US20010042305A1 - Methods and apparatus for handling packaged IC's - Google Patents

Methods and apparatus for handling packaged IC's Download PDF

Info

Publication number
US20010042305A1
US20010042305A1 US09/893,879 US89387901A US2001042305A1 US 20010042305 A1 US20010042305 A1 US 20010042305A1 US 89387901 A US89387901 A US 89387901A US 2001042305 A1 US2001042305 A1 US 2001042305A1
Authority
US
United States
Prior art keywords
precisor
socket
packaged
feature
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/893,879
Inventor
Jeffery Martin
Dave Searfoss
Raymond Zeune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technologies Inc
Original Assignee
Schlumberger Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technologies Inc filed Critical Schlumberger Technologies Inc
Priority to US09/893,879 priority Critical patent/US20010042305A1/en
Publication of US20010042305A1 publication Critical patent/US20010042305A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0452Mounting machines or lines comprising a plurality of tools for guiding different components to the same mounting place
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S29/00Metal working
    • Y10S29/044Vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49004Electrical device making including measuring or testing of device or component part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49133Assembling to base an electrical component, e.g., capacitor, etc. with component orienting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53174Means to fasten electrical component to wiring board, base, or substrate
    • Y10T29/53178Chip component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53191Means to apply vacuum directly to position or hold work part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53274Means to disassemble electrical device

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

Apparatus and methods are provided for handling packaged integrated circuits (IC's), particularly for inserting packaged IC's in and removing packaged IC's from low-insertion-force (LIF) sockets. The apparatus includes a precisor having a chip precisor feature for receiving an IC package and a socket precisor feature for receiving a socket in a predetermined alignment relative to the chip precisor feature. One or more releasable chip retainers are provided, such as a vacuum nozzle for pulling the packaged IC into a seated position within the chip precisor feature and a pair of gripper fingers for holding the packaged IC within the chip precisor feature during extraction from a LIF socket. A method of inserting a packaged IC into a socket comprises centering a precisor relative to an expected location of a packaged integrated circuit, moving the precisor to a predetermined height relative to the expected location, applying vacuum to a nozzle so that a packaged IC is pulled into a chip precising feature of the precisor, centering the precisor relative to a socket, and moving the precisor into a seated position on the socket in which the packaged IC is aligned with and inserted into the socket. A method of removing a packaged IC from a socket comprises positioning a precisor relative to a socket containing a packaged IC, moving the precisor into a seated position on the socket in which the packaged IC is seated in a chip precising feature of the precisor, closing a gripper to retain the packaged IC within the chip precising feature, and moving the precisor away from the seated position while retaining the packaged IC within the chip precising feature.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to methods and apparatus for handling of packaged integrated circuits. [0002]
  • 2. The Prior Art [0003]
  • Production of integrated circuit (IC) chips involves considerable handling, particularly of packaged IC's during the burn-in and test phases. Efficient production requires fully automatic transfer of IC's, for example, from carrying-tray bins to burn-in-board sockets and, after burn-in, back to carrying-tray bins. Transfer must be fast, avoid damage to the IC's and the sockets, assure correct placement of the IC's in the sockets so that device functionality can be checked, and permit sorting of the IC's based on results of the burn-in operation. [0004]
  • An example of a system for loading and unloading IC's on burn-in boards is the BLU300 Burn-In Board Loader/Unloader, commercially available from Schlumberger ATE Automated Systems, Westerville, Ohio, U.S.A. Such a system can be adapted for use with burn-in boards of various sizes, can be fitted with component tooling to handle IC's having various package types, and can be programmed for automated operation in various modes. [0005]
  • Burn-in boards (BIB's) used in such a system typically have an array of sockets, each of which receives a single packaged IC. FIGS. 1A, 1B and [0006] 1C show one type of “Zero Insertion Force” (ZIF) socket 100 used on BIB's, in respective top, side elevation and end views. FIGS. 2A, 2B and 2C show a type of IC package 200 intended to be inserted in such a socket, in respective top, side elevation and end views. ZIF socket 100 has a body 105 opposed rows of spring contacts 110 and 115, a cover 120, and rows of connector pins 125 and 130. Cover 120 is resiliently biased upwardly as shown. When cover 120 is pressed downwardly, spring contacts 110 and 115 are retracted so that an IC package 200 can be dropped into the well area of socket 100 without resistance. When IC package 200 is in place and cover 120 is allowed to return to its upward position, spring contacts 110 and 115 extend toward the center of socket 100 to make electrical contact with respective rows 205 and 210 of pins of IC package 200.
  • While generally effective, the use of such ZIF sockets has drawbacks. The cost of the sockets is higher than for “Low Insertion Force” (LIF) sockets of the type described below with reference to FIGS. [0007] 3A-3C. The BIB area required for ZIF sockets is greater than that for LIF sockets, primarily because of the area required for the cover surrounding the well area of the ZIF socket, such as cover 120. Thus, fewer IC's can be loaded on each BIB with ZIF sockets than might be possible with LIF sockets. The tooling required to load IC's into ZIF sockets is complicated by the need for an actuator to depress the cover before an IC can be inserted or removed and to release the cover after an IC is dropped into or picked out of the socket. The need to move the cover down and then up again adds to the time needed each time an IC is inserted in or removed from the ZIF socket. When the IC is dropped into the ZIF socket, gravity and chamfered walls in the upper portion of the chip well are all that can guide the IC into correct position. If the IC is not sufficiently aligned with the well before being dropped in, it may not seat properly and may have to be removed for another try. Because there is little or no sliding contact between the ZIF socket's spring contacts and the IC's pins, surface corrosion and impurities which may interfere with electrical conductivity are not displaced during the insertion process.
  • FIGS. 3A, 3B and [0008] 3C are sectional views showing one type of commercially-available “Low Insertion Force” (LIF) socket 300. FIGS. 3A and 3B are a sectional views taken along centerline 3A/3B-3A/3B of FIG. 3C. FIG. 3C is a sectional view taken along centerline 3C-3C in FIGS. 3A and 3B. Socket 300 has a socket body 305 with a well 310 for receiving an IC, horizontally-opposed rows of contact springs 315 and 320, and horizontally-opposed rows of connector pins 325 and 330. Precise alignment of an IC package in the horizontal (x- and y-directions) is required before the package can be inserted vertically (in the z-direction) into well 310 and into contact with contact springs 315 and 320.
  • The left side of each of FIGS. 3A and 3C shows in phantom lines at [0009] 335 a packaged IC in a first position just prior to insertion in socket 300. The IC package is mis-aligned to the left by an amount 340 which would cause the end pin of the package to hit the end wall 345 of socket body 305 and thus to prevent further insertion into well 310. The right side of each of FIGS. 3A and 3C shows in phantom lines at 350 a packaged IC in a second position just as contact is being made between contact springs 320 of the socket and pins 355 of the IC package. In the second position, the IC package is mis-aligned to the right by an amount 360 which would cause the end 365 of the IC package to hit the end wall of socket body 305 and thus to prevent further insertion into well 310.
  • The left side of FIG. 3B shows in phantom lines at [0010] 370 a packaged IC in a third position just prior to insertion in socket 300. The IC package is mis-aligned to the left by a maximum amount 375 which would still permit insertion into well 310 of a socket without locator pins. The right side of FIG. 3B shows in phantom lines at 380 a packaged IC in a fourth position just prior to insertion in socket 300. The IC package is mis-aligned to the left by a maximum amount 385 which would still permit insertion into well 310 of a socket having locator pins.
