US20010039686A1 - Bridge cable fixing structure - Google Patents

Bridge cable fixing structure Download PDF

Info

Publication number
US20010039686A1
US20010039686A1 US09/366,705 US36670599A US2001039686A1 US 20010039686 A1 US20010039686 A1 US 20010039686A1 US 36670599 A US36670599 A US 36670599A US 2001039686 A1 US2001039686 A1 US 2001039686A1
Authority
US
United States
Prior art keywords
fixing
fixing plate
press
grips
grip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/366,705
Other versions
US6421864B2 (en
Inventor
Hisashi Daiguji
Makoto Tomimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/366,705 priority Critical patent/US6421864B2/en
Publication of US20010039686A1 publication Critical patent/US20010039686A1/en
Application granted granted Critical
Publication of US6421864B2 publication Critical patent/US6421864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/14Towers; Anchors ; Connection of cables to bridge parts; Saddle supports
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/12Anchoring devices
    • E04C5/125Anchoring devices the tensile members are profiled to ensure the anchorage, e.g. when provided with screw-thread, bulges, corrugations

Definitions

  • This invention relates to a structure for fixing a terminal end of a cable for supporting a bridge beam of a skew bridge or a cable for supporting a hanging structure, and more particularly, an improvement about a press fixing grip system in which a press fixing grip is fixed to a terminal end of the PC steel twisted wire constituting a cable and the press fixing grip is engaged with and fixed to a fixing plate fixed to an inner side of an anchor socket.
  • Cables 3 for supporting a bridge beam 11 in the skew bridge shown in FIG. 1 are made such that a desired number of bundles of the PC steel twisted wires are bundled and as a system employed for fixing the terminal ends of the wires nowadays, there is provided a press fixing grip system.
  • the press fixing grip system is constructed such that a fixing plate 2 ′ is fixed inside the anchor socket 1 ′ as shown in FIG. 8 and the end part of the press fixing grip 5 ′ fixed to an outer side of the terminal end of each of the PC steel twisted wires 4 ′ is engaged with an edge of each of insertion holes passed through and opened at the fixing plate 2 ′ and then fixed. Then, the PC steel twisted wires inserted into and passed through the fixing plate except the central part thereof are inclined in a slant manner and fixed in such a way that they may be dispersed from the central part toward an outside part in a radial direction.
  • the aforesaid related art structure is a structure in which a tensile load of the cable is supported by the fixing plate and a press fixing grip press fixed and fixed to an outside part of a terminal end of the PC steel twisted wire and further epoxy resin (APS compound) 8 is fed into a space between the press fixing grips arranged outside the fixing plate to endure against a varying stress caused by an active load.
  • the fixing part capable of being endured against a tensile load is defined as a fixing part having a range extending up to the end part of the press fixing grip engaged with the fixing plate, resulting in that a thickness T′ at the fixing part is formed thick.
  • This invention has been invented in reference to the problem of the related art described above and it is an object of the present invention to provide a bridge cable fixing structure in which an outer diameter and a thickness of a fixing plate for accepting a tensile load of the cable can be reduced and a size of the anchor socket can be decreased.
  • a technical means applied by the present invention in order to solve the aforesaid problem consists in a bridge cable fixing structure in which some press fixing grips are fixed to terminal ends of PC steel twisted wires and the side ends of the press fixing grips are engaged with the fixing plate inside an anchor socket, wherein insertion holes of about same diameter into which PC steel twisted wires are inserted are opened at one side of said fixing plate and the press fixing grip engaging holes to which the outer circumferential surfaces of the press fixing grips are closely contacted on axis lines of said insertion holes are communicated with and opened at the other side of said fixing plate, and the side ends and the outer circumferential surfaces of the press fixing grips are closely contacted to and engaged with the fixing plate.
  • a large number of insertion holes (fixing grip engaging holes on co-axial lines) opened at the fixing plate are arranged such that their axes are set in parallel with a center of the fixing plate and equally spaced apart around the fixing plate in a radial direction.
  • the press fixing grip engaging holes at the fixing plate are opened at least a half of or more than half of the thickness of the fixing plate.
  • the aforesaid fixing plate may be applied as either a separate structure which is separate from the anchor socket or an integral structure which is integral with the socket.
  • the fixing grips inserted into the fixing grip engaging holes formed at the compression side are pushed with the hole circumferential wall surfaces of the fixing grip engaging holes so as to prevent the fixing grips from being pulled out of the PC steel twisted wires and their diameters from being expanded (bulged out).
  • the fixing grips are integrally assembled with the fixing plate.
  • the fixing grips can be integrally assembled with the fixing plate under the aforesaid configuration and each of the insertion holes is opened in parallel with the center of the fixing plate, resulting in that a diameter of the fixing plate can be made small as compared with that of the related art structure.
  • FIG. 1 is a front elevational view for showing one example of a bridge structure.
  • FIG. 2 is a front elevational view with a part being broken away for showing one preferred embodiment of the present invention.
  • FIG. 3 is an enlarged side elevational view for showing a fixing plate (section).
  • FIG. 4 is a sectional view taken along a line ( 4 )-( 4 ) of FIG. 3.
  • FIG. 5 is an illustrative view for showing a relation between a fixing plate and a press fixing grip.
  • FIG. 6 is an illustration for showing a deformation of a fixing plate (a fixing section) when a tensile force is applied to it.
  • FIG. 7 is a schematic view for showing another preferred embodiment of a fixing structure of the present invention.
  • FIG. 8 is a sectional view for showing the structure of the related art.
  • FIG. 2 shows a structure in which a fixing plate is fixed to an anchor socket and some PC steel twisted wires are fixed to the fixing plate, as shown in drawing, wherein reference numeral 1 denotes an anchor socket, its outer shape is constituted to have a stepped cylindrical shape, its inner side is formed with a tapered hole 1 a and a linear cylindrical hole 1 b continuous with its large diameter side, a disc-shaped fixing plate 2 is fitted to and fixed to the linear cylindrical hole 1 b and then cables 3 having some PC steel twisted wires bundled in parallel from each other are engaged with and fixed to the fixing plate 2 .
  • reference numeral 1 denotes an anchor socket
  • its outer shape is constituted to have a stepped cylindrical shape
  • its inner side is formed with a tapered hole 1 a and a linear cylindrical hole 1 b continuous with its large diameter side
  • a disc-shaped fixing plate 2 is fitted to and fixed to the linear cylindrical hole 1 b and then cables 3 having some PC steel twisted wires bundled in parallel from each other are engaged with and
  • Engaging and fixing of some cables 3 against the fixing plate 2 are carried out such that a press fixing grip 5 is pressed and fixed to an outside part of a terminal end of each of the PC steel twisted wires 4 constituting the cables 3 , each of the press fixing grips 5 is engaged with and integrally formed with the fixing plate 2 .
  • the aforesaid fixing plate 2 is a disc having a predetermined thickness, wherein insertion holes 6 having a substantial same diameter as an outer diameter of each of the PC steel twisted wires 4 constituting the cables 3 are opened or formed in parallel with a center of the fixing plate 2 at one side thereof (a tensile side), the other side of the fixing plate 2 (a compression side) is formed with press fixing grip engaging hole 7 positioned on an axial line of the insertion hole 6 and having a substantial same diameter as an outer diameter of the press fixing grip 5 press fitted to a terminal end of the PC steel twisted wire 4 , and, a depth (a length) of the press fixing grip engaging hole 7 is at least a half of or more than half of thickness of the fixing plate 2 , and the insertion hole 6 and the press fixing grip engaging hole 7 are opened to be communicated to each other.
  • the press fixing grip 5 to be pressed and fixed to an outside part of the terminal end of the PC steel twisted wire 4 may be a well-known one having a smooth inner surface, although it may also be applicable that a thread 5 a is threadably formed at an inner surface of about half length of an entire length of the grip as shown in FIG. 4, sintered and the remaining half of it is formed with a smooth flat surface 5 b as found in the related art.
  • This press fixing grip 5 can be adapted for a pulling action of high tension force (a tensile load) at the section where the thread 5 a is formed and it can be sufficiently applied to the galvanized PC steel twisted wires of which slip was confirmed in the related art press fixing grip.
  • the pressing and fitting machine is operated such that the PC steel twisted wire is inserted into a center of die, the press fixing grip is fixed and installed to the PC steel twisted wire passed through the die, an axial end of the press fixing grip is pushed into the die with a head connected to and fixed to a piston rod of the hydraulic cylinder through a pushing rod, thereby an outer diameter of the press fixing grip is metered with an inner diameter of the die and fastened, thereby the press fixing grip is integrally press fitted and fixed to the outside part of the PC steel twisted wire.
  • FIGS. 5 and 6 a relation between the aforesaid fixing plate 2 and the press fixing grip 5 for the PC steel twisted wires 4 will be described.
  • the drawings illustrate one clearance between the anchor socket 1 and the fixing plate 2 and the other clearance between the fixing plate 2 and the press fixing grip 5 , although actually each of the members is closely contacted from each other.
  • FIG. 5 shows a state in which the fixing plate 2 is fitted to and fixed to the linear cylindrical hole 1 b of the anchor socket 1 , the PC steel twisted wires 4 are inserted into the insertion holes 6 of the fixing plate 2 and the press fixing grips 5 fixed to the outside parts of the terminal ends of the PC steel twisted wires 4 are fixed and closely contacted with the press fixing grip engaging holes 7 .
  • the fixing plate 2 may be integrally formed with the socket.
  • a fixing plate 9 ′ is integrally formed with a fixing part 9 and then a fatigue improving socket 10 is connected to and integrally assembled with the fixing part 9 through a threaded structure.
  • Arrangement of the structure shown in FIG. 7 enables a manufacturing cost to be reduced and its manufacturing property to be improved.
  • the fixing structure for the bridge cable of the present invention is made such that the press fixing grip and the fixing plate can be integrally assembled, thereby a thickness of the fixing part as well as its diameter can be reduced by about 20% as compared with those of the related art structure, and its converted weight can be reduced by about 30%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

An object of the present invention is to provide a bridge cable fixing structure in which an outer diameter and a thickness of the fixing plate for use in accepting a tensile load of the cable can be reduced and an anchor socket can be reduced. A solving means in accordance with the present invention consists in the bridge cable fixing structure in which the press fixing grips are fixed to the terminal ends of the PC steel twisted wires and the side ends of the press fixing grips are engaged with the fixing plate inside the anchor socket, wherein one side of the fixing plate is formed with insertion holes of about same diameter from each other into which the PC steel twisted wires are inserted, at the other side of it are opened and communicated press fixing grip engaging holes to which outer circumferential surfaces of the press fixing grips are closely contacted on axial lines of the insertion holes and then the side ends and the outer circumferential surfaces of the press fixing grips are closely contacted with and engaged with the fixing plate.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • This invention relates to a structure for fixing a terminal end of a cable for supporting a bridge beam of a skew bridge or a cable for supporting a hanging structure, and more particularly, an improvement about a press fixing grip system in which a press fixing grip is fixed to a terminal end of the PC steel twisted wire constituting a cable and the press fixing grip is engaged with and fixed to a fixing plate fixed to an inner side of an anchor socket. [0002]
  • 2. Description of the Related Art [0003]
  • [0004] Cables 3 for supporting a bridge beam 11 in the skew bridge shown in FIG. 1 are made such that a desired number of bundles of the PC steel twisted wires are bundled and as a system employed for fixing the terminal ends of the wires nowadays, there is provided a press fixing grip system.
  • The press fixing grip system is constructed such that a [0005] fixing plate 2′ is fixed inside the anchor socket 1′ as shown in FIG. 8 and the end part of the press fixing grip 5′ fixed to an outer side of the terminal end of each of the PC steel twisted wires 4′ is engaged with an edge of each of insertion holes passed through and opened at the fixing plate 2′ and then fixed. Then, the PC steel twisted wires inserted into and passed through the fixing plate except the central part thereof are inclined in a slant manner and fixed in such a way that they may be dispersed from the central part toward an outside part in a radial direction.
  • The aforesaid related art structure is a structure in which a tensile load of the cable is supported by the fixing plate and a press fixing grip press fixed and fixed to an outside part of a terminal end of the PC steel twisted wire and further epoxy resin (APS compound) [0006] 8 is fed into a space between the press fixing grips arranged outside the fixing plate to endure against a varying stress caused by an active load.
  • Accordingly, in this case, the fixing part capable of being endured against a tensile load is defined as a fixing part having a range extending up to the end part of the press fixing grip engaged with the fixing plate, resulting in that a thickness T′ at the fixing part is formed thick. [0007]
  • In addition, since the bundled PC steel twisted wires are fixed in an inclined state in such a way that the press fixing grips are dispersed in a radial direction, a center at an inlet side of the insertion hole and a center at an outlet side of the insertion hole opened at the fixing plate are displaced and then a diameter L′ of the fixing plate is also set to be large. [0008]
  • If a thickness and a diameter of the fixing plate are set to be large, it is naturally required to provide a large-sized anchor socket having the fixing plate installed therein and their sizes may influence against its handling work at site. [0009]
  • This invention has been invented in reference to the problem of the related art described above and it is an object of the present invention to provide a bridge cable fixing structure in which an outer diameter and a thickness of a fixing plate for accepting a tensile load of the cable can be reduced and a size of the anchor socket can be decreased. [0010]
  • SUMMARY OF THE INVENTION
  • A technical means applied by the present invention in order to solve the aforesaid problem consists in a bridge cable fixing structure in which some press fixing grips are fixed to terminal ends of PC steel twisted wires and the side ends of the press fixing grips are engaged with the fixing plate inside an anchor socket, wherein insertion holes of about same diameter into which PC steel twisted wires are inserted are opened at one side of said fixing plate and the press fixing grip engaging holes to which the outer circumferential surfaces of the press fixing grips are closely contacted on axis lines of said insertion holes are communicated with and opened at the other side of said fixing plate, and the side ends and the outer circumferential surfaces of the press fixing grips are closely contacted to and engaged with the fixing plate. [0011]
  • A large number of insertion holes (fixing grip engaging holes on co-axial lines) opened at the fixing plate are arranged such that their axes are set in parallel with a center of the fixing plate and equally spaced apart around the fixing plate in a radial direction. [0012]
  • In addition, the press fixing grip engaging holes at the fixing plate are opened at least a half of or more than half of the thickness of the fixing plate. [0013]
  • Further, the aforesaid fixing plate may be applied as either a separate structure which is separate from the anchor socket or an integral structure which is integral with the socket. [0014]
  • In accordance with the aforesaid means, if the circumferential edge at the side part of the fixing plate where the insertion holes are opened is supported by the anchor socket and a tensile load is applied to the cables, one side where the insertion holes are formed is applied as a tensile side and the other side where the fixing grip engaging holes at the opposite side are opened is applied as a compression side with a center of the thickness of the fixing plate (a neutral axis) being applied as an interface. Then, the fixing grips inserted into the fixing grip engaging holes formed at the compression side are pushed with the hole circumferential wall surfaces of the fixing grip engaging holes so as to prevent the fixing grips from being pulled out of the PC steel twisted wires and their diameters from being expanded (bulged out). With such an arrangement as above, the fixing grips are integrally assembled with the fixing plate. [0015]
  • Accordingly, it can be considered that some fixing grips arranged and fixed to the compression side of the fixing plate have effective sectional area, thereby it becomes possible that a lost amount of section caused by opening the fixing grip engaging holes is restricted to a minimum amount and a thickness of the fixing plate can be made thin as compared with that of the related art structure. [0016]
  • Further, the fixing grips can be integrally assembled with the fixing plate under the aforesaid configuration and each of the insertion holes is opened in parallel with the center of the fixing plate, resulting in that a diameter of the fixing plate can be made small as compared with that of the related art structure.[0017]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a front elevational view for showing one example of a bridge structure. [0018]
  • FIG. 2 is a front elevational view with a part being broken away for showing one preferred embodiment of the present invention. [0019]
  • FIG. 3 is an enlarged side elevational view for showing a fixing plate (section). [0020]
  • FIG. 4 is a sectional view taken along a line ([0021] 4)-(4) of FIG. 3.
  • FIG. 5 is an illustrative view for showing a relation between a fixing plate and a press fixing grip. [0022]
  • FIG. 6 is an illustration for showing a deformation of a fixing plate (a fixing section) when a tensile force is applied to it. [0023]
  • FIG. 7 is a schematic view for showing another preferred embodiment of a fixing structure of the present invention. [0024]
  • FIG. 8 is a sectional view for showing the structure of the related art.[0025]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now to the drawings, some preferred embodiments of the present invention will be described as follows. [0026]
  • FIG. 2 shows a structure in which a fixing plate is fixed to an anchor socket and some PC steel twisted wires are fixed to the fixing plate, as shown in drawing, wherein [0027] reference numeral 1 denotes an anchor socket, its outer shape is constituted to have a stepped cylindrical shape, its inner side is formed with a tapered hole 1 a and a linear cylindrical hole 1 b continuous with its large diameter side, a disc-shaped fixing plate 2 is fitted to and fixed to the linear cylindrical hole 1 b and then cables 3 having some PC steel twisted wires bundled in parallel from each other are engaged with and fixed to the fixing plate 2.
  • Engaging and fixing of some [0028] cables 3 against the fixing plate 2 are carried out such that a press fixing grip 5 is pressed and fixed to an outside part of a terminal end of each of the PC steel twisted wires 4 constituting the cables 3, each of the press fixing grips 5 is engaged with and integrally formed with the fixing plate 2.
  • As shown in FIGS. 3 and 4, the [0029] aforesaid fixing plate 2 is a disc having a predetermined thickness, wherein insertion holes 6 having a substantial same diameter as an outer diameter of each of the PC steel twisted wires 4 constituting the cables 3 are opened or formed in parallel with a center of the fixing plate 2 at one side thereof (a tensile side), the other side of the fixing plate 2 (a compression side) is formed with press fixing grip engaging hole 7 positioned on an axial line of the insertion hole 6 and having a substantial same diameter as an outer diameter of the press fixing grip 5 press fitted to a terminal end of the PC steel twisted wire 4, and, a depth (a length) of the press fixing grip engaging hole 7 is at least a half of or more than half of thickness of the fixing plate 2, and the insertion hole 6 and the press fixing grip engaging hole 7 are opened to be communicated to each other.
  • The [0030] press fixing grip 5 to be pressed and fixed to an outside part of the terminal end of the PC steel twisted wire 4 may be a well-known one having a smooth inner surface, although it may also be applicable that a thread 5 a is threadably formed at an inner surface of about half length of an entire length of the grip as shown in FIG. 4, sintered and the remaining half of it is formed with a smooth flat surface 5 b as found in the related art. This press fixing grip 5 can be adapted for a pulling action of high tension force (a tensile load) at the section where the thread 5 a is formed and it can be sufficiently applied to the galvanized PC steel twisted wires of which slip was confirmed in the related art press fixing grip. Then, within a range of designed load, a strength can be assured at the smooth flat cylinder part, an influence of the pressing against the PC steel twisted wires can be restricted as much as possible, an influence against a fatigue strength can be reduced and a strength can be assured at the flat smooth cylinder part, resulting in that a transfer of stress toward the threaded cylinder can be reduced.
  • In the method for pressing and fixing the [0031] press fixing grip 5 against the outside part of the terminal end of the PC steel twisted wire 4, a pressing and fitting machine provided with a hydraulic cylinder is applied.
  • The pressing and fitting machine is operated such that the PC steel twisted wire is inserted into a center of die, the press fixing grip is fixed and installed to the PC steel twisted wire passed through the die, an axial end of the press fixing grip is pushed into the die with a head connected to and fixed to a piston rod of the hydraulic cylinder through a pushing rod, thereby an outer diameter of the press fixing grip is metered with an inner diameter of the die and fastened, thereby the press fixing grip is integrally press fitted and fixed to the outside part of the PC steel twisted wire. [0032]
  • In this case, in order to cause an outer diameter (a diameter) of the press fixing grip after its press fixing to be smaller than that of the related art, the material having a higher strength than that of the related art press fixing grip was used. Along with this application, a length of a linear line part (a parallel part) of the minimum diameter part was changed to be longer (by more than 10 mm) than that of the minimum diameter part of the die in the related art. With such an arrangement as above, after the press fixing grip is press fixed, it is possible to prevent the press fixing grip from being curved. [0033]
  • Accordingly, it is possible to constitute the press fixing grip to be fixed and engaged positively to the press fixing [0034] grip engaging hole 7 of the fixing plate 2.
  • Then, referring to FIGS. 5 and 6, a relation between the [0035] aforesaid fixing plate 2 and the press fixing grip 5 for the PC steel twisted wires 4 will be described. For a sake of convenience in understanding of the present invention, the drawings illustrate one clearance between the anchor socket 1 and the fixing plate 2 and the other clearance between the fixing plate 2 and the press fixing grip 5, although actually each of the members is closely contacted from each other.
  • FIG. 5 shows a state in which the [0036] fixing plate 2 is fitted to and fixed to the linear cylindrical hole 1 b of the anchor socket 1, the PC steel twisted wires 4 are inserted into the insertion holes 6 of the fixing plate 2 and the press fixing grips 5 fixed to the outside parts of the terminal ends of the PC steel twisted wires 4 are fixed and closely contacted with the press fixing grip engaging holes 7. Under this state, when a tensile force is acted in a direction of load, the fixing plate 2 is supported by the anchor socket 1 at its outer circumferential edge, deformed as shown in the drawing, an opening side of the insertion hole 6 becomes a tensile side and an opening side of the press fixing grip engaging hole 7 becomes a compression side, the press fixing grips 5 positioned at the compression side rather than a neutral axis are integrally formed while their outer circumferential surfaces are being closely contacted with the circumferential wall surfaces of the press fixing grip engaging holes 7, resulting in that the press fixing grip part can be assumed to have an effective sectional area, thereby a loss of the sectional surface at the press fixing grip engaging holes 7 opened at the fixing plate 2 can be restricted to a minimum value and a thickness T of the fixing plate 2 can be made thin as compared with that of the related art product (refer to FIG. 8).
  • That is, when the [0037] aforesaid fixing plate 2 is deformed, a compression force in a direction of diameter is acted upon the circumferential wall of the press fixing grip engaging hole 7 to which the press fixing grip 5 is fixed so as to restrict the press fixing grip against its expanding in its diameter (bulged out) and then the press fixing grip and the fixing plate 2 are integrally assembled.
  • Then, an effect caused by reducing a thickness T and a diameter L of the [0038] aforesaid fixing plate 2 is made such that as compared with that of our related art (for example, in the case of the cable comprised of 37 PC steel twisted wires), the thickness T was reduced by about 20% and the diameter L was also reduced by about 20%, along with these reductions, an outer diameter of the anchor socket was also reduced by about 20% and its conversion into weight showed a reduction of about 30%.
  • Although the aforesaid preferred embodiment of the present invention has been described in reference to the preferred embodiment in which the [0039] fixing plate 2 is separate from the anchor socket 1, the fixing plate may be integrally formed with the socket.
  • Its constitution will be described in brief as follows, wherein as shown in the schematic figure of FIG. 7, a [0040] fixing plate 9′ is integrally formed with a fixing part 9 and then a fatigue improving socket 10 is connected to and integrally assembled with the fixing part 9 through a threaded structure. Arrangement of the structure shown in FIG. 7 enables a manufacturing cost to be reduced and its manufacturing property to be improved.
  • The fixing structure for the bridge cable of the present invention is made such that the press fixing grip and the fixing plate can be integrally assembled, thereby a thickness of the fixing part as well as its diameter can be reduced by about 20% as compared with those of the related art structure, and its converted weight can be reduced by about 30%. [0041]
  • Accordingly, a handling of the product in working at construction site may be facilitated and its workability can be improved. [0042]
  • Having described specific examples of the invention with reference to the accompanying drawings, it will be appreciated that the present invention is not limited to those precise embodiments, and that various changes and modifications can be effected therein by one of ordinary skill in the art without departing from the scope of the invention as defined by the appended claims. [0043]

Claims (2)

What is claimed is:
1. A bridge cable fixing structure in which press fixing grips are fixed to terminal ends of PC steel twisted wires and the side ends of the press fixing grips are engaged with the fixing plate inside an anchor socket, wherein insertion holes of about same diameter into which PC steel twisted wires are inserted are opened at one side of said fixing plate and the press fixing grip engaging holes to which the outer circumferential surfaces of the press fixing grips are closely contacted on axis lines of said insertion holes are communicated with and opened at the other side of said fixing plate, and the side ends and the outer circumferential surfaces of the press fixing grips are closely contacted to and engaged with the fixing plate.
2. A bridge cable fixing structure according to
claim 1
, wherein the press fixing grip engaging holes at said fixing plate are opened at least a half of or more than half of the thickness of said fixing plate.
US09/366,705 1999-08-02 1999-08-02 Bridge cable fixing structure Expired - Fee Related US6421864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/366,705 US6421864B2 (en) 1999-08-02 1999-08-02 Bridge cable fixing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/366,705 US6421864B2 (en) 1999-08-02 1999-08-02 Bridge cable fixing structure

Publications (2)

Publication Number Publication Date
US20010039686A1 true US20010039686A1 (en) 2001-11-15
US6421864B2 US6421864B2 (en) 2002-07-23

Family

ID=23444145

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/366,705 Expired - Fee Related US6421864B2 (en) 1999-08-02 1999-08-02 Bridge cable fixing structure

Country Status (1)

Country Link
US (1) US6421864B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6578328B2 (en) * 2001-01-29 2003-06-17 Vsl International Ag Device for anchoring one end of a stay to a base
US20050169702A1 (en) * 2002-01-25 2005-08-04 Bjorn Paulshus End termination means in a tension leg and a coupling for use between such an end termination and connecting point
US20060033960A1 (en) * 2004-08-13 2006-02-16 Quark, Inc. Systems and methods for ink selection in the trapping zone
CN100422445C (en) * 2007-08-03 2008-10-01 中铁一局集团有限公司 Steel strand reversal fulcrum preloading method
US20090184223A1 (en) * 2008-01-21 2009-07-23 Solon Se Fixing device for photovoltaic modules on sloping roofs
US20160168855A1 (en) * 2013-08-01 2016-06-16 Dywidag-Systems International Gmbh Corrosion-protected tension member and plastically deformable disc of corrosion protection material for such a tension member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6880193B2 (en) * 2002-04-02 2005-04-19 Figg Bridge Engineers, Inc. Cable-stay cradle system
US20040159058A1 (en) * 2003-02-19 2004-08-19 Jacques Gulbenkian Unbonded post-tensioning system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3060639A (en) * 1958-12-05 1962-10-30 Prescon Corp Prestressing apparatus
US3820832A (en) * 1969-03-12 1974-06-28 A Brandestini Anchoring device for wire strands in prestressed concrete structures
US3647184A (en) * 1969-11-25 1972-03-07 William L Vanderhurst Apparatus for tensioning tendons
US3701509A (en) * 1970-05-06 1972-10-31 Frederick M Stinton Splicing system and jack for stressing concrete
US3658296A (en) * 1970-09-24 1972-04-25 Lawrence R Yegge System for post-tensioning and anchoring prestressing tendons
US3778869A (en) * 1971-03-15 1973-12-18 American Stress Wire Corp Apparatus for detensioning stranded cable
JPS5831130B2 (en) 1977-06-29 1983-07-04 新東工業株式会社 Transmitting/receiving device
JPS59173712U (en) * 1983-05-09 1984-11-20 株式会社 春本鐵工所 Bridge cable anchor socket
JPH01219203A (en) * 1988-02-25 1989-09-01 Taisei Corp Manufacture of oblique cable for diagonal cable bridge
ATE150123T1 (en) * 1993-01-11 1997-03-15 Vsl Int Ag TENSIONING ANCHORAGE FOR AT LEAST ONE TENSION ELEMENT RUNNING WITHIN A COVER TUBE AND METHOD FOR PRODUCING THE TENSIONING ANCHORAGE
DE19536701C2 (en) * 1995-09-30 1999-07-15 Dyckerhoff & Widmann Ag Method for tensioning a tension member from a plurality of individual elements

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6578328B2 (en) * 2001-01-29 2003-06-17 Vsl International Ag Device for anchoring one end of a stay to a base
US20050169702A1 (en) * 2002-01-25 2005-08-04 Bjorn Paulshus End termination means in a tension leg and a coupling for use between such an end termination and connecting point
US20060033960A1 (en) * 2004-08-13 2006-02-16 Quark, Inc. Systems and methods for ink selection in the trapping zone
CN100422445C (en) * 2007-08-03 2008-10-01 中铁一局集团有限公司 Steel strand reversal fulcrum preloading method
US20090184223A1 (en) * 2008-01-21 2009-07-23 Solon Se Fixing device for photovoltaic modules on sloping roofs
US7963074B2 (en) * 2008-01-21 2011-06-21 Solon Se Fixing device for photovoltaic modules on sloping roofs
US20160168855A1 (en) * 2013-08-01 2016-06-16 Dywidag-Systems International Gmbh Corrosion-protected tension member and plastically deformable disc of corrosion protection material for such a tension member
US10889988B2 (en) 2013-08-01 2021-01-12 Dywidag-Systems International Gmbh Corrosion-protected tension member and plastically deformable disc of corrosion protection material for such a tension member

Also Published As

Publication number Publication date
US6421864B2 (en) 2002-07-23

Similar Documents

Publication Publication Date Title
JPH02236503A (en) Clamping apparatus
US5802788A (en) Fixing device for tensioning member for prestressed concrete
US5231752A (en) Wire rope termination
US4469756A (en) Method of and apparatus for forming an outwardly projecting bulge in a steel wire strand for forming an anchor in concrete
US6421864B2 (en) Bridge cable fixing structure
EP2494138B1 (en) Elongate member termination
US20150233446A1 (en) Connector for synthetic and coated wire rope
EP0235891A1 (en) Clamp Assembly
CN112469873A (en) Anchor sleeve and anchor system
US3435512A (en) Cable connectors and related methods and structures
CA2120831C (en) Connection piece on the end of a wire cable
US4893657A (en) Structure of the connecting end portion of composite tube having small diameter
JP2003070143A (en) Device for anchoring terminal part of outer sheath wire of outer sheath cable
EP2395249A1 (en) Segmented thread and connecting arrangement
US4719672A (en) Clamp body for cable conductor
JP5258719B2 (en) Fiber rope terminal fixing method
JP6687730B2 (en) Hybrid stranded
JP5295946B2 (en) Elevator rope terminal device and rope device
CN102561599A (en) Connector of steel stranded wires and finished twisted steel
JP3990708B2 (en) PC steel fixing method
US4065221A (en) Clamp for sheathed rod, strand or rope
US11255410B2 (en) Adjustable transmission guy line connector
JP3762717B2 (en) PC steel fixed structure
CN215714222U (en) Fiber rope with adjustable eye ring size
JP7347076B2 (en) Connector, connector connection structure, manufacturing method of connector connection structure

Legal Events

Date Code Title Description
CC Certificate of correction
CC Certificate of correction
CC Certificate of correction
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20060723