred at ambient temperature for 1 hour. Water (50 ml) and 2M sodium hydroxide (10 ml) was added and the mixture extracted with ethyl acetate (2×50 ml.). After washing the combined extracts with water (2×20 ml), drying (MgSO4) and evaporating 1-[4-(6-bromonaphth-2-ylthio)benzoyl]-4-(4-pyridyl)piperazine was obtained as a white solid. (345 mg), mp 210-213 C; [0494]
  • NMR Spectrum CDCl[0495] 3 3.2-3.4 (m, 4H); 3.6-4.0 (m, 4H); 6.7 (dd, 2H); 7.3-7.4 (m, 4H); 7.45 (d, 1H), 7.5-7.7 (m, 2H); 7.75 (d, 1H); 7.9 (s, 1H); 8.0 (s, 1H); 8.3 (d, 2H);
  • Mass Spectrum m/z 504 m+H; [0496]
  • Elemental Analysis Found C: 61.8; H: 4.6; N: 8.3; C26H22BrN30S Requires C: 61.9; H: 4.4; N: 8.3. [0497]
  • EXAMPLE 28
  • A mixture of the acid from part (iii) of Example 26 (782 mg), hydroxybenztriazole (297 mg), N-(4-pyridyl)piperazine (326 mg) and EDAC (382 mg) was dissolved in dimethylformamide (15 ml) and stirred at ambient temperature for 4 hours. Ethyl acetate (100 ml) was added and after washing with water (2×25 ml) and brine (25 ml) the reaction mixture was evaporated to give a solid. Purification by column chromatography on silica gel (Mega Bond Elut),eluting with dichloromethane containing an increasing proportion of methanol (0-5%), gave as a solid 1-[4-(6-bromonaphth-2-ylsulphonyl)benzoyl]-4-(4-pyridyl)piperazine (120 mg); [0498]
  • NMR Spectrum CDCl[0499] 3/TFA 3.5-4.0 (b, 8H); 6.9 (d, 2H); 7.6 (d, 2H); 7.7 (dd, 1H); 7.8-7.9 (m, 3H); 8.0-8.1 (m, 3H); 8.15-8.25 (m, 2H); 8.55 (s, 1H);
  • Mass Spectrum m/z 536 m+H. [0500]
  • Elemental Analysis Found C: 57.2; H: 4.5; N: 7.4; C26H22BrN3O3S.0.5H[0501] 2O Requires C: 57.3; H: 4.3; N: 7.7.
  • EXAMPLE 29
  • A mixture of the acid from part (iii) of Example 26 (391 mg), hydroxybenztriazole (202 mg), N-(4-pyrimidyl)piperazine (326 mg) and EDAC (202 mg) was dissolved in dimethylformamide (10 ml) and stirred at ambient temperature for 3 hours. Ethyl acetate (50 ml) was added and after washing with 2M sodium hydroxide (15 ml), water (2×15 ml) and brine (15 ml) the reaction mixture was evaporated and the residue triturated with methanol to give a solid 1-[4-(6-bromonaphth-2-ylsulphonyl)benzoyl]-4-(4-pyrimidinyl)-piperazine (391 mg); [0502]
  • NMR Spectrum 3.2-3.9 (m, 8H); 6.8 (d, 1H); 7.7 (d, 2H); 7.85 (dd, 1H); 8.0 (dd, 1H); 8.1-8.25 (m, 5H); 8.4 (s, 1H); 8.5 (s, 1H); 8.8 (s, 1H); [0503]
  • Mass Spectrum m/z 537 m+H; [0504]
  • Elemental Analysis Found C: 55.5; H: 4.0; N: 10.4; C25H21BrN4O3S Requires C: 55.9; H: 3.9; N: 10.4. [0505]
  • EXAMPLE 30
  • A mixture of N-(4-pyridazinyl)piperazine trifluroacetate (278 mg), triethylamine (303 mg), N-hydroxysuccinimide ester from part (iv) of Example 26 (1 mmol) and dimethylformamide (10 ml) was stirred at ambient temperature for 18 hours. The reaction mixture was evaporated and the residue dissolved in ethyl acetate, washed with 2M sodium hydroxide (2×25 ml), water (2×25 ml) and brine (25 ml). After drying (MgSO4), evaporation and trituration with methanol and ether, 1-[4-(6-bromonaphth-2-ylsulphonyl)benzoyl]4-(4-pyridazinyl)piperazine was obtained as a white solid 420 mg); [0506]
  • NMR Spectrum 3.3-3.8 (m, 8H); 6.9 (dd, 1H); 7.7 (d, 2H); 7.85 (dd, 1H); 8.0 (dd, 1H); 8.1 (d, 2H); [0507]
  • 8.15 (d, 1H); 8.2 (d, 1H); 8.4 (s, 1H); 8.6 (d, 1H); 8.8 (s, 1H); 8.9 (d, 1H); [0508]
  • Mass Spectrum m/z 537 m+H; [0509]
  • Elemental Analysis Found C: 55.1; H: 3.8; N: 10.0; C25H21BrN4O3S.0.5H2O Requires C: 55.0; H: 4.06; N: 10.3. [0510]
  • EXAMPLE 31
  • To 4-(6-bromonaphth-2-ylsulphonyl)-2-trifluoromethylbenzoic acid (1.02 g) was added thionyl chloride (10ml) and dimethylformamide (1 drop). The mixture was heated on a steam bath for 30 minutes and then evaporated to give a yellow solid which was redissolved in dichloromethane (10 ml) and added to an ice cooled solution of N-(4-pyridyl)piperazine (363 mg) and triethylamine (1.16 g) in dichloromethane (10 ml). The mixture was allowed to warn to ambient temperature and stirred for 3 hours. Water (100 ml) was added and the mixture extracted with ethyl acetate (3×50 ml). The combined extracts were washed with water (3×25 ml) and brine (25 ml), dried (MgSO4) and evaporated to give a solid which was further purified by flash column chromatography on silica gel, eluting with dichloromethane containing increasing proportions of methanol (0-5%) to give a solid. Recrystallisation from methanol gave 1-[4-(6-bromonaphth-2-ylsulphonyl-2-trifluoromethylbenzoyl]-4-(4-pyridyl)piperazine (649 mg), mp 221-223° C.; [0511]
  • NMR Spectrum 3.0-3.5 (m, 6H); 3.6-3.8 (m, 2H); 6.75 (d, 2H); 7.8 (dd, 2H); 8.0-8.2 (m, 5H); 8.3-8.4 (m, 3H); 8.85 (s, 1H); [0512]
  • Mass Spectrum m/z 604 m+H; [0513]
  • Elemental Analysis Found C: 53.5; H: 3.5; N: 7.0; C27H21BrF3N3O3S Requires C: 53.7; H: 3.5; N: 6.95. [0514]
  • 4-(6-Bromonaphth-2-ylsulphonyl-2-trifluoromethylbenzoic acid used as starting material may be prepared as follows. [0515]
  • i) A mixture of 6-bromonaphthalene-2-thiol (956 mg) and 4-fluoro-2-trifluoromethyl benzonitrile (756 mg) in dimethylformamide (15 ml), at ambient temperature, was treated dropwise with triethylamine (504 mg). After stirring at ambient temperature for 3 hours the reaction mixture was diluted with ethyl acetate (100 ml), washed with water (3×25 ml) and brine (25 ml), dried (MgSO4) and evaporated to give a yellow oil. Crystallisation from methanol (20 ml) gave 4-(6-bromonaphth-2-ylthio)-2-trifluoromethylbenzonitrile (1.176 g, mp 114-116° C.; [0516]
  • NMR Spectrum 7.4 (d, 1H); 7.6 (d, 1H); 7.75 (m, 2H); 7.9-8.1 (m, 3H); 8.3 (s, 2H); [0517]
  • Mass Spectrum m/z 407 m[0518] +;
  • Elemental Analysis Found C: 53.1; H: 2.2; N: 3.4; C18H9BrF3NS Requires C: 53.0; H: 2.2; N: 3.4. [0519]
  • ii) A mixture of nitrile from (i) above (1.0 g), potassium hydroxide (0.6 g), water (3 ml) and ethylene glycol (20 ml) was heated at 155° C. for 24 hours. The mixture was cooled to ambient temperature, diluted with water (100 ml), washed with ether (2×50 ml) and acidified to pH 2 with 2M HCl and extracted with ethyl acetate (3×50 ml). The combined extracts were washed with water (2×50 ml) and brine (50 ml), dried (MgSO4) and evaporated to give 4-(6-bromonaphth-2-ylthio)-2-trifluoromethylbenzoic acid as a solid (576 mg); [0520]
  • Mass Spectrum m\z 425 m−H. [0521]
  • The acid from (ii) above (1 g) was suspended in glacial acetic acid (20 ml). Sodium perborate (1.43 g) was added and the mixture stirred at ambient temperature for 24 hours. After cooling to ambient temperature, water (100 ml) was added and the product extracted with ethyl acetate (2×50 ml). The combined extracts were washed with water (3×20 ml) and brine (20 ml), dried (MgSO4) and evaporated to give 4-(6-bromonaphth-2-ylsulphonyl-2-trifluoromethylbenzoic acid (1.0 g); [0522]
  • NMR Spectrum 7.8 (dd, 1H); 7.9-8.1 (m, 2H); 8.1-8.2 (m, 2H); 8.3-8.4 (m, 3H); 8.55 (s, 1H); [0523]
  • Mass Spectrum m/z 457 m−H. [0524]
  • EXAMPLE 32
  • To the acid from part (ii) of Example 31 (519 mg) in dimethylformamide (10 ml) was added carbonyl diimidazole (196 mg). After stirring at ambient temperature for 30 minutes N-(4-pyridyl)piperazine (198 mg) was added and stirring continued for 24 hours. The reaction mixture was diluted with ethyl acetate (100 ml), washed with water (2×50 ml) and brine (25 ml), dried (MgSO4) and evaporated to give an oil which was further purified by chromatography on silica gel (Mega Bond Elut column, eluted with dichloromethane containing increasing proportions of methanol, 0-4%) to give 1-[4-(6-bromonaphth-2-ylthio)-2-trifluoromethylbenzoyl]-4-(4-pyridyl)piperazine (128 mg); [0525]
  • NMR Spectrum 3.2 (m, 4H); 3.4 (m, 4H); 3.7 (m, 2H); 6.8 (md, 2H); 7.4-7.8 (m, 5H); 7.95 (d, 1H); 8.0 (d, 1H); 8.1-8.2 (m, 3H); 8.3 (s, 1H); [0526]
  • Mass Spectrum m\z 572 m+H; [0527]
  • Elemental Analysis Found C: 56.7; H: 3.9; N: 7.2; C27H21BrF3N30S Requires C: 56.7; H: 3.7; N: 7.3 [0528]
  • EXAMPLE 33
  • 4-(6-Bromonaphth-2-ylthio)-2-carboxybenzoic acid (200 mg) was suspended in acetic anhydride (5 ml) and heated to 120° C. for 1 hour. The precipitate of the anhydride that was obtained on cooling was recovered by filtration, washed with hexane and suspended in dimethylformamide (2 ml). N-(4-Pyridyl)piperazine (76 mg) was added and the mixture stirred at ambient temperature for 3 hours. Ether (20 ml) was added with vigourous stirring and the resulting white solid precipitate was recovered by filtration, washed with ether and dried in vacuo to give 1-[4-(6-bromonaphth-2-ylthio)-2-carboxybenzoyl]-4-(4-pyridyl)piperazine and 1-[5-(6-bromonaphth-2-ylthio)-2-carboxybenzoyl]-4-(4-pyridyl)piperazine (80 mg) as a mixture of two isomers; [0529]
  • NMR Spectrum 3.1-4.0 (m, 16H); 6.7-6.9 (m, 4H); 7.1 (s, 1H); 7.25 (d, 1H); 7.3 (d, 1H); 7.4-7.6 (m, 3H); 7.7 (d, 2H); 7.75 (s, 1H); 7.8-8.0 (m, 6H); 8.05-8.2 (m, 5H); 8.3 (s, 2H); [0530]
  • Mass Spectrum m\z 548 m+H. [0531]
  • EXAMPLE 34
  • 5-(6-Bromonaphth-2-ylsulphonyl)-2-methoxycarbonylbenzoic acid (97 mg) was dissolved in dichloromethane (1 ml.). Oxalyl chloride (126 mg) was added and the mixture stirred at ambient temperature for 1 hour. The mixture was evaporated to give a solid which was redissolved in dichloromethane (1 ml) and added to a solution-of N-(4-pyridyl)piperazine (34 mg) and triethylamine.(108 mg)-in dichloromethane (2 ml). After stirring for 2 hours at ambient temperature the mixture was diluted with ethyl acetate (100 ml), washed with water (2×25 ml), dried (MgSO[0532] 4) and evaporated to give an oil, which was further purified by chromatography (Mega Bond Elut column, eluted with dichloromethane containing an increasing proportion of methanol, 0-5%) to give 1-[5-(6-bromonaphth-2-ylsulphonyl)-2-methoxycarbonylbenzoyl]-4-(4-pyridyl)piperazine (55 mg); —
  • NMR Spectrum 3.1-3.2 (m, 4H); 3.4-3.5 (m, 2H); 3.7-3.75 (m, 2H); 3.8 (s, 3H); 6.8 (d, 2H); 7.8 (dd, 1H); 8.0 (dd, 1H); 8.05 (s, 1H); 8.1-8.2 (m, 6H); 8.4 (s, 1H); 8.8 (s, 1H); [0533]
  • Mass Spectrum m\z 594 m+H; [0534]
  • Elemental Analysis Found C: 55.7; H: 4.3; N: 6.8; C228H24BrN3O5S. 0.5H2O Requires C: 55.7; H: 4.18; N: 6.96. [0535]
  • The benzoic acid used as starting material was prepared as follows. [0536]
  • 5-(6-Bromonaphth-2-ylsulphonyl)phthalic anhydride [Example 18] (208 mg) was suspended in methanol (10 ml) and heated to reflux for 2 hours. The reaction mixture was evaporated and dried under vacuum to give a mixture of two isomeric esters 4-(6-bromonaphth-2-ylsulphonyl)-2-methoxycarbonylbenzoic acid and 5-(6-bromonaphth-2-ylsulphonyl-2-methoxycarbonylbenzoic acid (210 mg). Flash column chromatography on silica gel, eluting with a mixture of ethyl acetate/methanol/acetic acid 94/5/1, gave a sample of the single isomer used above (97 mg); [0537]
  • NMR Spectrum 3.8 (s, 3H), 7.8-7.9 (m, 2H); 8.0 (dd, 1H); 8.15 (d, 1H); 8.2 (d, 1H); 8.3 (dd, 1H); 8.35 (s, 1H); 8.4 (s, 1H); 8.8 (s, 1H); [0538]
  • Mass Spectrum m\z 449 m+H. [0539]
  • EXAMPLE 35
  • A mixture of the two isomeric esters, from the part of Example 34 relating to the preparation of starting material, (449 mg) was dissolved in dichloromethane (10 ml). Oxalyl chloride (0.4 ml) was added and the mixture stirred at ambient temperature for 1 hour. The mixture was evaporated to give a solid which was redissolved in dichloromethane (5 ml.) and added dropwise to a solution of N-(4-pyridyl)piperazine (163 mg) and triethylamine (504 mg) in dichloromethane (10 ml). After stirring for 24 hours at ambient temperature the mixture was diluted with ethyl acetate (100 ml), washed with water (3×25 ml) and brine (25 ml), dried (MgSO4) and evaporated to give a solid, which was further purified by chromatography (Mega Bond Elut column, eluted with dichloromethane containing an increasing proportion of methanol, 0-5%) to give a mixture of 1-[4-(6-bromonaphth-2-ylsulphonyl)-2-methoxycarbonylbenzoyl]-4-(4-pyridyl)piperazine and 1-[5-(6-bromonaphth-2-ylsulphonyl)-2-methoxycarbonylbenzoyl]-4-(4-pyridyl)piperazine (461 mg); [0540]
  • NMR Spectrum CDCl[0541] 3 300 MHz 3.2-349 (m, 8H); 3.4-3.6 (m, 4H); 3.8-4.0 (m, 1 OH); 6.6-6.7 (m, 2H); 6.6-6.7 (m, 2H); 7.45 (d, 1H); 7.7-7.45 (m, 2H); 7.8-8.0 (m, 7H); 8.05-8.2 (m, 5H); 8.3-8.4 (m, 4H); 8.5-8.6 (m, 2H); 8.7 (s, 1H);
  • Mass Spectrum m\z 594 m+H; [0542]
  • Elemental Analysis Found C: 52.9; H: 4.1; N: 6.8; C28H24BrN3O5S. 0.5CH2Cl2 Requires C: 52.7; H: 3.9; N: 6.4. [0543]
  • EXAMPLE 36
  • To the isomeric mixture of acids produced in Example 18 (578 mg) was added, dimethylformamide (10 ml), hydroxybenztriazole (162 mg), 2-(ethylthio)ethylamine (210 mg) and EDAC (382 mg). The mixture was stirred at ambient temperature for 18 hours, diluted with ethyl acetate (100 ml), washed with water (3×25 ml) and brine (25 ml), dried and evaporated. The residue was purified by chromatography (Mega Bond Elut column, eluted with dichloromethane containing an increasing proportion of methanol, 0-5%) to give as a mixture (420 mg) of isomers, 1-[4-(6-bromonaphth-2-ylsulphonyl)-2-(2-(ethylthio)-ethylaminocarbonyl)benzoyl]-4-(4-pyridyl)piperazine and 1-[5-(6-bromonaphth-2-ylsulphonyl)-2-(2-ethylthio)ethylaminocarbonyl)benzoyl]-4-(4-pyridyl)piperazine; [0544]
  • NMR Spectrum 1.1-1.2 (m, 3H); 2.5-2.6 (m, 4H); 3.1-3.5 (m, 8H); 3.6-3.75 (m, 2H); 6.7-6.8 (m, 2H); 7.6-8.4 (m, 9H); 8.7-9.0 (m, 2H); [0545]
  • Mass Spectrum m\z 667 m+H; [0546]
  • Elemental Analysis Found C: 54.0; H: 4.6; N: 8.1; C31H31BrN4O4S2. H2O Requires C: 54.3; H: 4.8; N: 8.2. [0547]
  • A sample of the mixed isomers (100 mg.) was separated by HPLC, C 18 ODS column eluted with an acetonitrile/water mixture, to give the 5-naphthylsulphonyl isomer (29 mg). [0548]
  • NMR Spectrum 500 MHz CH3CN/D2O 1.08 (t, 3H); 2.4-2.5 (m, 2H); 2.6-2.7 (m, 2H); 3.25-3.3 (m, 2H); 3.35-3.4 (m, 2H); 3.45-3.5 (m, 2H); 3.7-3.72 (m, 4H); 6.8-6.9 (m, 2H); 7.72 (dd, 1, H); 7.78 (d, 1H); 7.85 (dd, 1H); 7.91 (s, 1H); 7.95-8.0 (m, 4H); 8.07 (d, 1H); 8.18 (s, 1H); 8.6 (s, 1H); [0549]
  • Mass Spectrum m\z 667 m+H. [0550]
  • EXAMPLE 37
  • A solution of the isomeric mixture of acids produced in Example 18 (prepared in situ, 30 from the phthalic anhydride (208 mg) and N-(4-pyridyl)piperazine (81.5 mg)) in dimethylformamide (5 ml.) was treated with carbonyl diimidazole (97.0 mg) and stirred at ambient temperature for 30 minutes. Piperidine (63 mg) was then added. The mixture was stirred at ambient temperature for 18 hours, diluted with ethyl acetate (100 ml), washed with water (3×20 ml) and brine (20 ml), dried and evaporated. The residue was purified by chromatography (Mega Bond Elut column, eluted with dichloromethane containing an increasing proportion of methanol, 0-5%) to give as a mixture (210 mg) of isomers, 1-[4-(6-bromonaphth-2-ylsulphonyl)-2-(piperidin-1-ylcarbonyl]-4-(4-pyridyl)piperazine and 1-[5-(6-bromonaphth-2-ylsulphonyl)-2-(piperidin-1-ylcarbonyl]-4-(4-pyridyl)piperazine (210 mg); [0551]
  • NMR Spectrum 1.3-1.6 (m, 6H); 3.0-3.6 (m, 12H); 6.7 (d, 2H); 7.6-7.7 (m1H); 7.8 (dd, 1H); 8.0-8.2 (m, 7H); 8.4 (s, 1H); 8.8 (s, 1H); [0552]
  • Mass Spectrum m\z 647 m+H [0553]
  • Elemental Analysis Found C: 58.3; H: 5.0; N: 8.8; C[0554] 32H31BrN4O4S. 0.5H2O Requires C: 58.5; H: 4.9; N: 8.5.
  • EXAMPLE 38
  • 4-(Chlorosulphonyl)benzoic acid (0.75 g) was added to a solution of 1-(3-chlorophenyl)piperazine dihydrochloride (0.90 g) in triethylamine (2.4 ml) and dichloromethane (50 ml). The reaction mixture was stirred overnight at room temperature then concentrated in vacuo. The resulting solid was suspended in N,N-dimethylformamide (50 ml) and carbonyl diimidazole (0.55 g) was added. The reaction mixture was stirred for one hour at room temperature then 1-(4-pyridyl)piperazine (0.55 g, 3.4 mmol) was added. The reaction mixture was stirred for three hours, then concentrated in vacuo. The resulting solid was separated between ethyl acetate (100 ml) and water (100 ml). The ethyl acetate layer was washed with aqueous saturated sodium bicarbonate solution (100 ml) then dried over magnesium sulphate, filtered and concentrated in vacuo. The resulting yellow oil was subjected to chromatography (SiO[0555] 2: 10%-12% MeOH/EtOAc) to yield 1-[4-(4-(3-chlorophenyl)piperazin-1-ylsulphonyl)benzoyl]-4-(4-pyridyl)piperazine as a white solid (300.1 mg);
  • NMR Spectrum 3.08 (m, 4H), 3.42 (m, 10H) 3.75 ppm (s, 2H, 6.81 (m, 3H, 6.8 (dd, 1H chlorophenyl 4-H), 6.94 (t, 1H) 7.21 (t, 1H, 7.72 & 7.86 (dd, 4H, phenyl 8.18 (d, 2H); [0556]
  • Mass Spectrum 528 (M+H)[0557] +;
  • Elemental Analysis Found Carbon 57.8%, hydrogen 5.5%, nitrogen 12.3% (Calc. for C[0558] 26H28ClN5O3S.0.2EtOAc.0.8H2O Carbon 57.7%, hydrogen 5.63%, nitrogen 12.5%).
  • EXAMPLE 39
  • 4-(-Chlorosulphonyl)benzoic acid (733.0 mg) was added to a solution of 6-chloro-1,2,3,4-tetrohydroisoquinoline (558.1 mg) in triethylamine (0.46 ml) and tetrahydrofuran (20 ml). The reaction mixture was stirred for two days at room temperature then concentrated in vacuo to yield 4-[6-chloro-1,2,3,4-tetrahydroisoquinolin-2-ylsulphonyl]benzoic acid as an off white solid. This was suspended in dichloromethane (30 ml) and carbonyl diimidazole (539 mg) was added. The reaction mixture was stirred for one hour at room temperature then 1-(4-pyridyl)piperazine (541 mg) was added. The reaction mixture was stirred overnight, then concentrated in vacuo. The resulting solid was separated between ethyl acetate (50 ml) and water (2×100 ml). The ethyl acetate layer was dried over magnesium sulphate, filtered and concentrated in vacuo. The resulting solid was subjected to chromatography (SiO[0559] 2: 1-5% Methanol/ethyl acetate) to yield 1-[4-(6-chloro-1,2,3,4-tetrahydroisoquinolin-2-ylsulphonylbenzoyl]4-(4-pyridyl)piperazine a white solid (984.7 mg);
  • NMR Spectrum (CDCl[0560] 3, 300 MHz) 2.66 (t, 2H), 3.22 to 3.58 (s, 6H), 3.41 (t, 2H), 3.93 (s, 2H) 4.28 (s, 2H), 6.68 (m. 2H, 6.98 (d, 1H), 7.09 (s, 1H), (dd, 1H, quinoline 6-H), 7.58 and 7.90 (dd, 4H, phenyl Ar H's), 8.33 (d, 2H, pyridyl 2-H & 6-H);
  • Mass Spectrum 497 (M+H)[0561] +;
  • Elemental Analysis Found Carbon 58.1%, hydrogen 4.8%, nitrogen 10.6% (Calc. for C[0562] 25H25ClN4O3S.0.25CH2Cl2 Carbon 58.5%, hydrogen 4.96%, nitrogen 10.8%).
  • The 6-Chloro-1,2,3,4-tetrahydroisoquinoline may be prepared as follows: [0563]
  • i) 2-(m-Chlorophenyl)ethylamine (21.92 g) was dissolved in pyridine (250 ml) and cooled to 250° C. Tosyl chloride (40.28 g) was added portionwise as a solid over one hour keeping the temperature below 5° C. The reaction mixture was stirred for two hours at room temperature then concentrated in vacuo. The resulting oil was dissolved in dichloromethane (500 ml) and washed twice with 2N aqueous hydrochloric acid (2×400 ml). The dichloromethane layer was dried over magnesium sulphate, filtered and concentrated in vacuo. The resulting oil was subjected to chromatography (SiO[0564] 2: 100% CH2Cl2) to yield the toluenesulphonyl derivative of the amine as a white solid (7.59 g);
  • NMR Spectrum (CDCl[0565] 3) 2.42 (s, 3H), 2.73 (t, 2H, 3.21 (q, 2H), 4.38 (t, 1H), 6.98 (t, 1H), 7.01 (s, 1H), 7.20 (d, 2H, 4-H and 6-H), 7.30 and 7.69 (dd, 4H);
  • Mass Spectrum 310 (M+H)[0566] +;
  • Elemental Analysis Found Carbon 57.4%, hydrogen 5.29%, nitrogen 4.40% (Calc. for C[0567] 15H16ClNO20.25H2O Carbon 57.3%, hydrogen 5.20%, nitrogen 4.46%).
  • ii) To a solution of the tosylated amine from i) above (5.0 g) in chloroform (50 ml) was added formaldehyde 37 wt. % solution in water (2.62 ml) followed by phosphoryl trichloride (40 ml). The reaction mixture was stirred under reflux for three hours. The reaction mixture was cooled to room temperature then poured into a stirred mixture of dichlorometharie (150 ml) and aqueous saturated sodium bicarbonate solution (150 ml). Solid sodium bicarbonate was added portionwise with caution until the aqueous layer became basic. The dichloromethane layer was separated, washed with water (200 ml) then dried over magnesium sulphate, filtered and concentrated in-vacuo. The crude product was subjected to chromatography (SiO[0568] 2: 10-15% Ethyl acetate/iso-hexane) to yield 4-(6-chloro-1,2,3,4-tetrahydroisoquinolin-2-ylsulphonyl)toluene as a white crystalline solid which was recrystallised from ethyl acetate/iso-hexane (2.26 g);
  • NMR Spectrum (CDCl[0569] 3, 250 MHz) 2.38 (s, 3H), 2.89 (t, 2H), 3.31 (t, 2H), 4.17 (s, 2H), 6.95 (d, 1H), 7.06 (s, 1H), 7.12 (d, 1H), 7.31 and 7.71 (dd, 4H);
  • Mass Spectrum 322 (M+H)[0570] +;
  • Elemental Analysis Found Carbon 60.0%, hydrogen 5.00%, nitrogen 4.30% (Calc. for C[0571] 16H16ClNO2S Carbon 59.7%, hydrogen 5.01%, nitrogen 4.35%).
  • iii) Part of the product from ii) above (2.20 g, 6.8 mmol) was heated at 75° C. with phenol (2.25 g) and 45% w/w hydrobromic acid in glacial acetic acid (30 ml) for three hours. The reaction mixture was cooled to room temperature then poured onto a mixture of ice and dichloromethane. The aqueous layer was adjusted to pH 14 with 6N sodium hydroxide solution and extracted with dichloromethane (4×100 ml). The dichloromethane layers were combined then dried over magnesium sulphate, filtered and concentrated in vacuo. The crude product was subjected to chromatography (SiO[0572] 2: 1-10% methanol/dichloromethane) to yield 6-chloro-1,2,3,4-tetrahydroisoquinoline as a colourless oil (558.1 mg);
  • NMR Spectrum 2.66 (t, 2H), 2.88 (q, 2H), 3.78 (s, 2H), 6.98 to 7.13 (m, 3H, Ar H's); [0573]
  • Mass Spectrum 168 (M+H)[0574] +.
  • EXAMPLE 40
  • To a solution of 5-methoxyindole-2-carboxylic acid (168 mg, 0.88 mmol) in DMF (4 ml) was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (168 mg, 0.88 mmol), 1-hydroxybenzotriazole (118 mg, 0.88 mmol) and Et[0575] 3N (0.12 ml, 0.88 mmol) followed by 1-(4-pyridyl)-3-(5-amino-2-pyridyloxy)pyrrolidine (150 mg, 0.58 mmol) and the resulting suspension stirred at room temperature for 7 days. The mixture was poured into saturated aqueous NaHCO3 solution and the solid precipitate collected by filtration and washed with water then dried (over P2O5) to give 1-(4-pyridyl)-(5-(6-methoxyindol-2-ylcarbonylamino)pyrid-2-yloxy)pyrrolidine as an off white solid (195 mg);
  • NMR Spectrum (CDCl[0576] 3) 2.20 (m, 2H), 3.50 (m, 4H), 3.80 (s, 3H), 5.70 (m, 1H), 6.60 (m, 2H), 6.90 (m, 2H), 7.15 (s, 11H), 7.30 (m. 2H), 8.10 (m, 3H), 8.60 (s, 11H).
  • MS (ESP+): m/e 430 (M+H)[0577] +.
  • The 1-(4-pyridyl)-3-(5-amino-2-pyridyloxy)pyrrolidine starting material may be prepared as follows: [0578]
  • (a) Sodium hydride (60% dispersion in paraffin oil, 146 mg) 1.2 equivalent) was added to an oven-dried round-bottomed flask and washed under an argon atmosphere with pentane. DMF (5 ml) was then added, followed by 1-(4-pyridyl)-3-hydroxypyrrolidine (1.0 equivalent, 3.05 mmol) and tetra-n-butylammonium bromide (59 mg, 0.18 mmol). The mixture was added as a slurry to 2-bromo-5-nitropyridine (1.5 equivalent) in a second dry flask under argon, with stirring. After the reaction was complete the solvent was evaporated under vacuum. The residue was purified by chromatography on silica, eluting from 1%MeOH/1%NH[0579] 4OH/CH2Cl2 to 10%MeOH/1%NH4OH/CH2Cl2 (in 1% increments). The crude product was recrystallised from EtOAc to give 1-(4-pyridyl)-3-(5-nitro-2-pyridyloxy)pyrrolidine as a pale brown solid (460 mg);
  • NMR Spectrum (CDCl[0580] 3): 2.4 (m, 2H), 3.58 (m, 3H), 3.8 (dd, 11H), 5.85 (m, 1H), 6.4 (d, 2H), 6.82 (d, 1H), 8.22 (m, 2H), 8.38 (dd, 1H), 9.08 (s. 1H). MS (ESP+): m/e 287 (M+H)+.
  • (b) A solution of 1-(4-pyridyl)-3-(5-nitro-2-pyridyloxy)pyrrolidine (15.29 g, 53.46 mmol) in methanol (500 ml) was hydrogenated over 10% Pd/C at 5 bar for 18 h. The catalyst was removed by filtration and the solvent evaporated to give the product as a pale yellow solid (12.68 g). [0581]
  • NMR Spectrum (CDCl[0582] 3): 2.30 (m, 2H), 3.40 (m, 5H), 3.70 (dd, 1H), 5.60 (m, 1H), 6.40 (d, 2H), 6.60 (d, 1H), 7.00 (m, 1H), 7.60 (s, 1H), 8.10 (d, 2H). MS (ESP+): m/e 257 (M+H)+.
  • EXAMPLE 41
  • A mixture of 1-(2-methylpyrid-4-yl)piperazine dihydrochloride (145 mg), triethylamine (0.16 ml), N-hydroxysuccinimide ester from part (iv) of Example 26 (244 mg) and DMF (10 ml) was stirred for 16 hours. The solvent was evaporated and the residue dissolved in methylene chloride and washed with water. The aqueous washings were extracted with further methylene chloride and the combined organic extracts dried (MgSO[0583] 4) and evaporated. The residue was further purified by column chromatography using a 9:1 mixture of methylene chloride and methanol as eluant and the resulting solid triturated under diethyl ether. There was thus obtained 1-[4-(6-bromonaphth-2-ylsulphonyl)-benzoyl]-4-(2-methylpyrid-4-yl)piperazine (115 mg);
  • NMR Spectrum (DMSO-d[0584] 6+D2O) 2.28 (s, 3H), 3.20-3.48 (m, 6H), 3.66 (bs, 2H), 6.61 (d, 1H), 6.67 (s, 1H), 7.63 (d, 2H), 7.80 (d, 1H), 7.97 (t, 2H), 8.06-8.17 (m, 4H), 8.32 (s, 1H), 8.72 (s, 1H);
  • Mass Spectrum m/z 550/552 (M+H); [0585]
  • Elemental Analysis Found C, 57.7; H 4.2; N, 7.7, S, 5.8; C[0586] 27H24BrN3O3S 0.5H2O requires: C, 58.0; H, 4.5; N, 7.5, S, 5.7%.
  • EXAMPLE 42
  • The ester from Example 26 (iv) above (488 mg) was treated with 1-(4-pyridyl) hexahydro-1,4-diazepine (195 mg) in dimethylformamide (10 ml) and stirred at ambient temperature for 18 hours. After removal of the solvent in vacuo and addition of ethyl acetate (30 ml), washing with saturated sodium bicarbonate solution (30 ml), water (2×30 ml) and brine (30 ml), the reaction mixture was dried (MgSO4) and evaporated to a white solid. Purification by column chromatography on silica gel, eluting with dichloromethane containing an increasing proportion of methanol (2-5%) and a small amount of conc. aqueous ammonia, followed by recrystallisation from ethyl acatate gave as a solid 1-[4-(6-bromonaphth-2-ylsulphonyl)benzoyl]-4-(4-pyridyl)hexahydro-1,4-diazepine (290 mg). [0587]
  • NMR Spectrum (CDCl[0588] 3) 2.0-2.2 (m, 2H); 3.3 (m, 1H); 3.4-3.5 (m, 1H); 3.6-3.8 (bm, 5H); 4.0 (m, 1H); 6.7 (d, 2H); 7.05 (m, 1H); 7.4 (dd, 1H); 7.7 (m, 1H); 7.9 (m, 3H); 8.0 (m, 2H); 8.1 (m, 1H); 8.15-8.5 (m, 2H); 8.55 (s, 1H).
  • Mass Spectrum m/z 550/552 m+H. [0589]
  • Elemental Analysis Found C: 58.8; H: 4.6; N: 7.1; S: 5.2%. C[0590] 27H24BrN3O3S Requires C: 58.6; H: 4.7; N: 7.1; S: 5.4%.
  • The 1-(4-pyridyl)hexahydro-1,4-diazepine used as starting material may be prepared as follows: [0591]
  • A suspension of 4-chloropyridine hydrochloride (7.5 g) in 3-methyl-1-butanol (100 ml) was added dropwise to a refluxing solution of hexahydro-1,4-diazepine (10.0 g) and triethylamine (16.8 ml) in 3-methyl-1-butanol (300 ml). After addition the solution was refluxed for 18 hours. The solvent was removed in vacuo to give an oil. Purification by sinter-column chromatography on silica gel, eluting with dichloromethane containing an increasing proportion of methanol (2-5%) and a small amount of conc. aqueous ammonia, gave 1-(4-pyridyl)hexahydro-1,4-diazepine as a colourless oil which slowly crystallised on standing. [0592]
  • NMR Spectrum (CDCl[0593] 3) 1.8-2.1 (m, 2H); 2.8 (m, 2H); 3.0 (m, 2H); 3.4-3.7 (m, 5H); 6.5 (d, 2H); 8.2 (d, 2H).
  • Mass Spectrum m/z 178 m+H. [0594]
  • EXAMPLE 43
  • The following illustrate representative pharmaceutical dosage forms containing the compound of formula I, or a pharmaceutically-acceptable salt thereof (hereafter compound X), for therapeutic or prophylactic use in humans: [0595]
    (a) Tablet I mg/tablet
    Compound X 100
    Lactose Ph. Eur 182.75
    Croscarmellose sodium 12.0
    Maize starch paste (5% w/v paste) 2.25
    Magnesium stearate 3.0
  • [0596]
    (b) Tablet II mg/tablet
    Compound X 50
    Lactose Ph. Eur 223.75
    Croscarmellose sodium 6.0
    Maize starch 15.0
    Polyvinylpyrrolidone (5% w/v paste) 2.25
    Magnesium stearate 3.0
  • [0597]
    (c) Tablet III mg/tablet
    Compound X 1.0
    Lactose Ph. Eur 93.25
    Croscarmellose sodium 4.0
    Maize starch paste (5% w/v paste) 0.75
    Magnesium stearate 1.0
  • [0598]
    (d) Capsule mg/capsule
    Compound X 10
    Lactose Ph. Eur 488.5
    Magnesium stearate 1.5
  • [0599]
    (e) Injection I (5.0 mg/ml)
    Compound X 5.0% w/v
    1M Sodium hydroxide solution 15.0% v/v
    0.1M Hydrochloric acid
    (to adjust pH to 7.6)
    Polyethylene glycol 400 4.5% w/v
    Water for injection to 100%
  • [0600]
    (f) Injection II 10 mg/ml)
    Compound X 1.0% w/v
    Sodium phosphate BP 3.6% w/v
    0.1M Sodium hydroxide solution 15.0% v/v
    Water for injection to 100%
  • [0601]
    (g) Injection III (1 mg/ml, buffered to pH6)
    Compound X 0.1% w/v
    Sodium phosphate BP 2.26% w/v
    Citric acid 0.38% w/v
    Polyethylene glycol 400 3.5% w/v
    Water for injection to 100%
  • Note [0602]
  • The above formulations may be obtained by conventional procedures well known in the pharmaceutical art. The tablets (a)-(c) may be enteric coated by conventional means, for example to provide a coating of cellulose acetate phthalate. [0603]

Claims (11)

1. An aminoheterocyclic derivative of the formula I
Figure US20030207882A1-20031106-C00013
wherein G1 is CH or N;
G2 is CH or N;
m is 1 or 2;
R1 is hydrogen, halogeno, trifluoromethyl, trifluoromethoxy, cyano, amino, hydroxy, nitro, (1-4C)alkyl, (1-4C)alkoxy, (1-4C)alkylamino or di-(1-4C)alkylamino;
L1 is (1-4C)alkylene, (3-6C)cycloalkane-1,2-diyl or (1-3C)alkylene-carbonyl,
T1 is CH or N,
R2 is hydrogen or (1-4C)alkyl and R3 is hydrogen or (1-4C)alkyl, or R2 and R3 together form a (1-4C)alkylene or methylenecarbonyl group,
and wherein 1 or 2 methylene groups within L1 or the ring formed when R2 and R3 are linked optionally bear 1 or 2 substituents selected from carboxy, carbanoyl, (1-4C)alkyl, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl, N,N-di-(1-4C)alkylcarbamoyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, piperazin-1-ylcarbonyl, 4-(1-4C)alkylpiperazin-1-ylcarbonyl, hydroxy-(1-4C)alkyl, (1-4C)alkoxy-(1-4C)alkyl, carboxy-(1-4C)alkyl, (1-4C)alkoxycarbonyl-(1-4C)alkyl, carbamoyl-(1-4C)alkyl, N-(1 C)alkylcarbamoyl-(1-4C)alkyl, N,N-di-(1-4C)alkylcarbamoyl-(1-4C)alkyl, pyrrolidin-1-ylcarbonyl-(1-4C)alkyl, piperidino-(l 14C)alkyl, morpholino-(1-4C)alkyl, piperazin-1-yl-(1-4C)alkyl and 4-(1-4C)alkylpiperazin-1-yl-(1-4C)alkyl,
and wherein any heterocyclic group in said substituent optionally bears 1 or 2 (1-4C)alkyl substituents, provided that, when T1 is N, L1 is not optionally substituted methylene and R2 and R3 together do not form an optionally substituted methylene group;
X1 is a group of the formula SO, SO2, C(R4)2, CO, C(R4)2O, C(R4)2S, C(R4)2SO, C(R4)2SO2, COC(R4)2, SOC(R4)2 or SO2C(R4)2 when T1 is CH or N, or, in addition, X1 is a group of the formula O, S, OC(R4)2 or SC(R4)2 when T1 is CH, and wherein each R4 is independently hydrogen or (1-4C)alkyl;
Ar is phenylene, or a 5- or 6-membered monocyclic heteroaryl ring containing up to 3 heteroatoms selected from nitrogen, oxygen and sulphur, and wherein said phenylene or heteroaryl ring is optionally substituted with 1 or 2 substituents selected from halogeno, trifluoromethyl, trifluoromethoxy, cyano, nitro, (1-4C)alkyl, (2-4C)alkenyl and (2-4C)alkynyl, from the substituent Y1 which is selected from hydroxy, amino, (1-4C)alkoxy, (2-4C)alkenyloxy, (2-4C)alkynyloxy, (1-4C)alkylamino, di-(1-4C)alkylamino, pyrrolidin-1-yl, piperidino, morpholino, thiamorpholino, 1-oxothiamorpholino, 1,1-dioxothiamorpholino, piperazin-1-yl, 4-(1-4C)alkylpiperazin-1-yl, (1-4C)alkylthio, (1-4C)alkylsulphinyl, (1AC)alkylsulphonyl, (2-4C)alkanoylamino, benzamido, (1-4C)alkanesulphonamido and benzenesulphonamido, from the substituent Y2 which is selected from carboxy, carbamoyl, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl, N,N-di-(1-4C)alkylcarbamoyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, thiamorpholinocarbonyl, 1-oxothiamorpholinocarbonyl, 1,1-dioxothiamorpholinocarbonyl, piperazin-1-ylcarbonyl, 4-(1-4C)alkylpiperazin-1-ylcarbonyl, (1-4C)alkanesulphonamidocarbonyl, benzenesulphonamidocarbonyl and benzylsulphonamidocarbonyl,
from a substituent of the formula -L2-Y1 wherein L2 is (1-4C)alkylene and Y1 has any of the meanings defined immediately hereinbefore, from a substituent of the formula -L2-Y2 wherein L2 is (1-4C)alkylene and Y2 has any of the meanings defined immediately hereinbefore, from a substituent of the formula —X3-L2-Y2 wherein X3 is a group of the formula CON(R5), CON(L2-Y2), C(R5)2O, O, N(R5) or N(L2-Y2), L2 is (1-4C)alkylene, Y2 has any of the meanings defined immediately hereinbefore and each R5 is independently hydrogen or (1-4C)alkyl, and from a substituent of the formula —X3-L3-Y1 wherein X3 is a group of the formula CON(R5), CON(L3-Y1), C(R5)2O, O, N(R5) or N(L3-Y1), L3 is (2-4C)alkylene, Y1 has any of the meanings defined immediately hereinbefore and each R5 is independently hydrogen or (1-4C)alkyl, and wherein any heterocyclic group in said substituent optionally bears 1 or 2 substituents selected from carboxy, carbamoyl, (1-4C)alkyl, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl and N,N-di-(1-4C)alkylcarbamoyl, and wherein any phenyl group in said substituent optionally bears 1 or 2 substituents selected from halogeno, trifluoromethyl, cyano, (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (1-4C)alkoxy, (2-4C)alkenyloxy and (2-4C)alkynyloxy;
X2 is a group of the formula S, SO, SO2, C(R6)2, CO, N(R7)SO2, N(R7)CO, C(R6)2S, C(R6)2SO, C(R6)2SO2, C(R6)2—C(R6)2 or C(R6)2CO, or, in addition, X2 is a group of the formula O, SO2N(R7), CON(R7) or C(R6)2O when Q is other than phenyl-(2-4C)alkenyl or phenyl-(2-4C)alkynyl and wherein each R6 is independently hydrogen or (1-4C)alkyl and R7 is hydrogen, (1-4C)alkyl or a group of the formula —X4-Q wherein X4 is SO2 or CO and Q has any of the meanings defined immediately hereinafter; and
Q is phenyl, naphthyl, phenyl-(1-4C)alkyl, phenyl-(2-4C)alkenyl, phenyl-(2-4C)alkynyl or a heterocyclic moiety containing up to 4 heteroatoms selected from nitrogen, oxygen and sulphur, and Q optionally bears 1, 2 or 3 substituents selected from halogeno, trifluoromethyl, trifluoromethoxy, cyano, hydroxy, amino, nitro, trifluoromethanesulphonyl, carboxy, carbamoyl, (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (1-4C)alkoxy, (2-4C)alkenyloxy, (2-4C)alkynyloxy, (1-4C)alkylthio, (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl, (1-4C)alkylamino, di-(1-4C)alkylamino, (1-4C)alkoxycarbonyl, (1-4C)alkylcarbamoyl, N,N-di-(1-4C)alkylcarbamoyl, (2-4C)alkanoyl, (2-4C)alkanoylamino, hydroxy-(1-4C)alkyl, (1-4C)alkoxy-(1-4C)alkyl, carboxy-(1-4C)alkyl, (1-4C)alkoxycarbonyl-(1-4C)alkyl, carbamoyl-(1-4C)alkyl, N-(1-4C)alkylcarbamoyl-(1-4C)alkyl, N,N-di-(1-4C)alkylcarbamoyl-(1-4C)alkyl, phenyl, heteroaryl, phenoxy, phenylthio, phenylsulphinyl, phenylsulphonyl, benzyl, benzoyl, heteroaryloxy, heteroarylthio, heteroarylsulphinyl and heteroarylsulphonyl, and wherein said heteroaryl substituent or the heteroaryl group in a heteroaryl-containing substituent comprises a 5- or 6-membered monocyclic heteroaryl ring containing up to 3 heteroatoms selected from nitrogen, oxygen and sulphur, and wherein said phenyl, heteroaryl, phenoxy, phenylthio, phenylsulphinyl, phenylsulphonyl, heteroaryloxy, heteroarylthio, heteroarylsulphinyl, heteroarylsulphonyl, benzyl or benzoyl substituent optionally bears 1, 2 or 3 substituents selected from halogeno, trifluoromethyl, cyano, hydroxy, amino, nitro, carboxy, carbamoyl, (1-4C)alkyl, (1-4C)alkoxy, (1-4C)alkylamino, di-(1-4C)alkylamino, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl, N,N-di-(1-4C)alkylcarbamoyl and (2-4C)alkanoylamino;
or a pharmaceutically-acceptable salt thereof,
provided that when X1 is CO and Ar is phenylene which optionally bears 1 or 2 substituents selected from halogeno, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy then X2 is not N(R7)SO2, N(R7)CO, C(R6)2S, C(R6)2SO, C(R6)2SO2, C(R6)2—C(R6)2, C(R6)2CO or C(R6)2O.
2. A compound according to claim 1 wherein:
each of G1 and G2 is CH; or G1 is CH and G2 is N, or G1 is N and G2 is CH;
m is 1 and R1 is hydrogen;
L1 is (1-4C)alkylene, T1 is CH or N, and R1 and R3 together form a (1-4C)alkylene group, and wherein 1 or 2 methylene groups within L1 and the ring formed when R2 and R3 are linked optionally bears 1 or 2 (1-4C)alkyl substituents, provided that, when T1 is N, L1 is not optionally substituted methylene and R2 and R3 together do not form an optionally substituted methylene group;
when T1 is CH or N, X1 is a group of the formula SO2, CH2, CO, CH2O, CH2S, CH2SO2, COCH2 or SO2CH2, or, when T1 is CH, X1 is, in addition, a group of the formula O, S, OCH2 or SCH2;
Ar is 1,3-phenylene or 1,4-phenylene which is optionally substituted with 1 or 2 substituents selected from halogeno, trifluoromethyl, cyano, (1-4C)alkyl, hydroxy, amino, (1-4C)alkoxy, (1-4C)alkylamino, di-(1-4C)alkylamino, (1-4C)alkylthio, (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl, (2-4C)alkanoylamino, carboxy, carbamoyl, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl, N,N-di-(1-4C)alkylcarbamoyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, thiamorpholinocarbonyl, 1-oxothiamorpholinocarbonyl, 1,1-dioxothiamorpholinocarbonyl, piperazin-1-ylcarbonyl and 4-(1-4C)alkylpiperazin-1-ylcarbonyl; or
Ar is 1,3-phenylene or 1,4-phenylene which is optionally substituted with a substituent of the formula -L2-Y1 or of the formula, -L2-Y2 wherein L2 is (1-4C)alkylene, Y1 is selected from hydroxy, amino, (1-4C)alkoxy, (1-4C)alkylamino, di-(1-4C)alkylamino, pyrrolidin-1-yl, piperidino, morpholino, piperazin-1-yl, 4-(1-4C)alkylpiperazin-1-yl, (1-4C)alkylthio, (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl and (2-4C)alkanoylamino, and Y2 is selected from carboxy, carbamoyl, (1-4C)alkoxycarbonyl, L-(1-4C)alkylcarbamoyl, N,N-di-(1-4C)alkylcarbamoyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, piperazin-1-ylcarbonyl and 4-(1-4C)alkylpiperazin-1-ylcarbonyl; or
Ar is 1,3-phenylene or 1,4-phenylene which is optionally substituted with a substituent of the formula —X3-L2-Y2 wherein X3 is a group of the formula CONH, CON(Me), CH2O or O, L2 is methylene, ethylene or trimethylene and Y2 is selected from carboxy, carbamoyl, (1-4C)alkoxycarbonyl, N-(1-4C)alkylcarbamoyl, N,N-di-(1-4C)alkylcarbamoyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, piperazin-1-ylcarbonyl and 4-(1-4C)alkylpiperazin-1-yl; or
Ar is 1,3-phenylene or 1,4-phenylene which is optionally substituted with a substituent of the formula —X3-L3-Y1 wherein X3 is a group of the formula CONH, CH2O, O or NH, L3 is ethylene or trimethylene and Y1 is hydroxy, amino, (1-4C)alkoxy, (1-4C)alkylamino, di-(1-4C)alkylamino, pyrrolidin-1-yl, piperidino, morpholino, piperazin-1-yl, 4-(1-4C)alkylpiperazin-1-yl, (1-4C)alkylthio, (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl and (2-4C)alkanoylamino;
X2 is a group of the formula SO2, CH2, CO, NHSO2, N(R7)SO2, NHCO, N(R7)CO, CH2SO2, CH2CH2 or CH2CO wherein R7 is (1-4C)alkyl or a group of the formula —X4-Q wherein X4 is SO2 and Q has any of the meanings defined hereinafter in this section of particular compounds of the invention; or X2 is a group of the formula S;
Q is phenyl, naphthyl or phenyl-(1-4C)alkyl which optionally bears 1, 2 or 3 substituents selected from hydroxy, halogeno, cyano, trifluoromethyl, (1-4C)alkyl, (1-4C)alkoxy, phenyl, phenoxy, phenylthio, phenylsulphinyl, phenylsulphonyl, benzyl and benzoyl, and wherein the phenyl substituent or the phenyl group in a phenyl-containing substituent optionally bears 1 or 2 substituents selected from halogeno, (1A-4C)alkyl and (1-4C)alkoxy; or
Q is phenyl-(2-4C)alkenyl or phenyl-(2-4C)alkynyl which optionally bears 1, 2 or 3 substituents selected from halogeno, cyano, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy; or
Q is phenyl or phenyl-(1-4C)alkyl which bears 1 substituent selected from heteroaryl, heteroaryloxy, heteroarylthio, heteroarylsulphinyl and heteroarylsulphonyl, wherein the heteroaryl substituent or the heteroaryl group in a heteroaryl-containing substituent comprises a 5- or 6-membered monocyclic heteroaryl ring containing up to 3 heteroatoms selected from nitrogen, oxygen and sulphur, and wherein said heteroaryl or heteroaryl-containing substituent optionally bears 1 or 2 substituents selected from halogeno, (1-4C)alkyl and (1-4C)alkoxy; or
Q is a heterocyclic moiety containing up to 2 heteroatoms selected from benzofuranyl, quinolyl, tetrahydroquinolyl, isoquinolyl, quinoxalinyl, quinazolinyl, cinnolinyl, indolyl, benzimidazolyl, indazolyl, benzoxazolyl, benzothiazolyl, dibenzofuranyl and dibenzothienyl, and Q optionally bears 1 or 2 substituents selected from halogeno, cyano, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy; or
Q is a heterocyclic moiety containing up to 4 heteroatoms selected from furyl, thienyl, pyridyl, pyrimidinyl, pyrrolyl, pyrrolidinyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, oxadiazolyl, thiadiazolyl and tetrazolyl, and Q optionally bears 1 or 2 substituents selected from halogeno, cyano, carboxy, carbamoyl, (1-4C)alkoxycarbonyl, (1-4C)alkyl, (1-4C)alkoxy, N-(1-4C)alkylcarbamoyl and N,N-di-(1-4C)alkylcarbamoyl; or
Q is a heterocyclic moiety containing up to 2 heteroatoms selected from thienyl, pyridyl, pyrimidinyl, imidazolyl, pyrazolyl, oxazolyl and thiazolyl, and Q optionally bears 1 or 2 substituents selected from phenyl, heteroaryl, phenoxy, phenylthio, phenylsulphinyl, phenylsulphonyl, heteroaryloxy, heteroarylthio, heteroarylsulphinyl, heteroarylsulphonyl, benzyl and benzoyl, wherein the heteroaryl substituent or the heteroaryl group in a heteroaryl-containing substituent is selected from thienyl, pyridyl, pyrimidinyl, pyrazolyl, oxazolyl and thiazolyl, and wherein said phenyl, phenyl-containing, heteroaryl or heteroaryl-containing substituent optionally bears 1 or 2 substituents selected from halogeno, (I 4C)alkyl and (1-4C)alkoxy;
or a pharmaceutically-acceptable salt thereof;
provided that when X1 is CO and Ar is phenylene which optionally bears 1 or 2 substituents selected from halogeno, trifluoromethyl, (1-4C)alkyl and (1-4C)alkoxy then X2 is not N(R7)SO2, N(R7)CO, C(R6)2S, C(R6)2SO, C(R6)2SO2, C(R6)2—C(R6)2, C(R6)2CO or C(R6)2O.
3. A compound according to claim 1 or 2 wherein each of G1 and G2 is CH, G1 is CH and G2 is N, or G1 is N and G2 is CH;
m is 1 and R1 is hydrogen;
L1 is ethylene, T1 is CH or N, and R2 and R3 are independently hydrogen or together form an ethylene group;
when T1 is CH or N. X1 is a group of the formula CH2, CO, CH2O or SO2, or, when T, is CH, X1 is, in addition, a group of the formula O;
Ar is 1,2-phenylene, 1,3-phenylene or 1,4-phenylene which is optionally substituted with 1 or 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, cyano, methyl, hydroxy, amino, methoxy, methylamino, dimethylamino, methylthio, methylsulphinyl, methylsulphonyl, acetamido, carboxy, carbamoyl, methoxycarbonyl, ethoxycarbonyl, N-methylcarbamoyl, N,N-dimethylcarbamoyl, 2-(ethylthio)ethylaminocarbonyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, piperazin-1-ylcarbonyl and 4-methylpiperazin-1-ylcarbonyl;
X2 is a group of the formula S, SO2, CONH, NHSO2 or N(R7)SO2 wherein R7 is methyl or a group of the formula —SO2Q wherein Q has any of the meanings defined immediately hereinafter; and Q is phenyl, styryl, 1,4-tetrahydroisoquinolinyl, 4-biphenylyl or 2-naphthyl which optionally bears 1 or 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, 4-chlorophenoxy, methyl and methoxy;
or a pharmaceutically-acceptable salt thereof;
provided that when X1 is CO and Ar is 1,2-, 1,3- or 1,4-phenylene which optionally bears 1 or 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, methyl and methoxy then X2 is not NHSO2 or N(R7)SO2 wherein R7 is methyl or a group of the formula —SO2-Q wherein Q has any of the meanings defined immediately hereinbefore.
4. A compound according to any one of claims 1 to 3 wherein each of G1 and G2 is CH, G1 is CH and G2 is N, or G1 is N and G2 is CH;