  • Precise alignment of the IC package with the socket is difficult to achieve in a high-speed, automated, production environment. BIB's can be slightly misaligned in the burn-in board loader/unloader due to manufacturing tolerances and wear. Positioning of sockets on the BIB's can vary within some tolerance. The automated handler which positions the IC package over the socket can have some small positioning error from operation to operation due to manufacturing tolerances and wear. LIF sockets are in general less forgiving of mis-alignments than are ZIF sockets. [0011]
  • Beside the requirement to precisely align the IC package with the LIF socket, insertion of the IC package into well [0012] 310 requires a force which will cause pins of the IC package to deflect contact springs 315 and 320 outwardly. Removal of the IC package from the LIF socket also requires a force. The amount of force depends upon the particular design of the IC package and the socket, but is significant enough that it does not allow use of the package-handler tooling designed for dropping packaged IC's into and vacuuming packaged IC's out of ZIF sockets. To use LIF sockets in an automated setting such as on burn-in boards, tooling is required which will apply the needed insertion and removal forces, but without damage to the IC or the socket even when the two are mis-aligned. Bent IC pins, broken sockets and the like are not acceptable.
  • A new type of handler is needed to allow use of LIF sockets in such applications. [0013]
  • SUMMARY OF THE INVENTION
  • Preferred embodiments of the invention offer apparatus and methods for handling packaged integrated circuits (IC's), particularly for inserting packaged IC's in and removing packaged IC's from low-insertion-force (LIF) sockets. The apparatus preferably includes a precisor having a chip precisor feature for receiving an IC package and a socket precisor feature for receiving a socket in a predetermined alignment relative to the chip precisor feature. One or more releasable chip retainers is provided, such as a vacuum nozzle for pulling the packaged IC into a seated position within the chip precisor feature and a pair of gripper fingers for holding the packaged IC within the chip precisor feature during extraction from a LIF socket. A method of inserting a packaged IC into a socket comprises centering a precisor relative to an expected location of a packaged integrated circuit, moving the precisor to a predetermined height relative to the expected location, applying vacuum to a nozzle so that a packaged IC to be pulled into a chip precising feature of the precisor, centering the precisor relative to a socket, and moving the precisor into a seated position on the socket in which the packaged IC is aligned with and inserted into the socket. A method of removing a packaged IC from a socket comprises positioning a precisor relative to a socket containing a packaged IC, moving the precisor into a seated position on the socket in which the packaged IC is seated in a chip precising feature of the precisor, closing a gripper to retain the packaged IC within the chip precising feature, and moving the precisor away from the seated position while retaining the packaged IC within the chip precising feature. [0014]
  • These and other features of the invention will become apparent to those of skill in the art from the following description and the accompanying drawing figures.[0015]
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIGS. 1A, 1B and [0016] 1C show respective top, side elevation, and end views of a prior-art “Zero Insertion Force” (ZIF) socket;
  • FIGS. 2A, 2B and [0017] 2C show respective top, side elevation, and end views of a prior-art IC package intended to be inserted in a socket of the type shown in FIGS. 1A-1C;
  • FIG. 3A is a sectional view taken along line [0018] 3A/3B-3A/3B of FIG. 3C showing a prior-art “Low Insertion Force” (LIF) socket with an IC package in two possible misaligned states;
  • FIG. 3B is a sectional view taken along line [0019] 3A/3B-3A/3B of FIG. 3C showing a prior-art “Low Insertion Force” (LIF) socket with an IC package in two further states of possible mis-alignment;
  • FIG. 3C is a sectional view taken [0020] alone lines 3C-3C of FIGS. 3A and 3B showing a the LIF socket with an IC package in two further states of possible mis-alignment;
  • FIG. 4A shows in partially cut-away front elevation view an example of a packaged-IC handing apparatus in accordance with the invention; [0021]
  • FIG. 4B is a bottom view of the packaged-IC handler head of FIG. 4A; [0022]
  • FIG. 4C is a partially cut-away left side view of portions of the apparatus of FIG. 4A; [0023]
  • FIG. 4D is a top view of the portions of the apparatus shown in FIG. 4C; [0024]
  • FIG. 4E is a partial left side view of portions of the apparatus of FIG. 4A, with the head raised relative to a socket; [0025]
  • FIG. 4F is a partially cut-away front elevation view showing internal structure of a resilient mount in accordance with the invention; [0026]
  • FIG. 5A is a partially cut-away elevation view of a packaged-IC handling apparatus in accordance with the invention; [0027]
  • FIG. 5B is a partially cut-away right-side view of the apparatus of FIG. 5A; [0028]
  • FIG. 6A shows an enlarged elevation view of the portions of the handler head which engage a socket and an IC package; [0029]
  • FIG. 6B is an enlarged right side view of the arrangement of FIG. 6A; [0030]
  • FIG. 7 shows an enlarged right side view with gripper fingers open and with the handler head raised; [0031]
  • FIG. 8A is an enlarged, top view of a precisor block in accordance with the invention; [0032]
  • FIG. 8B is a sectional view taken along: [0033] line 8B-8B of FIG. 8A;
  • FIG. 8C is a sectional view taken along [0034] line 8C-8C of FIG. 8A;
  • FIG. 9A is a detail view of a portion [0035] 9A of FIG. 8A;
  • FIG. 9B is a detail view of a [0036] portion 9B of FIG. 8B;
  • FIG. 10A shows a further elevation view of a handler head in accordance with the invention; [0037]
  • FIG. 10B is a left side view of the handler head of FIG. 10A; [0038]
  • FIG. 10C is a sectional view taken along lines [0039] 10C-10C of FIG. 10B;
  • FIG. 10D is a top view of the arrangement of FIG. 10A; [0040]
  • FIG. 11A is an elevation view of a gripper finger in accordance with the invention; [0041]
  • FIGS. 11B, 11C and [0042] 11D are respectively top, bottom and side views of the gripper finger of FIG. 11A;
  • FIG. 12 is a schematic illustration of a possible use of handling apparatus in accordance with the invention; [0043]
  • FIG. 13A is a bottom view of a socket precisor portion of a two-piece precisor block in accordance with the invention; [0044]
  • FIG. 13B is a sectional view taken along [0045] line 13B-13B of FIG. 13A;
  • FIG. 13C is a sectional view taken along [0046] line 13C-13C of FIG. 13A;
  • FIGS. 14A, 14B and [0047] 14C are respective bottom, end and right-side views of a chip precisor insert of a two-piece precisor block in accordance with the invention;
  • FIG. 15A is a bottom view of an assembled two-piece precisor block in accordance with the invention; [0048]
  • FIG. 15B is a sectional view taken along [0049] line 15B-15B of FIG. 15A;
  • FIG. 15C is a sectional view taken along [0050] line 15C-15C of FIG. 15A; and
  • FIG. 15D is a top view of the two-piece precisor block of FIG. 15A.[0051]
  • DETAILED DESCRIPTION
  • FIG. 4A shows in partially cut-away elevation view an example of a packaged-[0052] IC handing apparatus 400 in accordance with the invention. As is conventional in a BIB loader/unloader such as the Schlumberger model BLU300 (and as shown schematically in FIGS. 4A and 4C), an X-servo 402 and a Y-servo 404 are directed by a programmable controller 415 to position a head 420 in the X- and Y- directions relative to sockets of a BIB 425, and a Z-servo 406 is directed by programmable controller 415 to move head 420 vertically (in the Z-direction). Fitted with a head 420 in accordance with the present invention, such a system can be used to insert a packaged IC 435 in or remove of packaged IC 435 from a socket 440. In the embodiment shown, servos 402, 404 and 406 position a bracket 408 to which head 420 is attached by a theta-axis assembly 412 and a resilient mount 455. The structure and operation of resilient mount 455 are described below. Theta-axis assembly 412 comprises a housing 430 supported by bracket 408 and in which a spindle assembly 462 is mounted for rotation in the theta direction (about the Z-axis). Spindle assembly 462 is rotated by a theta-axis servo 405 under control of programmable controller 415. A drive belt 414 (visible in section in FIG. 4A) connects the shaft of servo 405 to a spindle 460 of spindle assembly 462. A theta-axis encoder 410 reports the rotational position of spindle 460 to controller 415. Programmable controller 415 is shown as a single box, but typically includes a variety of elements including as a programmable general-purpose processor with memory and input/output devices, pneumatic source and control elements, solenoids, switches, sensors and other well-known elements required to control the system in the manner described.
  • [0053] Head 420 includes a parallel gripper assembly 465 having gripper fingers 470, a nozzle body 475, and a precisor block 480, the structure and operation of which are described below. Gripper fingers 470 are operated by control signals from controller 415 to gripper assembly 465. A nozzle (not shown in FIG. 4A) passing through nozzle body 475 is connected by a line to a source of “puff” air pressure or to a vacuum source via fitting 485 as directed by controller 415. A sensor communicating with controller 415 detects vacuum/pressure in the line. A gripper-detector assembly shown schematically at 490 indicates to controller 415 whether the gripper fingers are closed or not-closed. A “hit-detect” sensor shown schematically at 495 provides an indication to controller 415 when head 420 has bottomed out during downward movement so that a “stop” command can be sent to Z-servo 430. FIG. 4B is a bottom view of head 420 in which nozzle body 475, precisor block 480, and portions of gripper assembly 465 can be seen.
  • FIG. 4C is a partially cut-away left side view of portions of the apparatus of FIG. 4A. FIG. 4D is a top view of the portions shown in FIG. 4C. “Hit detect” [0054] sensor 495, visible in FIG. 4C, comprises a light source and detector for sensing the presence or absence of reflection from a reflector 498. In the embodiment shown, resilient mount 455 comprises an upper housing 487, a plate 496 having a threaded shank 494 which engages a threaded opening at the lower end of spindle 460, a block 488 of rubber or other suitable material affixed to plate 496, and an adapter plate 489 to which head 420 is affixed. Resilient mount 455 permits slight pivoting motion of head 420 away from the vertical when lateral force is applied to precisor 480, but is stiff enough to quickly damp any pivoting motion of head 420 which may result from acceleration and deceleration of head 420 as it is moved in the X- and Y- directions by servos 402 and 404. Other configurations of resilient mount 455 are possible, though the arrangement illustrated in FIG. 4C has been found effective to permit lateral movement at the lower end of the precisor of up to 0.025″ with hysteresis within 0.001″ when using stiff rubber composite bonded to plate 496. FIG. 4F is a partially cut-away front elevation view showing in more detail internal structure of a resilient mount 455.
  • As shown in FIGS. 4A and 4C, [0055] head 420 is in a bottomed-out position with precisor 480 positioned over an IC package. A nozzle (not shown in FIGS. 4A and 4C) within nozzle body 475 carries a rubber cup at its lower end which is in contact with the upper surface of the IC package. Referring to FIG. 4E, the nozzle 484 is resiliently biased downwardly by a spring or other suitable means (not shown) so that, when head 420 is raised from the IC package 486, the nozzle 484 and cup 482 extend downwardly below the bottom portion of precisor 480. Suction applied to nozzle 484 via fitting 485 causes nozzle 484 to retract upwardly against the spring force when cup 482 is in contact with the upper surface of an IC package. While this lifting force is in general not sufficient to pull an IC from a LIF socket, it is in general enough to pick an IC from a tray and to retain the IC on the cup during transport of the IC from a tray to a position above a socket on a BIB.
  • FIG. 5A is a partially cut-away elevation view of a packaged-IC handling apparatus in accordance with the invention, similar to FIG. 4A. FIG. 5B is a partially cut-away right-side view of the apparatus of FIG. 5A. [0056] Gripper fingers 470 are shown in the open position in FIG. 4A and in the closed position in FIGS. 5A and 5B. With precisor 480 bottomed against an IC package as in FIGS. 5A-5B and with gripper fingers closed, the end portions of gripper fingers 470 engage the IC package so that upward movement of head 420 provides the force needed to extract the IC package from a LIF socket. Also visible in FIGS. 5A-5B are nozzle 484, cup 482, and a spring 478 which biases nozzle 484 and cup 482 downwardly.
  • FIG. 6A shows an enlarged elevation view of the portions of [0057] head 420 which engage socket 440 and an IC package 600. FIG. 6B is an enlarged right side view of the arrangement of FIG. 6A. Precisor 480 fits snugly over the outer walls of socket 440 and the upper portion of package 600, while cup 482 passes through an opening in precisor 480 to engage the upper surface of package 600.
  • FIG. 7 shows an enlarged right side view similar to the view of FIG. 6B except that [0058] gripper fingers 470 are open and head 420 is raised relative to socket 440. Precisor 480 is disengaged from socket 440. Nozzle 484 is extended and cup 482 is in contact with the upper surface of IC package 600.
  • FIG. 8A is an enlarged, top view of [0059] precisor block 480. FIG. 8B is a sectional view taken along line 8B-8B of FIG. 8A. FIG. 8C is a sectional view taken along line 8C-8C of FIG. 8A. A central bore 805 is provided through which nozzle 484 extends. Bores 810 and 815 each receive a screw for affixing precisor block 480 to the lower surface of nozzle body 475. At each corner of precisor block 480 is a leg having chamfered inner surfaces: leg 820 has chamfered inner surfaces 840 and 845, leg 825 has chamfered inner surfaces 850 and 855, leg 830 has chamfered inner surfaces one of which is visible at 860, and leg 835 similarly has chamfered inner surfaces. FIG. 9A shows a detail of the chamfered surface 855 of leg 825.
  • Together, [0060] legs 820, 825, 830 and 835 serve as a socket precising feature to precise head 420 relative to a socket. When lowered over a socket, as shown for example in FIGS. 6A and 6B, the chamfered inner surfaces of precisor block 480 serve to apply a lateral force to deflect the lower end of head 420 so that precisor block 480 can seat itself on the socket as head 420 is lowered. Resilient mount 455 allows modest deflection of the lower end of head 420 as described above to produce reliable and precise positioning of precisor block 480 on the socket. The angle of chamfer 858 is a matter of design choice, dependent on dimensions of the particular IC package type to be handled, socket type to be used, socket positioning tolerances in the BIB and other such factors. In one design a chamfer angle of 200 proved effective.
  • [0061] Precisor block 480 also has a flat interior surface 860, visible in FIGS. 8B, 8C and 9B, with mutually-parallel, opposed ridges 865 and 870 extending downwardly at its sides.
  • Ridges [0062] 865 and 870 have chamfered surfaces such as chamfered surface 875 of ridge 870 shown in FIG. 9B. Surface 860 and ridges 865 and 870 serve as a chip precising feature to position an IC package accurately relative to precisor block 480. That is, the dimensions of surface 860, the spacing between ridges 865 and 870, and the angle of the chamfered edges of ridges 865 and 870 are designed to engage the upper portion of the IC package to assure precise and repeatable positioning of the IC package relative to precisor block 480. While the chamfer angle is a matter of design choice for each IC package, an angle of 25° was found effective for one type of memory package. The height of ridges 865 and 870 is determined so as not to interfere with or short out the connector pins of an IC package contained in the chip precising feature. To minimize the chance of shorting connector pins, all or critical portions of precisor block 480 may be coated with or fabricated in whole or in part of a suitable insulative material; an example is described below with reference to FIGS. 13A-13C, 14A-14C and 15A-15D.
  • Thus, [0063] precisor block 480 serves a dual precising function: (1) alignment of the IC package with the precisor block, and (2) alignment of the IC package with the socket. As head 420 is positioned over and lowered toward a packaged IC sitting upright in a tray, vacuum is applied to nozzle 484 via fitting 485. As cup 482 contacts the upper central surface region of the IC package, the vacuum causes cup 482 to adhere to the IC package. As vacuum continues, the force of spring 478 is overcome, nozzle 484 retracts upwardly into nozzle body 475, and the IC package is drawn into the well defined by surface 860 and ridges 865 and 870. If lengthwise positioning of the IC package between ridges 865 and 870 is adequate, no further precising of the package relative to precisor block 480 is needed. If not adequate, gripper fingers 470 can be temporarily closed to assure lengthwise positioning. Gripper fingers 470 can also be closed during transport from tray to BIB, or vice versa, if needed to prevent the IC from separating from cup 482 due to bumps or jolts which may occur during transport.
  • Once the IC package is accurately aligned with [0064] precisor block 480, head 420 is moved into position over a socket and lowered until precisor block 480 is seated on the socket. As head 420 is lowered, the IC package is firmly pressed into the socket by surface 860 and is maintained in lateral position relative to the socket by ridges 865 and 870 during insertion.
  • FIG. 10A shows a further elevation view of [0065] head 420. FIG. 10B is a left side view and FIG. 10D is a top view of the arrangement of FIG. 10A. FIG. 10C is a sectional view taken along lines 10C-10C of FIG. 10B and showing internal elements of nozzle body 475. Located between nozzle body 475 and gripper actuator body 465 is a spacer block which has a passage providing pneumatic communication between fitting 485 and nozzle 484. Gripper fingers 470 are attached to gripper bars 1010 and 1015 which are in turn attached to actuator arms 1020 and 1025 extending from gripper actuator body 465. Gripper fingers 470 are closed by the gripper actuator on command from controller 415.
  • FIG. 11A is an elevation view of a [0066] gripper finger 470. FIGS. 11B, 11C and 11D are respectively top, bottom and side views of the gripper finger of FIG. 11A. A mounting portion 1105 has bores 3110 and 1115 for affixing the gripper finger to one of gripper bars 1010 or 1015. An arm portion 1120 extends from mounting portion 1105, culminating in a finger portion which is narrowed so as not to touch the contact pins of an IC package when the gripper fingers are closed. Arm portion 1120 is angled and radiused as indicated at 1130 and 1135, to prevent interference of gripper fingers 470 with adjacent sockets when precisor 480 is seated on a socket of a BIB. The precise dimensions are a matter of design choice dependent on the type of socket, type of IC package and socket-to-socket spacing on the BIB.
  • FIG. 12 is a schematic illustration of one possible use of handling apparatus in accordance with the invention. [0067] Apparatus 400 is operated under the direction of controller 415 to pick a packaged IC 1205 from a bin of a source tray 1210 and insert the packaged IC into a socket of a BIB 1215. This sequence is repeated to insert packaged IC's from bins of tray 1210 into any number of sockets on BIB 1215. When loaded with IC's, BIB 1215 is subjected to testing, burn-in and/or other conventional processes. If desired, a map of the BIB sockets indicating which of the IC's have “passed” and which have “failed” is supplied to controller 1215. After completion of these processes, apparatus 400 is operated under the direction of controller 415 to pick each of the packaged IC from BIB 1215 and to place it in a bin of an output tray. For example, the “passing” IC's are placed in respective bins of a “pass” tray 1220 and the “failing” IC's are placed in respective bins of a “fail” tray 1225. Other binning criteria may of course. be used.
  • Following are sequences of steps which can be programmed into [0068] controller 415 to perform the specified activities with handler apparatus in accordance with the invention.
  • Picking an IC from a Tray [0069]
  • a. [0070] Operate X-servo 402 and Y-servo 404 to approximately center the precisor block 480 over a selected tray location, with grippers 470 open.
  • b. Operate Z-[0071] servo 406 to move handler head 420 downwardly to a predetermined height above the tray.
  • c. Turn on vacuum to [0072] nozzle 484, causing the packaged IC in the selected tray location to be pulled up into the chip precisor portion of precisor block 480. (Because of the inherent delay in achieving vacuum at cup 482 after turning on vacuum to nozzle 484, vacuum may be turned on earlier such as when beginning to move handler head 420 downwardly. Proper timing of the commands can produce vacuum sufficient for cup 482 to engage the upper surface of the IC package just as it reached the upper surface of the IC package. Turning on vacuum too early may cause the chip to be pulled too rapidly into the chip precising feature, which could cause loss of vacuum seal between cup 482 and the upper surface of the IC.)
  • d. If a chip was picked up from the tray, the grippers may be closed (optional). While generally not required, closing the grippers can serve to precise the packaged IC in the chip precisor portion of [0073] precisor block 480 and can prevent inadvertent dropping of the IC while in transit to a selected drop-off location.
  • Inserting an IC into a Socket [0074]
  • a. [0075] Operate X-servo 402 and Y-servo 404 to approximately center the precisor block 480 over a selected socket
  • b. Open grippers [0076] 470 (if not already open). The IC package will be held in its seated position in the chip precising portion of precisor block 480 by vacuum in nozzle 484.
  • b. Operate Z-[0077] servo 406 to move handler head 420 downwardly so that precisor block 480 seats itself on the selected socket. (Resilient mount 455 allows lateral movement of precisor block 480 to compensate for small mis-alignments of head 420 with the socket.) The packaged IC will be aligned with and forced into the socket as precisor block 480 seats itself on the socket.
  • c. Monitor hit [0078] detector 495 for indication that precisor block 480 is seated on the socket. (The function of hit detector 495 is two-fold: positive indication that precisor block 480 has bottomed out against something, and to signal that the Z-servo is to stop downward motion.)
  • d. Stop operation of Z-servo. [0079]
  • e. Turn off vacuum to [0080] nozzle 484, allowing the packaged IC to be released from cup 482. (Optionally, “puff” air pressure is applied to nozzle 484 to assure separation of cup 482 from the packaged IC.)
  • f. Operate Z-servo (piston [0081] 450) to move handler head 420 upwardly so that precisor block 480 separates from the selected socket and is raised to a height suitable for travel to another location.
  • Extracting an IC from a Socket [0082]
  • a. [0083] Operate X-servo 402 and Y-servo 404 to approximately center the precisor block 480 over a selected socket, with grippers 470 open.
  • b. Operate Z-[0084] servo 406 to move handler head 420 downwardly so that precisor block 480 seats itself on the selected socket. (Resilient mount 455 allows lateral movement of precisor block 480 to compensate for small mis-alignments of head 420 with the socket.)
  • c. Monitor hit [0085] detector 495 for indication that precisor block 480 is seated on the socket. (The function of hit detector 495 is two-fold: positive indication that precisor block 480 has bottomed out against something, and to signal that the Z-servo is to stop downward motion.)
  • d. Stop operation of Z-servo. [0086]
  • e. [0087] Close grippers 470. (This step can be optionally performed as soon as hit detector 495 indicates seating of precisor 484 on the socket.)
  • f. Turn on vacuum to [0088] nozzle 484. Vacuum build-up indicates that an IC package is present in precisor block 480. Failure to build up vacuum indicates that the socket is empty. (Because of the inherent delay in achieving vacuum at cup 482 after turning on vacuum to nozzle 484, vacuum may be turned on earlier such as when beginning to move handler head 420 downwardly. Correct timing of the commands will produce vacuum sufficient to indicate presence of the IC package when cup 482 engages the upper surface of the IC package.)
  • g. Operate Z-servo (piston [0089] 450) to move handler head 420 upwardly and thus extract the IC package from the socket. Continued vacuum in nozzle 484 assures that the IC package is seated in the chip precising portion of precisor block 480.
  • h. When the component handler has reached the travel position height the grippers can (optionally) be opened. The IC package will then be fully seated in the chip precising portion of [0090] precisor block 480.
  • Dropping an IC into a Tray [0091]
  • a. [0092] Operate X-servo 402 and Y-servo 404 to approximately center the precisor block 480 over a selected tray location.
  • b. Open grippers [0093] 470 (optional, not required if already open).
  • c. Operate Z-[0094] servo 406 to move handler head 420 downwardly to a predetermined height above the tray. (Optional, depending on whether needed to assure that the packaged IC will be safely deposited in an acceptable position in the selected tray location.)
  • d. Turn off vacuum to [0095] nozzle 484, allowing the packaged IC to be dropped from precisor block 480 into the selected tray location. (Optionally, “puff” air pressure can be applied to nozzle 484 to speed release of packaged IC from cup 482 and to impart a slight downward force to the packaged IC.)
  • FIG. 13A is a bottom view of a [0096] socket preciser portion 1300 of a two-piece preciser block in accordance with the invention. FIG. 13B is a sectional view taken along line 13B-13B of FIG. 13A, and FIG. 13C is a sectional view taken along line 13C-13C of FIG. 13A. In this example, socket preciser 1300 has chamfered preciser legs 1305, 1310, 1315 and 1320. Corners 1325 and 1330 are without preciser legs in order to avoid interference with components mounted adjacent the sockets on a particular BIB. Legs 1305-1320 are arranged to assure precising relative to the socket without touching the adjacent BIB components. A lengthwise groove 1335 receives a separately-fabricated chip preciser insert 1400 as described below.
  • FIG. 14A, 14B and [0097] 14C are respective bottom, end and right-side views of a chip preciser insert 1400. While socket preciser 1300 may be fabricated of metal or other suitable material, chip preciser insert 1400 is in this embodiment of a non-conductive, synthetic material, such as polyurethane, so as to avoid shorting pins of an IC package being handled. As illustrated in FIGS. 14A-14C, chip preciser insert 1400 has a raised, longitudinal boss 1405 which is dimensioned to fit within groove 1335 of socket preciser portion 1300. As initially fabricated, chip preciser portion 1400 does not have chip-precising ridges. Instead, a surface 1410 is provided into which the chip precising feature is milled after assembly of portions 1300 and 1400. That is, boss 1405 is coated with a suitable adhesive and glued into position within groove 1335. After curing, surface 1410 is milled to define the chip-precising feature of an assembled preciser block 1500.
  • FIG. 15A is a bottom view of a completed two-[0098] piece preciser block 1500. FIG. 15B is a sectional view taken along line 15B-15B of FIG. 15A, FIG. 15C is a sectional view taken along line 15C-15C of FIG. 15A, and FIG. 15D is a top view of the two-piece preciser block of FIG. 15A. As completed, preciser block 1500 has a pair of mutually- parallel ridges 1505 and 1510 and a milled surface 1515 which together define the chip precising feature. Ridges 1505 and 1510 and surface 1515 are advantageously milled after assembly of the two-piece preciser block to assure accurate positioning of the chip precising feature relative to the socket precising feature, though other fabrication techniques could be used if desired.
  • The foregoing description is intended as illustrative of the present invention and are not intended to limit the scope of the invention. It will be recognized that the drawing figures are not drawn to scale but are structured to illustrate the principles of the invention. Details not required for an understanding of the inventive aspects of the disclosure are omitted from the drawings for clarity of explanation. [0099]
  • The apparatus described is designed to make it easy to make a tooling change. For example, various sizes and types of IC packages can be accommodated merely by installing a [0100] precisor block 480 having dimensions suitable to the IC package to be handled, and suitably reprogramming the controller 415 with information about BIB layout, travel distances, and the like. There is no need to replace the handler head 420 or the gripper fingers 470 when changing the equipment to handle IC packages of a different size.
  • Those of skill in the art will recognize that many modifications can be made within the spirit and scope of the invention as defined in the claims which follow. [0101]

Claims (19)

1. Apparatus for handling packaged integrated circuits, comprising:
a. a chip precisor feature (860, 865, 870) for receiving an IC package;
b. a socket precisor feature (820, 825, 830, 835) for receiving a socket in a predetermined alignment relative to the chip precisor feature; and
c. a releasable chip retainer (842, 844/870) for retaining an IC package within the chip precisor feature.
2. The apparatus of
claim 1
, wherein the chip precisor feature comprises a well defined by a surface (860) and a pair of opposed ridges (865, 870) for capturing an IC package in a repeatable position relative to the socket precisor feature.
3. The apparatus of
claim 1
, wherein the socket precisor feature comprises at least one chamfered wall (840, 845, 850, 855, 860) for aligning the socket precisor feature with a socket as a socket is received in the socket precisor feature.
4. The apparatus of
claim 1
, wherein the releasable chip retainer comprises a member (842, 844) having an orifice to which vacuum is applied to retain an IC package against the member.
5. The apparatus of
claim 4
, wherein the member (842, 844) is mounted for movement relative to the chip precisor feature so that, when vacuum is applied to retain an IC package against the member, the IC package is displaced toward the chip precisor feature.
6. The apparatus of
claim 1
, wherein the releasable chip retainer comprises at least one displaceable gripper finger 470 for retaining an IC package in position relative to the chip precisor feature.
7. The apparatus of
claim 1
, wherein the chip precisor feature and the socket precisor feature comprise features of a handler head (420) and wherein the apparatus further comprises at least one servo (402, 404, 406) for displacing the handler head relative to a socket (440).
8. The apparatus of
claim 7
, further comprising a flexible mount (455) for coupling the handler head to said at least one servo such that the socket precisor feature is able to align itself to receive a socket as the head is displaced toward the socket.
9. The apparatus of
claim 1
, further comprising at least one active member (870) for aligning an IC package within the chip precising feature.
10. A method of inserting a packaged IC into a socket, comprising:
a. centering a precisor (480) relative to an expected location of a packaged integrated circuit;
b. moving the precisor to a predetermined height relative to the expected location;
c. applying vacuum to a nozzle (484), causing a packaged IC to be pulled into a chip precising feature of the precisor;
d. centering the precisor relative to a socket; and
e. moving the precisor into a seated position on the socket in which the packaged IC is aligned with and inserted into the socket.
11. The method of
claim 10
, further comprising the steps of removing vacuum from the nozzle and moving the precisor away from the socket.
12. The method of
claim 10
, further comprising the step of detecting when the precisor is seated on the socket.
13. The method of
claim 10
, further comprising the step of closing a gripper to move the packaged IC into an aligned position within the chip precising feature.
14. A method of extracting a packaged IC from a socket, comprising
a. positioning a precisor relative to a socket containing a packaged IC;
b. moving the precisor into a seated position on the socket in which the packaged IC is seated in a chip precising feature of the precisor;
c. closing a gripper to retain the packaged IC within the chip precising feature; and
d. moving the precisor away from the seated position while retaining the packaged IC within the chip precising feature.
15. The method of
claim 14
, further comprising the step of detecting when the precisor is seated on the socket.
16. The method of
claim 14
, further comprising the step of applying vacuum to an orifice in communication with the packaged IC to verify presence of a packaged IC within the chip precising feature.
17. The method of
claim 14
, further comprising the step of applying vacuum to an orifice in communication with the packaged IC to retain the packaged IC within the chip precising feature.
18. The method of
claim 17
, further comprising the step of opening the gripper after applying vacuum to retain the packaged IC within the chip precising feature.
19. The method of
claim 18
, further comprising the steps of: positioning the precisor over a location where the packaged IC is to be deposited; and removing vacuum to allow the packaged IC to separate from the chip precising feature.
US09/893,879 1996-06-05 2001-06-29 Methods and apparatus for handling packaged IC's Abandoned US20010042305A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/893,879 US20010042305A1 (en) 1996-06-05 2001-06-29 Methods and apparatus for handling packaged IC's

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/664,099 US6279225B1 (en) 1996-06-05 1996-06-05 Apparatus for handling packaged IC's
US09/893,879 US20010042305A1 (en) 1996-06-05 2001-06-29 Methods and apparatus for handling packaged IC's

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/664,099 Division US6279225B1 (en) 1996-06-05 1996-06-05 Apparatus for handling packaged IC's

Publications (1)

Publication Number Publication Date
US20010042305A1 true US20010042305A1 (en) 2001-11-22

Family

ID=24664523

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/664,099 Expired - Fee Related US6279225B1 (en) 1996-06-05 1996-06-05 Apparatus for handling packaged IC's
US09/893,879 Abandoned US20010042305A1 (en) 1996-06-05 2001-06-29 Methods and apparatus for handling packaged IC's

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/664,099 Expired - Fee Related US6279225B1 (en) 1996-06-05 1996-06-05 Apparatus for handling packaged IC's

Country Status (1)

Country Link
US (2) US6279225B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100510501B1 (en) * 2002-12-05 2005-08-26 삼성전자주식회사 Test kit for semiconductor package and test method thereof
KR100640634B1 (en) * 2005-02-04 2006-10-31 삼성전자주식회사 Testing kit of semiconductor package and method for testing semiconductor package using the same
US10212867B2 (en) * 2017-01-09 2019-02-19 Boe Technology Group Co., Ltd. Transfer apparatus and transfer method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449531B1 (en) * 2000-08-25 2002-09-10 Advanced Micro Devices, Inc. System for batching integrated circuits in trays
DE10358691B4 (en) * 2003-12-15 2012-06-21 Qimonda Ag A method of loading a socket device with a corresponding semiconductor device
DE10359648B4 (en) * 2003-12-18 2013-05-16 Qimonda Ag A socket device for use in testing semiconductor devices, and an apparatus and method for loading a socket device with a corresponding semiconductor device
US7188405B2 (en) * 2004-06-09 2007-03-13 Shiun Hwang-Jyh Pin removal structure used in printed circuit board drilling machine
DE102005046736B4 (en) * 2005-09-29 2007-09-06 Qimonda Ag Device and method for loading a socket or adapter device with a corresponding semiconductor device
US7202693B1 (en) 2006-03-01 2007-04-10 Intel Corporation Combined pick, place, and press apparatus
US7830776B2 (en) * 2006-11-27 2010-11-09 Leap Electronic Co., Ltd. Device for positioning, transferring and recording integrated circuits
US7503771B2 (en) * 2007-07-23 2009-03-17 Hon Hai Precision Ind. Co., Ltd. Socket having fastening mechanism for receiving sensor
US7836583B2 (en) * 2007-12-28 2010-11-23 Hitachi Global Storage Technologies, Netherlands, B.V. Integrated circuit dismounter
US20140013576A1 (en) * 2012-07-11 2014-01-16 Fujitsu Network Communications, Inc. Press Fit Tool Assembly for Circuit Board Connector
EP3057392B1 (en) * 2013-10-11 2020-07-08 FUJI Corporation Suction nozzle and component mounting apparatus
US9685354B2 (en) * 2014-04-03 2017-06-20 Xintec Inc. Separation apparatus and a method for separating a cap layer from a chip package by means of the separation apparatus
AU2016219668B2 (en) * 2015-08-26 2021-10-21 Matthew Graeme Dridan A vacuum lift attachment
US10566134B2 (en) * 2017-06-30 2020-02-18 Intel Corporation Apparatus, system, and method for handling magnetic devices

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896533A (en) * 1974-07-10 1975-07-29 Amp Inc Tool for inserting and removing circuit components
US4392301A (en) * 1981-06-01 1983-07-12 Western Electric Company, Inc. Device for inserting and removing circuit modules with multiple leads
US4615110A (en) * 1985-02-15 1986-10-07 E. I. Du Pont De Nemours And Company Hand tool for inserting and withdrawing a pin grid into and from a socket
US4631815A (en) * 1985-12-18 1986-12-30 Amp Incorporated Pick-up head
JPH02168699A (en) * 1988-12-22 1990-06-28 Toshiba Corp Apparatus for installing electronic component
JPH03157992A (en) * 1989-11-16 1991-07-05 Hitachi Ltd Tab mounting equipment, tab mounting method and tray for tab mounting
US5046237A (en) * 1990-08-21 1991-09-10 Texas Instruments Incorporated Extractor tool
JPH04321300A (en) * 1991-01-14 1992-11-11 Tescon:Kk Printed board fixing device of inspecting device
JP3013480B2 (en) * 1991-03-12 2000-02-28 安藤電気株式会社 IC socket IC contact mechanism
US5317803A (en) * 1991-05-30 1994-06-07 Sierra Research And Technology, Inc. Method of soldering an integrated circuit
US5224263A (en) * 1991-06-28 1993-07-06 Digital Equipment Corporation Gentle package extraction tool and method
JPH06224595A (en) * 1993-01-19 1994-08-12 Juki Corp Head device for sucking and loading component
US5314223A (en) * 1993-02-26 1994-05-24 The Whitaker Corporation Vacuum placement system and method, and tool for use therein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100510501B1 (en) * 2002-12-05 2005-08-26 삼성전자주식회사 Test kit for semiconductor package and test method thereof
KR100640634B1 (en) * 2005-02-04 2006-10-31 삼성전자주식회사 Testing kit of semiconductor package and method for testing semiconductor package using the same
US10212867B2 (en) * 2017-01-09 2019-02-19 Boe Technology Group Co., Ltd. Transfer apparatus and transfer method

Also Published As

Publication number Publication date
US6279225B1 (en) 2001-08-28

Similar Documents

Publication Publication Date Title
US6279225B1 (en) Apparatus for handling packaged IC's
CN111033284B (en) Automated test system with orthogonal robots
CN111033285B (en) Automated testing system using robotics
EP0889687A2 (en) Misinsert sensing in pick and place tooling
CN111033402B (en) Calibration procedure for an automated test system
US6150828A (en) Method and apparatus for automatically positioning electronic dice with component packages
US4593820A (en) Robotic, in-transit, device tester/sorter
US6184675B1 (en) Horizontal transfer test handler
US10725091B2 (en) Automated test system having multiple stages
US5290134A (en) Pick and place for automatic test handler
US4678073A (en) Apparatus and methods for handling bulk arrays of articles
US5150797A (en) IC sorting and receiving apparatus and method
US5894217A (en) Test handler having turn table
US20120133371A1 (en) Method and System for Assembling a Battery Module
US6636060B1 (en) Insert for electric devices testing apparatus
US6467824B2 (en) Floating seal pick and place system and unit therefor
JPS5856388A (en) Device for automatically disposing small electronic part
US5920192A (en) Integrated circuit transporting apparatus including a guide with an integrated circuit positioning function
US6209194B1 (en) Apparatus for loading and unloading semiconductor device packages using servo motors
KR19980024798A (en) Control system for use with semiconductor device transport and handling devices
US20080252317A1 (en) Apparatus for testing system-in-package devices
KR102450768B1 (en) The handler for the device test
JP5137965B2 (en) Conveying device and electronic component handling device
KR100901983B1 (en) Apparatus of transferring a test tray and Test Handler using the same
JP2607752Y2 (en) Pick and place device for automatic test handler

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION