US20030207834A1 - Oligonucleotide-containing pharmacological compositions and their use - Google Patents

Oligonucleotide-containing pharmacological compositions and their use Download PDF

Info

Publication number
US20030207834A1
US20030207834A1 US10/191,997 US19199702A US2003207834A1 US 20030207834 A1 US20030207834 A1 US 20030207834A1 US 19199702 A US19199702 A US 19199702A US 2003207834 A1 US2003207834 A1 US 2003207834A1
Authority
US
United States
Prior art keywords
asm
composition
oligonucleotide
modified oligonucleotide
administered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/191,997
Inventor
Roderic Dale
Amy Arrow
Terry Thompson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lakewood-Amedex Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/191,997 priority Critical patent/US20030207834A1/en
Assigned to OLIGOS ETC. INC. reassignment OLIGOS ETC. INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARROW, AMY, DALE, RODERIC M.K., THOMPSON, TERRY
Publication of US20030207834A1 publication Critical patent/US20030207834A1/en
Priority to US11/673,508 priority patent/US8188259B2/en
Priority to US11/673,509 priority patent/US8183361B2/en
Priority to US11/673,486 priority patent/US8916529B2/en
Assigned to LAKEWOOD-AMEDEX, INC. reassignment LAKEWOOD-AMEDEX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OLIGOS ETC., INC.
Priority to US14/534,901 priority patent/US9567584B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/606Nucleosides; Nucleotides; Nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/10Laxatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/32Alcohol-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01088Hydroxymethylglutaryl-CoA reductase (1.1.1.88)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/99Oxidoreductases acting on the CH-CH group of donors (1.3) with other acceptors (1.3.99)
    • C12Y103/990053-Oxo-5alpha-steroid 4-dehydrogenase (acceptor) (1.3.99.5), i.e. steroid-5alpha-reductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01006Catalase (1.11.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
    • C12Y113/11012Linoleate 13S-lipoxygenase (1.13.11.12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/99Miscellaneous (1.14.99)
    • C12Y114/99001Prostaglandin-endoperoxide synthase (1.14.99.1), i.e. cyclooxygenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01026Sterol O-acyltransferase (2.3.1.26)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01085Fatty-acid synthase (2.3.1.85)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01003Triacylglycerol lipase (3.1.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03048Protein-tyrosine-phosphatase (3.1.3.48)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/14Dipeptidyl-peptidases and tripeptidyl-peptidases (3.4.14)
    • C12Y304/1401Tripeptidyl-peptidase II (3.4.14.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/15Peptidyl-dipeptidases (3.4.15)
    • C12Y304/15001Peptidyl-dipeptidase A (3.4.15.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/24Metalloendopeptidases (3.4.24)
    • C12Y304/24011Neprilysin (3.4.24.11), i.e. enkephalinase or neutral endopeptidase 24.11
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y306/00Hydrolases acting on acid anhydrides (3.6)
    • C12Y306/03Hydrolases acting on acid anhydrides (3.6) acting on acid anhydrides; catalysing transmembrane movement of substances (3.6.3)
    • C12Y306/0301H+/K+-exchanging ATPase (3.6.3.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y604/00Ligases forming carbon-carbon bonds (6.4)
    • C12Y604/01Ligases forming carbon-carbon bonds (6.4.1)
    • C12Y604/01002Acetyl-CoA carboxylase (6.4.1.2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/74Biological properties of particular ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/35Special therapeutic applications based on a specific dosage / administration regimen

Definitions

  • the present invention relates to compositions containing oligonucleotides, and particularly to oligonucleotide-containing compositions suitable for administration to humans and other mammals.
  • Oligonucleotides, oligonucleotide analogs and other sequence-specific binding polymers designed to block translation of selected messenger RNA (the sense strand) are commonly called antisense oligonucleotides.
  • Development of such oligonucleotides, for therapeutic applications entails selecting a target genetic sequence unique and critical to the pathogen or pathogenic state one wishes to treat.
  • an antisense oligonucleotide binds to its targeted disease-causing sequence, it can inactivate that target and thereby alleviate the disease.
  • Antisense oligonucleotides offer the prospect of safe and effective therapeutics for a broad range of intractable diseases. Nonetheless, developing therapeutics that function by a true antisense mechanism presents a number of forbidding challenges.
  • the oligonucleotides should achieve adequate efficacy at a concentration attainable within the cells of the patient. They should inhibit their selected target sequences without concomitant attack on any other sequences in the patient's pool of approximately 200 million bases of unique-sequence RNA. They should be stable in extracellular compartments and within cells. They must be deliverable into the cellular compartments containing their targeted sequences. They should be adequately soluble in aqueous solution. Finally, they should exhibit little or no toxicity at therapeutic concentrations.
  • First-generation antisense oligonucleotides comprised natural genetic material (Belikova et al. (1967) Tetrahedron Lett. 37, 3557-3562; Zamecnik et al. (1978) Proc. Natl. Acad. Sci. USA 75, 280-284; Summerton (1979) J. Theor. Biol. 78, 77-99) and often contained crosslinking agents for binding their targets irreversibly (Summerton et al. (1978) J. Mol. Biol. 122, 145-162). As the design challenges became more fully appreciated, a number of non-natural antisense structural types were developed in an effort to improve efficacy, stability and delivery.
  • nucleic Acids include carbamate-linked DNA (Cohen (1989) Oligodeoxynucleotides: Antisense Inhibitors of Gene Expression, CRC Press, pp. 97-117), phosphoroamidate-linked DNA (Froehler et al. (1988) Nucleic Acids Res. 16, 4831-4839) and 2′-O-methyl RNA (Shibahara et al. (1989) Nucleic Acids Res.
  • oligonucleotides include oligonucleotides containing acyclic backbone moieties, including nylon (Weller et al. (1991) J. Org. Chem. 56, 6000-6006; Huang et al. (1991) J. Org. Chem. 56, 6007-6018), the exceptionally high-affinity peptide nucleic acids (PNA) (Egholm et al. (1992) J. Am. Chem. Soc. 114, 1895-1897) and related types (U.S. Pat. No. 5,217,866).
  • nylon Weller et al. (1991) J. Org. Chem. 56, 6000-6006; Huang et al. (1991) J. Org. Chem. 56, 6007-6018
  • PNA exceptionally high-affinity peptide nucleic acids
  • One approach to improving the potency of antisense oligonucleotides is to enhance the affinity or the efficiency with which the antisense oligonucleotides interact with their targets and induce RNase degradation of their target gene transcripts.
  • the doses at which effects have been observed generally range from 10 to 30 mg/kg i.v. (Miraglia et al. (2000) Antisense Nuc. Acid Drug Devel. 10, 453-461).
  • Some clinical studies, however, have not demonstrated antisense activity at doses up to 30 mg/kg i.v. (Rudin et al. (2001) Clin. Cancer Res. 7, 1214-1220; Kushner et al. (2000) Curr. Oncol.
  • the invention encompasses a composition suitable for administration in a mammal comprising a modified oligonucleotide of about seven to seventy-five nucleotides containing seven or more contiguous ribose groups linked by achiral 5′ to 3′ internucleoside phosphate linkages, wherein the modified oligonucleotide is complementary to a region of a gene associated with a pathological disorder.
  • the mammal is a human and the oligonucleotide is a ribonucleotide or deoxyribonucleotide.
  • the modified oligonucleotide can be complementary to a region of the gene selected from the group consisting of the 5′ UTR region, translational start site, the 3′ UTR, and translational termination site.
  • the gene is a gene selected from Table 1 and the pathological disorder is selected from the group consisting of abnormal appetite, hypertension, hypercholesteroremia, hyperlipidemia, erectile dysfunction, eczema, depression, anxiety, stress, inflammatory bowel syndrome, ulcerative colitis, Crohn's disease, renal stones, gall stones, constipation, migraine headache, seizure, multiple sclerosis, polymyositis, fiboromyalgia, Parkinson's disease, ALS, chronic pain, pre-menstrual syndrome, sinusitis, colds, trauma, carpal tunnel syndrome, chronic fatigue syndrome, rosacea, arthritis, psoriasis, prostatitis, inflammation, heartburn, infection, poison ivy, colon cancer, malignant melanoma and malignant nasal polyps.
  • the modified oligonucleotide is selected from the group consisting of SEQ ID NO: 1-81
  • the modified oligonucleotide is present in the composition at a concentration effective to reduce the expression of the gene when administered.
  • the modified oligonucleotide is administered at a dose of less than 100 ⁇ g/kg, preferably less than 50 ⁇ g/kg, more preferably less than 5.0 ⁇ g/kg, even more preferably less than 0.50 ⁇ g/kg, yet even more preferably less than 0.050 ⁇ g/kg, and most preferably less than 0.0050 ⁇ g/kg.
  • the modified oligonucleotide present in the composition may be suitable for oral administration.
  • the modified oligonucleotides present in the compositions of the invention preferably have a Tm of about 75-115° C. at a concentration of 1 mM and a length of 10 to 26 bases, or a Tm of 40° C. to 85° C. at a concentration of 1 pM and a length of 10 to 26 bases.
  • the ribose group has a modified 2′ substituent selected from the group consisting of hydrogen, methoxy, propoxy, methoxy-ethoxy, flourine, chlorine, bromine and iodine.
  • the modified oligonucleotide is 3′ or 5′ end-blocked.
  • compositions of the invention may be formulated as pharmaceutical compositions, nutritional or dietary supplement compositions, or as cosmetic compositions.
  • the compositions of the invention comprise two or more different modified oligonucleotides, while in other embodiments, three or more different modified oligonucleotides.
  • the invention also encompasses a method of treating a patient with a pathological disorder comprising administering one or more of the aforementioned modified oligonucleotides of the invention, wherein the modified oligonucleotides are about seven to seventy-five nucleotides, contain seven or more contiguous ribose groups linked by achiral 5′ to 3′ internucleoside phosphate linkages.
  • the modified oligonucleotide is complementary to a region of a gene associated with the pathological disorder.
  • the gene is selected from Table 1 and the aforementioned pathological disorders are selected from the group consisting of abnormal appetite, hypertension, hypercholesteroremia, hyperlipidemia, erectile dysfunction, eczema, depression, anxiety, stress, inflammatory bowel syndrome, ulcerative colitis, Crohn's disease, renal stones, gall stones, constipation, migraine headache, seizure, multiple sclerosis, polymyositis, fibromyalgia, Parkinson's disease, ALS, chronic pain, pre-menstrual syndrome, sinusitis, colds, trauma, carpal tunnel syndrome, chronic fatigue syndrome, rosacea, arthritis, psoriasis, prostatitis, inflammation, heart burn, infection, poison ivy, colon cancer, malignant melanoma and malignant nasal polyps.
  • the aforementioned pathological disorders are selected from the group consisting of abnormal appetite, hypertension, hypercholesteroremia, hyperlipidemia, erectile dysfunction, eczema, depression, anxiety, stress,
  • the invention includes a nutritional supplement comprising a modified oligonucleotide of about seven to seventy-file nucleotides containing seven or more contiguous ribose groups linked by achiral 5′ to 3′ internucleoside phosphate linkages.
  • the invention also includes a method of supplementing the diet of an individual comprising administering this nutritional supplement, wherein administration of the nutritional supplement improves the health of the individual.
  • the invention further includes a cosmetic composition comprising a modified oligonucleotide of about seven to seventy-file nucleotides containing seven or more contiguous ribose groups linked by achiral 5′ to 3′ internucleoside phosphate linkages, wherein the modified oligonucleotide is complementary to a region of a gene associated with a skin disorder.
  • the invention also includes a method of improving the appearance of the skin in an individual with a skin disorder comprising administering this cosmetic composition.
  • the present invention relates to compositions that comprise oligonucleotide molecules, and the use of such compositions to treat the symptoms of diseases/conditions such as acroparaesthsia, allergic (psoric) conditions, allergic reactions, alopecia, amnesia, anaphrodisia, angina, arthritis, asthenopia, biliary sycosis, burns, cancerous conditions, such as colon cancer, malignant melanoma and malignant nasal polyps, carpal tunnel syndrome, colds, conjunctivitis, Crohn's disease, depression, depressive psychosis, dysthyroidism, epilepsy, erectile dysfunction, excessive appetite (i.e., appetite control and suppression, promotion of healthy weight loss while naturally satisfying the appetite), gingivitis, heart burn (i.e., relief of occasional heartburn or occasional acid indigestion), hemorrhage, hypertension (i.e., helps maintain cardiovascular function, and a healthy heart and circulatory system), high cholesterol
  • a double-stranded DNA molecule encoding a gene has both a sense and an antisense strand.
  • the transcription of RNA uses the antisense strand to make an exact sequence copy of the sense strand (with the minor changes of employing uridine for thymidine, and an RNA backbone in lieu of a DNA backbone).
  • the RNA formed in transcription has the same nucleotide sequence as the sense strand of the gene.
  • the RNA transcript is processed in the cell to become mRNA, which may subsequently be used as a template to make protein.
  • oligonucleotides refers to a molecule comprised of nucleotides (i.e., ribonucleotides, deoxyribonucleotides, or both).
  • the term includes monomers and polymers of ribonucleotides and deoxyribonucleotides, or mixtures thereof, with the nucleotides being connected together via, for example 5′ to 3′ linkages, 5′ to 2′ linkages, etc.
  • the nucleotides used in the oligonucleotides may be naturally occurring or may be synthetically produced analogues that are capable of forming base-pair relationships with naturally occurring base pairs.
  • non-naturally occurring bases that are capable of forming base-pairing relationships include, but are not limited to, aza and deaza pyrimidine analogues, aza and deaza purine analogues, and other heterocyclic base analogues, wherein one or more of the carbon and nitrogen atoms of the purine and pyrimidine rings have been substituted by heteroatoms, e.g., oxygen, sulfur, selenium, phosphorus, etc.
  • the oligonucleotides of the present invention are at least five contiguous nucleotides in length.
  • the oligonucleotide can be five to seventy-five nucleotides in length.
  • the oligonucleotide can also be at least ten sequential nucleotides and alternatively, at least fifteen sequential nucleotides in length.
  • the oligonucleotide is twelve to twenty-six nucleotides in length.
  • the oligonucleotide sequence can be derived from any of the genes listed in Table 1 (SEQ ID NO: 82-132). Examples of suitable antisense oligonucleotide sequences for the compositions of the present invention are described in Table 1 below.
  • the oligonucleotide composition of the present invention comprises at least about two oligonucleotides of differing sequence. In another embodiment, the oligonucleotide composition of the present invention comprises at least about three, four, five, six, seven, eight, nine, or ten oligonucleotides of differing sequences.
  • Table 1 depicts the sequences as oligonucleotides containing only deoxyribonucleotide residues, it is to be understood that the present invention also includes the embodiments wherein the oligonucleotides are composed of ribonucleotide residues (e.g., by substituting uridine for thymidine, and ribosyl substituents for deoxyribosyl substituents).
  • the present invention also includes the embodiments in which the oligonucleotides are composed of only deoxyribonucleotide residues, of only ribonucleotide residues, or of mixtures of deoxyribonucleotide and ribonucleotide residues.
  • the oligonucleotides in the present invention display greater than or equal to 80 percent sequence identity to a nucleotide sequence selected from the group of SEQ ID NO: 1-81 (see Table 1). Also preferred, the oligonucleotides display greater than or equal to 85 percent sequence identity to a nucleotide sequence selected from the group of SEQ ID NO: 1-81. Still preferred, the oligonucleotides display 90 percent sequence identity and still more preferred, the oligonucleotides display 95 percent sequence identity. Most preferably, the oligonucleotides of the present invention are selected such that their nucleotide sequence is complementary to the sense strand of a gene.
  • the degree of similarity between two sequences can be determined using methods well known to the art (e.g., computer programs including Fasta (Oxford Molecular Group Inc.) and BLAST (www.ncbi.nlm.nih.gov) (Altschul et al. (1997) Nucleic Acid Res. 25, 3389-3402). These methods can be employed to take into account gaps in the sequences due to deletions or insertions. Homology or sequence identity at the nucleotide or amino acid sequence level determined by BLAST (Basic Local Alignment Search Tool) analysis uses the algorithm employed by the programs blastp, blastn, blastx, tblastn and tblastx (Altschul et al. (1997) Nucleic Acids Res.
  • BLAST Basic Local Alignment Search Tool
  • the scoring matrix is set by the ratios of M (i.e., the reward score for a pair of matching residues) to N (i.e., the penalty score for mismatching residues), wherein the default values for M and N are +5 and ⁇ 4, respectively.
  • M i.e., the reward score for a pair of matching residues
  • N i.e., the penalty score for mismatching residues
  • the oligonucleotides described herein have a Guanine:Cytosine (GC content) greater than 35 percent.
  • the GC content is preferably greater than 40 percent and most preferably, greater than 45 percent.
  • oligonucleotides that may be employed in accordance with the present invention may be modified.
  • An oligonucleotide that comprises at least one modification has one or more chemical modifications at the molecular level of the natural molecular structures of all or any of the nucleic acid bases, sugar moieties, internucleoside phosphate linkages, as well as molecules having added substituents, such as diamines, cholesteryl or other lipophilic groups, or a combination of modifications at these sites.
  • oligonucleotides can be end-blocked, protonated, exhibit substantial acid resistance, substantial nuclease resistance, and contain achiral internucleoside phosphate linkages and modified ribose or deoxyribose substituents.
  • end-blocked refers to a nucleic acid with a chemical modification at the molecular level that prevents the degradation of selected nucleotides, e.g., by exonuclease action. This chemical modification is positioned such that it protects the integral portion of the nucleic acid, for example the portion of an RNA or DNA that is chemically similar to the gene involved in the physiological condition.
  • An end block may be a 3′ end block, a 5′ end block, or both.
  • a 3′ end block may be at the 3′-most position of the molecule, or it may be internal to the 3′ ends, provided it is 3′ of the integral sequences of the nucleic acid.
  • protonated compound refers to a molecule of the invention that, when dissolved in water having a pH of 7 causes the pH of the solution to fall.
  • compounds are protonated by adding protons to the reactive sites on the molecule, although other modifications of the molecule are possible, and are intended to be encompassed by this term. Such protonation can be accomplished, for example by incubating the compound in the presence of a strong acid, most preferably one with a volatile conjugate base.
  • protonation and “acidification” as used interchangeably herein refers to the process by which protons (or positively charged hydrogen ions) are added to proton acceptor sites on a compound of the invention.
  • the proton acceptor sites include the substituted or unsubstituted phosphates of the central group, as well as any additional proton acceptor sites on either the central group or the end blocking groups. As the pH of the solution is decreased, the number of these acceptor sites which are protonated increases, resulting in a more highly protonated compound.
  • nucleic acid backbones are not stable at low pH (e.g., pH 1-3) and experience depurination, although a number of backbones are relatively stable at pH 4-5.
  • One aspect of the present invention reflects the recognition that certain modifications, including 2′-halide, 2′-O-alkyl, 3′-O-alkyl, and 2′-O-alkyl-n(O-alkyl) nucleic acid molecules are stable at the desired pH of 2 to 1. These modifications enhance the ability of the oligonucleotides of the pharmacological compositions of the present invention to affect a condition in vivo.
  • the composition of the present invention may include nucleic acid molecules that are substantially acid resistant.
  • compositions of the present invention may also include nucleic acid molecules that are nuclease resistant.
  • nucleic acid molecules that are nuclease resistant. This includes nucleic acid molecules completely derivatized by 2′-O-methylphosphodiesters, 2′-O-alkyl, 2′-O-alkyl-n(O-alkyl), 2′-fluoro, 2′-deoxy-erythropentofuranosyl, chimeric linkages, and any other backbone modifications, as well as other modifications, which render the nucleic acid molecules substantially resistant to endogenous nuclease activity. Additional suitable methods of rendering nucleic acid molecules nuclease resistant include, but are not limited to, covalently modifying the purine or pyrimidine bases that comprise the nucleic acid.
  • bases may be methylated, hydroxymethylated, or otherwise substituted (e.g., glycosylated) such that the nucleic acid molecules comprising the modified bases are rendered substantially nuclease resistant.
  • Nuclease resistance also aids the oligonucleotides of the compositions of the present invention in retaining their effect in vivo.
  • the oligonucleotides of the of the present invention remain relatively unchanged chemically upon administration to a subject and retain their activity in acidic conditions (pH less than 6.0) or in the presence of an endonuclease or exonuclease (e.g., in an in vivo setting).
  • substantially acid resistant refers to nucleic acid molecules that are resistant to acid degradation as compared to unmodified nucleic acid molecules.
  • the relative acid resistance of a nucleic acid will be measured by comparing the percent degradation of a resistant nucleic acid with the percent degradation of its unmodified counterpart (i.e., a corresponding nucleic acid of the same length and sequence having a “normal” backbone and bases).
  • a nucleic acid that is acid resistant is preferably at least one and a half times more resistant to acid degradation, more preferably at least two times more resistant, even more preferably at least five times more resistant, and most preferably at least ten times more resistant than their unmodified counterpart.
  • nucleic acid molecules exhibit marked acid stability and endonuclease resistance, they are sensitive to 3′ exonucleases.
  • the 3′ or 5′ and 3′ ends of the nucleic acid are preferably attached to a chemical moiety that provides an exonuclease blocking function.
  • one or more phosphorothioate nucleotides can be placed at either end of the RNA or DNA.
  • one or more inverted bases can be placed on either end of the RNA or DNA, or one or more alkyl or alcohol (e.g., butanol-substituted) nucleotides or chemical groups can be placed on one or both ends.
  • alkyl or alcohol e.g., butanol-substituted
  • a preferred embodiment of the present invention is a nucleic acid comprising a nucleic acid having the following structure: A-B-C, wherein “B” is a 2′-O-alkyl or 2′-O-alkyl-n(O-alkyl) substituted RNA between about 1 and about 98 bases in length, and “A” and “C” are respective 5′ and 3′ end blocking groups (e.g., one or more phosphorothioate nucleotides (but typically fewer than six), inverted base linkages, or alkyl, alkenyl, alkynyl, O-alkyl, and O-alkyl-n(O-alkyl) groups or substituted nucleotides).
  • B is a 2′-O-alkyl or 2′-O-alkyl-n(O-alkyl) substituted RNA between about 1 and about 98 bases in length
  • “A” and “C” are respective 5′ and 3′ end blocking groups (e.g.,
  • a partial list of blocking groups includes inverted bases, dideoxynucleotides, methylphosphates, alkyl groups, aryl groups, cordycepin, cytosine arabanoside, 2′-methoxy, ethoxy nucleotides, phosphoramidates, a peptide linkage, dinitrophenyl group, 2′- or 3′-O-methyl bases with phosphorothioate linkages, 3′-O-methyl bases, fluorescein, cholesterol, biotin, acridine, rhodamine, psoralen, glyceryl, methyl phosphonates, butanol, butyl, hexanol, and 3′-O-alkyls.
  • An enzyme-resistant butanol preferably has the structure OH—CH 2 CH 2 CH 2 CH 2 (4-hydroxybutyl), which is also referred to as a C4 spacer.
  • substantially nuclease resistant refers to nucleic acid molecules that are resistant to nuclease degradation, as compared to naturally occurring or unmodified nucleic acid molecules.
  • Modified oligonucleotides of the invention are at least 1.25 times more resistant to nuclease degradation than an unmodified nucleic acid having the same sequence and number of nucleotides, more preferably at least 2 times more resistant, even more preferably at least 5 times more resistant, and most preferably at least 10 times more resistant than their unmodified counterpart.
  • Such substantially nuclease resistant nucleic acid molecules include, but are not limited to, nucleic acid molecules with modified backbones such as ethylphosphotriesters, 2′-O-methylphosphorothioates, 2′-O-methyl-p-ethoxy ribonucleotides, 2′-O-alkyls, 2′-O-alkyl-n(O-alkyl), 2′-fluoros, 2′-deoxy-erythropentofuranosyls, 2′-O-methyl ribonucleosides, 3′-O-methylribonucleotides, inverted bases (e.g., inverted T's), or chimeric versions of these backbones.
  • modified backbones such as ethylphosphotriesters, 2′-O-methylphosphorothioates, 2′-O-methyl-p-ethoxy ribonucleotides, 2′-O-alkyls, 2′-O-alkyl-n(
  • the modified oligonucleotide includes RNA or DNA comprising modifications to the sugar moieties such as 2′-substituted or 3′-substituted ribonucleotides, or deoxyribonucleotide monomers, any of which are connected together via internucleoside linkages.
  • Modified RNA or DNA may also be comprised of PNA or morpholino modified backbones where specificity of the sequence is maintained.
  • the ribose groups and the internucleoside linkages link the bases in a nucleic acid and are referred to as the nucleic acid backbone.
  • a modified backbone includes modifications to the chemical linkage between nucleotides, as well as other modifications that may be used to enhance stability and affinity, such as modifications to the sugar structure.
  • an L-anomer of deoxyribose may be used, where the base is inverted with respect to the natural D-anomer.
  • the 2′-OH of the sugar group may be altered to 2′-halogen, 2′-O-alkyl or 2′-O-alkyl-n(O-alkyl), which provides resistance to degradation without compromising affinity.
  • modified backbones include the following types of internucleotide linkages: 2′-O-methyl-phosphodiesters, 2′-O-alkyl, 2′-O-ethyl, 2′-O-propyl, 2′-O-butyl, 2′-O-alkyl-n(O-alkyl), 2′-methoxyethoxy, 2′-fluoro, 2′-deoxy-erythropentofuranosyl, 3′-O-methyl, p-isopropyl oligonucleotides, 2′-O(CH 2 CH 2 ) x CH 3 , and/or butyne linkages.
  • An oligonucleotide may have combinations of such modified backbones, may be completely modified, or may comprise all or some linkages being phosphodiester linkages.
  • Preferred internucleoside linkages on the modified oligonucleotide are achiral.
  • achiral refers to a molecule that is superimposable with its mirror image
  • chiral refers to a molecule that is not superimposable with its mirror image.
  • Oligonucleotides containing achiral 5′ to 3′ internucleoside phosphate linkages have internucleotide linkages which are achiral (i.e., no stereochemistry).
  • the achiral oligonucleotides preferably contain at least about three to eight contiguous achiral internucleoside linkages, more preferably, nine to ten contiguous achiral internucleoside linkages, even more preferably, eleven to twelve contiguous achiral internucleoside linkages, and most preferably, is completely comprised of achiral internucleoside linkages through the entire contiguous sequence.
  • the achiral internucleoside linkages are interspersed with chiral internucleoside linkages (e.g., two contiguous achiral linkages followed by one chiral linkage followed by two contiguous achiral linkages; three contiguous achiral linkages followed by one chiral linkage; four contiguous achiral lingages followed by two achiral linkages, etc.).
  • chiral internucleoside linkages include, but are not limited to, phosphodiester and diphosphorothioate linkages.
  • RNA and DNA linkages in the backbone are routinely generated during automated synthesis of oligonucleotides if the final structure is a symmetrical molecule (i.e., a phosphate with the same atom attached to both sides).
  • the internucleoside phosphate linkages can be phosphodiester, or 3′ to 3′, 5′ to 2′ or 5′ to 5′ linkages, and combinations of such similar linkages (to produce mixed backbone modified RNA or DNA).
  • the modifications can be internal (single or repeated) or at the end(s) of the RNA or DNA molecule. These modifications can include additions to the nucleic acid molecule, such as cholesteryl, diamine compounds with varying numbers of carbon residues between amino groups and terminal ribose, and deoxyribose or phosphate modifications which cleave or cross-link to the opposite chains or to associated enzymes or other proteins.
  • Electrophilic groups such as ribose-dialdehyde could covalently link with an epsilon amino group of the lysyl-residue of such a protein.
  • a nucleophilic group such as n-ethylmaleimide tethered to an RNA or DNA could covalently attach to the 5′ end of an mRNA or to another electrophilic site.
  • Suitable oligonucleotides for the present invention can be determined by evaluating the Delta G or Gibbs Free energy of oligonucleotide binding to the complementary RNA strand at 37° C. and the Tm. The Gibbs Free energy and Tm are measured from the part of the target gene that corresponds to the RNA oligonucleotide that is added. These values can be calculated using the program found on ftp://rna.chem.rochester.edu and are described in Matthews et al. (1999) J. Mol. Biol. 288, 911-940 and Matthews et al. (1999) RNA 5, 1458-1469.
  • composition comprising an oligonucleotide, (i) wherein said oligonucleotide is at least 10 nucleotides in length, (ii) the Gibbs Free energy of the binding of said oligonucleotide/RNA target duplex at 37° C. is ⁇ 15 kCal, (iii) said oligonucleotide is complementary to a region within the target gene selected from the group consisting of 5′ UTR, translational start site and translational termination site and (iv) wherein said target gene is a gene as listed in Table 1.
  • the Gibbs free energy is measured between that part of the target gene that corresponds to the oligonucleotide, that part typically being the 5′UTR, translational start site or the translational termination site.
  • the Gibbs Free energy of the binding of said oligonucleotide/RNA target duplex at 37° C. is ⁇ 20 kCal. Also preferred, the Gibbs Free energy is ⁇ 25 kCal.
  • the Gibbs Free energy is preferably ⁇ 15 kCal, for 15-17 mer oligonucleotides, the Gibbs Free energy is preferably ⁇ 20 kCal, for 18-20 mer oligonucleotides, the Gibbs Free energy is preferably ⁇ 25 kCal, for 21-23 mer oligonucleotides, the Gibbs Free energy is ⁇ 30 kCal, and for 24-26 mer oligonucleotides, the Gibbs Free energy is ⁇ 35 kCal.
  • composition comprising an oligonucleotide, (i) wherein said oligonucleotide is at least 10 nucleotides in length, (ii) the Tm of said oligonucleotide to a target gene is about 65-90° C., (iii) said oligonucleotide is complementary to a region within the target gene selected from the group consisting of 5′ UTR, translational start site an termination site, and (iv)wherein said target gene is selected from a gene as listed in Table 1.
  • the oligonucleotide has a Tm of about 75-90° C.
  • the oligonucleotide has a Tm of about 85-90° C. Still preferred, the Tm of said oligonucleotide to a target gene at 1M monovalent cation concentration is about 65-90° C. The Gibbs free energy is measured between that part of the target gene that corresponds to the oligonucleotide, that part typically being the 5′ UTR, translational start site or the translational termination site.
  • the term “nutritional supplement” refers to a composition that is intended to supplement the diet.
  • a nutritional supplement includes any dietary substance used in mammals to supplement the diet by increasing total dietary intake; or a concentrate, metabolite, constituent, extract, etc.
  • Nutritional supplement includes any product that is intended for ingestion in tablet, capsule, powder, soft-gel, gel-cap, or liquid form.
  • the term “nutritional supplement” is used synomously with the term “dietary supplement” and “nutraceutical” throughout the specification.
  • the present invention provides a composition which is useful as a nutritional supplement to maintain or improve the an individual's health.
  • Preferred indications for dietary supplements include, but are not limited to, maintenance of cardiovascular function and a healthy circulatory system, maintenance of cholesterol levels that are already within the normal range, reduction of stress and frustration, relief of occasional simple nervous tension, relief of nervousness due to common everyday overwork and fatigue, alleviation of restlessness, reduction in nervous irritability, relief from anxiety, relief of muscle tension, enhancement of resistance to stress, promotion of emotional balance and a positive outlook, relief of sour stomach or upset stomach, relief of occasional heartburn or occasional acid indigestion, appetite suppression, promotion of healthy weight loss while naturally satisfying the appetite, appetite control, relief of minor or temporary aches and pains, treatment of common symptoms associated with the menstrual cycle, treatment of mild mood changes, cramps, and edema associated with the menstrual cycle, maintenance of a normal, healthy attitude during pre-menstrual syndrome, diminish the normal symptoms of pre-menstrual syndrome and maintenance of hormonal balance and alleviati
  • the nutritional supplement composition of the present invention include compositions with a single oligonucleotide and/or a combination of about two or more oligonucleotides.
  • the use of the nutritional supplement compositions of the present invention can be used to treat any of the aforementioned indications.
  • These agents may be combined in an oral dosage with other well known nutritional supplements and/or non-flavonoid antioxidants (e.g., selenium, vitamin E (tocopherol, particularly alpha-tocopherol), vitamin C (ascorbic acid) and coenzyme Q10).
  • Dietary fiber supplements may also be used in the composition.
  • additives may be incorporated in the nutritional supplement of the present invention.
  • Such additives include minerals, (e.g., boron, etc. and trace metals such as zinc, magnesium, manganese, chromium, molybdenum, copper, iron, calcium, and potassium; and other micronutrients such as thiamine, riboflavin, niacin, pantothenic acid, pyridoxine, choline, biotin, inositol, para-aminobenzoic acid, vitamin D, vitamin K, vitamin A).
  • a dietary fiber supplement such as oat bran or other natural fiber source may also be added to the composition.
  • the nutritional supplement will further include a pharmaceutically acceptable carrier such as lactose, glucose, sucrose, corn starch, potato starch, cellulose acetate, ethyl cellulose, etc.
  • a pharmaceutically acceptable carrier such as lactose, glucose, sucrose, corn starch, potato starch, cellulose acetate, ethyl cellulose, etc.
  • Diluents and other additives such as one or more pharmaceutically acceptable binding agents, fillers, supports, thickening agents, taste-improving agents, coloring agents, preservatives, stabilizers, regulators, emulsifiers or mixtures thereof may be used depending on the form of the composition employed.
  • the invention also includes a method for orally administering the nutritional supplement composition in dosages effective to aid in the maintenance and improvement of an individual's health.
  • the supplement is preferably administered orally.
  • Suitable forms for the nutritional supplement composition for oral administration include tablets, capsules, lozenges, syrups, granules, solutions and suspensions which contain unit doses of the supplement for administration once or several times a day.
  • the nutritional supplement composition of the invention will typically be administered orally as a liquid, tablet or a capsule. Tablets, gel tabs, capsules, liquid and sustained release formulations can be formulated and prepared according to manufacturing techniques well known in the pharmaceutical industry and in a variety of dosage forms.
  • the nutritional supplement is a sports drink comprising one or more modified antisense oligonucleotides capable of hybridizing to one or more of the genes listed in Table 1.
  • the sport drink comprises the modified oligonucleotides Asm (SEQ ID NO: 1), Pde5 (SEQ ID NO: 16), FAAH (SEQ ID NO: 23), CX2 (SEQ ID NO: 6), CRP (SEQ ID NO: 24), LO5 (SEQ ID NO: 12), P65 (SEQ ID NO: 10), CD18 (SEQ ID NO: 5).
  • the present invention includes a pharmaceutical composition
  • a pharmaceutical composition comprising at least about one oligonucleotide, wherein said oligonucleotide comprises (i) at least about ten contiguous nucleotides in length, (ii) at least about three to eight contiguous achiral internucleoside linkages, (iii) further comprising a pharmaceutically suitable excipient.
  • other oligonucleotides, described herein, are used in the inventive compositions.
  • the therapeutic composition can be a pharmaceutical or homeopathic composition.
  • the term “pharmaceutical composition” refers to a therapeutic composition that is used to treat a particular disease or pathological disorder that is suitable for parenteral, oral or topical administration in humans.
  • compositions containing the modified oligonucleotides of the invention in an admixture with a pharmaceutically acceptable carrier can be prepared according to known techniques.
  • the carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., intravenous, oral, topical, aerosol (for topical or inhalation therapy), suppository, parenteral, or spinal injection.
  • the excipient may contain any number of carriers.
  • the carriers would preferably be homeopathic carriers, e.g., homeopathic agents that may increase the efficacy of the homeopathic composition or help to alleviate symptoms associated with a physiological condition.
  • composition may contain stabilizers, preservatives, and other ingredients, preferably in amounts from about 0.5 to 2.0 percent by weight, provided they do not adversely affect the ability of the pharmacological composition to treat the physiological condition. It is well within the skill of one in the art to determine an appropriate mode of administration and to select an appropriate delivery system.
  • Administration of the composition will introduce the modified oligonucleotides to the individual in a diluted amount.
  • Exemplary ranges of dosage for oral or topical administration are between about 0.001 mg and 10 mg per day, and preferably between about 0.010 mg and 1.0 mg per day of oligonucleotide in the composition.
  • one dosage unit be administered one to four times per day until relief is achieved or until the symptoms disappear or are satisfactorily attenuated.
  • a patient is instructed to orally take two to three dosage units per day.
  • the dosage unit may be placed under the tongue of the patient or simply swallowed for such oral administration.
  • compositions of the present invention may be formulated for administration to humans and animals in liquid form, or in tablets, pills, granules, powders, or in ointments, creams, injectables, or suppositories. Ointments and creams are impregnated with a low liquid potency or, sometimes, mother tinctures and are generally prescribed as specific remedies. Liquid compositions may be supplied in amber glass dropper bottles to protect them from light.
  • any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like in the case of oral liquid preparations (such as, for example, suspensions, elixirs, and solutions); or carrers such as starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations (such as, for example, powders, capsules and tablets).
  • RNA can be dissolved in a liquid 1 part by weight to produce a ten volumes of liquid attenuation labeled 1 ⁇ . To produce lower dilutions 1 ml of the 1 ⁇ attenuation is used (mixed thoroughly) with 9 ml of diluent to produce 2 ⁇ . This process is repeated until the desired attentuation is achieved.
  • preparations may comprise an aqueous solution of a water soluble, or solubilized, and pharmacologically acceptable form of the nucleic acid in an appropriate liquid, e.g., water or saline solution.
  • injectable suspensions may also be prepared using appropriate liquid carriers, suspending agents, agents for adjusting the isotonicity, preserving agents, and the like. Actual methods for preparing administrable pharmacological compositions and adjustments necessary for administration to subjects will be known or apparent to those skilled in the art.
  • the carrier may take a wide variety of forms depending on the preparation, which may be a cream, dressing, gel, lotion, ointment, or liquid.
  • a surfactant can be included in the composition to provide deeper penetration of the ingredients. Although natural surfactants are preferred, others such as isopropyl myristate can be used.
  • the composition is a cosmetic composition for topical administration to the skin.
  • cosmetic composition refers to a composition that is applied topically to the skin to improve the appearance of the skin.
  • Aerosols are prepared by dissolving or suspending the nucleic acid in a propellant such as ethyl alcohol or in propellant and solvent phases.
  • a propellant such as ethyl alcohol or in propellant and solvent phases.
  • the pharmaceutical compositions for topical or aerosol form will generally contain from about 0.001 percent by weight (of the nucleic acid) to about 40 percent by weight, preferably about 0.02 percent to about 10 percent by weight, and more preferably about 0.05 percent to about 5 percent by weight depending on the particular form employed.
  • Suppositories are prepared by mixing the nucleic acid with a lipid vehicle such as theobroma oil, cacao butter, glycerin, gelatin, or polyoxyethylene glycols.
  • compositions of the invention may also include plant or herbal extracts.
  • topical compositions may include Paraguay tea, Kola and Guarana which provide a source of methylxanthines, saponius, tannins and glycosides which have been shown to reduce swelling and redness.
  • the extract of Paraguay tea is known as “Mate extract” and is described in the International Cosmetic Ingredient Dictionary, 5th Edition.
  • Mate extract is commercially available in combination with extracts of Kola and Guarana that is sold by Cosmetic Ingredient Resources (Stamford, Conn.) under the “QUENCHT” trademark.
  • Suitable herbs which can be used also include Symphytum officinale, Moschus moscheferous, Pripalia geniculata, Plantago asiatica , Causticum, Helianthemum canadense, Ornithogalum umbellatum, Clematis crispa, Impatiens pallida, Prunus cerasus , arnica, etc.
  • the nucleic acid molecule(s) may be combined with a lipid, cationic lipid, or anionic lipid and the active agent delivered via a nucleic acid/lipid emulsion, or a liposomal suspension.
  • a lipid, cationic lipid, or anionic lipid and the active agent delivered via a nucleic acid/lipid emulsion, or a liposomal suspension.
  • the use of cationic, anionic, and/or neutral lipid compositions or liposomes is generally described in International Publications WO90/14074, WO91/16024, WO91/17424, and U.S. Pat. No. 4,897,355, all herein incorporated by reference.
  • the nucleic acid molecules may exhibit an increased half-life in vivo.
  • anionic lipids for use with RNA or DNA include, but are not limited to, cardiolipin, dimyristoyl, dipalmitoyl, or dioleoyl phosphatidyl choline or phosphatidyl glycerol, palmitoyloleoyl phosphatidyl choline or phosphatidyl glycerol, phosphatidic acid, lysophosphatidic acid, phosphatidyl serine, phosphatidyl inositol, and anionic forms of cholesterol.
  • the invention includes a method for making an oligonucleotide composition
  • a method for making an oligonucleotide composition comprising (i) selecting an oligonucleotide that is adjacent to or overlaps a target region of a gene, (ii) determining the Gibbs Free energy value associated with said oligonucleotide in reference to said target gene, (iii) assessing Tm in reference to said target gene, and (iv) performing a sequence database search to determine if said oligonucleotide overlaps the 5′ UTR, the translational start sequence, or the translational termination site of an mRNA of a gene different from the target gene.
  • the oligonucleotide of the present invention can be directed to a translational start site, a 5′ UTR or a termination site.
  • the oligonucleotide is adjacent to or overlaps the translational start site of the gene by at least about one base.
  • the oligonucleotide overlaps the translational start site by at least about two bases.
  • the oligonucleotide overlaps the translational start site by at least about three bases.
  • RNA or DNA that has the same or similar base sequence as the portion of the complement of a gene that encodes the 5′ end of an RNA.
  • a nucleic acid may also have, for example, a same or similar base sequence as other regions of the gene, such as the region encoding a translation start site or the 3′ untranslated region.
  • a nucleic acid may be designed to reflect the region around a splice donor or splice acceptor site, either with or without the intervening intron.
  • nucleic acid molecules whose sequences comprise all or a fragment of the sequence of the complement of a gene that is over-expressed in individuals exhibiting the disease or condition.
  • overexpression of a gene can be through molecular means, e.g., detection of expression in affected tissue using conventional molecular techniques (e.g., Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press). Overexpression of a gene may also be detected using array technology, or inferred from the results of protein assays, such as ELISA.
  • a method of making a homeopathic composition comprising (i) triturating solid RNA in a 1/9 ratio with lactose to produce a 1 ⁇ solid and (ii) repeating the process until the desired attenuation is achieved, is described in the present invention.
  • a method of making a homeopathic composition comprising (i) dissolving 1 part RNA by weight in liquid to produce ten volumes of liquid attenuation labeled 1 ⁇ and optionally (ii) mixing 1 ml of the 1 ⁇ attenuation with 9 ml of diluent to produce a lower concentration, is also addressed.
  • the invention includes homeopathic compositions containing modified oligonucleotides.
  • tablets for homeopathic use are preferably produced as placebo tablets that are then medicated by dripping or spraying liquid potencies onto the tablets in such a manner as to ensure a coefficient of impregnation of almost 100 percent.
  • the placebo tablets are preferably formed by compression. Pills or granules are preferably spherical in shape, of about 4 millimeters diameter and 3 to 5 centigrams in weight. They are preferably prepared (form pure lactose) and medicated in the same manner as tablets.
  • solid RNA can be triturated (i.e., ground up) in a 1/9 ratio with lactose (1 gram of RNA+9 grams of lactose) to produce a 1 ⁇ solid. The process is repeated (1 gram of that material plus 9 grams of lactose) until the desired attenuation is achieved.
  • the excipient may contain any number of carriers, and preferably homeopathic carriers, e.g., homeopathic agents that may increase the efficacy of the homeopathic composition or help to alleviate symptoms associated with a physiological condition.
  • homeopathic carriers e.g., homeopathic agents that may increase the efficacy of the homeopathic composition or help to alleviate symptoms associated with a physiological condition.
  • RNA can be dissolved in a liquid 1 part by weight to produce a ten volumes of liquid attenuation labeled 1 ⁇ . To produce lower dilutions 1 ml of the 1 ⁇ attenuation is used (mixed thoroughly) with 9 ml of diluent to produce 2 ⁇ . This process is repeated until the desired attentuation is achieved.
  • a homeopathic carrier solution such as that described in U.S. Pat. No.
  • 5,603,915 may be used for increasing the efficacy of the homeopathic agent.
  • This carrier solution is sequentially subjected to an alternating current electrical treatment and a direct current electrical treatment, after which additional ingredients such as seawater, brain hormones, and biologically active enzymes are added.
  • the electrical treatment of the carrier, along with the addition of homeopathically active substances, can be used to increase the efficacy of the homeopathic composition.
  • an electromagnetic carrier such as described in U.S. Pat. No. 5,830,140 may be employed.
  • the invention includes a method of treating a disorder comprising administering an oligonucleotide to a patient in a therapeutically effective amount.
  • therapeutically effective amount is meant to refer to an amount of a pharmacological composition that is non-toxic and is the lowest amount necessary to provide a desired physiological effect.
  • the oligonucletide compositions of the present invention are administered at concentrations at or below 100 ⁇ g per kg of body weight. Also preferred, the concentration is at or below 10 ⁇ g per kg of body weight, still preferred, the concentration is at or below 1 ⁇ g per kg of body weight, and still more preferred, the concentration is at or below 0.1 ⁇ g per kg of body weight.
  • the oligonucleotide compositions of the present invention can be combined with any homeopathic drug and still elicit a therapeutic effect.
  • the oligonucleotide comprises at least one modification according to the present invention.
  • a preferred modification is the incorporation of at least about three to eight contiguous achiral internucleoside phosphate linkages into the oligonucleotide backbone. More preferably the oligonucleotide incorporates at least nine to ten continuous achiral internucleoside phosphate linkages, even more preferably, eleven to fifteen achiral internucleoside phosphate linkages, and most preferably, the entire oligonucleotide contains achiral internucleoside phosphate linkages.
  • the oligonucleotide is 3′ end-blocked, comprises at least 10 contiguous nucleotides greater than or equal to 80 percent identical to a nucleotide sequence selected from SEQ ID NO: 1-81. Also preferred, the oligonucleotide is at least 85 percent identical to a nucleotide sequence selected from the group of SEQ ID NO: 1-81. Still preferred, the oligonucleotide is at least 90 percent identical and more preferred, at least 95 percent identical. Most preferably, the oligonucleotide comprises a sequence from SEQ ID NO: 1-81.
  • the methods of the present invention can be used to treat disorders including, but not limited to, acroparaesthsia, allergic (psoric) conditions, allergic reactions, alopecia, amnesia, anaphrodisia, angina, arthritis, asthenopia, biliary sycosis, burns, cancerous conditions, such as colon cancer, malignant melanoma and malignant nasal polyps, carpal tunnel syndrome, colds, conjunctivitis, Crohn's disease, depression, depressive psychosis, dysthyroidism, epilepsy, erectile dysfunction, excessive appetite (i.e., appetite control and suppression, promotion of healthy weight loss while naturally satisfying the appetite), gingivitis, heart burn (i.e., relief of occasional heartburn or occasional acid indigestion), hemorrhage, hypertension (i.e., helps maintain cardiovascular function, and a healthy heart and circulatory system), high cholesterol (i.e., helps to maintain cholesterol levels that are already within the normal range),
  • Table 2 lists the oligonucleotides, or combinations of oligonucleotides that are preferably employed in remedies for the treatment of various symptoms and conditions.
  • the use of a combination of oligonucleotides is denoted by a “/” (for example, “A/B/C” denotes the combined use of oligonucleotides A, B and C); where two or more different combinations are preferred, each such combination is presented on a separate line.
  • the oligonucleotides are usually used in a 1:1:1 ratio, but this can vary. For example, a combination of 4 ⁇ , 5 ⁇ , and 6 ⁇ solutions may be used, which deviates from 1:1:1.
  • compositions of the present invention are formulated to contain a “nutritionally effective” or “allopathically effective” or “homeopathically effective” amount of one or more nucleic acid molecules.
  • the term “nutritionally effective” amount is meant to refer to an amount of a oligonucleotide composition that is non-toxic and greater than the minimum amount necessary to maintain a desired physiological effect.
  • the term “allopathically effective” amount is meant to refer to an amount of a oligonucleotide composition that is non-toxic and greater than the minimum amount necessary to produce a desired physiological effect.
  • the term “homeopathically effective” amount is meant to refer to an amount of a oligonucleotide composition that is non-toxic and is the lowest amount necessary to provide a desired physiological effect.
  • a homeopathic effect in accordance with the present invention, is achieved by a dose of modified nucleic acid that will be effective in treating (i.e., relieving, ameliorating, or preventing) symptoms of a particular condition or disease.
  • Such treatment may be prophylactic in nature (i.e., completely or partially preventing the future occurrence of a symptom) and/or it may be therapeutic in nature (i.e., providing a partial or complete cessation or amelioration of a symptom).
  • the method of treating of the present invention covers any treatment of symptoms of a disorder in a mammal, particularly a human, and includes:
  • Homeopathic compositions typically employ substantially less nucleic acid than is employed in allopathic compositions.
  • Exemplary dosages to be employed in accordance with the present invention are described in Table 3 below.
  • Homeopathic RNA/DNA Concentration Dilution/Potency ⁇ g/kg 2x 50 3x 5 4x 0.5 5x 0.05 6x 0.005
  • an appropriate dosage of one or more therapeutic compositions of the invention may be determined by any of several well-established methodologies. Additionally, dosages may also be altered depending upon factors such as the severity of infection, and the size or species of the host.
  • compositions of the present invention having agents with compositions containing nucleic acid molecules having a sequence appropriate for the particular animal.
  • Targeted species include, but are not limited to birds, fish, and mammals (especially pigs, goats, sheep, cows, dogs, horses, cats, and most preferably, humans).
  • RNA oligonucleotide composition containing RNA oligonucleotides complementary to the tripeptidyl gene.
  • RNA oligonucleotide concentrations were typically 0.3 to 3.0 A 260 /RNA/ml and given in dosages (0.1-1.0 ⁇ g/kg of 0.5 ml twice daily).
  • the effect of the composition was then evaluated after approximately one to two months of therapy (see Table 5).
  • oligonucleotide compositions with RNA oligonucleotides complementary to CE and/or neutral endopeptidase genes. Some individuals were additionally given compositions with RNA oligonucleotides complementary to other genes. Concentrations were typically 3.0 to 30 A 260 /RNA/ml and given in dosages (1.0-10 ⁇ g/kg) of 0.5 ml twice daily. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 7). Treatment efficacy was determined by measuring changes in blood pressure where a decrease in blood pressure below 160/89 was assessed as a successful treatment because blood pressure above this level has been associated with stroke, heart disease and kidney failure.
  • RNA oligonucleotide compositions containing RNA oligonucleotides complementary to the 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene. Some individuals were also given oligonucleotide compositions further containing RNA oligonucleotides complementary to other genes such as phosphodiesterase 4 and phosphodiesterase 5. RNA oligonucleotide concentrations were typically 3.0 to 30 A 260 /RNA/ml and given in dosages (1.0-10 ⁇ g/kg) of 0.5 ml twice daily. The effect of the composition on serum cholesterol was evaluated after approximately one to two months of therapy (see Table 8). Treatment efficacy was determined by measuring changes in serum cholesterol where a one-point drop corresponded to a two percent reduction in the probability of heart disease and a twenty-five-point drop corresponded to a fifty percent reduction in the probability of heart disease.
  • compositions containing RNA oligonucleotide with eight or more contiguous achiral internucleoside phosphate linkages on cholesterol levels was also assessed.
  • oligonucleotide compositions containing achiral RNA oligonucleotides complementary to 3-hydroxy-3-methylglutaryl-coenzyme A reductase, phosphodiesterase 4 and phosphodiesterase 5 were given orally in combination at a concentration of 3.0 A 260 /RNA/ml at dosages of 0.5 ml, twice daily.
  • the achiral RNA oligonucleotides produced a decrease of 46 mg/dL in serum cholesterol.
  • the achiral 2′methoxy-RNA supplements resulted in a 31 mg/dL decrease in serum cholesterol levels. Chiral RNA or DNA did not effect cholesterol levels.
  • RNA oligonucleotide composition containing RNA oligonucleotides complementary to the phosphodiesterase 4 and phosphodiesterase 5 genes.
  • RNA oligonucleotide concentrations were typically 0.3 to 3.0 A 260 /RNA/ml and were given in dosages (0.1-1.0 ⁇ g/kg) of 0.5 ml two to six times per day.
  • the effect of the composition was evaluated after approximately one to two months of therapy (see Table 9).
  • oligonucleotide compositions with RNA oligonucleotides complementary to the phosphodiesterase 4 and/or cyclooxygenase 2 genes. Some individuals were given compositions additionally containing RNA oligonucleotides complementary to other genes such as phosphodiesterase 5 and NF ⁇ B p65. Oligonucleotide concentrations were typically 0.3 to 3.0 A 260 /RNA/ml and given in 0.5 ml dosages (0.1-1.0 ⁇ g/kg) twice per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 10).
  • oligonucleotide compositions containing RNA oligonucleotides complementary to the phosphodiesterase 4, phosphodiesterase 5, cyclooxygenase 2 and 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes.
  • Oligonucleotide concentrations were typically 3.0 to 30 A 260 /RNA/ml taken in dosages (1.0-10 ⁇ g/kg) of 0.5 ml two to four times per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 12).
  • oligonucleotide compositions containing RNA oligonucleotides complementary to the phosphodiesterase 4, cyclooxygenase 2 and p65 genes. Some individuals were given compositions containing additional RNA oligonucleotides complementary to other genes such as lipoxygenase 5. Oligonucleotide concentrations were typically 3.0 to 30 A 260 /RNA/ml taken in dosages (1-10 ⁇ g/kg) of 0.5 ml two to four times per day. The effect of the compositions was evaluated after approximately one to two months of therapy (see Table 13).
  • a debilitating form of the indicated neurological disorder i.e., amyotrophic lateral sclerosis, multiple sclerosis, alzheimer's disease, parkinson's disease
  • the effect of the composition was evaluated after approximately one to two months of therapy (see Table 16).
  • RNA and DNA concentrations were typically 0.3 to 30 A 260 /RNA/ml (0.1-10 ⁇ g/kg).
  • oligonucleotide compositions containing RNA oligonucleotides complementary to the phosphodiesterase 4 gene. Some individuals were given compositions containing additional RNA oligonucleotides complementary to other genes such as cyclooxygenase 2, NF ⁇ B p65 and other gene targets. Oligonucleotide concentrations were typically 0.03 to 300 A 260 /RNA/ml taken in doses (0.01-100 ⁇ g/kg) of 0.5 ml two to four times per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 19).
  • compositions containing RNA oligonucleotides complementary to the phosphodiesterase 4 gene were orally or topically administered compositions containing RNA oligonucleotides complementary to the phosphodiesterase 4 gene. Some individuals were given compositions containing additional RNA oligonucleotides complementary to other genes such as cyclooxygenase 2 and p65. Oligonucleotide concentrations were typically 0.3 to 300 A 260 /RNA/ml taken in doses (0.1-100 ⁇ g/kg) of 0.5 ml two to four times per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 26).
  • TABLE 4 Cancer Therapy Severity sex age condition oligonucleotides before after 1 m 38 Skin cancer X2/65 7-8 1-2 2 m 72 Skin cancer X2/65/LO5-38 7-8 stable 3 f 52 Malignant nasal polyps X2/65/LO5-38/ 10 1 Mg44 4 f 47 Malignant melanoma X2/65/LO5-38/ 10 stable Mg44 5 f 56 Breast cancer X2/65/LO5-38 10 stable
  • oligonucleotide compositions containing RNA oligonucleotides complementary to the phosphodiesterase 4, phosphodiesterase 5 genes or as indicated in FIG. 24. Some animals were additionally given compositions containing additional RNA oligonucleotides complementary to other genes such as cyclooxygenase 2 and p65. Oligonucleotide concentrations were typically 0.3 to 300 A 260 /RNA/ml taken in doses (0.1-100 ⁇ g/kg) of 0.5 ml two to four times per day. The effect of the composition was then evaluated (see Table 27). Treatment efficacy was evaluated by an attending veterinarian. TABLE 27 Animal studies Severity animal Condition oligonucleotides before after dog skin allergy Asm 8 2 dog inflammatory Asm, CX2, P65 7 2 bowel disease horse nervous and agitated Asm, D5 8 2
  • nucleic acid sequences from a known gene sequence for the design of oligonucleotides.
  • Preferred choices are sequences that either are adjacent to, or overlap the start site, followed by sequences that are in the 5′ un-translated region, followed by sequences immediately adjacent to or overlapping the termination signal. This method is very effective and when combined with, achiral RNA, it produces oligonucleotides that display therapeutic efficacy consistently.
  • the Tm any hairpin that could form is at least 10° C. lower than the Tm of the oligonucleotide binding to the target RNA or DNA,
  • a melting temperature for the oligonucleotide binding to the target RNA is 45° C. by the percent GC method at 1.0 M salt
  • the percent G+C of the oligonucleotide to be used is >35 percent and are administered so that each specific RNA is at a concentration (1.0 g/100 ml), or lower in doses not to exceed 100 ⁇ g/kg per RNA, or more preferably 10 ⁇ g/kg, or more preferably 1 ⁇ g/kg, or still more preferably ⁇ 1 ⁇ g/kg. Sequences are then screened to be sure they do not overlap the same regions in other known genes by conducting BLAST searches against the entire GenBank list of human sequences.
  • Factors contributing to the selective inhibition of gene expression in vivo by the modified oligonucleotides of the invention include the influence of chirality on melting temperature.
  • 2′-O-methyl modified RNA oligonucleotides with achiral linkages resemble backbone linkages that very closely resemble normal unmodified nucleic acids.
  • oligonucleotides synthesized using phosphoramidite based synthesis of phosphorothioates produces mixed isomers present at each modified phosphorothioate linkage.
  • a measurable result of the presence of these mixed isomers is a decrease in melting temperature of the phosphorothioate oligonucleotide in a primer target duplex as compared to an unmodified oligonucleotide in the same duplex.
  • the melting temperature of a 2′-O-methyl RNA oligonucleotide is not substantially lowered relative to an unmodified oligonucleotide.
  • the melting temperatures for 2′-O-methyl RNA oligonucleotides closely resemble those for unmodified RNA because the presence of the 2′-O-methyl group does not result in the generation of isomers.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Endocrinology (AREA)
  • Dermatology (AREA)
  • Reproductive Health (AREA)
  • Pain & Pain Management (AREA)
  • Psychiatry (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)

Abstract

The present invention relates to methods and compositions containing oligonucleotides suitable for administration to humans and other mammals.

Description

    FIELD OF THE INVENTION
  • The present invention relates to compositions containing oligonucleotides, and particularly to oligonucleotide-containing compositions suitable for administration to humans and other mammals. [0001]
  • BACKGROUND OF THE INVENTION
  • Oligonucleotides, oligonucleotide analogs and other sequence-specific binding polymers designed to block translation of selected messenger RNA (the sense strand) are commonly called antisense oligonucleotides. Development of such oligonucleotides, for therapeutic applications entails selecting a target genetic sequence unique and critical to the pathogen or pathogenic state one wishes to treat. One then assembles an oligomer of genetic bases (adenine, cytosine, guanine, and thymine or uracil) complementary to that selected sequence. When such an antisense oligonucleotide binds to its targeted disease-causing sequence, it can inactivate that target and thereby alleviate the disease. [0002]
  • Antisense oligonucleotides offer the prospect of safe and effective therapeutics for a broad range of intractable diseases. Nonetheless, developing therapeutics that function by a true antisense mechanism presents a number of forbidding challenges. The oligonucleotides should achieve adequate efficacy at a concentration attainable within the cells of the patient. They should inhibit their selected target sequences without concomitant attack on any other sequences in the patient's pool of approximately 200 million bases of unique-sequence RNA. They should be stable in extracellular compartments and within cells. They must be deliverable into the cellular compartments containing their targeted sequences. They should be adequately soluble in aqueous solution. Finally, they should exhibit little or no toxicity at therapeutic concentrations. [0003]
  • First-generation antisense oligonucleotides comprised natural genetic material (Belikova et al. (1967) Tetrahedron Lett. 37, 3557-3562; Zamecnik et al. (1978) Proc. Natl. Acad. Sci. USA 75, 280-284; Summerton (1979) J. Theor. Biol. 78, 77-99) and often contained crosslinking agents for binding their targets irreversibly (Summerton et al. (1978) J. Mol. Biol. 122, 145-162). As the design challenges became more fully appreciated, a number of non-natural antisense structural types were developed in an effort to improve efficacy, stability and delivery. Of particular note are the early non-ionic DNA analogs including phosphotriester-linked DNA and methylphosphonate-linked DNA (Cohen (1989) Oligodeoxynucleotides: Antisense Inhibitors of Gene Expression, CRC Press, pp. 82-92). Other nucleic acid analogs of note include carbamate-linked DNA (Cohen (1989) Oligodeoxynucleotides: Antisense Inhibitors of Gene Expression, CRC Press, pp. 97-117), phosphoroamidate-linked DNA (Froehler et al. (1988) Nucleic Acids Res. 16, 4831-4839) and 2′-O-methyl RNA (Shibahara et al. (1989) Nucleic Acids Res. 17, 239-252). These second generation oligonucleotides include oligonucleotides containing acyclic backbone moieties, including nylon (Weller et al. (1991) J. Org. Chem. 56, 6000-6006; Huang et al. (1991) J. Org. Chem. 56, 6007-6018), the exceptionally high-affinity peptide nucleic acids (PNA) (Egholm et al. (1992) J. Am. Chem. Soc. 114, 1895-1897) and related types (U.S. Pat. No. 5,217,866). [0004]
  • One approach to improving the potency of antisense oligonucleotides is to enhance the affinity or the efficiency with which the antisense oligonucleotides interact with their targets and induce RNase degradation of their target gene transcripts. The doses at which effects have been observed generally range from 10 to 30 mg/kg i.v. (Miraglia et al. (2000) Antisense Nuc. Acid Drug Devel. 10, 453-461). Some clinical studies, however, have not demonstrated antisense activity at doses up to 30 mg/kg i.v. (Rudin et al. (2001) Clin. Cancer Res. 7, 1214-1220; Kushner et al. (2000) Curr. Oncol. Reports 2, 23-30), indicating that results vary based on the structure of the oligonucleotide administered. Typical dose-response curves for antisense oligonucleotides both in vivo and in vitro, often reveal that less than a factor of ten often separates the concentration producing antisense activity from the concentration producing no activity (Branch (1998) Trends Biochem. Sci. 23, 45-50). Since the ratio of antisense to non-antisense effects drops sharply outside a restricted concentration range, it remains challenging to identify common structural features for any antisense oligonucleotide that will enhance affinity and efficiency of the oligonucleotide for its target. Furthermore, no studies to date have identified common structural features of antisense oligonucleotides that would make them suitable for oral administration, thus necessitating intravenous administration (Chen et al. (2000) Antisense Nuc. Acid. Drug Develop. 10, 415-422). Identification of common structural modifications of antisense oligonucleotides that facilitate oral or topical administration would therefore also be advantageous. [0005]
  • Although each of these newer structural types provides one or more significant advantages over the first-generation oligonucleotides, none yet appear to provide the full combination of properties needed in antisense therapeutics for successful therapeutic applications. [0006]
  • SUMMARY OF THE INVENTION
  • The invention encompasses a composition suitable for administration in a mammal comprising a modified oligonucleotide of about seven to seventy-five nucleotides containing seven or more contiguous ribose groups linked by achiral 5′ to 3′ internucleoside phosphate linkages, wherein the modified oligonucleotide is complementary to a region of a gene associated with a pathological disorder. In some embodiments, the mammal is a human and the oligonucleotide is a ribonucleotide or deoxyribonucleotide. The modified oligonucleotide can be complementary to a region of the gene selected from the group consisting of the 5′ UTR region, translational start site, the 3′ UTR, and translational termination site. [0007]
  • In some embodiments, the gene is a gene selected from Table 1 and the pathological disorder is selected from the group consisting of abnormal appetite, hypertension, hypercholesteroremia, hyperlipidemia, erectile dysfunction, eczema, depression, anxiety, stress, inflammatory bowel syndrome, ulcerative colitis, Crohn's disease, renal stones, gall stones, constipation, migraine headache, seizure, multiple sclerosis, polymyositis, fiboromyalgia, Parkinson's disease, ALS, chronic pain, pre-menstrual syndrome, sinusitis, colds, trauma, carpal tunnel syndrome, chronic fatigue syndrome, rosacea, arthritis, psoriasis, prostatitis, inflammation, heartburn, infection, poison ivy, colon cancer, malignant melanoma and malignant nasal polyps. In preferred embodiments, the modified oligonucleotide is selected from the group consisting of SEQ ID NO: 1-81 [0008]
  • In some embodiments, the modified oligonucleotide is present in the composition at a concentration effective to reduce the expression of the gene when administered. When the composition is administered, the modified oligonucleotide is administered at a dose of less than 100 μg/kg, preferably less than 50 μg/kg, more preferably less than 5.0 μg/kg, even more preferably less than 0.50 μg/kg, yet even more preferably less than 0.050 μg/kg, and most preferably less than 0.0050 μg/kg. Furthermore, the modified oligonucleotide present in the composition may be suitable for oral administration. [0009]
  • The modified oligonucleotides present in the compositions of the invention preferably have a Tm of about 75-115° C. at a concentration of 1 mM and a length of 10 to 26 bases, or a Tm of 40° C. to 85° C. at a concentration of 1 pM and a length of 10 to 26 bases. In one embodiment, the ribose group has a modified 2′ substituent selected from the group consisting of hydrogen, methoxy, propoxy, methoxy-ethoxy, flourine, chlorine, bromine and iodine. In another embodiment, the modified oligonucleotide is 3′ or 5′ end-blocked. [0010]
  • The compositions of the invention may be formulated as pharmaceutical compositions, nutritional or dietary supplement compositions, or as cosmetic compositions. In some embodiments, the compositions of the invention comprise two or more different modified oligonucleotides, while in other embodiments, three or more different modified oligonucleotides. [0011]
  • The invention also encompasses a method of treating a patient with a pathological disorder comprising administering one or more of the aforementioned modified oligonucleotides of the invention, wherein the modified oligonucleotides are about seven to seventy-five nucleotides, contain seven or more contiguous ribose groups linked by achiral 5′ to 3′ internucleoside phosphate linkages. Preferably, the modified oligonucleotide is complementary to a region of a gene associated with the pathological disorder. More preferably, the gene is selected from Table 1 and the aforementioned pathological disorders are selected from the group consisting of abnormal appetite, hypertension, hypercholesteroremia, hyperlipidemia, erectile dysfunction, eczema, depression, anxiety, stress, inflammatory bowel syndrome, ulcerative colitis, Crohn's disease, renal stones, gall stones, constipation, migraine headache, seizure, multiple sclerosis, polymyositis, fibromyalgia, Parkinson's disease, ALS, chronic pain, pre-menstrual syndrome, sinusitis, colds, trauma, carpal tunnel syndrome, chronic fatigue syndrome, rosacea, arthritis, psoriasis, prostatitis, inflammation, heart burn, infection, poison ivy, colon cancer, malignant melanoma and malignant nasal polyps. [0012]
  • As mentioned above, the invention includes a nutritional supplement comprising a modified oligonucleotide of about seven to seventy-file nucleotides containing seven or more contiguous ribose groups linked by achiral 5′ to 3′ internucleoside phosphate linkages. The invention also includes a method of supplementing the diet of an individual comprising administering this nutritional supplement, wherein administration of the nutritional supplement improves the health of the individual. [0013]
  • The invention further includes a cosmetic composition comprising a modified oligonucleotide of about seven to seventy-file nucleotides containing seven or more contiguous ribose groups linked by achiral 5′ to 3′ internucleoside phosphate linkages, wherein the modified oligonucleotide is complementary to a region of a gene associated with a skin disorder. The invention also includes a method of improving the appearance of the skin in an individual with a skin disorder comprising administering this cosmetic composition. [0014]
  • DETAILED DESCRIPTION
  • The present invention relates to compositions that comprise oligonucleotide molecules, and the use of such compositions to treat the symptoms of diseases/conditions such as acroparaesthsia, allergic (psoric) conditions, allergic reactions, alopecia, amnesia, anaphrodisia, angina, arthritis, asthenopia, biliary sycosis, burns, cancerous conditions, such as colon cancer, malignant melanoma and malignant nasal polyps, carpal tunnel syndrome, colds, conjunctivitis, Crohn's disease, depression, depressive psychosis, dysthyroidism, epilepsy, erectile dysfunction, excessive appetite (i.e., appetite control and suppression, promotion of healthy weight loss while naturally satisfying the appetite), gingivitis, heart burn (i.e., relief of occasional heartburn or occasional acid indigestion), hemorrhage, hypertension (i.e., helps maintain cardiovascular function, and a healthy heart and circulatory system), high cholesterol (i.e., helps to maintain cholesterol levels that are already within the normal range), hyperthyroidism, infections, inflammatory disease, lack of willpower, laryngitis, leucopenia, liver disorders, mental disorders (i.e., reduces stress, frustration, muscle tension, anxiety, and occasional simple nervous tension; enhances resistance to stress), myopia, neurosis, neurological disorders such as multiple sclerosis and ALS, obesity, pain (i.e., relief of minor or temporary aches and pains), pancreatic disorders, poison ivy, premature senescence, pre-menstrual syndrome (i.e., treatment of common symptoms associated with the menstrual cycle such as edema, breast tenderness, headaches, skin problems, cramps and mild mood changes), prostatitis, psoriasis, rosacea, seborrhea, sinusitis, and trauma. [0015]
  • The Oligonucleotide
  • Generally [0016]
  • A double-stranded DNA molecule encoding a gene has both a sense and an antisense strand. The transcription of RNA uses the antisense strand to make an exact sequence copy of the sense strand (with the minor changes of employing uridine for thymidine, and an RNA backbone in lieu of a DNA backbone). Thus, the RNA formed in transcription has the same nucleotide sequence as the sense strand of the gene. The RNA transcript is processed in the cell to become mRNA, which may subsequently be used as a template to make protein. [0017]
  • The term “oligonucleotides” as used herein, refers to a molecule comprised of nucleotides (i.e., ribonucleotides, deoxyribonucleotides, or both). The term includes monomers and polymers of ribonucleotides and deoxyribonucleotides, or mixtures thereof, with the nucleotides being connected together via, for example 5′ to 3′ linkages, 5′ to 2′ linkages, etc. The nucleotides used in the oligonucleotides may be naturally occurring or may be synthetically produced analogues that are capable of forming base-pair relationships with naturally occurring base pairs. Examples of non-naturally occurring bases that are capable of forming base-pairing relationships include, but are not limited to, aza and deaza pyrimidine analogues, aza and deaza purine analogues, and other heterocyclic base analogues, wherein one or more of the carbon and nitrogen atoms of the purine and pyrimidine rings have been substituted by heteroatoms, e.g., oxygen, sulfur, selenium, phosphorus, etc. [0018]
  • The oligonucleotides of the present invention are at least five contiguous nucleotides in length. For example, the oligonucleotide can be five to seventy-five nucleotides in length. The oligonucleotide can also be at least ten sequential nucleotides and alternatively, at least fifteen sequential nucleotides in length. In one embodiment, the oligonucleotide is twelve to twenty-six nucleotides in length. The oligonucleotide sequence can be derived from any of the genes listed in Table 1 (SEQ ID NO: 82-132). Examples of suitable antisense oligonucleotide sequences for the compositions of the present invention are described in Table 1 below. [0019]
    TABLE 1
    Representative antisense oligonucleotides
    Oligo Name(s) Gene Target (Accession #) Nucleic Acid Sequence SEQ ID
    Asm PDE-4 CGTGTCAGGAGAAC 1
    phosphodiesterase 4
    (U50158)
    (SEQ ID NO: 82)
    Ace1, Ace12 angiotensin I converting CATGACGCGGTGCG 2
    enzyme
    (J04144.1)
    (SEQ ID NO: 83)
    Acid-2 ATP4A GGCAGTCGTCCCTCTA 3
    H+/K+ATPase alpha
    (NM_000704)
    (SEQ ID NO: 84)
    Acid B2 ATP4B AACGTTTCACTTCTCA 4
    H+/K+ATPase beta
    (NM_000705)
    (SEQ ID NO: 85)
    cd18-1 Cd-18 TTGCTACCAGTCT 5
    (M15395)
    (SEQ ID NO: 86)
    COX2 cyclooxygenase 2 TCTACAGTTCAGTCGA 6
    CX2 (M90100)
    (SEQ ID NO: 87)
    Mg44 HMGCoA reductase TGACAACATTGTAGCTAC, 7
    3-hydroxy-3- AGCTACAGAATCCTTGGA, 8
    methylglutaryl-coenzyme A GTCGGGCTATTCAGGC 9
    reductase
    (NM_00859)
    (SEQ ID NO: 88)
    P65-2M NfkappaB p65 GAACAGTTCGTCCATG 10
    65 (NM_021975)
    (SEQ ID NO: 89)
    IL-501 IL-5 CCTCATGGCTCTGAA 11
    (NM_000879)
    (SEQ ID NO: 90)
    LO5 lipoxygenase 5 GGAGGGCATGGCGCGG 12
    (J03571)
    (SEQ ID NO: 91)
    MPB-19 SRD5A2 CCTGCATCGCGCCGTG 13
    steroid 5-alpha-reductase-2
    (M74047)
    (SEQ ID NO: 92)
    NEP-1 neutral endopeptidase GACTTGCCCATCACCT 14
    CALLA (NM_000902)
    (SEQ ID NO: 93)
    NPY-1 Neuropeptide Y ACCTAGCATGGTGGCT 15
    (K01911)
    (SEQ ID NO: 94)
    D5 phosphodiesterase 5 CGCTCCATGGTTGGC 16
    PDE5.1 (SEG_AB001615)
    (SEQ ID NO: 95)
    D7 phosphodiesterase 7A CTTCCATTGAATACGC 17
    (L12052)
    (SEQ ID NO: 96)
    Per Perilipin ACTGCCATCCTCGCTC 18
    (AB005293)
    (SEQ ID NO: 97)
    TTP tripeptidyl peptidase II CGGTGGCCATGGACGC, 19
    TTPII (M73047) AAGTTCATGGTTTCGGA 20
    (SEQ ID NO: 98)
    MTP Microsomal trigylceride GAATCATATTTGACCAGCA 21
    protein
    (X59657)
    (SEQ ID NO: 99)
    HisR1 Histamine receptor 1 GGCTCATTGGCGCAAG, 22
    (D14436) AGAGCCTCCCTTAGGA 23
    (SEQ ID NO: 100)
    CRP C-reactive protein CATGGTCACGTCCTGC 24
    (M11880)
    (SEQ ID NO: 101)
    CETP Cholesteryl ester transfer ATGGTTATCAGGCAGTGG, 25
    protein CATGGTTATCAGGCAGTGG, 26
    (XM_008050) CTGAAGAATTGACCAC 27
    (SEQ ID NO: 102)
    ICAM ICAM-1 CATAGCGAGGCTGAGG 28
    (J03132)
    (SEQ ID NO: 103)
    TNF-α Tumor necrosis factor-alpha GTGCTCATGGTGTCC 29
    (X02910)
    (SEQ ID NO: 104)
    BMP-4 Bone morphogenic protein- CGACCATCAGCATTC 30
    4
    (U43842)
    (SEQ ID NO: 105)
    BAR-1, BB1 beta adrenergic receptor-1 GCCCATGCCGAGCTGC 31
    (NM_000684)
    (SEQ ID NO: 106)
    IL-6 Interleukin-6 AGGAGTTCATAGCTGG 32
    (X04430)
    (SEQ ID NO: 107)
    FAAH, FA2H fatty acid amid hydrolase GCACCATGATCCCTTC 33
    (U82535)
    (SEQ ID NO: 108)
    ACAT-1 sterol-O-acyl-transferase CTTCACCCACCATTGT 34
    (XM_031119)
    (SEQ ID NO: 109)
    IBAT ileal sodium dependent bile CATTCATTGCTGGGTCTG 35
    acid transporter
    (NM_000452)
    (SEQ ID NO: 110)
    HMGIC High mobility group CGTGCGCTCATCCTG, 36
    phosphor-protein isoform C AACGTTGCGCCCCCTA 37
    (U28749) (SEQ ID NO: 111)
    Ghre Ghrelin TGCAGACAGGTGGGCC, 38
    (NM_016362) GCATGGCCTCAGCTGGG, 39
    (SEQ ID NO: 112) TGGGCGATCACTTGTC 40
    AAT1R angiotensin II receptor CATTTTGATCACCTGGGT, 41
    (S77410) CGAACATGTCACTCAA 42
    (SEQ ID NO: 113)
    VEGF vascular endothelial growth AAGTTCATGGTTTCGGA, 43
    factor TCACCGCCTCGGCTTGT 44
    (XM_166457)
    (SEQ ID NO: 114)
    FAS fatty acid synthase CCTCCTCCATGGCTG, 45
    (U29344) GCCTAGCCCTCCCGC 46
    (SEQ ID NO: 115)
    AmP amyloid P GCAGCGGCTTGTTCAT, 47
    (NM_001639) GAGTCAAGACCTCAG 48
    (SEQ ID NO: 116)
    PanLip pancreatic lipase GTGGCAGCATCGTGGC, 49
    (NM_000936) CCTAACACGGTGTGAG 50
    (SEQ ID NO: 117)
    ACC2 Acetyl-CoA carboxylase GAAGCAAGACCATTCAG, 51
    (U89344) TCAGGTGGAGGCCGGGC 52
    (SEQ ID NO: 118)
    PKARIIbeta cAMP dependent protein TGCTCATCCTGCCTCC, 53
    kinase subunit RII-beta GCTTCATGCAGTGGGT 54
    (M31158)
    (SEQ ID NO: 119)
    VR1R vanilloid receptor subtype 1 TCTTCATCCTTGCTGG, 55
    (XM_008512) CTCACTTCTCCCCGGA 56
    (SEQ ID NO: 120)
    ADAMTS disintegrin-like and GGGACATGGCACTGGT, 57
    metalloprotease with TTATTTCCTGCCCGCC 58
    thrombospodin type 1 motif
    4
    (NM_005099)
    (SEQ ID NO: 121)
    NPY-Y5R neuropeptide Y5 receptor TGTGGCAGGTCAGTTG, 59
    (U94320) ATCCATATTATAGTCT, 60
    (SEQ ID NO: 122) TATTACATATGAAGAC 61
    GNTV mannosyl (alpha- AGCCATTGCTCTCTGG, 62
    1,6)glycoprotein beta-1,6- TGCTATAGGCAGTCTT 63
    N-acetyl glucosaminyl
    transferase
    (NM_002410)
    (SEQ ID NO: 123)
    FCRG3 FC-gamma receptor III-1 TGCCACATGATGCCAC, 64
    (X16863) GTTGAGCTTCAAATGT 65
    (SEQ ID NO: 124)
    CD40L tumor necrosis factor TCGATCATGCTGTGTT, 66
    (ligand) superfamily, AGGTGACACTGTTCAG 67
    member 5
    (XM_042961)
    (SEQ ID NO: 125)
    ETS-1 erthorblastosis virus ACGGCCGCCTTCATGG, 68
    oncogene homolog 1 GCCATCACTCGTCGGC 69
    (J04101)
    (SEQ ID NO: 126)
    ADAMTS-5 disintegrin-like CCGAGCAGCATAGTGC, 70
    metalloprotease with TCATAACCACAGGCTA 71
    throbospondin type 1, motif
    5
    (XM_047802)
    (SEQ ID NO: 127)
    PTP-1B protein tyrosine CATGACGGGCCAGGGC, 72
    phosphatase, non-receptor GGGTCAGGCTATGTGT 73
    type 1
    (NM_002827)
    (SEQ ID NO: 128)
    MMP-1 matrix metalloproteinase 1 GCATACTGGCCTTTGTC, 74
    (NM_002421) TCAATTTTTCCTGCAGT 75
    (SEQ ID NO: 129)
    Cat catalase GCCATAGCGTGCGGTT, 76
    (NM_001752) CCCGGCCTCACAGATT 77
    (SEQ ID NO: 130)
    MMP-17 matrix metalloproteinase 17 CATGGCGCTCACATGGG, 78
    (NM_016155) TGTCATAGCGTCAGGGC 79
    (SEQ ID NO: 131)
    OPG osteoprotegerin TCATTGTGGTCCCCGG, 80
    (U94332) TCCAGTTATAAGCAGC 81
    (SEQ ID NO: 132)
    Nu-3 3′5′-dibutyl-diphospho-thymidine
  • In one embodiment, the oligonucleotide composition of the present invention comprises at least about two oligonucleotides of differing sequence. In another embodiment, the oligonucleotide composition of the present invention comprises at least about three, four, five, six, seven, eight, nine, or ten oligonucleotides of differing sequences. Although Table 1 depicts the sequences as oligonucleotides containing only deoxyribonucleotide residues, it is to be understood that the present invention also includes the embodiments wherein the oligonucleotides are composed of ribonucleotide residues (e.g., by substituting uridine for thymidine, and ribosyl substituents for deoxyribosyl substituents). Moreover, it is to be understood that the present invention also includes the embodiments in which the oligonucleotides are composed of only deoxyribonucleotide residues, of only ribonucleotide residues, or of mixtures of deoxyribonucleotide and ribonucleotide residues. [0020]
  • The oligonucleotides in the present invention display greater than or equal to 80 percent sequence identity to a nucleotide sequence selected from the group of SEQ ID NO: 1-81 (see Table 1). Also preferred, the oligonucleotides display greater than or equal to 85 percent sequence identity to a nucleotide sequence selected from the group of SEQ ID NO: 1-81. Still preferred, the oligonucleotides display 90 percent sequence identity and still more preferred, the oligonucleotides display 95 percent sequence identity. Most preferably, the oligonucleotides of the present invention are selected such that their nucleotide sequence is complementary to the sense strand of a gene. [0021]
  • The degree of similarity between two sequences can be determined using methods well known to the art (e.g., computer programs including Fasta (Oxford Molecular Group Inc.) and BLAST (www.ncbi.nlm.nih.gov) (Altschul et al. (1997) Nucleic Acid Res. 25, 3389-3402). These methods can be employed to take into account gaps in the sequences due to deletions or insertions. Homology or sequence identity at the nucleotide or amino acid sequence level determined by BLAST (Basic Local Alignment Search Tool) analysis uses the algorithm employed by the programs blastp, blastn, blastx, tblastn and tblastx (Altschul et al. (1997) Nucleic Acids Res. 25, 3389-3402 and Karlin et al. (1990) Proc. Natl. Acad. Sci. USA 87, 2264-2268, both fully incorporated by reference) which are tailored for sequence similarity searching. The approach used by the BLAST program is to first consider similar segments, with gaps (non-contiguous) and without gaps (contiguous), between a query sequence and a database sequence, then to evaluate the statistical significance of all matches that are identified and finally to summarize only those matches which satisfy a preselected threshold of significance. [0022]
  • For a discussion of basic issues in similarity searching of sequence databases, see Altschul et al. (1994) Nature Genetics 6, 119-129 which is fully incorporated by reference. The search parameters for histogram, descriptions, alignments, expect (i.e., the statistical significance threshold for reporting matches against database sequences), cutoff, matrix and filter (low complexity) are at the default settings. The default scoring matrix used by blastp, blastx, tblastn, and tblastx is the BLOSUM62 matrix (Henikoff et al. (1992) Proc. Natl. Acad. Sci. USA 89, 10915-10919, fully incorporated by reference), recommended for query sequences over 85 nucleotides or amino acids in length. [0023]
  • For blastn, the scoring matrix is set by the ratios of M (i.e., the reward score for a pair of matching residues) to N (i.e., the penalty score for mismatching residues), wherein the default values for M and N are +5 and −4, respectively. Four blastn parameters were adjusted as follows: Q=10 (gap creation penalty); R=10 (gap extension penalty); wink=1 (generates word hits at every winkth position along the query); and gapw=16 (sets the window width within which gapped alignments are generated). The equivalent Blastp parameter settings were Q=9; R=2; wink=1; and gapw=-32. A Bestfit comparison between sequences, available in the GCG package version 10.0, uses DNA parameters GAP=50 (gap creation penalty) and LEN=3 (gap extension penalty) and the equivalent settings in protein comparisons are GAP=8 and LEN=2. [0024]
  • In a related vein, the oligonucleotides described herein have a Guanine:Cytosine (GC content) greater than 35 percent. The GC content is preferably greater than 40 percent and most preferably, greater than 45 percent. [0025]
  • The Modified Oligonucleotide [0026]
  • The oligonucleotides that may be employed in accordance with the present invention may be modified. An oligonucleotide that comprises at least one modification has one or more chemical modifications at the molecular level of the natural molecular structures of all or any of the nucleic acid bases, sugar moieties, internucleoside phosphate linkages, as well as molecules having added substituents, such as diamines, cholesteryl or other lipophilic groups, or a combination of modifications at these sites. For example, oligonucleotides can be end-blocked, protonated, exhibit substantial acid resistance, substantial nuclease resistance, and contain achiral internucleoside phosphate linkages and modified ribose or deoxyribose substituents. [0027]
  • The term “end-blocked” as used herein refers to a nucleic acid with a chemical modification at the molecular level that prevents the degradation of selected nucleotides, e.g., by exonuclease action. This chemical modification is positioned such that it protects the integral portion of the nucleic acid, for example the portion of an RNA or DNA that is chemically similar to the gene involved in the physiological condition. An end block may be a 3′ end block, a 5′ end block, or both. For example, a 3′ end block may be at the 3′-most position of the molecule, or it may be internal to the 3′ ends, provided it is 3′ of the integral sequences of the nucleic acid. [0028]
  • The term “protonated compound” refers to a molecule of the invention that, when dissolved in water having a pH of 7 causes the pH of the solution to fall. Generally, compounds are protonated by adding protons to the reactive sites on the molecule, although other modifications of the molecule are possible, and are intended to be encompassed by this term. Such protonation can be accomplished, for example by incubating the compound in the presence of a strong acid, most preferably one with a volatile conjugate base. The term “protonation” and “acidification” as used interchangeably herein refers to the process by which protons (or positively charged hydrogen ions) are added to proton acceptor sites on a compound of the invention. The proton acceptor sites include the substituted or unsubstituted phosphates of the central group, as well as any additional proton acceptor sites on either the central group or the end blocking groups. As the pH of the solution is decreased, the number of these acceptor sites which are protonated increases, resulting in a more highly protonated compound. [0029]
  • Many nucleic acid backbones are not stable at low pH (e.g., pH 1-3) and experience depurination, although a number of backbones are relatively stable at pH 4-5. One aspect of the present invention reflects the recognition that certain modifications, including 2′-halide, 2′-O-alkyl, 3′-O-alkyl, and 2′-O-alkyl-n(O-alkyl) nucleic acid molecules are stable at the desired pH of 2 to 1. These modifications enhance the ability of the oligonucleotides of the pharmacological compositions of the present invention to affect a condition in vivo. Thus, the composition of the present invention may include nucleic acid molecules that are substantially acid resistant. The compositions of the present invention may also include nucleic acid molecules that are nuclease resistant. This includes nucleic acid molecules completely derivatized by 2′-O-methylphosphodiesters, 2′-O-alkyl, 2′-O-alkyl-n(O-alkyl), 2′-fluoro, 2′-deoxy-erythropentofuranosyl, chimeric linkages, and any other backbone modifications, as well as other modifications, which render the nucleic acid molecules substantially resistant to endogenous nuclease activity. Additional suitable methods of rendering nucleic acid molecules nuclease resistant include, but are not limited to, covalently modifying the purine or pyrimidine bases that comprise the nucleic acid. For example, bases may be methylated, hydroxymethylated, or otherwise substituted (e.g., glycosylated) such that the nucleic acid molecules comprising the modified bases are rendered substantially nuclease resistant. Nuclease resistance also aids the oligonucleotides of the compositions of the present invention in retaining their effect in vivo. [0030]
  • Preferably, the oligonucleotides of the of the present invention remain relatively unchanged chemically upon administration to a subject and retain their activity in acidic conditions (pH less than 6.0) or in the presence of an endonuclease or exonuclease (e.g., in an in vivo setting). [0031]
  • The term “substantially acid resistant” as used herein refers to nucleic acid molecules that are resistant to acid degradation as compared to unmodified nucleic acid molecules. Typically, the relative acid resistance of a nucleic acid will be measured by comparing the percent degradation of a resistant nucleic acid with the percent degradation of its unmodified counterpart (i.e., a corresponding nucleic acid of the same length and sequence having a “normal” backbone and bases). A nucleic acid that is acid resistant is preferably at least one and a half times more resistant to acid degradation, more preferably at least two times more resistant, even more preferably at least five times more resistant, and most preferably at least ten times more resistant than their unmodified counterpart. [0032]
  • Although certain acid resistant nucleic acid molecules exhibit marked acid stability and endonuclease resistance, they are sensitive to 3′ exonucleases. In order to enhance the exonuclease resistance of 2′-O-alkyl substituted nucleic acid molecules, the 3′ or 5′ and 3′ ends of the nucleic acid are preferably attached to a chemical moiety that provides an exonuclease blocking function. For example, one or more phosphorothioate nucleotides can be placed at either end of the RNA or DNA. Additionally, one or more inverted bases can be placed on either end of the RNA or DNA, or one or more alkyl or alcohol (e.g., butanol-substituted) nucleotides or chemical groups can be placed on one or both ends. Accordingly, a preferred embodiment of the present invention is a nucleic acid comprising a nucleic acid having the following structure: A-B-C, wherein “B” is a 2′-O-alkyl or 2′-O-alkyl-n(O-alkyl) substituted RNA between about 1 and about 98 bases in length, and “A” and “C” are respective 5′ and 3′ end blocking groups (e.g., one or more phosphorothioate nucleotides (but typically fewer than six), inverted base linkages, or alkyl, alkenyl, alkynyl, O-alkyl, and O-alkyl-n(O-alkyl) groups or substituted nucleotides). A partial list of blocking groups includes inverted bases, dideoxynucleotides, methylphosphates, alkyl groups, aryl groups, cordycepin, cytosine arabanoside, 2′-methoxy, ethoxy nucleotides, phosphoramidates, a peptide linkage, dinitrophenyl group, 2′- or 3′-O-methyl bases with phosphorothioate linkages, 3′-O-methyl bases, fluorescein, cholesterol, biotin, acridine, rhodamine, psoralen, glyceryl, methyl phosphonates, butanol, butyl, hexanol, and 3′-O-alkyls. An enzyme-resistant butanol preferably has the structure OH—CH[0033] 2CH2CH2CH2 (4-hydroxybutyl), which is also referred to as a C4 spacer.
  • The term “substantially nuclease resistant” refers to nucleic acid molecules that are resistant to nuclease degradation, as compared to naturally occurring or unmodified nucleic acid molecules. Modified oligonucleotides of the invention are at least 1.25 times more resistant to nuclease degradation than an unmodified nucleic acid having the same sequence and number of nucleotides, more preferably at least 2 times more resistant, even more preferably at least 5 times more resistant, and most preferably at least 10 times more resistant than their unmodified counterpart. Such substantially nuclease resistant nucleic acid molecules include, but are not limited to, nucleic acid molecules with modified backbones such as ethylphosphotriesters, 2′-O-methylphosphorothioates, 2′-O-methyl-p-ethoxy ribonucleotides, 2′-O-alkyls, 2′-O-alkyl-n(O-alkyl), 2′-fluoros, 2′-deoxy-erythropentofuranosyls, 2′-O-methyl ribonucleosides, 3′-O-methylribonucleotides, inverted bases (e.g., inverted T's), or chimeric versions of these backbones. [0034]
  • The modified oligonucleotide includes RNA or DNA comprising modifications to the sugar moieties such as 2′-substituted or 3′-substituted ribonucleotides, or deoxyribonucleotide monomers, any of which are connected together via internucleoside linkages. Modified RNA or DNA may also be comprised of PNA or morpholino modified backbones where specificity of the sequence is maintained. [0035]
  • The ribose groups and the internucleoside linkages link the bases in a nucleic acid and are referred to as the nucleic acid backbone. A modified backbone includes modifications to the chemical linkage between nucleotides, as well as other modifications that may be used to enhance stability and affinity, such as modifications to the sugar structure. For example, an L-anomer of deoxyribose may be used, where the base is inverted with respect to the natural D-anomer. In one embodiment, the 2′-OH of the sugar group may be altered to 2′-halogen, 2′-O-alkyl or 2′-O-alkyl-n(O-alkyl), which provides resistance to degradation without compromising affinity. Other suitable modified backbones include the following types of internucleotide linkages: 2′-O-methyl-phosphodiesters, 2′-O-alkyl, 2′-O-ethyl, 2′-O-propyl, 2′-O-butyl, 2′-O-alkyl-n(O-alkyl), 2′-methoxyethoxy, 2′-fluoro, 2′-deoxy-erythropentofuranosyl, 3′-O-methyl, p-isopropyl oligonucleotides, 2′-O(CH[0036] 2CH2)xCH3, and/or butyne linkages. An oligonucleotide may have combinations of such modified backbones, may be completely modified, or may comprise all or some linkages being phosphodiester linkages.
  • Preferred internucleoside linkages on the modified oligonucleotide are achiral. The term “achiral” as used herein, refers to a molecule that is superimposable with its mirror image, whereas the term “chiral” refers to a molecule that is not superimposable with its mirror image. Oligonucleotides containing achiral 5′ to 3′ internucleoside phosphate linkages have internucleotide linkages which are achiral (i.e., no stereochemistry). The achiral oligonucleotides preferably contain at least about three to eight contiguous achiral internucleoside linkages, more preferably, nine to ten contiguous achiral internucleoside linkages, even more preferably, eleven to twelve contiguous achiral internucleoside linkages, and most preferably, is completely comprised of achiral internucleoside linkages through the entire contiguous sequence. In another embodiment, the achiral internucleoside linkages are interspersed with chiral internucleoside linkages (e.g., two contiguous achiral linkages followed by one chiral linkage followed by two contiguous achiral linkages; three contiguous achiral linkages followed by one chiral linkage; four contiguous achiral lingages followed by two achiral linkages, etc.). Examples of achiral internucleoside linkages include, but are not limited to, phosphodiester and diphosphorothioate linkages. Achiral RNA and DNA linkages in the backbone are routinely generated during automated synthesis of oligonucleotides if the final structure is a symmetrical molecule (i.e., a phosphate with the same atom attached to both sides). [0037]
  • The internucleoside phosphate linkages can be phosphodiester, or 3′ to 3′, 5′ to 2′ or 5′ to 5′ linkages, and combinations of such similar linkages (to produce mixed backbone modified RNA or DNA). The modifications can be internal (single or repeated) or at the end(s) of the RNA or DNA molecule. These modifications can include additions to the nucleic acid molecule, such as cholesteryl, diamine compounds with varying numbers of carbon residues between amino groups and terminal ribose, and deoxyribose or phosphate modifications which cleave or cross-link to the opposite chains or to associated enzymes or other proteins. Electrophilic groups such as ribose-dialdehyde could covalently link with an epsilon amino group of the lysyl-residue of such a protein. A nucleophilic group such as n-ethylmaleimide tethered to an RNA or DNA could covalently attach to the 5′ end of an mRNA or to another electrophilic site. [0038]
  • Suitable oligonucleotides for the present invention can be determined by evaluating the Delta G or Gibbs Free energy of oligonucleotide binding to the complementary RNA strand at 37° C. and the Tm. The Gibbs Free energy and Tm are measured from the part of the target gene that corresponds to the RNA oligonucleotide that is added. These values can be calculated using the program found on ftp://rna.chem.rochester.edu and are described in Matthews et al. (1999) J. Mol. Biol. 288, 911-940 and Matthews et al. (1999) RNA 5, 1458-1469. [0039]
  • Accordingly, a composition comprising an oligonucleotide, (i) wherein said oligonucleotide is at least 10 nucleotides in length, (ii) the Gibbs Free energy of the binding of said oligonucleotide/RNA target duplex at 37° C. is −15 kCal, (iii) said oligonucleotide is complementary to a region within the target gene selected from the group consisting of 5′ UTR, translational start site and translational termination site and (iv) wherein said target gene is a gene as listed in Table 1. The Gibbs free energy is measured between that part of the target gene that corresponds to the oligonucleotide, that part typically being the 5′UTR, translational start site or the translational termination site. [0040]
  • In a preferred embodiment, the Gibbs Free energy of the binding of said oligonucleotide/RNA target duplex at 37° C. is ≦−20 kCal. Also preferred, the Gibbs Free energy is ≦−25 kCal. For 12-14 mer oligonucleotides, the Gibbs Free energy is preferably ≦−15 kCal, for 15-17 mer oligonucleotides, the Gibbs Free energy is preferably ≦−20 kCal, for 18-20 mer oligonucleotides, the Gibbs Free energy is preferably ≦−25 kCal, for 21-23 mer oligonucleotides, the Gibbs Free energy is ≦−30 kCal, and for 24-26 mer oligonucleotides, the Gibbs Free energy is ≦35 kCal. [0041]
  • Further described in the present invention is a composition comprising an oligonucleotide, (i) wherein said oligonucleotide is at least 10 nucleotides in length, (ii) the Tm of said oligonucleotide to a target gene is about 65-90° C., (iii) said oligonucleotide is complementary to a region within the target gene selected from the group consisting of 5′ UTR, translational start site an termination site, and (iv)wherein said target gene is selected from a gene as listed in Table 1. Preferably, the oligonucleotide has a Tm of about 75-90° C. Still preferred, the oligonucleotide has a Tm of about 85-90° C. Still preferred, the Tm of said oligonucleotide to a target gene at 1M monovalent cation concentration is about 65-90° C. The Gibbs free energy is measured between that part of the target gene that corresponds to the oligonucleotide, that part typically being the 5′ UTR, translational start site or the translational termination site. [0042]
  • Nutritional Supplements
  • As used herein, the term “nutritional supplement” refers to a composition that is intended to supplement the diet. A nutritional supplement includes any dietary substance used in mammals to supplement the diet by increasing total dietary intake; or a concentrate, metabolite, constituent, extract, etc. Nutritional supplement includes any product that is intended for ingestion in tablet, capsule, powder, soft-gel, gel-cap, or liquid form. As used herein, the term “nutritional supplement” is used synomously with the term “dietary supplement” and “nutraceutical” throughout the specification. [0043]
  • The present invention provides a composition which is useful as a nutritional supplement to maintain or improve the an individual's health. Preferred indications for dietary supplements include, but are not limited to, maintenance of cardiovascular function and a healthy circulatory system, maintenance of cholesterol levels that are already within the normal range, reduction of stress and frustration, relief of occasional simple nervous tension, relief of nervousness due to common everyday overwork and fatigue, alleviation of restlessness, reduction in nervous irritability, relief from anxiety, relief of muscle tension, enhancement of resistance to stress, promotion of emotional balance and a positive outlook, relief of sour stomach or upset stomach, relief of occasional heartburn or occasional acid indigestion, appetite suppression, promotion of healthy weight loss while naturally satisfying the appetite, appetite control, relief of minor or temporary aches and pains, treatment of common symptoms associated with the menstrual cycle, treatment of mild mood changes, cramps, and edema associated with the menstrual cycle, maintenance of a normal, healthy attitude during pre-menstrual syndrome, diminish the normal symptoms of pre-menstrual syndrome and maintenance of hormonal balance and alleviation of minor pre-menstrual syndrome symptoms such as cramping, breast tenderness, minor mood changes, headaches, bloating and skin problems. [0044]
  • The nutritional supplement composition of the present invention include compositions with a single oligonucleotide and/or a combination of about two or more oligonucleotides. The use of the nutritional supplement compositions of the present invention can be used to treat any of the aforementioned indications. These agents may be combined in an oral dosage with other well known nutritional supplements and/or non-flavonoid antioxidants (e.g., selenium, vitamin E (tocopherol, particularly alpha-tocopherol), vitamin C (ascorbic acid) and coenzyme Q10). Dietary fiber supplements may also be used in the composition. [0045]
  • Other additives may be incorporated in the nutritional supplement of the present invention. Such additives include minerals, (e.g., boron, etc. and trace metals such as zinc, magnesium, manganese, chromium, molybdenum, copper, iron, calcium, and potassium; and other micronutrients such as thiamine, riboflavin, niacin, pantothenic acid, pyridoxine, choline, biotin, inositol, para-aminobenzoic acid, vitamin D, vitamin K, vitamin A). In another embodiment of the invention a dietary fiber supplement such as oat bran or other natural fiber source may also be added to the composition. [0046]
  • Typically the nutritional supplement will further include a pharmaceutically acceptable carrier such as lactose, glucose, sucrose, corn starch, potato starch, cellulose acetate, ethyl cellulose, etc. Diluents and other additives such as one or more pharmaceutically acceptable binding agents, fillers, supports, thickening agents, taste-improving agents, coloring agents, preservatives, stabilizers, regulators, emulsifiers or mixtures thereof may be used depending on the form of the composition employed. [0047]
  • In addition to providing the aforementioned compositions, the invention also includes a method for orally administering the nutritional supplement composition in dosages effective to aid in the maintenance and improvement of an individual's health. The supplement is preferably administered orally. Suitable forms for the nutritional supplement composition for oral administration include tablets, capsules, lozenges, syrups, granules, solutions and suspensions which contain unit doses of the supplement for administration once or several times a day. The nutritional supplement composition of the invention will typically be administered orally as a liquid, tablet or a capsule. Tablets, gel tabs, capsules, liquid and sustained release formulations can be formulated and prepared according to manufacturing techniques well known in the pharmaceutical industry and in a variety of dosage forms. [0048]
  • In one embodiment, the nutritional supplement is a sports drink comprising one or more modified antisense oligonucleotides capable of hybridizing to one or more of the genes listed in Table 1. In a preferred embodiment, the sport drink comprises the modified oligonucleotides Asm (SEQ ID NO: 1), Pde5 (SEQ ID NO: 16), FAAH (SEQ ID NO: 23), CX2 (SEQ ID NO: 6), CRP (SEQ ID NO: 24), LO5 (SEQ ID NO: 12), P65 (SEQ ID NO: 10), CD18 (SEQ ID NO: 5). [0049]
  • Therapeutic Oligonucleotide Compositions
  • In a related vein, the present invention includes a pharmaceutical composition comprising at least about one oligonucleotide, wherein said oligonucleotide comprises (i) at least about ten contiguous nucleotides in length, (ii) at least about three to eight contiguous achiral internucleoside linkages, (iii) further comprising a pharmaceutically suitable excipient. In alternative embodiments, other oligonucleotides, described herein, are used in the inventive compositions. In some embodiments, the therapeutic composition can be a pharmaceutical or homeopathic composition. [0050]
  • As used herein, the term “pharmaceutical composition” refers to a therapeutic composition that is used to treat a particular disease or pathological disorder that is suitable for parenteral, oral or topical administration in humans. [0051]
  • The compositions containing the modified oligonucleotides of the invention in an admixture with a pharmaceutically acceptable carrier can be prepared according to known techniques. The carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., intravenous, oral, topical, aerosol (for topical or inhalation therapy), suppository, parenteral, or spinal injection. The excipient may contain any number of carriers. In the case of homeopathic pharmaceuticals the carriers would preferably be homeopathic carriers, e.g., homeopathic agents that may increase the efficacy of the homeopathic composition or help to alleviate symptoms associated with a physiological condition. In addition, the composition may contain stabilizers, preservatives, and other ingredients, preferably in amounts from about 0.5 to 2.0 percent by weight, provided they do not adversely affect the ability of the pharmacological composition to treat the physiological condition. It is well within the skill of one in the art to determine an appropriate mode of administration and to select an appropriate delivery system. [0052]
  • Administration of the composition will introduce the modified oligonucleotides to the individual in a diluted amount. Exemplary ranges of dosage for oral or topical administration are between about 0.001 mg and 10 mg per day, and preferably between about 0.010 mg and 1.0 mg per day of oligonucleotide in the composition. When orally administered, it is preferred that one dosage unit be administered one to four times per day until relief is achieved or until the symptoms disappear or are satisfactorily attenuated. Normally, a patient is instructed to orally take two to three dosage units per day. The dosage unit may be placed under the tongue of the patient or simply swallowed for such oral administration. [0053]
  • The pharmaceutical compositions of the present invention may be formulated for administration to humans and animals in liquid form, or in tablets, pills, granules, powders, or in ointments, creams, injectables, or suppositories. Ointments and creams are impregnated with a low liquid potency or, sometimes, mother tinctures and are generally prescribed as specific remedies. Liquid compositions may be supplied in amber glass dropper bottles to protect them from light. [0054]
  • In preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like in the case of oral liquid preparations (such as, for example, suspensions, elixirs, and solutions); or carrers such as starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations (such as, for example, powders, capsules and tablets). For homeopathic preparations for example, RNA can be dissolved in a liquid 1 part by weight to produce a ten volumes of liquid attenuation labeled 1×. To produce lower dilutions 1 ml of the 1× attenuation is used (mixed thoroughly) with 9 ml of diluent to produce 2×. This process is repeated until the desired attentuation is achieved. [0055]
  • For administration by injection, preparations may comprise an aqueous solution of a water soluble, or solubilized, and pharmacologically acceptable form of the nucleic acid in an appropriate liquid, e.g., water or saline solution. Injectable suspensions may also be prepared using appropriate liquid carriers, suspending agents, agents for adjusting the isotonicity, preserving agents, and the like. Actual methods for preparing administrable pharmacological compositions and adjustments necessary for administration to subjects will be known or apparent to those skilled in the art. [0056]
  • For topical administration, the carrier may take a wide variety of forms depending on the preparation, which may be a cream, dressing, gel, lotion, ointment, or liquid. A surfactant can be included in the composition to provide deeper penetration of the ingredients. Although natural surfactants are preferred, others such as isopropyl myristate can be used. In one embodiment, the composition is a cosmetic composition for topical administration to the skin. As used herein, the term “cosmetic composition” refers to a composition that is applied topically to the skin to improve the appearance of the skin. [0057]
  • Aerosols are prepared by dissolving or suspending the nucleic acid in a propellant such as ethyl alcohol or in propellant and solvent phases. The pharmaceutical compositions for topical or aerosol form will generally contain from about 0.001 percent by weight (of the nucleic acid) to about 40 percent by weight, preferably about 0.02 percent to about 10 percent by weight, and more preferably about 0.05 percent to about 5 percent by weight depending on the particular form employed. Suppositories are prepared by mixing the nucleic acid with a lipid vehicle such as theobroma oil, cacao butter, glycerin, gelatin, or polyoxyethylene glycols. [0058]
  • The compositions of the invention may also include plant or herbal extracts. For example, topical compositions may include Paraguay tea, Kola and Guarana which provide a source of methylxanthines, saponius, tannins and glycosides which have been shown to reduce swelling and redness. The extract of Paraguay tea is known as “Mate extract” and is described in the International Cosmetic Ingredient Dictionary, 5th Edition. Mate extract is commercially available in combination with extracts of Kola and Guarana that is sold by Cosmetic Ingredient Resources (Stamford, Conn.) under the “QUENCHT” trademark. Suitable herbs which can be used also include [0059] Symphytum officinale, Moschus moscheferous, Pripalia geniculata, Plantago asiatica, Causticum, Helianthemum canadense, Ornithogalum umbellatum, Clematis crispa, Impatiens pallida, Prunus cerasus, arnica, etc.
  • The nucleic acid molecule(s) may be combined with a lipid, cationic lipid, or anionic lipid and the active agent delivered via a nucleic acid/lipid emulsion, or a liposomal suspension. The use of cationic, anionic, and/or neutral lipid compositions or liposomes is generally described in International Publications WO90/14074, WO91/16024, WO91/17424, and U.S. Pat. No. 4,897,355, all herein incorporated by reference. By assembling nucleic acid molecules into lipid-associated structures, the nucleic acid molecules may exhibit an increased half-life in vivo. Examples of suitable anionic lipids for use with RNA or DNA include, but are not limited to, cardiolipin, dimyristoyl, dipalmitoyl, or dioleoyl phosphatidyl choline or phosphatidyl glycerol, palmitoyloleoyl phosphatidyl choline or phosphatidyl glycerol, phosphatidic acid, lysophosphatidic acid, phosphatidyl serine, phosphatidyl inositol, and anionic forms of cholesterol. [0060]
  • Making an Oligonucleotide Composition
  • The invention includes a method for making an oligonucleotide composition comprising (i) selecting an oligonucleotide that is adjacent to or overlaps a target region of a gene, (ii) determining the Gibbs Free energy value associated with said oligonucleotide in reference to said target gene, (iii) assessing Tm in reference to said target gene, and (iv) performing a sequence database search to determine if said oligonucleotide overlaps the 5′ UTR, the translational start sequence, or the translational termination site of an mRNA of a gene different from the target gene. [0061]
  • The oligonucleotide of the present invention can be directed to a translational start site, a 5′ UTR or a termination site. Preferably, the oligonucleotide is adjacent to or overlaps the translational start site of the gene by at least about one base. Still preferred, the oligonucleotide overlaps the translational start site by at least about two bases. Still more preferred, the oligonucleotide overlaps the translational start site by at least about three bases. [0062]
  • It is generally preferable to design an RNA or DNA that has the same or similar base sequence as the portion of the complement of a gene that encodes the 5′ end of an RNA. However, a nucleic acid may also have, for example, a same or similar base sequence as other regions of the gene, such as the region encoding a translation start site or the 3′ untranslated region. In another example, a nucleic acid may be designed to reflect the region around a splice donor or splice acceptor site, either with or without the intervening intron. Of particular interest are nucleic acid molecules whose sequences comprise all or a fragment of the sequence of the complement of a gene that is over-expressed in individuals exhibiting the disease or condition. The identification of overexpression of a gene can be through molecular means, e.g., detection of expression in affected tissue using conventional molecular techniques (e.g., Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press). Overexpression of a gene may also be detected using array technology, or inferred from the results of protein assays, such as ELISA. [0063]
  • Making a Homeopathic Oligonucleotide Composition
  • A method of making a homeopathic composition comprising (i) triturating solid RNA in a 1/9 ratio with lactose to produce a 1× solid and (ii) repeating the process until the desired attenuation is achieved, is described in the present invention. In a related vein, a method of making a homeopathic composition comprising (i) dissolving 1 part RNA by weight in liquid to produce ten volumes of liquid attenuation labeled 1× and optionally (ii) mixing 1 ml of the 1× attenuation with 9 ml of diluent to produce a lower concentration, is also addressed. [0064]
  • In another embodiment, the invention includes homeopathic compositions containing modified oligonucleotides. In one embodiment, tablets for homeopathic use are preferably produced as placebo tablets that are then medicated by dripping or spraying liquid potencies onto the tablets in such a manner as to ensure a coefficient of impregnation of almost 100 percent. The placebo tablets are preferably formed by compression. Pills or granules are preferably spherical in shape, of about 4 millimeters diameter and 3 to 5 centigrams in weight. They are preferably prepared (form pure lactose) and medicated in the same manner as tablets. For example, solid RNA can be triturated (i.e., ground up) in a 1/9 ratio with lactose (1 gram of RNA+9 grams of lactose) to produce a 1× solid. The process is repeated (1 gram of that material plus 9 grams of lactose) until the desired attenuation is achieved. [0065]
  • For homeopathic compositions, the excipient may contain any number of carriers, and preferably homeopathic carriers, e.g., homeopathic agents that may increase the efficacy of the homeopathic composition or help to alleviate symptoms associated with a physiological condition. For example, RNA can be dissolved in a liquid 1 part by weight to produce a ten volumes of liquid attenuation labeled 1×. To produce lower dilutions 1 ml of the 1× attenuation is used (mixed thoroughly) with 9 ml of diluent to produce 2×. This process is repeated until the desired attentuation is achieved. A homeopathic carrier solution such as that described in U.S. Pat. No. 5,603,915 may be used for increasing the efficacy of the homeopathic agent. This carrier solution is sequentially subjected to an alternating current electrical treatment and a direct current electrical treatment, after which additional ingredients such as seawater, brain hormones, and biologically active enzymes are added. The electrical treatment of the carrier, along with the addition of homeopathically active substances, can be used to increase the efficacy of the homeopathic composition. Alternatively, an electromagnetic carrier, such as described in U.S. Pat. No. 5,830,140 may be employed. [0066]
  • Methods of Treatment
  • The invention includes a method of treating a disorder comprising administering an oligonucleotide to a patient in a therapeutically effective amount. As used herein, the term “therapeutically effective” amount is meant to refer to an amount of a pharmacological composition that is non-toxic and is the lowest amount necessary to provide a desired physiological effect. Preferably, the oligonucletide compositions of the present invention are administered at concentrations at or below 100 μg per kg of body weight. Also preferred, the concentration is at or below 10 μg per kg of body weight, still preferred, the concentration is at or below 1 μg per kg of body weight, and still more preferred, the concentration is at or below 0.1 μg per kg of body weight. Furthermore, for homeopathic use, the oligonucleotide compositions of the present invention can be combined with any homeopathic drug and still elicit a therapeutic effect. [0067]
  • Preferably, the oligonucleotide comprises at least one modification according to the present invention. A preferred modification is the incorporation of at least about three to eight contiguous achiral internucleoside phosphate linkages into the oligonucleotide backbone. More preferably the oligonucleotide incorporates at least nine to ten continuous achiral internucleoside phosphate linkages, even more preferably, eleven to fifteen achiral internucleoside phosphate linkages, and most preferably, the entire oligonucleotide contains achiral internucleoside phosphate linkages. Also preferred, the oligonucleotide is 3′ end-blocked, comprises at least 10 contiguous nucleotides greater than or equal to 80 percent identical to a nucleotide sequence selected from SEQ ID NO: 1-81. Also preferred, the oligonucleotide is at least 85 percent identical to a nucleotide sequence selected from the group of SEQ ID NO: 1-81. Still preferred, the oligonucleotide is at least 90 percent identical and more preferred, at least 95 percent identical. Most preferably, the oligonucleotide comprises a sequence from SEQ ID NO: 1-81. [0068]
  • The methods of the present invention can be used to treat disorders including, but not limited to, acroparaesthsia, allergic (psoric) conditions, allergic reactions, alopecia, amnesia, anaphrodisia, angina, arthritis, asthenopia, biliary sycosis, burns, cancerous conditions, such as colon cancer, malignant melanoma and malignant nasal polyps, carpal tunnel syndrome, colds, conjunctivitis, Crohn's disease, depression, depressive psychosis, dysthyroidism, epilepsy, erectile dysfunction, excessive appetite (i.e., appetite control and suppression, promotion of healthy weight loss while naturally satisfying the appetite), gingivitis, heart burn (i.e., relief of occasional heartburn or occasional acid indigestion), hemorrhage, hypertension (i.e., helps maintain cardiovascular function, and a healthy heart and circulatory system), high cholesterol (i.e., helps to maintain cholesterol levels that are already within the normal range), hyperthyroidism, infections, inflammatory disease, lack of willpower, laryngitis, leucopenia, liver disorders, mental disorders (i.e., reduces stress, frustration, muscle tension, anxiety, and occasional simple nervous tension; enhances resistance to stress), myopia, neurosis, neurological disorders such as multiple sclerosis and ALS, obesity, pain (i.e., relief of minor or temporary aches and pains), pancreatic disorders, poison ivy, premature senescence, pre-menstrual syndrome (i.e., treatment of common symptoms associated with the menstrual cycle such as edema, breast tenderness, headaches, skin problems, cramps and mild mood changes), prostatitis, psoriasis, rosacea, seborrhea, sinusitis, and trauma. [0069]
  • Table 2 lists the oligonucleotides, or combinations of oligonucleotides that are preferably employed in remedies for the treatment of various symptoms and conditions. In Table 2, the use of a combination of oligonucleotides is denoted by a “/” (for example, “A/B/C” denotes the combined use of oligonucleotides A, B and C); where two or more different combinations are preferred, each such combination is presented on a separate line. The oligonucleotides are usually used in a 1:1:1 ratio, but this can vary. For example, a combination of 4×, 5×, and 6× solutions may be used, which deviates from 1:1:1. [0070]
    TABLE 2
    Indication or Condition Oligonucleotide Combination
    Arthritis Asm/X2/P65-2M
    Asm/X2/P65-2M/LO5-38
    Carpal Tunnel Syndrome Asm
    Asm/X2/P65-2M
    Chronic Fatigue/Fibromyalgia Asm/D5/X2
    Colds Asm
    Crohn's Disease X2/P65-2M
    Depression Asm/D5
    Erectile Dysfunction (ED) Asm/D5
    Heartburn Acid-2/B2
    High Cholesterol Hyperlipidemia Mg44
    Mg44/Asm/D5
    Hypertension Ace1
    Ace1/Nep-1
    Inflammation Asm/X2
    Asm/X2/P65-2M
    Asm/X2/P65-2M/LO5-38
    Pain Asm/X2
    Asm/X2/P65-2M
    Pre-Menstrual Syndrome (PMS) Asm/D5/X2
    Psoriasis Asm/D5/P65-2M
    Rosacea Asm
    Asm/D5
    Prostatitis MBP
    Stress Asm/D5
    Trauma Asm
    Asm/X2/P65-2M
    Ulcerative colitis X2/P65-2M/LO5-38
    Weight Management TTP
  • The compositions of the present invention are formulated to contain a “nutritionally effective” or “allopathically effective” or “homeopathically effective” amount of one or more nucleic acid molecules. As used herein, the term “nutritionally effective” amount is meant to refer to an amount of a oligonucleotide composition that is non-toxic and greater than the minimum amount necessary to maintain a desired physiological effect. As used herein, the term “allopathically effective” amount is meant to refer to an amount of a oligonucleotide composition that is non-toxic and greater than the minimum amount necessary to produce a desired physiological effect. [0071]
  • As used herein, the term “homeopathically effective” amount is meant to refer to an amount of a oligonucleotide composition that is non-toxic and is the lowest amount necessary to provide a desired physiological effect. A homeopathic effect, in accordance with the present invention, is achieved by a dose of modified nucleic acid that will be effective in treating (i.e., relieving, ameliorating, or preventing) symptoms of a particular condition or disease. Such treatment may be prophylactic in nature (i.e., completely or partially preventing the future occurrence of a symptom) and/or it may be therapeutic in nature (i.e., providing a partial or complete cessation or amelioration of a symptom). The method of treating of the present invention covers any treatment of symptoms of a disorder in a mammal, particularly a human, and includes: [0072]
  • (a) preventing symptoms of a disorder from occurring in a subject that may be predisposed to a condition but has not yet been diagnosed as having it; [0073]
  • (b) inhibiting symptoms of a disorder (i.e., arresting its development); or [0074]
  • (c) relieving symptoms of a disorder (i.e., ameliorating and/or causing regression of the condition); and/or [0075]
  • (d) maintaining homeostasis (i.e., the normal balance of RNA or DNA in a subject). [0076]
  • One of ordinary skill will appreciate that, from a medical practitioner's or patient's perspective, virtually any alleviation or prevention of an undesirable symptom would be desirable. Homeopathic compositions typically employ substantially less nucleic acid than is employed in allopathic compositions. Exemplary dosages to be employed in accordance with the present invention, are described in Table 3 below. [0077]
    Homeopathic RNA/DNA Concentration
    Dilution/Potency μg/kg
    2x 50
    3x 5
    4x 0.5
    5x 0.05
    6x 0.005
  • When used in the therapeutic treatment of disease, an appropriate dosage of one or more therapeutic compositions of the invention may be determined by any of several well-established methodologies. Additionally, dosages may also be altered depending upon factors such as the severity of infection, and the size or species of the host. [0078]
  • Preferably, animals are treated using compositions of the present invention having agents with compositions containing nucleic acid molecules having a sequence appropriate for the particular animal. Targeted species include, but are not limited to birds, fish, and mammals (especially pigs, goats, sheep, cows, dogs, horses, cats, and most preferably, humans). [0079]
  • Having now generally described the invention, the same will be more readily understood through reference to the following examples, which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified. The effectiveness of the RNA oligonucleotide compositions according to the preferred embodiments of the present invention is demonstrated in the Examples below.[0080]
  • EXAMPLE 1
  • Individuals with cancers were typically administered a composition containing oligonucleotides complementary to cyclo-oxygenase 2 and NFκB p65 at concentrations of 3 to 30 A[0081] 260/RNA/ml (1.0-10 μg/kg). Some individuals were additionally administered oligonucleotides complementary to lipoxygenase 5. After approximately one to two months of therapy, the effect of the composition was then evaluated on individuals who completed the study (see Table 4). Treatment efficacy was evaluated by each patient and confirmed by the treating physician. A scaled score of 1 to 10 was used to evaluate treatment efficacy over a period of one to two months where a score=10 represented no improvement and a score=1 represented total alleviation of symptoms.
  • EXAMPLE 2
  • Individuals with excessive appetite were orally administered an oligonucleotide composition containing RNA oligonucleotides complementary to the tripeptidyl gene. RNA oligonucleotide concentrations were typically 0.3 to 3.0 A[0082] 260/RNA/ml and given in dosages (0.1-1.0 μg/kg of 0.5 ml twice daily). The effect of the composition was then evaluated after approximately one to two months of therapy (see Table 5). Treatment efficacy was evaluated by each patient and confirmed by the treating physician. A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented a voracious appetite and a score=1 represented the absence of hunger and the ability to lose weight.
  • EXAMPLE 3
  • Individuals diagnosed with arthritis were orally administered oligonucleotide compositions with RNA oligonucleotides complementary to phosphodiesterase 4 and NFκB p65. Some people were additionally given compositions further containing RNA oligonucleotides complementary to other genes. RNA oligonucleotide concentrations were typically between the range of 0.3 to 300 A[0083] 260/RNA/ml and given in dosages (0.1-100 μg/kg) of 0.5 ml twice daily. The effect of the composition was then evaluated after approximately one to two months of therapy (see Table 6). Treatment efficacy was evaluated by each patient and confirmed by the treating physician. A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented severe arthritis characterized by inability to freely move affected joints, restricted movement, pain and inflammation and a score=1 represented reduced inflammation, restoration of movement and the absence of pain.
  • EXAMPLE 4
  • Individuals with elevated blood pressure were orally administered oligonucleotide compositions with RNA oligonucleotides complementary to CE and/or neutral endopeptidase genes. Some individuals were additionally given compositions with RNA oligonucleotides complementary to other genes. Concentrations were typically 3.0 to 30 A[0084] 260/RNA/ml and given in dosages (1.0-10 μg/kg) of 0.5 ml twice daily. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 7). Treatment efficacy was determined by measuring changes in blood pressure where a decrease in blood pressure below 160/89 was assessed as a successful treatment because blood pressure above this level has been associated with stroke, heart disease and kidney failure.
  • EXAMPLE 5
  • Individuals with elevated cholesterol were orally administered oligonucleotide compositions containing RNA oligonucleotides complementary to the 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene. Some individuals were were also given oligonucleotide compositions further containing RNA oligonucleotides complementary to other genes such as phosphodiesterase 4 and phosphodiesterase 5. RNA oligonucleotide concentrations were typically 3.0 to 30 A[0085] 260/RNA/ml and given in dosages (1.0-10 μg/kg) of 0.5 ml twice daily. The effect of the composition on serum cholesterol was evaluated after approximately one to two months of therapy (see Table 8). Treatment efficacy was determined by measuring changes in serum cholesterol where a one-point drop corresponded to a two percent reduction in the probability of heart disease and a twenty-five-point drop corresponded to a fifty percent reduction in the probability of heart disease.
  • In addition, the effect of compositions containing RNA oligonucleotide with eight or more contiguous achiral internucleoside phosphate linkages on cholesterol levels was also assessed. In a representative individual, oligonucleotide compositions containing achiral RNA oligonucleotides complementary to 3-hydroxy-3-methylglutaryl-coenzyme A reductase, phosphodiesterase 4 and phosphodiesterase 5 were given orally in combination at a concentration of 3.0 A[0086] 260/RNA/ml at dosages of 0.5 ml, twice daily. The achiral RNA oligonucleotides produced a decrease of 46 mg/dL in serum cholesterol. The achiral 2′methoxy-RNA supplements resulted in a 31 mg/dL decrease in serum cholesterol levels. Chiral RNA or DNA did not effect cholesterol levels.
  • EXAMPLE 6
  • Individuals with emotional distress were orally administered an oligonucleotide composition containing RNA oligonucleotides complementary to the phosphodiesterase 4 and phosphodiesterase 5 genes. RNA oligonucleotide concentrations were typically 0.3 to 3.0 A[0087] 260/RNA/ml and were given in dosages (0.1-1.0 μg/kg) of 0.5 ml two to six times per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 9). A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented a severely depressed patient with suicidal tendencies and a score=1 represented a emotionally stable patient.
  • EXAMPLE 7
  • Individuals with various gastrointestinal disorders were orally administered oligonucleotide compositions with RNA oligonucleotides complementary to the phosphodiesterase 4 and/or cyclooxygenase 2 genes. Some individuals were given compositions additionally containing RNA oligonucleotides complementary to other genes such as phosphodiesterase 5 and NFκB p65. Oligonucleotide concentrations were typically 0.3 to 3.0 A[0088] 260/RNA/ml and given in 0.5 ml dosages (0.1-1.0 μg/kg) twice per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 10). A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented a patient with above normal bowel movement frequency and the presence of blood in the feces and a score=1 represented a patient with normal frequency of bowel movements and the absence of blood in the feces.
  • EXAMPLE 8
  • Individuals with various types of inflammation were orally or topically (as indicated) adminsitered oligonucleotide compositions containing oligonucleotides complementary to the phosphodiesterase 4 or interleukin 5 genes. Some individuals were given compositions additionally containing RNA oligonucleotides complementary to other genes such as cyclooxygenase 2 and NFκB p65. RNA oligonucleotide concentrations were typically 0.03 to 300 A[0089] 260/RNA/ml given in doses (0.01-100 μg/kg) of 0.5 ml twice per day. The effect of the composition was then evaluated (see Table 11). A scaled score of 1 to 10 was used to evaluate treatment efficacy after approximately one to two months of therapy, where a score=10 represented presence of debilitating inflammation with severe pain and a score=1 represented the absence of inflammation and pain.
  • EXAMPLE 9
  • Individuals suffering from migraine headaches were orally administered oligonucleotide compositions containing RNA oligonucleotides complementary to the phosphodiesterase 4, phosphodiesterase 5, cyclooxygenase 2 and 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes. Oligonucleotide concentrations were typically 3.0 to 30 A[0090] 260/RNA/ml taken in dosages (1.0-10 μg/kg) of 0.5 ml two to four times per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 12). A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented severe debilitating headache pain including facial pain accompanied by nausea and sensitivity to light and a score=1 represented the absence of these conditions.
  • EXAMPLE 10
  • Individuals with various neurological disorders were orally administered oligonucleotide compositions containing RNA oligonucleotides complementary to the phosphodiesterase 4, cyclooxygenase 2 and p65 genes. Some individuals were given compositions containing additional RNA oligonucleotides complementary to other genes such as lipoxygenase 5. Oligonucleotide concentrations were typically 3.0 to 30 A[0091] 260/RNA/ml taken in dosages (1-10 μg/kg) of 0.5 ml two to four times per day. The effect of the compositions was evaluated after approximately one to two months of therapy (see Table 13). A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented a patient with a debilitating form of the indicated neurological disorder (i.e., amyotrophic lateral sclerosis, multiple sclerosis, alzheimer's disease, parkinson's disease) and a score=1 represented a patient with no symptoms or mild symptoms associated with the indicated neurological disorder.
  • EXAMPLE 11
  • Individuals suffering from various types of pain were orally administered oligonucleotide compositions containing RNA oligonucleotides complementary to phosphodiesterase 4 and/or cyclooxygenase 2. Some individuals were given compositions containing additional RNA oligonucleotides complementary to other genes such as phosphodiesterase 5 and p65. Oligonucleotide concentrations were typically 0.3 to 3.0 A[0092] 260/RNA/ml and taken in dosages (0.1-10 μg/kg) of 0.5 ml two to four times a day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 14). A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented a patient with severe pain requiring treatment with a subscription analgesic and a score=1 represented a patient with the absence of pain.
  • EXAMPLE 12
  • Female individuals diagnosed with pre-menstrual syndrome were orally administered oligonucleotide compositions containing RNA oligonucleotides complementary to the phosphodiesterase 4 gene. Some individuals were given compositions containing additional RNA oligonucleotides complementary to other genes such as phosphodiesterase 5 and cyclooxygenase 2. RNA oligonucleotide concentrations were typically 0.03 to 3.0 A[0093] 260/RNA/ml taken in doses (0.01-1.0 μg/kg) of 0.5 ml two to four times per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 15). A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented a patient with cramps, bloating, irritability, nausea and vomiting and a score=1 represented a patient with the absence of these conditions.
  • EXAMPLE 13
  • Male individuals diagnosed with prostatitis were orally administered oligonucleotide compositions containing RNA oligonucleotides complementary to the steroid 5-alpha-reductase-2 gene. Some individuals were given compositions containing additional RNA oligonucleotides complementary to other genes such as phosphodiesterase 4 and p65 (Super 8+composition=Asm, X2, D5, P65, cd-18, IL-5, LO5 and ICAM). Oligonucleotide concentrations were typically 3.0 A[0094] 260/RNA/ml taken in doses (1.0 μg/kg) of 0.5 ml two to four times per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 16). A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented a patient with urgent need to urinate three to five times per night and a score=1 represented a patient who slept through the night without urinating.
  • EXAMPLE 14
  • Individuals suffering from cold and sinusitis symptoms were administered (intranasal) oligonucleotide compositions containing RNA oligonucleotides complementary to phosphodiesterase 4 and a DNA monomer, Nu 3. Some individuals were given compositions containing additional RNA oligonucleotides complementary to other gene targets such as cylooxygenase 2 and NFκB p65. RNA and DNA concentrations were typically 0.3 to 30 A[0095] 260/RNA/ml (0.1-10 μg/kg). Treatment efficacy was evaluated after approximately one to two months of therapy (see Table 17). A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented a patient with sneezing, stuffy nose and watery eyes and a score=1 represented a patient with the absence of these conditions.
  • EXAMPLE 15
  • Individuals with various types of trauma were orally or topically (as indicated) administered oligonucleotide compositions containing RNA oligonucleotides complementary to phosphodiesterase 4. Some individuals were given compositions containing additional RNA oligonucleotides complementary to other genes such as cyclooxygenase 2 and NFκB p65. Oligonucleotide concentrations ranged from 0.3 to 3.0 A[0096] 260/RNA/ml and taken in 0.5 ml doses (0.1-1.0 μg/kg) two to four times per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 18). A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented a patient with severe inflammation and pain associated with the indicated trauma and a score=1 represented a patient with no inflammation or pain.
  • EXAMPLE 16
  • Individuals diagnosed with carpal tunnel syndrome were orally administered oligonucleotide compositions containing RNA oligonucleotides complementary to the phosphodiesterase 4 gene. Some individuals were given compositions containing additional RNA oligonucleotides complementary to other genes such as cyclooxygenase 2, NFκB p65 and other gene targets. Oligonucleotide concentrations were typically 0.03 to 300 A[0097] 260/RNA/ml taken in doses (0.01-100 μg/kg) of 0.5 ml two to four times per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 19). A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented a patient with pain, tingling and numbness in the wrist area necessitating the use of a wrist brace and a score=1 represented a patient with the absence of these conditions and who did not require the assistance of a wrist brace.
  • EXAMPLE 17
  • Individuals diagnosed with chronic fatigue syndrome or fibromyalgia were orally administered oligonucleotide compositions containing RNA oligonucleotides complementary to the phosphodiesterase 4 gene. Some individuals were given compositions containing additional RNA oligonucleotides complementary to other genes such as cyclooxygenase 2 and p65. Oligonucleotide concentrations were typically 3.0 to 30 A[0098] 260/RNA/ml taken in doses (1.0-10 μg/kg) of 0.5 ml two to four times per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 20). A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented a patient who complained of being chronically exhaustion accompanied by minor aches and pain and a score=1 represented a patient who did not complain of any such symptom.
  • EXAMPLE 18
  • Individuals suffering from eczema and atopic dermatitis were orally or topically (as indicated) administered oligonucleotide compositions containing RNA oligonucleotides complementary to the phosphodiesterase 4 gene. Some individuals were given compositions containing additional RNA oligonucleotides complementary to other genes such as cyclooxygenase 2 and p65 and other gene targets. Oligonucleotide concentrations were typically 0.3 to 3.0 A[0099] 260/RNA/ml taken in doses (0.1-1.0 μg/kg) of 0.5 ml two to four times per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 21). A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented patient with itching, inflamed skin and minor bleeding, and a score=1 represented a patient with normal skin.
  • EXAMPLE 19
  • Male individuals suffering from erectile dysfunction were orally administered compositions containing RNA oligonucleotides complementary to the phosphodiesterase 4 gene. Some individuals were given compositions containing additional RNA oligonucleotides complementary to other genes such as phosphodiesterase-5. Oligonucleotide concentrations were typically 3.0 to 3.0 A[0100] 260/RNA/ml taken in doses (1.0-10 μg/kg) of 0.5 ml two to four times per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 22). A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented a patient who could not obtain or maintain an erection and a score=1 represented a patient who was able to obtain and maintain an erection.
  • EXAMPLE 20
  • Individuals suffering from acid reflux were orally administered compositions containing RNA oligonucleotides complementary to the ATP4A gene. Some individuals were given compositions containing additional RNA oligonucleotides complementary to other genes such as ATP4B. Oligonucleotide concentrations were typically 3.0 to 30 A[0101] 260/RNA/ml taken in doses (1.0-10 μg/kg) of 0.5 ml two to four times per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 23). A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented a patient with heartburn requiring treatment with excessive amounts of antacid medication and a score=1 represented a patient with no heartburn.
  • EXAMPLE 21
  • Individuals suffering from poison ivy were orally or topically (as indicated) administered compositions containing RNA oligonucleotides complementary to the phosphodiesterase 4 gene. Oligonucleotide concentrations were typically 0.3 to 300 A[0102] 260/RNA/ml taken in doses 0.1-100 μ/kg) of 0.5 ml two to four times per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 24). A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented a patient with poison ivy covering up to ninety-five percent of the entire body with dermal discharge and secondary inflammation restricting eye openings and a score=1 represented a patient without these symptoms.
  • EXAMPLE 22
  • Individuals with psoriasis were orally or topically administered compositions containing RNA oligonucleotides complementary to the phosphodiesterase 4 gene. Some individuals were given compositions containing additional RNA oligonucleotides complementary to other genes such as phosphodiesterase-5 and p65. Oligonucleotide concentrations were typically 0.3 to 300 A[0103] 260/RNA/ml taken in doses of 0.5 ml (0.1-100 μg/kg) two to four times per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 25). A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented a patient with thick silvery-colored scaly patches of skin with dermal discharge and bleeding and a score=1 represented a patient with normal skin.
  • EXAMPLE 23
  • Ten individuals with rosacea were orally or topically administered compositions containing RNA oligonucleotides complementary to the phosphodiesterase 4 gene. Some individuals were given compositions containing additional RNA oligonucleotides complementary to other genes such as cyclooxygenase 2 and p65. Oligonucleotide concentrations were typically 0.3 to 300 A[0104] 260/RNA/ml taken in doses (0.1-100 μg/kg) of 0.5 ml two to four times per day. The effect of the composition was evaluated after approximately one to two months of therapy (see Table 26). A scaled score of 1 to 10 was used to evaluate treatment efficacy where a score=10 represented a patient with red, inflamed facial skin with pimples (e.g., acne) and a score=1 represented a patient normal skin.
    TABLE 4
    Cancer Therapy
    Severity
    sex age condition oligonucleotides before after
    1 m 38 Skin cancer X2/65 7-8 1-2
    2 m 72 Skin cancer X2/65/LO5-38 7-8 stable
    3 f 52 Malignant nasal polyps X2/65/LO5-38/ 10 1
    Mg44
    4 f 47 Malignant melanoma X2/65/LO5-38/ 10 stable
    Mg44
    5 f 56 Breast cancer X2/65/LO5-38 10 stable
  • [0105]
    TABLE 5
    Appetite Control
    sex age condition oligonucleotide Efficacy
    1 f 37 appetite control Ttp 7
    2 f 52 appetite control Ttp 10
    3 f 65 appetite control Ttp 5
    4 f 46 appetite control Ttp 8
    5 f 44 appetite control Ttp 7
    6 f 63 appetite control Ttp 8
    7 f 48 appetite control Ttp 6
    8 f 59 appetite control Ttp 7
    9 m 40 appetite control Ttp 7
    10 f 40 appetite control Ttp 8
    11 f 54 appetite control Ttp 8
    12 f 52 appetite control Ttp 7
    13 f 58 appetite control Ttp 7
    14 f 41 Appetite control Ttp 8
    15 f 39 Appetite control Ttp 8
    16 f 54 Appetite control Ttp 7
  • [0106]
    TABLE 6
    Arthritis Treatment
    Severity
    sex age condition oligonucleotide before after
    1 m 50 Arthritis (back) Asm/X2/65 5 1
    2 f 60 Arthritis (general) Asm/X2/65 6 1
    3 f 63 Rheumatoid Arthritis Asm/X2/65/LO5- 10  5
    38/CRP
    4 f 66 Arthritis (general) Asm/X2/65/D5 7 1
    5 m 50 Arthritis (hands) Asm/65 10  2
    6 f 28 Arthritis (knee) Asm/X2/65 7 1-2
    7 f 74 Arthritis (knee) Asm/X2/65 8 2-3
    8 f 82 Arthritis (general) Asm/X2/65/LO5- 8 2
    38
    9 m 65 Arthritis (back/hand) Asm/X2/65 6 2
    10 f 63 Arthritis (knee) Asm/X2/65/LO5- 10  3-4
    38/CRP
    11 f 55 Arthritis (back/hands) Asm/X2/65 7 1
    12 m 48 Arthritis (general) Asm/X2/65 6 1
    13 m 46 Arthritis (general) Asm/X2/65 5 1
    14 f 90 Arthritis (hand) Asm/X2/65  9-10 1
    15 m 53 Arthritis (fingers) Asm/X2/65 8 1
    16 f 28 Arthritis (neck) Asm/X2/65 7-8 1
    17 f 49 Arthritis (hands) 65 5-6 1
    18 f 51 Arthritis (shoulder) Asm/X2/65 5 1
    19 m 77 Arthritis (knee) Asm/X2/65/LO5- 10  3-4
    38/CRP/D5
    20 m 52 Arthritis (knee) Asm/X2/65/LO5- 7 3-4
    38/D7/CRP
    21 f 53 Arthritis (back) Asm/X2/65/LO5- 7 4
    38/CRP
    22 f 64 Arthritis (thumbs) Asm/X2/65/LO5- 7 3
    38/CRP
    23 f 47 Arthritis (general) Asm/X2/65 8-9 2
    24 f 74 Arthritis (general) Asm/X2/65/LO5- 10  1
    38/Mg44
    25 m 65 Arthritis (back) Asm/X2/65 9 2-3
    26 f 61 Arthritis (knees) Asm/X2/65 8-9 2
  • [0107]
    TABLE 7
    Blood Pressure
    Blood Pressure
    sex age Condition oligonucleotides before after
    1 f 74 Untreated CE/NEP-1/Asm/D5 190/100 165/75 
    hypertension
    2 f 56 Untreated CE/NEP-1/Asm/D5 190/100 160/80 
    hypertension
    3 f 62 Hypertension CE/NEP-1/Asm/D5 200/90  170/75 
    despite treatment
    with Zestril.
    Atenolol &
    Furosemide
    4 f 63 Hypertension CE/NEP-1/Asm/D5 170/70  150/70 
    despite treatment
    with Atenolol &
    Prinivil
    5 m 65 Hypertension CE/NEP-1/Asm/D5 190/98  150/80 
    despite treatment
    with Atenolol
    6 f 55 Untreated CE 190/100 160/100
    Hypertension
    7 m 76 Hypertension NEP-1 170/69  158/74 
    8 m 36 Untreated NEP-1 214/144 160/80 
    Hypertension
  • [0108]
    TABLE 8
    Chlosterol
    Elevated Cholesterol Level
    sex age Condition oligonucleotides before after
     1 f Hyperlipidemia Mg44/Asm/D5 244 125
     2 f Hyperlipidemia Mg44/Asm/D5 220 <150
     3 m Hyperlipidemia Mg44 265 177
     4 f Hyperlipidemia Mg44 212 205
     5 m Hyperlipidemia Mg44/Asm/D5 207 168
     6 f Hyperlipidemia Mg44/Asm/D5 229 163
     7 f Hyperlipidemia Mg44/Asm/D5 300 184
     8 m Hyperlipidemia Mg44/Asm/D5/MTP 213 <150
    (shifted from Zocor)
     9 m Hyperlipidemia Mg44/Asm/D5 <150 <150
    (shifted from Zocor)
    10 m Hyperlipidemia Mg44/Asm/D5 201 164
  • [0109]
    TABLE 9
    Emotional Distress
    Severity
    sex age condition oligonucleotides before after
    1 f 39 Stress Asm/D5 9 1-2
    2 f 46 Stress Asm/D5 8 2
    3 f 52 Depression Asm/D5 10 1-2
    4 f 29 Stress/depression Asm/D5 10 3
    5 m 56 Severe depression Asm/D5 10 2
    6 f 47 Spousal abuse Asm/D5 8-9 1-2
    7 f 57 stress Asm/D5 10 1-2
    8 f 40 stress Asm/D5 9 3
    9 f 52 Severe depression Asm/D5 10 1
    10 f 26 stress Asm/D5 8-9 1
    11 f 36 stress Asm/D5 4-5 1
    12 f 62 Severe depression Asm/D5 10 1
    13 m 31 stress Asm/D5 8-9 1
    14 f 52 Stress/anxiety Asm/D5  9-10 2-3
    15 f 56 Mild stress Asm/D5 6 1
    16 f 51 mood swings Asm/D5 7 1
    17 m 47 High stress Asm/D5 10 2-3
    18 f 56 Spousal abuse Asm/D5 10 5
    19 m 56 Stress Asm/D5 7 2
    20 f 63 Depression Asm/D5 10 1-2
    21 m 51 SAD Asm/D5 10 1-2
    22 f 35 Suicidal Asm/D5 10 1-2
    23 f 38 Severe depression Asm/D5 10 1-3
    24 f 63 Severe depression Asm/D5 10 1-2
    25 f 45 Depression Asm/D5 8-9 1-2
    26 f 31 depression Asm/D5 8 1-2
    27 f 34 stress Asm/D5 9 2
    28 m 63 anxiety Asm/D5 9 1
    29 m 32 Stress/anxiety Asm/D5 10 1
    30 f 60 Severe depression Asm/D5 10 1-2
    31 f 25 OCD/stress Asm/D5 10 3
    32 m 41 agoraphobic Asm/D5 10 3-4
    33 f 42 Severe anxiety Asm/D5 10 1
    34 f 36 depression Asm/D5  9-10 1-2
    35 m 59 Spousal abuse Asm/D5 10 2
    36 f 52 Depression Asm/D5 8 2
    37 f 31 stress Asm/D5 9 1
    38 f 63 stress Asm/D5 8 1
    39 m 55 Anxiety/stress Asm/D5 7 4
    40 m 45 stress Asm/D5 4 1
    41 f 42 stress Asm/D5 10 1
    42 f 38 Severe depression Asm/D5 10 1-2
    43 m 50 Mild stress Asm/D5 4 1
    44 f 33 Mild stress Asm/D5 5 1
    45 f 42 depression Asm/D5 8 1
    46 f 65 depression Asm/D5 9 2-3
    47 f 63 Stress/anxiety Asm/D5 10 2-3
    48 f 44 Stress/anxiety Asm/D5  9-10 1-2
    49 f 34 stress Asm/D5 9 2
    50 f 50 Mild stress Asm/D5 7 1
    51 m 65 depression Asm/D5  9-10 1-2
    52 f 38 stress Asm/D5 8 1
    53 f 32 Stress/anxiety Asm/D5 9 2-3
    54 f 40 stress Asm/D5 8-9 1-2
    55 f 54 stress Asm/D5 7-8 1
    56 f 33 anxiety Asm/D5 8 1
    57 f 54 Stress/depression Asm/D5 9 2-3
    58 f 41 stress Asm/D5 10 1-2
    59 m 15 Panic attacks Asm/D5 10 1
    60 f 44 stress Asm/D5 6 1
    61 f 41 stress Asm/D5 9 1
    62 m 40 stress Asm/D5 7-8 1-2
    63 f 13 Mood swings Asm/D5 8-9 1-2
    64 f 15 Mood swings Asm/D5 7-8 1
    65 f 22 stress Asm/D5 10 1
    66 f 51 anxiety Asm/D5 9 1
    67 m 54 Depression Asm/D5 8 2
    68 f 54 depression Asm/D5 8-9 3
    69 f 51 depression Asm/D5 10 1-2
    70 f 51 stress Asm/D5 5 1
    71 f 56 stress Asm/D5 10 1-2
    72 f 58 depression Asm/D5 8 2
    73 f 39 Mild stress Asm/D5 5 1
    74 m 24 anxiety Asm/D5 6 1
    75 m 29 stress Asm/D5 8 4
    76 f 43 anxiety Asm/D5 5 1
    77 m 21 Panic attacks Asm/D5 10 1
    78 m 66 stress Asm/D5 7-8 1-2
    79 f 45 Stress/anxiety Asm/D5 7 1
    80 f 74 stress Asm/D5 8-9 2
    81 f 50 Mild anxiety Asm/D5 4 1
    82 f 18 Severe depression Asm/D5 10 1
    83 f 53 stress Asm/D5 9 3
    84 f 32 stress Asm/D5 7 3
    85 f 25 stress Asm/D5 8 1-2
    86 m 47 Severe depression Asm/D5 9 1-2
    87 f 38 stress Asm/D5 7 2
    88 m 52 stress Asm/D5 5 1
    89 f 14 Panic attacks Asm/D5 10 1-2
    90 m 65 anxiety Asm/D5 8 1
    91 m 39 stress Asm/D5 9 2
    92 m 11 stress Asm/D5 7 1-2
    93 f 31 Severe depression Asm/D5 10 3
    94 m 67 depression Asm/D5 7 3
    95 f 58 stress Asm/D5 7 2
    96 m 67 stress Asm/D5 9 2
    97 m 12 ADD Asm/D5 8 1
    98 f 58 stress Asm/D5  9-10 2-3
    99 f 30 stress Asm/D5 7 1
    100 m 45 stress Asm/D5 6 1
    101 m 13 ADD Asm/D5  9-10 2-3
  • [0110]
    TABLE 10
    Gastrointestinal Disorders
    Elimination/day Severity
    sex age condition oligonucleotides b/f after b/f after
    1 f 46 IBS Asm/X2/65 11 2 10 3
    2 m 40 Ulcerative colitis Asm/X2/65  5 2  7 1
    3 f 40 IBS Asm/X2/65 20 1-2 10 1
    4 f 38 Ulcerative colitis Asm/X2/65 10-20 1 10 3
    5 f 31 Crohn's X2/65 22 1 10 1
    6 f 34 Crohn's X2/65  8-10 1-2  7 2
    7 f 33 IBS Asm/X2/65 20 1-2  8 1
    8 m 50 IBS Asm/X2/65  5 1-2  5 1
    9 f 22 Chronic Asm/X2/65  0 1-2 10 2
    constipation
    10 f 26 Crohn's X2/65 19-20 1 10 1
    11 f 57 Ulcerative colitis Asm/X2/65 5-6 1  6 2
    12 f 42 IBS Asm/X2/65 12 1  9 1
    14 f 8 IBS Asm/65  8 3-4 10 3
    (testing + X2)
    16 f 47 IBS Asm/X2/65  8 1-2  9 1
    17 f 55 IBS Asm/X2/65 10 1 10 1
    18 m 67 IBS Asm/X2/65 6-7 1-2  6 1
    19 f 36 IBS Asm/X2/65  4 1 7-8 1
    20 m 31 Gall bladder Asm/D5/Mg44 nd nd 10 1
    21 m 56 Kidney stones Mg44 nd nd 10 1
    22 f 37 Gall bladder attack Asm/X2/65/Mg44 nd nd  4 1
    23 f 57 Gall bladder attack Asm/D5/Mg44 nd nd 7-8 1
    25 f 54 IBS Super 8  5 1-2  5 1
    26 f 7 IBS Super 8 nd nd  8 2
    27 f 38 Ulcerative colitis Super 8  3 1-2 4-5 1
  • [0111]
    TABLE 11
    Inflammation
    Severity
    sex age condition oligonucleotides before after
    1 f 39 Post surgical Asm/X2/65/cd18-1 10 4
    2 f 64 Post surgical Asm 10 2
    3 m 55 Asthma/emphysema Asm/X2/65 9 7
    4 f 33 asthma Asm/X2/65 10 1-2
    5 f 40 asthma Asm 10 1
    6 f 40 Bee sting Asm 10 1
    7 m 5 Bee sting Asm/topical 10 1
    8 f 44 Black fly bite IL-501 10 1
    9 f 8 Black fly bite IL-501 10 1
    10 f 6 Black fly bite IL-501 10 1
    11 f 63 Hair implants Asm 10 1
    12 m 66 gout Asm 8 2
    13 m 51 gout Asm 10 1
    14 m 45 gout Asm 10 1
    15 f 56 Polymyalgia rheumatica Asm/X2/65/D7/CRP 10 3
    16 f 31 Multiple sclerosis Asm/X2/65  9-10 2
    17 f 67 polymyositis Asm/X2/65/D7/CRP 8-9 3-4
    18 m 32 Swollen joints Asm 9 1-2
    19 m 65 Inner ear inflammation Asm 7 1
    20 m 26 hemorrhoids Asm 10 5
    21 f 41 hemorrhoids Asm 10 1
    22 m 75 shingles Asm/D7 10 3
    23 m 48 Sore muscles Asm 7 1
    24 f 36 Varicose veins Asm 7 7
    25 f 74 Swollen ankle Asm/X2/65 10 2
    26 f 41 Swollen ankle Asm 10 1
    27 f 63 Swollen knee Asm/X2/65/cd18-1 10 2
    28 f 45 Ganglion cyst Asm/X2/65 7 1
    29 f 73 sciatica Asm 10 1
    30 m 25 sciatica Asm 10 1
    31 m 54 sciatica Asm/X2/65 10 6
    32 m 47 sciatica Asm/X2/65 10 1
    33 f 44 sciatica Asm 10 1
    34 f 46 Itchy ears Asm 6 1
    35 m 59 cellulitis Asm/Nu-3 10 3-4
    36 f 22 Stomach inflammation Asm/X2/65 9 2
    37 f 44 Pinched nerve Asm/X2/65 10 1
    38 f 44 Pinched nerve Asm/X2/65 10 1
    39 m 46 Hockey/tennis elbow Asm/X2/65 9 1
    40 m 40 Hockey/tennis elbow Asm/X2/65 10 1
    41 m 16 Pitcher's arm Asm 10 1
    42 f 58 Heel spur Asm 7 1
    43 f 46 Multiple sclerosis Asm/X2/65 8 2
    44 f 63 hemorrhoids Asm/Nu-3 10 3
    45 m 64 bursitis Asm/X2/65/LO5-38 9 1-2
    46 f 25 Interstitial cystitis Asm/X2/65/LO5-38 10 2
    47 m 67 Inflamed hands Asm/D5/X2/65/IL-501 10 5
    48 f 30 Morning sickness Asm/D5 10 7
    49 f 12 Inflamed tonsils Asm 10 1-2
    50 f 33 Inflamed cat scratch Asm/topical 6 1
    51 f 38 Allergies Asm 10 3
    52 f 42 Insect bite IL-501/topical 9 1
    53 f 10 Severe wasp bites Asm/topical 10 1
    54 f 45 Black fly bites IL-501/topical 9 1
    55 f 62 Wasp bite Asm 8 1
    56 f 7 Ear piercing Asm 8 1
    57 f 9 Ear piercing Asm 8 1
    58 m 37 Pinched nerve Asm/X2/65  9-10 1
    59 f 7 “goose egg” on forehead Asm/topical 8 1
    60 m 12 Knee injury Asm/topical 6 1
    61 f 43 sciatica Asm/topical  9-10 1
    62 f 45 Pulled muscle (knee) Asm/topical 6 1
    63 m 43 Degenerative hip Asm/topical 5 1-2
    64 m 65 Chronic cough D7 10 4
    65 m 38 Extreme autoimmune graft rejection/ Asm/X2/65/D7/LO5- 10 3
    sinusitis/Erosive 38/ICAM/cd-18-
    Peptic Esophagitis 1/IL6/HisR1
    66 f 10 Seasonal allergies Asm 7-8 1
    67 f 42 Interstitial cystitis Asm/X2/65 9 1
    68 f 34 Chronic allergies Asm/X2/65/D5 8 2
    69 f 44 Seasonal allergies/cough IL-501 6 1
    70 f 61 Seasonal allergies/cough IL-501 6 1
  • [0112]
    TABLE 12
    Migraines
    Severity
    sex age Condition oligonucleotides before after
    1 f 42 migraine Asm/D5/X2/Mg44 10 1
    2 f 51 migraine Asm/D5/X2/Mg44 9 1-2
    3 f 28 migraine Asm/D5/X2/Mg44 10 1
    4 f 36 migraine Asm/D5/X2/Mg44 10 2
    5 f 46 migraine Asm/D5/X2/Mg44 10 1
    6 f 51 migraine Asm/D5/X2/Mg44 9 1
    7 f 39 migraine Asm/D5/X2/Mg44 8 1
    8 f 30 migraine Asm/D5/X2/Mg44 9 1
    9 f 58 Migraine Asm/D5/X2/Mg44 9 1
    10 f 57 Migraine Asm/D5/X2/Mg44 10 1
    11 f 21 migraine Asm/D5/X2/Mg44 9 2-3
  • [0113]
    TABLE 13
    Neurological Disorders
    Severity
    sex age Condition oligonucleotides before after
    1 f 56 polymyalgia Asm/X2/65/D7/CRP 10 3
    2 f 31 multiple sclerosis Asm/X2/65 9-10 2
    3 f 67 polymyositis Asm/X2/65/D7/CRP 8-9 3-4
    4 f 46 multiple sclerosis Asm/X2/65 8 2
  • [0114]
    TABLE 14
    Pain
    Severity
    sex age Condition oligonucleotides before after
    1 f 74 Back Asm/X2/65/LO5- 10 5
    38/Mg44
    2 m 54 back Asm/X2/65 9 2
    3 f 37 shoulder Asm/X2 6-7 1
    4 f 41 ankle X2 5 1
    5 f 61 knee X2 8 3
    6 f 41 ovarian Asm/X2 8-9 3
    7 f 61 headache Asm/X2 8 1
    8 f 54 headache Asm/X2/65 8 5
    9 m 26 headache Asm/X2 9 1
    10 f 65 headache Asm/X2/65 8 1
    11 f 36 headache Asm/X2 7 1
    12 f 39 headache Asm/X2/D5 6 1
    13 f 62 headache Asm/X2/D5 10 1-2
    14 f 46 knee Asm/X2/D5 6 2
    15 f 31 knee Asm/X2/65 7 1
    16 f 62 knee Asm/X2/65 7 2
    17 f 61 knee Asm/X2 8 3
    18 f 37 knee Asm/X2 9 1-2
    19 f 39 Surgical pain Asm/X2/65 10 4
    20 m 56 Cancer pain X2 10 6
    21 m 30 stitches Asm/X2 10 1-2
    22 m 20 Tooth extraction Asm/X2 10 1
    23 f 53 Tooth extraction Asm/X2 9 1-2
    24 f 30 Tooth extraction Asm/X2 10 1
    25 f 45 Tooth extraction Asm/X2 8 1-2
    26 f 74 Rib soreness Asm/X2/LO5- 10 1
    38/Mg44
    27 f 48 shoulder Asm/X2/65 8 1
    28 f 43 headache X2 8-9 1-2
    29 m 38 headache X2 7 1-2
    30 m 76 Tooth extraction Asm/X2/65 8 1-2
    31 m 23 Wisdom tooth Asm/X2/65 9 2-3
    pain
    32 f 42 headaches Asm/D5/X2 7 1
    33 f 47 Neck pain Super 8 7 1
    34 f 31 Headaches Asm/D5/X2 10 3
    35 f 59 Teeth pain Super 8 6 1
    36 f 31 Knee pain Super 8 6 1
    37 m 10 Ankle pain Asm/65 5 1
    38 f 13 Tooth extraction Asm/X2/65 7 1
    39 m 65 thyroidectomy Super 8 10 1
    40 f 46 Surgical pain Super 8 9 1
  • [0115]
    TABLE 15
    Premenstrual Syndrome
    Severity
    sex age Condition oligonucleotides before after
    1 f 41 PMS Asm/D5/X2 10 1-2
    2 f 34 PMS Asm/D5/X2 10 1
    3 f 37 PMS Asm/D5/X2 10 1
    4 f 53 PMS Asm 10 1
    5 f 13 PMS Asm/D5/X2 10 1
    6 f 15 PMS Asm/D5/X2 10 1
    7 f 47 PMS Asm/D5/X2 10 9
    8 f 44 PMS Asm 10 1
    9 f 20 PMS Asm/D5/X2 10 1
  • [0116]
    TABLE 16
    Prostatitis
    Severity
    sex age Condition oligonucleotides before after
    1 m 63 BPH MPB/Asm/X2/65 10 1
    2 m 77 BPH Asm/D5/X2 3 1
    3 m 45 Inflamed prostate Asm/D5/X2 4 1
    4 m 69 BPH MPB/Asm/X2/65 7 1-2
  • [0117]
    TABLE 17
    Sinus
    Severity
    sex age Condition oligonucleotides before after
    1 m 8 Sinus/cold Asm/Nu-3 nasal 5 1-2
    2 f 60 Sinus/cold Asm/Nu-3 nasal 7 2
    3 f 42 Sinus/cold Asm/Nu-3 nasal 8 1
    4 f 41 Sinus/cold Asm/Nu-3 nasal 6 4
    5 m 55 Sinus/cold Asm/Nu-3 nasal 6 1
    6 f 47 Sinus/cold Asm/Nu-3 nasal 7 1-2
    7 f 40 Sinus/cold Asm/Nu-3 nasal 5 1-2
    8 f 35 Sinus/cold Asm/Nu-3 nasal 7 1
    9 f 12 Sinus/cold Asm/Nu-3 nasal 5 1
    10 f 34 Sinus/cold Asm/Nu-3 nasal 9 1
    11 m 17 Sinus/cold Asm/Nu-3 nasal 7 2
    12 m 15 Sinus/cold Asm/Nu-3 nasal 6 2
    13 m 70 Sinus/cold Asm/Nu-3 nasal 5 1
    14 f 53 Sinus/cold Asm/Nu-3/CRP 7 3
    15 m 77 Sinus/cold Asm/Nu-3 nasal 8 3
    16 f 37 Sinus/cold Asm/Nu-3 nasal 8 2
    17 f 55 Sinus/cold Asm/Nu-3 nasal 9 2
    18 m 17 Sinus/cold Asm/Nu-3 nasal 7 1
    19 f 62 Sinus/cold Asm/Nu-3 nasal 7 1
    20 m 43 Sinus/cold Asm/Nu-3 nasal 9 1
    21 f 41 Sinus/cold Asm/Nu-3 nasal 6 1
    22 f 58 Sinus/cold Asm/Nu-3 nasal 6 1
    23 f 34 Sinus/cold Asm/Nu-3 nasal 8 1
    24 f 61 Sinus/cold Asm/Nu-3 nasal 6 2
    25 f 19 Sinus/cold Asm/Nu-3 nasal 8 1
    26 f 50 Sinus/cold Asm/Nu-3 nasal 6 1
    27 m 36 Sinus/cold Asm/Nu-3 nasal 7 6
    28 f 48 Sinus/cold Asm/Nu-3 nasal 8 2
    29 f 60 Sinus/cold Asm/Nu-3 nasal 7 1
    30 m 40 Sinus/cold Asm/Nu-3 nasal 8 1
    31 f 45 Sinus/cold Asm/Nu-3 nasal 8 1
    32 f 32 Sinus/cold Asm/Nu-3 nasal 6 1
    33 f 48 Sinus/cold Asm/Nu-3 nasal 9 2-3
    34 f 37 Sinus/cold Asm/Nu-3 nasal 7 2
    35 f 49 Sinus/cold Asm/Nu-3 nasal 7 1-2
    36 m 30 Sinus/cold Asm/Nu-3 nasal 8-9 1
    37 m 52 Sinus/cold Asm/Nu-3 nasal 7 3
    38 f 67 Sinus/cold Asm/Nu-3 nasal 8 1
    39 m 53 Sinus/cold Asm/Nu-3 nasal 7 1
    40 f 12 Sinus/cold Asm/Nu-3 nasal 9 2-3
    41 f 8 Sinus/cold Asm/Nu-3 nasal 5 1
    42 f 25 Sinus/cold Asm/Nu-3 nasal 7 1
    43 f 42 Sinus/cold Asm/Nu-3 nasal 9 1-2
    44 f 54 Sinus/cold Asm/Nu-3 nasal 9 2-3
    45 f 42 Sinus/cold Asm/Nu-3 nasal 7 2
    46 f 45 Sinus/cold Asm/Nu-3 nasal 6 1
    47 m 47 Sinus/cold Asm/Nu-3 nasal 7 1
    48 f 60 Sinus/cold Asm/Nu-3 nasal 8 1
    49 f 34 Sinus/cold Asm/Nu-3 nasal 9 2
    50 f 37 Sinus/cold Asm/Nu-3 nasal 9 2-3
    51 f 49 Sinus/cold Asm/Nu-3 nasal 7 1
    52 f 39 Sinus/cold Asm/Nu-3 nasal 9 1
    53 f 51 Sinus/cold Asm/Nu-3 nasal 10 1-2
  • [0118]
    TABLE 18
    Trauma
    Severity
    sex age Condition oligonucleotides before after
    1 f 41 Broke femur Asm 10 1
    2 f 54 Torn ligament Asm 7 1
    3 m 57 Compound Asm/X2/65 10 4
    fracture/leg
    4 f 72 Sprained ankle Asm/X2/65 6 1
    5 f 47 Root canal Asm/X2/65 7 2
    6 f 28 Neck surgery Asm/X2/65 9 1
    7 f 47 Torn rotator cup Asm/X2/65/LO5-38 7 2-3
    8 f 28 Fractured ankle Asm/X2/65 10 1
    9 m 48 Hyperextended Asm/X2/65/D7 7 2
    elbow
    10 m 19 Motorcycle Asm/X2/65 9 2
    back injury
    11 f 64 Fractured tibia Asm/X2/65/LO5-38 10 3
    12 f 41 Cellulitis from Asm/X2/65/D7 10 3-4
    impaled object
    13 f 74 Broken ribs Asm/X2/65/LO5- 10 1
    38/Mg44
    14 f 36 Lumpectomy pain Asm/topical 10 1
    15 f 37 Tom miniscus Asm/topical 10 1
    16 m 43 Two broken arms Asm 10 2-3
    17 m 1 Finger slammed Asm 9 1
    in door
    18 f 48 Hysterectomy Asm/topical 7 1
    scar
    19 f 45 Broken toe Asm/topical 10 1-2
    20 f 37 Shoulder injury Asm/X2 6 1
    21 m 59 Fluid on knee Super 8 7 1
    22 f 33 Broken Super 8 9 2
    collarbone
    23 m 12 Sprained finger Asm/65 8 1
    24 f 43 Broken foot Super 8/Mg44 9 1
  • [0119]
    TABLE 19
    Carpal tunnel
    Severity
    sex age Condition oligonucleotides before after
    1 m 36 Carpal tunnel Asm 9 1
    2 f 42 Carpal tunnel Asm 10 1
    3 f 56 Carpal tunnel Asm 9 1
    4 m 75 Carpal tunnel Asm 8 1-2
    5 m 55 Carpal tunnel Asm/X2/65 8 1
    6 m 21 Carpal tunnel Asm 9 2
    7 m 56 Carpal tunnel Asm/X2/65 10 1-2
    8 f 63 Carpal tunnel Asm 10 2-3
    9 f 45 Carpal tunnel Super 8 7 2
  • [0120]
    TABLE 20
    Chronic Fatigue/Fibromyalgia
    Severity
    sex age Condition oligonucleotides before after
    1 f 62 CFS Asm/D5/X2 9 1
    2 f 60 Fibromyalgia Asm/D5/X2 10 1
    3 f 56 CFS Asm/D5/X2 9 1
    4 m 36 CFS Asm/D5/X2 8 1-2
    5 m 69 CFS Asm/D5/X2 8 1
    6 m 51 CFS Asm/D5/X2 9 2
    7 m 38 CFS Asm/D5/X2 10 1-2
    8 f 40 Fibromyalgia Asm/D5/X2 10 2-3
  • [0121]
    TABLE 21
    Eczema/Atopic Dermatitis
    Severity
    sex age Condition oligonucleotides before after
    1 f 63 Foot rash Asm 8 1
    2 f 49 hives Asm/X2/65/D7 10 1-2
    3 f 13 Severe leg rashes Asm 10 3-4
    4 m 36 eczema Asm/X2/65 7-8 3-4
    5 f 41 Non-specific rash Asm 8 1
    6 m 11 eczema Asm 10 1-2
    7 f 51 rash Asm/X2 5 1
    8 m 48 rash Asm 6-7 1-2
    9 f 30 Atopic dermatitis Asm 9 1
    10 f 26 Face rash Asm 7 2
    11 m 42 Severe rash Asm/X2/65/D7 10 1
    12 f 8 Rash Asm 4 1
    13 f 12 eczema Asm 6 1
    14 m 67 Severely inflamed Asm/X2/65/IL-501 10 3-4
    fingers
    15 f 52 rash Asm 6 1
    16 f 42 Severe hives Asm/X2/65 10 1
    17 f 14 Chronic eczema Asm 7 1
    18 m 64 eczema Asm/X2/65 8 1
    19 f 63 Non-specific Asm 7-8 1
    itching
    20 f 58 Contact dermatitis Asm/topical 8 1
    21 m 47 Itchy scar Asm/topical 5 1
    22 f 37 Severe contact Asm/topical 7 2
    dermatitis
    23 m 36 Severe atopic Asm 10 1
    dermatitis
    24 m 1 Severe diaper Asm/topical 10 1
    rash
    25 f 40 Eczema Asm 6 1-2
    26 f 35 Itchy/scaly Asm 7-8 1
    patches on feet
    27 m 17 Atopic dermatitis Asm 7 1
    28 f 19 Severe razor burn Asm/topical 10 1
    29 m 24 Severe razor burn Asm/topical 10 1
    30 f 40 Inflamed hands Asut/topical 7 1
    31 m 19 split, cracked cd18-1 7 1
    cuticles
    32 f 51 Split lips cd18-1 5 1
    33 f 30 Dry, cracked cd18-1/topical 8 1
    skin on hands
    34 f 60 rash Super 8 9 1
    35 f 38 Spider bite Super 8 10 2-3
    36 f 15 rash Super 8 5 1
  • [0122]
    TABLE 22
    Erectile Dysfunction
    Severity
    sex age Condition oligonucleotides before after
    1 m 65 ED/blood D5 10 1
    pressure
    med.
    2 m 69 ED/blood Asm/D5 9 2-3
    pressure
    med.
    3 m 52 ED Asm/D5 10 1
  • [0123]
    TABLE 23
    Heartburn/Acid Reflux
    Severity
    sex age Condition oligonucleotides before after
    1 f 63 heartburn Acid-2/Acid B2 10 1
    2 f 49 heartburn Acid-2/Acid B2 10 1
    3 f 22 Heartburn Acid-2/Acid B2 10 1
    4 f 42 Heartburn Acid-2 7-8 1
    5 f 41 Heartburn Acid-2/Acid B2  9-10 1
    6 f 70 Heartburn Acid-2/Acid B2 5 1
    7 f 47 heartburn Acid-2/Acid B2 8 1
    8 f 41 heartburn Acid-2/Acid B2 10 1
    9 f 19 heartburn Acid-2/Acid B2 7 1
    10 m 77 heartburn Acid-2/Acid B2 10 1
    11 f 52 heartburn Acid-2/Acid B2 10 1
    12 f 21 Heartburn Acid-2/Acid B2 10 1
    13 f 41 heartburn Acid-2/Acid B2 10 1
    14 f 46 heartburn Acid-2/Acid B2 10 1
    15 f 63 heartburn Acid-2/Acid B2 10 1
    16 f 62 heartburn Acid-2/Acid B2 10 1
  • [0124]
    TABLE 24
    Poison Ivy
    Severity
    sex age Condition oligonucleotides before after
    1 m 10 Poison ivy Asm  7 1
    2 f 43 Poison ivy Asm  7 1
    3 f 63 Poison ivy Asm 10 1
    4 f 42 Poison ivy Asm  6 1
    5 m 3 Poison ivy Asm  6 1
    6 m 47 Poison ivy Asm 10 1
    7 f 53 Poison ivy Asm 10 1
    8 m 21 Poison ivy Asm/topical 8-9 1
    9 f 12 Poison ivy Asm/topical 10 1
    10 f 56 Poison ivy Asm/topical  9 1
    11 f 40 Poison ivy Asm/topical 7-8 1
    12 f 49 Poison ivy Asm 10 1
    13 m 17 Poison ivy Asm  7 1
    14 f 65 Poison ivy Asm 5-6 1
  • [0125]
    TABLE 25
    Psoriasis
    Severity
    sex age Condition oligonucleotides before after
    1 m 59 stress induced Asm/D5/X2 10 3
    psoriasis
    2 f 77 psoriasis Asm/D5/65 5 1
    3 f 34 psoriasis Asm/D5/65 9-10 1
    4 m 27 psoriasis Asm/D5/65 7 1
    5 f 41 psoriasis Asm/D5/65 7 2-3
    6 f 19 psoriasis Asm/D5/65 9 1
    7 f 6 psoriasis Asm 6 1
    8 f 75 psoriasis Asm 4 1
    9 m 47 Severe psoriasis Asm 10 2-3
    10 m 36 psorlasis Asm/D5/65 5 1
    11 f 24 psoriasis Asm/D5/65 9 1
  • [0126]
    TABLE 26
    Rosacea
    Severity
    sex age Condition oligonucleotides before after
    1 f 40 Rosacea Asm 6 1-2
    2 f 38 Rosacea Asm 4 1
    3 f 58 Rosacea Asm 7 1
    4 f 40 Rosacea Asm 8 1
    5 f 40 Rosacea Asm 8-9 1
    6 f 36 Rosacea Asm 6 3
    7 f 48 Rosacea Asm/X2/65 6-7 1
    8 f 32 Rosacea Asm 6 1
  • [0127]
    TABLE 27
    Average of Results
    pre-treatment post-treatment
    Condition # cases average average
    elevated 10 230 166
    cholesterol
    hypertension 8 190/96 159/79
    inflammatory 12 10 toilet trips 1-2 toilet trips
    bowel
    crohn's disease 3 17 toilet trips 1-2 toilet trips
    ulcerative colitis 5 8 toilet trips 1-2 toilet trips
    acid reflux/ 16 9.2 1.0
    heartburn
    emotional distress 127 8.2 1.4
    PMS 9 10.0 1.0
    inflammation 70 9.0 1.7
    pain 40 8.8 2.0
    infection 78 7.1 1.6
    migraine 14 9.4 1.3
    neurological 9 9.0 3.0
    disorders
    poison ivy 14 8.0 1.0
    prostatitis 5 6.6 1.2
    psoriasis 14 7.1 1.5
    rocacea 10 6.3 1.1
    trauma 25 8.7 1.7
    sinus/cold 53 7.3 1.6
    erectile 5 9.0 1.5
    dysfunction
    eczema/rash 36 8.5 1.4
    fibromyalgia 7 10.0 1.8
    chronic fatigue 9 9.5 1.2
    carpal tunnel 9 8.9 1.3
    syndrome
    arthritis 30 7.6 2.0
    appetite 16 9.5 2.3
  • EXAMPLE 24
  • For animal studies, animals with different indications were provided with oligonucleotide compositions containing RNA oligonucleotides complementary to the phosphodiesterase 4, phosphodiesterase 5 genes or as indicated in FIG. 24. Some animals were additionally given compositions containing additional RNA oligonucleotides complementary to other genes such as cyclooxygenase 2 and p65. Oligonucleotide concentrations were typically 0.3 to 300 A[0128] 260/RNA/ml taken in doses (0.1-100 μg/kg) of 0.5 ml two to four times per day. The effect of the composition was then evaluated (see Table 27). Treatment efficacy was evaluated by an attending veterinarian.
    TABLE 27
    Animal studies
    Severity
    animal Condition oligonucleotides before after
    dog skin allergy Asm 8 2
    dog inflammatory Asm, CX2, P65 7 2
    bowel disease
    horse nervous and agitated Asm, D5 8 2
  • EXAMPLE 24
  • The following is the method for selecting nucleic acid sequences from a known gene sequence for the design of oligonucleotides. Preferred choices are sequences that either are adjacent to, or overlap the start site, followed by sequences that are in the 5′ un-translated region, followed by sequences immediately adjacent to or overlapping the termination signal. This method is very effective and when combined with, achiral RNA, it produces oligonucleotides that display therapeutic efficacy consistently. [0129]
  • For example, achiral RNA oligonucleotides (10-30 bases in length), or achiral 2′-methoxy oligonucleotides (10-30 bases in length), or achiral 2′-methoxy oligonucleotides (10-30 bases in length) with[0130]
  • (a) 3′ or 3′ & 5′ acid stable end-blocks located in the 5′ UTR, or [0131]
  • (b) immediately adjacent to or more preferably overlapping at least one of the three bases of the start site and extending either 5′ or 3′ of the start site, or [0132]
  • (c) immediately adjacent to or overlapping one of the three bases of the termination signal and extending 3′ or 5′ of the termination site that are ten to thirty contiguous bases in length and complementary to a RNA or DNA and that have the following binding characteristics:[0133]
  • (d) ΔG of the oligonucleotide binding the complementary RNA strand at 37° C. [0134]
  • (i) (G[0135] 37°)≦−15 KCal or less (more negative=more stable) for 10 to 14 mer,
  • (ii) (G[0136] 37°)≦−20 KCal or less (more negative more stable) for 15 to 17 mer,
  • (iii) (G[0137] 37°)≦−25 KCal or less (more negative=more stable) for 18 to 20 mer,
  • (iv) (G[0138] 37°)≦−30 KCal or less (more negative=more stable) for 21 to 23 mer,
  • (v) (G[0139] 37°)≦−35 KCal or less (more negative=more stable) for 24 to 30 mer,
  • (e) the ΔG of any hairpin structure the oligonucleotide could assume is ≧−3.0, [0140]
  • (f) the Tm any hairpin that could form is at least 10° C. lower than the Tm of the oligonucleotide binding to the target RNA or DNA, [0141]
  • (g) a melting temperature for the oligonucleotide binding to the target RNA is 45° C. by the percent GC method at 1.0 M salt [0142]
  • For composition parameters, the percent G+C of the oligonucleotide to be used is >35 percent and are administered so that each specific RNA is at a concentration (1.0 g/100 ml), or lower in doses not to exceed 100 μg/kg per RNA, or more preferably 10 μg/kg, or more preferably 1 μg/kg, or still more preferably <1 μg/kg. Sequences are then screened to be sure they do not overlap the same regions in other known genes by conducting BLAST searches against the entire GenBank list of human sequences. [0143]
  • Factors contributing to the selective inhibition of gene expression in vivo by the modified oligonucleotides of the invention include the influence of chirality on melting temperature. 2′-O-methyl modified RNA oligonucleotides with achiral linkages resemble backbone linkages that very closely resemble normal unmodified nucleic acids. Typically, oligonucleotides synthesized using phosphoramidite based synthesis of phosphorothioates produces mixed isomers present at each modified phosphorothioate linkage. A measurable result of the presence of these mixed isomers is a decrease in melting temperature of the phosphorothioate oligonucleotide in a primer target duplex as compared to an unmodified oligonucleotide in the same duplex. The melting temperature of a 2′-O-methyl RNA oligonucleotide, however, is not substantially lowered relative to an unmodified oligonucleotide. Thus, the melting temperatures for 2′-O-methyl RNA oligonucleotides closely resemble those for unmodified RNA because the presence of the 2′-O-methyl group does not result in the generation of isomers. [0144]
  • While the invention has been described and illustrated herein by references to various specific materials, procedures and examples, it is understood that the invention is not restricted to the particular combinations of material and procedures selected for that purpose. Numerous variations of such details can be implied as will be appreciated by those skilled in the art. It is intended that the specification and examples be considered as exemplary, only, with the true scope and spirit of the invention being indicated by the following claims. All references, patents and patent applications referred to in this application are herein incorporated by reference in their entirety. [0145]
  • 1 132 1 14 DNA Artificial sequence ASM oligonucleotide 1 cgtgtcagga gaac 14 2 14 DNA Artificial sequence Ace1 oligonucleotide 2 catgacgcgg tgcg 14 3 16 DNA Artificial sequence Acid-2 oligonucleotide 3 ggcagtcgtc cctcta 16 4 16 DNA Artificial sequence Acid B2 oligonucleotide 4 aacgtttcac ttctca 16 5 13 DNA Artificial sequence cd18-1 oligonucleotide 5 ttgctaccag tct 13 6 16 DNA Artificial sequence CX2 (X2) oligonucleotide 6 tctacagttc agtcga 16 7 18 DNA Artificial sequence Mg44 oligonucleotide 7 tgacaacatt gtagctac 18 8 18 DNA Artificial sequence Mg44 oligonucleotide 8 agctacagaa tccttgga 18 9 16 DNA Artificial sequence Mg44 oligonucleotide 9 gtcgggctat tcaggc 16 10 16 DNA Artificial sequence P65-2M (65) oligonucleotide 10 gaacagttcg tccatg 16 11 15 DNA Artificial sequence IL-501 oligonucleotide 11 cctcatggct ctgaa 15 12 16 DNA Artificial sequence LO5-38 oligonucleotide 12 ggagggcatg gcgcgg 16 13 16 DNA Artificial sequence MPB-19 oligonucleotide 13 cctgcatcgc gccgtg 16 14 16 DNA Artificial sequence NEP-1 (CALLA) oligonucleotide 14 gacttgccca tcacct 16 15 16 DNA Artificial sequence NPY-1 oligonucleotide 15 acctagcatg gtggct 16 16 15 DNA Artificial sequence D5 (PDE5.1) oligonucleotide 16 cgctccatgg ttggc 15 17 16 DNA Artificial sequence D7 oligonucleotide 17 cttccattga atacgc 16 18 16 DNA Artificial sequence Per oligonucleotide 18 actgccatcc tcgctc 16 19 16 DNA Artificial sequence TTP (TTPII) oligonucleotide 19 cggtggccat ggacgc 16 20 17 DNA Artificial sequence TTPII oligonucleotide 20 aagttcatgg tttcgga 17 21 19 DNA Artificial sequence MTP oligonucleotide 21 gaatcatatt tgaccagca 19 22 16 DNA Artificial sequence HisR1 oligonucleotide 22 ggctcattgg cgcaag 16 23 16 DNA Artificial sequence HisR1 oligonucleotide 23 agagcctccc ttagga 16 24 16 DNA Artificial sequence CRP oligonucleotide 24 catggtcacg tcctgc 16 25 18 DNA Artificial sequence CETP oligonucleotide 25 atggttatca ggcagtgg 18 26 19 DNA Artificial sequence CETP oligonucleotide 26 catggttatc aggcagtgg 19 27 16 DNA Artificial sequence CETP oligonucleotide 27 ctgaagaatt gaccac 16 28 16 DNA Artificial sequence ICAM oligonucleotide 28 catagcgagg ctgagg 16 29 15 DNA Artificial sequence TNF-alpha oligonucleotide 29 gtgctcatgg tgtcc 15 30 15 DNA Artificial sequence Bone morphgenic protein-4 oligonucleotide 30 cgaccatcag cattc 15 31 16 DNA Artificial sequence Beta adrenergic receptor-1 oligonucleotide 31 gcccatgccg agctgc 16 32 16 DNA Artificial sequence IL-6 oligonucleotide 32 aggagttcat agctgg 16 33 16 DNA Artificial sequence FAAH oligonucleotide 33 gcaccatgat cccttc 16 34 16 DNA Artificial sequence ACAT oligonucleotide 34 cttcacccac cattgt 16 35 18 DNA Artificial sequence IBAT oligonucleotide 35 cattcattgc tgggtctg 18 36 15 DNA Artificial sequence HMGIC oligonucleotide 36 cgtgcgctca tcctg 15 37 16 DNA Artificial sequence HMGIC oligonucleotide 37 aacgttgcgc ccccta 16 38 16 DNA Artificial sequence Ghre oligonucleotide 38 tgcagacagg tgggcc 16 39 17 DNA Artificial sequence Ghre oligonucleotide 39 gcatggcctc agctggg 17 40 16 DNA Artificial sequence Ghre oligonucleotide 40 tgggcgatca cttgtc 16 41 18 DNA Artificial sequence AAT1R oligonucleotide 41 cattttgatc acctgggt 18 42 16 DNA Artificial sequence AAT1R oligonucleotide 42 cgaacatgtc actcaa 16 43 17 DNA Artificial sequence VEGF oligonucleotide 43 aagttcatgg tttcgga 17 44 17 DNA Artificial sequence VEGF oligonucleotide 44 tcaccgcctc ggcttgt 17 45 15 DNA Artificial sequence FAS oligonucleotide 45 cctcctccat ggctg 15 46 15 DNA Artificial sequence FAS oligonucleotide 46 gcctagccct cccgc 15 47 16 DNA Artificial sequence AmP oligonucleotide 47 gcagcggctt gttcat 16 48 15 DNA Artificial sequence AmP oligonucleotide 48 gagtcaagac ctcag 15 49 16 DNA Artificial sequence PanLip oligonucleotide 49 gtggcagcat cgtggc 16 50 16 DNA Artificial sequence PanLip oligonucleotide 50 cctaacacgg tgtgag 16 51 17 DNA Artificial sequence ACC2 oligonucleotide 51 gaagcaagac cattcag 17 52 17 DNA Artificial sequence ACC2 oligonucleotide 52 tcaggtggag gccgggc 17 53 16 DNA Artificial sequence PKARIIbeta oligonucleotide 53 tgctcatcct gcctcc 16 54 16 DNA Artificial sequence PKARIIbeta oligonucleotide 54 gcttcatgca gtgggt 16 55 16 DNA Artificial sequence VR1R oligonucleotide 55 tcttcatcct tgctgg 16 56 16 DNA Artificial sequence VR1R oligonucleotide 56 ctcacttctc cccgga 16 57 16 DNA Artificial sequence ADAMTS oligonucleotide 57 gggacatggc actggt 16 58 16 DNA Artificial sequence ADAMTS oligonucleotide 58 ttatttcctg cccgcc 16 59 16 DNA Artificial sequence NPY-Y5R oligonucleotide 59 tgtggcaggt cagttg 16 60 16 DNA Artificial sequence NPY-Y5R oligonucleotide 60 atccatatta tagtct 16 61 16 DNA Artificial sequence NPY-Y5R oligonucleotide 61 tattacatat gaagac 16 62 16 DNA Artificial sequence GNTV oligonucleotide 62 agccattgct ctctgg 16 63 16 DNA Artificial sequence GNTV oligonucleotide 63 tgctataggc agtctt 16 64 16 DNA Artificial sequence FCRG3 oligonucleotide 64 tgccacatga tgccac 16 65 16 DNA Artificial sequence FCRG3 oligonucleotide 65 gttgagcttc aaatgt 16 66 16 DNA Artificial sequence CD40L oligonucleotide 66 tcgatcatgc tgtgtt 16 67 16 DNA Artificial sequence CD40L oligonucleotide 67 aggtgacact gttcag 16 68 16 DNA Artificial sequence ETS-1 oligonucleotide 68 acggccgcct tcatgg 16 69 16 DNA Artificial sequence ETS-1 oligonucleotide 69 gccatcactc gtcggc 16 70 16 DNA Artificial sequence ADAMTS-5 oligonucleotide 70 ccgagcagca tagtgc 16 71 16 DNA Artificial sequence ADAMTS-5 oligonucleotide 71 tcataaccac aggcta 16 72 16 DNA Artificial sequence PTP-1B oligonucleotide 72 catgacgggc cagggc 16 73 16 DNA Artificial sequence PTP-1B oligonucleotide 73 gggtcaggct atgtgt 16 74 17 DNA Artificial sequence MMP-1 oligonucleotide 74 gcatactggc ctttgtc 17 75 17 DNA Artificial sequence MMP-1 oligonucleotide 75 tcaatttttc ctgcagt 17 76 16 DNA Artificial sequence Cat oligonucleotide 76 gccatagcgt gcggtt 16 77 16 DNA Artificial sequence Cat oligonucleotide 77 cccggcctca cagatt 16 78 17 DNA Artificial sequence MMP-17 oligonucleotide 78 catggcgctc acatggg 17 79 17 DNA Artificial sequence MMP-17 oligonucleotide 79 tgtcatagcg tcagggc 17 80 16 DNA Artificial sequence OPG oligonucleotide 80 tcattgtggt ccccgg 16 81 16 DNA Artificial sequence OPG oligonucleotide 81 tccagttata agcagc 16 82 1684 DNA Homo sapiens misc_feature Pde4 Acc. No. U50158 82 aatatgaagg agcagccctc atgtgccggc accgggcatc cgagcatggc gggaggaggc 60 ctaccagaaa ctggccagcg agaccctgga ggagctggac tggtgtctgg accagctaga 120 gaccctacag accaggcact ccgtcagtga gatggcctcc aacaagttta aaaggatgct 180 taatcgggag ctcacccatc tctctgaaat gagtcggtct ggaaatcaag tgtcagagtt 240 tatatcaaac acattcttag ataagcaaca tgaagtggaa attccttctc caactcagaa 300 ggaaaaggag aaaaagaaaa gaccaatgtc tcagatcagt ggagtcaaga aattgatgca 360 cagctctagt ctgactaatt caagtatccc aaggtttgga gttaaaactg aacaagaaga 420 tgtccttgcc aaggaactag aagatgtgaa caaatggggt cttcatgttt tcagaatagc 480 agagttgtct ggtaaccggc ccttgactgt tatcatgcac accatttttc aggaacggga 540 tttattaaaa acatttaaaa ttccagtaga tactttaatt acatatctta tgactctcga 600 agaccattac catgctgatg tggcctatca caacaatatc catgctgcag atgttgtcca 660 gtctactcat gtgctattat ctacacctgc tttggaggct gtgtttacag atttggagat 720 tcttgcagca atttttgcca gtgcaataca tgatgtagat catcctggtg tgtccaatca 780 atttctgatc aatacaaact ctgaacttgc cttgatgtac aatgattcct cagtcttaga 840 gaaccatcat ttggctgtgg gctttaaatt gcttcaggaa gaaaactgtg acattttcca 900 gaatttgacc aaaaaacaaa gacaatcttt aaggaaaatg gtcattgaca tcgtacttgc 960 aacagatatg tcaaaacaca tgaatctact ggctgatttg aagactatgg ttgaaactaa 1020 gaaagtgaca agctctggag ttcttcttct tgataattat tccgatagga ttcaggttct 1080 tcagaatatg gtgcactgtg cagatctgag caacccaaca aagcctctcc agctgtaccg 1140 ccagtggacg gaccggataa tggaggagtt cttccgccaa ggagaccgag agagggaacg 1200 tggcatggag ataagcccca tgtgtgacaa gcacaatgct tccgtggaaa aatcacaggt 1260 gggcttcata gactatattg ttcatcccct ctgggagaca tgggcagacc tcgtccaccc 1320 tgacgcccag gatattttgg acactttgga ggacaatcgt gaatggtacc agagcacaat 1380 ccctcagagc ccctctcctg cacctgatga cccagaggag ggccggcagg gtcaaactga 1440 gaaattccag tttgaactaa ctttagagga agatggtgag tcagacacgg aaaaggacag 1500 tggcagtcaa gtggaagaag acactagctg cagtgactcc aagactcttc gtactcaaga 1560 ctcagagtct actgaaattc cccttgatga acaggttgaa gaggaggcag taggggaaga 1620 agaggaaagc caacctgaag cctgtgtcat agatgatcgt tctcctgaca cgtaacagtg 1680 caaa 1684 83 4020 DNA Homo sapiens misc_feature ACE-1 Acc. No. J04144.1 83 gccgagcacc gcgcaccgcg tcatgggggc cgcctcgggc cgccgggggc cggggctgct 60 gctgccgctg ccgctgctgt tgctgctgcc gccgcagccc gccctggcgt tggaccccgg 120 gctgcagccc ggcaactttt ctgctgacga ggccggggcg cagctcttcg cgcagagcta 180 caactccagc gccgaacagg tgctgttcca gagcgtggcc gccagctggg cgcacgacac 240 caacatcacc gcggagaatg caaggcgcca ggaggaagca gccctgctca gccaggagtt 300 tgcggaggcc tggggccaga aggccaagga gctgtatgaa ccgatctggc agaacttcac 360 ggacccgcag ctgcgcagga tcatcggagc tgtgcgaacc ctgggctctg ccaacctgcc 420 cctggctaag cggcagcagt acaacgccct gctaagcaac atgagcagga tctactccac 480 cgccaaggtc tgcctcccca acaagactgc cacctgctgg tccctggacc cagatctcac 540 caacatcctg gcttcctcgc gaagctacgc catgctcctg tttgcctggg agggctggca 600 caacgctgcg ggcatcccgc tgaaaccgct gtacgaggat ttcactgccc tcagcaatga 660 agcctacaag caggacggct tcacagacac gggggcctac tggcgctcct ggtacaactc 720 ccccaccttc gaggacgatc tggaacacct ctaccaacag ctagagcccc tctacctgaa 780 cctccatgcc ttcgtccgcc gcgcactgca tcgccgatac ggagacagat acatcaacct 840 caggggaccc atccctgctc atctgctggg agacatgtgg gcccagagct gggaaaacat 900 ctacgacatg gtggtgcctt tcccagacaa gcccaacctc gatgtcacca gtactatgct 960 gcagcagggc tggaacgcca cgcacatgtt ccgggtggca gaggagttct tcacctccct 1020 ggagctctcc cccatgcctc ccgagttctg ggaagggtcg atgctggaga agccggccga 1080 cgggcgggaa gtggtgtgcc acgcctcggc ttgggacttc tacaacagga aagacttcag 1140 gatcaagcag tgcacacggg tcacgatgga ccagctctcc acagtgcacc atgagatggg 1200 ccatatacag tactacctgc agtacaagga tctgcccgtc tccctgcgtc ggggggccaa 1260 ccccggcttc catgaggcca ttggggacgt gctggcgctc tcggtctcca ctcctgaaca 1320 tctgcacaaa atcggcctgc tggaccgtgt caccaatgac acggaaagtg acatcaatta 1380 cttgctaaaa atggcactgg aaaaaattgc cttcctgccc tttggctact tggtggacca 1440 gtggcgctgg ggggtcttta gtgggcgtac ccccccttcc cgctacaact tcgactggtg 1500 gtatcttcga accaagtatc aggggatctg tcctcctgtt acccgaaacg aaacccactt 1560 tgatgctgga gctaagtttc atgttccaaa tgtgacacca tacatcaggt actttgtgag 1620 ttttgtcctg cagttccagt tccatgaagc cctgtgcaag gaggcaggct atgagggccc 1680 actgcaccag tgtgacatct accggtccac caaggcaggg gccaagctcc ggaaggtgct 1740 gcaggctggc tcctccaggc cctggcagga ggtgctgaag gacatggtcg gcttagatgc 1800 cctggatgcc cagccgctgc tcaagtactt ccagccagtc acccagtggc tgcaggagca 1860 gaaccagcag aacggcgagg tcctgggctg gcccgagtac cagtggcacc cgccgttgcc 1920 tgacaactac ccggagggca tagacctggt gactgatgag gctgaggcca gcaagtttgt 1980 ggaggaatat gaccggacat cccaggtggt gtggaacgag tatgccgagg ccaactggaa 2040 ctacaacacc aacatcacca cagagaccag caagattctg ctgcagaaga acatgcaaat 2100 agccaaccac accctgaagt acggcaccca ggccaggaag tttgatgtga accagttgca 2160 gaacaccact atcaagcgga tcataaagaa ggttcaggac ctagaacggg cagcgctgcc 2220 tgcccaggag ctggaggagt acaacaagat cctgttggat atggaaacca cctacagcgt 2280 ggccactgtg tgccacccga atggcagctg cctgcagctc gagccagatc tgacgaatgt 2340 gatggccaca tcccggaaat atgaagacct gttatgggca tgggagggct ggcgagacaa 2400 ggcggggaga gccatcctcc agttttaccc gaaatacgtg gaactcatca accaggctgc 2460 ccggctcaat ggctatgtag atgcagggga ctcgtggagg tctatgtacg agacaccatc 2520 cctggagcaa gacctggagc ggctcttcca ggagctgcag ccactctacc tcaacctgca 2580 tgcctacgtg cgccgggccc tgcaccgtca ctacggggcc cagcacatca acctggaggg 2640 gcccattcct gctcacctgc tggggaacat gtgggcgcag acctggtcca acatctatga 2700 cttggtggtg cccttccctt cagccccctc gatggacacc acagaggcta tgctaaagca 2760 gggctggacg cccaggagga tgtttaagga ggctgatgat ttcttcacct ccctggggct 2820 gctgcccgtg cctcctgagt tctggaacaa gtcgatgctg gagaagccaa ccgacgggcg 2880 ggaggtggtc tgccacgcct cggcctggga cttctacaac ggcaaggact tccggatcaa 2940 gcagtgcacc accgtgaact tggaggacct ggtggtggcc caccacgaaa tgggccacat 3000 ccagtatttc atgcagtaca aagacttacc tgtggccttg agggagggtg ccaaccccgg 3060 cttccatgag gccattgggg acgtgctagc cctctcagtg tctacgccca agcacctgca 3120 cagtctcaac ctgctgagca gtgagggtgg cagcgacgag catgacatca actttctgat 3180 gaagatggcc cttgacaaga tcgcctttat ccccttcagc tacctcgtcg atcagtggcg 3240 ctggagggta tttgatggaa gcatcaccaa ggagaactat aaccaggagt ggtggagcct 3300 caggctgaag taccagggcc tctgcccccc agtgcccagg actcaaggtg actttgaccc 3360 aggggccaag ttccacattc cttctagcgt gccttacatc aggtactttg tcagcttcat 3420 catccagttc cagttccacg aggcactgtg ccaggcagct ggccacacgg gccccctgca 3480 caagtgtgac atctaccagt ccaaggaggc cgggcagcgc ctggcgaccg ccatgaagct 3540 gggcttcagt aggccgtggc cggaagccat gcagctgatc acgggccagc ccaacatgag 3600 cgcctcggcc atgttgagct acttcaagcc gctgctggac tggctccgca cggagaacga 3660 gctgcatggg gagaagctgg gctggccgca gtacaactgg acgccgaact ccgctcgctc 3720 agaagggccc ctcccagaca gcggccgcgt cagcttcctg ggcctggacc tggatgcgca 3780 gcaggcccgc gtgggccagt ggctgctgct cttcctgggc atcgccctgc tggtagccac 3840 cctgggcctc agccagcggc tcttcagcat ccgccaccgc agcctccacc ggcactccca 3900 cgggccccag ttcggctccg aggtggagct gagacactcc tgaggtgacc cggctgggtc 3960 ggccctgccc aagggcctcc caccagagac tgggatggga acactggtgg gcagctgagg 4020 84 3556 DNA Homo sapiens misc_feature Acid2 Acc. No. NM_000704 84 tgttgggtgg gagcacaggc accgggcacc atggggaagg ccgagaacta tgagctctac 60 tcggtggagc tgggtcctgg ccctggcggg gacatggctg ccaagatgag caagaagaag 120 aaggcgggtg gcgggggtgg caagaggaag gagaagctgg agaacatgaa gaaggagatg 180 gagattaacg accaccagct gtcagtggcg gagctggaac agaaatacca gaccagtgcc 240 accaagggcc tctctgcgag cctggctgct gagctgctgc tgcgggatgg gcccaacgca 300 ctgcggccac cacggggcac cccagagtac gtcaagttcg cgaggcagct ggccgggggc 360 ctgcagtgcc tcatgtgggt tgccgccgcc atctgcctca tcgcctttgc catccaggct 420 agtgaggggg acctcaccac cgacgacaat ctgtacctgg caatcgctct cattgctgtg 480 gttgtcgtca ccggctgctt tggctactac caggaattca agagcaccaa catcatcgcc 540 agctttaaga accttgtgcc acagcaagcc actgtcatcc gcgatggaga caaattccag 600 atcaacgctg accaactggt ggtgggcgac ctggtggaga tgaaaggtgg ggacagagtg 660 cccgccgaca tccgcatcct ggcggcccag ggctgcaagg tggacaactc ctcgctgaca 720 ggggagtctg agccacaaac ccgctcaccc gagtgcacgc acgagagccc tctggagacc 780 cgcaacatcg ccttcttctc caccatgtgc cttgagggca ccgcgcaggg cctggtggtg 840 aacacgggcg accgcaccat cattgggcgc atcgcatcgc tggcgtcggg ggtggaaaac 900 gagaagacac ccatcgctat cgagatcgag cattttgtgg acatcatcgc gggcctggcc 960 attctcttcg gtgccacatt ttttattgtg gccatgtgca ttggctacac cttcctgcgg 1020 gccatggtct tcttcatggc catcgtggtg gcctatgtgc ctgaggggct gctggccact 1080 gtcacagtct gcctgtccct gacagccaag cgcctggcca gtaagaactg cgtggtcaag 1140 aacctggagg cggtggagac attgggctcc acttcggtga tctgctcgga caagacaggg 1200 actctcactc agaaccgcat gactgtgtcc catctgtggt ttgacaacca catccacaca 1260 gctgacacca cggaagacca gtcagggcag acgtttgacc agtcctcgga gacgtggcgg 1320 gcgctgtgcc gggtgctcac cctgtgcaac cgcgccgcct tcaagtccgg ccaggatgca 1380 gtgcctgtgc ccaagcgcat cgtgattgga gacgcatcgg agacggcgct gctcaagttc 1440 tcggagctga cgctgggcaa cgccatgggc taccgggacc gcttcccaaa agtctgcgag 1500 atacccttca actccaccaa caagttccag ctgtccatcc atacgctgga ggacccgcgg 1560 gacccgcgac acttgctggt gatgaagggc gcccccgagc gcgtgctgga gcgctgcagc 1620 tccatcctta tcaagggcca ggagctgccg ctggacgagc agtggcgcga ggccttccag 1680 accgcctacc tcagcctggg aggcctgggc gaacgcgtgc tcggcttctg ccagctctac 1740 ctgaatgaga aggactaccc gcctggctat gccttcgacg tagaggccat gaactttcca 1800 tctagcggcc tctgctttgc gggacttgta tccatgattg acccaccccg ggccaccgtc 1860 cctgatgctg tgctcaagtg tcgcaccgca ggcatccggg tgatcatggt aacgggtgac 1920 caccccatca ccgccaaggc cattgcagcc agtgtgggca tcatctcgga aggcagcgag 1980 acagtggagg acatcgctgc ccgcctccgt gtgcccgtag accaggttaa tcgcaaggat 2040 gcccgtgcct gtgtgatcaa tggcatgcag ctgaaggaca tggacccatc ggaactggtc 2100 gaggccctgc gcacccaccc cgagatggtg tttgcgcgca ccagccccca gcagaagctg 2160 gtgatcgtgg agagctgcca gcggctgggt gcgattgtgg ccgtcacggg ggatggtgtg 2220 aatgactccc cagctctgaa gaaggcagac atcggagtag ccatgggcat cgctggctca 2280 gatgctgcca aaaatgcagc tgacatgatc ctgctggatg acaactttgc ctccattgtg 2340 acaggcgtgg agcagggtcg actgatcttc gacaacctga agaagtctat tgcctacaca 2400 ttgaccaaga acatcccaga gctgacaccc tacctcatct acatcaccgt cagcgtgccc 2460 ctgcccctcg ggtgcatcac catcctcttc atcgaactct gcactgacat tttcccatct 2520 gtgtccctgg catatgaaaa ggccgagagt gacatcatgc acctgcgtcc acgcaaccca 2580 aagcgtgaca gattggtcaa cgagcccctg gctgcctact cctacttcca gattggtgcc 2640 attcagtcct ttgctggctt cactgactac ttcacggcaa tggcccagga gggctggttc 2700 ccactgctgt gcgtggggct gcgggcgcag tgggaggacc accacctaca agatctgcag 2760 gacagctacg gccaggagtg gacattcggg cagcgcctgt accagcagta cacctgctac 2820 accgtgttct tcatcagcat tgaggtgtgc cagatcgccg atgtcctcat ccgcaagacg 2880 cgccgtctct ctgccttcca gcaaggcttc ttcaggaata agatcctggt gatcgccatc 2940 gtgttccagg tctgcatcgg ctgcttcctg tgctactgcc ccggcatgcc caacatcttc 3000 aacttcatgc ccattcggtt ccagtggtgg ctggtccccc tgccctacgg catcctcatc 3060 ttcgtctatg atgagatccg gaagcttgga gttcgctgtt gcccagggag ctggtgggac 3120 caggaactct actattagag ggacgactgc cttcaagcat ccctgcaact gccacagcag 3180 gtgggggcag ggcacgtggg accctctgga cagccaccaa gatatctgag caaccaagag 3240 tcccagcccc accagtatct gcttctgtag cccacggcac cccaaacttg gagggacctg 3300 cccactcccc tcccccattc ccaaggttcg cacctcctgg agcagcagcg cctgggcagt 3360 cctctgggct ggcctcggga aagccgccac ctgtggtggc ggtggggctc tgacagggag 3420 tacagctgac cgcttctgga gggtgtttct gttcttagga ctccagtcca ggctggacgg 3480 ctgcctgagg gcccttcgtt aaagacacgc ttgtgtcctg ggcgatggta ataaaaccag 3540 ctcatgctga ctgtgc 3556 85 1444 DNA Homo sapiens misc_feature AcidB2 Acc. No. NM_000705 85 agtctgggcg tagagggtgc agggagcaga cgggaggatc tcaggccagg gacgatggcg 60 gctctgcagg agaagaagac gtgtggccag cgcatggagg agttccagcg ttactgctgg 120 aacccggaca cggggcagat gctgggccgc accctgtccc ggtgggtgtg gatcagcctg 180 tactacgtgg ccttctacgt ggtgatgact gggctcttcg ccctgtgcct ctatgtgctg 240 atgcagacag tggacccgta cacaccggac taccaagacc agctacggtc accaggggta 300 accttaaggc cggatgttta cggggagaaa ggcctggaaa ttgtctacaa cgtctctgat 360 aacagaacct gggcagacct cacacagact ctccacgcct tcctagcagg ctactctcca 420 gcagcccagg aggacagcat caactgcacc tccgagcagt acttcttcca ggagagtttc 480 cgcgctccca accacaccaa gttctcctgc aagttcacgg cagatatgct gcagaactgc 540 tcaggcctgg cggatcccaa cttcggcttt gaagaaggaa agccatgttt tattattaaa 600 atgaacagga tcgtcaagtt cctccccagc aacggctcgg cccccagagt ggactgcgcc 660 ttcctggacc agccccgcga gctcggccag ccgctgcagg tcaagtacta ccctcccaac 720 ggcaccttca gtctgcacta cttcccttat tacgggaaga aagcccagcc ccactacagc 780 aaccccctgg tggcagcgaa gctcctcaac atccccagga acgctgaggt cgccatcgtg 840 tgcaaggtca tggcagagca cgtgaccttc aacaatcccc acgacccgta tgaagggaaa 900 gtggagttca aactcaagat tgagaagtga aacgtttgcg caggggtcct gggcacgcct 960 gcggggtcgc tcaaggacac cctcctggtt gggcttacct tgcccgtcag ttccctgcca 1020 aatcatcccc aaagtggttt ggagcaacgg tgttgtcagt gtgcgaactc cagagaagcg 1080 cccacatctg aaggacctgc tcgcgagtat cagttcttcc ttgttgaatt cttacagttt 1140 ttagatggaa tttgctgcta taagaatgtc cagctaccat gggaacgcaa ggcagcaact 1200 ctctaattaa ccaggtcata aaaacgattc gtcttctatg tagacatcac tttcttacta 1260 taatttattt ttctacactt caatatgaac tgcccccccc acattaatat aaaaactact 1320 aatgcactga tatgaaacac ggcttacact aatgacattc tgaattcttg cttttaaaat 1380 tgcaattcct aagttgtaaa cataaaatat attaaagtta ctcttattgt atgtaaaaaa 1440 aaaa 1444 86 2776 DNA Homo sapiens misc_feature Cd-18 Acc. No. M15395 86 cagggcagac tggtagcaaa gcccccacgc ccagccagga gcaccgccgc ggactccagc 60 acaccgaggg acatgctggg cctgcgcccc ccactgctcg ccctggtggg gctgctctcc 120 ctcgggtgcg tcctctctca ggagtgcacg aagttcaagg tcagcagctg ccgggaatgc 180 atcgagtcgg ggcccggctg cacctggtgc cagaagctga acttcacagg gccgggggat 240 cctgactcca ttcgctgcga cacccggcca cagctgctca tgaggggctg tgcggctgac 300 gacatcatgg accccacaag cctcgctgaa acccaggaag accacaatgg gggccagaag 360 cagctgtccc cacaaaaagt gacgctttac ctgcgaccag gccaggcagc agcgttcaac 420 gtgaccttcc ggcgggccaa gggctacccc atcgacctgt actatctgat ggacctctcc 480 tactccatgc ttgatgacct caggaatgtc aagaagctag gtggcgacct gctccgggcc 540 ctcaacgaga tcaccgagtc cggccgcatt ggcttcgggt ccttcgtgga caagaccgtg 600 ctgccgttcg tgaacacgca ccctgataag ctgcgaaacc catgccccaa caaggagaaa 660 gagtgccagc ccccgtttgc cttcaggcac gtgctgaagc tgaccaacaa ctccaaccag 720 tttcagaccg aggtcgggaa gcagctgatt tccggaaacc tggatgcacc cgagggtggg 780 ctggacgcca tgatgcaggt cgccgcctgc ccggaggaaa tcggctggcg caacgtcacg 840 cggctgctgg tgtttgccac tgatgacggc ttccatttcg cgggcgacgg aaagctgggc 900 gccatcctga cccccaacga cggccgctgt cacctggagg acaacttgta caagaggagc 960 aacgaattcg actacccatc ggtgggccag ctggcgcaca agctggctga aaacaacatc 1020 cagcccatct tcgcggtgac cagtaggatg gtgaagacct acgagaaact caccgagatc 1080 atccccaagt cagccgtggg ggagctgtct gaggactcca gcaatgtggt ccatctcatt 1140 aagaatgctt acaataaact ctcctccagg gtcttcctgg atcacaacgc cctccccgac 1200 accctgaaag tcacctacga ctccttctgc agcaatggag tgacgcacag gaaccagccc 1260 agaggtgact gtgatggcgt gcagatcaat gtcccgatca ccttccaggt gaaggtcacg 1320 gccacagagt gcatccagga gcagtcgttt gtcatccggg cgctgggctt cacggacata 1380 gtgaccgtgc aggttcttcc ccagtgtgag tgccggtgcc gggaccagag cagagaccgc 1440 agcctctgcc atggcaaggg cttcttggag tgcggcatct gcaggtgtga cactggctac 1500 attgggaaaa actgtgagtg ccagacacag ggccggagca gccaggagct ggaaggaagc 1560 tgccggaagg acaacaactc catcatctgc tcagggctgg gggactgtgt ctgcgggcag 1620 tgcctgtgcc acaccagcga cgtccccggc aagctgatat acgggcagta ctgcgagtgt 1680 gacaccatca actgtgagcg ctacaacggc caggtctgcg gcggcccggg gagggggctc 1740 tgcttctgcg ggaagtgccg ctgccacccg ggctttgagg gctcagcgtg ccagtgcgag 1800 aggaccactg agggctgcct gaacccgcgg cgtgttgagt gtagtggtcg tggccggtgc 1860 cgctgcaacg tatgcgagtg ccattcaggc taccagctgc ctctgtgcca ggagtgcccc 1920 ggctgcccct caccctgtgg caagtacatc tcctgcgccg agtgcctgaa gttcgaaaag 1980 ggcccctttg ggaagaactg cagcgcggcg tgtccgggcc tgcagctgtc gaacaacccc 2040 gtgaagggca ggacctgcaa ggagagggac tcagagggct gctgggtggc ctacacgctg 2100 gagcagcagg acgggatgga ccgctacctc atctatgtgg atgagagccg agagtgtgtg 2160 gcaggcccca acatcgccgc catcgtcggg ggcaccgtgg caggcatcgt gctgatcggc 2220 attctcctgc tggtcatctg gaaggctctg atccacctga gcgacctccg ggagtacagg 2280 cgctttgaga aggagaagct caagtcccag tggaacaatg ataatcccct tttcaagagc 2340 gccaccacga cggtcatgaa ccccaagttt gctgagagtt aggagcactt ggtgaagaca 2400 aggccgtcag gacccaccat gtctgcccca tcacgcggcc gagacatggc ttggccacag 2460 ctcttgagga tgtcaccaat taaccagaaa tccagttatt ttccgccctc aaaatgacag 2520 ccatggccgg ccggtgcttc tgggggctcg tcggggggac agctccactc tgactggcac 2580 agtctttgca tggagacttg aggagggctt gaggttggtg aggttaggtg cgtgtttcct 2640 gtgcaagtca ggacatcagt ctgattaaag gtggtgccaa tttatttaca tttaaacttg 2700 tcagggtata aaatgacatc ccattaatta tattgttaat caatcacgtg tatagaaaaa 2760 aaaataaaac ttcaat 2776 87 3387 DNA Homo sapiens misc_feature Cox2 Acc. No. M90100 87 gtccaggaac tcctcagcag cgcctccttc agctccacag ccagacgccc tcagacagca 60 aagcctaccc ccgcgccgcg ccctgcccgc cgctgcgatg ctcgcccgcg ccctgctgct 120 gtgcgcggtc ctggcgctca gccatacagc aaatccttgc tgttcccacc catgtcaaaa 180 ccgaggtgta tgtatgagtg tgggatttga ccagtataag tgcgattgta cccggacagg 240 attctatgga gaaaactgct caacaccgga atttttgaca agaataaaat tatttctgaa 300 acccactcca aacacagtgc actacatact tacccacttc aagggatttt ggaacgttgt 360 gaataacatt cccttccttc gaaatgcaat tatgagttat gtgttgacat ccagatcaca 420 tttgattgac agtccaccaa cttacaatgc tgactatggc tacaaaagct gggaagcctt 480 ctctaacctc tcctattata ctagagccct tcctcctgtg cctgatgatt gcccgactcc 540 cttgggtgtc aaaggtaaaa agcagcttcc tgattcaaat gagattgtgg gaaaattgct 600 tctaagaaga aagttcatcc ctgatcccca gggctcaaac atgatgtttg cattctttgc 660 ccagcacttc acgcatcagt ttttcaagac agatcataag cgagggccag ctttcaccaa 720 cgggctgggc catggggtgg acttaaatca tatttacggt gaaactctgg ctagacagcg 780 taaactgcgc cttttcaagg atggaaaaat gaaatatcag ataattgatg gagagatgta 840 tcctcccaca gtcaaagata ctcaggcaga gatgatctac cctcctcaag tccctgagca 900 tctacggttt gctgtggggc aggaggtctt tggtctggtg cctggtctga tgatgtatgc 960 cacaatctgg ctgagggaac acaacagagt atgcgatgtg cttaaacagg agcatcctga 1020 atggggtgat gagcagttgt tccagacaag caggctaata ctgataggag agactattaa 1080 gattgtgatt gaagattatg tgcaacactt gagtggctat cacttcaaac tgaaatttga 1140 cccagaacta cttttcaaca aacaattcca gtaccaaaat cgtattgctg ctgaatttaa 1200 caccctctat cactggcatc cccttctgcc tgacaccttt caaattcatg accagaaata 1260 caactatcaa cagtttatct acaacaactc tatattgctg gaacatggaa ttacccagtt 1320 tgttgaatca ttcaccaggc aaattgctgg cagggttgct ggtggtagga atgttccacc 1380 cgcagtacag aaagtatcac aggcttccat tgaccagagc aggcagatga aataccagtc 1440 ttttaatgag taccgcaaac gctttatgct gaagccctat gaatcatttg aagaacttac 1500 aggagaaaag gaaatgtctg cagagttgga agcactctat ggtgacatcg atgctgtgga 1560 gctgtatcct gcccttctgg tagaaaagcc tcggccagat gccatctttg gtgaaaccat 1620 ggtagaagtt ggagcaccat tctccttgaa aggacttatg ggtaatgtta tatgttctcc 1680 tgcctactgg aagccaagca cttttggtgg agaagtgggt tttcaaatca tcaacactgc 1740 ctcaattcag tctctcatct gcaataacgt gaagggctgt ccctttactt cattcagtgt 1800 tccagatcca gagctcatta aaacagtcac catcaatgca agttcttccc gctccggact 1860 agatgatatc aatcccacag tactactaaa agaacgttcg actgaactgt agaagtctaa 1920 tgatcatatt tatttattta tatgaaccat gtctattaat ttaattattt aataatattt 1980 atattaaact ccttatgtta cttaacatct tctgtaacag aagtcagtac tcctgttgcg 2040 gagaaaggag tcatacttgt gaagactttt atgtcactac tctaaagatt ttgctgttgc 2100 tgttaagttt ggaaaacagt ttttattctg ttttataaac cagagagaaa tgagttttga 2160 cgtcttttta cttgaatttc aacttatatt ataaggacga aagtaaagat gtttgaatac 2220 ttaaacacta tcacaagatg ccaaaatgct gaaagttttt acactgtcga tgtttccaat 2280 gcatcttcca tgatgcatta gaagtaacta atgtttgaaa ttttaaagta cttttgggta 2340 tttttctgtc atcaaacaaa acaggtatca gtgcattatt aaatgaatat ttaaattaga 2400 cattaccagt aatttcatgt ctacttttta aaatcagcaa tgaaacaata atttgaaatt 2460 tctaaattca tagggtagaa tcacctgtaa aagcttgttt gatttcttaa agttattaaa 2520 cttgtacata taccaaaaag aagctgtctt ggatttaaat ctgtaaaatc agatgaaatt 2580 ttactacaat tgcttgttaa aatattttat aagtgatgtt cctttttcac caagagtata 2640 aaccttttta gtgtgactgt taaaacttcc ttttaaatca aaatgccaaa tttattaagg 2700 tggtggagcc actgcagtgt tatctcaaaa taagaatatc ctgttgagat attccagaat 2760 ctgtttatat ggctggtaac atgtaaaaac cccataaccc cgccaaaagg ggtcctaccc 2820 ttgaacataa agcaataacc aaaggagaaa agcccaaatt attggttcca aatttagggt 2880 ttaaactttt tgaagcaaac ttttttttag ccttgtgcac tgcagacctg gtactcagat 2940 tttgctatga ggttaatgaa gtaccaagct gtgcttgaat aacgatatgt tttctcagat 3000 tttctgttgt acagtttaat ttagcagtcc atatcacatt gcaaaagtag caatgacctc 3060 ataaaatacc tcttcaaaat gcttaaattc atttcacaca ttaattttat ctcagtcttg 3120 aagccaattc agtaggtgca ttggaatcaa gcctggctac ctgcatgctg ttccttttct 3180 tttcttcttt tagccatttt gctaagagac acagtcttct caaacacttc gtttctccta 3240 ttttgtttta ctagttttaa gatcagagtt cactttcttt ggactctgcc tatattttct 3300 tacctgaact tttgcaagtt ttcaggtaaa cctcagctca ggactgctat ttagctcctc 3360 ttaagaagat taaaaaaaaa aaaaaag 3387 88 4471 DNA Homo sapiens misc_feature HMG Co-A Acc. No. NM_000859 88 ttcggtggcc tctagtgaga tctggaggat ccaaggattc tgtagctaca atgttgtcaa 60 gactttttcg aatgcatggc ctctttgtgg cctcccatcc ctgggaagtc atagtgggga 120 cagtgacact gaccatctgc atgatgtcca tgaacatgtt tactggtaac aataagatct 180 gtggttggaa ttatgaatgt ccaaagtttg aagaggatgt tttgagcagt gacattataa 240 ttctgacaat aacacgatgc atagccatcc tgtatattta cttccagttc cagaatttac 300 gtcaacttgg atcaaaatat attttgggta ttgctggcct tttcacaatt ttctcaagtt 360 ttgtattcag tacagttgtc attcacttct tagacaaaga attgacaggc ttgaatgaag 420 ctttgccctt tttcctactt ttgattgacc tttccagagc aagcacatta gcaaagtttg 480 ccctcagttc caactcacag gatgaagtaa gggaaaatat tgctcgtgga atggcaattt 540 taggtcctac gtttaccctc gatgctcttg ttgaatgtct tgtgattgga gttggtacca 600 tgtcaggggt acgtcagctt gaaattatgt gctgctttgg ctgcatgtca gttcttgcca 660 actacttcgt gttcatgact ttcttcccag cttgtgtgtc cttggtatta gagctttctc 720 gggaaagccg cgagggtcgt ccaatttggc agctcagcca ttttgcccga gttttagaag 780 aagaagaaaa taagccgaat cctgtaactc agagggtcaa gatgattatg tctctaggct 840 tggttcttgt tcatgctcac agtcgctgga tagctgatcc ttctcctcaa aacagtacag 900 cagatacttc taaggtttca ttaggactgg atgaaaatgt gtccaagaga attgaaccaa 960 gtgtttccct ctggcagttt tatctctcta aaatgatcag catggatatt gaacaagtta 1020 ttaccctaag tttagctctc cttctggctg tcaagtacat cttctttgaa caaacagaga 1080 cagaatctac actctcatta aaaaacccta tcacatctcc tgtagtgaca caaaagaaag 1140 tcccagacaa ttgttgtaga cgtgaaccta tgctggtcag aaataaccag aaatgtgatt 1200 cagtagagga agagacaggg ataaaccgag aaagaaaagt tgaggttata aaacccttag 1260 tggctgaaac agatacccca aacagagcta catttgtggt tggtaactcc tccttactcg 1320 atacttcatc agtactggtg acacaggaac ctgaaattga acttcccagg gaacctcggc 1380 ctaatgaaga atgtctacag atacttggga atgcagagaa aggtgcaaaa ttccttagtg 1440 atgctgagat catccagtta gtcaatgcta agcatatccc agcctacaag ttggaaactc 1500 tgatggaaac tcatgagcgt ggtgtatcta ttcgccgaca gttactttcc aagaagcttt 1560 cagaaccttc ttctctccag tacctacctt acagggatta taattactcc ttggtgatgg 1620 gagcttgttg tgagaatgtt attggatata tgcccatccc tgttggagtg gcaggacccc 1680 tttgcttaga tgaaaaagaa tttcaggttc caatggcaac aacagaaggt tgtcttgtgg 1740 ccagcaccaa tagaggctgc agagcaatag gtcttggtgg aggtgccagc agccgagtcc 1800 ttgcagatgg gatgactcgt ggcccagttg tgcgtcttcc acgtgcttgt gactctgcag 1860 aagtgaaagc ctggctcgaa acatctgaag ggttcgcagt gataaaggag gcatttgaca 1920 gcactagcag atttgcacgt ctacagaaac ttcatacaag tatagctgga cgcaaccttt 1980 atatccgttt ccagtccagg tcaggggatg ccatggggat gaacatgatt tcaaagggta 2040 cagagaaagc actttcaaaa cttcacgagt atttccctga aatgcagatt ctagccgtta 2100 gtggtaacta ttgtactgac aagaaacctg ctgctataaa ttggatagag ggaagaggaa 2160 aatctgttgt ttgtgaagct gtcattccag ccaaggttgt cagagaagta ttaaagacta 2220 ccacagaggc tatgattgag gtcaacatta acaagaattt agtgggctct gccatggctg 2280 ggagcatagg aggctacaac gcccatgcag caaacattgt caccgccatc tacattgcct 2340 gtggacagga tgcagcacag aatgttggta gttcaaactg tattacttta atggaagcaa 2400 gtggtcccac aaatgaagat ttatatatca gctgcaccat gccatctata gagataggaa 2460 cggtgggtgg tgggaccaac ctactacctc agcaagcctg tttgcagatg ctaggtgttc 2520 aaggagcatg caaagataat cctggggaaa atgcccggca gcttgcccga attgtgtgtg 2580 ggaccgtaat ggctggggaa ttgtcactta tggcagcatt ggcagcagga catcttgtca 2640 aaagtcacat gattcacaac aggtcgaaga tcaatttaca agacctccaa ggagcttgca 2700 ccaagaagac agcctgaata gcccgacagt tctgaactgg aacatgggca ttgggttcta 2760 aaggactaac ataaaatctg tgaattaaaa aagctcaatg cattgtcttg tggaggatga 2820 ataaatgtga tcactgagac agccacttgg tttttggctc tttcagagag gtctcaggtt 2880 ctttccatgc agactcctca gatctgaaca cagtttagtg ctttacatgc tgtgctcttt 2940 gaagagattt caacaagaat attgtatgtt aaagcatcag agatggtaat ctacagctca 3000 cctctgaaag caaatataag ctgggaaaaa agttttgatg aaattcttga agttcatggt 3060 gatcagtgca attgaccttc tccctcactc ctgccagttg aaaatggatt tttaaattat 3120 actgtagctg atgaaactcc tgattttgta gttaatttat taagtctggg atgtagaact 3180 tcaagaagta agagctaagt tctaagttca tgtttgtaaa ttaatacttc atttggtgct 3240 ggtctatttt gattttgggg ggtaatcagc attattcttc agaaggggac ctgttttctt 3300 caagggaaga aacactctta ttcccaaact acagaataat gtgttaaaca tgctaaatag 3360 ttctatcagg aaaacaaatc actgtattta tctccgcagg ctatttgttc agagaggcct 3420 tttgtttaaa tataaatgtt taaatataaa tgtttgtctg gattggctat aacatgtctt 3480 tcagcattag gcttttaaga aacacagggt tttgtattct ttactaaaga tatcagagct 3540 cttaatgttg cttagatgag ggtgactgtc aagtacaagc aagactggga ccttagaaat 3600 cattgtagaa acacagtttt gaaagatttt taccatgtct ctaagccaac tttaattgct 3660 taaaagacat ttttatttag ttgaaaaatc tagttttttt tgtaaactgt accaaatctg 3720 tatatgttgt aataaaactt atgctagttt attggaagtg ttcaagaaat aaaaatcaac 3780 ttgtgtactg ataaaatact ctagcctggg ccagagaaga taatgttctt taatgttgtc 3840 aggaaaccct ggcttgcttg ccgagcctaa tgaaagggaa agtcagcttt cagagccagt 3900 gaaggagcca cgtgaatggc cctagaactg tgcctagttc ctgtggccag gaggttggtg 3960 actgaaacat tcacacaggg ctcttggatg gacccacgaa cgctcttagc tttctcaggg 4020 ggtcagcaga gttattgaat cttaattttt tttaatgtac aagttttgta taaataataa 4080 agaactcctt attttgtatt acatctaatg cttaagtgtt gctcttggaa agctgatgat 4140 gtctcttgta gagatgactc tgaaaaacat tccaggaaac catggcagca tggagagcct 4200 cttagtgatt gtgtctgcat tgttattgtg gaagatttac cttttctgtt gtacgtaaag 4260 cttaaattac ttttgttgtg actttttagc cagtgacttt ttctgagctt ttcatggaag 4320 tggcagtgaa aaatatgttg agtgttcaaa aaagtgactg taattaatat cttgctggat 4380 taatgttttg tacaattact aaattgtata cattttgtta tagaatactt ttttctagtt 4440 tcagtaaata atgaaaagga agttaatacc a 4471 89 2444 DNA Homo sapiens misc_feature NM_021975 89 ggcacgaggc ggggccgggt cgcagctggg cccgcggcat ggacgaactg ttccccctca 60 tcttcccggc agagcagccc aagcagcggg gcatgcgctt ccgctacaag tgcgaggggc 120 gctccgcggg cagcatccca ggcgagagga gcacagatac caccaagacc caccccacca 180 tcaagatcaa tggctacaca ggaccaggga cagtgcgcat ctccctggtc accaaggacc 240 ctcctcaccg gcctcacccc cacgagcttg taggaaagga ctgccgggat ggcttctatg 300 aggctgagct ctgcccggac cgctgcatcc acagtttcca gaacctggga atccagtgtg 360 tgaagaagcg ggacctggag caggctatca gtcagcgcat ccagaccaac aacaacccct 420 tccaagttcc tatagaagag cagcgtgggg actacgacct gaatgctgtg cggctctgct 480 tccaggtgac agtgcgggac ccatcaggca ggcccctccg cctgccgcct gtcctttctc 540 atcccatctt tgacaatcgt gcccccaaca ctgccgagct caagatctgc cgagtgaacc 600 gaaactctgg cagctgcctc ggtggggatg agatcttcct actgtgtgac aaggtgcaga 660 aagaggacat tgaggtgtat ttcacgggac caggctggga ggcccgaggc tccttttcgc 720 aagctgatgt gcaccgacaa gtggccattg tgttccggac ccctccctac gcagacccca 780 gcctgcaggc tcctgtgcgt gtctccatgc agctgcggcg gccttccgac cgggagctca 840 gtgagcccat ggaattccag tacctgccag atacagacga tcgtcaccgg attgaggaga 900 aacgtaaaag gacatatgag accttcaaga gcatcatgaa gaagagtcct ttcagcggac 960 ccaccgaccc ccggcctcca cctcgacgca ttgctgtgcc ttcccgcagc tcagcttctg 1020 tccccaagcc agcaccccag ccctatccct ttacgtcatc cctgagcacc atcaactatg 1080 atgagtttcc caccatggtg tttccttctg ggcagatcag ccaggcctcg gccttggccc 1140 cggcccctcc ccaagtcctg ccccaggctc cagcccctgc ccctgctcca gccatggtat 1200 cagctctggc ccaggcccca gcccctgtcc cagtcctagc cccaggccct cctcaggctg 1260 tggccccacc tgcccccaag cccacccagg ctggggaagg aacgctgtca gaggccctgc 1320 tgcagctgca gtttgatgat gaagacctgg gggccttgct tggcaacagc acagacccag 1380 ctgtgttcac agacctggca tccgtcgaca actccgagtt tcagcagctg ctgaaccagg 1440 gcatacctgt ggccccccac acaactgagc ccatgctgat ggagtaccct gaggctataa 1500 ctcgcctagt gacagcccag aggccccccg acccagctcc tgctccactg ggggccccgg 1560 ggctccccaa tggcctcctt tcaggagatg aagacttctc ctccattgcg gacatggact 1620 tctcagccct gctgagtcag atcagctcct aagggggtga cgcctgccct ccccagagca 1680 ctggttgcag gggattgaag ccctccaaaa gcacttacgg attctggtgg ggtgtgttcc 1740 aactgccccc aactttgtgg atgtcttcct tggagggggg agccatattt tattctttta 1800 ttgtcagtat ctgtatctct ctctcttttt ggaggtgctt aagcagaagc attaacttct 1860 ctggaaaggg gggagctggg gaaactcaaa cttttcccct gtcctgatgg tcagctccct 1920 tctctgtagg gaactgtggg gtcccccatc cccatcctcc agcttctggt actctcctag 1980 agacagaagc aggctggagg taaggccttt gagcccacaa agccttatca agtgtcttcc 2040 atcatggatt cattacagct taatcaaaat aacgccccag ataccagccc ctgtatggca 2100 ctggcattgt ccctgtgcct aacaccagcg tttgaggggc tgccttcctg ccctacagag 2160 gtctctgccg gctctttcct tgctcaacca tggctgaagg aaacagtgca acagcactgg 2220 ctctctccag gatccagaag gggtttggtc tggacttcct tgctctcccc tcttctcaag 2280 tgccttaata gtagggtaag ttgttaagag tgggggagag caggctggca gctctccagt 2340 caggaggcat agtttttagt gaacaatcaa agcacttgga ctcttgctct ttctactctg 2400 aactaataaa gctgttgcca agctggacgg cacgagctcg tgcc 2444 90 816 DNA Homo sapiens 90 atgcactttc tttgccaaag gcaaacgcag aacgtttcag agccatgagg atgcttctgc 60 atttgagttt gctagctctt ggagctgcct acgtgtatgc catccccaca gaaattccca 120 caagtgcatt ggtgaaagag accttggcac tgctttctac tcatcgaact ctgctgatag 180 ccaatgagac tctgaggatt cctgttcctg tacataaaaa tcaccaactg tgcactgaag 240 aaatctttca gggaataggc acactggaga gtcaaactgt gcaagggggt actgtggaaa 300 gactattcaa aaacttgtcc ttaataaaga aatacattga cggccaaaaa aaaaagtgtg 360 gagaagaaag acggagagta aaccaattcc tagactacct gcaagagttt cttggtgtaa 420 tgaacaccga gtggataata gaaagttgag actaaactgg tttgttgcag ccaaagattt 480 tggaggagaa ggacatttta ctgcagtgag aatgagggcc aagaaagagt caggccttaa 540 ttttcaatat aatttaactt cagagggaaa gtaaatattt caggcatact gacactttgc 600 cagaaagcat aaaattctta aaatatattt cagatatcag aatcattgaa gtattttcct 660 ccaggcaaaa ttgatatact tttttcttat ttaacttaac attctgtaaa atgtctgtta 720 acttaatagt atttatgaaa tggttaagaa tttggtaaat tagtatttat ttaatgttat 780 gttgtgttct aataaaacaa aaatagacaa ctgttc 816 91 2484 DNA Homo sapiens misc_feature LO5 Acc. No. J03571 91 gggcccggcg ctcgctgctc ccgcggcccg cgccatgccc tcctacacgg tcaccgtggc 60 cactggcagc cagtggttcg ccggcactga cgactacatc tacctcagcc tcgtgggctc 120 ggcgggctgc agcgagaagc acctgctgga caagcccttc tacaacgact tcgagcgtgg 180 cgcggtggat tcatacgacg tgactgtgga cgaggaactg ggcgagatcc agctggtcag 240 aatcgagaag cgcaagtact ggctgaatga cgactggtac ctgaagtaca tcacgctgaa 300 gacgccccac ggggactaca tcgagttccc ctgctaccgc tggatcaccg gcgatgtcga 360 ggttgtcctg agggatggac gcgcaaagtt ggcccgagat gaccaaattc acattctcaa 420 gcaacaccga cgtaaagaac tggaaacacg gcaaaaacaa tatcgatgga tggagtggaa 480 ccctggcttc cccttgagca tcgatgccaa atgccacaag gatttacccc gtgatatcca 540 gtttgatagt gaaaaaggag tggactttgt tctgaattac tccaaagcga tggagaacct 600 gttcatcaac cgcttcatgc acatgttcca gtcttcttgg aatgacttcg ccgactttga 660 gaaaatcttt gtcaagatca gcaacactat ttctgagcgg gtcatgaatc actggcagga 720 agacctgatg tttggctacc agttcctgaa tggctgcaac cctgtgttga tccggcgctg 780 cacagagctg cccgagaagc tcccggtgac cacggagatg gtagagtgca gcctggagcg 840 gcagctcagc ttggagcagg aggtccagca agggaacatt ttcatcgtgg actttgagct 900 gctggatggc atcgatgcca acaaaacaga cccctgcaca ctccagttcc tggccgctcc 960 catctgcttg ctgtataaga acctggccaa caagattgtc cccattgcca tccagctcaa 1020 ccaaatcccg ggagatgaga accctatttt cctcccttcg gatgcaaaat acgactggct 1080 tttggccaaa atctgggtgc gttccagtga cttccacgtc caccagacca tcacccacct 1140 tctgcgaaca catctggtgt ctgaggtttt tggcattgca atgtaccgcc agctgcctgc 1200 tgtgcacccc attttcaagc tgctggtggc acacgtgaga ttcaccattg caatcaacac 1260 caaggcccgt gagcagctca tctgcgagtg tggcctcttt gacaaggcca acgccacagg 1320 gggcggtggg cacgtgcaga tggtgcagag ggccatgaag gacctgacct atgcctccct 1380 gtgctttccc gaggccatca aggcccgggg catggagagc aaagaagaca tcccctacta 1440 cttctaccgg gacgacgggc tcctggtgtg ggaagccatc aggacgttca cggccgaggt 1500 ggtagacatc tactacgagg gcgaccaggt ggtggaggag gacccggagc tgcaggactt 1560 cgtgaacgat gtctacgtgt acggcatgcg gggccgcaag tcctcaggct tccccaagtc 1620 ggtcaagagc cgggagcagc tgtcggagta cctgaccgtg gtgatcttca ccgcctccgc 1680 ccagcacgcc gcggtcaact tcggccagta cgactggtgc tcctggatcc ccaatgcgcc 1740 cccaaccatg cgagccccgc caccgactgc caagggcgtg gtgaccattg agcagatcgt 1800 ggacacgctg cccgaccgcg gccgctcctg ctggcatctg ggtgcagtgt gggcgctgag 1860 ccagttccag gaaaacgagc tgttcctggg catgtaccca gaagagcatt ttatcgagaa 1920 gcctgtgaag gaagccatgg cccgattccg caagaacctc gaggccattg tcagcgtgat 1980 tgctgagcgc aacaagaaga agcagctgcc atattactac ttgtccccag accggattcc 2040 gaacagtgtg gccatctgag cacactgcca gtctcactgt gggaaggcca gctgccccag 2100 ccagatggac tccagcctgc ctggcaggtg tctggccagg cctcttggca gtcacatctc 2160 ttcctccgag gccagtacct ttccatttat tctttgatct tcagggaact gcatagattg 2220 atcaaagtgt aaacaccata gggacccatt ctacacagag caggactgca cagcgtcctg 2280 tccacaccca gctcagcatt tccacaccaa gcagcaacag caaatcacga ccactgatag 2340 atgtctattc ttgttggaga catgggatga ttattttctg ttctatttgt gcttagtcca 2400 attccttgca catagtaggt acccaattca attactattg aatgaattaa gaattggttg 2460 ccataaaaat aaatcagttc attt 2484 92 2437 DNA Homo sapiens misc_feature MPB Acc. No. M74047 92 gcggccaccg gcgaggaaca cggcgcgatg caggttcagt gccagcagag cccagtgctg 60 gcaggcagcg ccactttggt cgcccttggg gcactggcct tgtacgtcgc gaagccctcc 120 ggctacggga agcacacgga gagcctgaag ccggcggcta cccgcctgcc agcccgcgcc 180 gcctggttcc tgcaggagct gccttccttc gcggtgcccg cggggatcct cgcccggcag 240 cccctctccc tcttcgggcc acctgggacg gtacttctgg gcctcttctg cgtacattac 300 ttccacagga catttgtgta ctcactgctc aatcgaggga ggccttatcc agctatactc 360 attctcagag gcactgcctt ctgcactgga aatggagtcc ttcaaggcta ctatctgatt 420 tactgtgctg aataccctga tgggtggtac acagacatac ggtttagctt gggtgtcttc 480 ttatttattt tgggaatggg aataaacatt catagtgact atatattgcg ccagctcagg 540 aagcctggag aaatcagcta caggattcca caaggtggct tgtttacgta tgtttctgga 600 gccaatttcc tcggtgagat cattgaatgg atcggctatg ccctggccac ttggtccctc 660 ccagcacttg catttgcatt tttctcactt tgtttccttg ggctgcgagc ttttcaccac 720 cataggttct acctcaagat gtttgaggac taccccaaat ctcggaaagc ccttattcca 780 ttcatctttt aaaggaacca aattaaaaag gagcagagct cccacaatgc tgatgaaaac 840 tgtcaagctg ctgaaactgt aattttcatg atataatagt catatatata tatatatata 900 tatatatata tatatatatg tatatatgta atagtaggtc tcctggcgtt ctgccagctg 960 gcctggggat tctgagtggt gtctgcttag agtttactcc tacccttcca gggaccccta 1020 tcctgatccc caactgaagc ttcaaaaagc cacttttcca aatggcgaca gttgcttctt 1080 agctattgct ctgagaaagt acaaacttct cctatgtctt tcaccgggca atccaagtac 1140 atgtggcttc atacccactc cctgtcaatg caggacaact ctgtaatcaa gaattttttg 1200 acttgaaggc agtacttata gaccttatta aaggtatgca ttttatacat gtaacagagt 1260 agcagaaatt taaactctga agccacaaag acccagagca aacccactcc caaatgaaaa 1320 ccccagtcat ggcttccttt ttcttggtta attaggaaag atgagaaatt attaggtaga 1380 ccttgaatac aggagccctc tcctcatagt gctgaaaaga tactgatgca ttgacctcat 1440 ttcaaatttg tgcagtgtct tagttgatga gtgcctctgt tttccagaag atttcacaat 1500 ccccggaaaa ctggtatggc tattcttgaa ggccaggttt taataaccac aaacaaaaag 1560 gcatgaacct gggtggctta tgagagagta gagaacaaca tgaccctgga tggctactaa 1620 gaggatagag aacagtttta caatagacat tgcaaactct catgtttttg gaaactggtg 1680 gcaatatcca aataatgagt agtgtaaaac aaagagaatt aatgatgagg ttacatgctg 1740 cttgcctcca ccagatgtcc acaacaatat gaagtacagc agaagcccca agcaactttc 1800 ctttcctgga gcttcttcct tgtagttctc aggacctgtt caagaaggtg tctcctaggg 1860 gcagcctgaa tgcctccctc aaaggacctg caggcagaga ctgaaaattg cagacagagg 1920 ggcacgtctg ggcagaaaac ctgttttgtt tggctcagac atatagtttt ttttttttta 1980 caaagtttca aaaacttaaa aatcaggaga ttccttcata aaactctagc attctagttt 2040 catttaaaaa gttggaggat ctgaacatac agagcccaca tttccacacc agaactggaa 2100 ctacgtagct agtaagcatt tgagtttgca aactcttgtg aaggggtcac cccagcatga 2160 gtgctgagat atggactctc taaggaaggg gccgaacgct tgtaattgga atacatggaa 2220 atatttgtct tctcaggcct atgtttgcgg aatgcattgt caatatttag caaactgttt 2280 tgacaaatga gcaccagtgg tactaagcac agaaactcac tatataagtc acataggaaa 2340 cttgaaaggt ctgaggatga tgtagattac tgaaaaatac aaattgcaat catataaata 2400 agtgtttttg ttgttcatta aataccttta aatcatg 2437 93 5595 DNA Homo sapiens misc_feature NEP=CALLA Acc. No. NM_000902 93 gcggagatgt gcaagtggcg aagcttgacc gagagcaggc tggagcagcc gcccaactcc 60 tggcgcggga tctgctgagg ggtcacggat tttaggtgat gggcaagtca gaaagtcaga 120 tggatataac tgatatcaac actccaaagc caaagaagaa acagcgatgg actcgactgg 180 agatcagcct ctcggtcctt gtcctgctcc tcaccatcat agctgtgaga atgatcgcac 240 tctatgcaac ctacgatgat ggtatttgca agtcatcaga ctgcataaaa tcagctgctc 300 gactgatcca aaacatggat gccaccactg agccttgtag agactttttc aaatatgctt 360 gcggaggctg gttgaaacgt aatgtcattc ccgagaccag ctcccgttac ggcaactttg 420 acattttaag agatgaacta gaagtcgttt tgaaagatgt ccttcaagaa cccaaaactg 480 aagatatagt agcagtgcag aaagcaaaag cattgtacag gtcttgtata aatgaatctg 540 ctattgatag cagaggtgga gaacctctac tcaaactgtt accagacata tatgggtggc 600 cagtagcaac agaaaactgg gagcaaaaat atggtgcttc ttggacagct gaaaaagcta 660 ttgcacaact gaattctaaa tatgggaaaa aagtccttat taatttgttt gttggcactg 720 atgataagaa ttctgtgaat catgtaattc atattgacca acctcgactt ggcctccctt 780 ctagagatta ctatgaatgc actggaatct ataaagaggc ttgtacagca tatgtggatt 840 ttatgatttc tgtggccaga ttgattcgtc aggaagaaag attgcccatc gatgaaaacc 900 agcttgcttt ggaaatgaat aaagttatgg aattggaaaa agaaattgcc aatgctacgg 960 ctaaacctga agatcgaaat gatccaatgc ttctgtataa caagatgaga ttggcccaga 1020 tccaaaataa cttttcacta gagatcaatg ggaagccatt cagctggttg aatttcacaa 1080 atgaaatcat gtcaactgtg aatattagta ttacaaatga ggaagatgtg gttgtttatg 1140 ctccagaata tttaaccaaa cttaagccca ttcttaccaa atattctgcc agagatcttc 1200 aaaatttaat gtcctggaga ttcataatgg atcttgtaag cagcctcagc cgaacctaca 1260 aggagtccag aaatgctttc cgcaaggccc tttatggtac aacctcagaa acagcaactt 1320 ggagacgttg tgcaaactat gtcaatggga atatggaaaa tgctgtgggg aggctttatg 1380 tggaagcagc atttgctgga gagagtaaac atgtggtcga ggatttgatt gcacagatcc 1440 gagaagtttt tattcagact ttagatgacc tcacttggat ggatgccgag acaaaaaaga 1500 gagctgaaga aaaggcctta gcaattaaag aaaggatcgg ctatcctgat gacattgttt 1560 caaatgataa caaactgaat aatgagtacc tcgagttgaa ctacaaagaa gatgaatact 1620 tcgagaacat aattcaaaat ttgaaattca gccaaagtaa acaactgaag aagctccgag 1680 aaaaggtgga caaagatgag tggataagtg gagcagctgt agtcaatgca ttttactctt 1740 caggaagaaa tcagatagtc ttcccagccg gcattctgca gccccccttc tttagtgccc 1800 agcagtccaa ctcattgaac tatgggggca tcggcatggt cataggacac gaaatcaccc 1860 atggcttcga tgacaatggc agaaacttta acaaagatgg agacctcgtt gactggtgga 1920 ctcaacagtc tgcaagtaac tttaaggagc aatcccagtg catggtgtat cagtatggaa 1980 acttttcctg ggacctggca ggtggacagc accttaatgg aattaataca ctgggagaaa 2040 acattgctga taatggaggt cttggtcaag catacagagc ctatcagaat tatattaaaa 2100 agaatggcga agaaaaatta cttcctggac ttgacctaaa tcacaaacaa ctatttttct 2160 tgaactttgc acaggtgtgg tgtggaacct ataggccaga gtatgcggtt aactccatta 2220 aaacagatgt gcacagtcca ggcaatttca ggattattgg gactttgcag aactctgcag 2280 agttttcaga agcctttcac tgccgcaaga attcatacat gaatccagaa aagaagtgcc 2340 gggtttggtg atcttcaaaa gaagcattgc agcccttggc tagacttgcc aacaccacag 2400 aaatggggaa ttctctaatc gaaagaaaat gggccctagg ggtcactgta ctgacttgag 2460 ggtgattaac agagagggca ccatcacaat acagataaca ttaggttgtc ctagaaaggg 2520 tgtggaggga ggaagggggt ctaaggtcta tcaagtcaat catttctcac tgtgtacata 2580 atgcttaatt tctaaagata atattactgt ttatttctgt ttctcatatg gtctaccagt 2640 ttgctgatgt ccctagaaaa caatgcaaaa cctttgaggt agaccaggat ttctaatcaa 2700 aagggaaaag aagatgttga agaatagagt taggcaccag aagaagagta ggtgacacta 2760 tagtttaaaa cacattgcct aactactagt ttttactttt atttgcaaca tttacagtcc 2820 ttcaaaatcc ttccaaagaa ttcttataca cattggggcc ttggagctta catagtttta 2880 aactcatttt tgccatacat cagttattca ttctgtgatc atttatttta agcactctta 2940 aagcaaaaaa tgaatgtcta aaattgtttt ttgttgtacc tgctttgact gatgctgaga 3000 ttcttcaggc ttcctgcaat tttctaagca atttcttgct ctatctctca aaacttggta 3060 tttttcagag atttatataa atgtaaaaat aataattttt atatttaatt attaactaca 3120 tttatgagta actattatta taggtaatca atgaatattg aagtttcagc ttaaaataaa 3180 cagttgtgaa ccaagatcta taaagcgata tacagatgaa aatttgagac tatttaaact 3240 tataaatcat attgatgaaa agatttaagc acaaacttta gggtaaaaat tgcgattgga 3300 cagttgtcta gagatatata tacttgtggt tttcaaattg gactttcaaa attaaatctg 3360 tccctgagag tgtctctgat aaaagggcaa atctgcacct atgtagctct gcatctcctg 3420 tcttttcagg tttgtcatca gatggaaata ttttgataat aaattgaaat tgtgaactca 3480 ttgctcccta agactgtgac aactgtctaa ctttagaagt gcatttctga atagaaatgg 3540 gaggcctctg atggaccttc tagaattata agtcacaaag agttctggaa aagaactgtt 3600 tactgcttga taggaattca tcttttgagg cttctgttcc tctcttttcc tgttgtattg 3660 actattttcg ttcattactt gattaagatt ttacaaaaga ggagcacttc caaaattctt 3720 atttttccta acaaaagatg aaagcaggga atttctatct aaatgatgag tattagttcc 3780 ctgtctcttg aaaaatgccc atttgccttt aaaaaaaaaa gttacagaaa tactataaca 3840 tatgtacata aattgcataa agcataagta tacagttcaa taaacttaac tttaactgaa 3900 caatggccct gtagccagca cctgtaagaa acagagcagt accagcgctc taaaagcacc 3960 tccttgtcac tttattactc ccagaacaac aactatcctg acttctaata tcattcacta 4020 gctttgcctg gttttgtctt ttatgcagat agaatcaatc agtatgtatt cttttgtgcc 4080 tggcttcttt ctctcagcct tacatttgtg agattcctct gtattgtgct gattgtggat 4140 cttttcattc tcattgcaga ataatgttct attgtgggac ttattacaat ttgttcatcc 4200 tattgttgat gggcacttga gaactttcca ttttggcgct attacaaata gtgcaactat 4260 gaatgtactg catgttacca tcttacttga gcctttaatg gacttatttc ttcaaatcct 4320 tccaaaaatt attataagca ttgaaattat agtttcaagc caactgtgga tacccttacc 4380 ctttcctcct ttatcacaac caccgttaca agtatactta tatttcccta aaatacattt 4440 aaaacttacc taagtgacat ttgtagttgg agtaatagga gcttccagct ctaataaaac 4500 agctgtctct aacttatttt atttccatca tgtcagagca ggtgaagagc cagaagtgaa 4560 gagtgactag tacaaattat aaaaagccac tagactcttc actgttagct ttttaaaaca 4620 ttaggctccc atccctatgg aggaacaact ctccagtgcc tggatcccct ctgtctacaa 4680 atataagatt ttctgggcct aaaggataga tcaaagtcaa aaatagcaat gcctccctat 4740 ccctcacaca tccagacatc atgaatttta catggtactc ttgttgagtt ctatagagcc 4800 ttctgatgtc tctaaagcac taccgattct ttggagttgt cacatcagat aagacatatc 4860 tctaattcca tccataaatc cagttctact atggctgagt tctggtcaaa gaaagaaagt 4920 ttagaagctg agacacaaag ggttgggagc tgatgaaact cacaaatgat ggtaggaaga 4980 agctctcgac aatacccgtt ggcaaggagt ctgcctccat gctgcagtgt tcgagtggat 5040 tgtaggtgca agatggaaag gattgtaggt gcaagctgtc cagagaaaag agtccttgtt 5100 ccagccctat tctgccactc ctgacagggt gaccttgggt atttgcaata ttcctttggg 5160 cctctgcttc tctcacctaa aaaaagagaa ttagattata ttggtggttc tcagcaagag 5220 aaggagtatg tgtccaatgc tgccttccca tgaatctgtc tcccagttat gaatcagtgg 5280 gcaggataaa ctgaaaactc ccatttaagt gtctgaatcg agtgagacaa aattttagtc 5340 caaataacaa gtaccaaagt tttatcaagt ttgggtctgt gctgctgtta ctgttaacca 5400 tttaagtggg gcaaaacctt gctaattttc tcaaaagcat ttatcattct tgttgccaca 5460 gctggagctc tcaaactaaa agacatttgt tattttggaa agaagaaaga ctctattctc 5520 aaagtttcct aatcagaaat ttttatcagt ttccagtctc aaaaatacaa aataaaaaca 5580 aacgttttta atact 5595 94 551 DNA Homo sapiens misc_feature NPY Acc. No. K01911 94 accccatccg ctggctctca cccctcggag acgctcgccc gacagcatag tacttgccgc 60 ccagccacgc ccgcgcgcca gccaccatgc taggtaacaa gcgactgggg ctgtccggac 120 tgaccctcgc cctgtccctg ctcgtgtgcc tgggtgcgct ggccgaggcg tacccctcca 180 agccggacaa cccgggcgag gacgcaccag cggaggacat ggccagatac tactcggcgc 240 tgcgacacta catcaacctc atcaccaggc agagatatgg aaaacgatcc agcccagaga 300 cactgatttc agacctcttg atgagagaaa gcacagaaaa tgttcccaga actcggcttg 360 aagaccctgc aatgtggtga tgggaaatga gacttgctct ctggcctttt cctattttca 420 gcccatattt catcgtgtaa aacgagaatc cacccatcct accaatgcat gcagccactg 480 tgctgaattc tgcaatgttt tcctttgtca tcattgtata tatgtgtgtt taaataaagt 540 atcatgcatt c 551 95 4382 DNA Homo sapiens misc_feature SEG_AB00161S 95 aagcttgctg aatcacctct taattcttgt agttgctttg tgcattcctt tgggtattcc 60 tcatagatac tcatgtctgc aaatggagaa tgtttacttt ttcattttta tgccttatat 120 ttcttttttg tgtttttgct ttgttgcatt tgttttttct atttgtatga ccaaaatctt 180 tagcagtaca ggtaggtaac aaccaaataa tgtagaaccc cataagccac gttacagagt 240 ttgaatttta ttttagcaca gtgggaatac attgaaggtc tttagttaag ctgttgctca 300 tgagcaacaa atgagcaatg acatatatgt atgtatatac acatatatat cattgatttt 360 atatatatat atatatatat atatatatat atatatatat atatatctat cttagtccac 420 ttgtgttgca ataacaaaat accacagact gggtcattta caaaaattaa atatatatat 480 acatatacac acatatatat atcatacata tacacataca tacatcattg ctcatttgtt 540 tgttataaat agcattaaca gcatttttca agttatatcc tgggagtgtt tatgatttac 600 ttattcttca actaattcca taacaagatt tgaggtgctt agaacaattc atgccaagtt 660 aaaacaaaat aattgggcaa attgggataa agaataaaat ggagttgaaa aacaagaggc 720 ccaggtaatg tcagttcaaa atatgcttac ctttaactac tttaaattta caggaggtat 780 agttacacat tttggctgaa tctcccagag actagaactg tttgagacac ttctgttccc 840 caatcccttg tgatatgttt ctcaggtaat aggccttcac agtaactccc aaactatcat 900 atataccaca cagacttgag attcactatt gagagaatct atgtactgtt tttctttttt 960 tttctttttt gttatagagc cgggggtctt acactgtcac tgaggctgaa gtgcaatggc 1020 acgatcatgg ctcactgcag ccttgacctc ctgggctcaa tcctcttgcc tcagcctctc 1080 gaataactag gattacaggt gtgttccccc atgcctggct aatttttaaa aattttgtgt 1140 agagatgggg tcatgccatg tggcccaggc tggttcaaac tcctgagctc aagtatcctt 1200 ctacctctcc ctcccaaagt tctgagatta caggaatgag ccactgtgcc cagcctatag 1260 attgtttttc ttgaagcaat ttttcagaaa ccttcctggt ttctgataat ttaacccttt 1320 caggttagga gagaaaaatg aacattttga tattacccac tgtcttagtc catttgtgtt 1380 gctgtaataa aatatcacag actgggatat ttataaacaa tagaaattaa tttctctcag 1440 ttctggaggc tggaaactcc aaaatcaaag tgccagcaga tttggcaact ggtgagggct 1500 gctctttgct tacaaaatgg caccttgttg ctgcatcctc agcaagggtc agtgctgtgt 1560 cttcacatag tggaaagaat agaaggggcc aactgtctcc tttgggcctt tttttaaaaa 1620 ggcactaatg cattcacaaa ggcagagccc taatggtcta atcaccactt aaaggcacct 1680 cctcttaata ctgttgaatt agggattaag tttcaacatg aattttggag ggaatacaaa 1740 cattgaaatg attatacgtg tttatttaat caagtatcca acaaaagcaa ataattcaag 1800 ccccaaattc actgcatctt tagtagataa gcagagtttt aaattacgat tgatctcctg 1860 ttaggaggaa tgcatggatt tccacaagaa aaaactgtac tgaggagaaa ctttccacag 1920 taatgtgcca cttttcagtc aacgacagac cacatatatg agtcccataa gataatacta 1980 tatttttact gtaccttttc tatgtttaga tatgtttaga cacacaaata tcattgcatt 2040 acaattgcct acagtattca gtacagtaat atgctgtata gatttgtggt ctaggagcaa 2100 tagcctaagt gtgtagtagg ctgagccatc tattttgtgt tagtacactg tgatgttcag 2160 agaaggatga aattgcctaa ggatacattt ctcagaatgt atcctgttgt tcggtgacgc 2220 atgactgtat tccatgagca ctataatcac tatcatagta acacattagg agagaattct 2280 catttctaaa tccaatataa tttatcaccc attagttcat actctactgc tttgattgct 2340 tttctttggt tgtggctacc tgcatacagc agtaaagttt cagaaaaact gaagtcgcaa 2400 aaggtcaatt actcaatgaa ggaaagataa accattgcat tgggggacta gaagatactt 2460 ttaaaagttc tcagattatc aatttaatga tgtgtttcta tgtagtgaat aatgccttaa 2520 attcttgcca agagtattta gaaggaagtt gtcagaagta tatcagctaa ctcatttttt 2580 tttatatcac tgctaatggt gtcattcaca cattgtgcaa cccataattc cagatttaat 2640 tctaccaaaa aatataggtc attgcaaaat gccatattaa aactgccaat gcatgacagg 2700 aagatgggga tgcagacaaa gcaaaggatg acaccaattc cttttttaaa gaagcaagat 2760 agggattgga caaaaaggct gagccatttt taatggatac ttttgaggga gtgttaattc 2820 caatttaatt aaaatgatgc attaatttaa aattgggata actggttgcc ctcgactgca 2880 cctgggttgc gccagtgctc tcggattaac ctaattgtac agaggtgccc ttgttttcta 2940 acttcatgca caaagcattg gaaattattt gtttgctttt tcttttccaa gtaaatcttt 3000 ttccagttat gcaaaaggga agtttgaggc aatggttaaa ggcacttaag ttataattat 3060 tgctgttatc attaacatta agcacgggta tggctttgtt gcaagttacc cacctacacc 3120 tgcaaatctc tcttgctagc acacgcccca gctctctcca cccgcagtgg tccgtggctg 3180 gaccgcttta agtcactgag cgggctgggc tctgaaggag gtcggtcccg ctcctcccag 3240 acccaagcgt agggctaggg aaaagctagg cgggaaggtc attgcactcc caggccccag 3300 gaaaagggcc cagggtctca tcatctctta ctttcgggca aaacttccca catcgcgacc 3360 ttccctccct ggggcactct gagaacacac ccagtcacct agcgcgctcc ccagaagtcg 3420 gcttggcaca cagcgcaccc cagcggccgc gcggcctcct tccagccgcc gccacttggc 3480 ttccggagag ctcgccgggc gctgccgccg ccgccgccgc cgccgccgcc tcctgggaac 3540 caggggactg aagagcctgc gagagcggaa cactgccgga ccccgggtgg gggggcgcag 3600 cagctgcgcc tggccccgcc caccacacct gggcgcccgt agaaccgcgc ggggcggggc 3660 ggggcaggag gctggcctgg cgctccggcc gctttgtcga aagccggccc gactggagca 3720 ggacgaaggg ggagggtctc gaggccgagt cctgttcttc tgagggacgg accccagctg 3780 gggtggaaaa gcagtaccag agagcctccg aggcgcgcgg tgccaaccat ggagcgggcc 3840 ggccccagct tcgggcagca gcgacagcag cagcagcccc agcagcagaa gcagcagcag 3900 agggatcagg actcggtcga agcatggctg gacgatcact gggactttac cttctcatac 3960 tttgttagaa aagccaccag gtaagaagag gacccacgga agacccgggg ctgatttctc 4020 tcccctgttg aattgtgccc ttcgttcacc cctgttccca ggccctttgc ttttgaagta 4080 ggtcctcggt cctgttacga ggtagaaacc tcaactctaa gcgagcacag tcgaaaaact 4140 caagtgtcgg atttgataca acttgctcac aaagttcaaa tacaaaaatg tacttggttc 4200 aaatacaaaa atgtacttgc cgacctccca ccctcacccc cgcccctctt ggtattcccc 4260 gggaacatga ttattttcat acatccgtgc tcacgggcct tcccctagcc cctctctagc 4320 cctctggttc cccaaaatcc aatcagcaaa acccaaacag tttctgagcc ccttccctgc 4380 ag 4382 96 3979 DNA Homo sapiens misc_feature Pde7a1 Acc. No. L12052 96 ggcggccgcg gcagggcggg cgccgcgcgg aggcagggcg ggcgtattca atggaagtgt 60 gttaccagct gccggtactg cccctggaca ggccggtccc ccagcacgtc ctcagccgcc 120 gaggagccat cagcttcagc tccagctccg ctctcttcgg ctgccccaat ccccggcagc 180 tctctcagag gcgtggagct atttcctatg acagttctga tcagactgca ttatacattc 240 gtatgctagg agatgtacgt gtaaggagcc gagcaggatt tgaatcagaa agaagaggtt 300 ctcacccata tattgatttt cgtattttcc actctcaatc tgaaattgaa gtgtctgtct 360 ctgcaaggaa tatcagaagg ctactaagtt tccagcgata tcttagatct tcacgctttt 420 ttcgtggtac tgcggtttca aattccctaa acattttaga tgatgattat aatggacaag 480 ccaagtgtat gctggaaaaa gttggaaatt ggaattttga tatctttcta tttgatagac 540 taacaaatgg aaatagtcta gtaagcttaa cctttcattt atttagtctt catggattaa 600 ttgagtactt ccatttagat atgatgaaac ttcgtagatt tttagttatg attcaagaag 660 attaccacag tcaaaatcct taccataacg cagtccacgc tgcggatgtt actcaggcca 720 tgcactgtta cttaaaggaa cctaagcttg ccaattctgt aactccttgg gatatcttgc 780 tgagcttaat tgcagctgcc actcatgatc tggatcatcc aggtgttaat caacctttcc 840 ttattaaaac taaccattac ttggcaactt tatacaagaa tacctcagta ctggaaaatc 900 accactggag atctgcagtg ggcttattga gagaatcagg cttattctca catctgccat 960 tagaaagcag gcaacaaatg gagacacaga taggtgctct gatactagcc acagacatca 1020 gtcgccagaa tgagtatctg tctttgttta ggtcccattt ggatagaggt gatttatgcc 1080 tagaagacac cagacacaga catttggttt tacagatggc tttgaaatgt gctgatattt 1140 gtaacccatg tcggacgtgg gaattaagca agcagtggag tgaaaaagta acggaggaat 1200 tcttccatca aggagatata gaaaaaaaat atcatttggg tgtgagtcca ctttgcgatc 1260 gtcacactga atctattgcc aacatccaga ttggttttat gacttaccta gtggagcctt 1320 tatttacaga atgggccagg ttttccaata caaggctatc ccagacaatg cttggacacg 1380 tggggctgaa taaagccagc tggaagggac tgcagagaga acagtcgagc agtgaggaca 1440 ctgatgctgc atttgagttg aactcacagt tattacctca ggaaaatcgg ttatcataac 1500 ccccagaacc agtgggacaa actgcctcct ggaggttttt agaaatgtga aatggggtct 1560 tgaggtgaga gaacttaact cttgactgcc aaggtttcca agtgagtgat gccagccagc 1620 attatttatt tccaagattt cctctgttgg atcatttgaa cccacttgtt aattgcaaga 1680 cccgaacata cagcaatatg aatttggctt tcatgtgaaa ccttgaatat aaagcccagc 1740 aggagagaat ccgaaaggag taacaaagga agttttgata tgtgccacga ctttttcaaa 1800 gcatctaatc ttcaaaacgt caaacttgaa ttgttcagca acaatctctt ggaatttaac 1860 cagtctgatg caacaatgtg tatcttgtac cttccactaa gttctctctg agaaaatgga 1920 aatgtgaagt gcccagcctc tgctgcctct ggcaagacaa tgtttacaaa tcaactctga 1980 aaatattggt tctaaattgc cttggagcat gattgtgaag gaaccactca aacaaattta 2040 aagatcaaac tttagactgc agctctttcc ccctggtttg cctttttctt ctttggatgc 2100 caccaaagcc tcccatttgc tatagtttta tttcatgcac tggaaactga gcatttatcg 2160 tagagtaccg ccaagctttc actccagtgc cgtttggcaa tgcaattttt tttagcaatt 2220 agtttttaat ttggggtggg aggggaagaa caccaatgtc ctagctgtat tatgattctg 2280 cactcaagac attgcatgtt gttttcacta ctgtacactt gacctgcaca tgcgagaaaa 2340 aggtggaatg tttaaaacac cataatcagc tcaggtattt gccaatctga aataaaagtg 2400 ggatgggaga gcgtgtcctt cagatcaagg gtactaaagt ccctttcgct gcagtgagtg 2460 agaggtatgt tgtgtgtgaa tgtacggatg tgtgtttggt gatgtttgtg catgtgtgac 2520 gtgcatgtta tgtttctcca tgtgggcaaa gatttgaaag taagctttta tttattattt 2580 tagaatgtga cataatgagc agccacactc gggggagggg aaggttggta ggtaagctgt 2640 aacagattgc tccagttgcc ttaaactatg cacatagcta agtgaccaaa cttcttgttt 2700 tgatttgaaa aaagtgcatt gttttcttgt ccctcccttt gatgaaacgt taccctttga 2760 cgggcctttt gatgtgaaca gatgttttct aggacaaact ataaggacta attttaaact 2820 tcaaacattc cacttttgta atttgtttta aattgtttta tgtatagtaa gcacaactgt 2880 aatctagttt taagagaaac cggtgctttc ttttagttca tttgtatttc ccttgttact 2940 gtaaaagact gtttattaat tgtttacagt ttgttgcaac agccattttc ttgggagaaa 3000 gcttgagtgt aaagccattt gtaaaaggct ttgccatact cattttaata tgtgcctgtt 3060 gctgttaact tttgatgaat aaaaacctat cttttcatga aacttctctc tatacaaatt 3120 gaaatacata atgctttctg gttcttcttc aaaccaaaac ttgtcaaatt catagacaag 3180 ataacagtaa aactgatgaa agtgttccat tgttggtata ccaggaacaa ggttatagag 3240 atgaaacttc aaagcttcac tcttcagtaa gctataagcc atctctgtaa gattgattcc 3300 aactattgca taagaatacc ctaattttgg atgatttgaa cgggaaagaa tctgatgagc 3360 ttcactagtg taattttcac tgaaatacac aagattgatt aacccaagta tgcccatgcc 3420 tctgaagtct gtcttgggat catcaccctg aaaaccaatt tcagcccact gcttggagat 3480 tctagcgttt aacttcttcg tgggcattag aagattccaa agcttcatga gtagctcttc 3540 atgctgtagg ttatcagaat catatggcct tttcctcaca ctttctacat ccaaatacag 3600 ctgtttataa ccagttatct gcagtaagca catcttcatg catattttaa aactggcatc 3660 cttctcaggg ttaatattct tttccttcat aatatcatct acatatttgt ccacttcact 3720 ctgaacaaca tgtgtcgcct tctgtaaaac cttattcttg gagtatgtca aggaattttc 3780 tatcctgtgt gtcctttgtg cacctacata ggtatcaaat attcgctgca attcacactt 3840 cccagtcatc tgtcgtaata gccatttcat ccaaaatcga aaaaagtgcc catagaagaa 3900 ctcccacaaa gaaataaaca tttttttttc ctcacaggag cggaagaact agggggagca 3960 ggagctgcaa tgcggccgc 3979 97 2904 DNA Homo sapiens misc_feature Per-1 Acc. No. AB005293 97 ggcacgagct ctgtgagact gaggtggcgg tcagccggag tgagtgttgg ggtcctgggg 60 cacctgcctt acatggcttg tttatgaaca ttaaagggaa gaagttgaag cttgaggagc 120 gaggatggca gtcaacaaag gcctcacctt gctggatgga gacctccctg agcaggagaa 180 tgtgctgcag cgggtcctgc agctgccggt ggtgagtggc acctgcgaat gcttccagaa 240 gacctacacc agcactaagg aagcccaccc cctggtggcc tctgtgtgca atgcctatga 300 gaagggcgtg cagagcgcca gtagcttggc tgcctggagc atggagccgg tggtccgcag 360 gctgtccacc cagttcacag ctgccaatga gctggcctgc cgaggcttgg accacctgga 420 ggaaaagatc cccgccctcc agtacccccc tgaaaagatt gcttctgagc tgaaggacac 480 catctccacc cgcctccgca gtgccagaaa cagcatcagc gttcccatcg cgagcacttc 540 agacaaggtc ctgggggccg ctttggccgg gtgcgagctt gcctgggggg tggccagaga 600 cactgcggaa tttgctgcca acactcgagc tggccgactg gcttctggag gggccgactt 660 ggccttgggc agcattgaga aggtggtgga gtacctcctc cctgcagaca aggaagagtc 720 agcccctgct cctggacacc agcaagccca gaagtctccc aaggccaagc caagcctctt 780 gagcagggtt ggggctctga ccaacaccct ctctcgatac accgtgcaga ccatggcccg 840 ggccctggag cagggccaca ccgtggccat gtggatccca ggcgtggtgc ccctgagcag 900 cctggcccag tggggtgcct cagtggccat gcaggcggtg tcccggcgga ggagcgaagt 960 gcgggtaccc tggctgcaca gcctcgcagc cgcccaggag gaggatcatg aggaccagac 1020 agacacggag ggagaggaca cggaggagga ggaagaattg gagactgagg agaacaagtt 1080 cagtgaggta gcagccctgc caggccctcg aggcctcctg ggtggtgtgg cacataccct 1140 gcagaagacc ctccagacca ccatctcggc tgtgacatgg gcacctgcag ctgtgctggg 1200 catggcaggg agggtgctgc acctcacacc agcccccgct gtctcctcaa ccaaggggag 1260 ggccatgtcc ctatcagatg ccctgaaggg cgttactgac aacgtggtgg acacagtggt 1320 gcattacgtg ccgctcccca ggctgtcgct gatggagccc gagagcgaat tccgggacat 1380 cgacaaccca ccagccgagg tcgagcgccg ggaggcggag cgcagagcgt ctggggcgcc 1440 gtccgccggc ccggagcccg ccccgcgtct cgcacagccc cgccgcagcc tgcgcagcgc 1500 gcagagcccc ggcgcgcccc ccggcccggg cctggaggac gaagtcgcca cgcccgcagc 1560 gccgcgcccg ggcttcccgg ccgtgccccg cgagaagcca aagcgcaggg tcagcgacag 1620 cttcttccgg cccagcgtca tggagcccat cgtgggccgc acgcattaca gccagctgcg 1680 caagaagagc tgagtcgccg caccagccgc cgcgccccgg gccggcgggt ttctctaaca 1740 aataaacaga acccgcactg cccaggcgag cgttgccact ttcaaagtgg tcccctgggg 1800 agctcagcct catcctgatg atgctgccaa ggcgcacttt ttatttttat tttattttta 1860 tttttttttt agcatccttt tggggcttca ctctcagagc cagtttttaa gggacaccag 1920 agccgcagcc tgctctgatt ctatggcttg gttgttacta taagagtaat tgcctaactt 1980 gatttttcat ctctttaacc aaacttgtgg ccaaaagata tttgaccgtt tccaaaattc 2040 agattctgcc tctgcggata aatatttgcc acgaatgagt aactcctgtc accactctga 2100 aggtccagac agaaggtttt gacacattct tagcactgaa ctcctctgtg atctaggatg 2160 atctgttccc cctctgatga acatcctctg atgatcaagg ctcccagcag gctactttga 2220 agggaacaat cagatgcaaa agctcttggg tgtttattta aaatactagt gtcactttct 2280 gagtacccgc cgcttcacag gctgagtcca ggcctgtgtg ctttgtagag ccagctgctt 2340 gctcacagcc acatttccat ttgcatcatt actgccttca cctgcatagt cactcttttg 2400 atgctgggga accaaaatgg tgatgatata tagactttat gtatagccac agttcatccc 2460 caaccctagt cttcgaaatg ttaatatttg ataaatctag aaaatgcatt catacaatta 2520 cagaattcaa atattgcaaa aggatgtgtg tctttctccc cgagctcccc tgttcccctt 2580 cattgaaaac caccacggtg ccatctcttg tgtatgcagg gctatgcacc tgcaggcacg 2640 tgtgtatgca ctccccgctt gtgtttacac aagctgtggg gtgttacgca tgcctgcttt 2700 tttcacttaa taatacagct tggagagatt tttgtatcac attataaatc ccactcgctc 2760 tttttgatgg ccacataata actactgcat aatatggata cgccttattt gatttaacta 2820 gttccctaat gatggacttt taagttgttt cctttttttt tcttttttgc tactgcaaac 2880 gatgctataa taaatgtcct tatc 2904 98 4626 DNA Homo sapiens misc_feature TPP II Acc. No. M73047 98 gaattcccct ccatcctgcg tccatggcca ccgctgcgac tgaggagccc ttcccttttc 60 acggtctcct gccgaagaag gagaccggag ccgcctcctt cctctgccgc tacccggagt 120 atgatgggcg gggggtgctc atcgcagtcc tggacacggg ggtcgacccg ggggctccgg 180 gcatgcaggt tacaactgat ggaaaaccaa aaatcgttga tatcattgat acaacaggaa 240 gtggcgatgt gaatactgct acagaagtag agccaaagga tggtgagatt gttggccttt 300 caggaagagt gcttaagatt cctgcaagct ggacaaatcc ctcaggcaaa tatcatattg 360 gcataaaaaa tggctatgac ttctatccta aggcactcaa ggaaaggata cagaaagaac 420 ggaaggaaaa aatctgggac cctgttcaca gagtggccct tgcagaagcc tgtagaaaac 480 aggaagaatt tgatgttgcc aacaacggct cttctcaagc aaataaacta atcaaggagg 540 aacttcaaag tcaagtggaa ttgctaaatt cttttgagaa gaaatacagc gatcctggcc 600 ctgtatatga ctgcttggta tggcatgatg gcgaagtctg gagagcctgc attgattcta 660 atgaagatgg ggacttgagt aaatctaccg tgttgagaaa ctacaaagaa gcccaagaat 720 atggctcttt tggcacagct gagatgttga attactccgt taatatatac gatgatagaa 780 acctgctctc cattgtgacc agtggaggag ctcatgggac acatgtagct agtatagctg 840 ctggacactt tccagaagaa cctgaacgga atggggtagc tcctggtgct caaattcttt 900 ccatcaagat tggtgataca agactaagca caatggaaac aggcacaggc ctcataagag 960 ctatgataga agttataaat cataagtgtg atcttgtcaa ctacagttac ggagaagcaa 1020 ctcactggcc aaattctggg agaatttgtg aagtaattaa tgaagcagta tggaagcata 1080 atataattta tgtttcaagt gctggaaata atggtccatg cctgtctaca gttggttgtc 1140 caggtggaac tacatcaagt gtgataggtg ttggtgctta tgtttctcct gatatgatgg 1200 ttgctgagta ttcactgaga gagaaattac ctgcaaatca atatacttgg tcttctagag 1260 gacctagtgc tgacggggcc cttggtgtga gtatcagtgc gccaggagga gccattgctt 1320 ctgttcctaa ctggacactg agagggacgc agctgatgaa tggaacatct atgtcttccc 1380 ccaatgcatg tggaggcatt gccctgatcc tttcaggtct gaaagctaat aacattgact 1440 acacagttca ttcagtcaga agagctctag aaaacactgc agtgaaggct gacaatatag 1500 aagtatttgc tcaaggacat ggtattattc aggttgataa agcctatgac tacctcgttc 1560 agaatacatc atttgctaat aaattaggtt ttactgttac tgttggaaat aaccgtggca 1620 tctacctccg agatcctgtt caggtggctg caccttcaga tcatggcgtt ggcattgaac 1680 ctgtatttcc ggagaacaca gaaaactctg aaaaaatatc ccttcagctt catttagctc 1740 tgacttcaaa ttcatcttgg gttcagtgtc ccagccattt ggaactcatg aatcaatgta 1800 gacacataaa catacgtgtg gatcccaggg gcttaagaga aggattgcat tatacagagg 1860 tatgtggcta tgatatagca tcccctaacg caggtccgct cttcagagtt ccgatcactg 1920 cagttatagc agcaaaagta aatgaatcat cacattatga tctagccttt acagatgtac 1980 actttaaacc tggtcaaatt cgaaggcatt ttattgaggt tcctgagggt gcaacatggg 2040 ctgaagtgac agtgtgttcg tgttcttctg aggtgtcagc aaagtttgtt ctacatgcag 2100 tccagcttgt gaagcaaaga gcatatcgaa gccatgaatt ctataagttt tgttctcttc 2160 cagagaaagg aacactgact gaagcttttc ctgtcctagg tggaaaagca attgaatttt 2220 gcattgctcg ttggtgggca agtctcagtg atgtcaacat tgattatacc atttctttcc 2280 atgggatagt gtgtactgct cctcagttaa acattcatgc atcggaagga atcaaccgct 2340 ttgatgttca gtcctccttg aaatacgaag atctggctcc ctgcataact ttgaagaact 2400 gggtccaaac actgcgccca gtgagtgcaa aaacaaaacc tttaggatca agagatgttt 2460 tgccaaataa ccgtcaactt tatgagatgg tcctgacata taactttcat caacccaaga 2520 gtggggaagt aactccaagc tgcccactac tttgtgaact attatatgaa tctgaatttg 2580 acagccaact gtggattatt tttgaccaga acaaaagaca gatgggttca ggcgatgcct 2640 atccacatca gtattctttg aaactggaga aaggagatta tacaattcga ctacagattc 2700 gccatgagca aatcagtgat ttggaacgcc ttaaagacct tccatttatt gtttctcata 2760 gattgtctaa taccttgagc ttagatattc atgaaaatca tagttttgca cttctaggga 2820 agaagaaatc aagcaatttg acattaccac ccaaatataa ccagccattc tttgttactt 2880 ccttacctga tgataaaata cctaaagggg caggacctgg atgctatctt gcaggatcct 2940 taacattgtc aaagactgaa ctaggaaaga aagctgatgt aatccctgtt cattactact 3000 taatacctcc accaacaaag actaagaatg gcagcaaaga taaggaaaaa gattcagaaa 3060 aagagaaaga tttaaaagaa gagtttactg aagcattacg agatcttaaa attcagtgga 3120 tgacaaagct ggattctagt gacatttata acgaattgaa agaaacatat cctaattatc 3180 ttcctctgta cgttgcacga cttcatcaat tggatgctga aaaggaacga atgaaaagac 3240 ttaatgaaat tgttgatgcg gcaaatgctg ttatttctca tatagatcaa acagccctag 3300 cagtttatat tgcaatgaag actgatccca ggcctgatgc agctactata aaaaatgaca 3360 tggacaaaca aaaatccacc ctcgtagatg ccctttgtag gaaaggttgt gccctggcag 3420 accatcttct tcacacccag gctcaagacg gagccatttc cactgatgca gaaggaaagg 3480 aggaggaagg agaaagtcct ttggattctc tggcagaaac attttgggaa actactaaat 3540 ggactgatct ctttgacaat aaggttttga catttgcata taaacatgca ttagtaaata 3600 aaatgtatgg gagaggcctt aaatttgcaa ctaaacttgt ggaagaaaaa ccaacaaaag 3660 aaaactggaa aaattgtatt caactgatga agttacttgg atggacccat tgtgcatctt 3720 ttactgaaaa ctggctcccc atcatgtatc ctcccgatta ttgcgtattc taaaatagga 3780 aacaagactt taaattttaa aaaaggaagt tttatagtga atgggtataa aaacaaattt 3840 gtggcatttt tagtctaatg catgttttca tccactatcc agtactgatt attaaaatga 3900 catgtattta tcagagaatt cactgacgtg tggcttaata catgtaaatc tagacctctg 3960 acatcatggt gttttcttaa tgcctcacat tgctggcacg gggatgtgcc ctgcctgcca 4020 gcacctagga cttcgagttg ggttgcagct tatgacatgc atgataggtt ttggaaggta 4080 acttttaact gcaaacctat aaagtactat tttttatttt ataaatgaac agggttttaa 4140 cgtgctcaac tttaattttt ttcaattgta tgaaggcctt aaaaaagcta cattaagcgt 4200 agctaaaatt atttattgga ctaaaaacta acagaacttc atttccagaa tttttttttt 4260 tttttttttt ttggcaaatg tttacattca attaagggga aaaagtagaa ccagcacaaa 4320 tgagtggcag ttgctggagc ataactgctt caataaatct tcatcttggg gtaattacag 4380 gcaagtcatt ttcacatcct cttgaggttc agagcatcag aatgaactct atgaatacat 4440 gtgtaagtgc cagacagctg aatctttatc aggtattgta aagatacaca tatgatatgt 4500 ttattaaaat tgaaataatg taaaacacat gaataaattt gcaaaaccaa gatcacagta 4560 caccatatgc actctggtac cttaattttt ttttataaat aataaaagtg aatattgaag 4620 cttctt 4626 99 3224 DNA Homo sapiens misc_feature MTP Acc. No. X59657 99 actccctcac tggctgccat tgaaagagtc cacttctcag tgactcctag ctgggcactg 60 gatgcagttg aggattgctg gtcaatatga ttcttcttgc tgtgcttttt ctctgcttca 120 tttcctcata ttcagcttct gttaaaggtc acacaactgg tctctcatta aataatgacc 180 ggctgtacaa gctcacgtac tccactgaag ttcttcttga tcggggcaaa ggaaaactgc 240 aagacagcgt gggctaccgc atttcctcca acgtggatgt ggccttacta tggaggaatc 300 ctgatggtga tgatgaccag ttgatccaaa taacgatgaa ggatgtaaat gttgaaaatg 360 tgaatcagca gagaggagag aagagcatct tcaaaggaaa aagcccatct aaaataatgg 420 gaaaggaaaa cttggaagct ctgcaaagac ctacgctcct tcatctaatc catggaaagg 480 tcaaagagtt ctactcatat caaaatgagg cagtggccat agaaaatatc aagagaggtc 540 tggctagcct atttcagaca cagttaagct ctggaaccac caatgaggta gatatctctg 600 gaaattgtaa agtgacctac caggctcatc aagacaaagt gatcaaaatt aaggccttgg 660 attcatgcaa aatagcgagg tctggattta cgaccccaaa tcaggtcttg ggtgtcagtt 720 caaaagctac atctgtcacc acctataaga tagaagacag ctttgttata gctgtgcttg 780 ctgaagaaac acacaatttt ggactgaatt tcctacaaac cattaagggg aaaatagtat 840 cgaagcagaa attagagctg aagacaaccg aagcaggccc aagattgatg tctggaaagc 900 aggctgcagc cataatcaaa gcagttgatt caaagtacac ggccattccc attgtggggc 960 aggtcttcca gagccactgt aaaggatgtc cttctctctc ggagctctgg cggtccacca 1020 ggaaatacct gcagcctgac aacctttcca aggctgaggc tgtcagaaac ttcctggcct 1080 tcattcagca cctcaggact gcgaagaaag aagagatcct tcaaatacta aagatggaaa 1140 ataaggaagt attacctcag ctggtggatg ctgtcacctc tgctcagacc tcagactcat 1200 tagaagccat tttggacttt ttggatttca aaagtgacag cagcattatc ctccaggaga 1260 ggtttctcta tgcctgtgga tttgcttctc atcccaatga agaactcctg agagccctca 1320 ttagtaagtt caaaggttct attggtagca gtgacatcag agaaactgtt atgatcatca 1380 ctgggacact tgtcagaaag ttgtgtcaga atgaaggctg caaactcaaa gcagtagtgg 1440 aagctaagaa gttaatcctg ggaggacttg aaaaagcaga gaaaaaagag gacaccagga 1500 tgtatctgct ggctttgaag aatgccctgc ttccagaagg catcccaagt cttctgaagt 1560 atgcagaagc aggagaaggg cccatcagcc acctggctac cactgctctc cagagatatg 1620 atctcccttt cataactgat gaggtgaaga agaccttaaa cagaatatac caccaaaacc 1680 gtaaagttca tgaaaagact gtgcgcactg ctgcagctgc tatcatttta aataacaatc 1740 catcctacat ggacgtcaag aacatcctgc tgtctattgg ggagcttccc caagaaatga 1800 ataaatacat gctcgccatt gttcaagaca tcctacgttt ggaaatgcct gcaagcaaaa 1860 ttgtccgtcg agttctgaag gaaatggtcg ctcacaatta tgaccgtttc tccaggagtg 1920 gatcttcttc tgcctacact ggctacatag aacgtagtcc ccgttcggca tctacttaca 1980 gcctagacat tctctactcg ggttctggca ttctaaggag aagtaacctg aacatctttc 2040 agtacattgg gaaggctggt cttcacggta gccaggtggt tattgaagcc caaggactgg 2100 aagccttaat cgcagccacc cctgacgagg gggaggagaa ccttgactcc tatgctggta 2160 tgtcagccat cctctttgat gttcagctca gacctgtcac ctttttcaac ggatacagtg 2220 atttgatgtc caaaatgctg tcagcatctg gcgaccctat cagtgtggtg aaaggactta 2280 ttctgctaat agatcattct caggaacttc agttacaatc tggactaaaa gccaatatag 2340 aggtccaggg tggtctagct attgatattt caggtgcaat ggagtttagc ttgtggtatc 2400 gtgagtctaa aacccgagtg aaaaataggg tgactgtggt aataaccact gacatcacag 2460 tggactcctc ttttgtgaaa gctggcctgg aaaccagtac agaaacagaa gcaggcttgg 2520 agtttatctc cacagtgcag ttttctcagt acccattctt agtttgcatg cagatggaca 2580 aggatgaagc tccattcagg caatttgaga aaaagtacga aaggctgtcc acaggcagag 2640 gttatgtctc tcagaaaaga aaagaaagcg tattagcagg atgtgaattc ccgctccatc 2700 aagagaactc agagatgtgc aaagtggtgt ttgcccctca gccggatagt acttccagcg 2760 gatggttttg aaactgacct gtgatatttt acttgaattt gtctccccga aagggacaca 2820 atgtggcatg actaagtact tgctctctga gagcacagcg tttacatatt tacctgtatt 2880 taagattttt gtaaaaagct acaaaaaact gcagtttgat caaatttggg tatatgcagt 2940 atgctaccca cagcgtcatt ttgaatcatc atgtgacgct ttcaacaacg ttcttagttt 3000 acttatacct ctctcaaatc tcatttggta cagtcagaat agttattctc taagaggaaa 3060 ctagtgtttg ttaaaaacaa aaataaaaac aaaaccacac aaggagaacc caattttgtt 3120 tcaacaattt ttgatcaatg tatatgaagc tcttgatagg acttccttaa gcatgacggg 3180 aaaaccaaac acgttcccta atcaggaaaa aaaaaaaaaa aaaa 3224 100 5856 DNA Homo sapiens misc_feature HisR Acc. No. D14436 100 gagctcatca ttttttatgg ctgcatagta ttccatggtg tatatgtgcc acattttctt 60 aatccagtct atcattgttg gacagttggg ttggttccaa gtctttgcta ctgtgaatag 120 tgcctcaata aacatatgtg tgcatgtgtc tttatagcag caagatttat agtcctttgg 180 gtatataccc agtaatggga tggctgggtc aaatggtatt tctagttcta catccctgag 240 gaatcgccac accgacttcc acaatggttg aactagttta cagtcccacc aaaagtgtaa 300 aaatgttcct atttctccac ttcctctcca gcatctgttg tttcctgact ttttaatgat 360 tgctattcta actggtgtga gatggtatct cattgtggtt ttgatttgca tttctctgat 420 ggccagtgat ggtgagcatt ttttcatgtg ttttttggat gcataaatgt cttcttttga 480 gaagtgtctg ttcatgtcct tcgcccactt tttgatgggg atgttttttt cttgtaaatt 540 tgtttgagtt cattgtagat tctggatatt agccctttgt cagatgagta ggttgtgaaa 600 attttctccc attttgtagg ttgcctgttc actctgatgg tagtttcttt tgctgtgcag 660 aaaatcttta gtttaattag atcccatttg tcaattttgg cttttgttgc cattgttttt 720 ggtgttttag acatgaagtc cttgcccatg cctatgtcct gaatggtaat gcctaggatt 780 tcttctgggg gttttatggt tttaggtcta atgtttaagt ctttaatcca tcttgaatta 840 atttttgtat aaggtgtaag gaagggatcc agtttcagct ttctacatat ggctagccag 900 ttttcccagc actttttatt aaatagagaa tcctttcccc attgcttttc tcaggtttgt 960 caaagatcag atagttgtag atatgcaatg ctatttctga gggctctgtt ctgttccatt 1020 gatctatatc tctgttttgg taccagtacc atgctgtttt ggttactgtg gccttgtagt 1080 atagtttgaa gtcaggtagc atgatgcctc cagctttgtt cttttggctt aggattgact 1140 tggcgatgtg ggctcttttt ggttccatat gaactttaaa gtagtttttt ccaattctgt 1200 gaagaaagtc attggtagct tgatggggat ggcattgaat ctatcaatta ccttgggcag 1260 tatggccatt ttcaagatat tgattcttcc tacccatgag catggaatgt tcttccattt 1320 gtttgtatcc tcttttattt ccttgagcag tggtttgtag ttctcctcga agaggtcctt 1380 cacatccctt gtaagttgga ttcctaggta ttttattctc tttgaagcaa ttgtgaatgg 1440 gagttcactc atgatttggc tctctgtttg tctgttattg gtgtattaga atgcttgtga 1500 tttttgtaca ttgattttgt atcctgagac tttgctgaag ttgcttatca gcttaaggag 1560 attttgggct gagacaatgg ggttttctag atatacaatc atgtcatctg caaacaggga 1620 caatttgact tcctcttttc ctaattgagt accctttatt tccttctcct gcctaattgc 1680 cctggccaga acttccaaca ctatgttgaa taggagtggt gagagagggc atccctgtct 1740 tgtgccagtt ttcaaaggga atgcttgcag tttttgccca ttcagtatga tactggctgt 1800 gggtttgtca tagatagctc ttattatttt gagatacgtc ccatgaatac ctaatttatt 1860 gagagttttt agcatgaagg gttgttgaat tttgtcaaag gccttttctg catctattga 1920 gataatcatg tggtttttgt ctttggttct gtttacatgc tggattacat ttattgattt 1980 gcatatattg aaccagcctt gcatcccagg gatgaagtcc acttgatcac ccccaacagc 2040 atacaactcc agtctgatga acatcatgct actaagtggc cactcatcac ccaagtctct 2100 gaccttactt tttctctctt ttctcccagg gagtgagcca taactggcgg ctgctcttgc 2160 gccaatgagc ctccccaatt cctcctgcct cttagaagac aagatgtgtg agggcaacaa 2220 gaccactatg gccagccccc agctgatgcc cctggtggtg gtcctgagca ctatctgctt 2280 ggtcacagta gggctcaacc tgctggtgct gtatgccgta cggagtgagc ggaagctcca 2340 cactgtgggg aacctgtaca tcgtcagcct ctcggtggcg gacttgatcg tgggtgccgt 2400 cgtcatgcct atgaacatcc tctacctgct catgtccaag tggtcactgg gccgtcctct 2460 ctgcctcttt tggctttcca tggactatgt ggccagcaca gcgtccattt tcagtgtctt 2520 catcctgtgc attgatcgct accgctctgt ccagcagccc ctcaggtacc ttaagtatcg 2580 taccaagacc cgagcctcgg ccaccattct gggggcctgg tttctctctt ttctgtgggt 2640 tattcccatt ctaggctgga atcacttcat gcagcagacc tcggtgcgcc gagaggacaa 2700 gtgtgagaca gacttctatg atgtcacctg gttcaaggtc atgactgcca tcatcaactt 2760 ctacctgccc accttgctca tgctctggtt ctatgccaag atctacaagg ccgtacgaca 2820 acactgccag caccgggagc tcatcaatag gtccctccct tccttctcag aaattaagct 2880 gaggccagag aaccccaagg gggatgccaa gaaaccaggg aaggagtctc cctgggaggt 2940 tctgaaaagg aagccaaaag atgctggtgg tggatctgtc ttgaagtcac catcccaaac 3000 ccccaaggag atgaaatccc cagttgtctt cagccaagag gatgatagag aagtagacaa 3060 actctactgc tttccacttg atattgtgca catgcaggct gcggcagagg ggagtagcag 3120 ggactatgta gccgtcaacc ggagccatgg ccagctcaag acagatgagc agggcctgaa 3180 cacacatggg gccagcgaga tatcagagga tcagatgtta ggtgatagcc aatccttctc 3240 tcgaacggac tcagatacca ccacagagac agcaccaggc aaaggcaaat tgaggagtgg 3300 gtctaacaca ggcctggatt acatcaagtt tacttggaag aggctccgct cgcattcaag 3360 acagtatgta tctgggttgc acatgaaccg cgaaaggaag gccgccaaac agttgggttt 3420 tatcatggca gccttcatcc tctgctggat cccttatttc atcttcttca tggtcattgc 3480 cttctgcaag aactgttgca atgaacattt gcacatgttc accatctggc tgggctacat 3540 caactccaca ctgaaccccc tcatctaccc cttgtgcaat gagaacttca agaagacatt 3600 caagagaatt ctgcatattc gctcctaagg gaggctctga ggggatgcaa caaaatgatc 3660 cttatgatgt ccaacaagga aatagaggac gaaggcctgt gtgttgccag gcaggcacct 3720 gggctttctg gaatccaaac cacagtctta ggggcttggt agtttggaaa gttcttaggc 3780 accatagaag aacagcagat ggcggtgatc agcagagaga ttgaactttg aggaggaagc 3840 agaatctttg caagaaagtc agacctgttt cttgtaactg ggttcaaaaa gaaaaaaata 3900 ataaaaataa aagagagaga gaatcagacc tgggtggaac tctcctgctc ctcaggaact 3960 atgggagcct cagactcatt gtaattcaag ctttccgagt caagtgattg acaactgaag 4020 agacacgtgg ctagggttcc actggagaat tgaaaaggac tcttgagccc tcctggaatg 4080 gagctgtata actgtgcaga gactttatcc atgccaatag ttgctgtccc cttccagggg 4140 tcaccttgag aggcatgaca gctgttccac aggggctatc ccttctcaga aaacttctct 4200 tctgagcctc tttaacagct ttctccagaa ccagtgtctg aaccaccctg gaaattctgc 4260 cttattattt cttactcaaa catgtttaga gtggatagaa aattatgcag cttgcacacc 4320 catcatcttt aaccccaaat ttcctttggc tattaaaaaa gtggtggcaa aaggcatcct 4380 caaaagaaag agaaatgaaa tatttttgaa tggttgcacg ttaaaaatta aaagaaggaa 4440 tgggggcaga atgccatatt tttgagggct gtactaggtt tatctcattt aagccccaca 4500 acaccccaca ggagggtaat tttctaactc tagtttgcag aggagcaaat tgaggttcag 4560 caaggtgaga gaggtaccca aggtcacata gctagttatg tgagaaagtt agagtacaga 4620 tcctctgggg tttcagctta ttgtagcata ttttctccga aaggcaaaaa tgtgcccttt 4680 tggccgggca tggtagctca agcctataat cccagcatgt tgagaggctg aggtgggcag 4740 atcatttgag gccaggagtt caagaccagt ctggccaata tggagaaacc ttgtctctac 4800 taaaaacaca aaaattatct gggcatggtg gggcatgcct gtagtcccac ttacttggga 4860 ggccgaggca cgagaatcgc ttgaacccgg gaggtggagg ttgccgtgag ccaagatcac 4920 gccactgcac tccagcctgg gcaacagagc aagactctgt ctcaaaaaaa aaaatacaat 4980 attttaacaa tgtgccctct taagtgtgca cagatacaca tacacggtat tcccaagagt 5040 ggtggcagct caaaatgata tgtttgagta gacgaacagc tgacatggag ttcccgtgca 5100 cctacggaag gggacgcttt gaaggaacca agtgcatttt tatctgtgag ttctgttgtg 5160 tttgtcaaaa agtcattgta atctttcata gccatacctg gtaagcaaaa actagtaaag 5220 acataggaac atgtagtttt acttggtgtt tatgttgcaa tctggttgtg atttatattt 5280 taaagcttgg tgctaaacca caatatgtat agcacatgga gtgcctgtac aagctgatgt 5340 tttgtatttt gtgttcctct ttgcatgatc tgtcaaagtg agatattttt acctgcctaa 5400 aatatgatgt ttaaaagcat actctatgtg atttatttat ttctaccttt ctgagtctct 5460 tggactaaga agatgttttg aaatgtacca tcaaatgtta acagagtttg atatgggctt 5520 tctctttggt ttctcatcac atttgtaaat gtcttttcaa aaggatttac tttttgtaaa 5580 aagcttcatt ctcactctgc tttgcatccc ccaaacttct tgttcaaaac ggggggagtt 5640 taggagactt taatcccggt ttcagaagct gcagctggtc tgtttccagg tcagaaacca 5700 ttgttcagaa gacctccctg tgagagagtt gctcctcagg gtccctcagg accaaagaac 5760 actcgaaaag agcacttcac acagacaagt ggctaagtgt ccattattta ccttgaacaa 5820 tcaaggcaac tagtggagag aactgattgt gagctc 5856 101 2438 DNA Homo sapiens misc_feature CRP Acc. No. M11880 101 aataaataac tcacattgat ttctctggtc tgaaataatt ttgcttcccc tcttcccgaa 60 gctctgacac ctgccccaac aagcaatgtt ggaaaattat ttacatagtg gcgcaaactc 120 ccttactgct ttggatataa atccaggcag gaggaggtag ctctaaggca agagatctag 180 gacttctagc ccctgaactt tcagccgaat acatcttttc caaaggagtg aattcaggcc 240 cttgtatcac tggcagcagg acgtgaccat ggagaagctg ttgtgtttct tggtcttgac 300 cagcctctct catgcttttg gccagacagg taagggccac cccaggctat gggagagttt 360 tgatctgagg tatgggggtg gggtctaaga ctgcatgaac agtctcaaaa aaaaaaaaaa 420 aagactgtat gaacagaaca gtggagcatc cttcatggtg tgtgtgtgtg tgtgtgtgtg 480 tgtgtgtggt gtgtaactgg agaaggggtc agtctgtttc tcaatcttaa attctatacg 540 taagtgaggg gatagatctg tgtgatctga gaaacctctc acatttgctt gtttttctgg 600 ctcacagaca tgtcgaggaa ggcttttgtg tttcccaaag agtcggatac ttcctatgta 660 tccctcaaag caccgttaac gaagcctctc aaagccttca ctgtgtgcct ccacttctac 720 acggaactgt cctcgacccg tgggtacagt attttctcgt atgccaccaa gagacaagac 780 aatgagattc tcatattttg gtctaaggat ataggataca gttttacagt gggtgggtct 840 gaaatattat tcgaggttcc tgaagtcaca gtagctccag tacacatttg tacaagctgg 900 gagtccgcct cagggatcgt ggagttctgg gtagatggga agcccagggt gaggaagagt 960 ctgaagaagg gatacactgt gggggcagaa gcaagcatca tcttggggca ggagcaggat 1020 tccttcggtg ggaactttga aggaagccag tccctagtgg gagacattgg aaatgtgaac 1080 atgtgggact ttgtgctgtc accagatgag attaacacca tctatcttgg cgggcccttc 1140 agtcctaatg tcctgaactg gcgggcactg aagtatgaag tgcaaggcga agtgttcacc 1200 aaaccccagc tgtggccctg aggcccagct gtgggtcctg aaggtacctc ccggtttttt 1260 acaccgcatg ggccccacgt ctctgtctct ggtacctccc gcttttttac actgcatggt 1320 tcccacgtct ctgtctctgg gcctttgttc ccctatatgc attgaggcct gctccaccct 1380 cctcagcgcc tgagaatgga ggtaaagtgt ctggtctggg agctcgttaa ctatgctggg 1440 aaatggtcca aaagaatcag aatttgaggt gttttgtttt catttttatt tcaagttgga 1500 cagatcttgg agataatttc ttacctcaca tagatgagaa aactaacacc cagaaaggag 1560 aaatgatgtt ataaaaaact cataaggcaa gagctgagaa ggaagcgctg atcttctatt 1620 taattcccca cccatgaccc ccagaaagca ggagcattgc ccacattcac agggctcttc 1680 agtatcagaa tcaggacact ggccaggtgt ctggtttggg tccagagtgc tcatcatcat 1740 gtcatagaac tgctgggccc aggtctcctg aaatgggaag cccagcaata ccacgcagtc 1800 cctccacttt ctcaaagcac actggaaagg ccattagaat tgccccagca gagcagatct 1860 gctttttttc cagagcaaaa tgaagcacta ggtataaata tgttgttact gccaagaact 1920 taaatgactg gtttttgttt gcttgcagtg ctttcttaat tttatggctc ttctgggaaa 1980 ctcctcccct tttccacacg aaccttgtgg ggctgtgaat tctttcttca tccccgcatt 2040 cccaatatac ccaggccaca agagtggacg tgaaccacag ggtgtcctgt cagaggagcc 2100 catctcccat ctccccagct ccctatctgg aggatagttg gataggtacg tgttcctagc 2160 aggaccaact acagtcttcc caaggattga gttatggact ttgggagtga gacatcttct 2220 tgctgctgga tttccaagct gagaggacgt gaacctggga ccaccagtag ccatcttgtt 2280 tgccacatgg agagagactg tgaggacaga agccaaactg gaagtggagg agccaaggga 2340 ttgacaaaca acagagcctt gaccacgtgg agtctctgaa tcagccttgt ctggaaccag 2400 atctacacct ggactgccca ggtctataag ccaataaa 2438 102 1457 DNA Homo sapiens misc_feature CETP Acc. No. XM_008050 102 cctggccctg ctgggcaatg cccatgcctg ctccaaaggc acctcgcacg aggcaggcat 60 cgtgtgccgc atcaccaagc ctgccctcct ggtgttgaac cacgagactg ccaaggtgat 120 ccagaccgcc ttccagcgag ccagctaccc agatatcacg ggcgagaagg ccatgatgct 180 ccttggccaa gtcaagtatg ggttgcacaa catccagatc agccacttgt ccatcgccag 240 cagccaggtg gagctggtgg aagccaagtc cattgatgtc tccattcaga acgtgtctgt 300 ggtcttcaag gggaccctga agtatggcta caccactgcc tggtggctgg gtattgatca 360 gtccattgac ttcgagatcg actctgccat tgacctccag atcaacacac agctgacctg 420 tgactctggt agagtgcgga ccgatgcccc tgactgctac ctgtctttcc ataagctgct 480 cctgcatctc caaggggagc gagagcctgg gtggatcaag cagctgttca caaatttcat 540 ctccttcacc ctgaagctgg tcctgaaggg acagatctgc aaagagatca acgtcatctc 600 taacatcatg gccgattttg tccagacaag ggctgccagc atcctttcag atggagacat 660 tggggtggac atttccctga caggtgatcc cgtcatcaca gcctcctacc tggagtccca 720 tcacaaggca gtgctggaga cctggggctt caacaccaac caggaaatct tccaagaggt 780 tgtcggcggc ttccccagcc aggcccaagt caccgtccac tgcctcaaga tgcccaagat 840 ctcctgccaa aacaagggag tcgtggtcaa ttcttcagtg atggtgaaat tcctctttcc 900 acgcccagac cagcaacatt ctgtagctta cacatttgaa gaggatatcg tgactaccgt 960 ccaggcctcc tattctaaga aaaagctctt cttaagcctc ttggatttcc agattacacc 1020 aaagactgtt tccaacttga ctgagagcag ctccgagtcc gtccagagct tcctgcagtc 1080 aatgatcacc gctgtgggca tccctgaggt catgtctcgg ctcgaggtag tgtttacagc 1140 cctcatgaac agcaaaggcg tgagcctctt cgacatcatc aaccctgaga ttatcactcg 1200 agatggcttc ctgctgctgc agatggactt tggcttccct gagcacctgc tggtggattt 1260 cctccagagc ttgagctaga agtctccaag gaggtcggga tggggcttgt agcagaaggc 1320 aagcaccagg ctcacagctg gaaccctggt gtctcctcca gcgtggtgga agttgggtta 1380 ggagtacgga gatggagatt ggctcccaac tcctccctat cctaaaggcc cactggcatt 1440 aaagtgctgt atccaag 1457 103 2986 DNA Homo sapiens misc_feature ICAM Acc. No. J03132 103 gcgccccagt cgacgctgag ctcctctgct actcagagtt gcaacctcag cctcgctatg 60 gctcccagca gcccccggcc cgcgctgccc gcactcctgg tcctgctcgg ggctctgttc 120 ccaggacctg gcaatgccca gacatctgtg tccccctcaa aagtcatcct gccccgggga 180 ggctccgtgc tggtgacatg cagcacctcc tgtgaccagc ccaagttgtt gggcatagag 240 accccgttgc ctaaaaagga gttgctcctg cctgggaaca accggaaggt gtatgaactg 300 agcaatgtgc aagaagatag ccaaccaatg tgctattcaa actgccctga tgggcagtca 360 acagctaaaa ccttcctcac cgtgtactgg actccagaac gggtggaact ggcacccctc 420 ccctcttggc agccagtggg caagaacctt accctacgct gccaggtgga gggtggggca 480 ccccgggcca acctcaccgt ggtgctgctc cgtggggaga aggagctgaa acgggagcca 540 gctgtggggg agcccgctga ggtcacgacc acggtgctgg tgaggagaga tcaccatgga 600 gccaatttct cgtgccgcac tgaactggac ctgcggcccc aagggctgga gctgtttgag 660 aacacctcgg ccccctacca gctccagacc tttgtcctgc cagcgactcc cccacaactt 720 gtcagccccc gggtcctaga ggtggacacg caggggaccg tggtctgttc cctggacggg 780 ctgttcccag tctcggaggc ccaggtccac ctggcactgg gggaccagag gttgaacccc 840 acagtcacct atggcaacga ctccttctcg gccaaggcct cagtcagtgt gaccgcagag 900 gacgagggca cccagcggct gacgtgtgca gtaatactgg ggaaccagag ccaggagaca 960 ctgcagacag tgaccatcta cagctttccg gcgcccaacg tgattctgac gaagccagag 1020 gtctcagaag ggaccgaggt gacagtgaag tgtgaggccc accctagagc caaggtgacg 1080 ctgaatgggg ttccagccca gccactgggc ccgagggccc agctcctgct gaaggccacc 1140 ccagaggaca acgggcgcag cttctcctgc tctgcaaccc tggaggtggc cggccagctt 1200 atacacaaga accagacccg ggagcttcgt gtcctgtatg gcccccgact ggacgagagg 1260 gattgtccgg gaaactggac gtggccagaa aattcccagc agactccaat gtgccaggct 1320 tgggggaacc cattgcccga gctcaagtgt ctaaaggatg gcactttccc actgcccatc 1380 ggggaatcag tgactgtcac tcgagatctt gagggcacct acctctgtcg ggccaggagc 1440 actcaagggg aggtcacccg cgaggtgacc gtgaatgtgc tctccccccg gtatgagatt 1500 gtcatcatca ctgtggtagc agccgcagtc ataatgggca ctgcaggcct cagcacgtac 1560 ctctataacc gccagcggaa gatcaagaaa tacagactac aacaggccca aaaagggacc 1620 cccatgaaac cgaacacaca agccacgcct ccctgaacct atcccgggac agggcctctt 1680 cctcggcctt cccatattgg tggcagtggt gccacactga acagagtgga agacatatgc 1740 catgcagcta cacctaccgg ccctgggacg ccggaggaca gggcattgtc ctcagtcaga 1800 tacaacagca tttggggcca tggtacctgc acacctaaaa cactaggcca cgcatctgat 1860 ctgtagtcac atgactaagc caagaggaag gagcaagact caagacatga ttgatggatg 1920 ttaaagtcta gcctgatgag aggggaagtg gtgggggaga catagcccca ccatgaggac 1980 atacaactgg gaaatactga aacttgctgc ctattgggta tgctgaggcc cacagactta 2040 cagaagaagt ggccctccat agacatgtgt agcatcaaaa cacaaaggcc cacacttcct 2100 gacggatgcc agcttgggca ctgctgtcta ctgaccccaa cccttgatga tatgtattta 2160 ttcatttgtt attttaccag ctatttattg agtgtctttt atgtaggcta aatgaacata 2220 ggtctctggc ctcacggagc tcccagtcca tgtcacattc aaggtcacca ggtacagttg 2280 tacaggttgt acactgcagg agagtgcctg gcaaaaagat caaatggggc tgggacttct 2340 cattggccaa cctgcctttc cccagaagga gtgatttttc tatcggcaca aaagcactat 2400 atggactggt aatggttcac aggttcagag attacccagt gaggccttat tcctcccttc 2460 cccccaaaac tgacaccttt gttagccacc tccccaccca catacatttc tgccagtgtt 2520 cacaatgaca ctcagcggtc atgtctggac atgagtgccc agggaatatg cccaagctat 2580 gccttgtcct cttgtcctgt ttgcatttca ctgggagctt gcactattgc agctccagtt 2640 tcctgcagtg atcagggtcc tgcaagcagt ggggaagggg gccaaggtat tggaggactc 2700 cctcccagct ttggaagggt catccgcgtg tgtgtgtgtg tgtatgtgta gacaagctct 2760 cgctctgtca cccaggctgg agtgcagtgg tgcaatcatg gttcactgca gtcttgacct 2820 tttgggctca agtgatcctc ccacctcagc ctcctgagta gctgggacca taggctcaca 2880 acaccacacc tggcaaattt gatttttttt ttttttttca gagacggggt ctcgcaacat 2940 tgcccagact tcctttgtgt tagttaataa agctttctca actgcc 2986 104 3634 DNA Homo sapiens misc_feature X02910 104 gaattccggg tgatttcact cccggctgtc caggcttgtc ctgctacccc acccagcctt 60 tcctgaggcc tcaagcctgc caccaagccc ccagctcctt ctccccgcag gacccaaaca 120 caggcctcag gactcaacac agcttttccc tccaacccgt tttctctccc tcaacggact 180 cagctttctg aagcccctcc cagttctagt tctatctttt tcctgcatcc tgtctggaag 240 ttagaaggaa acagaccaca gacctggtcc ccaaaagaaa tggaggcaat aggttttgag 300 gggcatgggg acggggttca gcctccaggg tcctacacac aaatcagtca gtggcccaga 360 agacccccct cggaatcgga gcagggagga tggggagtgt gaggggtatc cttgatgctt 420 gtgtgtcccc aactttccaa atccccgccc ccgcgatgga gaagaaaccg agacagaagg 480 tgcagggccc actaccgctt cctccagatg agctcatggg tttctccacc aaggaagttt 540 tccgctggtt gaatgattct ttccccgccc tcctctcgcc ccagggacat ataaaggcag 600 ttgttggcac acccagccag cagacgctcc ctcagcaagg acagcagagg accagctaag 660 agggagagaa gcaactacag accccccctg aaaacaaccc tcagacgcca catcccctga 720 caagctgcca ggcaggttct cttcctctca catactgacc cacggcttca ccctctctcc 780 cctggaaagg acaccatgag cactgaaagc atgatccggg acgtggagct ggccgaggag 840 gcgctcccca agaagacagg ggggccccag ggctccaggc ggtgcttgtt cctcagcctc 900 ttctccttcc tgatcgtggc aggcgccacc acgctcttct gcctgctgca ctttggagtg 960 atcggccccc agagggaaga ggtgagtgcc tggccagcct tcatccactc tcccacccaa 1020 ggggaaatga gagacgcaag agagggagag agatgggatg ggtgaaagat gtgcgctgat 1080 agggagggat gagagagaaa aaaacatgga gaaagacggg gatgcagaaa gagatgtggc 1140 aagagatggg gaagagagag agagaaagat ggagagacag gatgtctggc acatggaagg 1200 tgctcactaa gtgtgtatgg agtgaatgaa tgaatgaatg aatgaacaag cagatatata 1260 aataagatat ggagacagat gtggggtgtg agaagagaga tgggggaaga aacaagtgat 1320 atgaataaag atggtgagac agaaagagcg ggaaatatga cagctaagga gagagatggg 1380 ggagataagg agagaagaag atagggtgtc tggcacacag aagacactca gggaaagagc 1440 tgttgaatgc tggaaggtga atacacagat gaatggagag agaaaaccag acacctcagg 1500 gctaagagcg caggccagac aggcagccag ctgttcctcc tttaagggtg actccctcga 1560 tgttaaccat tctccttctc cccaacagtt ccccagggac ctctctctaa tcagccctct 1620 ggcccaggca gtcagtaagt gtctccaaac ctctttccta attctgggtt tgggtttggg 1680 ggtagggtta gtaccggtat ggaagcagtg ggggaaattt aaagttttgg tcttggggga 1740 ggatggatgg aggtgaaagt aggggggtat tttctaggaa gtttaagggt ctcagctttt 1800 tcttttctct ctcctcttca ggatcatctt ctcgaacccc gagtgacaag cctgtagccc 1860 atgttgtagg taagagctct gaggatgtgt cttggaactt ggagggctag gatttgggga 1920 ttgaagcccg gctgatggta ggcagaactt ggagacaatg tgagaaggac tcgctgagct 1980 caagggaagg gtggaggaac agcacaggcc ttagtgggat actcagaacg tcatggccag 2040 gtgggatgtg ggatgacaga cagagaggac aggaaccgga tgtggggtgg gcagagctcg 2100 agggccagga tgtggagagt gaaccgacat ggccacactg actctcctct ccctctctcc 2160 ctccctccag caaaccctca agctgagggg cagctccagt ggctgaaccg ccgggccaat 2220 gccctcctgg ccaatggcgt ggagctgaga gataaccagc tggtggtgcc atcagagggc 2280 ctgtacctca tctactccca ggtcctcttc aagggccaag gctgcccctc cacccatgtg 2340 ctcctcaccc acaccatcag ccgcatcgcc gtctcctacc agaccaaggt caacctcctc 2400 tctgccatca agagcccctg ccagagggag accccagagg gggctgaggc caagccctgg 2460 tatgagccca tctatctggg aggggtcttc cagctggaga agggtgaccg actcagcgct 2520 gagatcaatc ggcccgacta tctcgacttt gccgagtctg ggcaggtcta ctttgggatc 2580 attgccctgt gaggaggacg aacatccaac cttcccaaac gcctcccctg ccccaatccc 2640 tttattaccc cctccttcag acaccctcaa cctcttctgg ctcaaaaaga gaattggggg 2700 cttagggtcg gaacccaagc ttagaacttt aagcaacaag accaccactt cgaaacctgg 2760 gattcaggaa tgtgtggcct gcacagtgaa gtgctggcaa ccactaagaa ttcaaactgg 2820 ggcctccaga actcactggg gcctacagct ttgatccctg acatctggaa tctggagacc 2880 agggagcctt tggttctggc cagaatgctg caggacttga gaagacctca cctagaaatt 2940 gacacaagtg gaccttaggc cttcctctct ccagatgttt ccagacttcc ttgagacacg 3000 gagcccagcc ctccccatgg agccagctcc ctctatttat gtttgcactt gtgattattt 3060 attatttatt tattatttat ttatttacag atgaatgtat ttatttggga gaccggggta 3120 tcctggggga cccaatgtag gagctgcctt ggctcagaca tgttttccgt gaaaacggag 3180 ctgaacaata ggctgttccc atgtagcccc ctggcctctg tgccttcttt tgattatgtt 3240 ttttaaaata tttatctgat taagttgtct aaacaatgct gatttggtga ccaactgtca 3300 ctcattgctg agcctctgct ccccagggga gttgtgtctg taatcgccct actattcagt 3360 ggcgagaaat aaagtttgct tagaaaagaa acatggtctc cttcttggaa ttaattctgc 3420 atctgcctct tcttgtgggt gggaagaagc tccctaagtc ctctctccac aggctttaag 3480 atccctcgga cccagtccca tccttagact cctagggccc tggagaccct acataaacaa 3540 agcccaacag aatattcccc atcccccagg aaacaagagc ctgaacctaa ttacctctcc 3600 ctcagggcat gggaatttcc aactctggga attc 3634 105 11233 DNA Homo sapiens 105 gaattccttc cgtagcttca ccagacacct aattggccaa gaaggtttga agacctgatg 60 tggttcttaa ttggggatgg ggaattaagg gctactgtat ctataggatt atcttttcac 120 ttgcatagac ctatttggtg tgttcagggc atagtgatac tataattgcc atatttaaca 180 gtttataaag ttcaagccca gcatattctt tgcctgttta atgatgtctt ggtatcagcc 240 ttttaatggt acttatcagc atagaaaatg gaaacaaaat aacttttaaa acagtagctc 300 tcaagcttta gtgtgctcag aatgaccaga gaaccttgtg aaatatacag atttctgggt 360 ccagatctgg ggcaggacca ggaagtctgc atttcatctg cacccccacc ctactctgag 420 gcttatagtc ctgagaacat gctttgaaaa aggctgtccc aagggctcgc agacaggcta 480 ttgaccagct actctttctt gatgttctcc aggaaaaacc caacaaagga atgcctttca 540 ttgagtagta gcagcatagg agcaatagtt gctcctgaat tatggtgggt ttcccctctt 600 catcaatgtg ctttaagggt acagtttcat ttggtctatc taccatgttc tataaaaaca 660 tgaaaattca caggtaagtt tgagatacag aaaataacta aactgattct tctcacgaac 720 tctgatcact aggctgtggt tgatttagct ctctaaccaa caagtaattt gttctttggc 780 atgagtaagg ggggaaaagg aggagtgggt aaaagcagct gataacagat ggcttgcgcc 840 catctaaaat gtggggagag aaataaagct gtcccaagag aactaaagct gagttctctc 900 gtcatatatc tgaagattca tatcaggggt ctaaacatgg tatgtcgggt agcttaattg 960 gaaactcctg gactgtgagt gtcacagact catggatggg ccaatcagtg gccactttag 1020 tgtctgggct gcagcaaaat gagacaatag ctgtcattca caaacctttg gaattaaaaa 1080 aaccccgaaa tgacattggt gctttaaagt aaaataaagt cctgccttta agtccagcat 1140 atcactgttg tttctgagtt taaatattaa gaaccacatt tcgttaatga ttaaaacaac 1200 agtgattgat ttaggggctc agtgagcatt taatctgtcc tgacttcagg taccatgcta 1260 aaggagcaca atgcctgatg ctgcaggaga aacattaggt aactatttaa tggagtttta 1320 attttctgtt attattttta ataattaatt gtgattttga ctatttggaa gctacaggta 1380 tattttgtcc tccttttggg gtggtgttat tgccctgccc tgttttaatc agtggttctt 1440 agagaaagtg aactcaggag tgacttaaaa tgaaggaaga cggactttgg ctaaaattac 1500 aattaaataa tcaaatcatt ttcaaatata aagggagcat gcagatgatc tggcccaatc 1560 ctttcattct gcagatgaga aaactgagac tcataggaat gaaaagactt gcccaaagcc 1620 atacagcttg tttctgttgt ttggtgcatt aggccaaaag acctaggcct aatagatgga 1680 aaagatggca ggatgtcttg gccttgctct gacagttgct tctctgatct cagatatttc 1740 ccaccctttg taatctgtgt tccacacagg aagtagttct tgttttttaa atatcgaagg 1800 tgtataaacg taaagttttt atagatgagc cacccagggc caatatctgt ttaagtaaag 1860 acctaaatgc tttgcagaga cagtaaagtg tcatgtctgt cccagggaaa gaaatccagg 1920 acaggaaatg ctcagtcttc cagcactcct ctggctacct ggagctcagg ctatgagcct 1980 caacccctcc ctgaagcatt agctctggag cagaggctgt gatttacttc agagatctgg 2040 gcaagtccct ttaacctggt agtccttcct ttccttgttt gtaaaacaga gagatgaggc 2100 tgatagctcc ctcacagctc catcagaggc agtgtgtgaa attagttcct gtttgggaag 2160 gtttaaaagc caccacattc cacctccctg ctaatatgat tactaaaatg tttttatatg 2220 aaagggccaa ttcctcatct cccctcttcc tttaaaaaca gaccaagggg catcttttct 2280 tgtctccctg tggcctaaaa ggttactgct tctgtggtta tctccttgga aagacagagt 2340 gtcaggactc ttaggtacac caaaaatgaa caaaaaaatc aacaacaacc ataacaccaa 2400 caaaaataac tgctgtgtcg gttcttaaga cggcttctga gctagaaaca gatttttcta 2460 actgtaaaaa acgtggcccc agcctgtctg caggccacct ctgtctttag gccttggggg 2520 gaggagggaa gtgagctcat ttactggggt ctacctcagg gtcatcacca aggtgttcta 2580 caaaacgcac tttaagaatg ttttggaagg aaattcacct tttaacagcc caagaggtat 2640 ctctctctgg cacacagttc tgcacacagc ctgtttctca acgtttggaa atcttttaac 2700 agtttatgga aggccacctt ttaaaccgat ccaacagctc ctttctccat aacctgattt 2760 tagaggtgtt tcattatctc taattactca gggtaaatgg tgattactca gtgttttaat 2820 catcagtttg ggcagcagtt acactaaact cagggaagcc cagactccca tgggtatttt 2880 tggaaggtac ggcgactagt cggtgcatgc tttctagtac ctccgcacgt ggtccccagg 2940 tgagccccag ccgcttccca gagctggagg cagcggcgtc ccagctccga cggcagctgc 3000 ggactcgggc gctgcctggg cttccgggac ccgggcctgc taggcgaggt cgggcggctg 3060 gaggggagga tgtgggcggg gctcccatcc ccagaaaggg aggcgagcga gggaggaggg 3120 aaggagggag gggccgccgg ggaagaggag gaggaaggaa agaaagaaag cgagggaggg 3180 aaagaggagg aaggaagatg cgagaaggca gaggaggagg gagggaggga aggagcgcgg 3240 agcccggccc ggaagctagg tgagtgtggc atccgagctg agggacgcga gcctgagacg 3300 ccgctgctgc tccggctgag tatctagctt gtctccccga tgggattccc gtccaagcta 3360 tctcgagcct gcagcgccac agtccccggc cctcgcccag gttcactgca accgttcaga 3420 ggtccccagg agctgctgct ggcgagcccg ctactgcagg gacctatggt gagcaaggct 3480 acctggtgag gggagacagg cagagggggt ctaggagcct ccttgggggg aagaagctgg 3540 tcacaggctg tgaccgaggc aaaaggtggc ctaattattt tccaatagtg gtgctggagg 3600 tggggatgct ggcgctgaaa gacctttaaa tatcggctac tgcccctgcc caggccttct 3660 ctgtccagca gtccctggga gattctcacc tttgggaagt gcggggcagg agagcagaaa 3720 caagagaagc ccttggtagg ggggtcgttg ggaaaaactg tggggtcttg ggctgaacgc 3780 gttgcccacg ggctggaggt tgcgatcccc ggacggaaag cgcgggagga ggaaggagag 3840 aaccggctct gaggtccaga gagagtgagg gggcagagcg acggcgagat ggggagagaa 3900 cacctagctg gagcaggttc tgcggtagag agcgcagtcc tgctggcctc tggagagtgc 3960 gcgccgctac ggaggctgcg tcgaggggag tgtcacccaa tctggccccc agctggcggg 4020 gcgccctgag agcttgcgaa ctgcagttgc aggacgcgcc ttctccacga gctattttcg 4080 tcgacttgcg gaacccaagg aacctcgcct ctatcatttc acggtgtagg gtccctagag 4140 acgacagcca agatcccagg ggctcccagg acgcttgttc ctgcggtgtc gtgtcctatg 4200 gggagttcct ggcgggacga aaggcggacg cgcggctctt cctggccctc caggcccgga 4260 accgacggga aaggttcccg tgattcccga gtccctgcag gcttcttcca gcgggagttg 4320 gtccgggggc cttagaggcc tccaagcact gctttggagg atggtttcca aggatcgcgg 4380 tttgtgagtt gaaggctttg tgagaggtta aacccccaaa agatacatac ttggtaaact 4440 gaggctacct gtaaacacat ttcggcatta ggagaagatt cgagtaggga agtgaaggac 4500 aaccaccccg agttacattc ctttccccca ataaaaagct ctggggatga aagttctttt 4560 ggcttttatc ttttcgattt aaaaatttga gaagaaaaat gtgactagag atgaatcctg 4620 gtgaatccga aattgaaaca caactccccc ttccccttcc tatcctctcg gttttagaac 4680 cgcgctctcc cgccccagga gattccttgg ggccgagggt tttccgggga acccgggcgc 4740 ccgccccttc tactgtccct ttgccccgcg ggcacagctt gcctccgtct gctttctcta 4800 cttctggacc tctcctcgcc gggcttttta aagggcttct gcgtctcaaa acaaaacaaa 4860 aaaacccttt gctcttccca accctttcgc agcccgcccc agcggtggcg cgggaccagc 4920 aaaggcgaaa gccgcgcggc tcttgccggg cgcggacggt cgcgcagggg cgcccgcggc 4980 ctccgcaccc ggacctgagg tgttggtcga ctccgggcat ccacggtcgg gagggagggc 5040 tgagctgttc gatcctttac ttttcttcct caaagtctac ctgccaatgc ccctaagaag 5100 aaaaccaagt atgtgcgtgg agagtggggc ggcaggcaac ccgagttctt gagctccgga 5160 gcgacccaaa gcagcaactg ggaacagcct caggaaaggg aggtcgggtg gagtgggctt 5220 tggggcagga gtcatggggc ccgggccccg gggacgacct ggcgctcccg gccctgctga 5280 acgctgagtt gcgcctagtc gggttttcga agaggccctt gcgcagagcg acccacgcgc 5340 gcggcagcat cttcgattag tcaggacatc ccagtaactg cttgaactgt aggtaggtaa 5400 aattcttgaa ggagtatttg ctgcgtgcga ctctgctgct ggtgcaacgg aggaaggggg 5460 tgggggaagg aagtggcggg ggaaggagtg tggtggtggt ttaaaaaata agggaagccg 5520 aggcgagaga gacgcagacg cagaggtcga gcgcaggccg aaagctgttc accgttttct 5580 cgactccggg gaacatggtg ggatttcctt tctgcgccgg gtcgggagtt gtaaaacctc 5640 ggccacatta agatctgaaa actgtgatgc gtcctttctg cagagacgcc tctttctgaa 5700 tctgcccgga gcttcgagcc ccggcgtctg tccctcagcc tggcatggct tcttcggggg 5760 tctgctttgc atggggagag gggccacgca gcggcggact aggtttgggg attctcggta 5820 atggacccgg agcaatgact aacagccgct ccctctcact ttcccacagc gatcaccctc 5880 taacaccctc cctcccattc ccggccccgc gcgtgacaag gtcggctgct ttcagccggg 5940 agctagatcg gtggcccggc tcttcggagc cttagcaggc gttcgccaag gggtgactgg 6000 ctgtcattgg gagcaatatt tggccttgag gagaccctgg ggaggaagtg gcggggagct 6060 cgtgtttgct tgtgtgtgtg tggggggggg ggtgtgtgta cacgcgcgtg ggcagggtcc 6120 ctctgcgctt tcctttttaa gtgcctctcg gtggtgaggc tttgggcggg tgagactttc 6180 ccgacctcgc tcccggcccc acttaagccg ggttcgagct gggagacgca gtcccttcag 6240 tgcgccccaa atcctctggc ttcaggtggc ccggcgcggg ggcccagcac gacgcaccgc 6300 gccgagaacc gggttctccg tgcgctgcgc cagtagccct gggagcgcgg cggccgcggg 6360 gcaccggccg agggctctgc cgagcgccgc cgggagctcc tcccggaccg ctgaggctcg 6420 ggcggcgggc gcggaggttg gcctcgcctg gaggggcggg cccgcgaggg gcggggggct 6480 gtggaggagg ggagggcgcg caggcccttt cgccgcctgc cgcgggaggg gcctcggcgc 6540 tcacgtgact ccgaggggct ggaagaaaaa cagagcctgt ctgcggtgga gtctcattat 6600 attcaaatat tccttttagg agccattccg tagtgccatc ccgagcaacg cactgctgca 6660 gcttccctga gcctttccag caagtttgtt caagattggc tgtcaagaat catggactgt 6720 tattatatgc cttgttttct gtcagtgagt agacacctct tccttccccc tctccggaat 6780 tcactctgcc ctcaccaccc ctgctcgccg gctgtccctt ccgtcggacc tcctttacaa 6840 tatccacact ctgctccctg gcagcactgt cgctcccttc ttggcccggc agccggggcg 6900 ctggaagcgt acgggttcct tttaaagtgc tgctagcgcg cactcgccct ctcagcgttg 6960 caagaaaggg gagcgcgagg gagctaaaga gatgaaagcc cggggttgta ccttgagggc 7020 taaccactcc cttcccctat ccaacttgtc tgggagagcc cccagtgtct ccgtggcgcg 7080 ttcccactct cttgtcaaaa ctcacagagg tctctccgga atcgtctctc accccttccc 7140 tggggatgag cgggcacgat caggcacttt tggctgaata tttcaaactc atcggccaca 7200 ataaaataag ccctcaagcc acccggttag ctcccagacc accttctcgg cttctggacc 7260 ctgtcgccct ctgtcttcgc ccagcccctg cctctcactt tccctccctc tggctctgaa 7320 ccaactggaa gttgtgaaag ttgggctctg agggtggagg aaaagggaga gaagctgaag 7380 gtctaaagtg gagagcaatg ccattttaat tctccctccc ccaccccttt tcaccccctc 7440 aatgttaact gtttatcctt caagaagcca cgctgagatc atggcccaga tagcagttag 7500 gacaaaaaaa gattaacagg atggaggcta tctgatttgg ggttatttga ctgtaaacaa 7560 gttagaccaa gtaattacag ggcaattctt actttcaggc cgtgcatggc tgcagctggt 7620 gggtgggcgg gtggtgtgag ggagaagaca caaacttgat ctttctgacc tgctttccat 7680 cttgcccctc catttctagc cctaaatgca tatgcagaca catctctatt tctccctatt 7740 tattggtgtt tgtttattct ttaaccttcc actcccctcc ccctccccag agacaccatg 7800 attcctggta accgaatgct gatggtcgtt ttattatgcc aagtcctgct aggaggcgcg 7860 agccatgcta gtttgatacc tgagacgggg aagaaaaaag tcgccgagat tcagggccac 7920 gcgggaggac gccgctcagg gcagagccat gagctcctgc gggacttcga ggcgacactt 7980 ctgcagatgt ttgggctgcg ccgccgcccg cagcctagca agagtgccgt cattccggac 8040 tacatgcggg atctttaccg gcttcagtct ggggaggagg aggaagagca gatccacagc 8100 actggtcttg agtatcctga gcgcccggcc agccgggcca acaccgtgag gagcttccac 8160 cacgaaggtc agtctcttcc cccagtctgc gtgggggagg gctggtggga ctggctagag 8220 gggcagtgaa agccctgggg aagaagagtt cgggttacat caaaccccag tccaggaggc 8280 tgaggaacag agctgcttac ctccaagaat ttgcagagct gccgccgaac ttattttttg 8340 gagacagagg gggaggtgtt caggggaagg ggaatgacag cactcagacg tgggctagcc 8400 ccagcggtgt gtttttgcta tatcaaagcc ttttctgcta ggttttctgc ccgttttttt 8460 caaagcacct actgaattta atattacagc tgtgtgtttg tcgggtttat tcaatagggg 8520 ccttgtaatc cgatctgaat gtttcctagc ggatgtttct tttccaaagt aaatctgagt 8580 tattaatcca ccagcatcat tactgtgttg gaatttattt tcccctctgt aacatgatca 8640 acaaggcatg ctctgtgttt ccaagatcgc tggggaaatg tttagtaaca tactcaatag 8700 tggaagaggg agagggtggt tgtctccatg tttcctcctg cctgtgctct gttggcccct 8760 ctttttcttt acaaccactt gtaaagaaaa ctgtggacac aaagccaagg tggggggttt 8820 aaaagaggag tctgattgtg gtgccataga ggagttgaca catagaaatt attagacata 8880 tcaaggaggc tggatatagt ttctgtcttt ggtgcttgag aaatgctagc tacattttgc 8940 tggtttgtta gctgccccac ttatctgctc cttcaaatta aggggtatgc ttattttccc 9000 ccagtaggtt tcccctgcat aagcagaatt caccattcat tgcccaaccc tgagctatct 9060 cttgactctt ccatctttga aaaaagttca tatgcttttt cttttcccct tccttcctaa 9120 ctgtgcctag aacatctgga gaacatccca gggaccagtg aaaactctgc ttttcgtttc 9180 ctctttaacc tcagcagcat ccctgagaac gaggcgatct cctctgcaga gcttcggctc 9240 ttccgggagc aggtggacca gggccctgat tgggaaaggg gcttccaccg tataaacatt 9300 tatgaggtta tgaagccccc agcagaagtg gtgcctgggc acctcatcac acgactactg 9360 gacacgagac tggtccacca caatgtgaca cggtgggaaa cttttgatgt gagccctgcg 9420 gtccttcgct ggacccggga gaagcagcca aactatgggc tagccattga ggtgactcac 9480 ctccatcaga ctcggaccca ccagggccag catgtcagga ttagccgatc gttacctcaa 9540 gggagtggga attgggccca gctccggccc ctcctggtca cctttggcca tgatggccgg 9600 ggccatgcct tgacccgacg ccggagggcc aagcgtagcc ctaagcatca ctcacagcgg 9660 gccaggaaga agaataagaa ctgccggcgc cactcgctct atgtggactt cagcgatgtg 9720 ggctggaatg actggattgt ggccccacca ggctaccagg ccttctactg ccatggggac 9780 tgcccctttc cactggctga ccacctcaac tcaaccaacc atgccattgt gcagaccctg 9840 gtcaattctg tcaattccag tatccccaaa gcctgttgtg tgcccactga actgagtgcc 9900 atctccatgc tgtacctgga tgagtatgat aaggtggtac tgaaaaatta tcaggagatg 9960 gtagtagagg gatgtgggtg ccgctgagat caggcagtcc ttgaggatag acagatatac 10020 acaccacaca cacacaccac atacaccaca cacacacgtt cccatccact cacccacaca 10080 ctacacagac tgcttcctta tagctggact tttatttaaa aaaaaaaaaa aaaaaatgga 10140 aaaaatccct aaacattcac cttgacctta tttatgactt tacgtgcaaa tgttttgacc 10200 atattgatca tatattttga caaaatatat ttataactac gtattaaaag aaaaaaataa 10260 aatgagtcat tattttaaag gtaaatcatg attttttttt ctccttaatc ctttctcttt 10320 tccttcgggc tcatctcttt tgaatgaggc ttttttctgt tcaggtgagt tggaggctgg 10380 atggaagtca aaaggtggta cctggaggtg gttaagttgt agggacagga agtaaactgt 10440 tggcagagag agatggtaat tgccagcatg aattgttttc tatttctatt taatgttaac 10500 aaggatgcag tatcctctcc catctggatg acacatgcct tggagaaaca ctgggatgaa 10560 aggagtgtag gtcagattaa agacttcatt tcaggcccct tgtacatctt ctgtttcact 10620 cacctgttga ggtgtatcac agctgagcgt gatgaggtct caaccctaga aaaatgatac 10680 ccacctctgc tttcatgata cctcagggta tctccagtta ttacaggtac caatgtgata 10740 tttccaaatc aaaactaatt tgtacactaa catcataatg tgtgtgtgaa ggcatgtttt 10800 taaacttatt ttttttttct ccaggtagga ctcttttgtt ttttcttttg tctttttttt 10860 tttgaaacaa gttctctctt tgttgcccca ggctggtctt gaactcctgg gctcaagcaa 10920 tcttctcatt tcggcctctt tgggattaca ggcatgcact gctattttgt cttttttttt 10980 tttttgtaac aaataatgta ccctaccttc aaaaagtttg atgactactg ttttaatatg 11040 ccacttgata gaatttccca ttgtttcttg actttttccc ttgtcctctt ttcccaatgt 11100 gaaggccttc atcaagttta ggatcccaac agattgggct gggtgggggt tgacaatggg 11160 gtcagatact aaagggtcag aatttctaag caggcactgt gaaggtgtcc cactattata 11220 cagaaatctc gag 11233 106 1723 DNA Homo sapiens misc_feature BB1=BAR1 Acc. No. NM_000684 106 tgctacccgc gcccgggctt ctggggtgtt ccccaaccac ggcccagccc tgccacaccc 60 cccgcccccg gcctccgcag ctcggcatgg gcgcgggggt gctcgtcctg ggcgcctccg 120 agcccggtaa cctgtcgtcg gccgcaccgc tccccgacgg cgcggccacc gcggcgcggc 180 tgctggtgcc cgcgtcgccg cccgcctcgt tgctgcctcc cgccagcgaa agccccgagc 240 cgctgtctca gcagtggaca gcgggcatgg gtctgctgat ggcgctcatc gtgctgctca 300 tcgtggcggg caatgtgctg gtgatcgtgg ccatcgccaa gacgccgcgg ctgcagacgc 360 tcaccaacct cttcatcatg tccctggcca gcgccgacct ggtcatgggg ctgctggtgg 420 tgccgttcgg ggccaccatc gtggtgtggg gccgctggga gtacggctcc ttcttctgcg 480 agctgtggac ctcagtggac gtgctgtgcg tgacggccag catcgagacc ctgtgtgtca 540 ttgccctgga ccgctacctc gccatcacct cgcccttccg ctaccagagc ctgctgacgc 600 gcgcgcgggc gcggggcctc gtgtgcaccg tgtgggccat ctcggccctg gtgtccttcc 660 tgcccatcct catgcactgg tggcgggcgg agagcgacga ggcgcgccgc tgctacaacg 720 accccaagtg ctgcgacttc gtcaccaacc gggcctacgc catcgcctcg tccgtagtct 780 ccttctacgt gcccctgtgc atcatggcct tcgtgtacct gcgggtgttc cgcgaggccc 840 agaagcaggt gaagaagatc gacagctgcg agcgccgttt cctcggcggc ccagcgcggc 900 cgccctcgcc ctcgccctcg cccgtccccg cgcccgcgcc gccgcccgga cccccgcgcc 960 ccgccgccgc cgccgccacc gccccgctgg ccaacgggcg tgcgggtaag cggcggccct 1020 cgcgcctcgt ggccctacgc gagcagaagg cgctcaagac gctgggcatc atcatgggcg 1080 tcttcacgct ctgctggctg cccttcttcc tggccaacgt ggtgaaggcc ttccaccgcg 1140 agctggtgcc cgaccgcctc ttcgtcttct tcaactggct gggctacgcc aactcggcct 1200 tcaaccccat catctactgc cgcagccccg acttccgcaa ggccttccag ggactgctct 1260 gctgcgcgcg cagggctgcc cgccggcgcc acgcgaccca cggagaccgg ccgcgcgcct 1320 cgggctgtct ggcccggccc ggacccccgc catcgcccgg ggccgcctcg gacgacgacg 1380 acgacgatgt cgtcggggcc acgccgcccg cgcgcctgct ggagccctgg gccggctgca 1440 acggcggggc ggcggcggac agcgactcga gcctggacga gccgtgccgc cccggcttcg 1500 cctcggaatc caaggtgtag ggcccggcgc ggggcgcgga ctccgggcac ggcttcccag 1560 gggaacgagg agatctgtgt ttacttaaga ccgatagcag gtgaactcga agcccacaat 1620 cctcgtctga atcatccgag gcaaagagaa aagccacgga ccgttgcaca aaaaggaaag 1680 tttgggaagg gatgggagag tggcttgctg atgttccttg ttg 1723 107 1145 DNA Homo sapiens misc_feature IL-6 Acc. No. X04430 107 aggactggag atgtctgagg ctcattctgc cctcgagccc accgggaacg aaagagaagc 60 tctatctccc ctccaggagc ccagctatga actccttctc cacaagcgcc ttcggtccag 120 ttgccttctc cctggggctg ctcctggtgt tgcctgctgc cttccctgcc ccagtacccc 180 caggagaaga ttccaaagat gtagccgccc cacacagaca gccactcacc tcttcagaac 240 gaattgacaa acaaattcgg tacatcctcg acggcatctc agccctgaga aaggagacat 300 gtaacaagag taacatgtgt gaaagcagca aagaggcact ggcagaaaac aacctgaacc 360 ttccaaagat ggctgaaaaa gatggatgct tccaatctgg attcaatgag gagacttgcc 420 tggtgaaaat catcactggt cttttggagt ttgaggtata cctagagtac ctccagaaca 480 gatttgagag tagtgaggaa caagccagag ctgtccagat gagtacaaaa gtcctgatcc 540 agttcctgca gaaaaaggca aagaatctag atgcaataac cacccctgac ccaaccacaa 600 atgccagcct gctgacgaag ctgcaggcac agaaccagtg gctgcaggac atgacaactc 660 atctcattct gcgcagcttt aaggagttcc tgcagtccag cctgagggct cttcggcaaa 720 tgtagcatgg gcacctcaga ttgttgttgt taatgggcat tccttcttct ggtcagaaac 780 ctgtccactg ggcacagaac ttatgttgtt ctctatggag aactaaaagt atgagcgtta 840 ggacactatt ttaattattt ttaatttatt aatatttaaa tatgtgaagc tgagttaatt 900 tatgtaagtc atattttata tttttaagaa gtaccacttg aaacatttta tgtattagtt 960 ttgaaataat aatggaaagt ggctatgcag tttgaatatc ctttgtttca gagccagatc 1020 atttcttgga aagtgtaggc ttacctcaaa taaatggcta actttataca tatttttaaa 1080 gaaatattta tattgtattt atataatgta taaatggttt ttataccaat aaatggcatt 1140 ttaaa 1145 108 2063 DNA Homo sapiens misc_feature U82535 108 tgccgggcgg taggcagcag caggctgaag ggatcatggt gcagtacgag ctgtgggccg 60 cgctgcctgg cgcctccggg gtcgccctgg cctgctgctt cgtggcggcg gccgtggccc 120 tgcgctggtc cgggcgccgg acggcgcggg gcgcggtggt ccgggcgcga cagaagcagc 180 gagcgggcct ggagaacatg gacagggcgg cgcagcgctt ccggctccag aacccagacc 240 tggactcaga ggcgctgcta gccctgcccc tgcctcagct ggtgcagaag ttacacagta 300 gagagctggc ccctgaggcc gtgctcttca cctatgtggg aaaggcctgg gaagtgaaca 360 aagggaccaa ctgtgtgacc tcctatctgg ctgactgtga gactcagctg tctcaggccc 420 caaggcaggg cctgctctat ggcgtccctg tgagcctcaa ggagtgcttc acctacaagg 480 gccaggactc cacgctgggc ttgagcctga atgaaggggt gccggcggag tgcgacagcg 540 tagtggtgca tgtgctgaag ctgcagggtg ccgtgccctt cgtgcacacc aatgttccac 600 agtccatgtt cagctatgac tgcagtaacc ccctctttgg ccagaccgtg aacccatgga 660 agtcctccaa aagcccaggg ggctcctcag ggggtgaagg ggccctcatc gggtctggag 720 gctcccccct gggcttaggc actgatatcg gaggcagcat ccgcttcccc tcctccttct 780 gcggcatctg cggcctcaag cccacaggga accgcctcag caagagtggc ctgaagggct 840 gtgtctatgg acaggaggca gtgcgtctct ccgtgggccc catggcccgg gacgtggaga 900 gcctggcact gtgcctgcga gccctgctgt gcgaggacat gttccgcttg gaccccactg 960 tgcctccctt gcccttcaga gaagaggtct acaccagctc tcagcccctg cgtgtggggt 1020 actatgagac tgacaactat accatgccct ccccggccat gaggcgggcc gtgctggaga 1080 ccaaacagag ccttgaggct gcggggcaca cgctggttcc cttcttgcca agcaacatac 1140 cccatgctct ggagaccctg tcaacaggtg ggctcttcag tgatggtggc cacaccttcc 1200 tacagaactt caaaggtgat ttcgtggacc cctgcctggg ggacctggtc tcaattctga 1260 agcttcccca atggcttaaa ggactgctgg ccttcctggt gaagcctctg ctgccaaggc 1320 tgtcagcttt cctcagcaac atgaagtctc gttcggctgg aaaactctgg gaactgcagc 1380 acgagatcga ggtgtaccgc aaaaccgtga ttgcccagtg gagggcgctg gacctggatg 1440 tggtgctgac ccccatgctg gcccctgctc tggacttgaa tgccccaggc agggccacag 1500 gggccgtcag ctacactatg ctgtacaact gcctggactt ccctgcaggg gtggtgcctg 1560 tcaccacggt gactgctgag gacgaggccc agatggaaca ttacaggggc tactttgggg 1620 atatctggga caagatgctg cagaagggca tgaagaagag tgtggggctg ccggtggccg 1680 tgcagtgtgt ggctctgccc tggcaagaag agttgtgtct gcggttcatg cgggaggtgg 1740 agcgactgat gacccctgaa aagcagtcat cctgatggct ctggctccag aggacctgag 1800 actcacactc tctgcagccc agcctagtca gggcacagct gccctgctgc cacagcaagg 1860 aaatgtcctg catggggcag aggcttccgt gtcctctccc ccaaccccct gcaagaagcg 1920 ccgactccct gagtctggac ctccatccct gctctggtcc cctctcttcg tcctgatccc 1980 tccaccccca tgtggcagcc catgggtatg acataggcca aggcccaact aacagtcaag 2040 aaacaaaaaa aaaaaaaaaa aaa 2063 109 2729 DNA Homo sapiens misc_feature ACAT-1 Acc. No. XM_031119 109 agcttagcag gcgacgttgc gggccctggg cgccaggaga gcttcccgga gtcgaccttc 60 ctgctggctg ctctgtgacc gcttcccggc tctgccctct tggccgaagt gcccgctgcc 120 gggcgcgggc ctcagacaat acaatggtgg gtgaagagaa gatgtctcta agaaaccggc 180 tgtcaaagtc cagggaaaat cctgaggaag atgaagacca gagaaaccct gcaaaggagt 240 ccctagagac acctagtaat ggtcgaattg acataaaaca gttgatagca aagaagataa 300 agttgacagc agaggcagag gaattgaagc cattttttat gaaggaagtt ggcagtcact 360 ttgatgattt tgtgaccaat ctcattgaaa agtcagcatc attagataat ggtgggtgcg 420 ctctcacaac cttttctgtt cttgaaggag agaaaaacaa ccatagagcg aaggatttga 480 gagcacctcc agaacaagga aagattttta ttgcaaggcg ctctctctta gatgaactgc 540 ttgaagtgga ccacatcaga acaatatatc acatgtttat tgccctcctc attctcttta 600 tcctcagcac acttgtagta gattacattg atgaaggaag gctggtgctt gagttcagcc 660 tcctgtctta tgcttttggc aaatttccta ccgttgtttg gacctggtgg atcatgttcc 720 tgtctacatt ttcagttccc tattttctgt ttcaacattg ggccactggc tatagcaaga 780 gttctcatcc gctgatccgt tctctcttcc atggctttct tttcatgatc ttccagattg 840 gagttctagg ttttggacca acatatgttg tgttagcata tacactgcca ccagcttccc 900 ggttcatcat tatattcgag cagattcgtt ttgtaatgaa ggcccactca tttgtcagag 960 agaacgtgcc tcgggtacta aattcagcta aggagaaatc aagcactgtt ccaataccta 1020 cagtcaacca gtatttgtac ttcttatttg ctcctaccct tatctaccgt gacagctatc 1080 ccaggaatcc cactgtaaga tggggttatg tcgctatgaa gtttgcacag gtctttggtt 1140 gctttttcta tgtgtactac atctttgaaa ggctttgtgc ccccttgttt cggaatatca 1200 aacaggagcc cttcagcgct cgtgttctgg tcctatgtgt atttaactcc atcttgccag 1260 gtgtgctgat tctcttcctt actttttttg cctttttgca ctgctggctc aatgcctttg 1320 ctgagatgtt acgctttggt gacaggatgt tctataagga ttggtggaac tccacgtcat 1380 actccaacta ttatagaacc tggaatgtgg tggtccatga ctggctatat tactatgctt 1440 acaaggactt tctctggttt ttctccaaga gattcaaatc tgctgccatg ttagctgtct 1500 ttgctgtatc tgctgtagta cacgaatatg ccttggctgt ttgcttgagc tttttctatc 1560 ccgtgctctt cgtgctcttc atgttctttg gaatggcttt caacttcatt gtcaatgata 1620 gtcggaaaaa gccgatttgg aatgttctga tgtggacttc tcttttcttg ggcaatggag 1680 tcttactctg cttttattct caagaatggt atgcacgtca gcactgtcct ctgaaaaatc 1740 ccacattttt ggattatgtc cggccacgtt cctggacttg tcgttacgtg ttttagaagc 1800 ttggactttg tttcctcctt gtcactgaag attgggtagc tccctgattt ggagccagct 1860 gtttccagtt gttactgaag ttatctgtgt tatttggacc actccaggct ttacagatga 1920 ctcactccat tcctaggtca cttgaagcca aactgttgga agttcactgg agtcttgtac 1980 acttaagcag agcagaactt tttttgtggg gctgggtggg gggagaagac cgactaacag 2040 ctgaagtaat gacagattgt tgctgggtca tatcagcttt atcccttggt aattatatct 2100 gttttgtttc ttgactctgt ccaatcagag aataaacatc atagtttctt ggccactgaa 2160 ttagccaaaa cacttaggaa gaaatcactt aaatacctct ggcttagaaa ttttttcatg 2220 cacactgttg gaatgtatgc taattgaaca tgcaattggg gaagaaaaaa tgtagaatga 2280 tttttgctat ttctagtaga aagaaaatgt ctgttttcca aagataatgt tatacatcct 2340 attttgtaat ttttttgaaa aaagttcaat gttcagtttt ccttagtttt taccttgttt 2400 tctctatagg tcatgatttc tgtgaagcaa aaagatgcct tttaccatga attcttgagt 2460 ttacatcaat aatattgtat attaagggga tcagaagtag gaaggaaaaa ataagagata 2520 gcagaggaaa aagaaaaaca tttcctctta taacttctga agtaatttgt aaaaaagatt 2580 tgtagagtca atcatgtgtt taaattattt tatcacaaac ttaacatgga agatattcct 2640 ttttaacttt gtggtaactt ctttgaagtt atttagaaat atcctttgga acaattattt 2700 tattgtctaa taaatattga cttctcttg 2729 110 3779 DNA Homo sapiens misc_feature IBAT Acc. No. NM_000452 110 ttctattgaa agggaaatgg gagaacaata tgtgttccta tggctcagtc cctataagat 60 tctgtactat tcagagttga ttttaagtgt cacttaactg aaattatcca acaaaccttc 120 atggcatgaa acattaacac agctcttttt atatggcatg gttcctatgg ctcaatccct 180 ataagattct gtactagttc agagttgatt ttaaaagtca cttaactgaa attatccaac 240 aaaccctcga ggacattaaa cattaacgtg gctcttttta tatggcatgg ttcattatca 300 tgccaataaa tgattaatcg taactctctg tcttgaccaa taattttgct ggacttttgt 360 gattcacaac gtgctctgtg ttgtaatgct acctcttgaa actgacatcc tagctttatt 420 gttttttatt acttccctaa ggtggctttc aaaagagaca ccaagtgaca tatttttagg 480 aggggtttaa aagtttgatg gggtagaagt aaacgttgct taactcaacc agcagcagag 540 ccagggccca gggaccagcg cttctgtgga cttggccttt ccagcagcag acccagcaat 600 gaatgatccg aacagctgtg tggacaatgc aacagtttgc tctggtgcat cctgtgtggt 660 acctgagagc aatttcaata acatcctaag tgtggtccta agtacggtgc tgaccatcct 720 gttggccttg gtgatgttct ccatgggatg caacgtggaa atcaagaaat ttctagggca 780 cataaagcgg ccgtggggca tttgtgttgg cttcctctgt cagtttggaa tcatgcccct 840 cacaggattc atcctgtcgg tggcctttga catcctcccg ctccaggccg tagtggtgct 900 cattatagga tgctgccctg gaggaactgc ctccaatatc ttggcctatt gggtcgatgg 960 cgacatggac ctgagcgtca gcatgaccac atgctccaca ctgcttgccc tcggaatgat 1020 gccgctgtgc ctccttatct ataccaaaat gtgggtcgac tctgggagca tcgtaattcc 1080 ctatgataac ataggtacat ctctggttgc tctcgttgtt cctgtttcca ttggaatgtt 1140 tgttaatcac aaatggcccc aaaaagcaaa gatcatactt aaaattgggt ccatcgcggg 1200 cgccatcctc attgtgctca tagctgtggt tggaggaata ttgtaccaaa gcgcctggat 1260 cattgctccc aaactgtgga ttataggaac aatatttcct gtggcgggtt actccctggg 1320 gtttcttctg gctagaattg ctggtctacc ctggtacagg tgccgaacgg ttgcttttga 1380 aacggggatg cagaacacgc agctatgttc caccatcgtt cagctctcct tcactcctga 1440 ggagctcaat gtcgtattca ccttcccgct catctacagc attttccagc tcgcctttgc 1500 cgcaatattc ttaggatttt atgtggcata caagaaatgt catggaaaaa acaaggcaga 1560 aattccagag agcaaagaaa atggaacgga gccagagtca tcgttttata aggcaaatgg 1620 aggatttcaa cctgacgaaa agtagacatc aagtggacaa aacagacgag ttccaaatta 1680 cgttcttaaa ccgtaactat atttaattat ttgttttggt aggacagttg gcagaaaaga 1740 gttaaagtga aaattggaat ttcattggaa ttcatgtatt ggtttcagta ccaagtgact 1800 ggtggcccaa ttctttaatg ggacaaatat tgtttcctat atatatgtat atgttttata 1860 tatgtatgta tactcatata gatatattgt cattgaaata ttcccccaaa atattctcag 1920 actaaacctg acatagggaa caccgagaat gaaaacatcg ttaacaccaa aactgaattc 1980 ttatgcagaa tttcctagcc catagatgac aacctgagtt tctgtatgtt aaagtagatg 2040 taatgaatta ttattattac agtggtcacg attttcttca gtgtttatga ttataaaaat 2100 tgacatgaac atctttcact gacattttaa tcattatttt aaaagctttg caacctatat 2160 atttatataa ctttgtaata taacatgggc aaatatctga cttcagtatt tttaaaaagt 2220 tgccttctcc agtggcagtc caaaagcaga aatgagagga aattattaca aaatagaatt 2280 caataaccat attggatgca ggctcttaac tcagcaggga tatcgtacat ctattgctct 2340 acctcagggg tccagtgata cccactagat cttccaagga aaaacataat tctttcaaac 2400 ggtgtgtatt tggcaaagag ctcttcaaat ctgggagagg gacttcctca aggttttcct 2460 gtgtgcagtg gatccacata gctaatatga cagctagtca gttgacaggg accacccaca 2520 gtaagcacca tggtcaggga ggtggcagga ggtgcaaaga cagaagtatt gagagaaaca 2580 ccaagactct agtggaggaa ttaattcaat gggagatagt ataaaataca tagaaaacac 2640 aagtaacaga aacctggttg aaatgcttaa ctagagtcaa ttagatgtgc aggagtaagt 2700 agtataagaa gaatcaagtc cgagagtgat caggaaatga gtattaaaca gtatttgaaa 2760 cagagaacgt gtcccagggc ccaaaagtca gaagggcccc accagccagg aaagttgttt 2820 caatgctgta agtaggtgta gccaagggaa gccaggacta tctgatatac ggtagcaggg 2880 gtttacggct gccaggggaa aataactcat caagtgttgg actttcaatt ataagatcga 2940 atttaatttc ctttccctca ttctgcagca atcagaatac acaatcttaa ccactcggtc 3000 cttagtggtt ttgttccatt ttgcattggg tattttcact gcctcataga gtctatttca 3060 agtgtttggc tgaaagggct ttttgcattt gcatgttctg agttcagatt ctgctggtgc 3120 acccaagcat tatgggaaca ggaactcaac ttagctcttc cagtagaggg gtgagggatt 3180 ctgcttttca aattcataac attgatcttt ttatgcaaga tttccattta cagttgaata 3240 agtacttcat atttttccat cattagacaa atacaaaatg gactaaataa ttttaagaga 3300 tagtggaggc agcagggggt acagacttcc ttcttagaga gtgtcagaga atatgctccc 3360 aatggtggaa aggaagattt acagtctagc ggctaagtac ctcctacaca tttcccatca 3420 atcagaaaat agacaggtac actaaaggga cctgagaact cctcttgtaa tttcaacaca 3480 cccaaaatca agggcctgga tgccagcagc tgcagcaagc aggtttttcc tccctgttga 3540 gcaagacagg tgaggcaaga taggacttgg ctttcttaca tgatgcggta acttgtgact 3600 tgagtctttt tccctaattt gctagtggga agaaaaatag ctgagctttc taaaatgata 3660 gctctctatt tttaaatgaa tttgaaaagt cgattaaatt atgtatttta ttgcctctga 3720 gtatcatatt aaatgaatat tttattttaa aggcttaaat aaatgaaaat gatttttgt 3779 111 4067 DNA Homo sapiens misc_feature U28749 111 cttgaatctt ggggcaggaa ctcagaaaac ttccagcccg ggcagcgcgc gcttggtgca 60 agactcagga gctagcagcc cgtccccctc cgactctccg gtgccgccgc tgcctgctcc 120 cgccacccta ggaggcgcgg tgccacccac tactctgtcc tctgcctgtg ctccgtgccc 180 gaccctatcc cggcggagtc tccccatcct cctttgcttt ccgactgccc aaggcacttt 240 caatctcaat ctcttctctc tctctctctc tctctctgtc tctctctctc tctctctctc 300 tctctctctc gcagggtggg gggaagagga ggaggaattc tttccccgcc taacatttca 360 agggacacaa ttcactccaa gtctcttccc tttccaagcc gcttccgaag tgctcccggt 420 gcccgcaact cctgatccca acccgcgaga ggagcctctg cgacctcaaa gcctctcttc 480 cttctccctc gcttccctcc tcctcttgct acctccacct ccaccgccac ctccacctcc 540 ggcacccacc caccgccgcc gccgccaccg gcagcgcctc ctcctctcct cctcctcctc 600 ccctcttctc tttttggcag ccgctggacg tccggtgttg atggtggcag cggcggcagc 660 ctaagcaaca gcagccctcg cagcccgcca gctcgcgctc gccccgccgg cgtccccagc 720 cctatcacct catctcccga aaggtgctgg gcagctccgg ggcggtcgag gcgaagcggc 780 tgcagcggcg gtagcggcgg cgggaggcag gatgagcgca cgcggtgagg gcgcggggca 840 gccgtccact tcagcccagg gacaacctgc cgccccagcg cctcagaaga gaggacgcgg 900 ccgccccagg aagcagcagc aagaaccaac cggtgagccc tctcctaaga gacccagggg 960 aagacccaaa ggcagcaaaa acaagagtcc ctctaaagca gctcaaaaga aagcagaagc 1020 cactggagaa aaacggccaa gaggcagacc taggaaatgg ccacaacaag ttgttcagaa 1080 gaagcctgct caggaggaaa ctgaagagac atcctcacaa gagtctgccg aagaggacta 1140 gggggcgcaa cgttcgattt ctacctcagc agcagttgga tcttttgaag ggagaagaca 1200 ctgcagtgac cacttattct gtattgccat ggtctttcca ctttcatctg gggtggggtg 1260 gggtggggtg ggggaggggg gggtggggtg gggagaaatc acataacctt aaaaaggact 1320 atattaatca ccttctttgt aatcccttca cagtcccagg tttagtgaaa aactgctgta 1380 aacacagggg acacagctta acaatgcaac ttttaattac tgttttcttt tttcttaacc 1440 tactaatagt ttgttgatct gataagcaag agtgggcggg tgagaaaaac cgaattgggt 1500 ttagtcaatc actgcactgc atgcaaacaa gaaacgtgtc acacttgtga cgtcgggcat 1560 tcatatagga agaacgcggt gtgtaacact gtgtacacct caaataccac cccaacccac 1620 tccctgtagt gaatcctctg tttagaacac caaagataag gactagatac tactttctct 1680 ttttcgtata atcttgtaga cacttacttg atgattttta actttttatt tctaaatgag 1740 acgaaatgct gatgtatcct ttcattcagc taacaaacta gaaaaggtta tgttcatttt 1800 tcaaaaaggg aagtaagcaa acaaatattg ccaactcttc tatttatgga tatcacacat 1860 atcagcagga gtaataaatt tactcacagc acttgttttc aggacaacac ttcattttca 1920 ggaaatctac ttcctacaga gccaaaatgc catttagcaa taaataacac ttgtcagcct 1980 cagagcattt aaggaaacta gacaagtaaa attatcctct ttgtaattta atgaaaaggt 2040 acaacagaat aatgcatgat gaactcacct aattatgagg tgggaggagc gaaatctaaa 2100 tttcttttgc tatagttata catcaattta aaaagcaaaa aaaaaaaggg gggggcaatc 2160 tctctctgtg tctttctctc tctctctccc tctccctctc tcttttcatg tgtatcagtt 2220 tccatgaaag acctgaatac cacttacctc aaattaagca tatgtgttac ttcaagtaat 2280 acgttttgac ataagatggt tgaccaaggt gcttttcttc ggcttgagtt caccatctct 2340 tcattcaaac tgcactttta gccagagatg caatatatcc ccactactca atactacctc 2400 tgaatgttac aacgaattta cagtctagta cttattacat gctgctatac acaagcaatg 2460 caagaaaaaa acttactggg taggtgattc taatcatctg cagttctttt tgtacactta 2520 attacagtta aagaagcaat ctccttactg tgtttcagca tgactatgta tttttctatg 2580 tttttttaat taaaaatttt taaaatactt gtttcagctt ctctgctaga tttctacatt 2640 aacttgaaaa ttttttaacc aagtcgctcc taggttctta aggataattt tcctcaatca 2700 cactacacat cacacaagat ttgactgtaa tatttaaata ttaccctcca agtctgtacc 2760 tcaaatgaat tctttaagga gatggactaa ttgacttgca aagacctacc tccagacttc 2820 aaaaggaatg aacttgttac ttgcagcatt catttgtttt ttcaatgttt gaaatagttc 2880 aaactgcagc taaccctagt caaaactatt tttgtaaaag acatttgata gaaaggaaca 2940 cgtttttaca tacttttgca aaataagtaa ataataaata aaataaagcc aaccttcaaa 3000 gaacttgaag ctttgtaggt gagatgcaac aagccctgct tttgcataat gcaatcaaaa 3060 atatgtgttt ttaagattag ttgaatataa gaaaatgctt gacaaatatt ttcatgtatt 3120 ttacacaaat gtgatttttg taatatgtct caaccagatt tattttaaac gcttcttatg 3180 tagagttttt atgcctttct ctcctagtga gtgtgctgac tttttaacat ggtattatca 3240 actgggccag gaggtagttt ctcatgacgg cttttgtcag tatggctttt agtactgaag 3300 ccaaatgaaa ctcaaaacca tctctcttcc agctgcttca gggaggtagt ttcaaaggcc 3360 acatacctct ctgagactgg cagatcgctc actgttgtga atcaccaaag gagctatgga 3420 gagaattaaa actcaacatt actgttaact gtgcgttaaa taagcaaata aacagtggct 3480 cataaaaata aaagtcgcat tccatatctt tggatgggcc ttttagaaac ctcattggcc 3540 agctcataaa atggaagcaa ttgctcatgt tggccaaaca tggtgcaccg agtgatttcc 3600 atctctggta aagttacact tttatttcct gtatgttgta caatcaaaac acactactac 3660 ctcttaagtc ccagtatacc tcatttttca tactgaaaaa aaaagcttgt ggccaatgga 3720 acagtaagaa catcataaaa tttttatata tatagtttat ttttgtggga gataaatttt 3780 ataggactgt tctttgctgt tgttggtcgc agctacataa gactggacat ttaacttttc 3840 taccatttct gcaagttagg tatgtttgca ggagaaaagt atcaagacgt ttaactgcag 3900 ttgactttct ccctgttcct ttgagtgtct tctaacttta ttctttgttc tttatgtaga 3960 attgctgtct atgattgtac tttgaatcgc ttgcttgttg aaaatatttc tctagtgtat 4020 tatcactgtc tgttctgcac aataaacata acagcctctg tgatccc 4067 112 511 DNA Homo sapiens misc_feature NM_016362 112 gcaggcccac ctgtctgcaa cccagctgag gccatgccct ccccagggac cgtctgcagc 60 ctcctgctcc tcggcatgct ctggctggac ttggccatgg caggctccag cttcctgagc 120 cctgaacacc agagagtcca gcagagaaag gagtcgaaga agccaccagc caagctgcag 180 ccccgagctc tagcaggctg gctccgcccg gaagatggag gtcaagcaga aggggcagag 240 gatgaactgg aagtccggtt caacgccccc tttgatgttg gaatcaagct gtcaggggtt 300 cagtaccagc agcacagcca ggccctgggg aagtttcttc aggacatcct ctgggaagag 360 gccaaagagg ccccagccga caagtgatcg cccacaagcc ttactcacct ctctctaagt 420 ttagaagcgc tcatctggct tttcgcttgc ttctgcagca actcccacga ctgttgtaca 480 agctcaggag gcgaataaat gttcaaactg t 511 113 2268 DNA Homo sapiens misc_feature S77410 113 accccaggca gcagcgagtg acaggacgtc tggaccggcg cgccgctagc agctctgccg 60 ggccgcggcg gtgatcgatg gggagcggct ggagcggacc cagcgagtga gggcgcacag 120 ccgggacgcc gaggcggcgg gcgggagacc cgcaccagcg cagccggccc tcggcgggac 180 gtgacgcagc gcccggggcg cgggtttgat atttgacaaa ttgatctaaa atggctgggt 240 ttttatctga ataactcact gatgccatcc cagaaagtcg gcaccaggtg tatttgatat 300 agtgtttgca acaaattcga cccaggtgat caaaatgatt ctcaactctt ctactgaaga 360 tggtattaaa agaatccaag atgattgtcc caaagctgga aggcataatt acatatttgt 420 catgattcct actttataca gtatcatctt tgtggtggga atatttggaa acagcttggt 480 ggtgatagtc atttactttt atatgaagct gaagactgtg gccagtgttt ttcttttgaa 540 tttagcactg gctgacttat gctttttact gactttgcca ctatgggctg tctacacagc 600 tatggaatac cgctggccct ttggcaatta cctatgtaag attgcttcag ccagcgtcag 660 tttcaacctg tacgctagtg tgtttctact cacgtgtctc agcattgatc gatacctggc 720 tattgttcac ccaatgaagt cccgccttcg acgcacaatg cttgtagcca aagtcacctg 780 catcatcatt tggctgctgg caggcttggc cagtttgcca gctataatcc atcgaaatgt 840 atttttcatt gagaacacca atattacagt ttgtgctttc cattatgagt cccaaaattc 900 aacccttccg atagggctgg gcctgaccaa aaatatactg ggtttcctgt ttccttttct 960 gatcattctt acaagttata ctcttatttg gaaggcccta aagaaggctt atgaaattca 1020 gaagaacaaa ccaagaaatg atgatatttt taagataatt atggcaattg tgcttttctt 1080 tttcttttcc tggattcccc accaaatatt cacttttctg gatgtattga ttcaactagg 1140 catcatacgt gactgtagaa ttgcagatat tgtggacacg gccatgccta tcaccatttg 1200 tatagcttat tttaacaatt gcctgaatcc tcttttttat ggctttctgg ggaaaaaatt 1260 taaaagatat tttctccagc ttctaaaata tattccccca aaagccaaat cccactcaaa 1320 cctttcaaca aaaatgagca cgctttccta ccgcccctca gataatgtaa gctcatccac 1380 caagaagcct gcaccatgtt ttgaggttga gtgacatgtt cgaaacctgt ccataaagta 1440 attttgtgaa agaaggagca agagaacatt cctctgcagc acttcactac caaatgagca 1500 ttagctactt ttcagaattg aaggagaaaa tgcattatgt ggactgaacc gacttttcta 1560 aagctctgaa caaaagcttt tctttccttt tgcaacaaga caaagcaaag ccacattttg 1620 cattagacag atgacggctg ctcgaagaac aatgtcagaa actcgatgaa tgtgttgatt 1680 tgagaaattt tactgacaga aatgcaatct ccctagcctg cttttgtcct gttatttttt 1740 atttccacat aaaggtattt agaatatatt aaatcgttag aggagcaaca ggagatgaga 1800 gttccagatt gttctgtcca gtttccaaag ggcagtaaag ttttcgtgcc ggttttcagc 1860 tattagcaac tgtgctacac ttgcacctgg tactgcacat tttgtacaaa gatatgctaa 1920 gcagtagtcg tcaagttgca gatctttttg tgaaattcaa cctgtgtctt ataggtttac 1980 actgccaaaa caatgcccgt aagatggctt atttgtataa tggtgttact aaagtcacat 2040 ataaaagtta aactacttgt aaaggtgctg cactggtccc aagtagtagt gtcctcctag 2100 tatattagtt tgatttaata tctgagaagt gtatatagtt tgtggtaaaa agattatata 2160 tcataaagta tgccttcctg tttaaaaaaa gtatatattc tacacatata tatatatgta 2220 tatctatatc tctaaactgc tgttaattga ttaaaatctg gcaaagtt 2268 114 785 DNA Homo sapiens misc_feature XM_166457 114 gcgcgagccg cgccggcccc ggtcgggcct ccgaaaccat gaactttctg ctgtcttggg 60 tgcattggag ccttgccttg ctgctctacc tccaccatgc caagtggtcc caggctgcac 120 ccatggcaga aggaggaggg cagaatcatc acgaagtggt gaagttcatg gatgtctatc 180 agcgcagcta ctgccatcca atcgagaccc tggtggacat cttccaggag taccctgatg 240 agatcgagta catcttcaag ccatcctgtg tgcccctgat gcgatgcggg ggctgctgca 300 atgacgaggg cctggagtgt gtgcccactg aggagtccaa catcaccatg cagattatgc 360 ggatcaaacc tcaccaaggc cagcacatag gagagatgag cttcctacag cacaacaaat 420 gtgaatgcag accaaagaaa gatagagcaa gacaagaaaa aaaatcagtt cgaggaaagg 480 gaaaggggca aaaacgaaag cgcaagaaat cccggtataa gtcctggagc gtgtacgttg 540 gtgcccgctg ctgtctaatg ccctggagcc tccctggccc ccatccctgt gggccttgct 600 cagagcggag aaagcatttg tttgtacaag atccgcagac gtgtaaatgt tcctgcaaaa 660 acacagactc gcgttgcaag gcgaggcagc ttgagttaaa cgaacgtact tgcagatgtg 720 acaagccgag gcggtgagcc gggcaggagg aaggagcctc cctcagggtt tcgggaacca 780 gatct 785 115 8460 DNA Homo sapiens misc_feature U29344 115 cggccgtcga cacggcagcg gccccggcct ccctctccgc cgcgcttcag cctcccgctc 60 cgccgcgctc cagcctcgct ctccgccgcc cgcaccgccg cccgcgccct caccagagca 120 gccatggagg aggtggtgat tgccggcatg tccgggaagc tgccagagtc ggagaacttg 180 caggagttct gggacaacct catcggcggt gtggacatgg tcacggacga tgaccgtcgc 240 tggaaggcgg ggctctacgg cctgccccgg cggtccggca agctgaagga cctgtctagg 300 tttgatgcct ccttcttcgg agtccacccc aagcaggcac acacgatgga ccctcagctg 360 cggctgctgc tggaagtcac ctatgaagcc atcgtggacg gaggcatcaa cccagattca 420 ctccgaggaa cacacactgg cgtctgggtg ggcgtgagcg gctctgagac ctcggaggcc 480 ctgagccgag accccgagac actcgtgggc tacagcatgg tgggctgcca gcgagcgatg 540 atggccaacc ggctctcctt cttcttcgac ttcagagggc ccagcatcgc actggacaca 600 gcctgctcct ccagcctgat ggccctgcag aacgcctacc aggccatcca cagcgggcag 660 tgccctgccg ccatcgtggg gggcatcaat gtcctgctga agcccaacac ctccgtgcag 720 ttcttgaggc tggggatgct cagccccgag ggcacctgca aggccttcga cacagcgggg 780 aatgggtact gccgctcgga gggtgtggtg gccgtcctgc tgaccaagaa gtccctggcc 840 cggcgggtgt acgccaccat cctgaacgcc ggcaccaata cagatggctt caaggagcaa 900 ggcgtgacct tcccctcagg ggatatccag gagcagctca tccgctcgtt gtaccagtcg 960 gccggagtgg cccctgagtc atttgaatac atcgaagccc acggcacagg caccaaggtg 1020 ggcgaccccc aggagctgaa tggcatcacc cgagccctgt gcgccacccg ccaggagccg 1080 ctgctcatcg gctccaccaa gtccaacatg gggcacccgg agccagcctc ggggctggca 1140 gccctggcca aggtgctgct gtccctggag cacgggctct gggcccccaa cctgcacttc 1200 catagcccca accctgagat cccagcgctg ttggatgggc ggctgcaggt ggtggaccag 1260 cccctgcccg tccgtggcgg caacgtgggc atcaactcct ttggcttcgg gggctccaac 1320 gtgcacatca tcctgaggcc caacacgcag ccgccccccg cacccgcccc acatgccacc 1380 ctgccccgtc tgctgcgggc cagcggacgc acccctgagg ccgtgcagaa gctgctggag 1440 cagggcctcc ggcacagcca ggacctggct ttcctgagca tgctgaacga catcgcgctg 1500 tccccgacca ccgccatgcc cttccgtggc tacgctgtgc tgggtggtga gcgcggtggc 1560 ccagaggtgc agcaggtgcc cgctggcgag cgcccgctct ggttcatctg ctctgggatg 1620 ggcacacagt ggcgcgggat ggggctgagc ctcatgcgcc tggaccgctt ccgagattcc 1680 atcctacgct ccgatgaggc tgtgaaccga ttcggcctga aggtgtcaca gctgctgctg 1740 agcacagacg agagcacctt tgatgacatc gtccattcgt ttgtgagcct gactgccatc 1800 cagataggcc tcatagacct gctgagctgc atggggctga ggccagatgg catcgtcggc 1860 cactccctgg gggaggtggc ctgtggctac gccgacggct gcctgtccca ggaggaggcc 1920 gtcctcgctg cctactggag gggacagtgc atcaaagaag cccatctccc gccgggcgcc 1980 atggcagccg tgggcttgtc ctgggaggag tgtaaacagc gctgcccccc ggcggtggtg 2040 cccgcctgcc acaactccaa ggacacagtc accatctcgg gacctcaggc cccggtgttt 2100 gagttcgtgg agcagctgag gaaggagggt gtgtttgcca aggaggtgcg gaccggcggt 2160 atggccttcc actcctactt catggaggcc atcgcacccc cactgctgca ggagctcaag 2220 aaggtgatcc gggagccgaa gccacgttca gcccgctggc tcagcacctc tatccccgag 2280 gcccagtggc acagcagcct ggcacgcacg tcctccgccg agtacaatgt caacaacctg 2340 gtgagccctg tgctgttcca ggaggccctg tggcacgtgc ctgagcacgc ggtggtgctg 2400 gagatcgcgc cccacgccct gctgcaggct gtcctgaagc gtggcctgaa gccgagctgc 2460 accatcatcc ccctgatgaa gaaggatcac agggacaacc tggagttctt cctggccggc 2520 atccggaggc tgcacctctc aggcatcgac gccaacccca atgccttgtt cccacctgtg 2580 gagttcccag ctccccgagg aactcccctc atctccccac tcatcaagtg ggaccacagc 2640 ctggcctggg acgtgccggc cgccgaggac ttccccaacg gttcaggttc cccctcagcc 2700 gccatctaca acatcgacac cagctccgag tctcctgacc actacctggt ggaccacacc 2760 ctcgacggtc gcgtcctctt ccccgccact ggctacctga gcatagtgtg gaagacgctg 2820 gcccgacccc tgggcctggg cgtcgagcag ctgcctgtgg tgtttgagga tgtggtgctg 2880 caccaggcca ccatcctgcc caagactggg acagtgtccc tggaggtacg gctcctggag 2940 gcctcccgtg ccttcgaggt gtcagagaac ggcaacctgg tagtgagtgg gaaggtgtac 3000 cagtgggatg accctgaccc caggctcttc gaccacccgg aaagccccac ccccaacccc 3060 acggagcccc tcttcctggc ccaggctgaa gtttacaagg agctgcgtct gcgtggctac 3120 gactacggcc ctcatttcca gggcatcctg gaggccagcc tggaaggtga ctcggggagg 3180 ctgctgtgga aggataactg ggtgagcttc atggacacca tgctgcagat gtccatcctg 3240 ggctcggcca agcacggcct gtacctgccc acccgtgtca ccgccatcca catcgaccct 3300 gccacccaca ggcagaagct gtacacactg caggacaagg cccaagtggc tgacgtggtg 3360 gtgagcaggt ggctgagggt cacagtggcc ggaggcgtcc acatctccgg gctccacact 3420 gagtcggccc cgcggcggca gcaggagcag caggtgccca tcctggagaa gttttgcttc 3480 acttcccaca cggaggaggg gtgcctgtct gagcgcgctg ccctgcagga ggagctgcaa 3540 ctgtgcaagg ggctggtgca ggcactgcag accaaggtga cccagcaggg gctgaagatg 3600 gtggtgcccg gactggatgg ggcccagatc ccccgggacc cctcacagca ggaactgccc 3660 cggctgttgt cggctgcctg caggcttcag ctcaacggga acctgcagct ggagctggcg 3720 caggtgctgg cccaggagag gcccaagctg ccagaggacc ctctgctcag cggcctcctg 3780 gactccccgg cactcaaggc ctgcctggac actgccgtgg agaacatgcc cagcctgaag 3840 atgaaggtgg tggaggtgct ggccggccac ggtcacctgt attcccgcat cccaggcctg 3900 ctcagccccc atcccctgct gcagctgagc tacacggcca ccgaccgcca cccccaggcc 3960 ctggaggctg cccaggccga gctgcagcag cacgacgttg cccagggcca gtgggatccc 4020 gcagaccctg cccccagcgc cctgggcagc gccgacctcc tggtgtgcaa ctgtgctgtg 4080 gctgccctcg gggacccggc ctcagctctc agcaacatgg tggctgccct gagagaaggg 4140 ggctttctgc tcctgcacac actgctccgg gggcacccct cgggacatgt ggccttcctc 4200 acctccactg agccgcagta tggccagggc atcctgagcc aggacgcgtg ggagagcctc 4260 ttctccaggg tgtccgtgcg cctggtgggc ctgaagaagt ccttctacgg ctccacgctc 4320 ttcctgtgcc gccggcccac cccgcaggac agccccatct tcctgccggt ggacgatacc 4380 agcttccgct gggtggagtc tctgaagggc atcctggctg acgaagactc ttcccggcct 4440 gtgtggctga aggccatcaa ctgtgccacc tcgggcgtgg tgggcttggt gaactgtctc 4500 cgccgagagc ccggcggaac gctccggtgt gtgctgctct ccaacctcag cagcacctcc 4560 cacgtcccgg aggtggaccc gggctccgca gaactgcaga aggtgttgca gggagacctg 4620 gtgatgaacg tctaccgcga cggggcctgg ggggctttcc gccacttcct gctggaggag 4680 gacaagcctg aggagccgac ggcacatgcc tttgtgagca ccctcacccg gggggacctg 4740 tcctccatcc gctgggtctg ctcctcgctg cgccatgccc agcccacctg ccctggcgcc 4800 cagctctgca cggtctacta cgcctccctc aacttccgcg acatcatgct ggccactggc 4860 aagctgtccc ctgatgccat cccagggaag tggacctccc aggacagcct gctaggtatg 4920 gagttctcgg gccgagacgc cagcggcaag cgtgtgatgg gactggtgcc tgccaagggc 4980 ctggccacct ctgtcctgct gtcaccggac ttcctctggg atgtgccttc caactggacg 5040 ctggaggagg cggcctcggt gcctgtcgtc tacagcacgg cctactacgc gctggtggtg 5100 cgtgggcggg tgcgccccgg ggagacgctg ctcatccact cgggctcggg cggcgtgggc 5160 caggccgcca tcgccatcgc cctcagtctg ggctgccgcg tcttcaccac cgtggggtcg 5220 gctgagaagc gggcgtacct ccaggccagg ttcccccagc tcgacagcac cagcttcgcc 5280 aactcccggg acacatcctt cgagcagcat gtgctgtggc acacgggcgg gaagggcgtt 5340 gacctggtct tgaactcctt ggcggaagag aagctgcagg ccagcgtgag gtgcttggct 5400 acgcacggtc gcttcctgga aattggcaaa ttcgaccttt ctcagaacca cccgctcggc 5460 atggctatct tcctgaagaa cgtgacattc cacggggtcc tactggatgc gttcttcaac 5520 gagagcagtg ctgactggcg ggaggtgtgg gcgcttgtgc aggccggcat ccgggatggg 5580 gtggtacggc ccctcaagtg cacggtgttc catggggccc aggtggagga cgccttccgc 5640 tacatggccc aagggaagca cattggcaaa gtcgtcgtgc aggtgcttgc ggaggagccg 5700 gaggcagtgc tgaagggggc caaacccaag ctgatgtcgg ccatctccaa gaccttctgc 5760 ccggcccaca agagctacat catcgctggt ggtctgggtg gcttcggcct ggagttggcg 5820 cagtggctga tacagcgtgg ggtgcagaag ctcgtgttga cttctcgctc cgggatccgg 5880 acaggctacc aggccaagca ggtccgccgg tggagggccc agggcgtaca ggtgcaggtg 5940 tccaccagca acatcagctc actggagggg gcccggggcc tcattgccga ggcggcgcag 6000 cttgggcccg tgggcggcgt cttcaacctg gccgtggtct tgagagatgg cttgctggag 6060 aaccagaccc cagagttctt ccaggacgtc tgcaagccca agtacagcgg caccctgaac 6120 ctggacaggg tgacccgaga ggcgtgccct gagctggact actttgtggt cttctcctct 6180 gtgagctgcg ggcgtggcaa tgcgggacag agcaactacg gctttgccaa ttccgccatg 6240 gagcgtatct gtgagaaacg ccggcacgaa ggcctcccag gcctggccgt gcagtggggc 6300 gccatcggcg acgtgggcat tttggtggag acgatgagca ccaacgacac gatcgtcagt 6360 ggcacgctgc cccaggccat ggcgtcctgc ctggaggtgc tggacctctt cctgaaccag 6420 ccccacatgg tcctgagcag ctttgtgctg gctgagaagg ctgcggccta tagggacagg 6480 gacagccagc gggacctggt ggaggccgtg gcacacatcc tgggcatccg cgacttggct 6540 gctgtcaacc tggacagctc actggcggac ctgggcctgg actcgctcat gagcgtggag 6600 gtgcgccaga cgctggagcg tgagctcaac ctggtgctgt ccgtgcgcga ggtgcggcaa 6660 ctcacgctcc ggaaactgca ggagctgtcc tcaaaggcgg atgaggccag cgagctggca 6720 tgccccacgc ccaaggagga tggtctggcc cagcagcaga ctcagctgaa cctgcgctcc 6780 ctgctggtga acccggaggg ccccaccctg atgcggctca actccgtgca gagctcggag 6840 cggcccctgt tcctggtgca cccaatcgag ggctccacca ccgtgttcca cagcctggcc 6900 tcccggctca gcatccccac ctatggcctg cagtgcaccc gagctgcgcc ccttgacagc 6960 atccacagcc tggctgccta ctacatcgac tgcatcaggc aggtgcagcc cgagggcccc 7020 taccgcgtgg ccggctactc ctacggggcc tgcgtggcct ttgaaatgtg ctcccagctg 7080 caggcccagc agagcccagc ccccacccac aacagcctct tcctgttcga cggctcgccc 7140 acctacgtac tggcctacac ccagagctac cgggcaaagc tgaccccagg ctgtgaggct 7200 gaggctgaga cggaggccat atgcttcttc gtgcagcagt tcacggacat ggagcacaac 7260 agggtgctgg aggcgctgct gccgctgaag ggcctagagg agcgtgtggc agccgccgtg 7320 gacctgatca tcaagagcca ccagggcctg gaccgccagg agctgagctt tgcggcccgg 7380 tccttctact acaagctcgg tgccgctgag cagtacacac ccaaggccaa gtaccatggc 7440 aacgtgatgc tactgcgcgc caagacgggt ggcgcctacg gcgaggacct gggcgcggat 7500 tacaacctct cccaggtatg cgacgggaaa gtatccgtcc acgtcatcga gggtgaccac 7560 cgcacgctgc tggagggcag cggcctggag tccatcatca gcatcatcca cagctccctg 7620 gctgagccac gcgtgagcgt gcgggagggc taggcccgtg cccccgcctg ccaccggagg 7680 tcactccacc atccccaccc caccccaccc cacccccgcc atgcaacggg attgaagggt 7740 cctgccggtg ggaccctgtc cggcccagtg ccactgcccc ccgaggctgc tagatgtagg 7800 tgttaggcat gtcccaccca cccgccgcct cccacggcac ctcggggaca ccagagctgc 7860 cgacttggag actcctggtc tgtgaagagc cggtggtgcc cgttcccgca ggaactgggc 7920 tgggcctcgt gcgcccgtgg ggtctgcgct tggtctttct gtgcttggat ttgcatattt 7980 attgcattgc tggtagagac ccccaggcct gtccaccctg ccaagactcc tcaggcagcg 8040 tgtgggtccc gcactctgcc cccatttccc cgatgtcccc tgcgggcgcg ggcagccacc 8100 caagcctgct ggctgcggcc ccctctcggc caggcattgg ctcagccngc tgagtggggg 8160 gtcgtgggcc agtccccgag gagctgggcc cctgcacagg cacacagggc ccggccacac 8220 ccagcggccc cccgcacagc cacccgtggg gtgctgccct tatcgcccgg cgccgggcac 8280 caactccatg tttggtgttt gtctgtgttt gtttttcaag aaatgattca aattgctgct 8340 tggattttga aatttactgt aactgtcagt gtacacgtct ggaccccgtt tcatttttac 8400 accaatttgg taaaaatgct gctctcagcc tcccacaatt aaaccgcatg tgatctcccc 8460 116 959 DNA Homo sapiens misc_feature NM_001639 116 gggcatgaat atcagacgct agggggacag ccactgtgtt gtctgctacc ctcatcctgg 60 tcactgcttc tgctataaca gccctaggcc aggaatatga acaagccgct gctttggatc 120 tctgtcctca ccagcctcct ggaagccttt gctcacacag acctcagtgg gaaggtgttt 180 gtatttccta gagaatctgt tactgatcat gtaaacttga tcacaccgct ggagaagcct 240 ctacagaact ttaccttgtg ttttcgagcc tatagtgatc tctctcgtgc ctacagcctc 300 ttctcctaca atacccaagg cagggataat gagctactag tttataaaga aagagttgga 360 gagtatagtc tatacattgg aagacacaaa gttacatcca aagttatcga aaagttcccg 420 gctccagtgc acatctgtgt gagctgggag tcctcatcag gtattgctga attttggatc 480 aatgggacac ctttggtgaa aaagggtctg cgacagggtt actttgtgga agctcagccc 540 aagattgtcc tggggcagga acaggattcc tatgggggca agtttgatag gagccagtcc 600 tttgtgggag agattgggga tttgtacatg tgggactctg tgctgccccc agaaaatatc 660 ctgtctgcct atcagggtac ccctctccct gccaatatcc tggactggca ggctctgaac 720 tatgaaatca gaggatatgt catcatcaaa cccttggtgt gggtctgagg tcttgactca 780 acgagagcac ttgaaaatga aatgactgtc taagagatct ggtcaaagca actggatact 840 agatcttaca tctgcagtct ttcttctttg aatttcctat ctgtatgtct gcctaattaa 900 aaaaatatat attgtattat gctacctgca aaaaaaaaaa aaaaaaaaaa aaaaaaaaa 959 117 1471 DNA Homo sapiens misc_feature NM_000936 117 ggaactgcca cgatgctgcc actttggact ctttcactgc tgctgggagc agtagcagga 60 aaagaagttt gctacgaaag actcggctgc ttcagtgatg actccccatg gtcaggaatt 120 acggaaagac ccctccatat attgccttgg tctccaaaag atgtcaacac ccgcttcctc 180 ctatatacta atgagaaccc aaacaacttt caagaagttg ccgcagattc atcaagcatc 240 agtggctcca atttcaaaac aaatagaaaa actcgcttta ttattcatgg attcatagac 300 aagggagaag aaaactggct ggccaatgtg tgcaagaatc tgttcaaggt ggaaagtgtg 360 aactgtatct gtgtggactg gaaaggtggc tcccgaactg gatacacaca agcctcgcag 420 aacatcagga tcgtgggagc agaagtggca tattttgttg aatttcttca gtcggcgttc 480 ggttactcac cttccaacgt gcatgtcatt ggccacagcc tgggtgccca cgctgctggg 540 gaggctggaa ggagaaccaa tgggaccatt ggacgcatca cagggttgga cccagcagaa 600 ccttgctttc agggcacacc tgaattagtc cgattggacc ccagcgatgc caaatttgtg 660 gatgtaattc acacggatgg tgcccccata gtccccaatt tggggtttgg aatgagccaa 720 gtcgtgggcc acctagattt ctttccaaat ggaggagtgg aaatgcctgg atgtaaaaag 780 aacattctct ctcagattgt ggacatagac ggaatctggg aagggactcg agactttgcg 840 gcctgtaatc acttaagaag ctacaaatat tacactgata gcatcgtcaa ccctgatggc 900 tttgctggat tcccctgtgc ctcttacaac gtcttcactg caaacaagtg tttcccttgt 960 ccaagtggag gctgcccaca gatgggtcac tatgctgata gatatcctgg gaaaacaaat 1020 gatgtgggcc agaaatttta tctagacact ggtgatgcca gtaattttgc acgttggagg 1080 tataaggtat ctgtcacact gtctggaaaa aaggttacag gacacatact agtttctttg 1140 ttcggaaata aaggaaactc taagcagtat gaaattttca agggcactct caaaccagat 1200 agtactcatt ccaatgaatt tgactcagat gtggatgttg gggacttgca gatggttaaa 1260 tttatttggt ataacaatgt gatcaaccca actttaccta gagtgggagc atccaagatt 1320 atagtggaga caaatgttgg aaaacagttc aacttctgta gtccagaaac cgtcagggag 1380 gaagttctgc tcaccctcac accgtgttag gagactactg ttatttgacc aatgaattga 1440 cttctaataa aatctagtgg tgatgcaaaa a 1471 118 7452 DNA Homo sapiens misc_feature U89344 118 atggtcttgc ttctttgtct atcttgtctg attttctcct gtctgacctt ttcctggtta 60 aaaatctggg agaaaatgac ggactccaag ccgatcacca agagtaaatc agaagcaaac 120 ctcatcccga gccaggagcc ctttccagcc tctgataact caggggagac accgcagaga 180 aatggggagg gccacactct gcacaaagac acccagccag gccgagccca gcctcccaca 240 aaggcccaaa gatccggtcg gcggagaaac tccctaccac cctcccgcca gaagccccca 300 agaaaccccc tttcttccag tgacgcagca ccctccccag agcttcaagc caacgggact 360 gggacacaag gtctggaggc cacagatacc aatggcctgt cctcctcagc caggccccag 420 ggcagcaagc tggtcccctc caaagaagac aagaagcagg caaacatcaa gaggcagctg 480 atgaccaact tcatcctggg ctcttttgat gactactcct ccgacgagga ctctgttgct 540 ggctcatctc gtgagtctac ccggaagggc agccgggcca gcttgggggc cctgtccctg 600 gaggcttatc tgaccacagg tgaagctgag acccgcgtcc ccactatgag gccgagcatg 660 tcgggactcc acctggtgaa gaggggacgg gaacacaaga agctggacct gcacagagac 720 tttaccgtgg cttctcccgc tgagtttgtc acacgctttg ggggggatcg ggtcatcgag 780 aaggtgctta ttgccaacaa cgggattgcc gctgtgaagt gcatgcgctc catccgcagg 840 tgggcctatg agatgttccg caacgagcgg gccatccggt ttgttcgcat ggtgaccccc 900 gaggacctta aggccaacgc agagtacatc aagatggcgg atcattacgg gcccgcccca 960 ggagggccca ataacaacaa ctatgccaac gtggagctga ttgtggacat tgccaagaga 1020 atcccgttgc aggcggtgtg ggctggctgg ggccatgctt tagaaaaccc taaacttccg 1080 gagctgctgt gcaagaatgg agttgctttc ttaggccctc ccaggttgag gccaatggtg 1140 ggtctaggag ataagatcgc ctccaccgtt gtcgcccaga cgctacaggt cccaaccctg 1200 cccaggagtg gaagcgccct gacagtggag tggacagaag atgatctgca gcagggaaaa 1260 agaatcagtg tcccagaaga tgtttatgac aagggttgcg tgaaagacgt agatgagggc 1320 ttggaggcag cagaaagaat tggttttcca ttgatgatca aagcttctga aggtggcgga 1380 gggaagggaa tccgggaaac tgagagtgcg gaggacttcc cgatcctttt cagacaagta 1440 cagagtgaga tcccaggctc gcccatcttt ctcatgaagc tggcccagca cgcccgtcac 1500 ctggaagttc agatcctcgc tgaccagtat gggaatgctg tgtctctgtt tggtcgcgac 1560 tgctccatcc agcggcggca tcagaagatc gttgaggaag caccggccac catcgcgccg 1620 ctggccatat tcgagttcat ggagcagtgt gccattcgcc tggccaagac cgtgggctat 1680 gtgagtgcag ggacagtgga atacctctat agtcaggatg gtagcttcca cttcttggag 1740 ctgaatcctc gcttgcaggt ggaacatccc tgcacagaaa tgattgctga cgttaatctg 1800 ccggccgccc agctacagat cgccatgggt gccccactgc accggctgaa agatatccgg 1860 cttctgtatg gagagtcacc ctggggagac tccccaattt cttttgaaaa ctcagctcat 1920 ctcccctgcc cccgaggcca cgtcattgcc accagaatca ccagcgaaaa cccagacgag 1980 ggttttaagc cgagctccgg gactgtccag gaactgaatt tccggagcag caagaacgtc 2040 tggggttact tcacggtggc cgctactgga ggcctgcacg agtttgcgat ttcccagttt 2100 gggcactgct tctcctgggg agagaaccgg aaagaggcca tttcgaacat ggtggtggct 2160 ttgaaggaac tgtccctccg aggcgacttt aggactaccg tggaatacct cattaacctc 2220 ctggagaccg agagcttcca gaacaactac atcgacaccg ggtggttgga ctacctcatt 2280 gctgagaaag tgcaaaagaa accgaatatc atgcttgggg tggtatgcgg ggcccttgaa 2340 cgtggagatg cgatgttcag aacgtgcatg acagatttct tacactccct ggaaaggggc 2400 caggtcctcc cagcggattc actactgaac ctcgtagatg tggaattaat ttacgagggt 2460 gtaaagtaca ttctaaaggt gacccggcag tctctgacca tgttcgttct catcatgaat 2520 ggctgccaca tcgagattga tgcccaccgg ctgaatgatg gggggctcct gctctcctac 2580 aatgggaaca gctacaccac ctacatgaag gaagaggttg acagttaccg taccatcggc 2640 aataagacgt gtgtttttga gaaggagaac gatcctacag tcctgagatc cccctcggct 2700 gggaagctga cacagatcac agtggaggat gggggccacg ttgaggctgg gagacgctac 2760 gctgagatgg aggtgatgaa gatgatcatg accctgaacg ttcaggaaag aggccgggtg 2820 aagtacatca agcgtccagg tgcggtgctg gaagcaggct gcgtggtggc caggctggag 2880 ctcgatgacc cttctaaagt ccacccggct gaaccgttca caggagaact ccctgcccag 2940 cagaacactg ccgacctcgg aaagaaactg cacagggtct tccacagcgt cctgggaagc 3000 ctcaccaacg tcatgagtgg cttttgtctg ccagagccgt tttttagcat aaagctgaag 3060 gagtgggtgc agaagctcat gatgaccctc cggcacccgt cactgctgct ggacgtgcag 3120 gagatcatga ccagtcgtgc aggccgcatc cccccccctg ttgagaagtc tgtccgcaag 3180 gtgatggccc agtatgccag caacatcacc tcggtgctgt gccagttccc cagccagcag 3240 atagccacca tcctggactg ccatgcagcc accctgcagc ggaaggctga tcgagaggtc 3300 ttcttcatca acacccagag catggtgcag ttggtccaga ggtaccgaag tggaatccgc 3360 ggtcatatga aaacagtggt gatcgatctc ttgagaagat acttgcgtgt tgagaccatt 3420 ttcggcaagg caagagatgc tgatgccaac tccagtggga tggtgggggg cgtgaggagc 3480 ctgagcttta cctctgtgtg ggtggttttg tctcccccag cccactacga caagtgtgtg 3540 ataaacctca gggaacagtt caagccagac atgtcccagg tgctggactg catcttctcc 3600 cacgcacagg tgaccaagaa gaaccagctg gtgatcatgt tgatcgatga gctgtgtggc 3660 ccagaccctt ccctgtcgga cgagctgatc tccatcctca acgagctcac tcagctgagc 3720 aaaagcgagc actgcaaagt ggccctcaga gcccggcaga tcctgatcgc ctccccctcc 3780 tacgagctgc ggcataacca ggtggagtcc attttcctgt ctgccattga catgtacggc 3840 caccagttct gccccgagaa cctccagaaa ttaatacttt cggaaacaac catcttcgac 3900 gtcctgaata ctttcttcta tcacgcaaac aaagtcgtgt gcatggcgtc cttggaggtt 3960 tacgtggggg gggcttacat cgcctatgtg ttaaacagcc tgcagcaccg gcagctcccg 4020 gacggcacct gcgtggtaga attccagttc atgctgccgt cctcccaccc aaaccggatg 4080 accgtgccca tcagcatcac caaccctgac ctgctgaggc acacgacaga gctcttcatg 4140 gacagcggct tctccccact gtgccagcgc atgggagcca tggtagcctt caggagattc 4200 gaggacttca ccagaaattt tgatgaagtc atctcttgct tcgccaacgt gccgaaagac 4260 ccccccctct tcagcgaggc ccgcacctcc ctatactccg aggatgactg caagagcctc 4320 agagaagagc ccatccacat tctgaatgtg tccatccagt gtgcggacca cctggaggat 4380 gaggcactgg tgccgatttt acgtacattc gtacagtcca agaaaaatat ccttgtggat 4440 tatggactcc gacgaatccc attcttgatt gcccaagaga aagaatttcc caagtttttc 4500 acattcagag caagagatga gtttgcagaa gatcgcattt accgtcactt ggaacctgcc 4560 ctggctttcc agctggaact caaccggatg cgtaacttcg atctgaccgc cgtgccctgt 4620 gccaaccaca agatgcacct ttacctgggt gctgccaagg tggaaggaag gtatgaagtg 4680 acggaccata ggttcttcat ccgtgccatc atcaggcact ctgacctgat cacaaaggaa 4740 gcctccttcg aatacctgca gaacgagggt gagcggctgc tcctggaggc catggacgag 4800 ctggaggtgg cgttcaataa caccaacgtg cgcaccgact gcaaccacat cttcctcaac 4860 ttcgtgccca ctgtcatcat ggaccccaac aagatcgagg agtccgtgcg ctacatggtt 4920 atgcgctacg gcagccggct gtggaaactc cgtgtgctac aggctgaggt caagatcaac 4980 atccgccaga ccaccaccgg cagtgccgtt cccatccgcc tgttcatcac caatgagtcg 5040 ggctactacc tggacatcag cctctacaaa gaagtgactg actccagatc tggaaatatc 5100 atgtttcact ccttcggcaa caagcaaggg ccccagcacg ggatgctgat caatactccc 5160 tacgtcacca aggatctgct ccaggccaag cgattccagg cccagaccct gggaaccacc 5220 tacatctatg acttcccgga aatgttcagg caggctctct ttaaactgtg gggctcccca 5280 gacaagtatc ccaaagacat cctgacatac actgaattag tgttggactc tcagggccag 5340 ctggtggaga tgaaccgact tcctggtgga aatgaggtgg gcatggtggc cttcaaaatg 5400 aggtttaaga cccaggagta cccggaagga cgggatgtga tcgtcatcgg caatgacatc 5460 acctttcgca ttggatcctt tggccctgga gaggaccttc tgtacctgcg ggcatccgag 5520 atggcccggg cagaggcgat tcccaaaatt tacgtggcag ccaacagtgg cgcccgtatt 5580 ggcatggcag aggagatcaa acacatgttc cacgtggctt gggtggaccc agaagacccc 5640 cacaaaggat ttaaatacct gtacctgact ccccaagact acaccagaat cagctccctg 5700 aactccgtcc actgtaaaca catcgaggaa ggaggagagt ccagatacat gatcacggat 5760 atcatcggga aggatgatgg cttgggcgtg gagaatctga ggggctcagg catgattgct 5820 ggggagtcct ctctggctta cgaagagatc gtcaccatta gcttggtgac ctgccgagcc 5880 attgggattg gggcctactt ggtgaggctg ggccagcgag tgatccaggt ggagaattcc 5940 cacatcatcc tcacaggagc aagtgctctc aacaaggtcc tgggaagaga ggtctacaca 6000 tccaacaacc agctgggtgg cgttcagatc atgcattaca atggtgtctc ccacatcacc 6060 gtgccagatg actttgaggg ggtttatacc atcctggagt ggctgtccta tatgccaaag 6120 gataatcaca gccctgtccc tatcatcaca cccactgacc ccattgacag agaaattgaa 6180 ttcctcccat ccagagctcc ctacgacccc cggtggatgc ttgcaggaag gcctcaccca 6240 actctgaagg gaacgtggca gagcggattc tttgaccacg gcagtttcaa ggaaatcatg 6300 gcaccctggg cgcagaccgt ggtgacagga cgagcaaggc ttggggggat tcccgtggga 6360 gtgattgctg tggagacacg gactgtggag gtggcagtcc ctgcagaccc tgccaacctg 6420 gattctgagg ccaagataat tcagcaggca ggacaggtgt ggttcccaga ctcagcctac 6480 aaaaccgccc aggccatcaa ggacttcaac cgggagaagt tgcccctgat gatctttgcc 6540 aactggaggg ggttctccgg tggcatgaaa gacatgtatg accaggtgct gaagtttgga 6600 gcctacatcg tggacggcct tagacaatac aaacagccca tcctgatcta tatccgccct 6660 atgcgggagc tccggggagg ctcctgggtg gtcatagatg ccaccatcaa cccgctgtgc 6720 atagaaatgt atgcagacaa agagagcagg ggtggtgttc tggaaccaga ggggacagtg 6780 gagattaagt tccgaaagga agatctgata aagtccatga gaaggatcga tccagcttac 6840 aagaagctca tggaacagct aggggaacct gatctctccg acaaggaccg aaaggacctg 6900 gagggccggc taaaggctcg cgaggacctg ctgctcccca tctaccacca ggtggcggtg 6960 cagttcgccg acttccatga cacacccggc cggatgctgg agaagggcgt catatctgac 7020 atcctggagt ggaagaccgc acgcaccttc ctgtattggc gtctgcgccg cctcctcctg 7080 gaggaccagg tcaagcagga gatcctgcag gccagcgggg agctgagtca cgtgcatatc 7140 cagtccatgc tgcgtcgctg gttcgtggag acggaggggg ctgtcaaggc ctacttgtgg 7200 gacaacaacc aggtggttgt gcagtggctg gaacagcact ggcaggcagg ggatggcccg 7260 cgctccacca tccgtgagaa catcacgtac ctgaagcacg actctgtcct caagaccatc 7320 cgaggcctgg ttgaagaaaa ccccgaggtg gccgtggact gtgtgatata cctgagccag 7380 cacatcagcc cagctgagcg ggcgcaggtc gttcacctgc tgtctaccat ggacagcccg 7440 gcctccacct ga 7452 119 3259 DNA Homo sapiens misc_feature M31158 119 gacgcgcgcc gggagccggc ggccgggcca gccggcgccg gggcccagtg cgccgcgctc 60 gcagccggta gcgcgccagc cgtaggcgtc gctcggcagc cgcggggccc taggcgtgcc 120 ggggaggggg cgagggcggc caggcgcctg ccgccccgga ggcaggatga gcatcgagat 180 cccggcggga ctgacggagc tgctgcaggg cttcacggtg gaggtgctga ggcaccagcc 240 cgcggacctg ctggagttcg cgctgcagca cttcacccgc ctgcagcagg agaacgagcg 300 caaaggcacc gcgcgcttcg gccatgaggg caggacctgg ggggacctgg gcgccgctgc 360 cgggggcggc acccccagca agggggtcaa cttcgccgag gagcccatgc agtccgactc 420 cgaggacggg gaggaggagg aggcggcgcc cgcggacgca ggggcgttca atgctccagt 480 aataaaccga ttcacaaggc gtgcctcagt atgtgcagaa gcttataatc ctgatgaaga 540 agaagatgat gcagagtcca ggattataca tccaaaaact gatgatcaaa gaaataggtt 600 gcaagaggct tgcaaagaca tcctgctgtt taagaatctg gatccggagc agatgtctca 660 agtattagat gccatgtttg aaaaattggt caaagatggg gagcatgtaa ttgatcaagg 720 tgacgatggt gacaactttt atgtaattga tagaggcaca tttgatattt atgtgaaatg 780 tgatggtgtt ggaagatgtg ttggtaacta tgataatcgt gggagtttcg gcgaactggc 840 cttaatgtac aatacaccca gagcagctac aatcactgct acctctcctg gtgctctgtg 900 gggtttggac agggtaacct tcaggagaat aattgtgaaa aacaatgcca aaaagagaaa 960 aatgtatgaa agctttattg agtcactgcc attccttaaa tctttggagt tttctgaacg 1020 cctgaaagta gtagatgtga taggcaccaa agtatacaac gatggagaac aaatcattgc 1080 tcagggagat tcggctgatt cttttttcat tgtagaatct ggagaagtga aaattactat 1140 gaaaagaaag ggtaaatcag aagtggaaga gaatggtgca gtagaaatgc ctcgatgctc 1200 gcggggacag tactttggag agcttgccct ggtaactaac aaacctcgag cagcttctgc 1260 ccacgccatt gggactgtca aatgtttagc aatggatgtg caagcatttg aaaggcttct 1320 gggaccttgc atggaaatta tgaaaaggaa catcgctacc tatgaagaac agttagttgc 1380 cctgtttgga acgaacatgg atattgttga acccactgca tgaagcaaaa gtatggagca 1440 agacctgtag tgacaaaatt acacagtagt ggttagtcca ctgagaatgt gtttgtgtag 1500 atgccaagca ttttctgtga tttcaggttt tttccttttt ttacatttac aacgtatcaa 1560 taaacagtag tgatttaata gtcaataggc tttaacatca ctttctaaag agtagttcat 1620 aaaaaaatca acatactgat aaaatgactt tgtactccac aaaattatga ctgaaaggtt 1680 tattaaaatg attgtaatat atagaaagta tctgtgttta agaagataat taaaggatgt 1740 tatcataggc tatatgtgtt ttacttattc agactgataa tcatattagt gactatcccc 1800 atgtaagagg gcacttggca attaaacatg ctacacagca tggcatcact tttttttata 1860 actcattaaa cacagtaaaa ttttaatcat ttttgtttta aagttttcta gcttgataag 1920 ttatgtgctg ccttggccta ttggtgaaat ggtataaaat atcatatgca gttttaaaac 1980 tttttatatt tttgcaataa agtacatttt gactttgttg gcataatgtc agtaacatac 2040 atattccagt ggttttatgg acaggcaatt tagtcattat gataataagg aaaacagtgt 2100 tttagatgag agatcattaa tgcatttttc cctcatcaag catatatctg ctttttttta 2160 ttttgcaatt ctctgtattc tatgtcttta aaaatttgat cttgacattt aatgtcacaa 2220 agttttgttt ttttaaaaag tgatttaaac ttaagatccg acattttttg tattctttaa 2280 gattttacac ctaaaaaatc tctcctatcc caaaaataat gtgggatcct tatcagcatg 2340 cccacagttt atttctttgt tcttcactag gcctgcataa tacagtccta tgtagacatc 2400 tgttcccttg ggtttccgtt ctttcttagg atggttgcca acccacaatc tcattgatca 2460 gcagccaata tgggtttgtt tggttttttt aattcttaaa aacatcctct agaggaatag 2520 aaacaaattt ttatgagcat aaccctatat aaagacaaaa tgaatttctg accttaccat 2580 atataccatt aggccttgcc attgctttaa tgtagactca tagttgaaat tagtgcagaa 2640 agaactcaga tgtactagat tttcattgtt cattgatatg ctcagtatgc tgccacataa 2700 gatgaattta attatattca accaaagcaa tatactctta catgatttct aggccccatg 2760 acccagtgtc tagagacatt aattctaacc agttgtttgc ttttaaatga gtgatttcat 2820 tttgggaaac aggtttcaaa tgaatatata tacatgggta aaattactct gtgctagtgt 2880 agtcttacta gagaatgttt atggtcccac ttgtatatga aaatgtggtt agaatgttaa 2940 ttggataatg tatatataag aagttaaagt atgtaaagta taacttcagc cacattttta 3000 gaacactgtt taacattttt gcaaaacctt cttgtaggaa aagagagctc tctacatgaa 3060 gatgacttgt tttatatttc agattttatt ttaaaagcca tgtctgttaa acaagaaaaa 3120 acacaaaaga actccagatt cctggttcat cattctgtat tcttactcac tttttcaagt 3180 tatctatttt gttgcataaa ctaattgtta actattcatg gaacagcaaa cgcctgttta 3240 ataaagaact ttgaccaag 3259 120 3261 DNA Homo sapiens misc_feature XM_008512 120 gcccgggacc ccacggaggc ggggagacca ctcttctccc acacgagccc agctctccct 60 tcgagtagca accgccttca agctcacaag cacccgtggg cctggggtgt gcctgcgtct 120 agctggttgc acactgggcc acagaggatc cagcaaggat gaagaaatgg agcagcacag 180 acttgggggc agctgcggac ccactccaaa aggacacctg cccagacccc ctggatggag 240 accctaactc caggccacct ccagccaagc cccagctctc cacggccaag agccgcaccc 300 ggctctttgg gaagggtgac tcggaggagg ctttcccggt ggattgccct cacgaggaag 360 gtgagctgga ctcctgcccg accatcacag tcagccctgt tatcaccatc cagaggccag 420 gagacggctc caccggtgcc aggctgctgt cccaggactc tgtcgccgcc agcaccgaga 480 agaccctcag gctctatgat cgcaggagta tctttgaagc cgttgctcag aataactgcc 540 aggatctgga gagcctgctg ctcttcctgc agaagagcaa gaagcacctc acagacaacg 600 agttcaaaga ccctgagaca gggaagacct gtctgctgaa agccatgctc aacctgcatg 660 acggacagaa caccaccatc cccctgctcc tggagatcgc gcggcaaacg gacagcctga 720 aggagcttgt caacgccagc tacacggaca gctactacaa gggccagaca gcactgcaca 780 tcgccatcga gagacgcaac atggccctgg tgaccctcct ggtggagaac ggagcagacg 840 tccaggctgc ggcccatggg gacttcttta agaaaaccaa agggcggcct ggattctact 900 tcggtgaact gcccctgtcc ctggccgcgt gcaccaacca gctgggcatc gtgaagttcc 960 tgctgcagaa ctcctggcag acggccgaca tcagcgccag ggactcggtg ggcaacacgg 1020 tgctgcacgc cctggtggag gtggccgaca acacggccga caacacgaag tttgtgacga 1080 gcatgtacaa tgagattctg atcctggggg ccaaactgca cccgacgctg aagctggagg 1140 agctcaccaa caagaaggga atgacgccgc tggctctggc agctgggacc gggaagatcg 1200 gggtcttggc ctatattctc cagcgggaga tccaggagcc cgagtgcagg cacctgtcca 1260 ggaagttcac cgagtgggcc tacgggcccg tgcactcctc gctgtacgac ctgtcctgca 1320 tcgacacctg cgagaagaac tcggtgctgg aggtgatcgc ctacagcagc agcgagaccc 1380 ctaatcgcca cgacatgctc ttggtggagc cgctgaaccg actcctgcag gacaagtggg 1440 acagattcgt caagcgcatc ttctacttca acttcctggt ctactgcctg tacatgatca 1500 tcttcaccat ggctgcctac tacaggcccg tggatggctt gcctcccttt aagatggaaa 1560 aaattggaga ctatttccga gttactggag agatcctgtc tgtgttagga ggagtctact 1620 tctttttccg agggattcag tatttcctgc agaggcggcc gtcgatgaag accctgtttg 1680 tggacagcta cagtgagatg cttttctttc tgcagtcact gttcatgctg gccaccgtgg 1740 tgctgtactt cagccacctc aaggagtatg tggcttccat ggtattctcc ctggccttgg 1800 gctggaccaa catgctctac tacacccgcg gtttccagca gatgggcatc tatgccgtca 1860 tgatagagaa gatgatcctg agagacctgt gccgtttcat gtttgtctac atcgtcttct 1920 tgttcgggtt ttccacagcg gtggtgacgc tgattgaaga cgggaagaat gactccctgc 1980 cgtctgagtc cacgtcgcac aggtggcggg ggcctgcctg caggcccccc gatagctcct 2040 acaacagcct gtactccacc tgcctggagc tgttcaagtt caccatcggc atgggcgacc 2100 tggagttcac tgagaactat gacttcaagg ctgtcttcat catcctgctg ctggcctatg 2160 taattctcac ctacatcctc ctgctcaaca tgctcatcgc cctcatgggt gagactgtca 2220 acaagatcgc acaggagagc aagaacatct ggaagctgca gagagccatc accatcctgg 2280 acacggagaa gagcttcctt aagtgcatga ggaaggcctt ccgctcaggc aagctgctgc 2340 aggtggggta cacacctgat ggcaaggacg actaccggtg gtgcttcagg gtggacgagg 2400 tgaactggac cacctggaac accaacgtgg gcatcatcaa cgaagacccg ggcaactgtg 2460 agggcgtcaa gcgcaccctg agcttctccc tgcggtcaag cagagtttca ggcagacact 2520 ggaagaactt tgccctggtc ccccttttaa gagaggcaag tgctcgagat aggcagtctg 2580 ctcagcccga ggaagtttat ctgcgacagt tttcagggtc tctgaagcca gaggacgctg 2640 aggtcttcaa gagtcctgcc gcttccgggg agaagtgagg acgtcacgca gacagcactg 2700 tcaacactgg gccttaggag accccgttgc cacggggggc tgctgaggga acaccagtgc 2760 tctgtcagca gcctggcctg gtctgtgcct gcccagcatg ttcccaaatc tgtgctggac 2820 aagctgtggg aagcgttctt ggaagcatgg ggagtgatgt acatccaacc gtcactgtcc 2880 ccaagtgaat ctcctaacag actttcaggt ttttactcac tttactaaac agtttggatg 2940 gtcagtctct actgggacat gttaggccct tgttttcttt gattttattc ttttttttga 3000 gacagaattt cactcttctc acccaggctg gaatgcagtg gcacaatttt ggctccctgc 3060 aacctccgcc tcctggattc cagcaattct cctgcctcgg cttcccaagt agctgggatt 3120 acaggcacgt gccaccatgt ctggctaatt ttttgtattt ttttaataga tatggggttt 3180 cgccatgttg gccaggctgg tctcgaactc ctgacctcag gtgatccgcc cacctcggcc 3240 tcccaaagtg ctgggattac a 3261 121 4307 DNA Homo sapiens misc_feature NM_005099 121 cacagacaca tatgcacgag agagacagag gaggaaagag acagagacaa aggcacagcg 60 gaagaaggca gagacagggc aggcacagaa gcggcccaga cagagtccta cagagggaga 120 ggccagagaa gctgcagaag acacaggcag ggagagacaa agatccagga aaggagggct 180 caggaggaga gtttggagaa gccagacccc tgggcacctc tcccaagccc aaggactaag 240 ttttctccat ttcctttaac ggtcctcagc ccttctgaaa actttgcctc tgaccttggc 300 aggagtccaa gcccccaggc tacagagagg agctttccaa agctagggtg tggaggactt 360 ggtgccctag acggcctcag tccctcccag ctgcagtacc agtgccatgt cccagacagg 420 ctcgcatccc gggaggggct tggcagggcg ctggctgtgg ggagcccaac cctgcctcct 480 gctccccatt gtgccgctct cctggctggt gtggctgctt ctgctactgc tggcctctct 540 cctgccctca gcccggctgg ccagccccct cccccgggag gaggagatcg tgtttccaga 600 gaagctcaac ggcagcgtcc tgcctggctc gggcacccct gccaggctgt tgtgccgctt 660 gcaggccttt ggggagacgc tgctactaga gctggagcag gactccggtg tgcaggtcga 720 ggggctgaca gtgcagtacc tgggccaggc gcctgagctg ctgggtggag cagagcctgg 780 cacctacctg actggcacca tcaatggaga tccggagtcg gtggcatctc tgcactggga 840 tgggggagcc ctgttaggcg tgttacaata tcggggggct gaactccacc tccagcccct 900 ggagggaggc acccctaact ctgctggggg acctggggct cacatcctac gccggaagag 960 tcctgccagc ggtcaaggtc ccatgtgcaa cgtcaaggct cctcttggaa gccccagccc 1020 cagaccccga agagccaagc gctttgcttc actgagtaga tttgtggaga cactggtggt 1080 ggcagatgac aagatggccg cattccacgg tgcggggcta aagcgctacc tgctaacagt 1140 gatggcagca gcagccaagg ccttcaagca cccaagcatc cgcaatcctg tcagcttggt 1200 ggtgactcgg ctagtgatcc tggggtcagg cgaggagggg ccccaagtgg ggcccagtgc 1260 tgcccagacc ctgcgcagct tctgtgcctg gcagcggggc ctcaacaccc ctgaggactc 1320 ggaccctgac cactttgaca cagccattct gtttacccgt caggacctgt gtggagtctc 1380 cacttgcgac acgctgggta tggctgatgt gggcaccgtc tgtgacccgg ctcggagctg 1440 tgccattgtg gaggatgatg ggctccagtc agccttcact gctgctcatg aactgggtca 1500 tgtcttcaac atgctccatg acaactccaa gccatgcatc agtttgaatg ggcctttgag 1560 cacctctcgc catgtcatgg cccctgtgat ggctcatgtg gatcctgagg agccctggtc 1620 cccctgcagt gcccgcttca tcactgactt cctggacaat ggctatgggc actgtctctt 1680 agacaaacca gaggctccat tgcatctgcc tgtgactttc cctggcaagg actatgatgc 1740 tgaccgccag tgccagctga ccttcgggcc cgactcacgc cattgtccac agctgccgcc 1800 gccctgtgct gccctctggt gctctggcca cctcaatggc catgccatgt gccagaccaa 1860 acactcgccc tgggccgatg gcacaccctg cgggcccgca caggcctgca tgggtggtcg 1920 ctgcctccac atggaccagc tccaggactt caatattcca caggctggtg gctggggtcc 1980 ttggggacca tggggtgact gctctcggac ctgtgggggt ggtgtccagt tctcctcccg 2040 agactgcacg aggcctgtcc cccggaatgg tggcaagtac tgtgagggcc gccgtacccg 2100 cttccgctcc tgcaacactg aggactgccc aactggctca gccctgacct tccgcgagga 2160 gcagtgtgct gcctacaacc accgcaccga cctcttcaag agcttcccag ggcccatgga 2220 ctgggttcct cgctacacag gcgtggcccc ccaggaccag tgcaaactca cctgccaggc 2280 ccgggcactg ggctactact atgtgctgga gccacgggtg gtagatggga ccccctgttc 2340 cccggacagc tcctcggtct gtgtccaggg ccgatgcatc catgctggct gtgatcgcat 2400 cattggctcc aagaagaagt ttgacaagtg catggtgtgc ggaggggacg gttctggttg 2460 cagcaagcag tcaggctcct tcaggaaatt caggtacgga tacaacaatg tggtcactat 2520 ccccgcgggg gccacccaca ttcttgtccg gcagcaggga aaccctggcc accggagcat 2580 ctacttggcc ctgaagctgc cagatggctc ctatgccctc aatggtgaat acacgctgat 2640 gccctccccc acagatgtgg tactgcctgg ggcagtcagc ttgcgctaca gcggggccac 2700 tgcagcctca gagacactgt caggccatgg gccactggcc cagcctttga cactgcaagt 2760 cctagtggct ggcaaccccc aggacacacg cctccgatac agcttcttcg tgccccggcc 2820 gaccccttca acgccacgcc ccactcccca ggactggctg caccgaagag cacagattct 2880 ggagatcctt cggcggcgcc cctgggcggg caggaaataa cctcactatc ccggctgccc 2940 tttctgggca ccggggcctc ggacttagct gggagaaaga gagagcttct gttgctgcct 3000 catgctaaga ctcagtgggg aggggctgtg ggcgtgagac ctgcccctcc tctctgccct 3060 aatgcgcagg ctggccctgc cctggtttcc tgccctggga ggcagtgatg ggttagtgga 3120 tggaaggggc tgacagacag ccctccatct aaactgcccc ctctgccctg cgggtcacag 3180 gagggagggg gaaggcaggg agggcctggg ccccagttgt atttatttag tatttattca 3240 cttttattta gcaccaggga aggggacaag gactagggtc ctggggaacc tgacccctga 3300 cccctcatag ccctcaccct ggggctagga aatccagggt ggtggtgata ggtataagtg 3360 gtgtgtgtat gcgtgtgtgt gtgtgtgtga aaatgtgtgt gtgcttatgt atgaggtaca 3420 acctgttctg ctttcctctt cctgaatttt attttttggg aaaagaaaag tcaagggtag 3480 ggtgggcctt cagggagtga gggattatct tttttttttt ttctttcttt ctttcttttt 3540 tttttttgag acagaatctc gctctgtcgc ccaggctgga gtgcaatggc acaatctcgg 3600 ctcactgcat cctccgcctc ccgggttcaa gtgattctca tgcctcagcc tcctgagtag 3660 ctgggattac aggctcctgc caccacgccc agctaatttt tgttttgttt tgtttggaga 3720 cagagtctcg ctattgtcac cagggctgga atgatttcag ctcactgcaa ccttcgccac 3780 ctgggttcca gcaattctcc tgcctcagcc tcccgagtag ctgagattat aggcacctac 3840 caccacgccc ggctaatttt tgtattttta gtagagacgg ggtttcacca tgttggccag 3900 gctggtctcg aactcctgac cttaggtgat ccactcgcct tcatctccca aagtgctggg 3960 attacaggcg tgagccaccg tgcctggcca cgcccaacta atttttgtat ttttagtaga 4020 gacagggttt caccatgttg gccaggctgc tcttgaactc ctgacctcag gtaatcgacc 4080 tgcctcggcc tcccaaagtg ctgggattac aggtgtgagc caccacgccc ggtacatatt 4140 ttttaaattg aattctacta tttatgtgat ccttttggag tcagacagat gtggttgcat 4200 cctaactcca tgtctctgag cattagattt ctcatttgcc aataataata cctcccttag 4260 aagtttgttg tgaggattaa ataatgtaaa taaagaacta gcataac 4307 122 1423 DNA Homo sapiens misc_feature U94320 122 gaaaggctat cggtaacaac tgacctgcca caaagttaga agaaaggatt gattcaagaa 60 agactataat atggatttag agctcgacga gtattataac aagacacttg ccacagagaa 120 taatactgct gccactcgga attctgattt cccagtctgg gatgactata aaagcagtgt 180 agatgactta cagtattttc tgattgggct ctatacattt gtaagtcttc ttggctttat 240 ggggaatcta cttattttaa tggctctcat gaaaaagcgt aatcagaaga ctacggtaaa 300 cttcctcata ggcaatctgg ccttttctga tatcttggtt gtgctgtttt gctcaccttt 360 cacactgacg tctgtcttgc tggatcagtg gatgtttggc aaagtcatgt gccatattat 420 gccttttctt caatgtgtgt cagttttggt ttcaacttta attttaatat caattgccat 480 tgtcaggtat catatgataa aacatcccat atctaataat ttaacagcaa accatggcta 540 ctttctgata gctactgtct ggacactagg ttttgccatc tgttctcccc ttccagtgtt 600 tcacagtctt gtggaacttc aagaaacatt tggttcagca ttgctgagca gcaggtattt 660 atgtgttgag tcatggccat ctgattcata cagaattgcc tttactatct ctttattgct 720 agttcagtat attctgccct tagtttgtct tactgtaagt catacaagtg tctgcagaag 780 tataagctgt ggattgtcca acaaagaaaa cagacttgaa gaaaatgaga tgatcaactt 840 aactcttcat ccatccaaaa agagtgggcc tcaggtgaaa ctctctggca gccataaatg 900 gagttattca ttcatcaaaa aacacagaag aagatatagc aagaagacag catgtgtgtt 960 acctgctcca gaaagacctt ctcaagagaa ccactccaga atacttccag aaaactttgg 1020 ctctgtaaga agtcagctct cttcatccag taagttcata ccaggggtcc ccacttgctt 1080 tgagataaaa cctgaagaaa attcagatgt tcatgaattg agagtaaaac gttctgttac 1140 aagaataaaa aagagatctc gaagtgtttt ctacagactg accatactga tattagtatt 1200 tgctgttagt tggatgccac tacacctttt ccatgtggta actgatttta atgacaatct 1260 tatttcaaat aggcatttca agttggtgta ttgcatttgt catttgttgg gcatgatgtc 1320 ctgttgtctt aatccaattc tatatgggtt tcttaataat gggattaaag ctgatttagt 1380 gtcccttata cactgtcttc atatgtaata attctcactg ttt 1423 123 5078 DNA Homo sapiens misc_feature NM_002410 123 taatactcct ttattccctg ttttaaaaat ttttttaaat ttgatacaat aattatacat 60 aataatggag taccatgtga gattcaatcc acatatacat tgtgaaatga tcaaattagg 120 atagttagca tgcacatcac ccccaaataa ttattacttt tgtggtgaga acacttaaaa 180 ttgtctcttt tagaaatata cgttattatt aaccatagtc acctcgctgt gcaatagaac 240 accagaactt attcctccta aatgtaactt tttacccatt gaccactccc tcctcacccc 300 cctctctcct ccccacccct ggtaaccact gttctgttat ctcctatgat agcaactttt 360 tagcttctgc atgtgagatt gtacggtagt tgcctttctg tgcctggatt atttcattta 420 gcataatgtc cttcgggtat atccctgttg ctgcaaaaga caggatttct ctctcttttt 480 ctggttgaat agtattccat tgtcagagaa tgttgtaaga ctaggaaagg aacactgcag 540 gctggagccc tggggaaatg gtctgaggca ggtggtggga ctagagctgg ggtctggcaa 600 acaggctggg tttgattgtc agcataatag agagcactca tgtgccagct gggtgggagg 660 agcagccgag tgaagaaggg gaagcctctc aggaagcatg tgcagggttt atggtaatga 720 gcagaccagc aggtacgtag tgggagaggg gtgtgatggg gcagaggaac ttacgttatg 780 atagtacaag acagaggttg agcctcattt taataggcat tgtggtgggt gttgaatagt 840 gatggaatgt atgggtctgg aatcaggctg cctggtcaag ggctctgaaa catgagtgtg 900 catcagaatc acctcgaggc ttgttaaagg ataggctgtg gaccacatct cctcagttgc 960 tgattcagtg ggtgtgggtg gggcctgaga attcacattt cccactggtg atgctgctgt 1020 tactgattgg gaccacattt ggggaacact ggtctagaat tgagaggttg gcaaaccttc 1080 tctgttaaga ggtagatagt aaatatttta ggccttctgg gctacaaaga gtatctgtta 1140 catatttttt attgcttttc atgacccatt aagcatatat atatcattct ctgccatata 1200 caaacaggct gttgggggag tgaggatgat gtagggaagg tggggcatgg tttaataacc 1260 cctgggccat gcctagatga tcagtcctct gccacatagc tggctgacct ttgccaagtt 1320 aatcaccttt tacctttatt ttctcatgtt tctaataaaa cagagacgat aatattcata 1380 cttcttacca tatagaactt ctgaggattc agtgagcaaa gccacaaaag atggtatgtc 1440 acaatatctg ggatatagct agaatttata atttattttt actctgttga taggcaatgg 1500 gaaaacagta agaggcagac caacagtgat ccagggctct gaaagctaat tgcttcaaga 1560 tcctgctacc attttctttt gggccgcttg caaagaagaa tcctttgact gaagcatgta 1620 tgtacactct gaagtacagc ctgggttagt ctcttataag ggatcggatc attgctcagc 1680 tctcccttga gtggcactta gaaaatggcg ctattcgtaa gctgactggt attgggccca 1740 ggactctggc tgaaggggtg ggcatgctgg taaccatttg caacctatgc tcaggtccta 1800 cttgttggga agccctgatt gagaagagtg gcctggtctg tgctggcatt agataggatc 1860 tggctgcatt aatattgaaa ctactctgcc ttttaatgtc tcattttgcc tcatggtggg 1920 agtgaaagtg agaaccacag aaaatctgcc tgccaggtgt tccacatttc ttgtgctaca 1980 gcatgcaagt gagcagtgag gtgtaccttt tcctcatgta gctgggaaag caatacccct 2040 gcttgtacct ctggcatatc ttctctgtgc tggtgcacct agagaggttg cctggtggcc 2100 ctgagagagc catctcatca ctaaacactg atggtgaaaa gctggccatg ctcaaataag 2160 atgtagcaat ctacctcttc tttgtctagt tacccccaag ggggcatcca ctttcttgct 2220 cacctcacca gttgcatgtt ctagtccttg ccagaagcac ataataatga ctttgtaagc 2280 ttaagttaca ggcacacaaa agggcctgat ggtgatatga ctccaccctc cccgtttttg 2340 ctgacattcc gccaaatatc cttctgtctc ctccccacct tgcaaaacaa acttcctgtt 2400 ttgaatttgg tccaggctgg aacagcccca ccacacctgt taacacacgc agacgcacac 2460 ttcccccttc ataattgctt agcttcttgt tgcctagcca gatttcccct cagcttacag 2520 ttcctgaatc ataagatatt gaaccagcaa atttaagagt tgacatttta cttagaggta 2580 ttcaagtgaa aacatggctt ctggtttatt ttgctgtatt gtgccatgac cacttggcta 2640 attcttctcc tccttcacat cagaatggaa gtgaggaaag gcaaccagct gacacaggag 2700 ccagagtgag accagcagac tctcacactc aacctacacc atgaatttgt gtctatcttc 2760 tacgcgttaa gagccaagga caggtgaagt tgccagagag caatggctct cttcactccg 2820 tggaagttgt cctctcagaa gctgggcttt ttcctggtga cttttggctt catttggggt 2880 atgatgcttc tgcactttac catccagcag cgaactcagc ctgaaagcag ctccatgctg 2940 cgcgagcaga tcctggacct cagcaaaagg tacatcaagg cactggcaga agaaaacagg 3000 aatgtggtgg atgggccata cgctggagtc atgacagctt atgatctgaa gaaaaccctt 3060 gctgtgttat tagataacat tttgcagcgc attggcaagt tggagtcgaa ggtggacaat 3120 cttgttgtca atggcaccgg aacaaactca accaactcca ctacagctgt tcccagcttg 3180 gttgcacttg agaaaattaa tgtggcagat atcattaacg gagctcaaga aaaatgtgta 3240 ttgcctccta tggacggcta ccctcactgt gagggaaaga tcaagtggat gaaagacatg 3300 tggcgttcag atccctgcta cgcagactat ggagtggatg gatccacctg ctcttttttt 3360 atttacctca gtgaggttga aaattggtgt cctcatttac cttggagagc aaaaaatccc 3420 tacgaagaag ctgatcataa ttcattggcg gaaattcgta cagattttaa tattctctac 3480 agtatgatga aaaagcatga agaattccgg tggatgagac tacggatccg gcgaatggct 3540 gacgcatgga tccaagcaat caagtccctg gcagaaaagc agaaccttga aaagagaaag 3600 cggaagaaag tcctcgttca cctgggactc ctgaccaagg aatctggatt taagattgca 3660 gagacagctt tcagtggtgg ccctcttggt gaattagttc aatggagtga tttaattaca 3720 tctctgtact tactgggcca tgacattagg atttcagctt cactggctga gctcaaggaa 3780 atcatgaaga aggttgtagg aaaccgatct ggctgcccaa ctgtaggaga cagaattgtt 3840 gagctcattt acattgatat tgtaggactt gctcaattca agaaaactct tggaccatcc 3900 tgggttcatt accagtgcat gctccgagtc cttgattcat ttggtactga acccgaattt 3960 aatcatgcaa attatgccca atcgaaaggc cacaagaccc cttggggaaa atggaatctg 4020 aaccctcagc agttttatac catgttccct cataccccag acaacagctt tctggggttt 4080 gtggttgagc agcacctgaa ctccagtgat atccaccaca ttaatgaaat caaaaggcag 4140 aaccagtccc ttgtgtatgg caaagtggat agcttctgga agaataagaa gatctacttg 4200 gacattattc acacatacat ggaagtgcat gcaactgttt atggctccag cacaaagaat 4260 attcccagtt acgtgaaaaa ccatggtatc ctcagtggac gggacctgca gttccttctt 4320 cgagaaacca agttgtttgt tggacttggg ttcccttacg agggcccagc tcccctggaa 4380 gctatcgcaa atggatgtgc ttttctgaat cccaagttca acccacccaa aagcagcaaa 4440 aacacagact ttttcattgg caagccaact ctgagagagc tgacatccca gcatccttac 4500 gctgaagttt tcatcgggcg gccacatgtg tggactgttg acctcaacaa tcaggaggaa 4560 gtagaggatg cagtgaaagc aattttaaat cagaagattg agccatacat gccatatgaa 4620 tttacgtgcg aggggatgct acagagaatc aatgctttca ttgaaaaaca ggacttctgc 4680 catgggcaag tgatgtggcc acccctcagc gccctacagg tcaagcttgc tgagcccggg 4740 cagtcctgca agcaggtgtg ccaggagagc cagctcatct gcgagccttc tttcttccag 4800 cacctcaaca aggacaagga catgctgaag tacaaggtga cctgccaaag ctcagagctg 4860 gccaaggaca tcctggtgcc ctcctttgac cctaagaata agcactgtgt gtttcaaggt 4920 gacctcctgc tcttcagctg tgcaggcgcc caccccaggc accagagggt ctgcccctgc 4980 cgggacttca tcaagggcca ggtggctctc tgcaaagact gcctatagca gctacctgct 5040 cagccctgca ccatgctgct ggggaagaca gtggcccc 5078 124 887 DNA Homo sapiens misc_feature X16863 124 tctttggtga cttgtccact ccagtgtggc atcatgtggc agctgctcct cccaactgct 60 ctgctacttc tagtttcagc tggcatgcgg actgaagatc tcccaaaggc tgtggtgttc 120 ctggagcctc aatggtacag cgtgcttgag aaggacagtg tgactctgaa gtgccaggga 180 gcctactccc ctgaggacaa ttccacacag tggtttcaca atgagagcct catctcaagc 240 caggcctcga gctacttcat tgacgctgcc acagtcaacg acagtggaga gtacaggtgc 300 cagacaaacc tctccaccct cagtgacccg gtgcagctag aagtccatat cggctggctg 360 ttgctccagg cccctcggtg ggtgttcaag gaggaagacc ctattcacct gaggtgtcac 420 agctggaaga acactgctct gcataaggtc acatatttac agaatggcaa agacaggaag 480 tattttcatc ataattctga cttccacatt ccaaaagcca cactcaaaga tagcggctcc 540 tacttctgca gggggcttgt tgggagtaaa aatgtgtctt cagagactgt gaacatcacc 600 atcactcaag gtttggcagt gtcaaccatc tcatcattct ctccacctgg gtaccaagtc 660 tctttctgct tggtgatggt actccttttt gcagtggaca caggactata tttctctgtg 720 aagacaaaca tttgaagctc aacaagagac tggaaggacc ataaacttaa atggagaaag 780 gaccctcaag acaaatgacc cccatcccat gggagtaata agagcagtgg cagcagcatc 840 tctgaacatt tctctggatt tgcaacccca tcatcctcag gcctctc 887 125 1800 DNA Homo sapiens misc_feature XM_042961 125 cttctctgcc agaagatacc atttcaactt taacacagca tgatcgaaac atacaaccaa 60 acttctcccc gatctgcggc cactggactg cccatcagca tgaaaatttt tatgtattta 120 cttactgttt ttcttatcac ccagatgatt gggtcagcac tttttgctgt gtatcttcat 180 agaaggttgg acaagataga agatgaaagg aatcttcatg aagattttgt attcatgaaa 240 acgatacaga gatgcaacac aggagaaaga tccttatcct tactgaactg tgaggagatt 300 aaaagccagt ttgaaggctt tgtgaaggat ataatgttaa acaaagagga gacgaagaaa 360 gaaaacagct ttgaaatgca aaaaggtgat cagaatcctc aaattgcggc acatgtcata 420 agtgaggcca gcagtaaaac aacatctgtg ttacagtggg ctgaaaaagg atactacacc 480 atgagcaaca acttggtaac cctggaaaat gggaaacagc tgaccgttaa aagacaagga 540 ctctattata tctatgccca agtcaccttc tgttccaatc gggaagcttc gagtcaagct 600 ccatttatag ccagcctctg cctaaagtcc cccggtagat tcgagagaat cttactcaga 660 gctgcaaata cccacagttc cgccaaacct tgcgggcaac aatccattca cttgggagga 720 gtatttgaat tgcaaccagg tgcttcggtg tttgtcaatg tgactgatcc aagccaagtg 780 agccatggca ctggcttcac gtcctttggc ttactcaaac tctgaacagt gtcaccttgc 840 aggctgtggt ggagctgacg ctgggagtct tcataataca gcacagcggt taagcccacc 900 ccctgttaac tgcctattta taaccctagg atcctcctta tggagaacta tttattatac 960 actccaaggc atgtagaact gtaataagtg aattacaggt cacatgaaac caaaacgggc 1020 cctgctccat aagagcttat atatctgaag cagcaacccc actgatgcag acatccagag 1080 agtcctatga aaagacaagg ccattatgca caggttgaat tctgagtaaa cagcagataa 1140 cttgccaagt tcagttttgt ttctttgcgt gcagtgtctt tccatggata atgcatttga 1200 tttatcagtg aagatgcaga agggaaatgg ggagcctcag ctcacattca gttatggttg 1260 actctgggtt cctatggcct tgttggaggg ggccaggctc tagaacgtct aacacagtgg 1320 agaaccgaaa cccccccccc ccccccgcca ccctctcgga cagttattca ttctctttca 1380 atctctctct ctccatctct ctctttcagt ctctctctct caacctcttt cttccaatct 1440 ctctttctca atctctctgt ttccctttgt cagtctcttc cctcccccag tctctcttct 1500 caatccccct ttctaacaca cacacacaca cacacacaca cacacacaca cacacacaca 1560 cacacacaga gtcaggccgt tgctagtcag ttctcttctt tccaccctgt ccctatctct 1620 accactatag atgagggtga ggagtaggga gtgcagccct gagcctgccc actcctcatt 1680 acgaaatgac tgtatttaaa ggaaatctat tgtatctacc tgcagtctcc attgtttcca 1740 gagtgaactt gtaattatct tgttatttat tttttgaata ataaagacct cttaacatta 1800 126 1450 DNA Homo sapiens misc_feature J04101 126 ttgggaagaa agtcggattt cccccgtccc cttccccctg ttactaatcc tcattaaaaa 60 gaaaaacaac aataactgca aacttgctac catcccgtac gtcccccact cctggcacca 120 tgaaggcggc cgtcgatctc aagccgactc tcaccatcat caagacggaa aaagtcgatc 180 tggagctttt cccctccccg gatatggaat gtgcagatgt cccactatta actccaagca 240 gcaaagaaat gatgtctcaa gcattaaaag ctactttcag tggtttcact aaagaacagc 300 aacgactggg gatcccaaaa gacccccggc agtggacaga aacccatgtt cgggactggg 360 tgatgtgggc tgtgaatgaa ttcagcctga aaggtgtaga cttccagaag ttctgtatga 420 atggagcagc cctctgcgcc ctgggtaaag actgctttct cgagctggcc ccagactttg 480 ttggggacat cttatgggaa catctagaga tcctgcagaa agaggatgtg aaaccatatc 540 aagttaatgg agtcaaccca gcctatccag aatcccgcta tacctcggat tacttcatta 600 gctatggtat tgagcatgcc cagtgtgttc caccatcgga gttctcagag cccagcttca 660 tcacagagtc ctatcagacg ctccatccca tcagctcgga agagctcctc tccctcaagt 720 atgagaatga ctacccctcg gtcattctcc gagaccctct ccagacagac accttgcaga 780 atgactactt tgctatcaaa caagaagtcg tcaccccaga caacatgtgc atggggagga 840 ccagtcgtgg taaactcggg ggccaggact cttttgaaag catagagagc tacgatagtt 900 gtgatcgcct cacccagtcc tggagcagcc agtcatcttt caacagcctg cagcgtgttc 960 cctcctatga cagcttcgac tcagaggact atccggctgc cctgcccaac cacaagccca 1020 agggcacctt caaggactat gtgcgggacc gtgctgacct caataaggac aagcctgtca 1080 ttcctgctgc tgccctagct ggctacacag gcagtggacc aatccagcta tggcagtttc 1140 ttctggaatt actcactgat aaatcctgtc agtcttttat cagctggaca ggagatggct 1200 gggaattcaa actttctgac ccagatgagg tggccaggag atggggaaag aggaaaaaca 1260 aacctaagat gaattatgag aaactgagcc gtggcctacg ctactattac gacaaaaaca 1320 tcatccacaa gacagcgggg aaacgctacg tgtaccgctt tgtgtgtgac ctgcagagcc 1380 tgctggggta cacccctgag gagctgcacg ccatgctgga cgtcaagcca gatgccgacg 1440 agtgatggca 1450 127 6069 DNA Homo sapiens misc_feature XM_047802 127 gcagctgccg actggggatg acggcgggca ggaggagacc gcagccgaag ggacacagac 60 acgccgcttc accagctcgc ctcaggctgc ccccctgcat ttttgtttta atttttacgg 120 ctttttcccc tctctttctt cccttcctcc tggtcccagc agagccaagg aaacccacaa 180 aataagaaag gaagtgggcc ccggagcttg gaacctccac agccggcttg tccagcgcag 240 cgcgggggcg ggaggctgcg cgcaccagtt gccagcccgg tgcgcggtac ctttccttac 300 ttttcttgaa acagcgatcg tgcctgcatt tggtggtttt ttggtttttg tttttttcct 360 tttcccgtat ttgctgaatc tccactatcc gacttttttt ttttaatctt ttctttcccc 420 ccccccccac cccacctctt tctggagcac gaatccaaac attttcccaa gcaacaaaga 480 aaagttcgca cgctggcacc gcagcccgga caggctggcg ctgctgccgg gcccccctcc 540 ctccgacact tgactcaatc ctgcaagcaa gtgtgtgtgt gtccccatcc cccgccccgt 600 taacttcata gcaaataaca aatacccata aagtcccagt cgcgcagccc ctccccgcgg 660 gcagcgcact atgctgctcg ggtgggcgtc cctgctgctg tgcgcgttcc gcctgcccct 720 ggccgcggtc ggccccgccg cgacacctgc ccaggataaa gccgggcagc ctccgactgc 780 tgcagcagcc gcccagcccc gccggcggca gggggaggag gtgcaggagc gagccgagcc 840 tcccggccac ccgcaccccc tggcgcagcg gcgcaggagc aaggggctgg tgcagaacat 900 cgaccaactc tactccggcg gcggcaaggt gggctacctc gtctacgcgg gcggccggag 960 gttcctcttg gacctggagc gagatggttc ggtgggcatt gctggcttcg tgcccgcagg 1020 aggcgggacg agtgcgccct ggcgccaccg gagccactgc ttctatcggg gcacagtgga 1080 cggtagtccc cgctctctgg ctgtctttga cctctgtggg ggtctcgacg gcttcttcgc 1140 ggtcaagcac gcgcgctaca ccctaaagcc actgctgcgc ggaccctggg cggaggaaga 1200 aaaggggcgc gtgtacgggg atgggtccgc acggatcctg cacgtctaca cccgcgaggg 1260 cttcagcttc gaggccctgc cgccgcgcgc cagctgcgaa acccccgcgt ccacaccgga 1320 ggcccacgag catgctccgg cgcacagcaa cccgagcgga cgcgcagcac tggcctcgca 1380 gctcttggac cagtccgctc tctcgcccgc tgggggctca ggaccgcaga cgtggtggcg 1440 gcggcggcgc cgctccatct cccgggcccg ccaggtggag ctgcttctgg tggctgacgc 1500 gtccatggcg cggttgtatg gccggggcct gcagcattac ctgctgaccc tggcctccat 1560 cgccaatagg ctgtacagcc atgctagcat cgagaaccac atccgcctgg ccgtggtgaa 1620 ggtggtggtg ctaggcgaca aggacaagag cctggaagtg agcaagaacg ctgccaccac 1680 actcaagaac ttttgcaagt ggcagcacca acacaaccag ctgggagatg accatgagga 1740 gcactacgat gcagctatcc tgtttactcg ggaggattta tgtgggcatc attcatgtga 1800 caccctggga atggcagacg ttgggaccat atgttctcca gagcgcagct gtgctgtgat 1860 tgaagacgat ggcctccacg cagccttcac tgtggctcac gaaatcggac atttacttgg 1920 cctctcccat gacgattcca aattctgtga agagaccttt ggttccacag aagataagcg 1980 cttaatgtct tccatcctta ccagcattga tgcatctaag ccctggtcca aatgcacttc 2040 agccaccatc acagaattcc tggatgatgg ccatggtaac tgtttgctgg acctaccacg 2100 aaagcagatc ctgggccccg aagaactccc aggacagacc tacgatgcca cccagcagtg 2160 caacctgaca ttcgggcctg agtactccgt gtgtcccggc atggatgtct gtgctcgcct 2220 gtggtgtgct gtggtacgcc agggccagat ggtctgtctg accaagaagc tgcctgcggt 2280 ggaagggacg ccttgtggaa aggggagaat ctgcctgcag ggcaaatgtg tggacaaaac 2340 caagaaaaaa tattattcaa cgtcaagcca tggcaactgg ggatcttggg gatcctgggg 2400 ccagtgttct cgctcatgtg gaggaggagt gcagtttgcc tatcgtcact gtaataaccc 2460 tgctcccaga aacaacggac gctactgcac agggaagagg gccatctacc gctcctgcag 2520 tctcatgccc tgcccaccca atggtaaatc atttcgtcat gaacagtgtg aggccaaaaa 2580 tggctatcag tctgatgcaa aaggagtcaa aacttttgtg gaatgggttc ccaaatatgc 2640 aggtgtcctg ccagcggatg tgtgcaagct gacctgcaga gccaagggca ctggctacta 2700 tgtggtattt tctccaaagg tgaccgatgg cactgaatgt aggctgtaca gtaattccgt 2760 ctgcgtccgg gggaagtgtg tgagaactgg ctgtgacggc atcattggct caaagctgca 2820 gtatgacaag tgcggagtat gtggaggaga caactccagc tgtacaaaga ttgttggaac 2880 ctttaataag aaaagtaagg gttacactga cgtggtgagg attcctgaag gggcaaccca 2940 cataaaagtt cgacagttca aagccaaaga ccagactaga ttcactgcct atttagccct 3000 gaaaaagaaa aacggtgagt accttatcaa tggaaagtac atgatctcca cttcagagac 3060 tatcattgac atcaatggaa cagtcatgaa ctatagcggt tggagccaca gggatgactt 3120 cctgcatggc atgggctact ctgccacgaa ggaaattcta atagtgcaga ttcttgcaac 3180 agaccccact aaaccattag atgtccgtta tagctttttt gttcccaaga agtccactcc 3240 aaaagtaaac tctgtcacta gtcatggcag caataaagtg ggatcacaca cttcgcagcc 3300 gcagtgggtc acgggcccat ggctcgcctg ctctaggacc tgtgacacag gttggcacac 3360 cagaacggtg cagtgccagg atggaaaccg gaagttagca aaaggatgtc ctctctccca 3420 aaggccttct gcgtttaagc aatgcttgtt gaagaaatgt tagcctgtgg ttatgatctt 3480 atgcacaaag ataactggag gattcagcac tgatgcagtc gtggtgaaca ggaggtctac 3540 ctaacgcaca gaaagtcatg cttcagtgac attgtcaaca ggagtccaat tatgggcaga 3600 atctgctctc tgtgaccaaa agaggatgtg cactgcttca cgtgacagtg gtgaccttgc 3660 aatatagaaa aacttgggag ttattgaaca tcccctgggc ttacaagaaa cactgatgaa 3720 tgtaaaatca ggggacattt gaagatggca gaactgtctc ccccttgtca cctacctctg 3780 atagaatgtc tttaatggta tcataatcat tttcacccat aatacacagt agcttcttct 3840 tactgtttgt aaatacattc tcccttggta tgtcacttta tatcccctgg ttctattaaa 3900 atatccatat atatttctat aaaaaaagtg tttgaccaaa gtaggtctgc agctatttca 3960 acttccttcc gtttccagaa agagctgtgg atattttact ggaaattaag aacttgctgc 4020 tgttttaata agatgtagta tattttctga ctacaggaga taaaatttca gtcaaaaaac 4080 cattttgaca gcaagtatct tctgagaaat tttgaaaagt aaatagatct cagtgtatct 4140 agtcacttaa atacatacac gggttcattt acttaaacct ttgactgcct gtattttttt 4200 caggtagcta gccaaattaa tgcataattt cagatgtaga agtagggttt gcgtgtgtgt 4260 gtgtgatcat actcaagagt ctaaaaacta gtttccttgt gttggaaatt taaaaggaaa 4320 aaaatcgtat ttcactgtgt tttcaattta tattttcaca actactttct ctctccagag 4380 ctttcatctg atatctcaca atgtatgata tacgtacaaa acacacagca agttttctat 4440 catgtccaac acattcaaca ctggtatacc tcctaccagc aagcctttaa aatgcatttg 4500 tgtttgctta tttgttttgt tcaagggttc agtaagacct acaatgtttt gtatttcttg 4560 acttatttta ttagaaacat taaagatcac ttggtagtta gccacattga gaagtggtta 4620 tcattgttaa tgtggttaat gccaaaaagt ggttaatatt aataagactg tttccacacc 4680 ataggcaata atttcttaat ttaaaaaatc taagtatatt cctattgtac taaatatttt 4740 tcccaactgg aaagcacttg attgtacccg taagtgtttg agtgatgaca tgtgatgatt 4800 ttcagaaagt tgttgttttt gtttccatag cctgtttaag taggttgtaa gtttgaatag 4860 ttagacatgg aaattatttt ataagcacac acctaaagat atctttttag atgataaaat 4920 gtacaccccc ccatcaccaa cctcacaact tagaaaatct aagttgtttg atttctttgg 4980 gatttctttt gttgtgaaac actgcaaagc caatttttct ttataaaaat tcatagtaat 5040 cctgccaaat gtgcctattg ttaaagattt gcatgtgaag atcttaggga accactgttt 5100 gagttctaca agctcatgag agtttatttt tattataaga tgtttttaat ataaaagaat 5160 tatgtaactg atcactatat tacatcattt cagtgggcca ggaaaataga tgtcttgctg 5220 ttttcagtat tttcttaaga aattgctttt aaaacaaata attgttttac aaaaccaata 5280 attatccttt gaattttcat agactgactt tgcttttgac gtagaaattt tttttctcaa 5340 taaattatca ctttgagaaa tgaggcctgt acaaggctga taacctatat gtgatggaga 5400 tcacccaatg ccaagggcag aaagcaaacc tagttaaata ggtgagaaaa aaaataataa 5460 tcccagtgcc atttgtctgt gcaaagagaa ttaggagaga ggttaatgtt acttttttcc 5520 attttggaaa taattttaat caagtaactc aaatgtgaca aaatttattt ttattttttg 5580 tggttatatt cccaacaaca ttaaaaaata ctcgaggcat aaatgtagtt gtctcctact 5640 ctgcttctct tactatactc atacattttt aatatggttt atcaatgatt catgtttccc 5700 tcaaatagtg atggtttaca cctgtcatgg aaacaatcct agagagctca gagcaattaa 5760 accactattc catgctttta agtagttttc tccacctttt tcttatgagt ctcactagat 5820 tgactgagga atgtatgtct aaattcctgg agaagatgat atggattgga aactgaaatt 5880 cagagaaatg gagtgttcaa tagataccac gaattgtgaa caaagggaaa attctataca 5940 actcaatcta agtcagtcca ctttgacttc gtactgtctt tcacctttcc attgttgcat 6000 cttgaatttt ttaaaatgtc tagaattcag gatgctaggg gctacttctt taaaaaaaaa 6060 aaaaaaaaa 6069 128 3318 DNA Homo sapiens misc_feature NM_002827 128 gtgatgcgta gttccggctg ccggttgaca tgaagaagca gcagcggcta gggcggcggt 60 agctgcaggg gtcggggatt gcagcgggcc tcggggctaa gagcgcgacg cggcctagag 120 cggcagacgg cgcagtgggc cgagaaggag gcgcagcagc cgccctggcc cgtcatggag 180 atggaaaagg agttcgagca gatcgacaag tccgggagct gggcggccat ttaccaggat 240 atccgacatg aagccagtga cttcccatgt agagtggcca agcttcctaa gaacaaaaac 300 cgaaataggt acagagacgt cagtcccttt gaccatagtc ggattaaact acatcaagaa 360 gataatgact atatcaacgc tagtttgata aaaatggaag aagcccaaag gagttacatt 420 cttacccagg gccctttgcc taacacatgc ggtcactttt gggagatggt gtgggagcag 480 aaaagcaggg gtgtcgtcat gctcaacaga gtgatggaga aaggttcgtt aaaatgcgca 540 caatactggc cacaaaaaga agaaaaagag atgatctttg aagacacaaa tttgaaatta 600 acattgatct ctgaagatat caagtcatat tatacagtgc gacagctaga attggaaaac 660 cttacaaccc aagaaactcg agagatctta catttccact ataccacatg gcctgacttt 720 ggagtccctg aatcaccagc ctcattcttg aactttcttt tcaaagtccg agagtcaggg 780 tcactcagcc cggagcacgg gcccgttgtg gtgcactgca gtgcaggcat cggcaggtct 840 ggaaccttct gtctggctga tacctgcctc ttgctgatgg acaagaggaa agacccttct 900 tccgttgata tcaagaaagt gctgttagaa atgaggaagt ttcggatggg gctgatccag 960 acagccgacc agctgcgctt ctcctacctg gctgtgatcg aaggtgccaa attcatcatg 1020 ggggactctt ccgtgcagga tcagtggaag gagctttccc acgaggacct ggagccccca 1080 cccgagcata tccccccacc tccccggcca cccaaacgaa tcctggagcc acacaatggg 1140 aaatgcaggg agttcttccc aaatcaccag tgggtgaagg aagagaccca ggaggataaa 1200 gactgcccca tcaaggaaga aaaaggaagc cccttaaatg ccgcacccta cggcatcgaa 1260 agcatgagtc aagacactga agttagaagt cgggtcgtgg ggggaagtct tcgaggtgcc 1320 caggctgcct ccccagccaa aggggagccg tcactgcccg agaaggacga ggaccatgca 1380 ctgagttact ggaagccctt cctggtcaac atgtgcgtgg ctacggtcct cacggccggc 1440 gcttacctct gctacaggtt cctgttcaac agcaacacat agcctgaccc tcctccactc 1500 cacctccacc cactgtccgc ctctgcccgc agagcccacg cccgactagc aggcatgccg 1560 cggtaggtaa gggccgccgg accgcgtaga gagccgggcc ccggacggac gttggttctg 1620 cactaaaacc catcttcccc ggatgtgtgt ctcacccctc atccttttac tttttgcccc 1680 ttccactttg agtaccaaat ccacaagcca ttttttgagg agagtgaaag agagtaccat 1740 gctggcggcg cagagggaag gggcctacac ccgtcttggg gctcgcccca cccagggctc 1800 cctcctggag catcccaggc gggcggcacg ccaacagccc cccccttgaa tctgcaggga 1860 gcaactctcc actccatatt tatttaaaca attttttccc caaaggcatc catagtgcac 1920 tagcattttc ttgaaccaat aatgtattaa aattttttga tgtcagcctt gcatcaaggg 1980 ctttatcaaa aagtacaata ataaatcctc aggtagtact gggaatggaa ggctttgcca 2040 tgggcctgct gcgtcagacc agtactggga aggaggacgg ttgtaagcag ttgttattta 2100 gtgatattgt gggtaacgtg agaagataga acaatgctat aatatataat gaacacgtgg 2160 gtatttaata agaaacatga tgtgagatta ctttgtcccg cttattctcc tccctgttat 2220 ctgctagatc tagttctcaa tcactgctcc cccgtgtgta ttagaatgca tgtaaggtct 2280 tcttgtgtcc tgatgaaaaa tatgtgcttg aaatgagaaa ctttgatctc tgcttactaa 2340 tgtgccccat gtccaagtcc aacctgcctg tgcatgacct gatcattaca tggctgtggt 2400 tcctaagcct gttgctgaag tcattgtcgc tcagcaatag ggtgcagttt tccaggaata 2460 ggcatttgcc taattcctgg catgacactc tagtgacttc ctggtgaggc ccagcctgtc 2520 ctggtacagc agggtcttgc tgtaactcag acattccaag ggtatgggaa gccatattca 2580 cacctcacgc tctggacatg atttagggaa gcagggacac cccccgcccc ccacctttgg 2640 gatcagcctc cgccattcca agtcaacact cttcttgagc agaccgtgat ttggaagaga 2700 ggcacctgct ggaaaccaca cttcttgaaa cagcctgggt gacggtcctt taggcagcct 2760 gccgccgtct ctgtcccggt tcaccttgcc gagagaggcg cgtctgcccc accctcaaac 2820 cctgtggggc ctgatggtgc tcacgactct tcctgcaaag ggaactgaag acctccacat 2880 taagtggctt tttaacatga aaaacacggc agctgtagct cccgagctac tctcttgcca 2940 gcattttcac attttgcctt tctcgtggta gaagccagta cagagaaatt ctgtggtggg 3000 aacattcgag gtgtcaccct gcagagctat ggtgaggtgt ggataaggct taggtgccag 3060 gctgtaagca ttctgagctg ggcttgttgt ttttaagtcc tgtatatgta tgtagtagtt 3120 tgggtgtgta tatatagtag catttcaaaa tggacgtact ggtttaacct cctatccttg 3180 gagagcagct ggctctccac cttgttacac attatgttag agaggtagcg agctgctctg 3240 ctatatgcct taagccaata tttactcatc aggtcattat tttttacaat ggccatggaa 3300 taaaccattt ttacaaaa 3318 129 1973 DNA Homo sapiens misc_feature NM_002421 129 gggatattgg agtagcaaga ggctgggaag ccatcactta ccttgcactg agaaagaaga 60 caaaggccag tatgcacagc tttcctccac tgctgctgct gctgttctgg ggtgtggtgt 120 ctcacagctt cccagcgact ctagaaacac aagagcaaga tgtggactta gtccagaaat 180 acctggaaaa atactacaac ctgaagaatg atgggaggca agttgaaaag cggagaaata 240 gtggcccagt ggttgaaaaa ttgaagcaaa tgcaggaatt ctttgggctg aaagtgactg 300 ggaaaccaga tgctgaaacc ctgaaggtga tgaagcagcc cagatgtgga gtgcctgatg 360 tggctcagtt tgtcctcact gaggggaacc ctcgctggga gcaaacacat ctgacctaca 420 ggattgaaaa ttacacgcca gatttgccaa gagcagatgt ggaccatgcc attgagaaag 480 ccttccaact ctggagtaat gtcacacctc tgacattcac caaggtctct gagggtcaag 540 cagacatcat gatatctttt gtcaggggag atcatcggga caactctcct tttgatggac 600 ctggaggaaa tcttgctcat gcttttcaac caggcccagg tattggaggg gatgctcatt 660 ttgatgaaga tgaaaggtgg accaacaatt tcagagagta caacttacat cgtgttgcgg 720 ctcatgaact cggccattct cttggactct cccattctac tgatatcggg gctttgatgt 780 accctagcta caccttcagt ggtgatgttc agctagctca ggatgacatt gatggcatcc 840 aagccatata tggacgttcc caaaatcctg tccagcccat cggcccacaa accccaaaag 900 cgtgtgacag taagctaacc tttgatgcta taactacgat tcggggagaa gtgatgttct 960 ttaaagacag attctacatg cgcacaaatc ccttctaccc ggaagttgag ctcaatttca 1020 tttctgtttt ctggccacaa ctgccaaatg ggcttgaagc tgcttacgaa tttgccgaca 1080 gagatgaagt ccggtttttc aaagggaata agtactgggc tgttcaggga cagaatgtgc 1140 tacacggata ccccaaggac atctacagct cctttggctt ccctagaact gtgaagcata 1200 tcgatgctgc tctttctgag gaaaacactg gaaaaaccta cttctttgtt gctaacaaat 1260 actggaggta tgatgaatat aaacgatcta tggatccagg ttatcccaaa atgatagcac 1320 atgactttcc tggaattggc cacaaagttg atgcagtttt catgaaagat ggatttttct 1380 atttctttca tggaacaaga caatacaaat ttgatcctaa aacgaagaga attttgactc 1440 tccagaaagc taatagctgg ttcaactgca ggaaaaattg aacattacta atttgaatgg 1500 aaaacacatg gtgtgagtcc aaagaaggtg ttttcctgaa gaactgtcta ttttctcagt 1560 catttttaac ctctagagtc actgatacac agaatataat cttatttata cctcagtttg 1620 catatttttt tactatttag aatgtagccc tttttgtact gatataattt agttccacaa 1680 atggtgggta caaaaagtca agtttgtggc ttatggattc atataggcca gagttgcaaa 1740 gatcttttcc agagtatgca actctgacgt tgatcccaga gagcagcttc agtgacaaac 1800 atatcctttc aagacagaaa gagacaggag acatgagtct ttgccggagg aaaagcagct 1860 caagaacaca tgtgcagtca ctggtgtcac cctggatagg caagggataa ctcttctaac 1920 acaaaataag tgttttatgt ttggaataaa gtcaaccttg tttctactgt ttt 1973 130 2279 DNA Homo sapiens misc_feature NM_001752 130 tgcctgctga gggtggagac ccacgagccg aggcctcctg cagtgttctg cacagcaaac 60 cgcacgctat ggctgacagc cgggatcccg ccagcgacca gatgcagcac tggaaggagc 120 agcgggccgc gcagaaagct gatgtcctga ccactggagc tggtaaccca gtaggagaca 180 aacttaatgt tattacagta gggccccgtg ggccccttct tgttcaggat gtggttttca 240 ctgatgaaat ggctcatttt gaccgagaga gaattcctga gagagttgtg catgctaaag 300 gagcaggggc ctttggctac tttgaggtca cacatgacat taccaaatac tccaaggcaa 360 aggtatttga gcatattgga aagaagactc ccatcgcagt tcggttctcc actgttgctg 420 gagaatcggg ttcagctgac acagttcggg accctcgtgg gtttgcagtg aaattttaca 480 cagaagatgg taactgggat ctcgttggaa ataacacccc cattttcttc atcagggatc 540 ccatattgtt tccatctttt atccacagcc aaaagagaaa tcctcagaca catctgaagg 600 atccggacat ggtctgggac ttctggagcc tacgtcctga gtctctgcat caggtttctt 660 tcttgttcag tgatcggggg attccagatg gacatcgcca catgaatgga tatggatcac 720 atactttcaa gctggttaat gcaaatgggg aggcagttta ttgcaaattc cattataaga 780 ctgaccaggg catcaaaaac ctttctgttg aagatgcggc gagactttcc caggaagatc 840 ctgactatgg catccgggat ctttttaacg ccattgccac aggaaagtac ccctcctgga 900 ctttttacat ccaggtcatg acatttaatc aggcagaaac ttttccattt aatccattcg 960 atctcaccaa ggtttggcct cacaaggact accctctcat cccagttggt aaactggtct 1020 taaaccggaa tccagttaat tactttgctg aggttgaaca gatagccttc gacccaagca 1080 acatgccacc tggcattgag gccagtcctg acaaaatgct tcagggccgc ctttttgcct 1140 atcctgacac tcaccgccat cgcctgggac ccaattatct tcatatacct gtgaactgtc 1200 cctaccgtgc tcgagtggcc aactaccagc gtgatggccc gatgtgcatg caggacaatc 1260 agggtggtgc tccaaattac taccccaaca gctttggtgc tccggaacaa cagccttctg 1320 ccctggagca cagcatccaa tattctggag aagtgcggag attcaacact gccaatgatg 1380 ataacgttac tcaggtgcgg gcattctatg tgaacgtgct gaatgaggaa cagaggaaac 1440 gtctgtgtga gaacattgcc ggccacctga aggatgcaca aattttcatc cagaagaaag 1500 cggtcaagaa cttcactgag gtccaccctg actacgggag ccacatccag gctcttctgg 1560 acaagtacaa tgctgagaag cctaagaatg cgattcacac ctttgtgcag tccggatctc 1620 acttggcggc aagggagaag gcaaatctgt gaggccgggg ccctgcacct gtgcagcgaa 1680 gcttagcgtt catccgtgta acccgctcat cactggatga agattctcct gtgctagatg 1740 tgcaaatgca agctagtggc ttcaaaatag agaatcccac tttctatagc agattgtgta 1800 acaattttaa tgctatttcc ccaggggaaa atgaaggtta ggatttaaca gtcatttaaa 1860 aaaaaaattt gttttgacgg atgattggat tattcattta aaatgattag aaggcaagtt 1920 tctagctaga aatatgattt tatttgacaa aatttgttga aattatgtat gtttacatat 1980 cacctcatgg cctattatat taaaatatgg ctataaatat ataaaaagaa aagataaaga 2040 tgatctactc agaaattttt atttttctaa ggttctcata ggaaaagtac atttaataca 2100 gcagtgtcat cagaagataa cttgagcacc gtcatggctt aatgtttatt cctgataata 2160 attgatcaaa ttcatttttt tcactggagt tacattaatg ttaattcagc actgatttca 2220 caacagatca atttgtaatt gcttacattt ttacaataaa taatctgtac gtaagaaca 2279 131 2438 DNA Homo sapiens misc_feature NM_016155 131 ccggcggggg cgccgcggag agcggagggc gccgggctgc ggaacgcgaa gcggagggcg 60 cgggaccctg cacgccgccc gcgggcccat gtgagcgcca tgcggcgccg cgcagcccgg 120 ggacccggcc cgccgccccc agggcccgga ctctcgcggt tgccgctgct gccgctgccg 180 ctgctgctgc tgctggcgct ggggacccgc gggggctgcg ccgcgcccgc acccgcgccg 240 cgcgccgagg acctcagcct gggagtggag tggctaagca ggttcggtta cctgcccccg 300 gctgacccca caacagggca gctgcagacg caagaggagc tgtctaaggc catcacagcc 360 atgcagcagt ttggtggcct ggaggccacc ggcatcctgg acgaggccac cctggccctg 420 atgaaaaccc cacgctgctc cctgccagac ctccctgtcc tgacccaggc tcgcaggaga 480 cgccaggctc cagcccccac caagtggaac aagaggaacc tgtcgtggag ggtccggacg 540 ttcccacggg actcaccact ggggcacgac acggtgcgtg cactcatgta ctacgccctc 600 aaggtctgga gcgacattgc gcccctgaac ttccacgagg tggcgggcag caccgccgac 660 atccagatcg acttctccaa ggccgaccat aacgacggct accccttcga cggccccggc 720 ggcaccgtgg cccacgcctt cttccccggc caccaccaca ccgccgggga cacccacttt 780 gacgatgacg aggcctggac cttccgctcc tcggatgccc acgggatgga cctgtttgca 840 gtggctgtcc acgagtttgg ccacgccatt gggttaagcc atgtggccgc tgcacactcc 900 atcatgcggc cgtactacca gggcccggtg ggtgacccgc tgcgctacgg gctcccctac 960 gaggacaagg tgcgcgtctg gcagctgtac ggtgtgcggg agtctgtgtc tcccacggcg 1020 cagcccgagg agcctcccct gctgccggag cccccagaca accggtccag cgccccgccc 1080 aggaaggacg tgccccacag atgcagcact cactttgacg cggtggccca gatccgcggt 1140 gaagctttct tcttcaaagg caagtacttc tggcggctga cgcgggaccg gcacctggtg 1200 tccctgcagc cggcacagat gcaccgcttc tggcggggcc tgccgctgca cctggacagc 1260 gtggacgccg tgtacgagcg caccagcgac cacaagatcg tcttctttaa aggagacagg 1320 tactgggtgt tcaaggacaa taacgtagag gaaggatacc cgcgccccgt ctccgacttc 1380 agcctcccgc ctggcggcat cgacgctgcc ttctcctggg cccacaatga caggacttat 1440 ttctttaagg accagctgta ctggcgctac gatgaccaca cgaggcacat ggaccccggc 1500 taccccgccc agagccccct gtggaggggt gtccccagca cgctggacga cgccatgcgc 1560 tggtccgacg gtgcctccta cttcttccgt ggccaggagt actggaaagt gctggatggc 1620 gagctggagg tggcacccgg gtacccacag tccacggccc gggactggct ggtgtgtgga 1680 gactcacagg ccgatggatc tgtggctgcg ggcgtggacg cggcagaggg gccccgcgcc 1740 cctccaggac aacatgacca gagccgctcg gaggacggtt acgaggtctg ctcatgcacc 1800 tctggggcat cctctccccc gggggcccca ggcccactgg tggctgccac catgctgctg 1860 ctgctgccgc cactgtcacc aggcgccctg tggacagcgg cccaggccct gacgctatga 1920 cacacagcgc gagcccatga gaggacagag gcggtgggac agcctggcca cagagggcaa 1980 ggactgtgcc ggagtccctg ggggaggtgc tggcgcggga tgaggacggg ccaccctggc 2040 accggaaggc cagcagaggg cacggcccgc cagggctggg caggctcagg tggcaaggac 2100 ggagctgtcc cctagtgagg gactgtgttg actgacgagc cgaggggtgg ccgctccaga 2160 agggtgccca gtcaggccgc accgccgcca gcctcctccg gccctggagg gagcatctcg 2220 ggctgggggc ccacccctct ctgtgccggc gccaccaacc ccacccacac tgctgcctgg 2280 tgctcccgcc ggcccacagg gcctccgtcc ccaggtcccc agtggggcag ccctccccac 2340 agacgagccc cccacatggt gccgcggcac gtcccccctg tgacgcgttc cagaccaaca 2400 tgacctctcc ctgctttgta aaaaaaaaaa aaaaaaaa 2438 132 1356 DNA Homo sapiens misc_feature U94332 132 gtatatataa cgtgatgagc gtacgggtgc ggagacgcac cggagcgctc gcccagccgc 60 cgyctccaag cccctgaggt ttccggggac cacaatgaac aagttgctgt gctgcgcgct 120 cgtgtttctg gacatctcca ttaagtggac cacccaggaa acgtttcctc caaagtacct 180 tcattatgac gaagaaacct ctcatcagct gttgtgtgac aaatgtcctc ctggtaccta 240 cctaaaacaa cactgtacag caaagtggaa gaccgtgtgc gccccttgcc ctgaccacta 300 ctacacagac agctggcaca ccagtgacga gtgtctatac tgcagccccg tgtgcaagga 360 gctgcagtac gtcaagcagg agtgcaatcg cacccacaac cgcgtgtgcg aatgcaagga 420 agggcgctac cttgagatag agttctgctt gaaacatagg agctgccctc ctggatttgg 480 agtggtgcaa gctggaaccc cagagcgaaa tacagtttgc aaaagatgtc cagatgggtt 540 cttctcaaat gagacgtcat ctaaagcacc ctgtagaaaa cacacaaatt gcagtgtctt 600 tggtctcctg ctaactcaga aaggaaatgc aacacacgac aacatatgtt ccggaaacag 660 tgaatcaact caaaaatgtg gaatagatgt taccctgtgt gaggaggcat tcttcaggtt 720 tgctgttcct acaaagttta cgcctaactg gcttagtgtc ttggtagaca atttgcctgg 780 caccaaagta aacgcagaga gtgtagagag gataaaacgg caacacagct cacaagaaca 840 gactttccag ctgctgaagt tatggaaaca tcaaaacaaa gcccaagata tagtcaagaa 900 gatcatccaa gatattgacc tctgtgaaaa cagcgtgcag cggcacattg gacatgctaa 960 cctcaccttc gagcagcttc gtagcttgat ggaaagctta ccgggaaaga aagtgggagc 1020 agaagacatt gaaaaaacaa taaaggcatg caaacccagt gaccagatcc tgaagctgct 1080 cagtttgtgg cgaataaaaa atggcgacca agacaccttg aagggcctaa tgcacgcact 1140 aaagcactca aagacgtacc actttcccaa aactgtcact cagagtctaa agaagaccat 1200 caggttcctt cacagcttca caatgtacaa attgtatcag aagttatttt tagaaatgat 1260 aggtaaccag gtccaatcag taaaaataag ctgcttataa ctggaaatgg ccattgagct 1320 gtttcctcac aattggcgag atcccatgga tgataa 1356

Claims (53)

We claim:
1. A composition suitable for administration in a mammal comprising a modified oligonucleotide of about seven to seventy-five nucleotides containing seven or more contiguous ribose groups linked by achiral 5′ to 3′ internucleoside phosphate linkages, wherein the modified oligonucleotide is complementary to a region of a gene associated with a pathological disorder.
2. The composition of claim 1 wherein the mammal is a human.
3. The composition of claim 1 wherein the oligonucleotide is a ribonucleotide.
4. The composition of claim 1 wherein the oligonucleotide is a deoxyribonucleotide.
5. The composition of claim 1 wherein the modified oligonucleotide is complementary to a region of the gene selected from the group consisting of the 5′ UTR region, translational start site, the 3′ UTR, and translational termination site.
6. The composition of claim 1 wherein the gene is a gene selected from Table 1.
7. The composition of claim 1 wherein the pathological disorder is selected from the group consisting of abnormal appetite, hypertension, hypercholesteroremia, hyperlipidemia, erectile dysfunction, eczema, depression, anxiety, stress, inflammatory bowel syndrome, ulcerative colitis, Crohn's disease, renal stones, gall stones, constipation, migraine headache, seizure, multiple sclerosis, polymyositis, fiboromyalgia, Parkinson's disease, ALS, chronic pain, pre-menstrual syndrome, sinusitis, colds, trauma, carpal tunnel syndrome, chronic fatigue syndrome, rosacea, arthritis, psoriasis, prostatitis, inflammation, heartburn, infection, poison ivy, colon cancer, malignant melanoma and malignant nasal polyps.
8. The composition of claim 1 wherein the modified oligonucleotide is present at a concentration effective to reduce the expression of the gene.
9. The composition of claim 8 wherein the modified oligonucleotide is administered at a dose of less than 100 μg/kg.
10. The composition of claim 8 wherein the modified oligonucleotide is administered at a dose of less than 50 μg/kg.
11. The composition of claim 8 wherein the modified oligonucleotide is administered at a dose of less than 5.0 μg/kg.
12. The composition of claim 8 wherein the modified oligonucleotide is administered at a dose of less than 0.50 μg/kg.
13. The composition of claim 8 wherein the modified oligonucleotide is administered at a dose of less than 0.050 μg/kg.
14. The composition of claim 8 wherein the modified oligonucleotide is administered at a dose of less than 0.0050 μg/kg.
15. The composition of claim 1 wherein the modified oligonucleotide is suitable for oral administration.
16. The composition of claim 1 wherein the modified oligonucleotide has a Tm of about 75-115° C. at a concentration of 1 mM and a length of 10 to 26 bases, or a Tm of 40° C. to 85° C. at a concentration of 1 pM and a length of 10 to 26 bases.
17. The composition of claim 1 wherein the modified oligonucleotide is selected from the group consisting of SEQ ID NO: 1-81.
18. The composition of claim 1 wherein the ribose group has a modified 2′ substituent.
19. The composition of claim 18 wherein the 2′ substituent is selected from the group consisting of hydrogen, methoxy, propoxy, methoxy-ethoxy, flourine, chlorine, bromine and iodine.
20. The composition of claim 18 wherein the modified oligonucleotide is 3′ end-blocked.
21. The composition of claim 1 wherein the modified oligonucleotide is 3′ end-blocked.
22. The composition of claim 1 wherein the modified oligonucleotide is 5′ end-blocked.
23. The composition of claim 1 wherein the composition is a pharmaceutical composition.
24. The composition of claim 1 wherein the composition is a nutritional supplement composition.
25. The composition of claim 1 wherein the composition is a dietary supplement composition.
26. The composition of claim 1 wherein the composition is a cosmetic composition.
27. The composition of claim 1 comprising at least two different modified oligonucleotides.
28. The composition of claim 1 comprising at least three different modified oligonucleotides.
29. A method of treating a patient with a pathological disorder comprising administering one or more modified oligonucleotides of about seven to seventy-five nucleotides, wherein the modified oligonucleotide contains seven or more contiguous ribose groups linked by achiral 5′ to 3′ internucleoside phosphate linkages.
30. The method of claim 29 wherein the modified oligonucleotide is complementary to a region of a gene associated with the pathological disorder.
31. The method of claim 29 wherein the gene is selected from Table 1.
32. The method of claim 29 wherein the modified oligonucleotide is complementary to a region of the gene selected from the group consisting of the 5′ UTR region, transitional start site and transitional termination site.
33. The method of claim 29 wherein the pathological disorder is selected from the group consisting of abnormal appetite, hypertension, hypercholesteroremia, hyperlipidemia, erectile dysfunction, eczema, depression, anxiety, stress, inflammatory bowel syndrome, ulcerative colitis, Crohn's disease, renal stones, gall stones, constipation, migraine headache, seizure, multiple sclerosis, polymyositis, fibromyalgia, Parkinson's disease, ALS, chronic pain, pre-menstrual syndrome, sinusitis, colds, trauma, carpal tunnel syndrome, chronic fatigue syndrome, rosacea, arthritis, psoriasis, prostatitis, inflammation, heart burn, infection, poison ivy, colon cancer, malignant melanoma and malignant nasal polyps.
34. The method of claim 29 wherein the modified oligonucleotide is administered at a dose effective to reduce the expression of the gene.
35. The method of claim 34 wherein the modified oligonucleotide is administered at a dose of less than 10.0 μg/kg.
36. The method of claim 29 wherein the modified oligonucleotide is administered at a dose of less than 5.0 μg/kg.
37. The method of claim 29 wherein the modified oligonucleotide is administered at a dose of less than 0.50 μg/kg.
38. The method of claim 29 wherein the modified oligonucleotide is administered at a dose of less than 0.050 μg/kg.
39. The method of claim 29 wherein the modified oligonucleotide is administered at a dose of less than 0.0050 μg/kg.
40. The method of claim 29 wherein the modified oligonucleotide is orally administered.
41. The method of claim 29 wherein the modified oligonucleotide has a Tm of about 75-90° C.
42. The method of claim 29 wherein wherein the modified oligonucleotide is selected from the group consisting of SEQ ID NO: 1-81.
43. The method of claim 29 wherein the ribose group has a modified 2′ substituent.
44. The method of claim 43 wherein the 2′ substituent is selected from the group consisting of hydrogen, methoxy, propoxy, methoxy-ethoxy, flourine, chlorine, bromine and iodine.
45. The method of claim 43 wherein the modified oligonucleotide is 3′ end-blocked.
46. The method of claim 29 wherein the modified oligonucleotide is 3′ end-blocked.
47. The method of claim 29 wherein the modified oligonucleotide is 5′ end-blocked.
48. The method of claim 29 wherein at least two different modified oligonucleotides are administered.
49. The method of claim 29 wherein at least three different modified oligonucleotides are administered.
50. A nutritional supplement comprising a modified oligonucleotide of about seven to seventy-file nucleotides containing seven or more contiguous ribose groups linked by achiral 5′ to 3′ internucleoside phosphate linkages.
51. A method of supplementing the diet of an individual comprising administering the nutritional supplement of claim 50 wherein administration of the nutritional supplement improves the health of the individual.
52. A cosmetic composition comprising a modified oligonucleotide of about seven to seventy-file nucleotides containing seven or more contiguous ribose groups linked by achiral 5′ to 3′ internucleoside phosphate linkages, wherein the modified oligonucleotide is complementary to a region of a gene associated with a skin disorder.
53. A method of improving the appearance of the skin in an individual with a skin disorder comprising administering the cosmetic composition of claim 44.
US10/191,997 2001-07-10 2002-07-10 Oligonucleotide-containing pharmacological compositions and their use Abandoned US20030207834A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/191,997 US20030207834A1 (en) 2001-07-10 2002-07-10 Oligonucleotide-containing pharmacological compositions and their use
US11/673,508 US8188259B2 (en) 2001-07-10 2007-02-09 Oligonucleotide-containing pharmacological compositions and their use
US11/673,509 US8183361B2 (en) 2001-07-10 2007-02-09 Oligonucleotide-containing pharmacological compositions and their use
US11/673,486 US8916529B2 (en) 2001-07-10 2007-02-09 Oligonucleotide-containing pharmacological compositions and their use
US14/534,901 US9567584B2 (en) 2001-07-10 2014-11-06 Oligonucleotide—containing pharmacological compositions and their use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US30382001P 2001-07-10 2001-07-10
US10/191,997 US20030207834A1 (en) 2001-07-10 2002-07-10 Oligonucleotide-containing pharmacological compositions and their use

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US11/673,509 Continuation US8183361B2 (en) 2001-07-10 2007-02-09 Oligonucleotide-containing pharmacological compositions and their use
US11/673,508 Continuation US8188259B2 (en) 2001-07-10 2007-02-09 Oligonucleotide-containing pharmacological compositions and their use
US11/673,486 Continuation US8916529B2 (en) 2001-07-10 2007-02-09 Oligonucleotide-containing pharmacological compositions and their use

Publications (1)

Publication Number Publication Date
US20030207834A1 true US20030207834A1 (en) 2003-11-06

Family

ID=23173852

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/191,997 Abandoned US20030207834A1 (en) 2001-07-10 2002-07-10 Oligonucleotide-containing pharmacological compositions and their use
US11/673,486 Expired - Fee Related US8916529B2 (en) 2001-07-10 2007-02-09 Oligonucleotide-containing pharmacological compositions and their use
US11/673,508 Expired - Fee Related US8188259B2 (en) 2001-07-10 2007-02-09 Oligonucleotide-containing pharmacological compositions and their use
US11/673,509 Expired - Fee Related US8183361B2 (en) 2001-07-10 2007-02-09 Oligonucleotide-containing pharmacological compositions and their use
US14/534,901 Expired - Fee Related US9567584B2 (en) 2001-07-10 2014-11-06 Oligonucleotide—containing pharmacological compositions and their use

Family Applications After (4)

Application Number Title Priority Date Filing Date
US11/673,486 Expired - Fee Related US8916529B2 (en) 2001-07-10 2007-02-09 Oligonucleotide-containing pharmacological compositions and their use
US11/673,508 Expired - Fee Related US8188259B2 (en) 2001-07-10 2007-02-09 Oligonucleotide-containing pharmacological compositions and their use
US11/673,509 Expired - Fee Related US8183361B2 (en) 2001-07-10 2007-02-09 Oligonucleotide-containing pharmacological compositions and their use
US14/534,901 Expired - Fee Related US9567584B2 (en) 2001-07-10 2014-11-06 Oligonucleotide—containing pharmacological compositions and their use

Country Status (8)

Country Link
US (5) US20030207834A1 (en)
EP (2) EP1414841B1 (en)
JP (4) JP4999255B2 (en)
CN (1) CN100344646C (en)
AU (1) AU2009200482B2 (en)
CA (1) CA2453362A1 (en)
IL (2) IL159722A0 (en)
WO (1) WO2003006478A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040005601A1 (en) * 2002-04-05 2004-01-08 Adam Siddiqui-Jain Methods for targeting quadruplex DNA
US20040171022A1 (en) * 2002-08-20 2004-09-02 Ebbinghaus Scot W. Methods for regulating transcription by targeting quadruplex DNA
US20040241844A1 (en) * 2001-07-25 2004-12-02 Crooke Rosanne M. Antisense modulation of c-reactive protein expression
US20050014257A1 (en) * 2001-07-25 2005-01-20 Crooke Rosanne M. Modulation of C-reactive protein expression
WO2005049851A2 (en) * 2003-11-14 2005-06-02 University Of Utah Research Foundation Methods, articles, and compositions for identifying oligonucleotides
US20050124568A1 (en) * 2001-05-18 2005-06-09 Sirna Therapeutics, Inc. RNA interference mediated inhibition of acetyl-CoA-carboxylase gene expression using short interfering nucleic acid (siNA)
US20070166801A1 (en) * 2006-01-17 2007-07-19 Dale Roderic M K Compositions and methods for the treatment of influenza infection
WO2007084359A2 (en) * 2006-01-17 2007-07-26 Oligos Etc., Inc. Compositions and methods for the treatment of influenza infection
US20080161257A1 (en) * 2001-07-10 2008-07-03 Dale Roderic M K Oligonucleotide-Containing Pharmacological Compositions And Their Use
US20090137513A1 (en) * 2002-02-20 2009-05-28 Sirna Therapeutics, Inc. RNA Interference Mediated Inhibition of Acetyl-CoA-Carboxylase Gene Expression Using Short Interfering Nucleic Acid (siNA)
US8147825B2 (en) 2004-01-22 2012-04-03 University Of Miami Topical co-enzyme Q10 formulations and methods of use
US9896731B2 (en) 2009-05-11 2018-02-20 Berg Llc Methods for treatment of oncological disorders using an epimetabolic shifter (coenzyme Q10)
US9901542B2 (en) 2013-09-04 2018-02-27 Berg Llc Methods of treatment of cancer by continuous infusion of coenzyme Q10
US10376477B2 (en) 2011-04-04 2019-08-13 Berg Llc Method of treating or preventing tumors of the central nervous system
US10668028B2 (en) 2008-04-11 2020-06-02 Berg Llc Methods and use of inducing apoptosis in cancer cells
US10933032B2 (en) 2013-04-08 2021-03-02 Berg Llc Methods for the treatment of cancer using coenzyme Q10 combination therapies

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506440A (en) 2003-09-29 2007-03-22 トピジェン・ファルマスーティック・インコーポレーテッド Oligonucleotide compositions and methods for treating diseases involving inflammatory conditions
AU2004285134B2 (en) * 2003-10-21 2012-01-19 Dyad Pharmaceutical Corporation Methods and compositions for treating 5alpha-reductase type 1 and type 2 dependent conditions
CA2558160C (en) * 2006-06-30 2017-01-03 Oligos Etc., Inc. Antisense oligonucleotide targeting myostatin or fox01 for treatment of muscle wasting
US20130053430A1 (en) * 2010-04-07 2013-02-28 Isis Pharmaceuticals, Inc. Modulation of cetp expression
WO2011143609A1 (en) * 2010-05-14 2011-11-17 Deseret Biologicals, Inc. Formulations of diluted genetic material and methods for making same
US9603898B2 (en) 2011-03-23 2017-03-28 Deseret Biologicals, Inc. Formulations of diluted amino acid segments and methods for making same
CN104000998A (en) * 2013-02-26 2014-08-27 陈清群 Ornithogalum caudatum herbal tea
ES2657944T3 (en) 2013-06-14 2018-03-07 Synthon B.V. Stable pemetrexed arginine salt and compositions comprising it
JP2022518292A (en) * 2019-01-23 2022-03-14 パス セラピューティクス,インク. Treatment of epilepsy by inhibition of phosphodiesterase 4 (PDE4)

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256649A (en) * 1989-05-23 1993-10-26 Elf Sanofi Cosmetic composition against aging of the skin
US5514788A (en) * 1993-05-17 1996-05-07 Isis Pharmaceuticals, Inc. Oligonucleotide modulation of cell adhesion
US5576208A (en) * 1991-06-14 1996-11-19 Isis Pharmaceuticals Inc. Antisense oligonucleotide inhibition of the RAS gene
US5734039A (en) * 1994-09-15 1998-03-31 Thomas Jefferson University Antisense oligonucleotides targeting cooperating oncogenes
US5776905A (en) * 1996-08-08 1998-07-07 The Board Of Trustees Of The Leland Stamford Junior University Apoptotic regression of intimal vascular lesions
US5834443A (en) * 1996-05-21 1998-11-10 Masiello; Domenick J. Composition and method for treating herpes simplex
US5849902A (en) * 1996-09-26 1998-12-15 Oligos Etc. Inc. Three component chimeric antisense oligonucleotides
US5948768A (en) * 1995-04-13 1999-09-07 Milkhaus Laboratory Treatment of otitis media by sublingual administration of DNA
US5951455A (en) * 1998-12-04 1999-09-14 Isis Pharmaceuticals, Inc. Antisense modulation of G-alpha-11 expression
US5989912A (en) * 1996-11-21 1999-11-23 Oligos Etc. Inc. Three component chimeric antisense oligonucleotides
US5998203A (en) * 1996-04-16 1999-12-07 Ribozyme Pharmaceuticals, Inc. Enzymatic nucleic acids containing 5'-and/or 3'-cap structures
US6008048A (en) * 1998-12-04 1999-12-28 Isis Pharmaceuticals Inc. Antisense inhibition of EGR-1 expression
US6015886A (en) * 1993-05-24 2000-01-18 Chemgenes Corporation Oligonucleotide phosphate esters
US6087112A (en) * 1998-12-30 2000-07-11 Oligos Etc. Inc. Arrays with modified oligonucleotide and polynucleotide compositions
US6211349B1 (en) * 1998-12-30 2001-04-03 Oligos Etc., Inc. Protonated/acidified nucleic acids and methods of use
US6211162B1 (en) * 1998-12-30 2001-04-03 Oligos Etc. Inc. Pulmonary delivery of protonated/acidified nucleic acids
US20020032164A1 (en) * 1998-12-30 2002-03-14 Dale Roderic M. K. Antimicrobial compounds and methods for their use
US20030045490A1 (en) * 1998-12-30 2003-03-06 Oligos Etc. Inc. Therapeutic antisense phosphodiesterase inhibitors
US20030180789A1 (en) * 1998-12-30 2003-09-25 Dale Roderic M.K. Arrays with modified oligonucleotide and polynucleotide compositions
US6627215B1 (en) * 1998-12-30 2003-09-30 Oligos Etc. Inc. Devices for improved wound management
US6656717B1 (en) * 1999-06-25 2003-12-02 Memory Pharmaceuticals Corp. Cyclic AMP phosphodiesterase isoforms and methods of use
US6844151B1 (en) * 1999-09-29 2005-01-18 Oligos Etc. Inc. Methods for production of arrays with modified oligonucleotide and polynucleotide compositions
US20050118618A1 (en) * 1999-08-30 2005-06-02 Dale Roderic M. Method for detecting nucleic acid sequences

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2003214A (en) * 1931-10-05 1935-05-28 Murphy Edward Joseph Freezing apparatus
US2003216A (en) * 1934-07-17 1935-05-28 Francis H Nadig Floor cleaning machine
US3018078A (en) * 1960-01-21 1962-01-23 Holdren Brothers Inc Device for mounting a conduit to a tank
US3008347A (en) * 1960-04-04 1961-11-14 Perkins Machine Company Variable stroke crankshaft construction
US4012135A (en) * 1974-03-15 1977-03-15 Canon Kabushiki Kaisha Motion picture camera
US4897355A (en) 1985-01-07 1990-01-30 Syntex (U.S.A.) Inc. N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US5217866A (en) 1985-03-15 1993-06-08 Anti-Gene Development Group Polynucleotide assay reagent and method
US5011861A (en) * 1988-06-28 1991-04-30 Millipore Corporation Membranes for solid phase protein sequencing
ZA902710B (en) 1989-05-22 1991-12-24 Univ Georgia Res Found Enzyme luminescence assay
KR960012139B1 (en) * 1989-08-31 1996-09-16 엘지전자 주식회사 Cooling system of stering engine
US5002581A (en) * 1989-11-03 1991-03-26 Dow Corning Wright Corporation Modular hip joint prosthesis with adjustable anteversion
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
WO1991017424A1 (en) 1990-05-03 1991-11-14 Vical, Inc. Intracellular delivery of biologically active substances by means of self-assembling lipid complexes
DE69133511T2 (en) * 1990-08-13 2006-09-28 Isis Pharmaceuticals, Inc., Carlsbad SUGAR MODIFIED OLIGONUCLEOTIDES FOR DETECTING AND CONTROLLING GENE EXPRESSION
US6582908B2 (en) 1990-12-06 2003-06-24 Affymetrix, Inc. Oligonucleotides
US5474796A (en) * 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
US5821234A (en) * 1992-09-10 1998-10-13 The Board Of Trustees Of The Leland Stanford Junior University Inhibition of proliferation of vascular smooth muscle cell
CA2105595A1 (en) 1992-09-23 1994-03-24 Ramaswamy Narayanan Antisense polynucleotides
IL108206A0 (en) 1993-01-06 1994-04-12 Univ Johns Hopkins Oligomers having improved stability at acid ph
IES930215A2 (en) 1993-03-22 1993-08-11 Maitreya Corp Ltd A homeopathic medicine
CA2363537C (en) * 1993-05-27 2010-07-06 Board Of Regents Of The University Of Washington Cyclic gmp-binding, cyclic gmp-specific phosphodiesterase materials and methods
US6410322B1 (en) * 1993-07-27 2002-06-25 Hybridon Inc Antisense oligonucleotide inhibition of vascular endothelial growth factor expression
US5510239A (en) 1993-10-18 1996-04-23 Isis Pharmaceuticals, Inc. Oligonucleotide modulation of multidrug resistance-associated protein
US5801154A (en) * 1993-10-18 1998-09-01 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of multidrug resistance-associated protein
FR2713487B1 (en) 1993-12-09 1996-02-02 Labo Life Homeopathic type solutions containing a nucleic acid which can be used in particular for the prevention or treatment of infectious diseases or of diseases involving the dysfunction of a gene.
AT130U3 (en) 1994-11-23 1995-07-25 5E Systeme Fuer Holistische Me DEVICE AND METHOD FOR RECORDING SUBDEVICE AND METHOD FOR RECORDING SUBSTANCE SPECIFIC AND BODY SPECIFIC ENERGY DANCE SPECIFIC AND BODY SPECIFIC ENERGETIC INFORMATION
US6040296A (en) * 1995-06-07 2000-03-21 East Carolina University Specific antisense oligonucleotide composition & method for treatment of disorders associated with bronchoconstriction and lung inflammation
US5990299A (en) * 1995-08-14 1999-11-23 Icn Pharmaceuticals, Inc. Control of CD44 gene expression for therapeutic use
AU708096B2 (en) * 1995-11-21 1999-07-29 Icn Pharmaceuticals, Inc. Inhibition of tumor growth by antisense oligonucleotides for IL-8 and IL-8 receptor
SE9602300D0 (en) * 1996-06-11 1996-06-11 Karolinska Innovations Ab New composition and methods
AU3811897A (en) 1996-07-24 1998-02-10 Oglios Therapeutics, Inc. Antisense oligonucleotides as antibacterial agents
CN1194985A (en) * 1997-03-27 1998-10-07 中生北方生物工程开发研究所 Medicine for inhibiting tumour growth
JP2000514095A (en) 1997-04-30 2000-10-24 アイシス・ファーマシューティカルス・インコーポレーテッド Oligonucleotides to improve bioavailability
US20030083272A1 (en) * 1997-09-19 2003-05-01 Lahive & Cockfield, Llp Sense mrna therapy
US5932465A (en) * 1997-10-16 1999-08-03 Icos Corporation Phosphodiesterase 8A
US6403597B1 (en) * 1997-10-28 2002-06-11 Vivus, Inc. Administration of phosphodiesterase inhibitors for the treatment of premature ejaculation
US6037346A (en) 1997-10-28 2000-03-14 Vivus, Inc. Local administration of phosphodiesterase inhibitors for the treatment of erectile dysfunction
AU6247598A (en) * 1998-01-21 1999-08-09 Axys Pharmaceuticals, Inc. Asthma related genes
CN1056380C (en) * 1998-02-27 2000-09-13 中科院成都地奥制药公司 Antisense nucleoside for inhibiting the growth of human malignant tumor
US7321828B2 (en) * 1998-04-13 2008-01-22 Isis Pharmaceuticals, Inc. System of components for preparing oligonucleotides
CA2326823A1 (en) * 1998-04-20 1999-10-28 Ribozyme Pharmaceuticals, Inc. Nucleic acid molecules with novel chemical compositions capable of modulating gene expression
US20020003214A1 (en) 1998-07-23 2002-01-10 Joseph F. Morrissey Jr. Filtered photocontroller
US6344323B1 (en) * 1998-09-16 2002-02-05 Vitagenix, Inc. Compositions and methods for inhibiting cox-2 expression and treating cox-2 associated disorders by using cox-2 antisense oligonucleotides
US6566063B1 (en) * 1999-05-14 2003-05-20 Chiron Corporation Methods for determining metastatic potential of breast cancer cells by detecting GSEF gene product expression
US6069008A (en) * 1998-11-25 2000-05-30 Isis Pharmaceuticals Inc. Antisense modulation of NF-kappa-B p65 subunit expression
AU764921B2 (en) 1998-12-14 2003-09-04 Cellegy Pharmaceuticals, Inc. Compositions and methods for the treatment of anorectal disorders
JP4688294B2 (en) 1998-12-30 2011-05-25 オリゴス・イーティーシー・インコーポレイテッド End-blocked nucleic acids modified with an acid-stable backbone and therapeutic uses thereof
CH694588A5 (en) * 1999-02-09 2005-04-15 Hoffmann La Roche Human intestinal Npt2B.
US6136603A (en) * 1999-03-26 2000-10-24 Isis Pharmaceuticals Inc. Antisense modulation of interleukin-5 signal transduction
WO2000070093A1 (en) 1999-05-13 2000-11-23 Oligos Etc. Inc. Arrays with modified oligonucleotide and polynucleotide compositions
AU7742100A (en) 1999-09-29 2001-04-30 Oligos Etc. Inc. Arrays with modified oligonucleotide and polynucleotide compositions
CN1151168C (en) * 1999-11-03 2004-05-26 中国人民解放军军事医学科学院放射医学研究所 Antisense thio-oligonucleic acid of target protein kinase C-alpha and its medicine composition and application in treating cancer
WO2002000854A2 (en) * 2000-06-26 2002-01-03 Bayer Aktiengesellschaft Regulation of human phosphodiesterase-like enzyme
US6573474B1 (en) 2000-10-18 2003-06-03 Chromalloy Gas Turbine Corporation Process for drilling holes through a thermal barrier coating
WO2003006478A1 (en) * 2001-07-10 2003-01-23 Oligos Etc. Inc. Oligonucleotide-containing pharmacological compositions and their use

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256649A (en) * 1989-05-23 1993-10-26 Elf Sanofi Cosmetic composition against aging of the skin
US5576208A (en) * 1991-06-14 1996-11-19 Isis Pharmaceuticals Inc. Antisense oligonucleotide inhibition of the RAS gene
US5514788A (en) * 1993-05-17 1996-05-07 Isis Pharmaceuticals, Inc. Oligonucleotide modulation of cell adhesion
US6015886A (en) * 1993-05-24 2000-01-18 Chemgenes Corporation Oligonucleotide phosphate esters
US5734039A (en) * 1994-09-15 1998-03-31 Thomas Jefferson University Antisense oligonucleotides targeting cooperating oncogenes
US5948768A (en) * 1995-04-13 1999-09-07 Milkhaus Laboratory Treatment of otitis media by sublingual administration of DNA
US5998203A (en) * 1996-04-16 1999-12-07 Ribozyme Pharmaceuticals, Inc. Enzymatic nucleic acids containing 5'-and/or 3'-cap structures
US5834443A (en) * 1996-05-21 1998-11-10 Masiello; Domenick J. Composition and method for treating herpes simplex
US5776905A (en) * 1996-08-08 1998-07-07 The Board Of Trustees Of The Leland Stamford Junior University Apoptotic regression of intimal vascular lesions
US5849902A (en) * 1996-09-26 1998-12-15 Oligos Etc. Inc. Three component chimeric antisense oligonucleotides
US5989912A (en) * 1996-11-21 1999-11-23 Oligos Etc. Inc. Three component chimeric antisense oligonucleotides
US20030083477A1 (en) * 1996-11-21 2003-05-01 Foley & Lardner Three component chimeric antisense oligonucleotides
US6008048A (en) * 1998-12-04 1999-12-28 Isis Pharmaceuticals Inc. Antisense inhibition of EGR-1 expression
US5951455A (en) * 1998-12-04 1999-09-14 Isis Pharmaceuticals, Inc. Antisense modulation of G-alpha-11 expression
US6211349B1 (en) * 1998-12-30 2001-04-03 Oligos Etc., Inc. Protonated/acidified nucleic acids and methods of use
US20030180789A1 (en) * 1998-12-30 2003-09-25 Dale Roderic M.K. Arrays with modified oligonucleotide and polynucleotide compositions
US20020032164A1 (en) * 1998-12-30 2002-03-14 Dale Roderic M. K. Antimicrobial compounds and methods for their use
US6440723B1 (en) * 1998-12-30 2002-08-27 Oligos Etc. Inc. Arrays with modified oligonucleotide and polynucleotide compositions
US20030045490A1 (en) * 1998-12-30 2003-03-06 Oligos Etc. Inc. Therapeutic antisense phosphodiesterase inhibitors
US6087112A (en) * 1998-12-30 2000-07-11 Oligos Etc. Inc. Arrays with modified oligonucleotide and polynucleotide compositions
US6562569B1 (en) * 1998-12-30 2003-05-13 Oligos Etc. Inc. Arrays with modified oligonucleotide and polynucleotide compositions
US6211162B1 (en) * 1998-12-30 2001-04-03 Oligos Etc. Inc. Pulmonary delivery of protonated/acidified nucleic acids
US6627215B1 (en) * 1998-12-30 2003-09-30 Oligos Etc. Inc. Devices for improved wound management
US20050107344A1 (en) * 1998-12-30 2005-05-19 Oligos Etc. Inc. Antimicrobial compounds and methods for their use
US20040121352A1 (en) * 1998-12-30 2004-06-24 Oligos Etc. Inc. Arrays with modified oligonucleotide and polynucleotide compositions
US20050025815A1 (en) * 1998-12-30 2005-02-03 Oligos Etc. Inc. Devices for improved wound management
US6656717B1 (en) * 1999-06-25 2003-12-02 Memory Pharmaceuticals Corp. Cyclic AMP phosphodiesterase isoforms and methods of use
US20050118618A1 (en) * 1999-08-30 2005-06-02 Dale Roderic M. Method for detecting nucleic acid sequences
US6844151B1 (en) * 1999-09-29 2005-01-18 Oligos Etc. Inc. Methods for production of arrays with modified oligonucleotide and polynucleotide compositions

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050124568A1 (en) * 2001-05-18 2005-06-09 Sirna Therapeutics, Inc. RNA interference mediated inhibition of acetyl-CoA-carboxylase gene expression using short interfering nucleic acid (siNA)
US8188259B2 (en) 2001-07-10 2012-05-29 Lakewood-Amedex, Inc. Oligonucleotide-containing pharmacological compositions and their use
US8183361B2 (en) 2001-07-10 2012-05-22 Lakewood-Amedex, Inc. Oligonucleotide-containing pharmacological compositions and their use
US20080167257A1 (en) * 2001-07-10 2008-07-10 Dale Roderic M K Oligonucleotide-Containing Pharmacological Compositions And Their Use
US9567584B2 (en) 2001-07-10 2017-02-14 Lakewood Amedex, Inc. Oligonucleotide—containing pharmacological compositions and their use
US20080161257A1 (en) * 2001-07-10 2008-07-03 Dale Roderic M K Oligonucleotide-Containing Pharmacological Compositions And Their Use
US20080234214A1 (en) * 2001-07-10 2008-09-25 Dale Roderic M K Oligonucleotide-Containing Pharmacological Compositions and Their Use
US8916529B2 (en) 2001-07-10 2014-12-23 Lakewood-Amedex, Inc. Oligonucleotide-containing pharmacological compositions and their use
US7326693B2 (en) 2001-07-25 2008-02-05 Isis Pharmaceuticals, Inc. Antisense modulation of c-reactive protein expression
US7491815B2 (en) 2001-07-25 2009-02-17 Isis Pharmaceuticals, Inc. Antisense modulation of C-reactive protein expression
US20110117646A1 (en) * 2001-07-25 2011-05-19 Isis Pharmaceuticals, Inc. Antisense modulation of c-reactive protein expression
US20060024727A1 (en) * 2001-07-25 2006-02-02 Isis Pharmaceuticals, Inc. Antisense modulation of C-reactive protein expression
US20050014257A1 (en) * 2001-07-25 2005-01-20 Crooke Rosanne M. Modulation of C-reactive protein expression
US8710023B2 (en) 2001-07-25 2014-04-29 Isis Pharmaceuticals, Inc. Antisense modulation of C-reactive protein expression
US20090275133A1 (en) * 2001-07-25 2009-11-05 Isis Pharmaceuticals, Inc. Antisense modulation of c-reactive protein expression
US7915231B2 (en) 2001-07-25 2011-03-29 Isis Pharmaceuticals, Inc. Antisense modulation of C-reactive protein expression
US7425545B2 (en) 2001-07-25 2008-09-16 Isis Pharmaceuticals, Inc. Modulation of C-reactive protein expression
US20040241844A1 (en) * 2001-07-25 2004-12-02 Crooke Rosanne M. Antisense modulation of c-reactive protein expression
US8093224B2 (en) 2001-07-25 2012-01-10 Isis Pharmaceuticals, Inc. Antisense modulation of C-reactive protein expression
US20090137513A1 (en) * 2002-02-20 2009-05-28 Sirna Therapeutics, Inc. RNA Interference Mediated Inhibition of Acetyl-CoA-Carboxylase Gene Expression Using Short Interfering Nucleic Acid (siNA)
US20040005601A1 (en) * 2002-04-05 2004-01-08 Adam Siddiqui-Jain Methods for targeting quadruplex DNA
US7405041B2 (en) * 2002-08-20 2008-07-29 Arizona Board Of Regents On Behalf Of The University Of Arizona Methods for regulating transcription by targeting quadruplex DNA
US20040171022A1 (en) * 2002-08-20 2004-09-02 Ebbinghaus Scot W. Methods for regulating transcription by targeting quadruplex DNA
US20110230544A1 (en) * 2003-06-02 2011-09-22 Isis Pharmaceuticals, Inc. Modulation of c-reactive protein expression
US8859514B2 (en) 2003-06-02 2014-10-14 Isis Pharmaceuticals, Inc. Modulation of C-reactive protein expression
US20090170799A1 (en) * 2003-06-02 2009-07-02 Crooke Rosanne M Modulation of c-reactive protein expression
US7863252B2 (en) 2003-06-02 2011-01-04 Isis Pharmaceuticals, Inc. Modulation of C-reactive protein expression
WO2005049851A3 (en) * 2003-11-14 2009-04-16 Univ Utah Res Found Methods, articles, and compositions for identifying oligonucleotides
WO2005049851A2 (en) * 2003-11-14 2005-06-02 University Of Utah Research Foundation Methods, articles, and compositions for identifying oligonucleotides
US8147825B2 (en) 2004-01-22 2012-04-03 University Of Miami Topical co-enzyme Q10 formulations and methods of use
US8562976B2 (en) 2004-01-22 2013-10-22 University Of Miami Co-enzyme Q10 formulations and methods of use
US8586030B2 (en) 2004-01-22 2013-11-19 University Of Miami Co-enzyme Q10 formulations and methods of use
US8771680B2 (en) 2004-01-22 2014-07-08 University Of Miami Topical co-enzyme Q10 formulations and methods of use
US9574243B2 (en) * 2006-01-17 2017-02-21 Lakewood Amedex, Inc. Compositions and methods for the treatment of influenza infection
US10378014B2 (en) * 2006-01-17 2019-08-13 Lakewood Amedex, Inc. Compositions and methods for the treatment of influenza infection
WO2007084359A2 (en) * 2006-01-17 2007-07-26 Oligos Etc., Inc. Compositions and methods for the treatment of influenza infection
WO2007084359A3 (en) * 2006-01-17 2008-06-05 Oligos Etc Inc Compositions and methods for the treatment of influenza infection
US20070166801A1 (en) * 2006-01-17 2007-07-19 Dale Roderic M K Compositions and methods for the treatment of influenza infection
US10668028B2 (en) 2008-04-11 2020-06-02 Berg Llc Methods and use of inducing apoptosis in cancer cells
US10351915B2 (en) 2009-05-11 2019-07-16 Berg Llc Methods for treatment of oncological disorders using an epimetabolic shifter (Coenzyme Q10)
US10519504B2 (en) 2009-05-11 2019-12-31 Berg Llc Methods for treatment of oncological disorders using epimetabolic shifters, multidimensional intracellular molecules, or environmental influencers
US9896731B2 (en) 2009-05-11 2018-02-20 Berg Llc Methods for treatment of oncological disorders using an epimetabolic shifter (coenzyme Q10)
US11028446B2 (en) 2009-05-11 2021-06-08 Berg Llc Methods for treatment of oncological disorders using an epimetabolic shifter (coenzyme Q10)
US10376477B2 (en) 2011-04-04 2019-08-13 Berg Llc Method of treating or preventing tumors of the central nervous system
US11452699B2 (en) 2011-04-04 2022-09-27 Berg Llc Method of treating or preventing tumors of the central nervous system
US10933032B2 (en) 2013-04-08 2021-03-02 Berg Llc Methods for the treatment of cancer using coenzyme Q10 combination therapies
US9901542B2 (en) 2013-09-04 2018-02-27 Berg Llc Methods of treatment of cancer by continuous infusion of coenzyme Q10
US11298313B2 (en) 2013-09-04 2022-04-12 Berg Llc Methods of treatment of cancer by continuous infusion of coenzyme Q10

Also Published As

Publication number Publication date
IL159722A0 (en) 2004-06-20
US20080167257A1 (en) 2008-07-10
CN1671730A (en) 2005-09-21
JP2014088412A (en) 2014-05-15
JP2010229143A (en) 2010-10-14
EP2351765A2 (en) 2011-08-03
EP1414841A4 (en) 2006-06-21
US8916529B2 (en) 2014-12-23
JP2005504739A (en) 2005-02-17
AU2009200482A1 (en) 2009-02-26
US20150232857A1 (en) 2015-08-20
CA2453362A1 (en) 2003-01-23
US8188259B2 (en) 2012-05-29
AU2009200482B2 (en) 2012-11-01
EP1414841A1 (en) 2004-05-06
WO2003006478A1 (en) 2003-01-23
US9567584B2 (en) 2017-02-14
EP2351765A3 (en) 2012-02-22
IL159722A (en) 2012-02-29
EP1414841B1 (en) 2012-11-14
JP2016074669A (en) 2016-05-12
JP4999255B2 (en) 2012-08-15
US8183361B2 (en) 2012-05-22
US20080161257A1 (en) 2008-07-03
CN100344646C (en) 2007-10-24
US20080234214A1 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
US20030207834A1 (en) Oligonucleotide-containing pharmacological compositions and their use
RU2687223C2 (en) Compositions and methods for inhelibited exact genesis alas1
Stull et al. Predicting antisense oligonucleotide inhibitory efficacy: a computational approach using histograms and thermodynamic indices
Zancani et al. Structural and functional properties of plant mitochondrial F-ATP synthase
Rochaix et al. Composite structure of the chloroplast 23 S ribosomal RNA genes of Chlamydomonas reinhardii: Evolutionary and functional implications
Sun et al. MicroRNA-23a mediates mitochondrial compromise in estrogen deficiency-induced concentric remodeling via targeting PGC-1α
EP1963507A1 (en) Anti-myosin va sirna and skin depigmentation
TWI694080B (en) Compositions and methods for inhibiting expression of the alas1 gene
WO2007131232A2 (en) Compositions and their uses directed to ptpr alpha
WO2012027713A2 (en) Compositions and methods for inhibition of snca
Yang et al. Protective effects of MiR-129-5p on acute spinal cord injury rats
Kwan et al. A high glucose level stimulate inflammation and weaken pro-resolving response in tendon cells–a possible factor contributing to tendinopathy in diabetic patients
EP1620112A2 (en) Desmoglein 4 is a novel gene involved in hair growth
Zhang et al. Effects of NYGGF4 knockdown on insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes
Mandelboim et al. On the Role of Exon and Intron Sequences intrans-Splicing Utilization and cap 4 Modification of the Trypanosomatid Leptomonas collosoma SL RNA
Liu et al. MicroRNA-133b regulates the growth and migration of vascular smooth muscle cells by targeting matrix metallopeptidase 9
WO2001036627A2 (en) Pharmaceutical compositions comprising acetylcholinesterase antisense deoxynucleotides for the treatment of muscular and neuromuscular disorders
EP1648910A2 (en) Antisense modulation of stearoyl-coa desaturase expression
CN111630166B (en) Conditional-siRNA and its use in treating myocardial hypertrophy
Zhu et al. Effects of Lyrm1 knockdown on mitochondrial function in 3 T3-L1 murine adipocytes
TW201240669A (en) A new use of microRNA let-7g
CN106222183B (en) Target siRNA and its application of people IRAK1 gene
AU2002320362A1 (en) Oligonucleotide-containign pharmacological compositions and their use

Legal Events

Date Code Title Description
AS Assignment

Owner name: OLIGOS ETC. INC., OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DALE, RODERIC M.K.;ARROW, AMY;THOMPSON, TERRY;REEL/FRAME:013603/0918;SIGNING DATES FROM 20020204 TO 20020213

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: LAKEWOOD-AMEDEX, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OLIGOS ETC., INC.;REEL/FRAME:022162/0349

Effective date: 20081223

Owner name: LAKEWOOD-AMEDEX, INC.,FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OLIGOS ETC., INC.;REEL/FRAME:022162/0349

Effective date: 20081223