m is 1 and R1 is hydrogen;
L1 is ethylene, T1 is CH or N, and R2 and R3 together form an ethylene group;
when T1 is CH or N, X1 is a group of the formula CH2, CO or CH2O, or, when T1 is CH, X1 is, in addition, a group of the formula O;
Ar is 1,3-phenylene or 1,4-phenylene which is optionally substituted with 1 or 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, cyano, methyl, hydroxy, amino, methoxy, methylamino, dimethylamino, methylthio, methylsulphinyl, methylsulphonyl, acetamido, carboxy, carbamoyl, methoxycarbonyl, ethoxycarbonyl, N-methylcarbamoyl, N,-dimethylcarbamoyl, pyrrolidin-1-ylcarbonyl, piperidinocarbonyl, morpholinocarbonyl, piperazin-1-ylcarbonyl and 4-methylpiperazin-1-ylcarbonyl;
X2 is a group of the formula SO2, NHSO2 or N(R7)SO2 wherein R7 is methyl or a group of the formula —SO2Q wherein Q has any of the meanings defined immediately hereinafter; and
Q is phenyl, styryl, 4-biphenylyl or 2-naphthyl which optionally bears 1 or 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, methyl and methoxy;
or a pharmaceutically-acceptable salt thereof;
provided that when X1 is CO and Ar is 1,3- or 1,4-phenylene which optionally bears 1 or 2 substituents selected from fluoro, chloro, bromo, trifluoromethyl, methyl and methoxy then X2 is not NHSO2 or N(R7)SO2 wherein R7 is methyl or a group of the formula —SO2-Q wherein Q has any of the meanings defined immediately hereinbefore.
5. A compound according to any one of claims 1 to 4 wherein each of G1 and G2 is CH, G1 is CH; and G2 is N, or G1 is N and G2 is CH;
m is 1 and R1 is hydrogen;
L1 is ethylene, T1 is N, and R2 and R3 together form an ethylene group;
X1 is a group of the formula CO;
Ar is 1,4-phenylene, 2-carboxy-1,4-phenylene or 2-piperidinocarbonyl-1,4-phenylene (with the X1 group in the 1-position and the X2 group in the 4-position);
X2 is a group of the formula SO2; and Q is 2-naphthyl, styryl or 4-biphenylyl which optionally bears 1 or 2 substituents selected from fluoro, chloro and bromo;
or a pharmaceutically-acceptable salt thereof.
6. A compound according to any one of claims 1 to 5.
wherein each of G1 and G2 is CH;
m is 1 and R1 is hydrogen;
L1 is ethylene. T1 is N, and R2 and R3 together form an ethylene group;
X1 is a group of the formula CO;
Ar is 1,4-phenylene, 2-carboxy-1,4-phenylene or 2-piperidinocarbonyl-1,4-phenylene (with the X1 group in the 1-position and the X2 group in the 4-position);
X2 is a group of the formula SO2; and Q is 2-naphthyl, styryl or 4-biphenylyl which optionally bears 1 or 2 substituents selected from fluoro, chloro and bromo;
or a pharmaceutically-acceptable salt thereof.
7. A compound according to any one of claims, 1 to 6 which is:
1-[4-(6-chloronaphth-2-ylsulphonyl)benzoyl]-4-(4-pyridyl)piperazine,
1-[4-(6-bromonaphth-2-ylsulphonyl)benzoyl]-4-(4-pyridyl)piperazine,
1-[4-(2-naphthylsulphonyl)benzoyl]-4-(4-pyridyl)piperazine,
1-{4-[(E)-4-chlorostyrylsulphonyl]benzoyl}-4-(4-pyridyl)piperazine,
1-[4-(4′-bromo-4-biphenylylsulphonyl)benzoyl]-4-(4-pyridyl)piperazine,
1-[4-(4′-chloro-4-biphenylylsulphonyl)benzoyl]-4-(4-pyridyl)piperazine,
1-[4-(4-biphenylylsulphonyl)benzoyl]-4-(4-pyridyl)piperazine,
5-(6-chloronaphth-2-ylsulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoic acid,
5-(2-naphthylsulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoic acid,
5-(4′-bromo-4-biphenylylsulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoic acid,
5-[(E)-4-chlorostyrylsulphonyl]-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoic acid,
1-{5-(6-bromonaphth-2-ylsulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoyl}-piperidine,
1-{5-(6-chloronaphth-2-ylsulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoyl}-piperidine,
1-{5-(4′-bromo-4-biphenylylsulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoyl}-piperidine,
1-{5-[(E)-4-chlorostyrylsulphonyl]-2-[4-(4-pyridyl)piperazin-ylcarbonyl]benzoyl}piperidine,
4′-bromo-N-{4-[1-(4-pyridyl)piperidin;-4-yloxy]phenyl}4-biphenylylsulphonamide,
4-chloro-N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-(E)-styrylsulphonamide,
6-bromo-N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-2-naphthalenesulphonamide,
N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-4-toluenesulphonamide,
N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-N-(4-tolylsulphonyl)-4-toluenesulphonamide,
4-chloro-N-methyl-N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-(E)-styrylsulphonamide,
4′-bromo-N-methyl-N-{4-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-4-biphenylylsulphonamide,
4′-bromo-N-(4-[1-(4-pyridyl)piperidin-4-ylmethoxy]phenyl)}4-biphenylylsulphonamide,
6-bromo-N-{4-[1-(4-pyridyl)piperidin-4-ylmethoxy]-phenyl}-2-naphthalenesulphonamide,
4-chloro-N-{4-[1-(4-pyridyl)piperidin-4-ylmethoxy]phenyl}-(E)-styrylsulphonamide,
4′-bromo-N-(4′-bromo-4-biphenylylsulphonyl)-N-{4-[1-(4-pyridyl)piperidin-4-ylmethoxy]phenyl}4-biphenylylsulphonamide,
6-bromo-N-(6-bromonaphth-2-ylsulphonyl)-N-{4-[1-(4-pyridyl)piperidin-4-ylmethoxy]phenyl}-2-naphthalenesulphonamide,
6-bromo-N-{3-[1-(4-pyridyl)piperidin-4-yloxy]phenyl}-2-naphthalenesulphonamide,
4-[4-chlorophenylsulphonyl)phenoxy]-1-(4-(pyridyl)piperidine,
5-(6-bromonaphth-2-ylsulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoic acid,
4-(6-bromonaphth-2-ylsulphonyl)-2-[4-(4-pyridyl)piperazin-1-ylcarbonyl]benzoic acid,
1-[4-(4-(4-chlorophenoxy)phenylaminocarbonyl)benzyl]-4-(4-pyridyl)piperazine,
6-bromo-N-{2-[1-(4-pyridyl)piperidin-4-ylmethoxy]phenyl}-2-naphthalenesulphonamide,
4-chloro-N-{3-[1-(4-pyridyl)piperidin-4yloxy]phenyl}-(E)-styrylsulphonamide,
4-[4-(6-bromonaphth-2-ylsulphonyl)phenoxy]-1-(4-pyridyl)piperidine,
4-[4-(6-bromonaphth-2-ylsulphonyl)bcnzoyl]-1-(4-pyridyl)piperidine,
4-[4-(6-bromonaphth-2-ylthio)benzoyl]-1-(4-pyridyl)piperidine,
1-[4-(6-bromonaphth-2-ylsulphonyl)phenylsulphonyl]-1-(4-pyridyl)piperazine,
6-(bromo-2-(4-(2-pyrimidin-4-yl)aminoethylaminocarbonyl)phenylsulphonyl)naphthalene,
1-[4-(6-bromonaphth-2-ylthio)benzoyl]-4-(4-pyridyl)piperazine,
1-[4-(6-bromonaphth-2-ylsulphonyl)benzoyl]-4-(4-pyridyl)piperazine,
1-[4-(6-bromonaphth-2-ylsulphonyl)benzoyl]-4-(4-pyrimidinyl)-piperazine,
1-[4-(6-bromonaphth-2-ylsulphonyl)benzoyl]-4-(4-pyridazinyl)piperazine,
1-[4-(6-bromonaphth-2-ylsulphonyl-2-trifluoromethylbenzoyl]-4-(4-pyridyl)piperazine,
1-[4-(6-bromonaphth-2-ylthio)-2-trifluoromethylbenzoyl]-4-(4-pyridyl)piperazine,
1-[4-(6-bromonaphth-2-ylthio)-2-carboxybenzoyl]-4-(4-pyridyl)piperazine 1-[5-(6-bromonaphth-2-ylthio)-2-carboxybenzoyl]-4-(4-pyridyl)piperazine,
1-[5-(6-bromonaphth-2-ylsulphonyl)-2-methoxycarbonylbenzoyl]-4-(4-pyridyl)piperazine,
1-[4-(6-bromonaphth-2-ylsulphonyl)-2-methoxycarbonylbenzoyl]44-pyridyl)piperazine,
1-[4-(6-bromonaphth-2-ylsulphonyl)-2-(2-(ethylthio)-ethylaminocarbonyl)benzoyl]4 (4-pyridyl)piperazine,
1-[5-(6-bromonaphth-2-yisulphonyl)-2-(2-ethylthio)ethylaminocarbonyl)benzoyl]-4-(4-pyridyl)piperazine,
1-[4-(6-bromonaphth-2-ylsulphonyl)-2-(piperidin-1-ylcarbonyl]-4-(4-pyridyl)piperazine,
1-[5-(6-bromonaphth-2-ylsulphonyl)-2-(piperidin-1-ylcarbonyl]-4-(4-pyridyl)piperazine,
1-[4-(4-(3-chlorophenyl)piperazin-1-ylsulphonyl)benzoyl]-4-(4-pyridyl)piperazine,
1-[4-(6-chloro-1,2,3,4-tetrahydroisoquinolin-2-ylsulphonylbenzoyl]-4-(4-pyridyl)piperazine,
1-(4-pyridyl)-(5-(6-methoxyindol-2-ylcarbonylamino)pyrid-2-yloxy)pyrrolidine,
1-[4-(6-bromonaphth-2-ylsulphonyl)benzoyl]-4-(2-methylpyrid-4-yl)piperazine,
1-[4-(6-bromonaphth-2-ylsulphonyl)benzoyl]-4-(4-pyridyl)hexahydro- 1,4-diazepine,
or a pharmaceutically-acceptable salt thereof.
8. A process for the preparation of an aminoheterocyclic derivative of the formula I or a pharmaceutically acceptable salt thereof as claimed as claim 1 which comprises:
a) for the production of those compounds of the formula I wherein T1 is N and X1 is CO, the reaction, conveniently in the presence of a suitable base, of an amine of the formula II
Figure US20030207882A1-20031106-C00014
 with an acid of the formula III
HO2C—Ar—X2-Q  III
 or a reactive derivative thereof;
(aa) for the preparation of those compounds of the formula I wherein T1 is N and X1 is a group of the formula COC(R4)2, the reaction, conveniently in the presence of a suitable base, of an amine of the formula II with an acid of the formula:
HO2C—C(R4)2—Ar—X2-Q
 or a reactive derivative thereof;
(b) for the production of those compounds of the formula I wherein T1 is CH and X1 is O or C(R4)2O, the reaction, conveniently in the presence of a suitable coupling agent, of a compound of the formula IV
Figure US20030207882A1-20031106-C00015
 wherein n is 0 or 1 and Z is a displaceable group, with a phenolic compound of the formula V
HO—Ar—X2-Q  V
(bb) for the preparation of those compounds of the formula I wherein T1 is CH and X1 is a group of the formula S or C(R4)2S, the reaction, conveniently in the presence of a suitable coupling agent, of a compound of the formula IV with a compound of the formula:
HS—Ar—X2-Q;
(c) for the production of those compounds of the formula I wherein T1 is N and X1 is CH(R4), the reductive amination of a keto compound of the formula VI
R4—CO—Ar—X2-Q  VI
 with an amine of the formula VII
Figure US20030207882A1-20031106-C00016
(d) for the production of those compounds of the formula I wherein X2 is a group of the formula N(R7)SO2, the reaction, conveniently in the presence of a suitable base, of an amine of the formula VIII
Figure US20030207882A1-20031106-C00017
 with a compound of the formula IX
Z-SO2-Q  IX
 wherein Z is a displaceable group;
(dd) for the production of those compounds of the formula I wherein X2 is a group of the formula N(R7)CO, the reaction, conveniently in the presence of a suitable base, of an amine of the formula VIII with a compound of the formula: Z-CO-Q;
(e) for the production of those compounds of the formula I wherein X2 is a group of the formula N(R)SO2, the reaction, conveniently in the presence of a suitable base, of a sulphonamide of the formula X
Figure US20030207882A1-20031106-C00018
 with a compound of the formula XI
R5-Z  XI
 wherein Z is a displaceable group;
(ee) for the production of those compounds of the formula I wherein X2 is a group of the formula N(R7)CO, the reaction conveniently in the presence of a suitable base, of a compound of the formula I wherein N(R7)CO is NHCO with a compound of the formula XI;
(f) for the production of those compounds of the formula I wherein X2 is a group of the formula SO2N(R7) the reaction, conveniently in the presence of a suitable base of a compound of the formula XII
Figure US20030207882A1-20031106-C00019
 wherein Z is a displaceable group as defined hereinbefore, with an amine of the formula XIII
(R7)NH-Q  XIII
(ff) for the preparation of those compounds of the formula I wherein X2 is a group of the formula CON(R7), the reaction, conveniently in the presence of a suitable base, of a compound of the formula XIII with a carbonyl compound corresponding to the sulphonyl compound of the formula XII;
(g) for the production of those compounds of the formula I wherein T1 is CH and X1 is a group of the formula OC(R4)2, the reaction conveniently in the presence of a suitable coupling agent of an alcohol of the formula XIV
Figure US20030207882A1-20031106-C00020
 with a compound of the formula XV
Z-C(R4)2—Ar—X2-Q  XV
 wherein Z is a displaceable group;
(gg) for the preparation of those compounds of the formula I wherein T1 is CH and X1 is a group of the formula SC(R4)2 the reaction conveniently in the presence of a suitable coupling agent of the thiol equivalent of formula XIV with a compound of the formula XV;
(h) for the production of those compounds of the formula I wherein X2 is a group of the formula C(R6)2S, the reaction, conveniently in the presence of a suitable base, of a compound of the formula XVI
Figure US20030207882A1-20031106-C00021
 wherein Z is a displaceable group with a thiol of the formula XVII
HS-Q  XVII
(i) for the production of those compounds of the formula I wherein L1, R2, R3, Ar or Q bears a carboxy or carboxy-containing group, the hydrolysis of a compound of the formula I wherein L1, R2, R3, Ar or Q bears a (1-4C)alkoxycarbonyl group;
(j) for the production of those compounds of the formula I wherein L1, R2, R3, Ar or Q bears a carbamoyl, N-alkylcarbamoyl or N,N-dialkylcarbamoyl group, the reaction of a compound of the formula I wherein L1, R2, R3, Ar or Q bears a carboxy group, or a reactive derivative thereof as defined hereinbefore, with ammonia or an appropriate alkylamine or dialkylamine;
(k) for the production of those compounds of the formula I wherein X1 is a group of the formula SO, SO2, C(R4)2SO, C(R4)2SO2, SOC(R4)2 or SO2C(R4)2, wherein Ar bears a (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl, 1-oxothiamorpholino or 1,1-dioxothiamorpholino group or a substituent which contains a (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl, 1-oxothiamorpholino or 1,1-dioxothiamorpholino group, wherein X2 is a group of the formula SO, SO2, C(R6)2SO or C(R6)2SO2, or wherein Q bears a (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl, phenylsulphinyl, phenylsulphonyl, heteroarylsulphinyl or heteroarylsulphonyl group, the oxidation of the corresponding compound of the formula I which contains a thio group.
(1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl, 1-oxothiamorpholino or 1,1-dioxothiamorpholino group, wherein X2 is a group of the formula SO, SO2 C(R6)2SO or C(R6)2SO2, or wherein Q bears a (1-4C)alkylsulphinyl, (1-4C)alkylsulphonyl, phenylsulphinyl, phenylsulphonyl, heteroarylsulphinyl or heteroarylsulphonyl group, the oxidation of the corresponding compound of the formula I which contains a thio group;
(l) The reaction of an activated derivative of a compound of the formula XVIII:
Figure US20030207882A1-20031106-C00022
 wherein L is a displaceable group as hereinbefore with a compound of the formula XIX:
NH(R2)-L1-T1(R3)—X1—Ar-Q  XIX
 and, if necessary, forming a pharmaceutically associated salt.
9. A pharmaceutical composition which comprises an aminoheterocyclic derivative of the formula I or a pharmaceutically acceptable salt thereof as claimed in any one of claims 1 to 7 and a pharmaceutically acceptable carrier.
10. The use of an aminoheterocyclic derivative of the formula I or a pharmaceutically acceptable salt thereof as claimed in any one of claims 1 to 7 in the production of a medicament for producing an antithrombiotic or anticoagulant effect.
11. The use of an aminoheterocyclic derivative of the formula I or a pharmaceutically acceptable salt thereof as claimed in any one of claims 1 to 7 in the production of a medicament for treating coronary artery or cerebro-vascular disease.
US10/427,991 1996-02-02 2003-05-02 Aminoheterocyclic derivatives as antithrombotic or anticoagulant agents Abandoned US20030207882A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/427,991 US20030207882A1 (en) 1996-02-02 2003-05-02 Aminoheterocyclic derivatives as antithrombotic or anticoagulant agents

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB9602166.2 1996-02-02
GBGB9602166.2A GB9602166D0 (en) 1996-02-02 1996-02-02 Aminoheterocyclic derivatives
US09/117,436 US7173025B1 (en) 1996-02-02 1997-01-31 Aminoheterocyclic derivatives as antithrombotic or anticoagulant agents
US10/427,991 US20030207882A1 (en) 1996-02-02 2003-05-02 Aminoheterocyclic derivatives as antithrombotic or anticoagulant agents

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/GB1997/000284 Division WO1997028129A1 (en) 1996-02-02 1997-01-31 Aminoheterocyclic derivatives as antithrombotic or anticoagulant agents
US09/117,436 Division US7173025B1 (en) 1996-02-02 1997-01-31 Aminoheterocyclic derivatives as antithrombotic or anticoagulant agents

Publications (1)

Publication Number Publication Date
US20030207882A1 true US20030207882A1 (en) 2003-11-06

Family

ID=10788043

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/117,436 Expired - Fee Related US7173025B1 (en) 1996-02-02 1997-01-31 Aminoheterocyclic derivatives as antithrombotic or anticoagulant agents
US10/427,991 Abandoned US20030207882A1 (en) 1996-02-02 2003-05-02 Aminoheterocyclic derivatives as antithrombotic or anticoagulant agents

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/117,436 Expired - Fee Related US7173025B1 (en) 1996-02-02 1997-01-31 Aminoheterocyclic derivatives as antithrombotic or anticoagulant agents

Country Status (13)

Country Link
US (2) US7173025B1 (en)
EP (1) EP0880502B1 (en)
JP (1) JP2000504337A (en)
AT (1) ATE275131T1 (en)
AU (1) AU1608597A (en)
DE (1) DE69730490T2 (en)
DK (1) DK0880502T3 (en)
ES (1) ES2225948T3 (en)
GB (2) GB9602166D0 (en)
PT (1) PT880502E (en)
SI (1) SI0880502T1 (en)
WO (1) WO1997028129A1 (en)
ZA (1) ZA97697B (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050239791A1 (en) * 2004-04-07 2005-10-27 Hutchison Alan J Substituted 1-heteroaryl-4-substituted piperazine and piperidine analogues
US20060009456A1 (en) * 2004-06-17 2006-01-12 Hutchinson Alan J Aryl-substituted piperazine derivatives
US20060142301A1 (en) * 2004-04-07 2006-06-29 Hutchison Alan J Substituted 1-benzyl-4-substituted piperazine analogues
WO2008117199A3 (en) * 2007-03-27 2009-12-30 Piramal Life Sciences Limited Animal model for screening compounds for antithrombotic and/or thrombolytic activity
US20100331307A1 (en) * 2009-06-29 2010-12-30 Salituro Francesco G Therapeutic compounds and compositions
WO2012092442A1 (en) * 2010-12-29 2012-07-05 Agios Pharmaceuticals, Inc. Therapeutic compounds and compositions
US8501953B2 (en) 2009-05-04 2013-08-06 Agios Pharmaceuticals, Inc PKM2 modulators for use in the treatment of cancer
US8691813B2 (en) 2008-11-28 2014-04-08 Janssen Pharmaceuticals, Inc. Indole and benzoxazine derivatives as modulators of metabotropic glutamate receptors
US8691849B2 (en) 2008-09-02 2014-04-08 Janssen Pharmaceuticals, Inc. 3-azabicyclo[3.1.0]hexyl derivatives as modulators of metabotropic glutamate receptors
US8697689B2 (en) 2008-10-16 2014-04-15 Janssen Pharmaceuticals, Inc. Indole and benzomorpholine derivatives as modulators of metabotropic glutamate receptors
US8716480B2 (en) 2009-05-12 2014-05-06 Janssen Pharmaceuticals, Inc. 7-aryl-1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US8722894B2 (en) 2007-09-14 2014-05-13 Janssen Pharmaceuticals, Inc. 1,3-disubstituted-4-phenyl-1H-pyridin-2-ones
US8742119B2 (en) 2009-04-06 2014-06-03 Agios Pharmaceuticals, Inc. Pyruvate kinase M2 modulators, therapeutic compositions and related methods of use
US8748621B2 (en) 2007-09-14 2014-06-10 Janssen Pharmaceuticals, Inc. 1,3-disubstituted 4-(aryl-X-phenyl)-1H-pyridin-2-ones
US8785486B2 (en) 2007-11-14 2014-07-22 Janssen Pharmaceuticals, Inc. Imidazo[1,2-A]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US8841323B2 (en) 2006-03-15 2014-09-23 Janssen Pharmaceuticals, Inc. 1, 4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of MGLUR2-receptors
US8883438B2 (en) 2009-10-21 2014-11-11 Agios Pharmaceuticals, Inc. Method for diagnosing cell proliferation disorders having a neoactive mutation at residue 97 of isocitrate dehydrogenase 1
US8906939B2 (en) 2007-03-07 2014-12-09 Janssen Pharmaceuticals, Inc. 3-cyano-4-(4-tetrahydropyran-phenyl)-pyridin-2-one derivatives
US8937060B2 (en) 2009-05-12 2015-01-20 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US8946205B2 (en) 2009-05-12 2015-02-03 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US8993591B2 (en) 2010-11-08 2015-03-31 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a] pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
US9012448B2 (en) 2010-11-08 2015-04-21 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
US9067891B2 (en) 2007-03-07 2015-06-30 Janssen Pharmaceuticals, Inc. 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of mGluR2-receptors
US9115086B2 (en) 2009-06-29 2015-08-25 Agios Pharmaceuticals, Inc. Therapeutic compositions and related methods of use
US9114138B2 (en) 2007-09-14 2015-08-25 Janssen Pharmaceuticals, Inc. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′] bipyridinyl-2′-ones
US9193701B2 (en) 2011-05-03 2015-11-24 Agios Pharmaceuticals, Inc Pyruvate kinase activators for use in therapy
US9221792B2 (en) 2010-12-17 2015-12-29 Agios Pharmaceuticals, Inc N-(4-(azetidine-1-carbonyl) phenyl)-(hetero-) arylsulfonamide derivatives as pyruvate kinase M2 (PMK2) modulators
US9271967B2 (en) 2010-11-08 2016-03-01 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US9328077B2 (en) 2010-12-21 2016-05-03 Agios Pharmaceuticals, Inc Bicyclic PKM2 activators
US9404081B2 (en) 2011-05-03 2016-08-02 Agios Pharmaceuticals, Inc. Pyruvate kinase activators for use in therapy
US9434979B2 (en) 2009-10-21 2016-09-06 Shin-San Michael Su Methods and compositions for cell-proliferation-related disorders
US9474779B2 (en) 2012-01-19 2016-10-25 Agios Pharmaceuticals, Inc. Therapeutically active compositions and their methods of use
US9579324B2 (en) 2013-07-11 2017-02-28 Agios Pharmaceuticals, Inc Therapeutically active compounds and their methods of use
US9662327B2 (en) 2011-06-17 2017-05-30 Agios Pharmaceuticals, Inc Phenyl and pyridinyl substituted piperidines and piperazines as inhibitors of IDH1 mutants and their use in treating cancer
US9708315B2 (en) 2013-09-06 2017-07-18 Janssen Pharmaceutica Nv 1,2,4-triazolo[4,3-a]pyridine compounds and their use as positive allosteric modulators of MGLUR2 receptors
US9856279B2 (en) 2011-06-17 2018-01-02 Agios Pharmaceuticals, Inc. Therapeutically active compositions and their methods of use
US9968595B2 (en) 2014-03-14 2018-05-15 Agios Pharmaceuticals, Inc. Pharmaceutical compositions of therapeutically active compounds
US10017495B2 (en) 2013-07-11 2018-07-10 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US10106542B2 (en) 2013-06-04 2018-10-23 Janssen Pharmaceutica Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
US10202339B2 (en) 2012-10-15 2019-02-12 Agios Pharmaceuticals, Inc. Therapeutic compounds and compositions
US10376510B2 (en) 2013-07-11 2019-08-13 Agios Pharmaceuticals, Inc. 2,4- or 4,6-diaminopyrimidine compounds as IDH2 mutants inhibitors for the treatment of cancer
US10537573B2 (en) 2014-01-21 2020-01-21 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US10610125B2 (en) 2009-03-13 2020-04-07 Agios Pharmaceuticals, Inc. Methods and compositions for cell-proliferation-related disorders
US10653710B2 (en) 2015-10-15 2020-05-19 Agios Pharmaceuticals, Inc. Combination therapy for treating malignancies
US10689414B2 (en) 2013-07-25 2020-06-23 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US10980788B2 (en) 2018-06-08 2021-04-20 Agios Pharmaceuticals, Inc. Therapy for treating malignancies
US11234976B2 (en) 2015-06-11 2022-02-01 Agios Pharmaceuticals, Inc. Methods of using pyruvate kinase activators
US11369606B2 (en) 2014-01-21 2022-06-28 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US11419859B2 (en) 2015-10-15 2022-08-23 Servier Pharmaceuticals Llc Combination therapy for treating malignancies
WO2023125792A1 (en) * 2021-12-29 2023-07-06 杭州奥默医药股份有限公司 Multi-substituted uracil derivative and preparation method therefor and application thereof
US11844758B2 (en) 2013-07-11 2023-12-19 Servier Pharmaceuticals Llc Therapeutically active compounds and their methods of use

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL115420A0 (en) 1994-09-26 1995-12-31 Zeneca Ltd Aminoheterocyclic derivatives
WO1997028128A1 (en) 1996-02-02 1997-08-07 Zeneca Limited Heterocyclic compounds useful as pharmaceutical agents
GB9602166D0 (en) 1996-02-02 1996-04-03 Zeneca Ltd Aminoheterocyclic derivatives
WO1998006705A1 (en) * 1996-08-14 1998-02-19 Zeneca Limited Substituted pyrimidine derivatives and their pharmaceutical use
UA56197C2 (en) 1996-11-08 2003-05-15 Зенека Лімітед Heterocyclic derivatives
EP0966460A1 (en) 1997-02-13 1999-12-29 Zeneca Limited Heterocyclic compounds useful as oxido-squalene cyclase inhibitors
ES2201438T3 (en) 1997-02-13 2004-03-16 Astrazeneca Ab USEFUL HETEROCICLICAL COMPOUNDS AS INHIBITORS OF OXIDE-SCUALENO-CYCLASS.
GB9715894D0 (en) 1997-07-29 1997-10-01 Zeneca Ltd Heterocyclic derivatives
KR20010034442A (en) 1998-01-27 2001-04-25 아벤티스 파마슈티칼즈 프로덕츠 인코포레이티드 Substituted oxoazaheterocyclyl factor Xa inhibitors
GB9809349D0 (en) * 1998-05-02 1998-07-01 Zeneca Ltd Heterocyclic derivatives
US6753331B1 (en) * 1998-05-02 2004-06-22 Astrazeneca Ab Heterocyclic derivatives which inhibit factor Xa
US6586475B1 (en) * 1998-11-20 2003-07-01 Takeda Chemical Industries, Ltd. β-amyloid protein production/secretion inhibitors
GB9902989D0 (en) 1999-02-11 1999-03-31 Zeneca Ltd Heterocyclic derivatives
AU2001269531A1 (en) * 2000-07-17 2002-01-30 Takeda Chemical Industries Ltd. Sulfone derivatives, process for their production and use thereof
PT1345900E (en) 2000-12-06 2007-03-30 Sanofi Aventis Deutschland Guanidine and amidine derivatives as factor xa inhibitors
JP2003081937A (en) * 2001-09-07 2003-03-19 Bayer Ag Benzenesulfonamide derivative
CA2784937A1 (en) 2002-05-24 2003-12-04 Millennium Pharmaceuticals, Inc. Ccr9 inhibitors and methods of use thereof
US7420055B2 (en) 2002-11-18 2008-09-02 Chemocentryx, Inc. Aryl sulfonamides
US7227035B2 (en) 2002-11-18 2007-06-05 Chemocentryx Bis-aryl sulfonamides
EP1798223B2 (en) 2002-11-18 2014-07-30 ChemoCentryx, Inc. Aryl sulfonamides
US7741519B2 (en) 2007-04-23 2010-06-22 Chemocentryx, Inc. Bis-aryl sulfonamides
WO2004050637A2 (en) 2002-12-03 2004-06-17 Axys Pharmaceuticals, Inc. 2-(2-hydroxybiphenyl-3-yl)-1h-benzoimidazole-5-carboxamidine derivatives as factor viia inhibitors
ZA200507806B (en) 2003-03-24 2007-03-28 Actimis Pharmaceuticals Inc 2-phenoxy- and 2-enysulfomamide derivatives with CCR3 antagonistic acitivity for the treatment of asthma and other inflammatory or immunolgical disorders
JP4550522B2 (en) * 2004-08-19 2010-09-22 スガイ化学工業株式会社 Process for producing 6-chloro-2-naphthalenesulfonic acid
EP1968962A2 (en) 2005-12-14 2008-09-17 Amgen Inc. Diaza heterocyclic sulfonamide derivatives and their uses
US8877791B2 (en) 2006-08-04 2014-11-04 Beth Israel Deaconess Medical Center, Inc. Inhibitors of pyruvate kinase and methods of treating disease
US7838594B2 (en) 2006-10-04 2010-11-23 E.I. Du Pont De Nemours And Company Bridged arylene fluorinated sulfonimide compositions and polymers
US7910653B2 (en) 2006-10-04 2011-03-22 E.I. Du Pont De Nemours And Company Process for the preparation of arylene fluorinated sulfonimide polymers and membranes
US7868086B2 (en) 2006-10-04 2011-01-11 E. I. Du Pont De Nemours And Company Arylene fluorinated sulfonimide polymers and membranes
US7838612B2 (en) 2006-10-04 2010-11-23 E. I. Du Pont De Nemours And Company Arylene fluorinated sulfonimide compositions
EP2509600B1 (en) * 2009-12-09 2017-08-02 Agios Pharmaceuticals, Inc. Therapeutically active compounds for use in the treatment of cancer characterized as having an idh mutation
DK2800743T3 (en) 2012-01-06 2018-06-14 Agios Pharmaceuticals Inc THERAPEUTIC ACTIVE RELATIONS AND PROCEDURES FOR USE THEREOF
ES2807582T3 (en) 2013-07-11 2021-02-23 Agios Pharmaceuticals Inc Compounds N, 6-bis (aryl or heteroaryl) -1,3,5-triazine-2,4-diamine as inhibitors of IDH2 mutants for the treatment of cancer
CN110437113B (en) * 2019-07-29 2021-02-09 苏州华道生物药业股份有限公司 Synthesis method of 4-benzenesulfonylbenzoic acid

Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139415A (en) * 1975-12-01 1979-02-13 Pharmacia Ab In vitro method of determining the biological activity of factor Xa inhibitor in blood
US4167567A (en) * 1978-05-05 1979-09-11 The Upjohn Company Antihypertensive 4-aminoquinolines
US4231938A (en) * 1979-06-15 1980-11-04 Merck & Co., Inc. Hypocholesteremic fermentation products and process of preparation
US4537896A (en) * 1982-06-23 1985-08-27 Kabivitrum Ab Thrombin inhibiting arylsulfonyl guanidinophenylalanine amides
US4564610A (en) * 1982-12-16 1986-01-14 Schering Aktiengesellschaft Substituted 5H-pyrimido[5,4-b]indoles
US4629728A (en) * 1984-01-04 1986-12-16 Adir S.A.R.L. Antihypoxemic 5-(4-substituted piperazinyl)alkyl-8-substituted quinolines
US4788196A (en) * 1986-04-19 1988-11-29 Pfizer Inc. Phenyl piperazine anti-arrhythmia agents
US4806536A (en) * 1986-02-07 1989-02-21 Pfizer, Inc. Piperazinyl-substituted pyridine and imidazole anti-arrhythmic agents
US4835165A (en) * 1987-05-02 1989-05-30 Pfizer Inc. Antiarrhythmic 4-phenylpiperidines
US4840963A (en) * 1984-03-14 1989-06-20 Merck & Co., Inc. 2-Sulfamoyl-1H-indole derivatives for the treatment of elevated intraocular pressure
US4861891A (en) * 1988-08-31 1989-08-29 Pfizer Inc. Antidepressant N-substituted nicotinamide compounds
US4968704A (en) * 1988-08-13 1990-11-06 Pfizer Inc. Pyridine compounds which are useful as anti-arrhythmic agents
US5032604A (en) * 1989-12-08 1991-07-16 Merck & Co., Inc. Class III antiarrhythmic agents
US5037824A (en) * 1989-03-10 1991-08-06 Fujisawa Pharmaceutical Company, Ltd. N-containing heterocyclic compounds, compositions and use
US5138058A (en) * 1989-02-22 1992-08-11 Hoechst Aktiengesellschaft Piperazine substituted pyrimidine derivatives and physiologically tolerated salts thereof
US5254563A (en) * 1989-12-23 1993-10-19 Schering Aktiengesellschaft Beta-carbolines, process for their production and their use in pharmaceutical agents
US5300330A (en) * 1981-04-01 1994-04-05 Surface Technology, Inc. Stabilized composite electroless plating compositions
US5332822A (en) * 1992-12-24 1994-07-26 Bristol-Myers Squibb Company Heteroaromatic and thioheteroaromatic substituted sulfonamide thrombin inhibitors
US5364865A (en) * 1992-12-30 1994-11-15 Sterling Winthrop Inc. Phenoxy- and phenoxyalkyl-piperidines as antiviral agents
US5371091A (en) * 1992-08-31 1994-12-06 Bristol-Myers Squibb Company Heteroaromatic amine thrombin inhibitors
US5391556A (en) * 1992-02-13 1995-02-21 Karl Thomae Gmbh Benzimidazolyl derivatives, pharmaceutical compositions containing these compounds and processes for preparing them
US5411971A (en) * 1991-05-03 1995-05-02 Elf Sanofi N-alkylenepiperidino compounds, their enantiomers and pharmaceutical compositions
US5541330A (en) * 1991-12-10 1996-07-30 Eastman Kodak Company Ion-sensitive compounds
US5556977A (en) * 1993-03-29 1996-09-17 Zeneca Limited Heterocyclic derivatives
US5563141A (en) * 1993-03-29 1996-10-08 Zeneca Limited Heterocyclic compounds
US5580881A (en) * 1992-10-28 1996-12-03 Fournier Industrie Et Sante 1,2,3,5,6,7,8,8a-Octahydro-5,5,8a-trimethyl-(8aβ)-6-isoquinolineamine derivatives, preparation method therefor and therapeutical use thereof
US5681954A (en) * 1993-05-14 1997-10-28 Daiichi Pharmaceutical Co., Ltd. Piperazine derivatives
US5795893A (en) * 1994-12-22 1998-08-18 Smithkline Beecham Corporation Fibrinogen receptor antagonists
US5856326A (en) * 1995-03-29 1999-01-05 Merck & Co., Inc. Inhibitors of farnesyl-protein transferase
US5883096A (en) * 1995-02-23 1999-03-16 Schering Corporation Muscarinic antagonists
US5908843A (en) * 1993-01-29 1999-06-01 Merck Patent Gesellschaft Mit Beschrankter Haftung Piperazine compounds as fibrinogen inhibitors
US5965559A (en) * 1994-09-26 1999-10-12 Zeneca Limited Aminoheterocyclic derivatives as antithrombotic or anticoagulant
US6022869A (en) * 1996-02-05 2000-02-08 Zeneca Limited Aminoheterocyclic compounds with antithrombotic/anticoagulant effect
US6037343A (en) * 1994-12-22 2000-03-14 Smithkline Beecham Corporation Fibrinogen receptor antagonists
US6090813A (en) * 1995-08-15 2000-07-18 Zeneca Limited Use of oxido-squalene cyclase inhibitors to lower blood cholesterol
US6093718A (en) * 1996-08-14 2000-07-25 Zeneca Limited Substituted pyrimidine derivatives and their pharmaceutical use
US6313127B1 (en) * 1996-02-02 2001-11-06 Zeneca Limited Heterocyclic compounds useful as pharmaceutical agents
US6335341B1 (en) * 1997-07-29 2002-01-01 Zeneca Limited Pyridyl-and pyrimidyl-heterocyclic compounds inhibiting oxido squalene-cyclase
US6359134B1 (en) * 1997-05-30 2002-03-19 Takeda Chemical Industries, Ltd. Sulfonamide derivatives, their production and use
US6391880B1 (en) * 1997-02-13 2002-05-21 Zeneca Limited Heterocyclic compounds useful as oxido-squalene cyclase inhibitors
US6395751B1 (en) * 1998-09-17 2002-05-28 Pfizer Inc. 4-carboxyamino-2-methyl-1,2,3,4,-tetrahydroquinolines
US6403595B1 (en) * 1998-02-05 2002-06-11 Takeda Chemical Industries, Ltd. Sulfonamide derivatives, processes for producing the same and utilization thereof
US6440972B1 (en) * 1997-02-13 2002-08-27 Zeneca Limited Heterocyclic compounds useful as oxido-squalene cyclase inhibitors
US6458793B1 (en) * 1997-07-29 2002-10-01 Zeneca Limited Heterocyclic derivatives which inhibit factor Xa
US6486154B1 (en) * 1997-07-29 2002-11-26 Zeneca Limited (Hetero) aryl-sulfonamide derivatives, their preparation and their use as factor XA inhibitors

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT340933B (en) 1973-08-20 1978-01-10 Thomae Gmbh Dr K PROCESS FOR THE PRODUCTION OF NEW PYRIMIDE DERIVATIVES AND THEIR ACID ADDITIONAL SALTS
JPH0696575B2 (en) 1987-09-17 1994-11-30 三菱化成株式会社 4-Aminopyridine derivative and acid addition salt thereof
IE64358B1 (en) 1989-07-18 1995-07-26 Ici Plc Diaryl ether heterocycles
EP0495750A3 (en) 1991-01-14 1992-09-16 Ciba-Geigy Ag Heterocyclic hydroxylamine
IT1245712B (en) 1991-04-09 1994-10-14 Boehringer Mannheim Italia USEFUL HETEROCYCLIC AMINES THERAPY OF ASTHMA AND AIRWAY INFLAMMATION
AU2000092A (en) 1991-06-21 1993-01-25 Boehringer Mannheim Italia S.P.A. 2-amino-4-aryl-thiazoles with antiasthmatic and anti-inflammatory activities on the respiratory tract
WO1993006085A1 (en) 1991-09-19 1993-04-01 Smithkline Beecham Corporation Pyridine compounds for treating leukotriene-related diseases
HU211995B (en) 1992-06-30 1996-01-29 Gyogyszerkutato Intezet Process to prepare novel benzoyl amino acid derivs. and pharmaceutical compns. contg.them
DE4243858A1 (en) 1992-12-23 1994-06-30 Thomae Gmbh Dr K Aminoacid derivs. which are tachykinin antagonists
DE4306506A1 (en) 1993-03-03 1994-09-08 Boehringer Mannheim Gmbh Novel 4-alkylaminopyridines - processes for their preparation and medicaments containing these compounds
TW257757B (en) 1993-03-03 1995-09-21 Boehringer Mannheim Gmbh
DE4306873A1 (en) * 1993-03-05 1994-09-08 Boehringer Mannheim Gmbh New 4-aminopyridine processes for their preparation and medicaments containing these compounds
IL117580A0 (en) 1995-03-29 1996-07-23 Merck & Co Inc Inhibitors of farnesyl-protein transferase and pharmaceutical compositions containing them
GB9602166D0 (en) 1996-02-02 1996-04-03 Zeneca Ltd Aminoheterocyclic derivatives
PT892780E (en) 1996-02-22 2003-02-28 Bristol Myers Squibb Pharma Co M-AMIDINE PHENYL ANALOGS AS FACTOR XA INHIBITORS

Patent Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139415A (en) * 1975-12-01 1979-02-13 Pharmacia Ab In vitro method of determining the biological activity of factor Xa inhibitor in blood
US4167567A (en) * 1978-05-05 1979-09-11 The Upjohn Company Antihypertensive 4-aminoquinolines
US4231938A (en) * 1979-06-15 1980-11-04 Merck & Co., Inc. Hypocholesteremic fermentation products and process of preparation
US5300330A (en) * 1981-04-01 1994-04-05 Surface Technology, Inc. Stabilized composite electroless plating compositions
US4537896A (en) * 1982-06-23 1985-08-27 Kabivitrum Ab Thrombin inhibiting arylsulfonyl guanidinophenylalanine amides
US4564610A (en) * 1982-12-16 1986-01-14 Schering Aktiengesellschaft Substituted 5H-pyrimido[5,4-b]indoles
US4629728A (en) * 1984-01-04 1986-12-16 Adir S.A.R.L. Antihypoxemic 5-(4-substituted piperazinyl)alkyl-8-substituted quinolines
US4840963A (en) * 1984-03-14 1989-06-20 Merck & Co., Inc. 2-Sulfamoyl-1H-indole derivatives for the treatment of elevated intraocular pressure
US4806536A (en) * 1986-02-07 1989-02-21 Pfizer, Inc. Piperazinyl-substituted pyridine and imidazole anti-arrhythmic agents
US4788196A (en) * 1986-04-19 1988-11-29 Pfizer Inc. Phenyl piperazine anti-arrhythmia agents
US4835165A (en) * 1987-05-02 1989-05-30 Pfizer Inc. Antiarrhythmic 4-phenylpiperidines
US4968704A (en) * 1988-08-13 1990-11-06 Pfizer Inc. Pyridine compounds which are useful as anti-arrhythmic agents
US4861891A (en) * 1988-08-31 1989-08-29 Pfizer Inc. Antidepressant N-substituted nicotinamide compounds
US5138058A (en) * 1989-02-22 1992-08-11 Hoechst Aktiengesellschaft Piperazine substituted pyrimidine derivatives and physiologically tolerated salts thereof
US5037824A (en) * 1989-03-10 1991-08-06 Fujisawa Pharmaceutical Company, Ltd. N-containing heterocyclic compounds, compositions and use
US5032604A (en) * 1989-12-08 1991-07-16 Merck & Co., Inc. Class III antiarrhythmic agents
US5254563A (en) * 1989-12-23 1993-10-19 Schering Aktiengesellschaft Beta-carbolines, process for their production and their use in pharmaceutical agents
US5606065A (en) * 1991-05-03 1997-02-25 Sanofi Process for preparing N-alkylene piperidino compounds and their enantiomers
US5411971A (en) * 1991-05-03 1995-05-02 Elf Sanofi N-alkylenepiperidino compounds, their enantiomers and pharmaceutical compositions
US5541330A (en) * 1991-12-10 1996-07-30 Eastman Kodak Company Ion-sensitive compounds
US5391556A (en) * 1992-02-13 1995-02-21 Karl Thomae Gmbh Benzimidazolyl derivatives, pharmaceutical compositions containing these compounds and processes for preparing them
US5371091A (en) * 1992-08-31 1994-12-06 Bristol-Myers Squibb Company Heteroaromatic amine thrombin inhibitors
US5580881A (en) * 1992-10-28 1996-12-03 Fournier Industrie Et Sante 1,2,3,5,6,7,8,8a-Octahydro-5,5,8a-trimethyl-(8aβ)-6-isoquinolineamine derivatives, preparation method therefor and therapeutical use thereof
US5332822A (en) * 1992-12-24 1994-07-26 Bristol-Myers Squibb Company Heteroaromatic and thioheteroaromatic substituted sulfonamide thrombin inhibitors
US5364865A (en) * 1992-12-30 1994-11-15 Sterling Winthrop Inc. Phenoxy- and phenoxyalkyl-piperidines as antiviral agents
US5908843A (en) * 1993-01-29 1999-06-01 Merck Patent Gesellschaft Mit Beschrankter Haftung Piperazine compounds as fibrinogen inhibitors
US5556977A (en) * 1993-03-29 1996-09-17 Zeneca Limited Heterocyclic derivatives
US5563141A (en) * 1993-03-29 1996-10-08 Zeneca Limited Heterocyclic compounds
US5681954A (en) * 1993-05-14 1997-10-28 Daiichi Pharmaceutical Co., Ltd. Piperazine derivatives
US5965559A (en) * 1994-09-26 1999-10-12 Zeneca Limited Aminoheterocyclic derivatives as antithrombotic or anticoagulant
US6225309B1 (en) * 1994-09-26 2001-05-01 Zeneca Limited Aminoheterocyclic derivatives as antithrombotic or anticoagulant agents
US5795893A (en) * 1994-12-22 1998-08-18 Smithkline Beecham Corporation Fibrinogen receptor antagonists
US6037343A (en) * 1994-12-22 2000-03-14 Smithkline Beecham Corporation Fibrinogen receptor antagonists
US5883096A (en) * 1995-02-23 1999-03-16 Schering Corporation Muscarinic antagonists
US5856326A (en) * 1995-03-29 1999-01-05 Merck & Co., Inc. Inhibitors of farnesyl-protein transferase
US6090813A (en) * 1995-08-15 2000-07-18 Zeneca Limited Use of oxido-squalene cyclase inhibitors to lower blood cholesterol
US6313127B1 (en) * 1996-02-02 2001-11-06 Zeneca Limited Heterocyclic compounds useful as pharmaceutical agents
US6022869A (en) * 1996-02-05 2000-02-08 Zeneca Limited Aminoheterocyclic compounds with antithrombotic/anticoagulant effect
US6093718A (en) * 1996-08-14 2000-07-25 Zeneca Limited Substituted pyrimidine derivatives and their pharmaceutical use
US6391880B1 (en) * 1997-02-13 2002-05-21 Zeneca Limited Heterocyclic compounds useful as oxido-squalene cyclase inhibitors
US6440972B1 (en) * 1997-02-13 2002-08-27 Zeneca Limited Heterocyclic compounds useful as oxido-squalene cyclase inhibitors
US6359134B1 (en) * 1997-05-30 2002-03-19 Takeda Chemical Industries, Ltd. Sulfonamide derivatives, their production and use
US6335341B1 (en) * 1997-07-29 2002-01-01 Zeneca Limited Pyridyl-and pyrimidyl-heterocyclic compounds inhibiting oxido squalene-cyclase
US6458793B1 (en) * 1997-07-29 2002-10-01 Zeneca Limited Heterocyclic derivatives which inhibit factor Xa
US6486154B1 (en) * 1997-07-29 2002-11-26 Zeneca Limited (Hetero) aryl-sulfonamide derivatives, their preparation and their use as factor XA inhibitors
US6403595B1 (en) * 1998-02-05 2002-06-11 Takeda Chemical Industries, Ltd. Sulfonamide derivatives, processes for producing the same and utilization thereof
US6395751B1 (en) * 1998-09-17 2002-05-28 Pfizer Inc. 4-carboxyamino-2-methyl-1,2,3,4,-tetrahydroquinolines

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060142301A1 (en) * 2004-04-07 2006-06-29 Hutchison Alan J Substituted 1-benzyl-4-substituted piperazine analogues
US7253168B2 (en) 2004-04-07 2007-08-07 Neurogen Corporation Substituted 1-benzyl-4-substituted piperazine analogues
US20070249616A1 (en) * 2004-04-07 2007-10-25 Neurogen Corporation Substituted 1-Benzyl-4-Substituted Piperazine Analogues
US20050239791A1 (en) * 2004-04-07 2005-10-27 Hutchison Alan J Substituted 1-heteroaryl-4-substituted piperazine and piperidine analogues
US20060009456A1 (en) * 2004-06-17 2006-01-12 Hutchinson Alan J Aryl-substituted piperazine derivatives
US9266834B2 (en) 2006-03-15 2016-02-23 Janssen Pharmaceuticals, Inc. 1, 4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of MGLUR2-receptors
US8841323B2 (en) 2006-03-15 2014-09-23 Janssen Pharmaceuticals, Inc. 1, 4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of MGLUR2-receptors
US9067891B2 (en) 2007-03-07 2015-06-30 Janssen Pharmaceuticals, Inc. 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of mGluR2-receptors
US8906939B2 (en) 2007-03-07 2014-12-09 Janssen Pharmaceuticals, Inc. 3-cyano-4-(4-tetrahydropyran-phenyl)-pyridin-2-one derivatives
US20100034746A1 (en) * 2007-03-27 2010-02-11 Piramal Life Sciences Limited Animal model, system, and method for screening compounds for antithrombotic and/or thrombolytic activity
WO2008117199A3 (en) * 2007-03-27 2009-12-30 Piramal Life Sciences Limited Animal model for screening compounds for antithrombotic and/or thrombolytic activity
US8748621B2 (en) 2007-09-14 2014-06-10 Janssen Pharmaceuticals, Inc. 1,3-disubstituted 4-(aryl-X-phenyl)-1H-pyridin-2-ones
US11071729B2 (en) 2007-09-14 2021-07-27 Addex Pharmaceuticals S.A. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′]bipyridinyl-2′-ones
US9114138B2 (en) 2007-09-14 2015-08-25 Janssen Pharmaceuticals, Inc. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′] bipyridinyl-2′-ones
US9132122B2 (en) 2007-09-14 2015-09-15 Janssen Pharmaceuticals, Inc. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′]bipyridinyl-2′-ones
US8722894B2 (en) 2007-09-14 2014-05-13 Janssen Pharmaceuticals, Inc. 1,3-disubstituted-4-phenyl-1H-pyridin-2-ones
US8785486B2 (en) 2007-11-14 2014-07-22 Janssen Pharmaceuticals, Inc. Imidazo[1,2-A]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US8691849B2 (en) 2008-09-02 2014-04-08 Janssen Pharmaceuticals, Inc. 3-azabicyclo[3.1.0]hexyl derivatives as modulators of metabotropic glutamate receptors
US8697689B2 (en) 2008-10-16 2014-04-15 Janssen Pharmaceuticals, Inc. Indole and benzomorpholine derivatives as modulators of metabotropic glutamate receptors
US8691813B2 (en) 2008-11-28 2014-04-08 Janssen Pharmaceuticals, Inc. Indole and benzoxazine derivatives as modulators of metabotropic glutamate receptors
US10610125B2 (en) 2009-03-13 2020-04-07 Agios Pharmaceuticals, Inc. Methods and compositions for cell-proliferation-related disorders
US9657004B2 (en) 2009-04-06 2017-05-23 Agios Pharmaceuticals, Inc Pyruvate kinase M2 modulators, therapeutic compositions and related methods of use
US8742119B2 (en) 2009-04-06 2014-06-03 Agios Pharmaceuticals, Inc. Pyruvate kinase M2 modulators, therapeutic compositions and related methods of use
US9938259B2 (en) 2009-04-06 2018-04-10 Agios Pharmaceuticals, Inc. Therapeutic compositions and related methods of use
US8501953B2 (en) 2009-05-04 2013-08-06 Agios Pharmaceuticals, Inc PKM2 modulators for use in the treatment of cancer
US8946205B2 (en) 2009-05-12 2015-02-03 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US8937060B2 (en) 2009-05-12 2015-01-20 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US9737533B2 (en) 2009-05-12 2017-08-22 Janssen Pharmaceuticals. Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US9226930B2 (en) 2009-05-12 2016-01-05 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo [4,3-a] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US8716480B2 (en) 2009-05-12 2014-05-06 Janssen Pharmaceuticals, Inc. 7-aryl-1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US10071095B2 (en) 2009-05-12 2018-09-11 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of neurological and psychiatric disorders
US9085577B2 (en) 2009-05-12 2015-07-21 Janssen Pharmaceuticals, Inc. 7-aryl-1,2,4-triazolo[4,3-A]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US9115086B2 (en) 2009-06-29 2015-08-25 Agios Pharmaceuticals, Inc. Therapeutic compositions and related methods of use
USRE49582E1 (en) 2009-06-29 2023-07-18 Agios Pharmaceuticals, Inc. Therapeutic compounds and compositions
US11866411B2 (en) 2009-06-29 2024-01-09 Agios Pharmaceutical, Inc. Therapeutic compounds and compositions
US20100331307A1 (en) * 2009-06-29 2010-12-30 Salituro Francesco G Therapeutic compounds and compositions
US10029987B2 (en) 2009-06-29 2018-07-24 Agios Pharmaceuticals, Inc. Therapeutic compounds and compositions
US10988448B2 (en) 2009-06-29 2021-04-27 Agios Pharmaceuticals, Inc. Therapeutic compounds and compositions
US8785450B2 (en) 2009-06-29 2014-07-22 Agios Pharmaceuticals, Inc. Therapeutic compounds and compositions
US10711314B2 (en) 2009-10-21 2020-07-14 Agios Pharmaceuticals, Inc. Methods for diagnosing IDH-mutant cell proliferation disorders
US9434979B2 (en) 2009-10-21 2016-09-06 Shin-San Michael Su Methods and compositions for cell-proliferation-related disorders
US9982309B2 (en) 2009-10-21 2018-05-29 Agios Pharmaceuticals, Inc. Method for treating cell proliferation related disorders
US8883438B2 (en) 2009-10-21 2014-11-11 Agios Pharmaceuticals, Inc. Method for diagnosing cell proliferation disorders having a neoactive mutation at residue 97 of isocitrate dehydrogenase 1
US9271967B2 (en) 2010-11-08 2016-03-01 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US9012448B2 (en) 2010-11-08 2015-04-21 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
US8993591B2 (en) 2010-11-08 2015-03-31 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a] pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
US9221792B2 (en) 2010-12-17 2015-12-29 Agios Pharmaceuticals, Inc N-(4-(azetidine-1-carbonyl) phenyl)-(hetero-) arylsulfonamide derivatives as pyruvate kinase M2 (PMK2) modulators
US9328077B2 (en) 2010-12-21 2016-05-03 Agios Pharmaceuticals, Inc Bicyclic PKM2 activators
US10087169B2 (en) 2010-12-21 2018-10-02 Agios Pharmaceuticals, Inc. Bicyclic PKM2 activators
CN103491960B (en) * 2010-12-29 2017-03-29 安吉奥斯医药品有限公司 Therapeutic compounds and compositionss
US20120172349A1 (en) * 2010-12-29 2012-07-05 Salituro Francesco G Therapeutic compounds and compositions
US9199968B2 (en) 2010-12-29 2015-12-01 Agios Pharmaceuticals, Inc. Therapeutic compounds and compositions
WO2012092442A1 (en) * 2010-12-29 2012-07-05 Agios Pharmaceuticals, Inc. Therapeutic compounds and compositions
US8889667B2 (en) * 2010-12-29 2014-11-18 Agios Pharmaceuticals, Inc Therapeutic compounds and compositions
JP2014505048A (en) * 2010-12-29 2014-02-27 アジオス ファーマシューティカルズ, インコーポレイテッド Therapeutic compounds and compositions
CN103491960A (en) * 2010-12-29 2014-01-01 安吉奥斯医药品有限公司 Therapeutic compounds and compositions
US9980961B2 (en) 2011-05-03 2018-05-29 Agios Pharmaceuticals, Inc. Pyruvate kinase activators for use in therapy
US9193701B2 (en) 2011-05-03 2015-11-24 Agios Pharmaceuticals, Inc Pyruvate kinase activators for use in therapy
US11793806B2 (en) 2011-05-03 2023-10-24 Agios Pharmaceuticals, Inc. Pyruvate kinase activators for use in therapy
US9404081B2 (en) 2011-05-03 2016-08-02 Agios Pharmaceuticals, Inc. Pyruvate kinase activators for use in therapy
US9682080B2 (en) 2011-05-03 2017-06-20 Agios Pharmaceuticals, Inc Pyruvate kinase activators for use in therapy
US10632114B2 (en) 2011-05-03 2020-04-28 Agios Pharmaceuticals, Inc. Pyruvate kinase activators for use in therapy
US9662327B2 (en) 2011-06-17 2017-05-30 Agios Pharmaceuticals, Inc Phenyl and pyridinyl substituted piperidines and piperazines as inhibitors of IDH1 mutants and their use in treating cancer
US9856279B2 (en) 2011-06-17 2018-01-02 Agios Pharmaceuticals, Inc. Therapeutically active compositions and their methods of use
US10640534B2 (en) 2012-01-19 2020-05-05 Agios Pharmaceuticals, Inc. Therapeutically active compositions and their methods of use
US9850277B2 (en) 2012-01-19 2017-12-26 Agios Pharmaceuticals, Inc. Therapeutically active compositions and their methods of use
US9474779B2 (en) 2012-01-19 2016-10-25 Agios Pharmaceuticals, Inc. Therapeutically active compositions and their methods of use
US11667673B2 (en) 2012-01-19 2023-06-06 Servier Pharmaceuticals Llc Therapeutically active compounds and their methods of use
US10717764B2 (en) 2012-01-19 2020-07-21 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US10202339B2 (en) 2012-10-15 2019-02-12 Agios Pharmaceuticals, Inc. Therapeutic compounds and compositions
US10584129B2 (en) 2013-06-04 2020-03-10 Janssen Pharmaceuticals Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
US10106542B2 (en) 2013-06-04 2018-10-23 Janssen Pharmaceutica Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
US10172864B2 (en) 2013-07-11 2019-01-08 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US10028961B2 (en) 2013-07-11 2018-07-24 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US10017495B2 (en) 2013-07-11 2018-07-10 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US9579324B2 (en) 2013-07-11 2017-02-28 Agios Pharmaceuticals, Inc Therapeutically active compounds and their methods of use
US10946023B2 (en) 2013-07-11 2021-03-16 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US11844758B2 (en) 2013-07-11 2023-12-19 Servier Pharmaceuticals Llc Therapeutically active compounds and their methods of use
US10376510B2 (en) 2013-07-11 2019-08-13 Agios Pharmaceuticals, Inc. 2,4- or 4,6-diaminopyrimidine compounds as IDH2 mutants inhibitors for the treatment of cancer
US10689414B2 (en) 2013-07-25 2020-06-23 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US11021515B2 (en) 2013-07-25 2021-06-01 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US9708315B2 (en) 2013-09-06 2017-07-18 Janssen Pharmaceutica Nv 1,2,4-triazolo[4,3-a]pyridine compounds and their use as positive allosteric modulators of MGLUR2 receptors
US11103506B2 (en) 2014-01-21 2021-08-31 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US11369606B2 (en) 2014-01-21 2022-06-28 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US10537573B2 (en) 2014-01-21 2020-01-21 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US10799490B2 (en) 2014-03-14 2020-10-13 Agios Pharmaceuticals, Inc. Pharmaceutical compositions of therapeutically active compounds
US11504361B2 (en) 2014-03-14 2022-11-22 Servier Pharmaceuticals Llc Pharmaceutical compositions of therapeutically active compounds
US10449184B2 (en) 2014-03-14 2019-10-22 Agios Pharmaceuticals, Inc. Pharmaceutical compositions of therapeutically active compounds
US9968595B2 (en) 2014-03-14 2018-05-15 Agios Pharmaceuticals, Inc. Pharmaceutical compositions of therapeutically active compounds
US11234976B2 (en) 2015-06-11 2022-02-01 Agios Pharmaceuticals, Inc. Methods of using pyruvate kinase activators
US11419859B2 (en) 2015-10-15 2022-08-23 Servier Pharmaceuticals Llc Combination therapy for treating malignancies
US10653710B2 (en) 2015-10-15 2020-05-19 Agios Pharmaceuticals, Inc. Combination therapy for treating malignancies
US10980788B2 (en) 2018-06-08 2021-04-20 Agios Pharmaceuticals, Inc. Therapy for treating malignancies
WO2023125792A1 (en) * 2021-12-29 2023-07-06 杭州奥默医药股份有限公司 Multi-substituted uracil derivative and preparation method therefor and application thereof

Also Published As

Publication number Publication date
DE69730490D1 (en) 2004-10-07
SI0880502T1 (en) 2005-02-28
ATE275131T1 (en) 2004-09-15
EP0880502A1 (en) 1998-12-02
ES2225948T3 (en) 2005-03-16
AU1608597A (en) 1997-08-22
GB9701284D0 (en) 1997-03-12
WO1997028129A1 (en) 1997-08-07
ZA97697B (en) 1997-08-04
DK0880502T3 (en) 2004-11-29
EP0880502B1 (en) 2004-09-01
GB9602166D0 (en) 1996-04-03
US7173025B1 (en) 2007-02-06
DE69730490T2 (en) 2005-09-29
JP2000504337A (en) 2000-04-11
PT880502E (en) 2004-12-31

Similar Documents

Publication Publication Date Title
US7173025B1 (en) Aminoheterocyclic derivatives as antithrombotic or anticoagulant agents
US6022869A (en) Aminoheterocyclic compounds with antithrombotic/anticoagulant effect
US5965559A (en) Aminoheterocyclic derivatives as antithrombotic or anticoagulant
US6300330B1 (en) Heterocycle derivatives which inhibit factor Xa
AU754747B2 (en) Heterocyclic derivatives which inhibit factor XA
US6635657B1 (en) Aromatic amides
JP2002513790A (en) Heterocyclic derivatives inhibiting factor Xa
AU757738B2 (en) Heterocyclic derivatives as inhibitors of Factor Xa
WO1999009027A1 (en) (hetero)aryl-sulfonamide derivatives, their preparation and their use as factor xa inhibitors
MXPA01008067A (en) Heterocyclic derivatives as inhibitors of factor xa
MXPA99003712A (en) HETEROCYCLE DERIVATIVES WHICH INHIBIT FACTOR Xa
MXPA00000505A (en) Heterocyclic derivatives which inhibit factor xa
CZ2000293A3 (en) Heterocyclic derivatives inhibiting Xa factor

Legal Events

Date Code Title Description
AS Assignment

Owner name: ZENECA LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STOCKER, ANDREW;PRESTON, JOHN;SMITHERS, MICHAEL JAMES;REEL/FRAME:014036/0008;SIGNING DATES FROM 19980618 TO 19980625

AS Assignment

Owner name: ASTRAZENECA UK LIMITED, ENGLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZENECA LIMITED (NOW SYNGENTA LIMITED);REEL/FRAME:015829/0253

Effective date: 20040831

Owner name: SYNGENTA LIMITED, ENGLAND

Free format text: CHANGE OF NAME;ASSIGNOR:ZENECA LIMITED;REEL/FRAME:015841/0267

Effective date: 20020827

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION