US20030167925A1 - Heat storage system for vehicle, with adsorbent - Google Patents

Heat storage system for vehicle, with adsorbent Download PDF

Info

Publication number
US20030167925A1
US20030167925A1 US10/366,805 US36680503A US2003167925A1 US 20030167925 A1 US20030167925 A1 US 20030167925A1 US 36680503 A US36680503 A US 36680503A US 2003167925 A1 US2003167925 A1 US 2003167925A1
Authority
US
United States
Prior art keywords
medium
heat
refrigerant
adsorbent
storage system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/366,805
Other versions
US6807820B2 (en
Inventor
Yasukazu Aikawa
Takahisa Suzuki
Satoshi Inoue
Hideaki Sato
Hiroshi Mieda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002060734A external-priority patent/JP3925245B2/en
Priority claimed from JP2002182869A external-priority patent/JP4069691B2/en
Application filed by Denso Corp filed Critical Denso Corp
Assigned to DENSO CORPORATION reassignment DENSO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AIKAWA, YASUKAZU, INOUE, SATOSHI, MIEDA, HIROSHI, SATO, HIDEAKI, SUZUKI, TAKAHISA
Publication of US20030167925A1 publication Critical patent/US20030167925A1/en
Application granted granted Critical
Publication of US6807820B2 publication Critical patent/US6807820B2/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3201Cooling devices using absorption or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00492Heating, cooling or ventilating [HVAC] devices comprising regenerative heating or cooling means, e.g. heat accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3201Cooling devices using absorption or adsorption
    • B60H1/32014Cooling devices using absorption or adsorption using adsorption, e.g. using Zeolite and water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P2011/205Indicating devices; Other safety devices using heat-accumulators

Definitions

  • the present invention relates to a heat storage system for a vehicle, which stores heat by using waste heat from the vehicle.
  • the heat storage system includes an adsorbent for adsorbing and desorbing a medium.
  • the heat storage system is suitably used for a heating system of a vehicle engine, and is also suitably used for a vehicle air conditioner.
  • an adsorbent for adsorbing and desorbing medium has a medium-adsorbing capacity that is reduced in accordance with a temperature increase of the adsorbent, and generates heat when adsorbing gas medium.
  • the heat storage system includes an adsorption chamber for containing the adsorbent therein, a waste heat supplier that supplies waste heat generated in the vehicle to the adsorbent, an adsorption heat supplier that supplies the heat generated by the adsorbent to an apparatus requiring warm-up operation, and a refrigerator for cooling air to be blown into a passenger compartment of a vehicle.
  • the refrigerator includes a refrigerant-medium heat exchanger for performing heat-exchange between the medium and refrigerant circulated in the refrigerator.
  • the heat storage system includes a first valve for opening and closing a first passage through the gas medium desorbed from the adsorbent is introduced from the adsorption chamber to the refrigerant-medium heat exchanger, a liquid-medium storage chamber for storing liquid medium cooled and condensed in the refrigerant-medium heat exchanger, and a second valve for opening and closing a second passage through which the liquid-medium storage chamber and the adsorption chamber communicate with each other.
  • the liquid medium is heated and vaporized to be gas medium in the refrigerant-medium heat exchanger by absorbing heat.
  • the first valve opens the first passage for a predetermined time when a temperature of the apparatus is equal to or higher than a predetermined temperature, and closes the first passage after the predetermined time passes. Further, the second valve opens the second passage at least when the temperature of the apparatus is lower than the predetermined temperature.
  • the adsorbent when the first valve opens the first passage, the adsorbent is heated, and the medium adsorbed on the adsorbent is desorbed from the adsorbent. Therefore, the desorbed medium flows to the refrigerant-medium heat exchanger, so that the waste heat is chemically stored as the liquid medium.
  • the second valve When the second valve is opened, the refrigerant in the refrigerator is cooled while the chemically stored heat is supplied to the apparatus as adsorption heat.
  • the waste heat is chemically stored by using an adsorption function of the adsorbent.
  • the refrigerant-medium heat exchanger performs heat-exchange between the refrigerant and the liquid medium stored in the liquid-medium storage chamber when the second valve opens the second passage. Therefore, liquid medium in the liquid-medium storage chamber absorbs heat from the refrigerant through the refrigerant-medium heat exchanger, and is continuously evaporated.
  • the heat storage system includes an adsorbent cooling unit that cools the adsorbent when the second valve opens the second passage. Therefore, consumed power in the refrigerator can be reduced in long time.
  • a radiation portion of the adsorbent cooling unit can be integrated with a radiator for performing a heat exchange between cooling water circulating in the apparatus and outside air.
  • the refrigerant-medium heat exchanger is disposed to cool the refrigerant in the refrigerator through the medium in a cooling mode. Therefore, cooling capacity of the refrigerator can be increased without increasing the rotation speed of a driving device of the refrigerator. Thus, cooling capacity for cooling the passenger compartment can be improved while fuel consumption efficiency can be improved, when the heat storage system is used for a vehicle air conditioner.
  • the refrigerant-medium heat exchanger is disposed to cool refrigerant at a low pressure side after being decompressed in the refrigerator in the cooling mode.
  • the refrigerant-medium heat exchanger is disposed in a refrigerant passage connecting the two heat exchangers to cool refrigerant flowing in the refrigerant passage.
  • the two heat exchangers and the refrigerant-medium heat exchanger can be integrated with each other, or can be disposed separately from each other.
  • the refrigerant-medium heat exchanger is disposed to cool refrigerant at a high pressure side before being decompressed in the refrigerator, in the cooling mode.
  • the refrigerant pressure at the high pressure side can be reduced, the enthalpy and the dryness of refrigerant at an inlet of a low-pressure side heat exchanger can be reduced, and the cooling capacity of the refrigerator can be effectively improved.
  • FIG. 1 is a schematic diagram showing a heat storage system according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the heat storage system in a heat storage mode, according to the first embodiment
  • FIG. 3 is a schematic diagram showing the heat storage system in a warm-up/auxiliary-cooling mode, according to the first embodiment
  • FIG. 4 is a schematic diagram showing the heat storage system in an auxiliary-cooling priority mode, according to the first embodiment
  • FIG. 5 is a graph showing a relationship between a traveling time of a vehicle, a temperature change (Tw) of cooling water from a vehicle engine and an average temperature (Ti) in a passenger compartment, and a relationship between the traveling time of the vehicle and an operational mode of the heat storage system according to the first embodiment;
  • FIG. 6 is a schematic diagram showing a heat storage system according to a second embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a radiator used for the heat storage system according to the second embodiment
  • FIG. 8 is a schematic diagram showing a heat storage system according to a third embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a heat storage system (cold storage system) in a cold storage mode, according to a fourth embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing the heat storage system in a cold release mode, according to the fourth embodiment.
  • FIG. 11 is a schematic diagram showing the heat storage system in a cold pre-release mode, according to the fourth embodiment.
  • FIG. 12 is a schematic diagram showing a heat storage system according to a fifth embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing a heat storage system according to a sixth embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing a heat storage system according to a modification of the sixth embodiment.
  • FIG. 15 is a schematic diagram showing a heat storage system in the cold storage mode, according to a seventh embodiment of the present invention.
  • FIG. 16 is a schematic diagram showing the heat storage system in the cold release mode, according to the seventh embodiment.
  • FIG. 17 is a schematic diagram showing a heat storage system according to an eighth embodiment of the present invention.
  • FIG. 18 is a graph showing characteristics of an adsorbent used for the heat storage system according to the eighth embodiment.
  • FIG. 19 is a schematic diagram showing a heat storage system according to a ninth embodiment of the present invention.
  • FIG. 20 is a graph showing characteristics of an adsorbent used for the heat storage system according to the ninth embodiment.
  • FIG. 21 is a schematic diagram showing a heat storage system in the cold storage mode, according to a tenth embodiment of the present invention.
  • FIG. 22 is a schematic diagram showing the heat storage system in the cold release mode, according to the tenth embodiment.
  • FIG. 23 is a schematic diagram showing a heat storage system in the cold storage mode, according to an eleventh embodiment of the present invention.
  • FIG. 24 is a schematic diagram showing the heat storage system in the cold release mode, according to the eleventh embodiment.
  • FIG. 25A is a perspective diagram showing an evaporator used for a heat storage system according to a twelfth embodiment of the present invention.
  • FIG. 25B is a schematic diagram showing a part of the heat storage system including the evaporator according to the twelfth embodiment
  • FIG. 26 is a schematic diagram showing a part of a heat storage system including an evaporator according to a thirteenth embodiment of the present invention.
  • FIG. 27 is a schematic diagram showing a heat storage system according to a fourteenth embodiment of the present invention.
  • FIG. 28 is a schematic diagram showing a heat storage system according to a modification of the fourteenth embodiment
  • FIG. 29 is a schematic diagram showing a heat storage system according to a fifteenth embodiment of the present invention.
  • FIG. 30 is a schematic diagram showing a heat storage system according to a modification of the fifteenth embodiment.
  • the present invention is typically applied to a vehicle including an internal combustion engine, and a heat storage system for a vehicle according to the first embodiment is schematically shown in FIG. 1.
  • An engine 1 is an internal combustion engine that is used as a drive source for driving the vehicle, and a radiator 2 cools cooling water having circulated in the engine 1 by performing heat-exchange between outside air and the cooling water from the engine 1 .
  • a pump 3 circulates the cooling water by using motive power obtained from the engine 1 .
  • An adsorption core 6 including adsorbents 5 adhered to a surface thereof, is disposed in an adsorption chamber 4 .
  • an amount of medium capable of being adsorbed on the adsorbent 5 (medium-adsorbing capacity of the adsorbent 5 ) is reduced.
  • vaporized medium gas medium
  • the adsorbent 5 generates heat.
  • water is used as the medium, and a moisture adsorbent such as a silica gel and a zeolite is used as the adsorbent 5 .
  • the medium-adsorbing capacity of the adsorbent 5 reduces to a capacity at the predetermined high temperature. That is, when the adsorbent 5 is heated, the medium is desorbed from the adsorbent 5 , so that an adsorbed amount of the medium becomes an amount capable of being adsorbed on the adsorbent 5 at the heated temperature.
  • the medium-adsorbing capacity of the adsorbent 5 increases to a capacity at the predetermined low temperature. That is, when the adsorbent 5 is cooled, the medium is adsorbed on the adsorbent 5 , and an adsorbed amount of medium becomes an amount capable of being adsorbed on the adsorbent 5 at the cooled temperature.
  • the adsorbent 5 generates adsorption heat equivalent to condensation heat of gas medium (moisture) when adsorbing gas medium.
  • the adsorption heat is equal to the sum of the condensation heat and a.
  • an absorbable medium amount of the adsorbent 5 is changed due to a temperature change of the adsorbent 5 , even in the same relative humidity.
  • the adsorption core 6 is a heat exchanger for performing heat-exchange between cooling water flowing in the adsorption core 6 and the adsorbents 5 .
  • the adsorption core 6 When a temperature of the cooling water flowing in the adsorption core 6 is higher than the temperature of the adsorbents 5 , the adsorption core 6 functions as a waste heat supplier 6 a for supplying exhaust heat of the engine 1 to the adsorbents 5 . On the contrary, when the temperature of cooling water flowing in the adsorption core 6 is lower than the temperature of the adsorbents 5 , the adsorption core 6 functions as an adsorption heat supplier 6 b for supplying heat to the engine 1 . In an auxiliary-cooling priority mode described later, the adsorption core 6 functions as a cooling portion 6 c for cooling the adsorbents 5 .
  • a heat storage radiator 7 a cools the adsorbents 5 by performing heat-exchange between cooling water flowing in the heat storage radiator 7 a from the adsorption core 6 and outside air.
  • a switching valve 7 b switches any one of a stream direction of cooling water from the heat storage radiator 7 a to the adsorption core 6 and a stream direction of cooling water from the engine 1 to the adsorption core 6 .
  • a pump 7 c electrically circulates cooling water between the heat storage radiator 7 a and the adsorption core 6 .
  • an adsorbent cooling unit 7 for cooling the adsorbents 5 is constructed of the heat storage radiator 7 a , the switching valve 7 b , the pump 7 c and the adsorption core 6 , for example.
  • a vapor compression refrigerator 8 is constructed of a compressor 8 a , a condenser 8 b , an expansion valve 8 c , an evaporator 8 d and the like, and cools air to be blown into a passenger compartment.
  • Refrigerant discharged from the compressor 8 a has a high temperature and high pressure, and is cooled to be condensed by outside air in the condenser 8 b .
  • the condensed refrigerant is decompressed and expanded by the expansion valve 8 c to a low temperature and low pressure, and is evaporated in the evaporator 8 d by absorbing heat from air to be blown into the passenger compartment. Therefore, air blown into the passenger compartment is cooled.
  • a condensation core 9 used as a refrigerant-medium heat exchanger is provided between the condenser 8 b and the expansion valve 8 c in a refrigerant circuit of the vapor compression refrigerator 8 .
  • the condensation core 9 performs heat exchange between refrigerant and the medium stored in the liquid-medium storage chamber 10 that communicates with the adsorption chamber 4 .
  • the medium is cooled to be condensed by the condensation core 9 , and the condensed medium is stored.
  • a valve 12 is provided in a communication passage 11 connecting the liquid-medium storage chamber 10 and the adsorption chamber 4 , and opens and closes the communication passage 11 .
  • the valve 12 includes a first valve 12 a and a second valve 12 b .
  • the first valve 12 a controls whether gas medium desorbed from the adsorbents 5 is introduced to the condensation core 9 or not.
  • the second valve 12 b controls a medium stream from the liquid-medium chamber 10 to the adsorption chamber 4 .
  • the first valve 12 a and the second valve 12 b are integrated to each other to form the single valve 12 having the functions of both the first and second valves 12 a , 12 b.
  • a switching valve 13 switches any one of a cooling water flow from the engine 1 to only the radiator 2 and a cooling water flow from the engine 1 to both of the adsorption core 6 and the radiator 2 .
  • a bypass circuit and a flow amount valve such as a thermostat are omitted to simply show the drawing. Cooling water bypassing the radiator 2 flows into the bypass circuit, and returns to the engine 1 . Further, the thermostat adjusts a flow amount of cooling water flowing through the bypass circuit.
  • a heat storage mode is performed when the temperature of cooling water from the engine 1 becomes equal to or higher than a predetermined temperature (e.g., 80-90° C.) where warm-up operation of the engine 1 is determined to be ended.
  • a predetermined temperature e.g. 80-90° C.
  • the valve 12 a is opened for a predetermined time while the engine 1 and the vapor compression refrigerator 8 are operated, and the valve 12 a is closed after the predetermined time passes. Since high-temperature cooling water from the engine 1 flows in the adsorption core 6 , the adsorbents 5 absorb exhaust heat of the engine 1 , and the adsorbed medium is desorbed from the adsorbents 5 as gas medium.
  • an atmospheric temperature in the adsorption chamber 4 is in a temperature range (e.g., 80-90° C.) corresponding to the cooling water temperature from the engine 1
  • an atmospheric temperature in the liquid-medium storage chamber 10 is in a temperature range (e.g., 40-60° C.) corresponding to a refrigerant temperature from the condenser 8 b .
  • the atmospheric temperature in the liquid-medium storage chamber 10 is lower than the atmospheric temperature in the adsorption chamber 4 . Therefore, the medium desorbed from the adsorbents 5 flows into the liquid-medium storage chamber 10 , and is cooled to be condensed by the condensation core 9 .
  • an opening time of the valve 12 a is a time required for desorbing approximate all of medium adsorbed on the adsorbents 5 , at the temperature of cooling water from the engine 1 .
  • the opening time is suitably determined based on the medium-adsorbing capacity of the adsorbent 5 .
  • a warm-up/auxiliary-cooling mode is performed when the temperature of cooling water from the engine 1 becomes lower than the predetermined temperature (e.g., 80-90° C.).
  • the warm-up/auxiliary-cooling mode is performed at an engine cold start where operation of the engine 1 is started at a low temperature.
  • the valve 12 b is opened while the engine 1 is operated.
  • the adsorbents 5 adsorb gas medium in the adsorption chamber 4 , and generate adsorption heat.
  • the cooling water, flowing in the adsorption core 6 is heated by the generated adsorption heat. Therefore, the temperature of the cooling water returning to the engine 1 is increased, and the warm-up operation of the engine 1 is facilitated.
  • the pressure in the adsorption chamber 4 reduces than the pressure in the liquid-medium storage chamber 10 .
  • the atmospheric temperature in the liquid-medium storage chamber 10 becomes a temperature range (e.g., 40-60° C.) corresponding to the refrigerant temperature from the condenser 8 b
  • the atmospheric temperature in the adsorption chamber 4 is a temperature range (e.g., 25° C.) corresponding to an outside air temperature. Therefore, the liquid medium in the liquid-medium storage chamber 10 adsorbs heat from the refrigerant, and continues vaporization.
  • high-pressure refrigerant from the condenser 8 b is cooled by using this medium vaporization in the liquid-medium storage chamber 10 . Therefore, the high-pressure refrigerant can be cooled as compared with a vapor compression refrigerator which does not include the condensation core 9 , and enthalpy (dryness) of refrigerant at an inlet of the evaporator 8 d can be reduced, thereby improving cooling performance of the vapor compression refrigerator 8 .
  • the pressure of refrigerant discharged from the compressor 8 a reduces. Accordingly, motive power consumed by the compressor 8 a , that is, a load of the engine 1 is reduced, and motive power required by the vapor compression refrigerator 8 can be reduced.
  • the waste heat of the engine 1 is stored as evaporation latent heat (similar to condensation heat) of the medium by using the adsorption function of the adsorbents 5 .
  • the temperature of cooling water is low, for example, at the warm-up operation of the engine 1 , the medium is adsorbed on the adsorbents 5 , and the adsorption heat (equivalent to condensation heat) of the medium is generated. Since the generated adsorption heat is supplied to cooling water, the warm-up operation of the engine 1 is facilitated.
  • air-cooling performance can be improved in the refrigerator 8 , while the motive power consumed by the vapor compression refrigerator 8 can be reduced.
  • water is used as the medium, and the evaporation latent heat of water is large (2500 kilo joules/kilo gram). Therefore, a size of a heat storage unit, which is constructed with the adsorption chamber 4 and the liquid-medium storage chamber 10 , can be reduced.
  • the valve 12 can be maintained at an open state after the warm-up operation of the engine 1 is ended.
  • a rotational speed of the engine 1 and an air volume are reduced as compared with that in a vehicle travelling, and a thermal load of the vapor compression refrigerator 8 is reduced. Therefore, the cooling performance of the condenser 8 b is reduced.
  • the valve 12 when the valve 12 is in the open state after the warm-up operation of the engine 1 is ended, the load of the engine 1 is reduced, and the temperature of cooling water is reduced. Therefore, the warm-up/auxiliary-cooling mode is automatically set, and the temperature of cooling water is prevented from being excessively reduced while motive power consumed by the vapor compression refrigerator 8 is reduced.
  • the auxiliary-cooling priority mode is performed when the temperature of cooling water from the engine 1 becomes equal to or higher than the predetermined temperature (e.g., 80-90° C.) under which the warm-up operation of the engine 1 can be determined to be ended. Specifically, cooling water is circulated between the heat storage radiator 7 a and the adsorption core 6 while the valve 12 is opened. In this case, since the atmospheric temperature in the adsorption chamber 4 can be maintained at a temperature (e.g., 25° C.) corresponding to the outside air temperature, the liquid medium in the liquid-medium storage chamber 10 absorbs heat from refrigerant through the condensation core 9 . Therefore, the liquid medium in the liquid-medium storage chamber 10 continues vaporization.
  • the predetermined temperature e.g. 80-90° C.
  • the high-pressure refrigerant at an outlet of the condenser 8 b is cooled by the liquid medium through the condensation core 9 , so that the pressure of the high-pressure refrigerant can be continuously reduced as compared with a vapor compression refrigerator which does not include the condensation core 9 .
  • the heat storage system according to the first embodiment can be effectively used by effectively using the heat absorption function, not only in the winter where an outside air temperature is low, but also in the summer where the outside air temperature is high and cooling operation is required. Furthermore, the heat storage system can be produced in low cost by adding a little change to a prior heat storage system. Further, the construction of the heat storage system according to the first embodiment can be effectively simplified, and the number of valves can be reduced.
  • FIG. 5 plots an air temperature Ti in the passenger compartment and a cooling water temperature Tw of the engine 1 as the ordinates, and plots a vehicle traveling time Time as the abscissa.
  • an operation mode of the heat storage system such as the heat storage mode, the warm-up/cooling mode, and the cooling priority mode can be effectively selected.
  • the radiator 2 and the heat storage radiator 7 a are integrated with each other.
  • the integrated radiator includes plural tubes 2 a in which cooling water flows, header tanks 2 b , 2 c , and a separator 2 d for partitioning a space in the header tank 2 c at a water outlet side.
  • the header tanks 2 b , 2 c communicate with tubes 2 a at both ends of the tubes 2 a in its longitudinal direction, respectively.
  • a three-way switching valve 14 switches any one of a cooling water stream from the radiator 2 and a cooling water stream from the heat storage radiator 7 a.
  • the other parts are similar to those of the above-described first embodiment. Therefore, in the second embodiment, one of the heat storage mode, the warm-up/auxiliary-cooling mode and the auxiliary-cooling priority mode can be selected similar to the above-described first embodiment.
  • the apparatuses constructing the adsorbent cooling unit 7 such as the heat storage radiator 7 a described in the first embodiment, are eliminated, thereby simplifying the construction of the heat storage system.
  • the other parts are similar to those of the above-described first embodiment. Therefore, in the third embodiment, one of the heat storage mode, the warm-up/auxiliary-cooling mode and the auxiliary-cooling priority mode can be selected similar to the above-described first embodiment.
  • the adsorption chamber 4 and the liquid-medium storage chamber 10 are disposed to be separated from each other, and the communication passage 11 and the valve 12 are provided therebetween.
  • a heat storage system cold storage system
  • the adsorption chamber 4 and the liquid-medium storage chamber 10 are integrated with each other to form a storage chamber 40 , and the communication passage 11 and the valve 12 described in the first embodiment are eliminated.
  • the medium water
  • the adsorption core 6 is disposed in an adsorption space (corresponding to the adsorption chamber 4 shown in FIG.
  • the condensation core 9 is disposed in a liquid-medium storage space (corresponding to the liquid-medium storage chamber 10 shown in FIG. 1) of the storage chamber 40 .
  • the liquid medium is stored in the liquid-medium storage space of the storage chamber 40 .
  • the heat storage radiator 7 a and the radiator 2 are integrated with each other as in the second embodiment.
  • the operation mode of the heat storage system is defined relative to the refrigerator 8 (e.g., vapor compression refrigerant cycle).
  • a cold storage mode (heat storage mode), shown in FIG. 9, is performed when the rotational speed of the engine 1 is higher than an idling rotational speed thereof. That is, the cold storage mode is performed when a temperature of cooling water from the engine 1 becomes equal to or higher than a predetermined temperature (e.g., 80-90° C.) under which warm-up operation of the engine 1 can be determined to be ended.
  • a predetermined temperature e.g. 80-90° C.
  • high-temperature cooling water from the engine 1 is circulated into the adsorption core 6 while the engine 1 and the vapor compression refrigerator 8 are operated. Then, the adsorbents 5 absorb waste heat from the engine 1 , and the adsorbed medium is desorbed from the adsorbents 5 as gas medium.
  • the atmospheric temperature in the adsorption space of the storage chamber 40 is in a temperature range (e.g., 80-90° C.) corresponding to the cooling water temperature
  • the atmospheric temperature in the liquid-medium storage space of the storage chamber 40 is in a temperature range (e.g., 40-60° C.) corresponding to the refrigerant temperature from the condenser 8 b .
  • the atmospheric temperature in the liquid-medium storage space of the storage chamber is lower than the atmospheric temperature in the adsorption space of the storage chamber 40 . Therefore, the medium desorbed from the adsorbents 5 flows toward the liquid-medium storage space, and is cooled and condensed by the condensation core 9 . Then, the condensed medium is stored as liquid medium in the liquid-medium storage space in the storage chamber 40 . Heat, supplied to refrigerant by the condensation core 9 , is finally radiated to atmospheric air through the condenser 8 b.
  • a cold release mode (auxiliary-cooling mode), shown in FIG. 10 , is performed when the vehicle is stopped after the cold storage operation is ended. Specifically, in the cold release mode, low-temperature cooling water, cooled by the heat storage radiator 7 a , is circulated into the adsorption core 6 . Therefore, the adsorbents 5 are cooled, and relative humidity around the adsorbents 5 increases, so that gas medium (moisture) around the adsorbents 5 is adsorbed on the adsorbents 5 . Thus, the pressure in the adsorption space of the storage chamber 40 reduces relative to pressure in the liquid-medium storage space of the storage chamber 40 .
  • the atmospheric temperature in the liquid-medium storage space becomes a temperature (e.g., 40-60° C.) corresponding to the refrigerant temperature from the condenser 8 b
  • the atmospheric temperature in the adsorption space becomes a temperature (e.g., 25° C.) corresponding to an outside air temperature.
  • the liquid medium in the liquid-medium storage space absorbs heat from the refrigerant through the condensation core 9 , and continues vaporization.
  • a cold pre-release mode is performed when the load (waste heat) of the engine 1 is relatively low and cooling water from the engine 1 can be sufficiently cooled by only the radiator 2 after the cold storage operation is ended. Specifically, before the cold release mode is selected after the cold storage operation is completed, only the switching valve 14 described in the second embodiment is operated as in the cold release mode. Then, cooling water, cooled to near the outside air temperature, is introduced into the adsorption core 6 . Accordingly, when the cold release mode is selected, the adsorbents 5 can be effectively cooled by using low-temperature cooling water, so that the adsorbents 5 can be rapidly cooled, and relative humidity around the adsorbents 5 can be rapidly increased. Therefore, auxiliary cooling performance can be increased.
  • the vapor compression refrigerator 8 is an accumulator cycle where a gas-liquid separator 8 e is disposed at a low refrigerant pressure side (a suction side of the compressor 8 a ). Accordingly, in the vapor compression refrigerator, refrigerant from the evaporator 8 d flows into the gas-liquid separator 8 e to be separated into gas refrigerant and liquid refrigerant in the gas-liquid separator. Gas refrigerant separated in the gas-liquid separator 8 e is supplied to the compressor 8 a , and liquid refrigerant is stored in the gas-liquid separator 8 e as surplus refrigerant in the vapor compression refrigerator 8 . In the heat storage system of the fourth embodiment, the other parts are similar to those of the first embodiment.
  • the vapor compression refrigerator 8 is a receiver cycle where the gas-liquid separator 8 e is disposed at a high refrigerant pressure side.
  • the condensation core 9 is disposed in a refrigerant passage between the receiver (gas-liquid separator) 8 e and the condenser 8 b.
  • any one operation mode such as the cold storage mode (heat storage mode), the cold release mode and the cold pre-release mode described in the fourth embodiment can be selected.
  • the condensation core 9 is disposed in a refrigerant passage between a discharge port of the compressor 8 a and a refrigerant inlet of the condenser 8 b .
  • the other parts are similar to those of the above-described fourth embodiment, and one operation mode described in the fourth embodiment can be selected.
  • the condensation core 9 is disposed in a refrigerant passage between the discharge port of the compressor 8 a and the refrigerant inlet of the condenser 8 b in the heat storage system of the fifth embodiment. Accordingly, in the heat storage system shown in FIG. 14, the other parts are similar to those of the above-described fifth embodiment, and one operation mode described in the fifth embodiment can be selected.
  • the seventh embodiment of the present invention will be now described with reference to FIGS. 15 and 16.
  • the temperature of cooling water flowing into the adsorption core 6 is controlled by the two switching valves 7 b , 14 and the pump 7 c .
  • the temperature of cooling water flowing into the adsorption core 6 is controlled by a single switching valve 7 d and the pump 7 c.
  • the switching valve 7 d is opened while the operation of the pump 7 c is stopped in the cold storage mode. Therefore, high-temperature cooling water, flowing out from the engine 1 , is circulated between the engine 1 and the adsorption core 6 , and the medium adsorbed on the adsorbents 5 is desorbed therefrom, so that the cold storage operation is performed.
  • the switching valve 7 d is closed and the pump 7 c is operated.
  • the structure using the single switching valve 7 d can be used for the fifth and sixth embodiments.
  • any one of the cold storage mode and the cold release mode is switched by controlling the temperature of cooling water to be circulated into the adsorption core 6 .
  • the temperature of the adsorbents 5 is generally stabilized at least after the end of the warm-up operation of the engine 1 .
  • any one of the cold storage mode and the cold release mode can be automatically switched in accordance with a thermal load of the vapor compression refrigerator 8 .
  • the heat storage system is constructed so that cooling water from the engine 1 is always circulated into the adsorption core 6 .
  • a sufficient amount of refrigerant can be circulated in the vapor compression refrigerator 8 .
  • the temperature of high-pressure refrigerant at a refrigerant outlet of the condenser 8 b is low, and the gas medium desorbed from the adsorbents 5 is cooled and liquefied by the condensation core 9 as in the fourth embodiment. That is, at this time, the cold storage mode described in the fourth embodiment is selected.
  • the adsorbent most suitable to the heat storage system (e.g., a vehicle air conditioner) according to the eighth embodiment, has the following water adsorption capacity.
  • the water adsorption capacity of the adsorbents 5 is largely changed between a small thermal load of the vapor compression refrigerator 8 and, a large thermal load thereof.
  • a point A indicates a water adsorption capacity at relative humidity ⁇ of 0.1% corresponding to a refrigerant temperature of 40° C.
  • a point B indicates a water adsorption capacity at relative humidity ⁇ of 0.18% corresponding to a refrigerant temperature of 50° C.
  • the cold storage mode is selected in relative humidity ⁇ lower than the point A
  • the cold release mode is selected in relative humidity ⁇ higher than the point B.
  • the structure of the eighth embodiment is typically used for the fourth embodiment. Accordingly, the other parts of the eighth embodiment are similar to those of the above-described fourth embodiment.
  • the structure of the eighth embodiment can be used for the fifth to seventh embodiments. Even in this case, any one of the cold storage mode and the cold release mode can be automatically switched in accordance with the thermal load of the vapor compression refrigerator 8 .
  • cooling water, flowing out from the engine 1 is always circulated into the adsorption core 6 , thereby generally stabilizing the temperature of the adsorbents 5 .
  • cooling water flowing out from the radiator 2 is always circulated into the adsorption core 6 , thereby generally stabilizing the temperature of the adsorbents 5 .
  • operation in the ninth embodiment is similar to the operation in the eighth embodiment, the temperature of cooling water circulating in the adsorption core 6 in the ninth embodiment is lower than that in the eighth embodiment.
  • FIG. 20 is a graph showing a characteristic of the adsorbent 5 , most suitable to the ninth embodiment.
  • the high-pressure refrigerant in the refrigerator 8 is cooled by using the adsorbent cooling unit.
  • the low-pressure refrigerant after being decompressed in the refrigerator 8 is cooled by using the adsorbent cooling unit.
  • the condensation core 9 cools refrigerant flowing in a refrigerant passage connecting two upstream and downstream evaporators 8 d , 8 f .
  • the cold storage mode is selected as shown in FIG. 21, the gas medium desorbed from the adsorbents 5 is cooled and condensed by performing heat exchange with refrigerant flowing from the upstream evaporator 8 d .
  • the refrigerant flowing in the upstream evaporator 8 d is heat exchanged with air to be blown into the passenger compartment to cool the air.
  • the refrigerant, to flow into the downstream evaporator 8 f is heated by the condensation core 9 .
  • cooling feeling is not largely reduced because the vapor compression refrigerator 8 has a sufficient cooling capacity.
  • gas refrigerant, flowing out from the upstream evaporator 8 d is cooled and liquefied by the condensation core 9 , and thereafter flows into the downstream evaporator 7 f to be again evaporated. Accordingly, cooling performance of the vapor compression refrigerator 8 of the heat storage system used for a vehicle air conditioner can be increased without increasing the rotational speed of the engine 1 , thereby reducing fuel consumption of the vehicle.
  • the downstream evaporator 8 f positioned downstream from the upstream evaporator 8 d in a refrigerant flowing direction, is disposed at an upstream air side of the evaporator 8 d in an air flowing direction.
  • cooling water flowing in the adsorption core 6 is cooled by the heat storage radiator 7 a .
  • the heat storage radiator 7 a is eliminated, and a heat exchanger 110 is provided.
  • the heat exchanger 110 performs heat exchange between cooling water flowing in the adsorption core 6 and high-pressure refrigerant at an outlet of the condenser 8 b in the vapor compression refrigerator 8 . Therefore, the cooling water flowing in the adsorption core 6 is cooled by the refrigerant flowing from the condenser 8 b in the heat exchanger 110 .
  • the cold storage mode and the cold release mode are performed similarly to the above-described tenth embodiment.
  • the cold storage mode is set as in FIG. 23, and the cold release mode is set in FIG. 24.
  • heat generated from the adsorbents 5 is radiated in the condenser 8 b to outside air through refrigerant.
  • the condensation core 9 is disposed separately from the evaporators 8 d , 8 f .
  • the condensation core 9 and the evaporators 8 d , 8 f are integrated with each other. Accordingly, in the twelfth embodiment, the condensation core 9 and the evaporators 8 d , 8 f can be readily disposed in an air-conditioning case for the vehicle air conditioner.
  • a heat exchanger 9 a is integrated with the evaporators 8 d , 8 f .
  • a fluid cooled by the condensation core 9 is heat-exchanged with refrigerant flowing in a refrigerant passage connecting the evaporators 8 d , 8 f . Accordingly, the heat exchanger 9 a and the evaporators 8 d , 8 f can be readily disposed in the air-conditioning case.
  • the downstream evaporator 8 f described in the tenth through thirteenth embodiments is eliminated, and the condensation core 9 is disposed at a downstream refrigerant side of the evaporator 8 d .
  • the other parts of the heat storage system in FIG. 27 are similar to those of the above-described tenth embodiment, and the other parts of the heat storage system in FIG. 28 are similar to those of the above-described eleventh embodiment.
  • the evaporator 8 f and the evaporator 8 d are disposed in parallel, with respect to a refrigerant flow. Specifically, the evaporator 8 d is disposed downstream from the condensation core 9 in series, in the refrigerant flow. On the other hand, the evaporator 8 f is disposed in a bypass refrigerant passage through which refrigerant bypasses the condensation core 9 . Preferably, the evaporator 8 f is disposed at a downstream air side of the evaporator 8 d in the air-conditioning case.
  • the condensation core 9 is disposed in the liquid-medium storage chamber 10 .
  • the liquid-medium storage chamber 10 can be provided separately from a container for containing the condensation core 9 without being limited to this manner.
  • the first and second valves 12 a , 12 b are required to be provided in independent from each other.
  • the waste heat supplier 6 a , the adsorption heat supplier 6 b and the cooling portion 6 c are constructed with the single adsorption core 6 .
  • these devices 6 a - 6 c can be provided in independent from each other, without being limited to this manner.
  • water is used as the medium, and a silica gel or a zeolite is adopted as the adsorbent 5 .
  • water is used as the medium, and a hydration material for generating a hydrate, such as carbon dioxide and methane, may be used as the adsorbent 5 , or ammonia may be used as the adsorbent 5 , without being limited to this manner.
  • the adsorption of medium means a reversible reaction such as a reversible chemical reaction and a dissolution. That is, if only a substance radiates and absorbs heat due to bonding and separation between a substance and medium, the substance can be used as the adsorbent 5 .
  • the vapor compression refrigerator 8 (i.e., compressor 8 a ) is operated in the warm-up/auxiliary-cooling mode.
  • the operation of the vapor compression refrigerator 8 may be stopped in the warm-up/auxiliary-cooling mode, without being limited to this manner.
  • an adsorption type refrigerator or an ejector type refrigerator may be used as the refrigerator, without limited to the vapor compression refrigerator 8 in the above embodiments.
  • the apparatus requiring the warm-up operation is a motor or an inverter circuit, without being limited to the engine 1 in the above-described first embodiment.
  • exhaust gas from the engine 1 can be used as a waste heat source without being limited to the heat of the cooling water for cooling the engine 1 .
  • the waste heat supplier 6 a is provided as a heat exchanger to be independent from the adsorption heat supplier 6 b .
  • a valve for switching a cooling water stream is required.
  • the condensation core 9 can be provided at any position in the vapor compression refrigerator 8 , without being limited to a downstream refrigerant side of the condenser 8 b in the above-described first embodiment. Generally, the condensation core 9 is provided at a position where a temperature difference between the refrigerant and the medium is large.

Abstract

In a heat storage system for a vehicle, when a temperature of cooling water from a vehicle engine is high, adsorbents are heated by the cooling water, so that moisture is desorbed from the adsorbents in order to store heat. When the temperature of cooling water is low, the moisture is adsorbed in the adsorbents to heat the cooling water, while refrigerant in a vapor compression refrigerator is cooled by evaporating water. Thus, adsorption heat is generated from the adsorbents, and the cooling water is heated by using the adsorption heat. Accordingly, warm-up operation of the vehicle engine is facilitated, while motive power consumed by the vapor compression refrigerator can be reduced.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is related to and claims priority from Japanese Patent Applications No. 2002-60734 filed on Mar. 6, 2002 and No. 2002-182869 filed on Jun. 24, 2002, the contents of which are hereby incorporated by reference. [0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates to a heat storage system for a vehicle, which stores heat by using waste heat from the vehicle. The heat storage system includes an adsorbent for adsorbing and desorbing a medium. The heat storage system is suitably used for a heating system of a vehicle engine, and is also suitably used for a vehicle air conditioner. [0003]
  • 2. Description of Related Art [0004]
  • In a system disclosed in JP-A-1-267346, waste heat, generated in traveling of a vehicle, is chemically absorbed while reaction gas is emitted, so that the waste heat is chemically stored. When operation of a vehicle engine is started, the reaction gas is adsorbed, so that the chemically stored heat is emitted to enhance warm-up operation of the vehicle engine. However, the system is only for performing the warm-up operation, and the absorption heat (stored heat) is not effectively used. [0005]
  • SUMMARY OF THE INVENTION
  • In view of the foregoing problems, it is an object of the present invention to provide a heat storage system for a vehicle, which can effectively use adsorption heat. [0006]
  • It is another object of the present invention to improve fuel-consumption efficiency when the heat storage system including a refrigerator is used for a vehicle air conditioner. [0007]
  • According to the present invention, in a heat storage system for a vehicle, an adsorbent for adsorbing and desorbing medium has a medium-adsorbing capacity that is reduced in accordance with a temperature increase of the adsorbent, and generates heat when adsorbing gas medium. The heat storage system includes an adsorption chamber for containing the adsorbent therein, a waste heat supplier that supplies waste heat generated in the vehicle to the adsorbent, an adsorption heat supplier that supplies the heat generated by the adsorbent to an apparatus requiring warm-up operation, and a refrigerator for cooling air to be blown into a passenger compartment of a vehicle. The refrigerator includes a refrigerant-medium heat exchanger for performing heat-exchange between the medium and refrigerant circulated in the refrigerator. In addition, the heat storage system includes a first valve for opening and closing a first passage through the gas medium desorbed from the adsorbent is introduced from the adsorption chamber to the refrigerant-medium heat exchanger, a liquid-medium storage chamber for storing liquid medium cooled and condensed in the refrigerant-medium heat exchanger, and a second valve for opening and closing a second passage through which the liquid-medium storage chamber and the adsorption chamber communicate with each other. Here, the liquid medium is heated and vaporized to be gas medium in the refrigerant-medium heat exchanger by absorbing heat. In the heat storage system, the first valve opens the first passage for a predetermined time when a temperature of the apparatus is equal to or higher than a predetermined temperature, and closes the first passage after the predetermined time passes. Further, the second valve opens the second passage at least when the temperature of the apparatus is lower than the predetermined temperature. [0008]
  • Accordingly, when the first valve opens the first passage, the adsorbent is heated, and the medium adsorbed on the adsorbent is desorbed from the adsorbent. Therefore, the desorbed medium flows to the refrigerant-medium heat exchanger, so that the waste heat is chemically stored as the liquid medium. When the second valve is opened, the refrigerant in the refrigerator is cooled while the chemically stored heat is supplied to the apparatus as adsorption heat. Thus, the waste heat is chemically stored by using an adsorption function of the adsorbent. When the temperature of the apparatus is low as in warm-up operation of the apparatus, motive power consumed by the refrigerator can be reduced while the warm-up operation is enhanced by supplying the adsorption heat to the apparatus. Therefore, the adsorption heat can be effectively used. [0009]
  • Preferably, the refrigerant-medium heat exchanger performs heat-exchange between the refrigerant and the liquid medium stored in the liquid-medium storage chamber when the second valve opens the second passage. Therefore, liquid medium in the liquid-medium storage chamber absorbs heat from the refrigerant through the refrigerant-medium heat exchanger, and is continuously evaporated. [0010]
  • More preferably, the heat storage system includes an adsorbent cooling unit that cools the adsorbent when the second valve opens the second passage. Therefore, consumed power in the refrigerator can be reduced in long time. Here, a radiation portion of the adsorbent cooling unit can be integrated with a radiator for performing a heat exchange between cooling water circulating in the apparatus and outside air. [0011]
  • For example, in a heat storage system, the refrigerant-medium heat exchanger is disposed to cool the refrigerant in the refrigerator through the medium in a cooling mode. Therefore, cooling capacity of the refrigerator can be increased without increasing the rotation speed of a driving device of the refrigerator. Thus, cooling capacity for cooling the passenger compartment can be improved while fuel consumption efficiency can be improved, when the heat storage system is used for a vehicle air conditioner. [0012]
  • Specifically, the refrigerant-medium heat exchanger is disposed to cool refrigerant at a low pressure side after being decompressed in the refrigerator in the cooling mode. For example, when the refrigerator includes at least two heat exchangers at the low pressure side, the refrigerant-medium heat exchanger is disposed in a refrigerant passage connecting the two heat exchangers to cool refrigerant flowing in the refrigerant passage. In this case, the two heat exchangers and the refrigerant-medium heat exchanger can be integrated with each other, or can be disposed separately from each other. [0013]
  • Alternatively, the refrigerant-medium heat exchanger is disposed to cool refrigerant at a high pressure side before being decompressed in the refrigerator, in the cooling mode. In this case, because the refrigerant pressure at the high pressure side can be reduced, the enthalpy and the dryness of refrigerant at an inlet of a low-pressure side heat exchanger can be reduced, and the cooling capacity of the refrigerator can be effectively improved.[0014]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Additional objects and advantages of the present invention will be more readily apparent from the following detailed description of preferred embodiments when taken together with the accompanying drawings, in which: [0015]
  • FIG. 1 is a schematic diagram showing a heat storage system according to a first embodiment of the present invention; [0016]
  • FIG. 2 is a schematic diagram showing the heat storage system in a heat storage mode, according to the first embodiment; [0017]
  • FIG. 3 is a schematic diagram showing the heat storage system in a warm-up/auxiliary-cooling mode, according to the first embodiment; [0018]
  • FIG. 4 is a schematic diagram showing the heat storage system in an auxiliary-cooling priority mode, according to the first embodiment; [0019]
  • FIG. 5 is a graph showing a relationship between a traveling time of a vehicle, a temperature change (Tw) of cooling water from a vehicle engine and an average temperature (Ti) in a passenger compartment, and a relationship between the traveling time of the vehicle and an operational mode of the heat storage system according to the first embodiment; [0020]
  • FIG. 6 is a schematic diagram showing a heat storage system according to a second embodiment of the present invention; [0021]
  • FIG. 7 is a schematic diagram showing a radiator used for the heat storage system according to the second embodiment; [0022]
  • FIG. 8 is a schematic diagram showing a heat storage system according to a third embodiment of the present invention; [0023]
  • FIG. 9 is a schematic diagram showing a heat storage system (cold storage system) in a cold storage mode, according to a fourth embodiment of the present invention; [0024]
  • FIG. 10 is a schematic diagram showing the heat storage system in a cold release mode, according to the fourth embodiment; [0025]
  • FIG. 11 is a schematic diagram showing the heat storage system in a cold pre-release mode, according to the fourth embodiment; [0026]
  • FIG. 12 is a schematic diagram showing a heat storage system according to a fifth embodiment of the present invention; [0027]
  • FIG. 13 is a schematic diagram showing a heat storage system according to a sixth embodiment of the present invention; [0028]
  • FIG. 14 is a schematic diagram showing a heat storage system according to a modification of the sixth embodiment; [0029]
  • FIG. 15 is a schematic diagram showing a heat storage system in the cold storage mode, according to a seventh embodiment of the present invention; [0030]
  • FIG. 16 is a schematic diagram showing the heat storage system in the cold release mode, according to the seventh embodiment; [0031]
  • FIG. 17 is a schematic diagram showing a heat storage system according to an eighth embodiment of the present invention; [0032]
  • FIG. 18 is a graph showing characteristics of an adsorbent used for the heat storage system according to the eighth embodiment; [0033]
  • FIG. 19 is a schematic diagram showing a heat storage system according to a ninth embodiment of the present invention; [0034]
  • FIG. 20 is a graph showing characteristics of an adsorbent used for the heat storage system according to the ninth embodiment; [0035]
  • FIG. 21 is a schematic diagram showing a heat storage system in the cold storage mode, according to a tenth embodiment of the present invention; [0036]
  • FIG. 22 is a schematic diagram showing the heat storage system in the cold release mode, according to the tenth embodiment; [0037]
  • FIG. 23 is a schematic diagram showing a heat storage system in the cold storage mode, according to an eleventh embodiment of the present invention; [0038]
  • FIG. 24 is a schematic diagram showing the heat storage system in the cold release mode, according to the eleventh embodiment; [0039]
  • FIG. 25A is a perspective diagram showing an evaporator used for a heat storage system according to a twelfth embodiment of the present invention, and [0040]
  • FIG. 25B is a schematic diagram showing a part of the heat storage system including the evaporator according to the twelfth embodiment; [0041]
  • FIG. 26 is a schematic diagram showing a part of a heat storage system including an evaporator according to a thirteenth embodiment of the present invention; [0042]
  • FIG. 27 is a schematic diagram showing a heat storage system according to a fourteenth embodiment of the present invention; [0043]
  • FIG. 28 is a schematic diagram showing a heat storage system according to a modification of the fourteenth embodiment; [0044]
  • FIG. 29 is a schematic diagram showing a heat storage system according to a fifteenth embodiment of the present invention; and [0045]
  • FIG. 30 is a schematic diagram showing a heat storage system according to a modification of the fifteenth embodiment.[0046]
  • DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS
  • Preferred embodiments of the present invention will be described hereinafter with reference to the appended drawings. [0047]
  • (First Embodiment) [0048]
  • In the first embodiment, the present invention is typically applied to a vehicle including an internal combustion engine, and a heat storage system for a vehicle according to the first embodiment is schematically shown in FIG. 1. An [0049] engine 1 is an internal combustion engine that is used as a drive source for driving the vehicle, and a radiator 2 cools cooling water having circulated in the engine 1 by performing heat-exchange between outside air and the cooling water from the engine 1. A pump 3 circulates the cooling water by using motive power obtained from the engine 1.
  • An [0050] adsorption core 6, including adsorbents 5 adhered to a surface thereof, is disposed in an adsorption chamber 4. As a temperature of the adsorbent 5 increases, an amount of medium capable of being adsorbed on the adsorbent 5 (medium-adsorbing capacity of the adsorbent 5) is reduced. Further, when vaporized medium (gas medium) is adsorbed on the adsorbent 5, the adsorbent 5 generates heat. In the first embodiment, water is used as the medium, and a moisture adsorbent such as a silica gel and a zeolite is used as the adsorbent 5. When the adsorbent 5 is heated to a predetermined high temperature, the medium-adsorbing capacity of the adsorbent 5 reduces to a capacity at the predetermined high temperature. That is, when the adsorbent 5 is heated, the medium is desorbed from the adsorbent 5, so that an adsorbed amount of the medium becomes an amount capable of being adsorbed on the adsorbent 5 at the heated temperature. On the other hand, when the adsorbent 5 is cooled to a predetermined low temperature, the medium-adsorbing capacity of the adsorbent 5 increases to a capacity at the predetermined low temperature. That is, when the adsorbent 5 is cooled, the medium is adsorbed on the adsorbent 5, and an adsorbed amount of medium becomes an amount capable of being adsorbed on the adsorbent 5 at the cooled temperature.
  • The [0051] adsorbent 5 generates adsorption heat equivalent to condensation heat of gas medium (moisture) when adsorbing gas medium. The adsorption heat is equal to the sum of the condensation heat and a. Here, an absorbable medium amount of the adsorbent 5 is changed due to a temperature change of the adsorbent 5, even in the same relative humidity. The adsorption core 6 is a heat exchanger for performing heat-exchange between cooling water flowing in the adsorption core 6 and the adsorbents 5. When a temperature of the cooling water flowing in the adsorption core 6 is higher than the temperature of the adsorbents 5, the adsorption core 6 functions as a waste heat supplier 6 a for supplying exhaust heat of the engine 1 to the adsorbents 5. On the contrary, when the temperature of cooling water flowing in the adsorption core 6 is lower than the temperature of the adsorbents 5, the adsorption core 6 functions as an adsorption heat supplier 6 b for supplying heat to the engine 1. In an auxiliary-cooling priority mode described later, the adsorption core 6 functions as a cooling portion 6 c for cooling the adsorbents 5.
  • A [0052] heat storage radiator 7 a cools the adsorbents 5 by performing heat-exchange between cooling water flowing in the heat storage radiator 7 a from the adsorption core 6 and outside air. A switching valve 7 b switches any one of a stream direction of cooling water from the heat storage radiator 7 a to the adsorption core 6 and a stream direction of cooling water from the engine 1 to the adsorption core 6. A pump 7 c electrically circulates cooling water between the heat storage radiator 7 a and the adsorption core 6. Thus, an adsorbent cooling unit 7 for cooling the adsorbents 5 is constructed of the heat storage radiator 7 a, the switching valve 7 b, the pump 7 c and the adsorption core 6, for example.
  • A [0053] vapor compression refrigerator 8 is constructed of a compressor 8 a, a condenser 8 b, an expansion valve 8 c, an evaporator 8 d and the like, and cools air to be blown into a passenger compartment. Refrigerant discharged from the compressor 8 a has a high temperature and high pressure, and is cooled to be condensed by outside air in the condenser 8 b. The condensed refrigerant is decompressed and expanded by the expansion valve 8 c to a low temperature and low pressure, and is evaporated in the evaporator 8 d by absorbing heat from air to be blown into the passenger compartment. Therefore, air blown into the passenger compartment is cooled. Further, a condensation core 9 used as a refrigerant-medium heat exchanger is provided between the condenser 8 b and the expansion valve 8 c in a refrigerant circuit of the vapor compression refrigerator 8. The condensation core 9 performs heat exchange between refrigerant and the medium stored in the liquid-medium storage chamber 10 that communicates with the adsorption chamber 4. In the liquid-medium storage chamber 10, the medium is cooled to be condensed by the condensation core 9, and the condensed medium is stored.
  • Further, a [0054] valve 12 is provided in a communication passage 11 connecting the liquid-medium storage chamber 10 and the adsorption chamber 4, and opens and closes the communication passage 11. The valve 12 includes a first valve 12 a and a second valve 12 b. The first valve 12 a controls whether gas medium desorbed from the adsorbents 5 is introduced to the condensation core 9 or not. On the other hand, the second valve 12 b controls a medium stream from the liquid-medium chamber 10 to the adsorption chamber 4. In the first embodiment, the first valve 12 a and the second valve 12 b are integrated to each other to form the single valve 12 having the functions of both the first and second valves 12 a, 12 b.
  • A switching [0055] valve 13 switches any one of a cooling water flow from the engine 1 to only the radiator 2 and a cooling water flow from the engine 1 to both of the adsorption core 6 and the radiator 2. In FIG. 1, a bypass circuit and a flow amount valve such as a thermostat are omitted to simply show the drawing. Cooling water bypassing the radiator 2 flows into the bypass circuit, and returns to the engine 1. Further, the thermostat adjusts a flow amount of cooling water flowing through the bypass circuit.
  • Next, operation and operational effects according to the first embodiment will be described. A heat storage mode, shown in FIG. 2, is performed when the temperature of cooling water from the [0056] engine 1 becomes equal to or higher than a predetermined temperature (e.g., 80-90° C.) where warm-up operation of the engine 1 is determined to be ended. Specifically, in the heat storage mode, the valve 12 a is opened for a predetermined time while the engine 1 and the vapor compression refrigerator 8 are operated, and the valve 12 a is closed after the predetermined time passes. Since high-temperature cooling water from the engine 1 flows in the adsorption core 6, the adsorbents 5 absorb exhaust heat of the engine 1, and the adsorbed medium is desorbed from the adsorbents 5 as gas medium.
  • At this time, an atmospheric temperature in the [0057] adsorption chamber 4 is in a temperature range (e.g., 80-90° C.) corresponding to the cooling water temperature from the engine 1, and an atmospheric temperature in the liquid-medium storage chamber 10 is in a temperature range (e.g., 40-60° C.) corresponding to a refrigerant temperature from the condenser 8 b. The atmospheric temperature in the liquid-medium storage chamber 10 is lower than the atmospheric temperature in the adsorption chamber 4. Therefore, the medium desorbed from the adsorbents 5 flows into the liquid-medium storage chamber 10, and is cooled to be condensed by the condensation core 9. Then, the condensed medium is stored as liquid medium in the liquid-medium storage chamber 10. Heat, supplied to refrigerant through the condensation core 9, is finally radiated to atmospheric air through the condenser 8 b of the refrigerator. In the heat storage mode, an opening time of the valve 12 a is a time required for desorbing approximate all of medium adsorbed on the adsorbents 5, at the temperature of cooling water from the engine 1. The opening time is suitably determined based on the medium-adsorbing capacity of the adsorbent 5.
  • A warm-up/auxiliary-cooling mode, shown in FIG. 3, is performed when the temperature of cooling water from the [0058] engine 1 becomes lower than the predetermined temperature (e.g., 80-90° C.). Especially, the warm-up/auxiliary-cooling mode is performed at an engine cold start where operation of the engine 1 is started at a low temperature. Specifically, the valve 12 b is opened while the engine 1 is operated. In this case, since low-temperature cooling water flows in the adsorption core 6, the adsorbents 5 adsorb gas medium in the adsorption chamber 4, and generate adsorption heat. Then, the cooling water, flowing in the adsorption core 6, is heated by the generated adsorption heat. Therefore, the temperature of the cooling water returning to the engine 1 is increased, and the warm-up operation of the engine 1 is facilitated.
  • At this time, since the [0059] adsorbents 5 adsorb the gas medium in the adsorption chamber 4, the pressure in the adsorption chamber 4 reduces than the pressure in the liquid-medium storage chamber 10. In this condition, when the vapor compression refrigerator 8 is operated, the atmospheric temperature in the liquid-medium storage chamber 10 becomes a temperature range (e.g., 40-60° C.) corresponding to the refrigerant temperature from the condenser 8 b, and the atmospheric temperature in the adsorption chamber 4 is a temperature range (e.g., 25° C.) corresponding to an outside air temperature. Therefore, the liquid medium in the liquid-medium storage chamber 10 adsorbs heat from the refrigerant, and continues vaporization.
  • Thus, high-pressure refrigerant from the [0060] condenser 8 b is cooled by using this medium vaporization in the liquid-medium storage chamber 10. Therefore, the high-pressure refrigerant can be cooled as compared with a vapor compression refrigerator which does not include the condensation core 9, and enthalpy (dryness) of refrigerant at an inlet of the evaporator 8 d can be reduced, thereby improving cooling performance of the vapor compression refrigerator 8. Thus, the pressure of refrigerant discharged from the compressor 8 a reduces. Accordingly, motive power consumed by the compressor 8 a, that is, a load of the engine 1 is reduced, and motive power required by the vapor compression refrigerator 8 can be reduced.
  • As described above, in the first embodiment, when the temperature of cooling water is high, the waste heat of the [0061] engine 1 is stored as evaporation latent heat (similar to condensation heat) of the medium by using the adsorption function of the adsorbents 5. On the other hand, when the temperature of cooling water is low, for example, at the warm-up operation of the engine 1, the medium is adsorbed on the adsorbents 5, and the adsorption heat (equivalent to condensation heat) of the medium is generated. Since the generated adsorption heat is supplied to cooling water, the warm-up operation of the engine 1 is facilitated. Additionally, air-cooling performance can be improved in the refrigerator 8, while the motive power consumed by the vapor compression refrigerator 8 can be reduced. In the first embodiment, water is used as the medium, and the evaporation latent heat of water is large (2500 kilo joules/kilo gram). Therefore, a size of a heat storage unit, which is constructed with the adsorption chamber 4 and the liquid-medium storage chamber 10, can be reduced.
  • Further, the [0062] valve 12 can be maintained at an open state after the warm-up operation of the engine 1 is ended. For example, when the vehicle is stopped in idling operation of the engine 1, a rotational speed of the engine 1 and an air volume are reduced as compared with that in a vehicle travelling, and a thermal load of the vapor compression refrigerator 8 is reduced. Therefore, the cooling performance of the condenser 8 b is reduced. However, in this case, when the valve 12 is in the open state after the warm-up operation of the engine 1 is ended, the load of the engine 1 is reduced, and the temperature of cooling water is reduced. Therefore, the warm-up/auxiliary-cooling mode is automatically set, and the temperature of cooling water is prevented from being excessively reduced while motive power consumed by the vapor compression refrigerator 8 is reduced.
  • On the other hand, when the vehicle travels, the load of the [0063] engine 1 increases, and the temperature of cooling water increases, so that the heat storage mode is automatically set. Accordingly, any one of the warm-up/auxiliary-cooling mode and the heat storage mode can be automatically selected without a specific switching device.
  • The auxiliary-cooling priority mode, shown in FIG. 4, is performed when the temperature of cooling water from the [0064] engine 1 becomes equal to or higher than the predetermined temperature (e.g., 80-90° C.) under which the warm-up operation of the engine 1 can be determined to be ended. Specifically, cooling water is circulated between the heat storage radiator 7 a and the adsorption core 6 while the valve 12 is opened. In this case, since the atmospheric temperature in the adsorption chamber 4 can be maintained at a temperature (e.g., 25° C.) corresponding to the outside air temperature, the liquid medium in the liquid-medium storage chamber 10 absorbs heat from refrigerant through the condensation core 9. Therefore, the liquid medium in the liquid-medium storage chamber 10 continues vaporization. Thus, the high-pressure refrigerant at an outlet of the condenser 8 b is cooled by the liquid medium through the condensation core 9, so that the pressure of the high-pressure refrigerant can be continuously reduced as compared with a vapor compression refrigerator which does not include the condensation core 9.
  • As described above, the heat storage system according to the first embodiment can be effectively used by effectively using the heat absorption function, not only in the winter where an outside air temperature is low, but also in the summer where the outside air temperature is high and cooling operation is required. Furthermore, the heat storage system can be produced in low cost by adding a little change to a prior heat storage system. Further, the construction of the heat storage system according to the first embodiment can be effectively simplified, and the number of valves can be reduced. [0065]
  • Here, test results of the heat storage system for a vehicle according to the first embodiment is shown in FIG. 5. FIG. 5 plots an air temperature Ti in the passenger compartment and a cooling water temperature Tw of the [0066] engine 1 as the ordinates, and plots a vehicle traveling time Time as the abscissa. As shown in FIG. 5, an operation mode of the heat storage system, such as the heat storage mode, the warm-up/cooling mode, and the cooling priority mode can be effectively selected.
  • (Second Embodiment) [0067]
  • In the second embodiment, as shown in FIG. 6, the [0068] radiator 2 and the heat storage radiator 7 a are integrated with each other. Specifically, as shown in FIG. 7, the integrated radiator includes plural tubes 2 a in which cooling water flows, header tanks 2 b, 2 c, and a separator 2 d for partitioning a space in the header tank 2 c at a water outlet side. The header tanks 2 b, 2 c communicate with tubes 2 a at both ends of the tubes 2 a in its longitudinal direction, respectively. As shown in FIG. 6, a three-way switching valve 14 switches any one of a cooling water stream from the radiator 2 and a cooling water stream from the heat storage radiator 7 a.
  • In the second embodiment, the other parts are similar to those of the above-described first embodiment. Therefore, in the second embodiment, one of the heat storage mode, the warm-up/auxiliary-cooling mode and the auxiliary-cooling priority mode can be selected similar to the above-described first embodiment. [0069]
  • (Third Embodiment) [0070]
  • In the third embodiment shown in FIG. 8, the apparatuses constructing the [0071] adsorbent cooling unit 7 such as the heat storage radiator 7 a described in the first embodiment, are eliminated, thereby simplifying the construction of the heat storage system.
  • Even in the third embodiment, the other parts are similar to those of the above-described first embodiment. Therefore, in the third embodiment, one of the heat storage mode, the warm-up/auxiliary-cooling mode and the auxiliary-cooling priority mode can be selected similar to the above-described first embodiment. [0072]
  • (Fourth Embodiment) [0073]
  • In the above embodiments, the [0074] adsorption chamber 4 and the liquid-medium storage chamber 10 are disposed to be separated from each other, and the communication passage 11 and the valve 12 are provided therebetween. However, in a heat storage system (cold storage system) according to the fourth embodiment, as shown in FIGS. 9-11, the adsorption chamber 4 and the liquid-medium storage chamber 10 are integrated with each other to form a storage chamber 40, and the communication passage 11 and the valve 12 described in the first embodiment are eliminated. Here, the medium (water) is accommodated and sealed in the storage chamber 40 at pressure much lower than atmospheric pressure. Further, the adsorption core 6 is disposed in an adsorption space (corresponding to the adsorption chamber 4 shown in FIG. 1) of the storage chamber 40, and the condensation core 9 is disposed in a liquid-medium storage space (corresponding to the liquid-medium storage chamber 10 shown in FIG. 1) of the storage chamber 40. The liquid medium is stored in the liquid-medium storage space of the storage chamber 40. Furthermore, in the fourth embodiment, the heat storage radiator 7 a and the radiator 2 are integrated with each other as in the second embodiment.
  • Next, operation of the heat storage system according to the fourth embodiment will be described. In the fourth embodiment, the operation mode of the heat storage system is defined relative to the refrigerator [0075] 8 (e.g., vapor compression refrigerant cycle). A cold storage mode (heat storage mode), shown in FIG. 9, is performed when the rotational speed of the engine 1 is higher than an idling rotational speed thereof. That is, the cold storage mode is performed when a temperature of cooling water from the engine 1 becomes equal to or higher than a predetermined temperature (e.g., 80-90° C.) under which warm-up operation of the engine 1 can be determined to be ended. Specifically, high-temperature cooling water from the engine 1 is circulated into the adsorption core 6 while the engine 1 and the vapor compression refrigerator 8 are operated. Then, the adsorbents 5 absorb waste heat from the engine 1, and the adsorbed medium is desorbed from the adsorbents 5 as gas medium.
  • At this time, the atmospheric temperature in the adsorption space of the [0076] storage chamber 40 is in a temperature range (e.g., 80-90° C.) corresponding to the cooling water temperature, and the atmospheric temperature in the liquid-medium storage space of the storage chamber 40 is in a temperature range (e.g., 40-60° C.) corresponding to the refrigerant temperature from the condenser 8 b. The atmospheric temperature in the liquid-medium storage space of the storage chamber is lower than the atmospheric temperature in the adsorption space of the storage chamber 40. Therefore, the medium desorbed from the adsorbents 5 flows toward the liquid-medium storage space, and is cooled and condensed by the condensation core 9. Then, the condensed medium is stored as liquid medium in the liquid-medium storage space in the storage chamber 40. Heat, supplied to refrigerant by the condensation core 9, is finally radiated to atmospheric air through the condenser 8 b.
  • While high-temperature cooling water flows in the [0077] adsorption core 6, the medium desorption from the adsorbents 5 is continued. At this time, since the medium is not adsorbed on the adsorbents 5, the desorbed medium is liquefied by the condensation core 9, so that cold storage operation is continued as storage operation of the liquid medium.
  • A cold release mode (auxiliary-cooling mode), shown in FIG. [0078] 10, is performed when the vehicle is stopped after the cold storage operation is ended. Specifically, in the cold release mode, low-temperature cooling water, cooled by the heat storage radiator 7 a, is circulated into the adsorption core 6. Therefore, the adsorbents 5 are cooled, and relative humidity around the adsorbents 5 increases, so that gas medium (moisture) around the adsorbents 5 is adsorbed on the adsorbents 5. Thus, the pressure in the adsorption space of the storage chamber 40 reduces relative to pressure in the liquid-medium storage space of the storage chamber 40. In this condition, when the vapor compression refrigerator 8 is operated, the atmospheric temperature in the liquid-medium storage space becomes a temperature (e.g., 40-60° C.) corresponding to the refrigerant temperature from the condenser 8 b, and the atmospheric temperature in the adsorption space becomes a temperature (e.g., 25° C.) corresponding to an outside air temperature. Thus, the liquid medium in the liquid-medium storage space absorbs heat from the refrigerant through the condensation core 9, and continues vaporization.
  • Accordingly, high-pressure refrigerant in the [0079] condenser 8 b is cooled by using this vaporization in the liquid-medium storage space of the storage chamber 40. Therefore, the high-pressure refrigerant from the condenser 8 b can be cooled as compared with a vapor compression refrigerator which does not include the condensation core 9, and enthalpy (dryness) of refrigerant at the inlet of the evaporator 8 d can be reduced, thereby improving cooling performance of the vapor compression refrigerator 8. Thus, the pressure of refrigerant discharged from the compressor 8 a reduces. As a result, motive power consumed by the compressor 8 a, that is, the load of the engine 1 is reduced, and motive power consumed by the vapor compression refrigerator 8 can be effectively reduced.
  • A cold pre-release mode, shown in FIG. 11, is performed when the load (waste heat) of the [0080] engine 1 is relatively low and cooling water from the engine 1 can be sufficiently cooled by only the radiator 2 after the cold storage operation is ended. Specifically, before the cold release mode is selected after the cold storage operation is completed, only the switching valve 14 described in the second embodiment is operated as in the cold release mode. Then, cooling water, cooled to near the outside air temperature, is introduced into the adsorption core 6. Accordingly, when the cold release mode is selected, the adsorbents 5 can be effectively cooled by using low-temperature cooling water, so that the adsorbents 5 can be rapidly cooled, and relative humidity around the adsorbents 5 can be rapidly increased. Therefore, auxiliary cooling performance can be increased.
  • Further, in the fourth embodiment, as shown in FIGS. [0081] 9-11, the vapor compression refrigerator 8 is an accumulator cycle where a gas-liquid separator 8 e is disposed at a low refrigerant pressure side (a suction side of the compressor 8 a). Accordingly, in the vapor compression refrigerator, refrigerant from the evaporator 8 d flows into the gas-liquid separator 8 e to be separated into gas refrigerant and liquid refrigerant in the gas-liquid separator. Gas refrigerant separated in the gas-liquid separator 8 e is supplied to the compressor 8 a, and liquid refrigerant is stored in the gas-liquid separator 8 e as surplus refrigerant in the vapor compression refrigerator 8. In the heat storage system of the fourth embodiment, the other parts are similar to those of the first embodiment.
  • (Fifth Embodiment) [0082]
  • In the fifth embodiment, as shown in FIG. 12, the [0083] vapor compression refrigerator 8 is a receiver cycle where the gas-liquid separator 8 e is disposed at a high refrigerant pressure side. Here, the condensation core 9 is disposed in a refrigerant passage between the receiver (gas-liquid separator) 8 e and the condenser 8 b.
  • In the fifth embodiment, the other parts are similar to those of the above-described fourth embodiment. Accordingly, in the fifth embodiment, any one operation mode such as the cold storage mode (heat storage mode), the cold release mode and the cold pre-release mode described in the fourth embodiment can be selected. [0084]
  • (Sixth Embodiment) [0085]
  • In the sixth embodiment, as shown in FIG. 13, the [0086] condensation core 9 is disposed in a refrigerant passage between a discharge port of the compressor 8 a and a refrigerant inlet of the condenser 8 b. In the heat storage system shown in FIG. 13, the other parts are similar to those of the above-described fourth embodiment, and one operation mode described in the fourth embodiment can be selected. Similarly, in FIG. 14, the condensation core 9 is disposed in a refrigerant passage between the discharge port of the compressor 8 a and the refrigerant inlet of the condenser 8 b in the heat storage system of the fifth embodiment. Accordingly, in the heat storage system shown in FIG. 14, the other parts are similar to those of the above-described fifth embodiment, and one operation mode described in the fifth embodiment can be selected.
  • (Seventh Embodiment) [0087]
  • The seventh embodiment of the present invention will be now described with reference to FIGS. 15 and 16. In the above-described fourth through sixth embodiments, the temperature of cooling water flowing into the [0088] adsorption core 6 is controlled by the two switching valves 7 b, 14 and the pump 7 c. However, in the seventh embodiment, as shown in FIGS. 15, 16, the temperature of cooling water flowing into the adsorption core 6 is controlled by a single switching valve 7 d and the pump 7 c.
  • Specifically, as shown in FIG. 15, the switching [0089] valve 7 d is opened while the operation of the pump 7 c is stopped in the cold storage mode. Therefore, high-temperature cooling water, flowing out from the engine 1, is circulated between the engine 1 and the adsorption core 6, and the medium adsorbed on the adsorbents 5 is desorbed therefrom, so that the cold storage operation is performed. In the cold release mode (auxiliary-cooling operation), as shown in FIG. 16, the switching valve 7 d is closed and the pump 7 c is operated. Therefore, low-temperature cooling water, flowing out from the radiator 2, is circulated between the radiator 2 and the adsorption core 6, so that high-pressure refrigerant is cooled in the vapor compression refrigerator 8. In FIGS. 15, 16, the other parts are similar to those of the above-described fourth embodiment. In the seventh embodiment, the structure using the single switching valve 7 d can be used for the fifth and sixth embodiments.
  • (Eighth Embodiment) [0090]
  • In the above-described fourth to seventh embodiments, any one of the cold storage mode and the cold release mode is switched by controlling the temperature of cooling water to be circulated into the [0091] adsorption core 6. However, in the eighth embodiment, the temperature of the adsorbents 5 is generally stabilized at least after the end of the warm-up operation of the engine 1. Thus, any one of the cold storage mode and the cold release mode can be automatically switched in accordance with a thermal load of the vapor compression refrigerator 8.
  • Specifically, as shown in FIG. 17, the heat storage system is constructed so that cooling water from the [0092] engine 1 is always circulated into the adsorption core 6. When the rotational speed of the compressor 8 a is high in traveling of the vehicle, a sufficient amount of refrigerant can be circulated in the vapor compression refrigerator 8. In this case, when a sufficient amount of cooling air is supplied to the condenser 8 b, the temperature of high-pressure refrigerant at a refrigerant outlet of the condenser 8 b is low, and the gas medium desorbed from the adsorbents 5 is cooled and liquefied by the condensation core 9 as in the fourth embodiment. That is, at this time, the cold storage mode described in the fourth embodiment is selected.
  • On the other hand, when the rotational speed of the [0093] compressor 8 a is low in stoppage of the vehicle, a sufficient amount of refrigerant cannot be circulated in the vapor compression refrigerator 8. In this case, when a sufficient amount of cooling air cannot be supplied to the condenser 8 b, the temperature of the high-pressure refrigerant increases, the liquid medium stored in the liquid-medium storage space of the storage chamber 40 in the cold storage mode is evaporated. Then, relative humidity in the adsorption space of the storage chamber 40 increases, and the evaporated medium is adsorbed on the adsorbents 5. That is, at this time, the cold release mode described in the fourth embodiment is selected. Thus, any one of the cold storage mode and the cold release mode is automatically switched in accordance with the thermal load of the vapor compression refrigerator 8.
  • The adsorbent, most suitable to the heat storage system (e.g., a vehicle air conditioner) according to the eighth embodiment, has the following water adsorption capacity. As shown in FIG. 18, the water adsorption capacity of the [0094] adsorbents 5 is largely changed between a small thermal load of the vapor compression refrigerator 8 and, a large thermal load thereof. Specifically, in FIG. 18, a point A indicates a water adsorption capacity at relative humidity Ψ of 0.1% corresponding to a refrigerant temperature of 40° C., and a point B indicates a water adsorption capacity at relative humidity Ψ of 0.18% corresponding to a refrigerant temperature of 50° C. In FIG. 18, the cold storage mode is selected in relative humidity Ψ lower than the point A, and the cold release mode is selected in relative humidity Ψ higher than the point B. In FIG. 17, the structure of the eighth embodiment is typically used for the fourth embodiment. Accordingly, the other parts of the eighth embodiment are similar to those of the above-described fourth embodiment. The structure of the eighth embodiment can be used for the fifth to seventh embodiments. Even in this case, any one of the cold storage mode and the cold release mode can be automatically switched in accordance with the thermal load of the vapor compression refrigerator 8.
  • (Ninth Embodiment) [0095]
  • In the above-described eighth embodiment, cooling water, flowing out from the [0096] engine 1, is always circulated into the adsorption core 6, thereby generally stabilizing the temperature of the adsorbents 5. However, in the ninth embodiment, as shown in FIG. 19, cooling water flowing out from the radiator 2 is always circulated into the adsorption core 6, thereby generally stabilizing the temperature of the adsorbents 5. Although operation in the ninth embodiment is similar to the operation in the eighth embodiment, the temperature of cooling water circulating in the adsorption core 6 in the ninth embodiment is lower than that in the eighth embodiment. Therefore, the relative humidity Ψ, at which the medium is adsorbed to or desorbed from the adsorbent 5, is different between the eighth and ninth embodiments. FIG. 20 is a graph showing a characteristic of the adsorbent 5, most suitable to the ninth embodiment.
  • (Tenth Embodiment) [0097]
  • In the above-described embodiments, the high-pressure refrigerant in the [0098] refrigerator 8 is cooled by using the adsorbent cooling unit. However, in the tenth embodiment, the low-pressure refrigerant after being decompressed in the refrigerator 8 is cooled by using the adsorbent cooling unit. Specifically, as shown in FIGS. 21, 22, the condensation core 9 cools refrigerant flowing in a refrigerant passage connecting two upstream and downstream evaporators 8 d, 8 f. When the cold storage mode is selected as shown in FIG. 21, the gas medium desorbed from the adsorbents 5 is cooled and condensed by performing heat exchange with refrigerant flowing from the upstream evaporator 8 d. The refrigerant flowing in the upstream evaporator 8 d is heat exchanged with air to be blown into the passenger compartment to cool the air. The refrigerant, to flow into the downstream evaporator 8 f, is heated by the condensation core 9. However, in the cold storage mode, cooling feeling is not largely reduced because the vapor compression refrigerator 8 has a sufficient cooling capacity.
  • When the cold release mode is selected as shown in FIG. 22, gas refrigerant, flowing out from the [0099] upstream evaporator 8 d, is cooled and liquefied by the condensation core 9, and thereafter flows into the downstream evaporator 7 f to be again evaporated. Accordingly, cooling performance of the vapor compression refrigerator 8 of the heat storage system used for a vehicle air conditioner can be increased without increasing the rotational speed of the engine 1, thereby reducing fuel consumption of the vehicle. In FIGS. 21, 22, preferably, the downstream evaporator 8 f, positioned downstream from the upstream evaporator 8 d in a refrigerant flowing direction, is disposed at an upstream air side of the evaporator 8 d in an air flowing direction.
  • (Eleventh Embodiment) [0100]
  • In the above-described tenth embodiment, cooling water flowing in the [0101] adsorption core 6 is cooled by the heat storage radiator 7 a. In the eleventh embodiment, as shown in FIGS. 23, 24, the heat storage radiator 7 a is eliminated, and a heat exchanger 110 is provided. The heat exchanger 110 performs heat exchange between cooling water flowing in the adsorption core 6 and high-pressure refrigerant at an outlet of the condenser 8 b in the vapor compression refrigerator 8. Therefore, the cooling water flowing in the adsorption core 6 is cooled by the refrigerant flowing from the condenser 8 b in the heat exchanger 110. The cold storage mode and the cold release mode are performed similarly to the above-described tenth embodiment. The cold storage mode is set as in FIG. 23, and the cold release mode is set in FIG. 24. In the eleventh embodiment, heat generated from the adsorbents 5 is radiated in the condenser 8 b to outside air through refrigerant.
  • (Twelfth Embodiment) [0102]
  • In the above-described tenth and eleventh embodiments, the [0103] condensation core 9 is disposed separately from the evaporators 8 d, 8 f. However, in the twelfth embodiment, as shown in FIGS. 25A, 25B, the condensation core 9 and the evaporators 8 d, 8 f are integrated with each other. Accordingly, in the twelfth embodiment, the condensation core 9 and the evaporators 8 d, 8 f can be readily disposed in an air-conditioning case for the vehicle air conditioner.
  • (Thirteenth Embodiment) [0104]
  • In the thirteenth embodiment, as shown in FIG. 26, a [0105] heat exchanger 9 a is integrated with the evaporators 8 d, 8 f. In the heat exchanger 9 a, a fluid cooled by the condensation core 9 is heat-exchanged with refrigerant flowing in a refrigerant passage connecting the evaporators 8 d, 8 f. Accordingly, the heat exchanger 9 a and the evaporators 8 d, 8 f can be readily disposed in the air-conditioning case.
  • (Fourteenth Embodiment) [0106]
  • In the fourteenth embodiment, as shown in FIGS. 27, 28, the [0107] downstream evaporator 8 f described in the tenth through thirteenth embodiments is eliminated, and the condensation core 9 is disposed at a downstream refrigerant side of the evaporator 8 d. The other parts of the heat storage system in FIG. 27 are similar to those of the above-described tenth embodiment, and the other parts of the heat storage system in FIG. 28 are similar to those of the above-described eleventh embodiment.
  • (Fifteenth Embodiment) [0108]
  • In the fifteenth embodiment shown in FIGS. 29 and 30 are modifications of the above-described fourteenth embodiment. As shown in FIGS. 29 and 30, the [0109] evaporator 8 f and the evaporator 8 d are disposed in parallel, with respect to a refrigerant flow. Specifically, the evaporator 8 d is disposed downstream from the condensation core 9 in series, in the refrigerant flow. On the other hand, the evaporator 8 f is disposed in a bypass refrigerant passage through which refrigerant bypasses the condensation core 9. Preferably, the evaporator 8 f is disposed at a downstream air side of the evaporator 8 d in the air-conditioning case.
  • (Other Embodiments) [0110]
  • Although the present invention has been fully described in connection with the preferred embodiments thereof with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. [0111]
  • For example, in the above-described first to third embodiments, the [0112] condensation core 9 is disposed in the liquid-medium storage chamber 10. However, the liquid-medium storage chamber 10 can be provided separately from a container for containing the condensation core 9 without being limited to this manner. In this case, the first and second valves 12 a, 12 b are required to be provided in independent from each other.
  • In the above-described first through third embodiments, the [0113] waste heat supplier 6 a, the adsorption heat supplier 6 b and the cooling portion 6 c are constructed with the single adsorption core 6. However, in the present invention, these devices 6 a-6 c can be provided in independent from each other, without being limited to this manner.
  • In the above embodiments, water is used as the medium, and a silica gel or a zeolite is adopted as the [0114] adsorbent 5. However, water is used as the medium, and a hydration material for generating a hydrate, such as carbon dioxide and methane, may be used as the adsorbent 5, or ammonia may be used as the adsorbent 5, without being limited to this manner. Here, the adsorption of medium means a reversible reaction such as a reversible chemical reaction and a dissolution. That is, if only a substance radiates and absorbs heat due to bonding and separation between a substance and medium, the substance can be used as the adsorbent 5.
  • In the first to third embodiments, the vapor compression refrigerator [0115] 8 (i.e., compressor 8 a) is operated in the warm-up/auxiliary-cooling mode. However, in the present invention, the operation of the vapor compression refrigerator 8 may be stopped in the warm-up/auxiliary-cooling mode, without being limited to this manner.
  • In the above-described embodiments, an adsorption type refrigerator or an ejector type refrigerator may be used as the refrigerator, without limited to the [0116] vapor compression refrigerator 8 in the above embodiments. For example, in an electric car, the apparatus requiring the warm-up operation is a motor or an inverter circuit, without being limited to the engine 1 in the above-described first embodiment.
  • Further, exhaust gas from the [0117] engine 1 can be used as a waste heat source without being limited to the heat of the cooling water for cooling the engine 1. In this case, the waste heat supplier 6 a is provided as a heat exchanger to be independent from the adsorption heat supplier 6 b. When the waste heat supplier 6 a and the adsorption heat supplier 6 b are provided as a single heat exchanger, a valve for switching a cooling water stream is required. Further, the condensation core 9 can be provided at any position in the vapor compression refrigerator 8, without being limited to a downstream refrigerant side of the condenser 8 b in the above-described first embodiment. Generally, the condensation core 9 is provided at a position where a temperature difference between the refrigerant and the medium is large.
  • Such changes and modifications are to be understood as being within the scope of the present invention as defined by the appended claims. [0118]

Claims (22)

What is claimed is:
1. A heat storage system for a vehicle, comprising:
an adsorbent for adsorbing and desorbing medium, the adsorbent having a medium-adsorbing capacity that is reduced in accordance with a temperature increase of the adsorbent, and generating heat when adsorbing gas medium;
an adsorption chamber for containing the adsorbent therein;
a waste heat supplier for supplying waste heat generated in the vehicle to the adsorbent;
an adsorption heat supplier for supplying the heat generated by the adsorbent to an apparatus requiring warm-up operation, the apparatus being mounted in the vehicle;
a refrigerator for cooling air to be blown into a passenger compartment of the vehicle, the refrigerator including a refrigerant-medium heat exchanger for performing heat-exchange between the medium and refrigerant circulated in the refrigerator;
a first valve for opening and closing a first passage through the gas medium desorbed from the adsorbent is introduced from the adsorption chamber to the refrigerant-medium heat exchanger;
a liquid-medium storage chamber for storing liquid medium cooled and condensed in the refrigerant-medium heat exchanger, the liquid medium being heated and vaporized to be gas medium in the refrigerant-medium heat exchanger by absorbing heat;
a second valve for opening and closing a second passage through which the liquid-medium storage chamber and the adsorption chamber communicate with each other, wherein:
the first valve opens the first passage for a predetermined time when a temperature of the apparatus is equal to or higher than a predetermined temperature, and closes the first passage after the predetermined time passes; and
the second valve opens the second passage at least when the temperature of the apparatus is lower than the predetermined temperature.
2. The heat storage system according to claim 1, wherein the refrigerant-medium heat exchanger performs heat-exchange between the refrigerant and the liquid medium stored in the liquid-medium storage chamber when the second valve opens the second passage.
3. The heat storage system according to claim 1, wherein the medium is water.
4. The heat storage system according to claim 1, wherein the adsorbent is a hydration material for generating a hydrate.
5. The heat storage system according to claim 1, wherein the refrigerator is a vapor compression refrigerator.
6. The heat storage system according to claim 1, wherein the waste heat is heat generated by the apparatus after ending the warm-up operation.
7. The heat storage system according to claim 1, further comprising an adsorbent cooling unit that cools the adsorbent when the second valve opens the second passage.
8. The heat storage system according to claim 7, further comprising
a radiator for performing a heat exchange between cooling water circulating in the apparatus and outside air, wherein:
the adsorbent cooling unit includes a radiating portion that is integrated with the radiator.
9. The heat storage system according to claim 8, wherein both of the radiator and the radiating portion radiate heat generated by the apparatus to outside air, when an amount of the heat generated from the apparatus is equal to or larger than a predetermined amount.
10. The heat storage system according to claim 1, further comprising
an adsorbent cooling unit having a cooling portion for cooling the adsorbent, wherein:
the waste heat supplier, the adsorption heat supplier and the cooling portion are provided to be constructed of a single heat exchanger; and
the first valve and the second valve are constructed of a single valve for opening and closing the first passage and the second passage.
11. The heat storage system according to claim 1, wherein,
the refrigerant-medium heat exchanger is disposed to cool the refrigerant in the refrigerator through the medium in a cooling mode.
12. A heat storage system for a vehicle, comprising:
an adsorbent for adsorbing and desorbing gas medium, the adsorbent desorbing the gas medium when being heated;
a vapor compression refrigerator for cooling air to be blown into a passenger compartment, the vapor compression refrigerator including a refrigerant-medium heat exchanger for performing heat-exchange between the medium and refrigerant; and
an adsorption chamber containing therein the adsorbent and the refrigerant-medium heat exchanger, for storing therein liquid medium cooled and condensed by the refrigerant-medium heat exchanger, the liquid medium being heated and vaporized to gas medium by heat from the refrigerant in the refrigerant-medium heat exchanger, wherein,
the refrigerant-medium heat exchanger is disposed in the adsorption chamber to cool the refrigerant in the refrigerator in a cooling mode.
13. The heat storage system according to claim 12, wherein,
the refrigerant-medium heat exchanger is disposed to cool refrigerant at a low pressure side after being decompressed in the refrigerator in the cooling mode.
14. The heat storage system according to claim 12, wherein:
the vapor compression refrigerator includes at least two heat exchangers at the low pressure side; and
the refrigerant-medium heat exchanger is disposed in a refrigerant passage connecting the two heat exchangers, to cool refrigerant flowing in the refrigerant passage.
15. The heat storage system according to claim 14, wherein the two heat exchangers and the refrigerant-medium heat exchanger are integrated with each other.
16. The heat storage system according to claim 15, wherein:
the refrigerant-medium heat exchanger includes a refrigerant-fluid heat exchanger for performing heat-exchange between a fluid heat-exchanged with the medium in the adsorption chamber and refrigerant flowing in the refrigerant passage between the two heat exchangers; and
the refrigerant-fluid heat exchanger and the two heat exchangers are integrated with each other.
17. The heat storage system according to claim 13, wherein the adsorbent is disposed to be cooled by refrigerant at a high pressure side before being decompressed in the refrigerator in the cooling mode.
18. The heat storage system according to claim 12, wherein the refrigerant-medium heat exchanger is disposed to cool refrigerant at a high pressure side before being decompressed in the refrigerator, in the cooling mode.
19. The heat storage system according to claim 12, further comprising:
a fluid passage through which a fluid for cooling and heating the adsorbent flows to the adsorbent;
a switching valve for opening and closing the fluid passage; and
a pump for circulating the fluid to the adsorbent.
20. The heat storage system according to claim 12, wherein the adsorbent has a medium-adsorbing capacity that is changed in accordance with a change of relative humidity around the adsorbent.
21. The heat storage system according to claim 12, wherein the adsorbent is disposed to have a substantially constant temperature.
22. The heat storage system according to claim 12, wherein, in a cold storage mode, the adsorbent is heated by waste heat generated in the vehicle while the vehicle is traveling.
US10/366,805 2002-03-06 2003-02-14 Heat storage system for vehicle, with adsorbent Expired - Lifetime US6807820B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002-60734 2002-03-06
JP2002060734A JP3925245B2 (en) 2002-03-06 2002-03-06 Vehicle heat storage system
JP2002-060734 2002-03-06
JP2002182869A JP4069691B2 (en) 2002-06-24 2002-06-24 Air conditioner for vehicles
JP2002-182869 2002-06-24

Publications (2)

Publication Number Publication Date
US20030167925A1 true US20030167925A1 (en) 2003-09-11
US6807820B2 US6807820B2 (en) 2004-10-26

Family

ID=27790989

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/366,805 Expired - Lifetime US6807820B2 (en) 2002-03-06 2003-02-14 Heat storage system for vehicle, with adsorbent

Country Status (3)

Country Link
US (1) US6807820B2 (en)
DE (1) DE10309584A1 (en)
FR (1) FR2837430B1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6701731B2 (en) * 2002-02-28 2004-03-09 Denso Corporation Vehicle air conditioner with cold storage unit
US20040149129A1 (en) * 2003-01-31 2004-08-05 Martin Petersson Ambient air pollution trap
US20050268633A1 (en) * 2004-06-08 2005-12-08 Smith Douglas M Sorption cooling systems, their use in automotive cooling applications and methods relating to the same
US20060112706A1 (en) * 2004-02-02 2006-06-01 Denso Corporation Air conditioner for automotive vehicle
US20070227107A1 (en) * 2006-04-03 2007-10-04 Denso Corporation Air conditioning apparatus
CN101823417A (en) * 2010-04-20 2010-09-08 杭州电子科技大学 Rapid refrigerating system of automobile cab
US20100243751A1 (en) * 2005-05-30 2010-09-30 Giat Industries Thermal energy management device for a vehicle
EP2258571A1 (en) * 2009-06-05 2010-12-08 Valeo Systèmes Thermiques Heat exchange device and thermal management system
CN102003830A (en) * 2010-11-05 2011-04-06 中国科学院广州能源研究所 Adsorption type refrigerator and compression type air-conditioner combined system
US20120210745A1 (en) * 2011-02-22 2012-08-23 Denso Corporation Drier and refrigerating cycle
WO2012146368A1 (en) * 2011-04-29 2012-11-01 Valeo Systemes Thermiques Assembly including a coolant circuit and a heat transport fluid circuit
US20130152612A1 (en) * 2011-08-16 2013-06-20 Nanopore, Inc. Sorption cooling systems and climate control using multi-channel thermal swing adsorption
US20130248166A1 (en) * 2012-03-21 2013-09-26 Delphi Technologies, Inc. Phase change material evaporator charging control
US20140250927A1 (en) * 2011-11-22 2014-09-11 Fujitsu Limited Adsorption heat pump system and method of driving adsorption heat pump
CN104129253A (en) * 2013-05-01 2014-11-05 福特环球技术公司 Climate control system having multiple adsorbers and a method of control
CN104228519A (en) * 2013-06-19 2014-12-24 福特环球技术公司 System for thermal management of a vehicle and method for vehicle cold start
US20150052913A1 (en) * 2013-08-26 2015-02-26 Ford Global Technologies, Llc Climate Control System
US20150121916A1 (en) * 2012-07-17 2015-05-07 Coldway Enclosure refrigerated by a hybrid compression/absorption refrigeration system
FR3013265A1 (en) * 2013-11-18 2015-05-22 Valeo Systemes Thermiques THERMAL CONDITIONING SYSTEM FOR AN AIR FLOW FOR A MOTOR VEHICLE AND HEATING, VENTILATION AND / OR AIR CONDITIONING SYSTEM THEREFORE
US20150210142A1 (en) * 2012-08-16 2015-07-30 Ford Global Technologies, Llc Motor vehicle climate control system
US20150292775A1 (en) * 2012-10-25 2015-10-15 Carrier Corporation Refrigeration system with phase change material
US20170028819A1 (en) * 2014-04-24 2017-02-02 Alternative Energy Consulting & Technologies S.A.R.L. Heating and drying device for use in motor vehicles
US20180031293A1 (en) * 2013-03-15 2018-02-01 Oxicool Inc. Cooling Systems and Methods
US20180147916A1 (en) * 2015-05-29 2018-05-31 Thermo King Corporation Method and system for controlling the release of heat by a temperature control unit
US20180229620A1 (en) * 2017-02-10 2018-08-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Vehicle heat management control device and recording medium storing heat management control program
US20200271361A1 (en) * 2017-09-24 2020-08-27 N. A. M. Technology Ltd. Combined-type cascade refrigerating apparatus
US10808972B2 (en) 2013-03-15 2020-10-20 Oxicool Inc. Adsorption-based cooling system
US11299014B2 (en) * 2017-09-21 2022-04-12 Denso Corporation Refrigeration cycle device
US11346590B2 (en) * 2016-06-14 2022-05-31 Oxicool Inc. Cooling system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060107674A1 (en) * 2004-11-22 2006-05-25 Sharma Ratnesh K Multi-effect cooling system utilizing heat from an engine
KR100591320B1 (en) * 2004-12-13 2006-06-19 엘지전자 주식회사 Air-conditioner using cogeneration system
US7412843B2 (en) * 2005-05-20 2008-08-19 Martin Perry Heard Manifold-superheated air conditioning system
JP4828293B2 (en) * 2005-07-19 2011-11-30 東京エレクトロン株式会社 Water removal device and inspection device in refrigerant
DE102010023416A1 (en) 2010-02-15 2011-09-08 Beba Energie Gmbh Method, heat storage and heat storage system for heating and cooling of a working fluid
DE102013203619A1 (en) * 2013-03-04 2014-09-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Heat accumulator device for use in passenger car to store and provide heat, has feed device supplying liquid reactant mediums to heat accumulator mediums, where accumulator and reactant mediums exothermically react with one another
EP2999931B1 (en) * 2013-05-23 2019-08-07 Carrier Corporation Thermochemical boosted refrigeration system
US9752797B2 (en) * 2013-10-09 2017-09-05 Haier Us Appliance Solutions, Inc. Water heater with integrated sorption reactor
WO2015053767A1 (en) * 2013-10-09 2015-04-16 General Electric Company Water heater with integrated sorption reactor
US9291256B2 (en) 2014-03-24 2016-03-22 Ford Global Technologies, Llc Method for preheating a powertrain
DE102014215891A1 (en) * 2014-08-11 2016-02-11 Bayerische Motoren Werke Aktiengesellschaft Thermal management system and method of operating such
US9796240B2 (en) 2015-08-12 2017-10-24 Caterpillar Inc. Engine off vapor compression adsorption cycle
WO2017105615A1 (en) 2015-12-18 2017-06-22 Carrier Corporation Heating, ventilation, air conditioning and refrigeration system
JP6597713B2 (en) 2016-07-22 2019-10-30 株式会社デンソー Air conditioner for vehicles
US20180156146A1 (en) * 2016-12-07 2018-06-07 Hyundai Motor Company System and method of heat management for vehicle
DE102018109577B3 (en) * 2018-04-20 2019-05-09 Karlsruher Institut für Technologie Hybrid heat pump with compression and adsorption cycle, as well as procedures for operation and use
FR3082784A1 (en) * 2018-06-26 2019-12-27 Valeo Systemes Thermiques HEAT TREATMENT SYSTEM FOR A MOTOR VEHICLE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4161211A (en) * 1975-06-30 1979-07-17 International Harvester Company Methods of and apparatus for energy storage and utilization
US4924676A (en) * 1985-06-14 1990-05-15 Maier Laxhuber Peter Adsorption cooler
US5142884A (en) * 1991-02-01 1992-09-01 Mainstream Engineering Corporation Spacecraft adsorption thermal storage device using a vapor compression heat pump
US5518069A (en) * 1991-08-14 1996-05-21 Zeo-Tech Sorption apparatus and method for cooling and heating

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2507533B2 (en) 1988-04-15 1996-06-12 三菱電機株式会社 Automotive chemical heat storage
JPH03129266A (en) * 1989-10-13 1991-06-03 Ebara Corp Adsorption refrigerator
JPH0599538A (en) * 1991-10-11 1993-04-20 Daikin Ind Ltd Adsorption type heat exchanger
JP3213058B2 (en) 1992-07-06 2001-09-25 マツダ株式会社 Engine cooling system structure
JP3985384B2 (en) * 1998-09-24 2007-10-03 株式会社デンソー Refrigeration cycle equipment
JP2001246925A (en) * 2000-03-08 2001-09-11 Sanden Corp Air conditioner for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4161211A (en) * 1975-06-30 1979-07-17 International Harvester Company Methods of and apparatus for energy storage and utilization
US4924676A (en) * 1985-06-14 1990-05-15 Maier Laxhuber Peter Adsorption cooler
US5142884A (en) * 1991-02-01 1992-09-01 Mainstream Engineering Corporation Spacecraft adsorption thermal storage device using a vapor compression heat pump
US5518069A (en) * 1991-08-14 1996-05-21 Zeo-Tech Sorption apparatus and method for cooling and heating

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7001445B2 (en) * 2002-01-23 2006-02-21 Ford Global Technologies, Llc Ambient air pollution trap
US20050166583A1 (en) * 2002-01-23 2005-08-04 Martin Petersson Ambient air pollution trap
US6701731B2 (en) * 2002-02-28 2004-03-09 Denso Corporation Vehicle air conditioner with cold storage unit
US20040149129A1 (en) * 2003-01-31 2004-08-05 Martin Petersson Ambient air pollution trap
US6939396B2 (en) * 2003-01-31 2005-09-06 Ford Global Technologies, Llc Ambient air pollution trap
US20060112706A1 (en) * 2004-02-02 2006-06-01 Denso Corporation Air conditioner for automotive vehicle
US7266967B2 (en) * 2004-02-02 2007-09-11 Denso Corporation Air conditioner for automotive vehicle
US7143589B2 (en) 2004-06-08 2006-12-05 Nanopore, Inc. Sorption cooling systems, their use in automotive cooling applications and methods relating to the same
US20050268633A1 (en) * 2004-06-08 2005-12-08 Smith Douglas M Sorption cooling systems, their use in automotive cooling applications and methods relating to the same
US8316659B2 (en) * 2005-05-30 2012-11-27 Nexter Systems Thermal energy management device for a vehicle
US20100243751A1 (en) * 2005-05-30 2010-09-30 Giat Industries Thermal energy management device for a vehicle
US20070227107A1 (en) * 2006-04-03 2007-10-04 Denso Corporation Air conditioning apparatus
EP2258571A1 (en) * 2009-06-05 2010-12-08 Valeo Systèmes Thermiques Heat exchange device and thermal management system
FR2946419A1 (en) * 2009-06-05 2010-12-10 Valeo Systemes Thermiques THERMAL EXCHANGE DEVICE AND THERMAL MANAGEMENT SYSTEM
CN101949658A (en) * 2009-06-05 2011-01-19 法雷奥热系统公司 Heat exchange device and thermal management system
CN101823417A (en) * 2010-04-20 2010-09-08 杭州电子科技大学 Rapid refrigerating system of automobile cab
CN102003830A (en) * 2010-11-05 2011-04-06 中国科学院广州能源研究所 Adsorption type refrigerator and compression type air-conditioner combined system
US20120210745A1 (en) * 2011-02-22 2012-08-23 Denso Corporation Drier and refrigerating cycle
WO2012146368A1 (en) * 2011-04-29 2012-11-01 Valeo Systemes Thermiques Assembly including a coolant circuit and a heat transport fluid circuit
FR2974624A1 (en) * 2011-04-29 2012-11-02 Valeo Systemes Thermiques ASSEMBLY COMPRISING A REFRIGERANT FLUID CIRCUIT AND A HEAT TRANSFER CIRCUIT
US20130152612A1 (en) * 2011-08-16 2013-06-20 Nanopore, Inc. Sorption cooling systems and climate control using multi-channel thermal swing adsorption
US20140250927A1 (en) * 2011-11-22 2014-09-11 Fujitsu Limited Adsorption heat pump system and method of driving adsorption heat pump
US9400510B2 (en) * 2012-03-21 2016-07-26 Mahle International Gmbh Phase change material evaporator charging control
US20130248166A1 (en) * 2012-03-21 2013-09-26 Delphi Technologies, Inc. Phase change material evaporator charging control
US20150121916A1 (en) * 2012-07-17 2015-05-07 Coldway Enclosure refrigerated by a hybrid compression/absorption refrigeration system
US9702593B2 (en) * 2012-07-17 2017-07-11 Coldway Enclosure refrigerated by a hybrid compression/absorption refrigeration system
US20150210142A1 (en) * 2012-08-16 2015-07-30 Ford Global Technologies, Llc Motor vehicle climate control system
US9610825B2 (en) * 2012-08-16 2017-04-04 Ford Global Technologies, Llc Motor vehicle climate control system
US20150292775A1 (en) * 2012-10-25 2015-10-15 Carrier Corporation Refrigeration system with phase change material
US10876779B2 (en) * 2013-03-15 2020-12-29 Oxicool Inc. Cooling systems and methods
US20180031293A1 (en) * 2013-03-15 2018-02-01 Oxicool Inc. Cooling Systems and Methods
US10808972B2 (en) 2013-03-15 2020-10-20 Oxicool Inc. Adsorption-based cooling system
CN104129253A (en) * 2013-05-01 2014-11-05 福特环球技术公司 Climate control system having multiple adsorbers and a method of control
CN104228519A (en) * 2013-06-19 2014-12-24 福特环球技术公司 System for thermal management of a vehicle and method for vehicle cold start
US10131205B2 (en) * 2013-08-26 2018-11-20 Ford Global Technologies, Llc Climate control system
US20150052913A1 (en) * 2013-08-26 2015-02-26 Ford Global Technologies, Llc Climate Control System
FR3013265A1 (en) * 2013-11-18 2015-05-22 Valeo Systemes Thermiques THERMAL CONDITIONING SYSTEM FOR AN AIR FLOW FOR A MOTOR VEHICLE AND HEATING, VENTILATION AND / OR AIR CONDITIONING SYSTEM THEREFORE
US20170028819A1 (en) * 2014-04-24 2017-02-02 Alternative Energy Consulting & Technologies S.A.R.L. Heating and drying device for use in motor vehicles
CN106573523A (en) * 2014-04-24 2017-04-19 替代能源咨询与技术有限责任公司 Heating and drying device for use in motor vehicles
US10596880B2 (en) * 2015-05-29 2020-03-24 Thermo King Corporation Method and system for controlling the release of heat by a temperature control unit
US20180147916A1 (en) * 2015-05-29 2018-05-31 Thermo King Corporation Method and system for controlling the release of heat by a temperature control unit
US11346590B2 (en) * 2016-06-14 2022-05-31 Oxicool Inc. Cooling system
US20180229620A1 (en) * 2017-02-10 2018-08-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Vehicle heat management control device and recording medium storing heat management control program
US11021072B2 (en) * 2017-02-10 2021-06-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Vehicle heat management control device and recording medium storing heat management control program
US11299014B2 (en) * 2017-09-21 2022-04-12 Denso Corporation Refrigeration cycle device
US20200271361A1 (en) * 2017-09-24 2020-08-27 N. A. M. Technology Ltd. Combined-type cascade refrigerating apparatus

Also Published As

Publication number Publication date
US6807820B2 (en) 2004-10-26
DE10309584A1 (en) 2003-10-30
FR2837430B1 (en) 2007-08-31
FR2837430A1 (en) 2003-09-26

Similar Documents

Publication Publication Date Title
US6807820B2 (en) Heat storage system for vehicle, with adsorbent
US7266967B2 (en) Air conditioner for automotive vehicle
US11458812B2 (en) Heat pump system for vehicle
US5896747A (en) Vehicular absorption air conditioning process and system utilizing engine coolant waste heat
US20080041071A1 (en) Heat pump cycle device
EP2694303B1 (en) Cooling apparatus
US20140047853A1 (en) Motor vehicle climate control system
US20040007011A1 (en) Cooling system with adsorption refrigerator
JP2003097857A (en) Air conditioning cycle
WO2011142352A1 (en) Air conditioning device for vehicle
US20220088990A1 (en) Heat pump system for vehicle
US11505034B2 (en) Heat pump system for vehicle
JP3959829B2 (en) Refrigeration equipment and air conditioning equipment
EP1477348B1 (en) Refrigeration cycle device
JP2003312240A (en) Air conditioner for vehicle
JP3925245B2 (en) Vehicle heat storage system
JP4069691B2 (en) Air conditioner for vehicles
JP4265370B2 (en) Adsorption heat pump
JP2004237816A (en) Vehicular adsorption type air-conditioner
US10830505B2 (en) Thermochemical boosted refrigeration system
WO2017154569A1 (en) Adsorption refrigeration system, and vehicle air-conditioning device
JP4158235B2 (en) Air conditioner for vehicles
RU2562003C2 (en) Automotive climate control system and method of its operation
CN114475161B (en) Thermal management system of automobile and automobile
JPH09119740A (en) Engine exhaust heat recovery absorption refrigerating machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: DENSO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AIKAWA, YASUKAZU;SUZUKI, TAKAHISA;INOUE, SATOSHI;AND OTHERS;REEL/FRAME:013780/0589

Effective date: 20030122

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12