US20010051117A1 - Gas duct having honeycomb structure - Google Patents

Gas duct having honeycomb structure Download PDF

Info

Publication number
US20010051117A1
US20010051117A1 US09/337,334 US33733499A US2001051117A1 US 20010051117 A1 US20010051117 A1 US 20010051117A1 US 33733499 A US33733499 A US 33733499A US 2001051117 A1 US2001051117 A1 US 2001051117A1
Authority
US
United States
Prior art keywords
honeycomb structure
gas duct
metal case
structure according
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/337,334
Other versions
US6338826B2 (en
Inventor
Toshio Yamada
Toshihko Hijikata
Yukiharu Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Assigned to NGK INSULATORS, LTD. reassignment NGK INSULATORS, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIJIKATA, TOSHIHIKO, MORITA, YUKIHARU, YAMADA, TOSHIO
Publication of US20010051117A1 publication Critical patent/US20010051117A1/en
Application granted granted Critical
Publication of US6338826B2 publication Critical patent/US6338826B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • F23J15/025Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow using filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/10Intercepting solids by filters
    • F23J2217/104High temperature resistant (ceramic) type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/10Catalytic reduction devices

Definitions

  • the present invention relates to a gas duct having a honeycomb structure, used mainly in an exhaust gas purification system for automobile.
  • gas ducts having a honeycomb structure are in extensive use because they are low in pressure loss (when a gas is passed therethrough) owing to the high open frontal area and show an excellent exhaust gas purifiability.
  • a ceramic honeycomb catalytic converter used in an exhaust gas purification system for automobile.
  • a ceramic honeycomb catalyst is held in a converter casing (this operation is called “canning”) for easy handling of the honeycomb catalyst.
  • a ceramic fiber mat 13 is inserted, under pressure, into between the outer surface of the honeycomb catalyst 12 and the inner surface of the metal case 11 , after which the honeycomb catalyst 12 is held in the metal case 11 in the axial direction of the metal case 11 .
  • a hook 14 which is fitted to one end of the metal case 11 and projects toward the center of a circle formed by the one end of the metal case 11 , and a retainer ring 15 welded to the other end of the metal case 11 or a plurality of projections 16 (see FIG.
  • each one cone (not shown), which is a metal member enabling easier incoming and discharging of exhaust gas, is fitted to the both ends of the metal case 11 by welding or the like.
  • the present invention aims at providing a gas duct having a honeycomb structure, which can utilize the whole volume of the honeycomb structure, which is lower in pressure loss, and which is lower in cost.
  • a gas duct having a honeycomb structure which comprises:
  • the circumference(s) of the end face(s) of the honeycomb structure abuts (abut) on the cone(s) at an angle of 45° to 85°.
  • the circumference(s) of the end face(s) of the honeycomb structure is (are) chamfered and the size or radius of chamfering is 0.1 to 1 mm.
  • the gas duct having a honeycomb structure, of the present invention preferably takes the following form:
  • the honeycomb structure is made of a ceramic or a metal, and is a catalyst for exhaust gas purification, a filter for capturing the particulate substances present in exhaust gas, or a heat exchanger;
  • the holding member is a ceramic fiber mat or a metal-made wire mesh
  • the metal case has a stuffing structure, a tourniquet structure, or a clam-shell structure.
  • FIG. 1 is a drawing showing an example of the gas duct having a honeycomb structure, of the present invention.
  • FIG. 2 is a fragmentary sectional view showing an example of the state in which, in the gas duct having a honeycomb structure, of the present invention, the circumference of one end face of the honeycomb structure abuts on the cone.
  • FIG. 3 is a fragmentary sectional view showing other example of the state in which, in the gas duct having a honeycomb structure, of the present invention, the circumference of one end face of the honeycomb structure abuts on the cone.
  • FIGS. 4 ( a ) and 4 ( b ) are drawings showing an example of conventional gas ducts having a honeycomb structure, i.e. conventional ceramic honeycomb catalytic converters.
  • FIGS. 5 ( a ) and 5 ( b ) show an example of the state in which, in a conventional gas duct having a honeycomb structure, the circumference of one end face of the honeycomb structure abuts on the projections of the metal case.
  • FIG. 5( a ) is a perspective view
  • FIG. 5( b ) is a fragmentary sectional view.
  • FIG. 6 is a graph showing the change of pressure loss when air flow rate was changed, in the gas duct having a honeycomb structure, of Example 1 or Comparative Example 3.
  • FIG. 7 is a graph showing, in a gas duct having a honeycomb structure, the change of pressure loss when the angle ⁇ of abutting between the circumference of one end face of the honeycomb structure and the cone was changed in the range of 30 to 90°.
  • FIG. 8 is a graph showing the results of heating and vibration tests conducted for the gas ducts having a honeycomb structure, of Examples 1 and 3 and Comparative Examples 3 and 4.
  • FIG. 1 is a drawing showing an example of the gas duct having a honeycomb structure, of the present invention.
  • the main feature of the present gas duct having a honeycomb structure lies in that the circumference 22 a of at least one end face of the honeycomb structure 22 abuts on the cone 24 (see FIGS. 1 to 3 ).
  • the honeycomb structure can be pinched directly by the cone 24 [and not by a hook 14 , a retainer ring 15 and a plurality of projections 16 (shown in FIGS. 4 and 5) all used conventionally]; as a result, none of the passages of the honeycomb structure 22 is not blocked and the whole volume of the honeycomb structure 22 can be effectively utilized, and reductions in pressure loss and cost can be attained.
  • the circumference(s) of the end face(s) of the honeycomb structure 22 abuts (abut) on the cone(s) 24 at an angle ⁇ of 45° to 85°.
  • the reason therefor is as follows. That is, when the angle of abutting is less than 45°, the effect of pressure loss reduction is small; when the angle of abutting is more than 85°, the power of holding the honeycomb structure in the axial direction of the metal case is low.
  • the circumference(s) of the end face(s) of the honeycomb structure is (are) chamfered as shown in FIGS. 2 and 3.
  • the reason therefor is as follows. That is, by chamfering the circumference 22 a of the end face of the honeycomb structure 22 , the chipping of the honeycomb structure 22 occurring when the cone 24 is allowed to abut thereon, can be prevented.
  • the size C (see FIG. 2) or radius R (see FIG. 3) of chamfering of the circumference 22 a of the end face of the honeycomb structure 22 is 0.1 to 1 mm.
  • the reason therefor is as follows. That is, when the size C or radius R of chamfering is smaller than 0.1 mm, no sufficient effect is obtained; when the size C or radius R of chamfering is larger than 1 mm, a higher processing cost is incurred.
  • the holding member 23 used in the present gas duct is preferably a ceramic fiber mat or a metal-made wire mesh.
  • the honeycomb structure 22 used in the present gas duct is preferably made of a ceramic or a metal.
  • the honeycomb structure used in the present gas duct has a large number of passages having a polygonal section, which are parallel to the direction of the gas duct and which are surrounded by the partition walls formed inside the circumferential wall of the honeycomb structure, and is used as a catalyst for exhaust gas purification, as a filter for capturing the particulate substances present in exhaust gas, or as a heat exchanger.
  • the above-mentioned polygonal section of the passages of the honeycomb structure is preferably triangular to expect a pressure loss as low as possible.
  • the honeycomb structure has no particular restriction as to its shape; however, the shape of the section perpendicular to the direction of the present gas duct is ordinarily round, oval, race-track or the like.
  • the metal case 21 used in the present gas duct preferably has a stuffing structure, a tourniquet structure, or a clam-shell structure.
  • the above structure of the metal case 21 is appropriately selected depending upon the shape of the honeycomb structure 22 .
  • the stuffing structure and the tourniquet structure are suitable for a round-shaped honeycomb structure because these metal case structures enable relatively easy canning.
  • the clam-shell structure of metal case is suitable for an oval or race-track honeycomb structure because it enables relatively easy canning.
  • one end of a cone 24 a was completely welded onto the inner surface of a metal case 21 at one opening of the metal case 21 ; then, a honeycomb structure 22 was inserted into the metal case 21 from the other opening of the metal case 21 ; also from the other opening of the metal case 21 a holding member 23 was inserted, under pressure, into between the outer surface of the honeycomb structure 22 and the inner surface of the metal case 21 ; thereafter, a cone 24 b was inserted into the metal case 21 at the other opening of the metal case 21 , and welded onto the inner surface of the metal case 21 temporarily at 4 points in a state that the cone 24 b was allowed to abut on the circumference 22 a of one end face of the honeycomb structure 22 at an angle ⁇ shown in Table 1 ; next, the cone 24 b was completely welded; a cover 26 was welded at 8 points so as to cover the metal case 21 ; thereby, various gas ducts 20 comprising a honeycomb structure, of Examples 1 to 3
  • a honeycomb structure 12 was held in a metal case 11 ; a ceramic fiber mat 13 was inserted, under pressure, into between the outer surface of the honeycomb structure 12 and the inner surface of the metal case 11 ; in order to hold the honeycomb structure 12 in the metal case 11 in the axial direction of the metal case 11 , a hook 14 projecting from one end of the metal case 11 toward the center of a circle formed by said one end and a retainer ring 15 welded to the other end of the metal case 11 were allowed to abut on the honeycomb structure 12 ; then, a cone (not shown), which was a metal member having a function of introducing and discharging an exhaust gas, was connected, by welding, to each end of the metal case 11 ; thereby, a gas duct having a honeycomb structure, of Comparative Example 3 was produced.
  • Comparative Example 4 a gas duct having a honeycomb structure was produced in the same manner as in Comparative Example 3 except that neither hook 14 nor retainer ring 15 was used.
  • Example 1 The gas ducts of Example 1 and Comparative Example 3 were measured for change of pressure loss at room temperature when air flow rate was changed. The results are shown in FIG. 6.
  • the gas duct having a honeycomb structure, of Example 1 or 3 or Comparative Example 3 or 4 was fitted to a heating and vibration tester so that the direction of the gas duct became identical with the vibration direction of the tester; then, the gas duct was vibrated at a given vibration acceleration for 4 hours under the conditions of a low-high temperature cycle (gas temperature: 200 to 1,000° C.) and 185 Hz; and the amount of displacement of honeycomb structure in metal case was measured; thereby, the gas duct was evaluated for resistance to heating and vibration. The results are shown in FIG. 8.
  • each gas duct comprising a honeycomb structure.
  • Ceramic fiber mat [0060] Ceramic fiber mat
  • the gas duct of Example 1 maintained the same holding power for honeycomb structure as the gas duct of Comparative Example 3, in the axial direction of the metal case, and was lower in pressure loss than the latter gas duct by about 15%.
  • the gas duct having a honeycomb structure, of the present invention can effectively utilize the whole volume of the honeycomb structure, is low in pressure loss, and is low also in cost.
  • the gas duct having a honeycomb structure, of the present invention can prevent the displacement of honeycomb structure caused by vibration; moreover, can prevent the contact of holding member with high-temperature exhaust gas and can therefore suppress the deterioration of holding member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

A gas duct having a honeycomb structure includes: a metal case, a honeycomb structure accommodated in the metal case, a holding member placed between the outer surface of the honeycomb structure and the inner surface of the metal case, and a cone fitted to the inner surface of the metal case at one or both openings of the metal case, wherein the circumference of one or both end faces of the honeycomb structure is allowed to abut on the cone. The gas duct having a honeycomb structure can effectively utilize the whole volume of the honeycomb structure, is low in pressure loss, and is low also in cost.

Description

    BACKGROUND OF THE INVENTION
  • (1) Field of the Invention [0001]
  • The present invention relates to a gas duct having a honeycomb structure, used mainly in an exhaust gas purification system for automobile. [0002]
  • (2) Description of Related Art [0003]
  • Currently, gas ducts having a honeycomb structure are in extensive use because they are low in pressure loss (when a gas is passed therethrough) owing to the high open frontal area and show an excellent exhaust gas purifiability. As an example of such gas ducts, there is widely known a ceramic honeycomb catalytic converter used in an exhaust gas purification system for automobile. [0004]
  • In producing such a ceramic honeycomb catalytic converter, a ceramic honeycomb catalyst is held in a converter casing (this operation is called “canning”) for easy handling of the honeycomb catalyst. [0005]
  • For example, as shown in FIG. 4, in order to reliably hold a [0006] honeycomb catalyst 12 in a metal case 11 and further lessen the impact applied to the catalyst 12 from outside, a ceramic fiber mat 13 is inserted, under pressure, into between the outer surface of the honeycomb catalyst 12 and the inner surface of the metal case 11, after which the honeycomb catalyst 12 is held in the metal case 11 in the axial direction of the metal case 11. Specifically, a hook 14, which is fitted to one end of the metal case 11 and projects toward the center of a circle formed by the one end of the metal case 11, and a retainer ring 15 welded to the other end of the metal case 11 or a plurality of projections 16 (see FIG. 5) extending from the other end of the metal case 11 but bent towards the center of a circle formed by the other end of the metal case 11 are allowed to abut on the honeycomb catalyst 12; then, each one cone (not shown), which is a metal member enabling easier incoming and discharging of exhaust gas, is fitted to the both ends of the metal case 11 by welding or the like.
  • When the [0007] honeycomb catalyst 12 is held in the metal case 11 as above, however, the hook 14 and the retainer ring 15 both fitted to the metal case 11 block part of the passages of the honeycomb catalyst 12, which makes impossible the effective utilization of the whole volume of the honeycomb catalyst 12 and moreover incurs an increase in pressure loss. This leads to an increase in emission or a reduction in engine performance when the metal case 11 holding the honeycomb catalyst 12 is used as a honeycomb catalytic converter.
  • Further, since the [0008] hook 14 and the retainer ring 15 are fitted to the metal case 11, there arises an increase in processing cost and material cost of honeycomb catalytic converter.
  • SUMMARY OF THE INVENTION
  • In order to alleviate the above-mentioned problems of the related art, the present invention aims at providing a gas duct having a honeycomb structure, which can utilize the whole volume of the honeycomb structure, which is lower in pressure loss, and which is lower in cost. [0009]
  • According to the present invention, there is provided a gas duct having a honeycomb structure, which comprises: [0010]
  • a metal case, [0011]
  • a honeycomb structure accommodated in the metal case, [0012]
  • a holding member placed between the outer surface of the honeycomb structure and the inner surface of the metal case, and [0013]
  • a cone(s) fitted to the inner surface of the metal case at one or both openings of the metal case, wherein the circumference(s) of one or both end faces of the honeycomb structure is (are) allowed to abut on the cone(s). [0014]
  • In the gas duct comprising a honeycomb structure, of the present invention, it is preferable that the circumference(s) of the end face(s) of the honeycomb structure abuts (abut) on the cone(s) at an angle of 45° to 85°. [0015]
  • In the gas duct having a honeycomb structure, of the present invention, it is also preferable that the circumference(s) of the end face(s) of the honeycomb structure is (are) chamfered and the size or radius of chamfering is 0.1 to 1 mm. [0016]
  • The gas duct having a honeycomb structure, of the present invention preferably takes the following form: [0017]
  • the honeycomb structure is made of a ceramic or a metal, and is a catalyst for exhaust gas purification, a filter for capturing the particulate substances present in exhaust gas, or a heat exchanger; [0018]
  • the holding member is a ceramic fiber mat or a metal-made wire mesh; and [0019]
  • the metal case has a stuffing structure, a tourniquet structure, or a clam-shell structure.[0020]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a drawing showing an example of the gas duct having a honeycomb structure, of the present invention. [0021]
  • FIG. 2 is a fragmentary sectional view showing an example of the state in which, in the gas duct having a honeycomb structure, of the present invention, the circumference of one end face of the honeycomb structure abuts on the cone. [0022]
  • FIG. 3 is a fragmentary sectional view showing other example of the state in which, in the gas duct having a honeycomb structure, of the present invention, the circumference of one end face of the honeycomb structure abuts on the cone. [0023]
  • FIGS. [0024] 4(a) and 4(b) are drawings showing an example of conventional gas ducts having a honeycomb structure, i.e. conventional ceramic honeycomb catalytic converters.
  • FIGS. [0025] 5(a) and 5(b) show an example of the state in which, in a conventional gas duct having a honeycomb structure, the circumference of one end face of the honeycomb structure abuts on the projections of the metal case. FIG. 5(a) is a perspective view, and FIG. 5(b) is a fragmentary sectional view.
  • FIG. 6 is a graph showing the change of pressure loss when air flow rate was changed, in the gas duct having a honeycomb structure, of Example 1 or Comparative Example 3. [0026]
  • FIG. 7 is a graph showing, in a gas duct having a honeycomb structure, the change of pressure loss when the angle θ of abutting between the circumference of one end face of the honeycomb structure and the cone was changed in the range of 30 to 90°. [0027]
  • FIG. 8 is a graph showing the results of heating and vibration tests conducted for the gas ducts having a honeycomb structure, of Examples 1 and 3 and Comparative Examples 3 and 4.[0028]
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • The present invention is hereinafter described in detail with reference to the accompanying drawings. [0029]
  • FIG. 1 is a drawing showing an example of the gas duct having a honeycomb structure, of the present invention. [0030]
  • The gas duct having a honeycomb structure, shown in FIG. 1 comprises a [0031] metal case 21; a honeycomb structure 22 accommodated in the metal case 21; a holding member 23 placed between the outer surface of the honeycomb structure 22 and the inner surface of the metal case 21; cones 24 fitted to the inner surface of the metal case 21 at both openings of the metal case 21; and a cover 26 for heat insulation provided so as to cover the metal case 21.
  • The main feature of the present gas duct having a honeycomb structure lies in that the [0032] circumference 22 a of at least one end face of the honeycomb structure 22 abuts on the cone 24 (see FIGS. 1 to 3).
  • Thereby, the honeycomb structure can be pinched directly by the cone [0033] 24 [and not by a hook 14, a retainer ring 15 and a plurality of projections 16 (shown in FIGS. 4 and 5) all used conventionally]; as a result, none of the passages of the honeycomb structure 22 is not blocked and the whole volume of the honeycomb structure 22 can be effectively utilized, and reductions in pressure loss and cost can be attained.
  • Also in the present gas duct, the same performance can be obtained with a honeycomb structure smaller than conventional honeycomb structures, which provides a cost merit. [0034]
  • Further in the present gas duct, displacement of [0035] honeycomb structure 22 caused by vibration (this displacement is believed to take place mainly as a result of the shear deformation of holding member 23) can be prevented; moreover, contact of holding member 23 with high-temperature exhaust gas can be prevented, making it possible to suppress the deterioration of holding member 23.
  • In the present gas duct having a honeycomb structure, it is preferable that the circumference(s) of the end face(s) of the [0036] honeycomb structure 22 abuts (abut) on the cone(s) 24 at an angle θ of 45° to 85°.
  • The reason therefor is as follows. That is, when the angle of abutting is less than 45°, the effect of pressure loss reduction is small; when the angle of abutting is more than 85°, the power of holding the honeycomb structure in the axial direction of the metal case is low. [0037]
  • Further in the present gas duct having a honeycomb structure, it is preferable that the circumference(s) of the end face(s) of the honeycomb structure is (are) chamfered as shown in FIGS. 2 and 3. [0038]
  • The reason therefor is as follows. That is, by chamfering the [0039] circumference 22 a of the end face of the honeycomb structure 22, the chipping of the honeycomb structure 22 occurring when the cone 24 is allowed to abut thereon, can be prevented.
  • It is also preferable that the size C (see FIG. 2) or radius R (see FIG. 3) of chamfering of the [0040] circumference 22 a of the end face of the honeycomb structure 22 is 0.1 to 1 mm.
  • The reason therefor is as follows. That is, when the size C or radius R of chamfering is smaller than 0.1 mm, no sufficient effect is obtained; when the size C or radius R of chamfering is larger than 1 mm, a higher processing cost is incurred. [0041]
  • The [0042] holding member 23 used in the present gas duct is preferably a ceramic fiber mat or a metal-made wire mesh.
  • The [0043] honeycomb structure 22 used in the present gas duct is preferably made of a ceramic or a metal.
  • The honeycomb structure used in the present gas duct has a large number of passages having a polygonal section, which are parallel to the direction of the gas duct and which are surrounded by the partition walls formed inside the circumferential wall of the honeycomb structure, and is used as a catalyst for exhaust gas purification, as a filter for capturing the particulate substances present in exhaust gas, or as a heat exchanger. [0044]
  • The above-mentioned polygonal section of the passages of the honeycomb structure is preferably triangular to expect a pressure loss as low as possible. [0045]
  • The honeycomb structure has no particular restriction as to its shape; however, the shape of the section perpendicular to the direction of the present gas duct is ordinarily round, oval, race-track or the like. [0046]
  • The [0047] metal case 21 used in the present gas duct, preferably has a stuffing structure, a tourniquet structure, or a clam-shell structure.
  • The above structure of the [0048] metal case 21 is appropriately selected depending upon the shape of the honeycomb structure 22. For example, the stuffing structure and the tourniquet structure are suitable for a round-shaped honeycomb structure because these metal case structures enable relatively easy canning. The clam-shell structure of metal case is suitable for an oval or race-track honeycomb structure because it enables relatively easy canning.
  • The present invention is described in more detail below by way of Examples. However, the present invention is in no way restricted to these Examples. [0049]
  • EXAMPLES 1 to 3 and Comparative Examples 1 to 4
  • As shown in FIG. 1, one end of a [0050] cone 24 a was completely welded onto the inner surface of a metal case 21 at one opening of the metal case 21; then, a honeycomb structure 22 was inserted into the metal case 21 from the other opening of the metal case 21; also from the other opening of the metal case 21 a holding member 23 was inserted, under pressure, into between the outer surface of the honeycomb structure 22 and the inner surface of the metal case 21; thereafter, a cone 24 b was inserted into the metal case 21 at the other opening of the metal case 21, and welded onto the inner surface of the metal case 21 temporarily at 4 points in a state that the cone 24 b was allowed to abut on the circumference 22 a of one end face of the honeycomb structure 22 at an angle θ shown in Table 1; next, the cone 24 b was completely welded; a cover 26 was welded at 8 points so as to cover the metal case 21; thereby, various gas ducts 20 comprising a honeycomb structure, of Examples 1 to 3 and Comparative Examples 1 to 2 were produced.
    TABLE 1
    Angle of abutting θ (°)
    Example 1 45
    Example 2 60
    Example 3 85
    Comparative Example 1 30
    Comparative Example 2 90
    Comparative Example 3
    Comparative Example 4
  • Separately, as shown in FIG. 4, a [0051] honeycomb structure 12 was held in a metal case 11; a ceramic fiber mat 13 was inserted, under pressure, into between the outer surface of the honeycomb structure 12 and the inner surface of the metal case 11; in order to hold the honeycomb structure 12 in the metal case 11 in the axial direction of the metal case 11, a hook 14 projecting from one end of the metal case 11 toward the center of a circle formed by said one end and a retainer ring 15 welded to the other end of the metal case 11 were allowed to abut on the honeycomb structure 12; then, a cone (not shown), which was a metal member having a function of introducing and discharging an exhaust gas, was connected, by welding, to each end of the metal case 11; thereby, a gas duct having a honeycomb structure, of Comparative Example 3 was produced.
  • In Comparative Example 4, a gas duct having a honeycomb structure was produced in the same manner as in Comparative Example [0052] 3 except that neither hook 14 nor retainer ring 15 was used.
  • The thus-produced gas ducts having a honeycomb structure, of Examples 1 to 3 and Comparative Examples 1 to 4 were subjected to the following three kinds of tests. [0053]
  • Pressure Loss Test 1
  • The gas ducts of Example 1 and Comparative Example 3 were measured for change of pressure loss at room temperature when air flow rate was changed. The results are shown in FIG. 6. [0054]
  • Pressure Loss Test 2
  • The gas ducts of Examples 1 to 3 and Comparative Examples 1 to [0055] 2 were measured for change of pressure loss at an air flow rate of 4 Nm3/min when the angle θ of abutting between the circumference of one end face of the honeycomb structure and the cone was changed from 30 to 90°. The results are shown in FIG. 7.
  • Heating and Vibration Test
  • The gas duct having a honeycomb structure, of Example 1 or 3 or Comparative Example 3 or 4 was fitted to a heating and vibration tester so that the direction of the gas duct became identical with the vibration direction of the tester; then, the gas duct was vibrated at a given vibration acceleration for 4 hours under the conditions of a low-high temperature cycle (gas temperature: 200 to 1,000° C.) and 185 Hz; and the amount of displacement of honeycomb structure in metal case was measured; thereby, the gas duct was evaluated for resistance to heating and vibration. The results are shown in FIG. 8. [0056]
  • Incidentally, the following materials were used in production of each gas duct comprising a honeycomb structure. [0057]
  • Honeycomb structure: [0058]
  • size=103 mm (diameter)×120 mm length), rib thickness=0.1 mm, cell density=62 cells/cm2, made of cordierite [0059]
  • Ceramic fiber mat: [0060]
  • Maftec (brand name), a product of Mitsubishi Chemical Corporation [0061]
  • Metal case: [0062]
  • a stuffing structure made of SUH 409 [0063]
  • Cone and retainer ring: [0064]
  • both made of SUH 409 [0065]
  • Evaluation of Test Results
  • As shown in FIG. 6, the gas duct of Example 1 maintained the same holding power for honeycomb structure as the gas duct of Comparative Example 3, in the axial direction of the metal case, and was lower in pressure loss than the latter gas duct by about 15%. [0066]
  • As shown in FIG. 7, when the angle θ of abutting between the circumference of one end face of the honeycomb structure and the cone was in the range of 45 to 85°, reduction in pressure loss was possible while the holding power for honeycomb structure in the axial direction of metal case was maintained. [0067]
  • As shown in FIG. 8, displacement of honeycomb structure appeared at a vibration acceleration of 50 G in the gas duct of Comparative Example 4 (using no retainer ring); however, the gas ducts of Examples 1 and 3 had about the same vibration resistance as the gas duct of Comparative Example 3 (using a retainer ring). [0068]
  • As described above, the gas duct having a honeycomb structure, of the present invention can effectively utilize the whole volume of the honeycomb structure, is low in pressure loss, and is low also in cost. [0069]
  • Further, the gas duct having a honeycomb structure, of the present invention can prevent the displacement of honeycomb structure caused by vibration; moreover, can prevent the contact of holding member with high-temperature exhaust gas and can therefore suppress the deterioration of holding member. [0070]

Claims (14)

What is claimed is:
1. A gas duct having a honeycomb structure, which comprises:
a metal case,
a honeycomb structure accommodated in the metal case,
a holding member placed between the outer surface of the honeycomb structure and the inner surface of the metal case, and
a cone fitted to the inner surface of the metal case at one or both openings of the metal case, wherein the circumference of one or both end faces of the honeycomb structure is allowed to abut on the cone.
2. A gas duct having a honeycomb structure according to
claim 1
, wherein the circumference of the end face of the honeycomb structure abuts on the cone at an angle of 45 to 85°.
3. A gas duct having a honeycomb structure according to
claim 1
, wherein the circumference of the end face of the honeycomb structure is chamfered.
4. A gas duct having a honeycomb structure according to
claim 3
, wherein the size or radius of chamfering of the circumference of the end face of the honeycomb structure is 0.1 to 1 mm.
5. A gas duct having a honeycomb structure according to
claim 1
, wherein the honeycomb structure is made of a ceramic.
6. A gas duct having a honeycomb structure according to
claim 1
, wherein the honeycomb structure is made of a metal.
7. A gas duct having a honeycomb structure according to
claim 1
, wherein the honeycomb structure is a catalyst for exhaust gas purification.
8. A gas duct having a honeycomb structure according to
claim 1
, wherein the honeycomb structure is a filter for capturing the particulate substances present in exhaust gas.
9. A gas duct having a honeycomb structure according to
claim 1
, wherein the honeycomb structure is a heat exchanger.
10. A gas duct having a honeycomb structure according to
claim 1
, wherein the holding member is a ceramic fiber mat.
11. A gas duct having a honeycomb structure according to
claim 1
, wherein the holding member is a metal-made wire mesh.
12. A gas duct having a honeycomb structure according to
claim 1
, wherein the metal case has a stuffing structure.
13. A gas duct having a honeycomb structure according to
claim 1
, wherein the metal case has a tourniquet structure.
14. A gas duct having a honeycomb structure according to
claim 1
, wherein the metal case has a clam-shell structure.
US09/337,334 1998-07-23 1999-06-21 Gas duct having honeycomb structure Expired - Lifetime US6338826B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10-208016 1998-07-23
JP20801698A JP3328588B2 (en) 1998-07-23 1998-07-23 Gas flow path

Publications (2)

Publication Number Publication Date
US20010051117A1 true US20010051117A1 (en) 2001-12-13
US6338826B2 US6338826B2 (en) 2002-01-15

Family

ID=16549289

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/337,334 Expired - Lifetime US6338826B2 (en) 1998-07-23 1999-06-21 Gas duct having honeycomb structure

Country Status (4)

Country Link
US (1) US6338826B2 (en)
JP (1) JP3328588B2 (en)
DE (1) DE19934531B4 (en)
FR (1) FR2781389B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060242951A1 (en) * 2005-04-29 2006-11-02 Caterpillar Inc. Refractory material retention device
US20070186546A1 (en) * 2006-02-16 2007-08-16 Indmar Products Company Inc. Manifold mounted catalytic converter
US20110126973A1 (en) * 2009-11-30 2011-06-02 Andrewlavage Jr Edward Francis Apparatus And Method For Manufacturing A Honeycomb Article
US20140020877A1 (en) * 2011-03-29 2014-01-23 Ngk Insulators, Ltd. Heat exchanger element and heat exchanger
US9089992B2 (en) 2007-04-30 2015-07-28 Corning Incorporated Methods and apparatus for making honeycomb structures with chamfered after-applied akin and honeycomb structures produced thereby

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10017839A1 (en) * 2000-01-17 2001-08-16 Emitec Emissionstechnologie Catalyst carrier body with a stretch sleeve with microstructures
JP2002018290A (en) * 2000-07-12 2002-01-22 Hitachi Metals Ltd Carrier for ceramic honeycomb structure catalyst and ceramic honeycomb structure catalyst converter using the same
DE60120743T2 (en) * 2000-11-17 2007-06-14 Ngk Insulators, Ltd., Nagoya ASSEMBLY PROCEDURE USING AN INFORMATION DISPLAY AND ASSEMBLY MANUFACTURED HEREIN
JP4680437B2 (en) * 2001-07-13 2011-05-11 日本碍子株式会社 Honeycomb structure
JP2006218851A (en) * 2005-01-14 2006-08-24 Denso Corp Method for manufacturing ceramic honeycomb structure and ceramic honeycomb structure
DE102005046317A1 (en) * 2005-09-27 2007-04-05 J. Eberspächer GmbH & Co. KG Exhaust gas treatment device
DE112008001085A5 (en) * 2007-02-21 2010-01-21 Cella, Fred The heat exchanger assembly
KR101045304B1 (en) 2007-12-05 2011-06-29 한국델파이주식회사 Catalystic converter apparatus with optimum exhaust gas flow for vehicle
JP5912605B2 (en) * 2012-02-03 2016-04-27 本田技研工業株式会社 Exhaust muffler device
US9328641B2 (en) 2012-09-21 2016-05-03 Kohler Co. Power management system that includes a wet exhaust system
US9518495B1 (en) * 2014-10-23 2016-12-13 Brunswick Corporation Exhaust arrangements for marine propulsion devices
US9551264B1 (en) 2014-10-23 2017-01-24 Brunswick Corporation Exhaust arrangements for marine propulsion devices
US9470130B1 (en) 2014-10-23 2016-10-18 Brunswick Corporation Exhaust arrangements for marine propulsion devices
WO2016088523A1 (en) * 2014-12-04 2016-06-09 本田技研工業株式会社 Exhaust gas purifying device of internal-combustion engine, and method of manufacturing same
US10151230B2 (en) 2015-05-08 2018-12-11 Corning Incorporated Housing, fluid stream treatment article, exhaust system and methods of manufacturing
JP7319159B2 (en) * 2019-09-30 2023-08-01 ダイハツ工業株式会社 Automotive internal combustion engine catalyst case

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3801289A (en) 1972-05-19 1974-04-02 Corning Glass Works Catalytic converter
US3817714A (en) * 1972-10-10 1974-06-18 Corning Glass Works Catalytic converter
DE2314465C3 (en) * 1973-03-23 1978-12-07 Volkswagenwerk Ag, 3180 Wolfsburg Device for catalytic exhaust gas cleaning
GB1474904A (en) * 1973-09-05 1977-05-25 Rubery Owen & Co Ltd Method of forming a casing or housing for a catalytic block for use in an exhaust system for an internal combustion engine
JPS56162220A (en) * 1980-05-20 1981-12-14 Ngk Insulators Ltd Ceramic honeycomb structural body
DE3506219A1 (en) 1985-02-22 1986-09-04 LEISTRITZ Maschinenfabrik GmbH, 8500 Nürnberg Catalytic exhaust gas detoxification device
DE3760312D1 (en) * 1986-08-07 1989-08-17 Leistritz Ag Exhaust gas cleaning device
JPH02126016A (en) 1988-11-04 1990-05-15 Matsushita Electric Ind Co Ltd Control device for hot air heater
FR2703105B1 (en) * 1993-03-26 1995-06-16 Ecia Equip Composants Ind Auto DEVICE FOR THE CATALYTIC PURIFICATION OF EXHAUST GASES FROM AN ENGINE, ESPECIALLY A MOTOR VEHICLE.
CA2131247C (en) * 1993-09-03 1998-07-07 Minoru Machida Ceramic honeycomb catalytic converter
JP2798871B2 (en) 1993-09-03 1998-09-17 日本碍子株式会社 Ceramic honeycomb catalytic converter
DE4446986A1 (en) * 1993-12-31 1995-07-06 Eberspaecher J Joining exhaust gas treatment element to housing
JP3294036B2 (en) * 1995-01-26 2002-06-17 日本碍子株式会社 Honeycomb catalytic converter
US5693295A (en) * 1996-01-16 1997-12-02 General Motors Corporation Catalytic converter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060242951A1 (en) * 2005-04-29 2006-11-02 Caterpillar Inc. Refractory material retention device
US20070186546A1 (en) * 2006-02-16 2007-08-16 Indmar Products Company Inc. Manifold mounted catalytic converter
US7788913B2 (en) * 2006-02-16 2010-09-07 Indmar Products Company Inc. Manifold mounted catalytic converter
US9089992B2 (en) 2007-04-30 2015-07-28 Corning Incorporated Methods and apparatus for making honeycomb structures with chamfered after-applied akin and honeycomb structures produced thereby
US20110126973A1 (en) * 2009-11-30 2011-06-02 Andrewlavage Jr Edward Francis Apparatus And Method For Manufacturing A Honeycomb Article
US20140020877A1 (en) * 2011-03-29 2014-01-23 Ngk Insulators, Ltd. Heat exchanger element and heat exchanger

Also Published As

Publication number Publication date
DE19934531B4 (en) 2008-05-21
JP2000045759A (en) 2000-02-15
US6338826B2 (en) 2002-01-15
DE19934531A1 (en) 2000-02-03
FR2781389B1 (en) 2004-01-16
FR2781389A1 (en) 2000-01-28
JP3328588B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
US6338826B2 (en) Gas duct having honeycomb structure
EP0241269B1 (en) High strength ceramic honeycomb structure
JP3294036B2 (en) Honeycomb catalytic converter
US6421915B1 (en) Hexagonal-cell honeycomb structure and method for fixation thereof
KR100626194B1 (en) Honeycomb structural body and canning structural body storing the honeycomb structural body
CZ369598A3 (en) Device for damping and purification of exhaust gases
EP1508354B1 (en) Honeycomb structural body
JPH10264274A (en) Ceramic honeycomb structure
US3938959A (en) Catalyst-type exhaust gas purifying device
US6316384B1 (en) Honeycomb body configuration with support sections
US7678439B2 (en) Honeycomb structure and die for forming honeycomb structure
US4396664A (en) Ceramic honeycomb structural body
US4115071A (en) Catalytic converter having improved supporting members for monolithic catalyst
EP1462625B1 (en) End cone assembly, exhaust emission control device and method of making thereof
US4604869A (en) Porous ceramic structure
US10450913B2 (en) Exhaust gas purifying device of internal combustion engine
JP3821975B2 (en) Gas flow path having a ceramic honeycomb structure
JPH0261313A (en) Structure for purifying exhaust gas
JP2798871B2 (en) Ceramic honeycomb catalytic converter
JP2892258B2 (en) Ceramic honeycomb structure
US5186906A (en) Apparatus for mounting a honeycomb structure impregnated with a catalyst in a flow tube
JP4178817B2 (en) Exhaust purification device for internal combustion engine
JP2798874B2 (en) Ceramic honeycomb catalytic converter
JP2001289041A (en) Exhaust emission controlling catalytic converter, diesel particulate filter system, and their manufacturing methods
JP3713817B2 (en) Catalytic converter

Legal Events

Date Code Title Description
AS Assignment

Owner name: NGK INSULATORS, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMADA, TOSHIO;HIJIKATA, TOSHIHIKO;MORITA, YUKIHARU;REEL/FRAME:010063/0249

Effective date: 19990608

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12