US20020070104A1 - Tandem batch feed and tandem batch collection apparatus for continuous pyrolysis of rubber and/or other hydrocarbon-based material - Google Patents

Tandem batch feed and tandem batch collection apparatus for continuous pyrolysis of rubber and/or other hydrocarbon-based material Download PDF

Info

Publication number
US20020070104A1
US20020070104A1 US09/975,476 US97547601A US2002070104A1 US 20020070104 A1 US20020070104 A1 US 20020070104A1 US 97547601 A US97547601 A US 97547601A US 2002070104 A1 US2002070104 A1 US 2002070104A1
Authority
US
United States
Prior art keywords
rubber
hydrocarbon
based material
reactor chamber
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/975,476
Inventor
Ronald Nichols
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/975,476 priority Critical patent/US20020070104A1/en
Publication of US20020070104A1 publication Critical patent/US20020070104A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/32Other processes in ovens with mechanical conveying means
    • C10B47/44Other processes in ovens with mechanical conveying means with conveyor-screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/02Feed or outlet devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/06Reclamation of contaminated soil thermally
    • B09C1/065Reclamation of contaminated soil thermally by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • C10B49/04Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Definitions

  • the present invention relates to a continuous feed/collection apparatus for the vacuum pyrolysis of cuttings of rubber and/or hydrocarbon-based material, including hydrocarbon-contaminated soil, to yield a non-condensable fraction of combustible vapor; oil; and a carbonaceous solid residue.
  • U.S. Pat. No. 4,740,270 describes a process for the vacuum pyrolysis of scrap tires in which fire cuttings are moved in a multi-tray reactor with a conventional transportation system from an upper tray to a lower tray. The tire cuttings are shifted from the top tray to the bottom tray along a temperature gradient from 392° F. and peaking at 932° F. Thus, the tire cuttings are heated up while continuously moving down.
  • Other patented processes, which utilize high temperatures, are described in U.S. Pat. Nos. 6,046,370 and 4,740,270.
  • U.S. Pat. No. 4,084,521 to Herbold et al. discloses a method and apparatus for pyrolysis of waste products such as tires.
  • the apparatus includes a charging hopper that has two airtight chambers connected one after another to form an airlock. Also, a door or delivery flap is biased by counter-weight in order to crush practically all of the residual material before it can drop past a delivery flap
  • U.S. Pat. No. 6,046,370 to Affolter et al. describes a process for vacuum pyrolysis of rubber and plastic cuttings in which a portion of the produced carbonaceous residue is added back to eliminate sticking of the hot product during processing. The process is run at a reactor temperature of 842° F. to 1022° F. Lack of commercial success of many prior art methods has led to the continued need for new methods and apparatus for vacuum pyrolysis of rubber and other hydrocarbon materials.
  • the present invention relates to a continuous feed/continuous collection apparatus for the treatment of rubber and/or other hydrocarbon-based material by vacuum pyrolysis of cuttings of the material to yield fractions of combustible vapor, oil, wire, and carbonaceous solid residue.
  • the system includes a plurality of tandem feed and tandem collection bins that are designed to maintain the reaction under vacuum, while allowing a continuous flow of reactants and products to and from the reactor.
  • FIG. 1 schematically shows a vacuum pyrolysis apparatus having continuous feed/continuous collection apparatus according to the present invention
  • FIGS. 2 ( a )-( b ) schematically show tandem feed and tandem collection bins according to the present invention.
  • the present invention provides for an apparatus and process for the treatment of rubber and plastics by vacuum pyrolysis of cuttings of rubber and plastics to yield a non-condensable fraction of combustible vapor; oil; and a carbonaceous solid residue.
  • the invention provides an apparatus for the treatment of rubber, plastics, and/or other hydrocarbon-based material comprising tandem feed bins alternating between vacuum and atmospheric pressure to load the reactor in a continuous fashion.
  • the apparatus may also utilize tandem collection bins alternating between vacuum and atmospheric pressure to collect the product in a continuous fashion.
  • the present invention provides an apparatus for reclamation and recovery of constituents of discarded vehicle tires and other rubber-based materials, including organic and inorganic materials, for reuse or environmentally-safe disposal.
