US1840130A - Thermionic device - Google Patents

Thermionic device Download PDF

Info

Publication number
US1840130A
US1840130A US111948A US11194826A US1840130A US 1840130 A US1840130 A US 1840130A US 111948 A US111948 A US 111948A US 11194826 A US11194826 A US 11194826A US 1840130 A US1840130 A US 1840130A
Authority
US
United States
Prior art keywords
cathode
nickel
filament
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US111948A
Inventor
Rashevsky Nicolas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric and Manufacturing Co filed Critical Westinghouse Electric and Manufacturing Co
Priority to US111948A priority Critical patent/US1840130A/en
Priority to GB14097/27A priority patent/GB271885A/en
Application granted granted Critical
Publication of US1840130A publication Critical patent/US1840130A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • H01J9/042Manufacture, activation of the emissive part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9265Special properties
    • Y10S428/929Electrical contact feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/934Electrical process
    • Y10S428/935Electroplating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/936Chemical deposition, e.g. electroless plating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/938Vapor deposition or gas diffusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12778Alternative base metals from diverse categories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Definitions

  • thermoelectrics as on it depends the thermionic.
  • the thoriated cathode and the oxide coated cathode now well known to those skilled in the art, are examples of cathodes which have been'so treated as to obtain a low value of work function. These cathodes have not always proved entirely satisfacto in the past, in part due to the difficulty 0 making filaments having identical properties and also to the fact that both types have a limited life and are comparatively expensive to manufacture.
  • the present invention contemplates using, as a cathode, an element having a low-melting point which has also a low value of work function.
  • nickel seems to be one of the most desirable asit has a work function of 2.9 volts.
  • Nickel has a melting point which is too low to permit of it being used alone as a cathode material since it would be subj ect to deformation long before the desired temperature is attained.
  • the problem then, was to discover some practical manner in which nickel or an analogous element could be used as a cathode and could be prevented from deforming at the relatively high temperatures necessary to secure satisfactory electronic emission. This problem has been solved in an entirely satisfactory manner by employing a highly refractory substance, such as tungsten or molybdenum for the filamentary or cathode base and then applying a coating of nickel or other metal having the desired characteristics.
  • Figure 1 shows one form of an apparatus for coating a filament or other cathode element
  • Fig. 2 shows an alternative form.
  • Fig. 1 an evacuated container 1 having therein aproperly mounted filament 2 of tungsten, or thoriated tungsten, a cylindrical anode 3 having a lead-in 4.
  • a coil 5- suitably connected to a source of high frequency current 6, which may be an alternator, an oscillation generator or an equivalent device.
  • a source of high frequency current 6 which may be an alternator, an oscillation generator or an equivalent device.
  • the anode is shown as a cylinder, any other convenient shape such as a plate may be employed, and the filament is simply shown as indicative of a general class of articles to be coated.
  • Fig. 2 is illustrated a tube having a plate 3, in lieu of the cylinder shown in Fig. 1, while the other elements numbered similarly to those of Fig. 1, correspond respectively thereto.
  • the container comprising the nickel cylinder or plate, and the filament or other element to be coated, is first carefully exhausted to obviate any danger of the nickel oxidizing.
  • the coil 5 is then supplied with hi h-frequency current, which induces in the cylinder or plate a sufficiently heavy current to raise its temperature to the point at which the nickel begins to vaporize.
  • the nickel element is shown as a plate, spaced several millimeters from the filament, which permits the filament to more efficiently radiate such heat as may be conveyed to it from the plate than is the case with a tube as shown in Fig. 1.
  • the filament is shown as a plate, spaced several millimeters from the filament, which permits the filament to more efficiently radiate such heat as may be conveyed to it from the plate than is the case with a tube as shown in Fig. 1.
  • this extremely high emission is due to the fact that by using my new type of filament, I am enabled to heat the nickel or other element above its melting point, so that during the operation of the filament, the nickel or other coating exists thereon in a closely adherent semiliquid form. At the same time, it would appear probable that the work function of the coatmgmaterial is also reduced.
  • the essential feature of my invention which is broadly new and of greatest importance is the use as a cathode of an element having a comparatively low melting point and low work function so arranged and carried by a refractory material that it may be heated above its melting point.
  • an electron-discharge device includ- -ing a transparent vessel havin a cathode of refractory material therein, t e method of increasing the electron emission of said cathode which comprises vaporizing nickel within said container while said cathode is unheated until said vessel becomes opaque, whereby a thin film of nickel is formed on said cathode.
  • a cathode comprising a cathode of refractory material having a thin film of nickel thereon, said film being in a semi-liquid form when the filament is heated to a temperature at which'it freely emits electrons.
  • a cathode comprising a thoriated filament and a thin film of nickel adsorbed thereon.
  • a cathode comprising thorium and a thin nickel film adsorbed thereon.
  • a cathode comprising a tungsten element and a thin film of nickel, said film being held to said element by adsorption.
  • a cathode comprising a refractory carrier having a layer of thorium thereon, and
  • a cathode comprising a cathode of refractory material having a thin film of nickel held by adsorption thereon, said film being not amalgamated with said material.
  • a cathode comprising a cathode of refractorv material having a thin film of nickel held by adsorption thereon, said film being not absorbed by said material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid Thermionic Cathode (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

Jan. 5, 1932.
N. RASHEVSKY THERMIONIC DEVICE Filed May 27, 192
INVENTOR A/ma/as Eashe vsK y WITNESSES: 6. 47 5&7?
' ATTORNEY Patented Jan. 1932 UNITED STATES PATENT OFFICE NICOLAS BASHEVSKY, OF W'ILKINSIBUBG, PENNSYLVANIA, ASSIGNOR T0 WESTING- HOUSE ELECTRIC & MANUFAUIUBING COMPANY, A CORPORATION OF III'QNNSYII'J- VANIA THEBMION 1G DEVICE Application filed Kay 27, 1926. Serial- No. 111,948.
' ly uniform characteristics.
In the construction of cathodes, it is highly desirable that elements which have a low work function be used. This work function or, as it is sometimes known, electron aflinity, is expressed in terms of electrical potential or volts. The work function 4 is expressed in terms of Richardsons constant D by the relation:
thermionics, as on it depends the thermionic.
' current which can be obtained from any particular type of cathode at any given temperature and is characteristic of the cathode substance.
The smaller we make the larger in general the thermionic current that can be obtained with a given cathode temperature. Consequently, a cathode having a low constant will also tend to havea longer life, which is obviously desirable from the standpoint of economy. The thoriated cathode and the oxide coated cathode, now well known to those skilled in the art, are examples of cathodes which have been'so treated as to obtain a low value of work function. These cathodes have not always proved entirely satisfacto in the past, in part due to the difficulty 0 making filaments having identical properties and also to the fact that both types have a limited life and are comparatively expensive to manufacture.
The present invention contemplates using, as a cathode, an element having a low-melting point which has also a low value of work function. Among such elements, nickel seems to be one of the most desirable asit has a work function of 2.9 volts. Nickel, however, has a melting point which is too low to permit of it being used alone as a cathode material since it would be subj ect to deformation long before the desired temperature is attained. The problem, then, was to discover some practical manner in which nickel or an analogous element could be used as a cathode and could be prevented from deforming at the relatively high temperatures necessary to secure satisfactory electronic emission. This problem has been solved in an entirely satisfactory manner by employing a highly refractory substance, such as tungsten or molybdenum for the filamentary or cathode base and then applying a coating of nickel or other metal having the desired characteristics.
I have used several different methods to provide the necessary coating to practice my invention. Among the preferred forms are electroplating, the decomposition of a nickel salt in place, or deposition of the nickel from the vaporized state. The latter method,
v which has given the best results, will be more part of this application Figure 1 shows one form of an apparatus for coating a filament or other cathode element, and
Fig. 2 shows an alternative form.
In Fig. 1 is shown an evacuated container 1 having therein aproperly mounted filament 2 of tungsten, or thoriated tungsten, a cylindrical anode 3 having a lead-in 4. Surrounding the container is a coil 5- suitably connected to a source of high frequency current 6, which may be an alternator, an oscillation generator or an equivalent device. Although the anode is shown as a cylinder, any other convenient shape such as a plate may be employed, and the filament is simply shown as indicative of a general class of articles to be coated.
In Fig. 2 is illustrated a tube having a plate 3, in lieu of the cylinder shown in Fig. 1, while the other elements numbered similarly to those of Fig. 1, correspond respectively thereto. The container comprising the nickel cylinder or plate, and the filament or other element to be coated, is first carefully exhausted to obviate any danger of the nickel oxidizing. The coil 5 is then supplied with hi h-frequency current, which induces in the cylinder or plate a sufficiently heavy current to raise its temperature to the point at which the nickel begins to vaporize.
This heating is continued until the interior of the receptacle 1 is coated and becomes, to a more or less degree, opaque. This deposit on the tube walls is indicative that nickel has been thrown off from the cylinder or plate 3, and it has been found that the relative opacity of such deposit is a measure of the amount of nickel deposited on the filament as well. It is important that the filament be ke t relatively cool during this operation, in order that the nickel will remain thereon after having been deposited, and this is accomplished much more readily when the ap paratus of Fig. 2 is employed. In this view, the nickel element is shown as a plate, spaced several millimeters from the filament, which permits the filament to more efficiently radiate such heat as may be conveyed to it from the plate than is the case with a tube as shown in Fig. 1. At the same time, it is obvious that less heat is transferred froman entirely unexpected high electron emission. It is In conclusion that this extremely high emission is due to the fact that by using my new type of filament, I am enabled to heat the nickel or other element above its melting point, so that during the operation of the filament, the nickel or other coating exists thereon in a closely adherent semiliquid form. At the same time, it would appear probable that the work function of the coatmgmaterial is also reduced.
It is also probable that the increased electromc emission is in some way related to the lowering of the surface tension of the melted metallic film but I am not, at this time, prepared to state exact reasons for this nor can give a more exact theory of operation. Another peculiar fact is noted in connection begins at a lower temperature than when nickel is not present. Accordingly, by using a certain percentage of nickel with the well known thoriated filament, I am able to produce a cathode which is easier to activate, and which is extremely stable in operation.
It will thus be seen that I have produced a cathode the characteristics of which are different in many respects from those so far known and used. My cathode has a very much higher electron emission than the usual type, has a longer life and is relatively cheaper to manufacture. Numerous advantages of this type of cathode in addition to those enumerated will suggest themselves to those skilled in the art, and it is also, of course,
obvious that many other combinations of refractory carrier and low-melting point coating may be employed, all withm the range of equivalents of my invention.
The essential feature of my invention which is broadly new and of greatest importance is the use as a cathode of an element having a comparatively low melting point and low work function so arranged and carried by a refractory material that it may be heated above its melting point.
Although I have described herein only certain specific embodiments of my invention, it is not my intention to be limited thereby. No limitation except such as is necessitated by the rior art or expressed in the claims is inten ed.
I claim as my invention:
1. The method of increasin the electron emissivity of a thoriated catho e which comprises vaporizing nickel in the presence of said cathode until a thin coating of nickel is formed thereon. 2. In an electron-discharge device includmg a transparent vessel havin a cathode of re ractory material therein, t e method of increasing the electron emission of said cathode which comprises vaporizing nickel within said container until said vessel becomes opaque, whereby a thin film of nickel is formed on said cathode. v
3. In an electron-discharge device includ- -ing a transparent vessel havin a cathode of refractory material therein, t e method of increasing the electron emission of said cathode which comprises vaporizing nickel within said container while said cathode is unheated until said vessel becomes opaque, whereby a thin film of nickel is formed on said cathode.
4. A cathode comprising a cathode of refractory material having a thin film of nickel thereon, said film being in a semi-liquid form when the filament is heated to a temperature at which'it freely emits electrons.
5. A cathode comprising a thoriated filament and a thin film of nickel adsorbed thereon.
6. A cathode comprising thorium and a thin nickel film adsorbed thereon.
7. A cathode comprising a tungsten element and a thin film of nickel, said film being held to said element by adsorption.
8. In a cathode, an element composed of a refractory conductive material, and a thin film of nickel held thereon by adsorption.
.9. A cathode comprising a refractory carrier having a layer of thorium thereon, and
a thin film of nickel adsorbed on said thorlum.
10. As a step in the method of activating a thoriated cathode, the adsorption of a thin nickel film thereon.
11. A cathode comprising a cathode of refractory material having a thin film of nickel held by adsorption thereon, said film being not amalgamated with said material.
12. A cathode comprising a cathode of refractorv material having a thin film of nickel held by adsorption thereon, said film being not absorbed by said material.
In testimony whereof, I have hereunto subscribed my name this 21st day of May, 1926.
NICOLAS RASHEVSKY.
US111948A 1926-05-27 1926-05-27 Thermionic device Expired - Lifetime US1840130A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US111948A US1840130A (en) 1926-05-27 1926-05-27 Thermionic device
GB14097/27A GB271885A (en) 1926-05-27 1927-05-25 Improvements in or relating to vacuum electric tube devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US111948A US1840130A (en) 1926-05-27 1926-05-27 Thermionic device

Publications (1)

Publication Number Publication Date
US1840130A true US1840130A (en) 1932-01-05

Family

ID=22341301

Family Applications (1)

Application Number Title Priority Date Filing Date
US111948A Expired - Lifetime US1840130A (en) 1926-05-27 1926-05-27 Thermionic device

Country Status (2)

Country Link
US (1) US1840130A (en)
GB (1) GB271885A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2431887A (en) * 1940-01-16 1947-12-02 Penning Frans Michel Electric device and method for heating materials
US2697130A (en) * 1950-12-30 1954-12-14 Westinghouse Electric Corp Protection of metal against oxidation
US2701849A (en) * 1944-04-22 1955-02-08 Hartford Nat Bank & Trust Co Glow discharge tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2431887A (en) * 1940-01-16 1947-12-02 Penning Frans Michel Electric device and method for heating materials
US2701849A (en) * 1944-04-22 1955-02-08 Hartford Nat Bank & Trust Co Glow discharge tube
US2697130A (en) * 1950-12-30 1954-12-14 Westinghouse Electric Corp Protection of metal against oxidation

Also Published As

Publication number Publication date
GB271885A (en) 1928-03-15

Similar Documents

Publication Publication Date Title
US2249672A (en) Discharge device
US2164595A (en) Method of coating electrodes
US2459841A (en) Cathode
US2741717A (en) Dispenser type cathode having gettercoated parts
US1840130A (en) Thermionic device
US2509053A (en) Space current device employing mutually bombarded electrodes
US3737714A (en) Dark coated heater for vacuum tube cathode
US1675120A (en) Deposition of thorium from its vaporizable compounds
US1756889A (en) Electron-discharge apparatus
US3307974A (en) Method of forming thermionic cathodes
US3246197A (en) Cathode heater having an aluminum oxide and tungesten coating
US1760454A (en) Manufacture of electron-emitting devices and the like
US2838708A (en) Electron discharge device and method of gettering
US2808530A (en) Cathode for electrical discharge devices
US3328622A (en) Electric discharge device having primary and secondary electrodes
US2023707A (en) Method of obtaining emissive coatings
US2472189A (en) Thermionic tube having a secondary-emission electrode
US2094657A (en) Indirectly heated electronic tube
US2798010A (en) Method of manufacturing indirectly heated cathodes
US1854926A (en) Process for carbon-coating electrodes
US1865449A (en) Thermionically inactive electrode
US1699112A (en) maorae
US2693546A (en) Electron emitter for electron tubes
US3514324A (en) Tungsten coating of dispenser cathode
US1961814A (en) Electrical discharge device