  • This apparatus comprises a feed system for transferring rubber-based material to an inlet of a low temperature reactor chamber having activation, decomposition, and completion zones, and having a helicoid auger for transferring pieces of the rubber or hydrocarbon-based material from the reactor inlet and solid product from a reactor outlet.
  • the inlet and outlet bins are positioned at each end of the low temperature reactor chamber.
  • the apparatus further comprises a solid material recovery system, and a vapor recovery system for recovering vapor from the decomposition zone of reactor chamber.
  • the vapor recovery system comprises a heat exchanger for condensing vapor from the low temperature reactor chamber, a liquid/vapor separator for separating liquids condensed in the heat exchanger, and a vacuum pump for removing vapor from the decomposition zone of the reactor chamber.
  • a catalyst may be used to provide a non-sticking product and allows a helical auger reactor to be used to transport the reactants. At least a portion of the carbonaceous solid residue may be mechanically mixed with the rubber and plastic cuttings before and during pyrolysis. The mechanical mixing facilitates achieving 1) a homogeneous solid mass; (2) a high transfer of heat from a reactor shell into the solid product; and (3) a reduction of the reaction time.
  • the reactor is fed under vacuum in a continuous manner from one hopper while a second hopper is filled at atmospheric pressure. Just before the first hopper is empty, the second hopper is sealed and put under vacuum. The full, second hopper is then put into operation as the first hopper is opened and filled.
  • This tandem fill and vacuum operation allows the reactor to be fed in a continuous manner.
  • a similar system is set up to empty the reactor in a continuous manner as shown in FIG. 2( b ).
  • pre-dried rubber enters feeder bins and a catalytic compound is added to intensify the rubber liquefaction process.
  • the rubber is transferred, by helicoid augers, from the feeder bins through a controlled temperature reactor chamber and into output bins.
  • the reactor chamber is maintained under moderate vacuum and is heated to maintain temperatures which are varied spatially over the length of the reactor chamber, varying between ambient temperature and a temperature required for the process.
  • a primary economic benefit is that the spatially-varying temperature profile reactor is designed to take advantage of the exothermic properties of the pyrolysis reaction to improve the efficiency of the process.
  • a feeder and recovery system removes the vapor from the reactor chamber while maintaining the system operation under vacuum.
  • the vapor passes through a heat exchanger and separator where the liquid hydrocarbon product is removed and stored.
  • the vapor is compressed and stored or recycled to augment the fuel used to heat the reactor.
  • the solid residue is separated by an electromagnetic process into carbon black/carbonaceous residue and wire.
  • the carbon is further processed through granulating equipment.
  • FIG. 1 An example of a continuous feed system is shown in FIG. 1.
  • Shredded rubber 30 or other hydrocarbon material and a catalyst 35 are moved into inlet bins or feed hoppers 40 by means of a conveyor belt 45 or other loading apparatus.
  • the elongated reaction chamber 50 is heated at both ends by gas burner 55 and gas burner 60 .
  • the hydrocarbon material is heated in the activation zone 65 , and then moves by means of a helicoid auger 70 to the decomposition zone 73 , where the exothermic portion of the reaction occurs.
  • the hydrocarbon material is moved by means of the auger to the completion zone 75 , after which solid residue moves into the outlet bins 80 to a solid material recovery system 85 to yield carbon black and steel, if initially present.
  • Vapors 90 are continuously drawn off and condensed into oil 95 by a heat exchanger or oil condensers 100 or burned as fuel during the reaction.
  • a vacuum pump 105 draws off the vapors and maintains a vacuum during the course of the reaction
  • the invention provides a process for treating rubber and/or hydrocarbon-based material by vacuum pyrolysis.
  • the process comprises transferring rubber and/or hydrocarbon-based material to the inlet of a low-temperature reactor chamber by a plurality of hoppers operated sequentially in vacuum and at atmospheric pressure.
  • the rubber and/or hydrocarbon-based material is then vacuum pyrolyzed, thereby yielding a carbon black/carbonaceous solid residue, a liquid hydrocarbon product, wire, and a non-condensable combustible vapor.
  • the rubber and/or hydrocarbon-based material can be fragmented to approximately 10 ⁇ 10 inch or smaller cuttings; previous separation of cords and steel threads is not required.
  • the reactor is heated to control the pyrolysis temperature, and spatial control of the desired reaction temperature is maintained throughout the activation, decomposition and completion zones of the reactor chamber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

An apparatus for vacuum pyrolysis of rubber and/or other hydrocarbon material is provided. The apparatus includes tandem batch feed hoppers operated sequentially under vacuum to continuously feed the pyrolysis reactor, and tandem batch collection bins operated in sequence under vacuum to collect the reaction product from the reactor. A process for vacuum pyrolysis is also provided.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority under 35 U.S.C. §119(e) to U.S. provisional application Serial No. 60/238,455, filed Oct. 10, 2000.[0001]
  • FIELD OF THE INVENTION
  • The present invention relates to a continuous feed/collection apparatus for the vacuum pyrolysis of cuttings of rubber and/or hydrocarbon-based material, including hydrocarbon-contaminated soil, to yield a non-condensable fraction of combustible vapor; oil; and a carbonaceous solid residue. [0002]
  • BACKGROUND OF THE INVENTION
  • The treatment of rubber and plastics such as vehicle tires plastic and rubber residues from shredded automobiles and RDF (Refuse Derived Fuel) is a major environmental problem. Economical vacuum pyrolysis of rubber and plastics cuttings has been attempted for the past several decades. However, rubber becomes sticky and causes clogging of conventional transport systems. Some systems attempt to overcome this problem by using high temperature reactors or by recycling a portion of product residue to coat the sticky material. [0003]
  • U.S. Pat. No. 4,740,270 describes a process for the vacuum pyrolysis of scrap tires in which fire cuttings are moved in a multi-tray reactor with a conventional transportation system from an upper tray to a lower tray. The tire cuttings are shifted from the top tray to the bottom tray along a temperature gradient from 392° F. and peaking at 932° F. Thus, the tire cuttings are heated up while continuously moving down. Other patented processes, which utilize high temperatures, are described in U.S. Pat. Nos. 6,046,370 and 4,740,270. [0004]
  • U.S. Pat. No. 4,084,521 to Herbold et al. discloses a method and apparatus for pyrolysis of waste products such as tires. The apparatus includes a charging hopper that has two airtight chambers connected one after another to form an airlock. Also, a door or delivery flap is biased by counter-weight in order to crush practically all of the residual material before it can drop past a delivery flap U.S. Pat. No. 6,046,370 to Affolter et al. describes a process for vacuum pyrolysis of rubber and plastic cuttings in which a portion of the produced carbonaceous residue is added back to eliminate sticking of the hot product during processing. The process is run at a reactor temperature of 842° F. to 1022° F. Lack of commercial success of many prior art methods has led to the continued need for new methods and apparatus for vacuum pyrolysis of rubber and other hydrocarbon materials. [0005]
  • SUMMARY OF THE INVENTION
  • The present invention relates to a continuous feed/continuous collection apparatus for the treatment of rubber and/or other hydrocarbon-based material by vacuum pyrolysis of cuttings of the material to yield fractions of combustible vapor, oil, wire, and carbonaceous solid residue. The system includes a plurality of tandem feed and tandem collection bins that are designed to maintain the reaction under vacuum, while allowing a continuous flow of reactants and products to and from the reactor. [0006]
  • It is an object of the present invention to provide method and apparatus for vacuum pyrolysis of rubber and other hydrocarbon materials. [0007]
  • It is a further object of the present invention to provide an apparatus for vacuum pyrolysis of rubber and hydrocarbon materials having inlet and outlet bins maintained at vacuum pressure. [0008]
  • It is an additional object of the present invention to provide an apparatus for vacuum pyrolysis of rubber and hydrocarbon materials having inlet and outlet bins maintained at a vacuum that allows for continuous feed and operation while maintaining vacuum conditions. [0009]
  • These and other objects of the invention will become readily apparent from the following drawings, detailed description and appended claims. [0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is further illustrated by the following non-limited drawings in which: [0011]
  • FIG. 1 schematically shows a vacuum pyrolysis apparatus having continuous feed/continuous collection apparatus according to the present invention; and [0012]
  • FIGS. [0013] 2(a)-(b) schematically show tandem feed and tandem collection bins according to the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides for an apparatus and process for the treatment of rubber and plastics by vacuum pyrolysis of cuttings of rubber and plastics to yield a non-condensable fraction of combustible vapor; oil; and a carbonaceous solid residue. [0014]
  • In one aspect of the present invention, the invention provides an apparatus for the treatment of rubber, plastics, and/or other hydrocarbon-based material comprising tandem feed bins alternating between vacuum and atmospheric pressure to load the reactor in a continuous fashion. Likewise, the apparatus may also utilize tandem collection bins alternating between vacuum and atmospheric pressure to collect the product in a continuous fashion. [0015]
  • In an additional aspect of the invention, the present invention provides an apparatus for reclamation and recovery of constituents of discarded vehicle tires and other rubber-based materials, including organic and inorganic materials, for reuse or environmentally-safe disposal. This apparatus comprises a feed system for transferring rubber-based material to an inlet of a low temperature reactor chamber having activation, decomposition, and completion zones, and having a helicoid auger for transferring pieces of the rubber or hydrocarbon-based material from the reactor inlet and solid product from a reactor outlet. The inlet and outlet bins are positioned at each end of the low temperature reactor chamber. The apparatus further comprises a solid material recovery system, and a vapor recovery system for recovering vapor from the decomposition zone of reactor chamber. [0016]
  • The vapor recovery system comprises a heat exchanger for condensing vapor from the low temperature reactor chamber, a liquid/vapor separator for separating liquids condensed in the heat exchanger, and a vacuum pump for removing vapor from the decomposition zone of the reactor chamber. [0017]
  • A catalyst may be used to provide a non-sticking product and allows a helical auger reactor to be used to transport the reactants. At least a portion of the carbonaceous solid residue may be mechanically mixed with the rubber and plastic cuttings before and during pyrolysis. The mechanical mixing facilitates achieving 1) a homogeneous solid mass; (2) a high transfer of heat from a reactor shell into the solid product; and (3) a reduction of the reaction time. [0018]
  • As shown in FIG. 2([0019] a), the reactor is fed under vacuum in a continuous manner from one hopper while a second hopper is filled at atmospheric pressure. Just before the first hopper is empty, the second hopper is sealed and put under vacuum. The full, second hopper is then put into operation as the first hopper is opened and filled. This tandem fill and vacuum operation allows the reactor to be fed in a continuous manner. At the reactor output, a similar system is set up to empty the reactor in a continuous manner as shown in FIG. 2(b).
  • In a preferred embodiment, pre-dried rubber enters feeder bins and a catalytic compound is added to intensify the rubber liquefaction process. The rubber is transferred, by helicoid augers, from the feeder bins through a controlled temperature reactor chamber and into output bins. The reactor chamber is maintained under moderate vacuum and is heated to maintain temperatures which are varied spatially over the length of the reactor chamber, varying between ambient temperature and a temperature required for the process. A primary economic benefit is that the spatially-varying temperature profile reactor is designed to take advantage of the exothermic properties of the pyrolysis reaction to improve the efficiency of the process. [0020]
  • A feeder and recovery system removes the vapor from the reactor chamber while maintaining the system operation under vacuum. The vapor passes through a heat exchanger and separator where the liquid hydrocarbon product is removed and stored. The vapor is compressed and stored or recycled to augment the fuel used to heat the reactor. The solid residue is separated by an electromagnetic process into carbon black/carbonaceous residue and wire. The carbon is further processed through granulating equipment. [0021]
  • An example of a continuous feed system is shown in FIG. 1. Shredded [0022] rubber 30 or other hydrocarbon material and a catalyst 35 are moved into inlet bins or feed hoppers 40 by means of a conveyor belt 45 or other loading apparatus. The elongated reaction chamber 50 is heated at both ends by gas burner 55 and gas burner 60. The hydrocarbon material is heated in the activation zone 65, and then moves by means of a helicoid auger 70 to the decomposition zone 73, where the exothermic portion of the reaction occurs. As the reaction slows, the hydrocarbon material is moved by means of the auger to the completion zone 75, after which solid residue moves into the outlet bins 80 to a solid material recovery system 85 to yield carbon black and steel, if initially present. Vapors 90 are continuously drawn off and condensed into oil 95 by a heat exchanger or oil condensers 100 or burned as fuel during the reaction. A vacuum pump 105 draws off the vapors and maintains a vacuum during the course of the reaction.
  • In yet another aspect of the present invention, the invention provides a process for treating rubber and/or hydrocarbon-based material by vacuum pyrolysis. The process comprises transferring rubber and/or hydrocarbon-based material to the inlet of a low-temperature reactor chamber by a plurality of hoppers operated sequentially in vacuum and at atmospheric pressure. The rubber and/or hydrocarbon-based material is then vacuum pyrolyzed, thereby yielding a carbon black/carbonaceous solid residue, a liquid hydrocarbon product, wire, and a non-condensable combustible vapor. The rubber and/or hydrocarbon-based material can be fragmented to approximately 10×10 inch or smaller cuttings; previous separation of cords and steel threads is not required. The reactor is heated to control the pyrolysis temperature, and spatial control of the desired reaction temperature is maintained throughout the activation, decomposition and completion zones of the reactor chamber. [0023]
  • The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof. [0024]

Claims (12)

What is claimed is:
1. A continuous feed/continuous collection apparatus for pyrolysis of rubber and/or hydrocarbon-based material, comprising:
a feed system for transferring rubber and/or hydrocarbon-based material cuttings to an inlet of a low temperature reactor chamber, wherein said feed system comprises a plurality of hoppers operated in sequence, each hopper having a vacuum-sealable slide valve adjacent a top and a bottom of the hopper.
2. A continuous feed/continuous collection apparatus according to claim 1, further comprising a continuous transport system within the reactor chamber that moves a reaction product through spatially varying temperature zones.
3. A continuous feed/continuous collection apparatus according to claim 1, further comprising a collection system for collecting a solid reaction product from a reactor chamber outlet.
4. An apparatus for reclamation and recovery of constituents of discarded vehicle tires and other rubber-based materials including organic and inorganic materials for reuse or environmentally-safe disposal, comprising:
a feed system for transferring rubber-based material to an inlet of a low temperature reactor chamber, said low temperature reactor chamber having activation, decomposition, and completion zones and having a helicoid auger for transferring pieces of the rubber-based material from the reactor inlet and solid product from a reactor outlet;
inlet and outlet bins positioned at each end of the low temperature reactor chamber;
a solid material recovery system; and
a vapor recovery system for recovering vapor from the decomposition zone of said low temperature reactor chamber.
5. An apparatus according to claim 4, wherein said vapor recovery system comprises:
a heat exchanger for condensing vapor from said low temperature reactor chamber;
a liquid/vapor separator for separating liquids condensed in said heat exchanger; and
a vacuum pump for removing vapor from the decomposition zone of said low temperature reactor chamber through said heat exchanger and said liquid/vapor separator and maintaining a vacuum in said low temperature reactor chamber.
6. A continuous feed/continuous collection apparatus according to claim 2, wherein said continuous transport system comprises a helicoid auger.
7. A process for treating rubber and/or hydrocarbon-based material by vacuum pyrolysis, comprising:
transferring rubber and/or hydrocarbon-based material to an inlet of a low-temperature reactor chamber by a plurality of hoppers operated sequentially in vacuum and at atmospheric pressure;
vacuum pyrolyzing the rubber and/or hydrocarbon-based material, thereby yielding a carbon black/carbonaceous solid residue, a liquid hydrocarbon product, wire, and a non-condensable combustible vapor.
8. A process according to claim 7, further comprising fragmenting the rubber and/or hydrocarbon-based material to approximately 10×10 inch or smaller cuttings.
9. A process according to claim 7, further comprising fragmenting the rubber and/or hydrocarbon-based material without previous separation of cords and steel threads.
10. A process according to claim 7, further comprising heating the reactor to control a pyrolysis temperature.
11. A process according to claim 10, further comprising maintaining the pyrolysis temperature through controlled spatially heating of the reactor to maintain a reaction temperature.
12. A process according to claim 7, wherein the rubber or hydrocarbon-based material comprises discarded vehicle tires.
US09/975,476 2000-10-10 2001-10-10 Tandem batch feed and tandem batch collection apparatus for continuous pyrolysis of rubber and/or other hydrocarbon-based material Abandoned US20020070104A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/975,476 US20020070104A1 (en) 2000-10-10 2001-10-10 Tandem batch feed and tandem batch collection apparatus for continuous pyrolysis of rubber and/or other hydrocarbon-based material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23845500P 2000-10-10 2000-10-10
US09/975,476 US20020070104A1 (en) 2000-10-10 2001-10-10 Tandem batch feed and tandem batch collection apparatus for continuous pyrolysis of rubber and/or other hydrocarbon-based material

Publications (1)

Publication Number Publication Date
US20020070104A1 true US20020070104A1 (en) 2002-06-13

Family

ID=22897961

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/975,476 Abandoned US20020070104A1 (en) 2000-10-10 2001-10-10 Tandem batch feed and tandem batch collection apparatus for continuous pyrolysis of rubber and/or other hydrocarbon-based material

Country Status (3)

Country Link
US (1) US20020070104A1 (en)
AU (1) AU2002211623A1 (en)
WO (1) WO2002031082A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090120335A1 (en) * 2007-11-09 2009-05-14 Global Power And Energy Company Limited Apparatus and Method For Pyrolysis of Scrap Tyres and the like
US7758729B1 (en) * 2006-08-24 2010-07-20 Plas2Fuel Corporation System for recycling plastics
US20100320070A1 (en) * 2006-08-24 2010-12-23 Agilyx Corporation Systems and methods for recycling plastic
US20110058001A1 (en) * 2008-05-02 2011-03-10 Omer Gila Inkjet imaging methods, imaging methods and hard imaging devices
US20110239541A1 (en) * 2010-03-31 2011-10-06 Plas2Fuel Corporation Devices, systems, and methods for recycling plastic
US9162944B2 (en) 2013-04-06 2015-10-20 Agilyx Corporation Systems and methods for conditioning synthetic crude oil
US11407947B2 (en) 2020-12-10 2022-08-09 Agilyx Corporation Systems and methods for recycling waste plastics

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184334A1 (en) * 2008-10-31 2010-05-12 Peter Spörri Method and device for recycling materials containing hydrocarbons
PL399500A1 (en) 2012-06-12 2013-12-23 Dagas Spólka Z Ograniczona Odpowiedzialnoscia Method for carrying out the process of pyrolysis of plastics waste and/or waste rubber and/or organic waste and an installation for carrying out the method
CN107663459B (en) * 2016-07-29 2020-06-09 中冶宝钢技术服务有限公司 Method for replacing filler in large-scale tower equipment and filler cleaning equipment
IT202100033059A1 (en) 2021-12-30 2023-06-30 Versalis Spa METHOD FOR MONITORING A CONTROL PARAMETER ON A SUBSTANTIALLY PLASTIC MATERIAL, RELATED APPARATUS AND PYROLYSIS PROCESS WHICH USES SAID METHOD
IT202100033053A1 (en) 2021-12-30 2023-06-30 Versalis Spa PYROLYSIS PROCESS FOR THE PRODUCTION OF A PYROLYSIS OIL SUITABLE FOR CLOSED LOOP RECYCLING, RELATED APPARATUS, PRODUCT AND USE THEREOF
IT202100033044A1 (en) 2021-12-30 2023-06-30 Versalis Spa PROCEDURE FOR THE PYROLYSIS OF SUBSTANTIALLY PLASTIC MATERIAL OF NON-CONSTANT COMPOSITION, RELATED REACTOR, APPARATUS AND PRODUCT OBTAINED

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894012A (en) * 1993-08-19 1999-04-13 Gilbert W. Denison Method and system for recovering marketable end products from waste rubber
US5389691A (en) * 1993-09-07 1995-02-14 Univ. Of Wyoming Process for co-recycling tires and oils
US5632863A (en) * 1994-11-22 1997-05-27 Meador; W. R. Battery pyrolysis process
US5720232A (en) * 1996-07-10 1998-02-24 Meador; William R. Method and apparatus for recovering constituents from discarded tires

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193403B2 (en) * 2006-08-24 2012-06-05 Agilyx Corporation Systems and methods for recycling plastic
US7758729B1 (en) * 2006-08-24 2010-07-20 Plas2Fuel Corporation System for recycling plastics
US20100305372A1 (en) * 2006-08-24 2010-12-02 Plas2Fuel Corporation System for recycling plastics
US20100320070A1 (en) * 2006-08-24 2010-12-23 Agilyx Corporation Systems and methods for recycling plastic
US9145520B2 (en) 2006-08-24 2015-09-29 Agilyx Corporation Systems, and methods for recycling plastic
US8188325B2 (en) * 2006-08-24 2012-05-29 Agilyx Corporation Systems and methods for recycling plastic
US20090120335A1 (en) * 2007-11-09 2009-05-14 Global Power And Energy Company Limited Apparatus and Method For Pyrolysis of Scrap Tyres and the like
US8020499B2 (en) 2007-11-09 2011-09-20 Overseas Capital Assets Limited Apparatus and method for pyrolysis of scrap tyres and the like
US20110058001A1 (en) * 2008-05-02 2011-03-10 Omer Gila Inkjet imaging methods, imaging methods and hard imaging devices
US8192587B2 (en) * 2010-03-31 2012-06-05 Agilyx Corporation Devices, systems, and methods for recycling plastic
US8192586B2 (en) * 2010-03-31 2012-06-05 Agilyx Corporation Devices, systems, and methods for recycling plastic
US20120222986A1 (en) * 2010-03-31 2012-09-06 Agilyx Corporation Devices, systems, and methods for recycling plastic
US20110239541A1 (en) * 2010-03-31 2011-10-06 Plas2Fuel Corporation Devices, systems, and methods for recycling plastic
US9162944B2 (en) 2013-04-06 2015-10-20 Agilyx Corporation Systems and methods for conditioning synthetic crude oil
US9493713B2 (en) 2013-04-06 2016-11-15 Agilyx Corporation Systems and methods for conditioning synthetic crude oil
US11407947B2 (en) 2020-12-10 2022-08-09 Agilyx Corporation Systems and methods for recycling waste plastics

Also Published As

Publication number Publication date
AU2002211623A1 (en) 2002-04-22
WO2002031082A1 (en) 2002-04-18

Similar Documents

Publication Publication Date Title
US7341646B2 (en) Low energy method of pyrolysis of hydrocarbon materials such as rubber
EP1163092B1 (en) Pyrolysis process for reclaiming desirable materials from vehicle tires
US5167772A (en) Apparatus for pyrolysis of tires and waste
US20020070104A1 (en) Tandem batch feed and tandem batch collection apparatus for continuous pyrolysis of rubber and/or other hydrocarbon-based material
US5636580A (en) Pyrolysis system and a method of pyrolyzing
US6774271B2 (en) Method and system of converting waste plastics into hydrocarbon oil
EP0409835B1 (en) Pyrolysis of organic material
US5720232A (en) Method and apparatus for recovering constituents from discarded tires
US6244198B1 (en) Method and equipment for pyrolytic treatment of organic material
JP2004506780A5 (en)
AU2021106104B4 (en) Process for the thermal degradation of rubber containing waste
US20020072640A1 (en) Low energy method of pyrolysis of hydrocarbon materials such as rubber
AU2001281198A1 (en) Low energy method of pyrolysis of hydrocarbon materials such as rubber
US5578700A (en) Continuous vacuum microwave rubber crumb reclamation unit
US11319493B2 (en) Method for catalytic conversion of waste plastic into liquid fuel
AU2017371716B2 (en) Hermetically sealed flow-through reactor for non-oxidative thermal degradation of a rubber containing waste
CN115038775A (en) Method for pyrolyzing plastic material and system therefor
US20050234274A1 (en) Method and installation for low-temperature pyrolysis of rubber products, steel/rubber composites, and use of the pyrolysis products
JP2006016594A (en) System and method for converting waste plastic to oil
US3972801A (en) Oil shale retorting
RU2291168C1 (en) Method of the rubber-containing wastes reprocessing and the installation for the method realization (versions)
US20030114722A1 (en) Fractional condensation process
EP3369798B1 (en) Method of tyre recycling
CN116171313A (en) Solid Inert Residue (SIR) dryer and extractor system
CN115261053A (en) Continuous sample injection waste plastic catalytic cracking oil production device and method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION