US10985477B1 - Removable terminal block assembly that permits an I/O base to operate in simplex mode or duplex mode - Google Patents

Removable terminal block assembly that permits an I/O base to operate in simplex mode or duplex mode Download PDF

Info

Publication number
US10985477B1
US10985477B1 US16/583,971 US201916583971A US10985477B1 US 10985477 B1 US10985477 B1 US 10985477B1 US 201916583971 A US201916583971 A US 201916583971A US 10985477 B1 US10985477 B1 US 10985477B1
Authority
US
United States
Prior art keywords
terminal block
base
duplex
block assembly
modules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/583,971
Other versions
US20210098904A1 (en
Inventor
Adam M. Wrobel
Doug A. Lostoski
Daniel E. Killian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockwell Automation Technologies Inc
Original Assignee
Rockwell Automation Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwell Automation Technologies Inc filed Critical Rockwell Automation Technologies Inc
Priority to US16/583,971 priority Critical patent/US10985477B1/en
Assigned to ROCKWELL AUTOMATION TECHNOLOGIES, INC. reassignment ROCKWELL AUTOMATION TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LOSTOSKI, DOUG A., KILLIAN, DANIEL E., WROBEL, ADAM M.
Priority to EP20190174.1A priority patent/EP3798770B1/en
Priority to US17/186,102 priority patent/US11699867B2/en
Publication of US20210098904A1 publication Critical patent/US20210098904A1/en
Application granted granted Critical
Publication of US10985477B1 publication Critical patent/US10985477B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/054Input/output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R9/00Structural associations of a plurality of mutually-insulated electrical connecting elements, e.g. terminal strips or terminal blocks; Terminals or binding posts mounted upon a base or in a case; Bases therefor
    • H01R9/22Bases, e.g. strip, block, panel
    • H01R9/24Terminal blocks
    • H01R9/2408Modular blocks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/514Bases; Cases composed as a modular blocks or assembly, i.e. composed of co-operating parts provided with contact members or holding contact members between them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R27/00Coupling parts adapted for co-operation with two or more dissimilar counterparts
    • H01R27/02Coupling parts adapted for co-operation with two or more dissimilar counterparts for simultaneous co-operation with two or more dissimilar counterparts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/20Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for assembling or disassembling contact members with insulating base, case or sleeve
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R9/00Structural associations of a plurality of mutually-insulated electrical connecting elements, e.g. terminal strips or terminal blocks; Terminals or binding posts mounted upon a base or in a case; Bases therefor
    • H01R9/22Bases, e.g. strip, block, panel
    • H01R9/24Terminal blocks
    • H01R9/2491Terminal blocks structurally associated with plugs or sockets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1462Mounting supporting structure in casing or on frame or rack for programmable logic controllers [PLC] for automation or industrial process control
    • H05K7/1468Mechanical features of input/output (I/O) modules
    • H05K7/1469Terminal blocks for connecting sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/11Plc I-O input output
    • G05B2219/1111I-o grouped on one board
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/11Plc I-O input output
    • G05B2219/1189Duplicated I-O also triple
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/26Connectors or connections adapted for particular applications for vehicles

Definitions

  • the present development relates to industrial automation control systems and, more particularly, to a modular input/output (I/O) system having terminal blocks for coupling I/O modules to other components.
  • I/O input/output
  • a known distributed modular I/O system 10 includes a network adapter 12 that is operatively connected to an industrial automation network N such as an Ethernet/IP network or other industrial automation network so that the network adapter 12 receives data from, transmits data to, and otherwise communicates with an industrial control module or “controller” C also connected to the network N.
  • the controller C comprises one or more programmable logic controllers (PLC), microprocessors, and/or other electronic processors.
  • PLC programmable logic controllers
  • the adapter 12 includes an adapter base 12 a that is mounted to a DIN rail D or other support structure, and an adapter module 12 b is permanently or releasably connected to the adapter base 12 a .
  • the adapter module 12 b includes the electronic circuitry for data communication data with the controller C via network N and for data communication with multiple I/O devices 20 of the system 10 as described below.
  • the adapter 12 comprises one or more network connectors NC for connecting with the network N via known connectors such as RJ45 connectors, Small FormFactor Pluggable (SFP) connectors, or the like.
  • the adapter 12 typically also includes a power input connector PC for connecting with a source of electrical power for supplying electrical power to the adapter module 12 and to the I/O devices 20 and other components operatively connected to the adapter 12 and/or I/O devices 20 .
  • the I/O devices 20 each include an I/O base 20 a also mounted to the DIN rail D or other support structure, with a first I/O base 20 a located adjacent and operably physically and electrically connected to the adapter base 12 a by a multi-contact electrical connector K and with the additional I/O bases 20 a operably physically and electrically connected together one after the other in a sequential manner by successive mating multi-contact electrical connectors K such that a modular backplane circuit or “backplane” (illustrated as a broken line 14 ) is constructed and adapted for communicating electrical power and data through the successively connected I/O bases 20 a and operably connects each I/O base 20 a to the network adapter 12 and, thus, to the controller C.
  • backplane illustrated as a broken line 14
  • each I/O device 20 further comprises an I/O module 20 b operatively removably connected to the I/O base 20 a such that the installed I/O module 20 b also communicates with the network adapter 12 and the controller C over the backplane 14 such that input/output data are provided between the controller C and each I/O module 20 b via backplane 14 .
  • Each installed I/O module 20 b is selected and configured to perform one or more specialized input/output functions such as DC input, DC output, AC input, AC output, analog input and/or output, RTD and/or thermocouple input and/or thermocouple output, or the like as is generally known in the field of industrial automation.
  • Each I/O base 20 a further includes a terminal block 20 c comprising a plurality of cage clamps, spring clamps, screw terminals, or other wiring connectors 20 d that are adapted to be connected to field cables or field wires FW that are each associated with a field device FD that is typically an analog or digital device such as a sensor, flow meter, switch, probe, thermocouple, RTD, encoder, or the like that is associated with the process or machine being controlled (the controlled system CS) by the controller C.
  • the terminal block 20 c can be a separate structure that is assembled to the I/O base 20 a or can alternatively be defined as an integral or one-piece part of the I/O base 20 a .
  • Each installed I/O module 20 b communicates with the field device wiring connectors 20 d of the same I/O base 20 a to which the I/O module 20 b is physically connected.
  • Input/output data are provided between the controller C and field device(s) FD connected to the corresponding I/O base 20 a via backplane 14 and the network adapter module 12 b.
  • FIG. 2A is a schematic representation of the distributed modular input/output (I/O) system 10 of FIG. 1 . It can be seen that the backplane 14 includes only a single (non-redundant) circuit 14 a that sequentially connects the network adapter 12 and the successively adjacent I/O devices 20 in a series or a sequential “daisy-chain” manner through the mated connectors K in the adapter base 12 a and I/O bases 20 a .
  • the adapter 12 and each I/O device 20 include backplane circuitry that is located in the respective base 12 a , 20 a and/or that is located in the adapter or I/O module 12 b , 20 b connected to the respective base and that establishes the above-described backplane circuit 14 using known backplane data communication protocols.
  • FIG. 2B is similar but shows another known system 10 ′ wherein the network adapter 12 ′ includes first and second redundant adapter modules 12 b 1 , 12 b 2 connected to the base 12 a and wherein each I/O device 20 ′ includes first and second redundant I/O modules 20 b 1 , 20 b 2 connected to the base 20 a .
  • FIG. 2B is similar but shows another known system 10 ′ wherein the network adapter 12 ′ includes first and second redundant adapter modules 12 b 1 , 12 b 2 connected to the base 12 a and wherein each I/O device 20 ′ includes first and second redundant I/O modules 20 b 1 , 20 b 2 connected
  • the backplane 14 includes only a single (non-redundant) circuit 14 a that sequentially connects the network adapter 12 and the successively adjacent I/O devices 20 in a series or “daisy-chain” manner such that the backplane circuit 14 is interrupted by only a single point of failure.
  • FIGS. 1, 2A, 2B do not provide a truly fault tolerant system in that the certain components are not redundant. Thus, if any single component fails at least a portion of the system and/or devices connected thereto are offline until a repair can be made or system functionality can otherwise be restored.
  • a need has been identified for an I/O system that avoids this single-point failure outcome for certain applications including many industrial automation control applications, such as distributed control systems for process and plant control where continuous and uninterrupted operation of the controlled process or system is a critical requirement.
  • such a system should allow for easy configuration of redundant components (e.g., a pair of I/O modules operating in simplex vs. a pair of I/O modules operating in duplex).
  • an I/O device includes an I/O base, at least two I/O modules supported on the I/O base, and a duplex terminal block assembly supported on the I/O base.
  • the at least two I/O modules include a first I/O module and a second I/O module coupled to the duplex terminal block assembly in parallel.
  • the duplex terminal block assembly can include connectors for connecting to a field device.
  • the duplex terminal block assembly can include conductive structures for coupling the connectors with each of the first and second I/O modules.
  • the duplex terminal block assembly can include a terminal block base and a terminal block supported on the terminal block base.
  • the terminal block base can have a width that is twice the width of the terminal block.
  • the terminal block can be centered along the width of the terminal block base.
  • the terminal block can be received in a slot of the terminal block base.
  • the I/O device can further include a third I/O module and a simplex terminal block assembly electrically coupled to the third I/O module.
  • the simplex terminal block assembly can have a width that is half the width of the duplex terminal block assembly.
  • the I/O base can includes a plurality of ports (sometimes referred to as terminal block landing points), each port adapted to couple one of the plurality of I/O modules to a terminal block assembly, and wherein the duplex terminal block is received in at least two ports associated with the first and second I/O modules, and wherein the simplex terminal block is received in a port associated with the third I/O module.
  • a plurality of ports sometimes referred to as terminal block landing points
  • a duplex terminal block assembly for use with an associated I/O device having an I/O base with at least two ports for receiving at least a portion of a terminal block assembly and at least two I/O modules supported on the I/O base
  • the duplex terminal block assembly includes a terminal block base portion having connectors for coupling with the I/O base of the associated I/O device, and a terminal block extending from the terminal block base portion and having connectors for connecting to an associated field device.
  • the terminal block base portion has a width such that it is at least partially received in each of the at least two ports when installed in the I/O base, and the duplex terminal block includes conductive structures for coupling each of the at least two I/O modules in parallel to the connectors.
  • the terminal block base portion can have a width that is twice the width of the terminal block.
  • the terminal block can be centered along the width of the terminal block base portion.
  • the terminal block and terminal block base portion can be separate components assembled together to form the duplex terminal block assembly.
  • the terminal block can be received in a slot of the terminal block base portion.
  • a method of assembling an I/O device having at least two I/O modules connected in duplex to a field device includes coupling at least two I/O modules to an I/O base, and coupling a duplex terminal block to first and second ports of the I/O base.
  • the duplex terminal block assembly includes a terminal block base portion having connectors for coupling with the I/O base of the associated I/O device, and a terminal block extending from the terminal block base portion and having connectors for connecting to the associated field device.
  • the terminal block base portion has a width such that it is at least partially received in each of the at least two ports when installed in the I/O base.
  • the duplex terminal block includes conductive structures for coupling each of the at least two I/O modules in parallel to the connectors.
  • FIG. 1 shows an example of an industrial control system including an industrial automation controller and a known distributed modular input/output (I/O) system;
  • I/O distributed modular input/output
  • FIG. 2A is a schematic diagram of distributed modular I/O system
  • FIG. 2B is a schematic diagram of another distributed modular I/O system
  • FIG. 3 is an exemplary distributed I/O system in accordance with the present disclosure
  • FIG. 4 is a perspective view of an I/O base
  • FIG. 5 is a perspective view of the I/O base of FIG. 4 with exemplary terminal block assemblies in accordance with the present disclosure
  • FIG. 6 is a perspective view of an I/O device in accordance with the present disclosure.
  • FIG. 7 is a perspective top view of a duplex terminal block assembly in accordance with the present disclosure.
  • FIG. 8 is a perspective bottom view of the duplex terminal block assembly of FIG. 7 ;
  • FIG. 9 is a perspective top view of a simplex terminal block assembly in accordance with the present disclosure.
  • FIG. 10 is a perspective bottom view of the simplex terminal block assembly of FIG. 9 ;
  • FIG. 11 is a perspective view of an I/O device having a first configuration
  • FIG. 12 is a perspective view of an I/O device having a second configuration
  • FIG. 13 is a perspective view of an I/O device having a third configuration.
  • FIG. 14 is a perspective view of an I/O device having a fourth configuration.
  • FIG. 15 is a schematic illustration of the I/O upper and lower I/O connections of an exemplary duplex terminal block assembly in accordance with the present disclosure
  • FIG. 16 (comprising FIGS. 16A and 16B ) is a schematic illustration of the routing of each I/O connection between an upper side (field device connection side) and a lower side (I/O base connection side) of the duplex terminal block assembly of FIG. 15 .
  • FIG. 3 shows a distributed modular I/O system 110 in accordance with an embodiment of the present development.
  • the system 110 includes terminal block assemblies that permit an I/O base to operate in simplex mode, duplex mode or a combination thereof, as desired.
  • the distributed modular I/O system 110 includes a network adapter 112 that is operatively connected to both first and second redundant industrial automation networks N 1 ,N 2 such as first and second Parallel Redundancy Protocol (PRP) LAN networks or the like such as an Ethernet/IP network or other industrial automation network so that the network adapter 112 receives data from, transmits data to, and otherwise communicates with one or more industrial control modules or “controllers” C 1 ,C 2 connected respectively to the networks N 1 ,N 2 .
  • the controllers C 1 ,C 2 can comprise one or more programmable logic controllers (PLC), microprocessors, and/or other electronic processors for machine and/or process control.
  • PLC programmable logic controllers
  • the network adapter 112 includes an adapter base 112 a that is mounted to a rail D′ or other support structure.
  • the network adapter 112 further comprises first and second redundant adapter modules 112 b 1 , 112 b 2 that are operating in parallel with each other and each of which is permanently or releasably connected to the adapter base 112 a .
  • Each adapter module 112 b 1 , 112 b 2 is connected to both the first and second networks N 1 ,N 2 and includes the electronic circuitry for data communication data with the controllers C 1 ,C 2 via networks N 1 ,N 2 and for data communication with multiple I/O devices 120 of the system 110 as described below.
  • the adapter 112 comprises one or more network connectors NC for connecting with the networks N 1 ,N 2 via known connectors such as RJ45 connectors, Small FormFactor Pluggable (SFP) connectors, or the like.
  • the network adapter 112 further comprises first and second redundant power conditioning modules 116 a , 116 b connected to the adapter base 112 a and each including a power input connector PC for connecting with a source of electrical power for supplying system electrical power to the network adapter 112 and to the I/O devices 120 and other components operatively connected to the adapter 112 and/or I/O devices 120 .
  • the I/O system 110 further comprises one or more I/O devices 120 that each include an I/O base 120 a also mounted to the support rail D′ or other support structure, with a first I/O base 120 a located adjacent and operably physically and electrically connected to the adapter base 112 a by a multi-contact electrical connector K and with the additional I/O bases 120 a operably physically and electrically connected together one after the other in a sequential manner by successive mating multi-contact electrical connectors K such that a modular backplane circuit or “backplane” (schematically illustrated at 114 ) is constructed and adapted for communicating electrical power and data through the successively connected I/O bases 120 a and operably connects each I/O base 120 a to the network adapter 112 and, thus, to the first and second networks N 1 ,N 2 and the first and second controllers C 1 ,C 2 .
  • a modular backplane circuit or “backplane” (schematically illustrated at 114 ) is constructed and adapted for communicating electrical power and data through
  • each I/O device 120 further comprises at least two I/O modules 120 b ( 120 b 1 , 120 b 2 , 120 b 3 , 120 b 4 , in FIG. 3 ) operatively removably connected to the I/O base 120 a such that the installed I/O modules 120 b also communicates with the network adapter 112 and the first and second controllers C 1 ,C 2 over the backplane 114 a such that input/output data are provided between the controllers C 1 ,C 2 and each I/O module 120 b via backplane 114 a .
  • Each installed I/O module 120 b is selected and configured to perform one or more specialized input/output functions such as DC input, DC output, AC input, AC output, analog input and/or output, RTD and/or thermocouple input and/or thermocouple output, or the like as is generally known in the field of industrial automation.
  • each I/O device 120 comprises four I/O modules 120 b ( 120 b 1 , 120 b 2 , 120 b 3 , 120 b 4 ) operatively removably connected to the I/O base 120 a , and at least two of the I/O modules 120 b are identical to each other and operated in parallel to provide a redundancy with respect to each other (as shown, the I/O modules 120 b 3 , 120 b 4 of the two illustrated I/O devices 120 are identical and operated redundantly in parallel with respect to each other).
  • Each I/O base 120 a further supports two types of terminal blocks 120 c 1 and 120 c 2 comprising a plurality of cage clamps, spring clamps, screw terminals, or other wiring connectors 120 d that are adapted to be connected to field cables or field wires FW that are each associated with a field device FD that is typically an analog or digital device such as a sensor, flow meter, switch, probe, thermocouple, RTD, encoder, or the like that is associated with the process or machine being controlled (the controlled system CS) by the controllers C 1 ,C 2 .
  • a field device FD that is typically an analog or digital device such as a sensor, flow meter, switch, probe, thermocouple, RTD, encoder, or the like that is associated with the process or machine being controlled (the controlled system CS) by the controllers C 1 ,C 2 .
  • each terminal block 120 c 1 / 120 c 2 is a separate structure that is assembled to the I/O base 120 a , but in some embodiments the terminal blocks can be defined as an integral or one-piece part of the I/O base 120 a . Different varieties of terminal blocks can be used depending upon the particular configuration required for the field device wiring connectors 120 d , with some having different common terminals, ground connections, voltage supply terminals, and the like.
  • Each installed I/O module 120 b communicates with the field device wiring connectors 120 d of the same I/O base 120 a on which the I/O module 120 b is physically installed.
  • Input/output data are provided between the controllers C 1 ,C 2 and field device(s) FD connected to the corresponding I/O base 120 a via backplane 114 and the network adapter modules 112 b 1 , 112 b 2 .
  • the redundant, parallel I/O modules 120 b 3 , 120 b 4 share a common terminal block 120 c 2 such that the redundant I/O modules 120 b 3 , 120 b 4 are operably connected to the same field wiring FW and field device FD to send data to and receive data from the controlled system.
  • I/O modules 120 b 1 and 120 b 2 are coupled to respective terminal blocks 120 c 1 for communication to respective field wiring FW.
  • terminal blocks 120 c 1 and 120 c 2 differ in form and function from each other, with terminal block 120 c 1 configured to connect a single I/O module to associated field wiring FW (simplex mode) and terminal block 120 c 2 configured to couple two I/O modules to associated field wiring FW (duplex mode).
  • FIGS. 4-6 the two types of terminal blocks 120 c 1 and 120 c 2 are illustrated in detail as part of an I/O module 120 including I/O modules 120 b 1 - 120 b 2 .
  • an I/O base 120 a is illustrated without I/O modules or terminal blocks installed.
  • the I/O base 120 a includes four slots S 1 , S 2 , S 3 and S 4 for receiving I/O modules and four corresponding ports P 1 , P 2 , P 3 , and P 4 for receiving all or part of a terminal block assembly.
  • Each slot S 1 -S 4 includes connectors C for coupling an I/O module to a terminal block assembly and to the backplane of the I/O system.
  • Each port P 1 -P 4 includes a plurality of pins Pi adapted to be received in corresponding recesses of a terminal block assembly, as will be described below.
  • terminal block assembly 120 C 1 has a width W 1 that is approximately half of the width W 2 of terminal block assembly 120 c 2 .
  • the width W 1 of terminal block assembly 120 c 2 allows the terminal block assembly 120 c 2 to electrically couple with the pins Pi of both ports P 3 and P 4 such that I/O modules 120 b 3 and 120 b 4 can be coupled to a common field device in duplex mode.
  • FIGS. 7 and 8 illustrate an exemplary terminal block assembly 120 c 2 in detail.
  • the terminal block assembly 120 c 2 includes a terminal block base TBB 1 having width W 2 .
  • a terminal block TB is supported on the terminal block base TBB 1 .
  • the terminal block TB is generally centered along the width W of the terminal block base TBB 1 .
  • the bottom side of the terminal block base TBB 1 includes first and second banks of recesses B 1 and B 2 adapted to receive pins Pi of each port in which the terminal block assembly 120 c 2 is installed.
  • the first and second banks of recesses B 1 and B 2 are configured to electrically coupled the pins of each port to wiring connectors 120 d on an opposite side of the terminal block assembly 120 c 2 that are adapted to be connected to field cables or field wires FW that are each associated with a field device FD that is typically an analog or digital device such as a sensor, flow meter, switch, probe, thermocouple, RTD, encoder, or the like that is associated with the process or machine being controlled.
  • the terminal block assembly 120 c 2 includes wires, traces or other conductive structures for coupling each recess of each bank B 1 and B 2 to a respective cage clamp, spring clamp, screw terminal, or other structure of wiring connectors 120 d .
  • a screw Sc is provided for securing the terminal block assembly 120 c 2 to the I/O base 120 a .
  • the terminal block base TBB 1 is approximately twice the width of the terminal block TB.
  • terminal block 120 c 2 is sometimes referred to as a duplex terminal block as it can be used to connect two I/O modules to a common field device in systems where redundancy is required or desired.
  • terminal block 120 c 1 is sometimes referred to as a simplex terminal block assembly as it is configured to connect a single I/O module to a field device.
  • Terminal block assembly 120 c 1 generally comprises a terminal block base TBB 2 and a terminal block TB supported thereon. In this embodiment, the terminal block TB and the terminal block base TBB 2 have a corresponding width W 1 .
  • terminal block assembly 120 c 1 can be received in a port of the I/O base 120 a to connect a field device to a respective I/O module in an otherwise conventional manner.
  • a screw Sc is provided for securing the terminal block assembly 120 c 2 to the I/O base 120 a.
  • the terminal block assemblies 120 c 12 and 120 c 2 allow customization of an I/O system having at least two slots for receiving I/O modules and corresponding ports for receiving terminal block assemblies. Although the illustrated embodiment is directed to a quad slot I/O device, aspects of the present disclosure can be adapted to any I/O device having at least 2 slots. It should be appreciated that the terminal block TB in each of the terminal block assemblies 120 c 1 and 120 c 2 is a common element that can be used with either terminal block base TBB 1 or TBB 2 . This construction further enhances the modularity of the I/O system by allowing a single terminal block TB to be used in either duplex or simplex fashion depending on the terminal block base to which it is associated.
  • aspects of the present disclosure facilitate customization of I/O devices in the field by allowing a technician to select a terminal block assembly for a particular application depending on whether simplex or duplex functionality is desired, and/or to easily retrofit existing installations for duplex functionality.
  • FIGS. 11-14 four different I/O device configurations are shown using various combinations of the terminal block assemblies 120 c 1 and 120 c 2 .
  • an I/O device 120 is shown having four I/O modules 120 b 1 - 120 b 4 in a first configuration.
  • I/O modules 120 b 1 and 120 b 2 are coupled to a duplex terminal block assembly 120 c 2 to provide redundancy to a first associated field device (not shown), while I/O modules 120 b 3 and 120 b 4 are coupled to a duplex terminal block assembly 120 c 2 to provide redundancy to a second associated field device (not shown).
  • an I/O device 120 is shown having four I/O modules 120 b 1 - 120 b 4 in a second configuration.
  • each I/O module 120 b 1 - 120 b 4 is coupled to a simplex terminal block assembly 120 c 1 for communication with a respective field device (not shown).
  • FIGS. 13 and 14 illustrate I/O devices 120 having third and fourth configurations.
  • a third configuration is shown in FIG. 13 wherein I/O modules 120 b 1 and 120 b 2 are coupled to a duplex terminal block assembly 120 c 2 and I/O modules 120 b 3 and 120 b 4 are coupled to respective simplex terminal block assemblies 120 c 1 .
  • FIG. 14 illustrates a fourth configuration wherein I/O modules 120 b 1 and 120 b 2 are coupled to respective simplex terminal block assemblies 120 c 1 and I/O modules 120 b 3 and 120 b 4 are coupled to a duplex terminal block assembly 120 c 2 .
  • FIGS. 15 and 16 schematically illustrate an exemplary duplex terminal block 120 c 2 .
  • the solid dots SD represent I/O connections on an upper side of the duplex terminal block assembly 120 c 2 that are generally connected to an associated field device when the duplex terminal block assembly is installed in an I/O device, as previously described.
  • the open dots OD represent the I/O connections on the lower side of the duplex terminal block assembly 120 c 2 .
  • the open dots OD are divided into two groups corresponding to a left I/O module and a right I/O module as indicated in FIG. 15 .
  • each respective group of open dots representing lower I/O connections are generally connected to a respective I/O module when the duplex terminal block assembly is installed in an I/O device.
  • FIG. 16 (comprising FIGS. 16A and 16B ) schematically illustrates the routing between the upper I/O connections SD and lower I/O connections OD.
  • each of the upper I/O connections SD is coupled to a lower I/O connection OD in each of the left and right groups of I/O connections by conductive structure CS of the duplex terminal block assembly 120 c 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Programmable Controllers (AREA)

Abstract

An I/O device includes an I/O base, at least two I/O modules supported on the I/O base, and a duplex terminal block assembly supported on the I/O base. The at least two I/O modules include a first I/O module and a second I/O module coupled to the duplex terminal block assembly in parallel. The duplex terminal block assembly can include connectors for connecting to a field device. The duplex terminal block assembly can include conductive structures for coupling the connectors with each of the first and second I/O modules. The duplex terminal block can be installed in a pair of ports in an I/O base to connect two I/O modules in parallel.

Description

FIELD
The present development relates to industrial automation control systems and, more particularly, to a modular input/output (I/O) system having terminal blocks for coupling I/O modules to other components.
BACKGROUND INFORMATION
Distributed modular input/output (I/O) systems for industrial automation control fcsystems are well-known and in widespread use. Referring to FIG. 1, a known distributed modular I/O system 10 includes a network adapter 12 that is operatively connected to an industrial automation network N such as an Ethernet/IP network or other industrial automation network so that the network adapter 12 receives data from, transmits data to, and otherwise communicates with an industrial control module or “controller” C also connected to the network N. The controller C comprises one or more programmable logic controllers (PLC), microprocessors, and/or other electronic processors.
The adapter 12 includes an adapter base 12 a that is mounted to a DIN rail D or other support structure, and an adapter module 12 b is permanently or releasably connected to the adapter base 12 a. The adapter module 12 b includes the electronic circuitry for data communication data with the controller C via network N and for data communication with multiple I/O devices 20 of the system 10 as described below. The adapter 12 comprises one or more network connectors NC for connecting with the network N via known connectors such as RJ45 connectors, Small FormFactor Pluggable (SFP) connectors, or the like. The adapter 12 typically also includes a power input connector PC for connecting with a source of electrical power for supplying electrical power to the adapter module 12 and to the I/O devices 20 and other components operatively connected to the adapter 12 and/or I/O devices 20.
The I/O devices 20 each include an I/O base 20 a also mounted to the DIN rail D or other support structure, with a first I/O base 20 a located adjacent and operably physically and electrically connected to the adapter base 12 a by a multi-contact electrical connector K and with the additional I/O bases 20 a operably physically and electrically connected together one after the other in a sequential manner by successive mating multi-contact electrical connectors K such that a modular backplane circuit or “backplane” (illustrated as a broken line 14) is constructed and adapted for communicating electrical power and data through the successively connected I/O bases 20 a and operably connects each I/O base 20 a to the network adapter 12 and, thus, to the controller C. In addition to the I/O base 20 a, each I/O device 20 further comprises an I/O module 20 b operatively removably connected to the I/O base 20 a such that the installed I/O module 20 b also communicates with the network adapter 12 and the controller C over the backplane 14 such that input/output data are provided between the controller C and each I/O module 20 b via backplane 14. Each installed I/O module 20 b is selected and configured to perform one or more specialized input/output functions such as DC input, DC output, AC input, AC output, analog input and/or output, RTD and/or thermocouple input and/or thermocouple output, or the like as is generally known in the field of industrial automation.
Each I/O base 20 a further includes a terminal block 20 c comprising a plurality of cage clamps, spring clamps, screw terminals, or other wiring connectors 20 d that are adapted to be connected to field cables or field wires FW that are each associated with a field device FD that is typically an analog or digital device such as a sensor, flow meter, switch, probe, thermocouple, RTD, encoder, or the like that is associated with the process or machine being controlled (the controlled system CS) by the controller C. The terminal block 20 c can be a separate structure that is assembled to the I/O base 20 a or can alternatively be defined as an integral or one-piece part of the I/O base 20 a. Different varieties of terminal blocks 20 a can be used depending upon the particular configuration required for the field device wiring connectors 20 d, with some having different common terminals, ground connections, voltage supply terminals, and the like. Each installed I/O module 20 b communicates with the field device wiring connectors 20 d of the same I/O base 20 a to which the I/O module 20 b is physically connected. Input/output data are provided between the controller C and field device(s) FD connected to the corresponding I/O base 20 a via backplane 14 and the network adapter module 12 b.
FIG. 2A is a schematic representation of the distributed modular input/output (I/O) system 10 of FIG. 1. It can be seen that the backplane 14 includes only a single (non-redundant) circuit 14 a that sequentially connects the network adapter 12 and the successively adjacent I/O devices 20 in a series or a sequential “daisy-chain” manner through the mated connectors K in the adapter base 12 a and I/O bases 20 a. In particular, the adapter 12 and each I/O device 20 include backplane circuitry that is located in the respective base 12 a,20 a and/or that is located in the adapter or I/ O module 12 b,20 b connected to the respective base and that establishes the above-described backplane circuit 14 using known backplane data communication protocols. FIG. 2B is similar but shows another known system 10′ wherein the network adapter 12′ includes first and second redundant adapter modules 12 b 1,12 b 2 connected to the base 12 a and wherein each I/O device 20′ includes first and second redundant I/O modules 20 b 1,20 b 2 connected to the base 20 a. In the case of FIG. 2B, fault tolerance is improved because a failed adapter module 12 b 1,12 b 2 or a failed I/O module 20 b 1,20 b 2 can be replaced without interrupting operation of the modular I/ O system 10,10′. Like the system 10 of FIG. 2A, however, the backplane 14 includes only a single (non-redundant) circuit 14 a that sequentially connects the network adapter 12 and the successively adjacent I/O devices 20 in a series or “daisy-chain” manner such that the backplane circuit 14 is interrupted by only a single point of failure.
SUMMARY
The systems of FIGS. 1, 2A, 2B do not provide a truly fault tolerant system in that the certain components are not redundant. Thus, if any single component fails at least a portion of the system and/or devices connected thereto are offline until a repair can be made or system functionality can otherwise be restored. A need has been identified for an I/O system that avoids this single-point failure outcome for certain applications including many industrial automation control applications, such as distributed control systems for process and plant control where continuous and uninterrupted operation of the controlled process or system is a critical requirement. In addition, such a system should allow for easy configuration of redundant components (e.g., a pair of I/O modules operating in simplex vs. a pair of I/O modules operating in duplex).
In accordance with one aspect of the present development, an I/O device includes an I/O base, at least two I/O modules supported on the I/O base, and a duplex terminal block assembly supported on the I/O base. The at least two I/O modules include a first I/O module and a second I/O module coupled to the duplex terminal block assembly in parallel.
The duplex terminal block assembly can include connectors for connecting to a field device. The duplex terminal block assembly can include conductive structures for coupling the connectors with each of the first and second I/O modules.
The duplex terminal block assembly can include a terminal block base and a terminal block supported on the terminal block base. The terminal block base can have a width that is twice the width of the terminal block. The terminal block can be centered along the width of the terminal block base. The terminal block can be received in a slot of the terminal block base. The I/O device can further include a third I/O module and a simplex terminal block assembly electrically coupled to the third I/O module. The simplex terminal block assembly can have a width that is half the width of the duplex terminal block assembly. The I/O base can includes a plurality of ports (sometimes referred to as terminal block landing points), each port adapted to couple one of the plurality of I/O modules to a terminal block assembly, and wherein the duplex terminal block is received in at least two ports associated with the first and second I/O modules, and wherein the simplex terminal block is received in a port associated with the third I/O module.
In accordance with another aspect, a duplex terminal block assembly for use with an associated I/O device having an I/O base with at least two ports for receiving at least a portion of a terminal block assembly and at least two I/O modules supported on the I/O base, the duplex terminal block assembly includes a terminal block base portion having connectors for coupling with the I/O base of the associated I/O device, and a terminal block extending from the terminal block base portion and having connectors for connecting to an associated field device. The terminal block base portion has a width such that it is at least partially received in each of the at least two ports when installed in the I/O base, and the duplex terminal block includes conductive structures for coupling each of the at least two I/O modules in parallel to the connectors.
The terminal block base portion can have a width that is twice the width of the terminal block. The terminal block can be centered along the width of the terminal block base portion. The terminal block and terminal block base portion can be separate components assembled together to form the duplex terminal block assembly. The terminal block can be received in a slot of the terminal block base portion.
In accordance with another aspect, a method of assembling an I/O device having at least two I/O modules connected in duplex to a field device includes coupling at least two I/O modules to an I/O base, and coupling a duplex terminal block to first and second ports of the I/O base. The duplex terminal block assembly includes a terminal block base portion having connectors for coupling with the I/O base of the associated I/O device, and a terminal block extending from the terminal block base portion and having connectors for connecting to the associated field device. The terminal block base portion has a width such that it is at least partially received in each of the at least two ports when installed in the I/O base. The duplex terminal block includes conductive structures for coupling each of the at least two I/O modules in parallel to the connectors.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows an example of an industrial control system including an industrial automation controller and a known distributed modular input/output (I/O) system;
FIG. 2A is a schematic diagram of distributed modular I/O system;
FIG. 2B is a schematic diagram of another distributed modular I/O system;
FIG. 3 is an exemplary distributed I/O system in accordance with the present disclosure;
FIG. 4 is a perspective view of an I/O base;
FIG. 5 is a perspective view of the I/O base of FIG. 4 with exemplary terminal block assemblies in accordance with the present disclosure;
FIG. 6 is a perspective view of an I/O device in accordance with the present disclosure;
FIG. 7 is a perspective top view of a duplex terminal block assembly in accordance with the present disclosure;
FIG. 8 is a perspective bottom view of the duplex terminal block assembly of FIG. 7;
FIG. 9 is a perspective top view of a simplex terminal block assembly in accordance with the present disclosure;
FIG. 10 is a perspective bottom view of the simplex terminal block assembly of FIG. 9;
FIG. 11 is a perspective view of an I/O device having a first configuration;
FIG. 12 is a perspective view of an I/O device having a second configuration;
FIG. 13 is a perspective view of an I/O device having a third configuration; and
FIG. 14 is a perspective view of an I/O device having a fourth configuration.
FIG. 15 is a schematic illustration of the I/O upper and lower I/O connections of an exemplary duplex terminal block assembly in accordance with the present disclosure;
FIG. 16 (comprising FIGS. 16A and 16B) is a schematic illustration of the routing of each I/O connection between an upper side (field device connection side) and a lower side (I/O base connection side) of the duplex terminal block assembly of FIG. 15.
DETAILED DESCRIPTION
FIG. 3 shows a distributed modular I/O system 110 in accordance with an embodiment of the present development. As described in detail below, the system 110 includes terminal block assemblies that permit an I/O base to operate in simplex mode, duplex mode or a combination thereof, as desired.
The distributed modular I/O system 110 includes a network adapter 112 that is operatively connected to both first and second redundant industrial automation networks N1,N2 such as first and second Parallel Redundancy Protocol (PRP) LAN networks or the like such as an Ethernet/IP network or other industrial automation network so that the network adapter 112 receives data from, transmits data to, and otherwise communicates with one or more industrial control modules or “controllers” C1,C2 connected respectively to the networks N1,N2. The controllers C1,C2 can comprise one or more programmable logic controllers (PLC), microprocessors, and/or other electronic processors for machine and/or process control.
The network adapter 112 includes an adapter base 112 a that is mounted to a rail D′ or other support structure. The network adapter 112 further comprises first and second redundant adapter modules 112 b 1,112 b 2 that are operating in parallel with each other and each of which is permanently or releasably connected to the adapter base 112 a. Each adapter module 112 b 1,112 b 2 is connected to both the first and second networks N1,N2 and includes the electronic circuitry for data communication data with the controllers C1,C2 via networks N1,N2 and for data communication with multiple I/O devices 120 of the system 110 as described below. The adapter 112 comprises one or more network connectors NC for connecting with the networks N1,N2 via known connectors such as RJ45 connectors, Small FormFactor Pluggable (SFP) connectors, or the like.
The network adapter 112 further comprises first and second redundant power conditioning modules 116 a,116 b connected to the adapter base 112 a and each including a power input connector PC for connecting with a source of electrical power for supplying system electrical power to the network adapter 112 and to the I/O devices 120 and other components operatively connected to the adapter 112 and/or I/O devices 120.
The I/O system 110 further comprises one or more I/O devices 120 that each include an I/O base 120 a also mounted to the support rail D′ or other support structure, with a first I/O base 120 a located adjacent and operably physically and electrically connected to the adapter base 112 a by a multi-contact electrical connector K and with the additional I/O bases 120 a operably physically and electrically connected together one after the other in a sequential manner by successive mating multi-contact electrical connectors K such that a modular backplane circuit or “backplane” (schematically illustrated at 114) is constructed and adapted for communicating electrical power and data through the successively connected I/O bases 120 a and operably connects each I/O base 120 a to the network adapter 112 and, thus, to the first and second networks N1,N2 and the first and second controllers C1,C2.
In addition to the I/O base 120 a, each I/O device 120 further comprises at least two I/O modules 120 b (120 b 1, 120 b 2, 120 b 3, 120 b 4, in FIG. 3) operatively removably connected to the I/O base 120 a such that the installed I/O modules 120 b also communicates with the network adapter 112 and the first and second controllers C1,C2 over the backplane 114 a such that input/output data are provided between the controllers C1,C2 and each I/O module 120 b via backplane 114 a. Each installed I/O module 120 b is selected and configured to perform one or more specialized input/output functions such as DC input, DC output, AC input, AC output, analog input and/or output, RTD and/or thermocouple input and/or thermocouple output, or the like as is generally known in the field of industrial automation.
In the illustrated embodiment, each I/O device 120 comprises four I/O modules 120 b (120 b 1,120 b 2,120 b 3,120 b 4) operatively removably connected to the I/O base 120 a, and at least two of the I/O modules 120 b are identical to each other and operated in parallel to provide a redundancy with respect to each other (as shown, the I/O modules 120 b 3,120 b 4 of the two illustrated I/O devices 120 are identical and operated redundantly in parallel with respect to each other).
Each I/O base 120 a further supports two types of terminal blocks 120 c 1 and 120 c 2 comprising a plurality of cage clamps, spring clamps, screw terminals, or other wiring connectors 120 d that are adapted to be connected to field cables or field wires FW that are each associated with a field device FD that is typically an analog or digital device such as a sensor, flow meter, switch, probe, thermocouple, RTD, encoder, or the like that is associated with the process or machine being controlled (the controlled system CS) by the controllers C1,C2. In the illustrated embodiment, each terminal block 120 c 1/120 c 2 is a separate structure that is assembled to the I/O base 120 a, but in some embodiments the terminal blocks can be defined as an integral or one-piece part of the I/O base 120 a. Different varieties of terminal blocks can be used depending upon the particular configuration required for the field device wiring connectors 120 d, with some having different common terminals, ground connections, voltage supply terminals, and the like. Each installed I/O module 120 b communicates with the field device wiring connectors 120 d of the same I/O base 120 a on which the I/O module 120 b is physically installed. Input/output data are provided between the controllers C1,C2 and field device(s) FD connected to the corresponding I/O base 120 a via backplane 114 and the network adapter modules 112 b 1,112 b 2.
In the illustrated embodiment, the redundant, parallel I/O modules 120 b 3,120 b 4 share a common terminal block 120 c 2 such that the redundant I/O modules 120 b 3,120 b 4 are operably connected to the same field wiring FW and field device FD to send data to and receive data from the controlled system. I/O modules 120 b 1 and 120 b 2 are coupled to respective terminal blocks 120 c 1 for communication to respective field wiring FW. It should now be appreciated, that terminal blocks 120 c 1 and 120 c 2 differ in form and function from each other, with terminal block 120 c 1 configured to connect a single I/O module to associated field wiring FW (simplex mode) and terminal block 120 c 2 configured to couple two I/O modules to associated field wiring FW (duplex mode).
Turning to FIGS. 4-6, the two types of terminal blocks 120 c 1 and 120 c 2 are illustrated in detail as part of an I/O module 120 including I/O modules 120 b 1-120 b 2. In FIG. 4, an I/O base 120 a is illustrated without I/O modules or terminal blocks installed. The I/O base 120 a includes four slots S1, S2, S3 and S4 for receiving I/O modules and four corresponding ports P1, P2, P3, and P4 for receiving all or part of a terminal block assembly. Each slot S1-S4 includes connectors C for coupling an I/O module to a terminal block assembly and to the backplane of the I/O system. Each port P1-P4 includes a plurality of pins Pi adapted to be received in corresponding recesses of a terminal block assembly, as will be described below.
In FIG. 5, a pair of terminal block assemblies 120C1 are installed in ports P1 and P2 and a single terminal block assembly 120 c 2 is installed in ports P3 and P4. With additional reference to FIG. 6, it will be appreciated that each of I/O modules 120 b 1 and 120 b 2 are associated with a respective terminal block assembly 120 c 1 for connection to corresponding respective field wiring/devices (not shown), while both I/O modules 120 b 3 and 120 b 4 are associated with a common terminal block assembly 120 c 2 for connection to common field wiring/device (not shown). Terminal block assembly 120 c 1 has a width W1 that is approximately half of the width W2 of terminal block assembly 120 c 2. The width W1 of terminal block assembly 120 c 2 allows the terminal block assembly 120 c 2 to electrically couple with the pins Pi of both ports P3 and P4 such that I/O modules 120 b 3 and 120 b 4 can be coupled to a common field device in duplex mode.
FIGS. 7 and 8 illustrate an exemplary terminal block assembly 120 c 2 in detail. The terminal block assembly 120 c 2 includes a terminal block base TBB1 having width W2. A terminal block TB is supported on the terminal block base TBB1. The terminal block TB is generally centered along the width W of the terminal block base TBB1. The bottom side of the terminal block base TBB1 includes first and second banks of recesses B1 and B2 adapted to receive pins Pi of each port in which the terminal block assembly 120 c 2 is installed. The first and second banks of recesses B1 and B2 are configured to electrically coupled the pins of each port to wiring connectors 120 d on an opposite side of the terminal block assembly 120 c 2 that are adapted to be connected to field cables or field wires FW that are each associated with a field device FD that is typically an analog or digital device such as a sensor, flow meter, switch, probe, thermocouple, RTD, encoder, or the like that is associated with the process or machine being controlled. Thus, it will be appreciated that the terminal block assembly 120 c 2 includes wires, traces or other conductive structures for coupling each recess of each bank B1 and B2 to a respective cage clamp, spring clamp, screw terminal, or other structure of wiring connectors 120 d. A screw Sc is provided for securing the terminal block assembly 120 c 2 to the I/O base 120 a. The terminal block base TBB1 is approximately twice the width of the terminal block TB.
The terminal block 120 c 2 is sometimes referred to as a duplex terminal block as it can be used to connect two I/O modules to a common field device in systems where redundancy is required or desired. In contrast, and with reference to FIGS. 9 and 10, terminal block 120 c 1 is sometimes referred to as a simplex terminal block assembly as it is configured to connect a single I/O module to a field device. Terminal block assembly 120 c 1 generally comprises a terminal block base TBB2 and a terminal block TB supported thereon. In this embodiment, the terminal block TB and the terminal block base TBB2 have a corresponding width W1. It will be appreciated that the terminal block assembly 120 c 1 can be received in a port of the I/O base 120 a to connect a field device to a respective I/O module in an otherwise conventional manner. A screw Sc is provided for securing the terminal block assembly 120 c 2 to the I/O base 120 a.
The terminal block assemblies 120 c 12 and 120 c 2 allow customization of an I/O system having at least two slots for receiving I/O modules and corresponding ports for receiving terminal block assemblies. Although the illustrated embodiment is directed to a quad slot I/O device, aspects of the present disclosure can be adapted to any I/O device having at least 2 slots. It should be appreciated that the terminal block TB in each of the terminal block assemblies 120 c 1 and 120 c 2 is a common element that can be used with either terminal block base TBB1 or TBB2. This construction further enhances the modularity of the I/O system by allowing a single terminal block TB to be used in either duplex or simplex fashion depending on the terminal block base to which it is associated. Although it should be appreciated that separate, dedicated terminal blocks can be provided in accordance with aspects of the present disclosure. Aspects of the present disclosure facilitate customization of I/O devices in the field by allowing a technician to select a terminal block assembly for a particular application depending on whether simplex or duplex functionality is desired, and/or to easily retrofit existing installations for duplex functionality.
Turning to FIGS. 11-14, four different I/O device configurations are shown using various combinations of the terminal block assemblies 120 c 1 and 120 c 2. In FIG. 11, an I/O device 120 is shown having four I/O modules 120 b 1-120 b 4 in a first configuration. I/O modules 120 b 1 and 120 b 2 are coupled to a duplex terminal block assembly 120 c 2 to provide redundancy to a first associated field device (not shown), while I/O modules 120 b 3 and 120 b 4 are coupled to a duplex terminal block assembly 120 c 2 to provide redundancy to a second associated field device (not shown).
In FIG. 12, an I/O device 120 is shown having four I/O modules 120 b 1-120 b 4 in a second configuration. In this embodiment, each I/O module 120 b 1-120 b 4 is coupled to a simplex terminal block assembly 120 c 1 for communication with a respective field device (not shown).
FIGS. 13 and 14 illustrate I/O devices 120 having third and fourth configurations. A third configuration is shown in FIG. 13 wherein I/O modules 120 b 1 and 120 b 2 are coupled to a duplex terminal block assembly 120 c 2 and I/O modules 120 b 3 and 120 b 4 are coupled to respective simplex terminal block assemblies 120 c 1. FIG. 14 illustrates a fourth configuration wherein I/O modules 120 b 1 and 120 b 2 are coupled to respective simplex terminal block assemblies 120 c 1 and I/O modules 120 b 3 and 120 b 4 are coupled to a duplex terminal block assembly 120 c 2.
FIGS. 15 and 16 schematically illustrate an exemplary duplex terminal block 120 c 2. The solid dots SD represent I/O connections on an upper side of the duplex terminal block assembly 120 c 2 that are generally connected to an associated field device when the duplex terminal block assembly is installed in an I/O device, as previously described. The open dots OD represent the I/O connections on the lower side of the duplex terminal block assembly 120 c 2. The open dots OD are divided into two groups corresponding to a left I/O module and a right I/O module as indicated in FIG. 15. As will be appreciated, each respective group of open dots representing lower I/O connections are generally connected to a respective I/O module when the duplex terminal block assembly is installed in an I/O device.
FIG. 16 (comprising FIGS. 16A and 16B) schematically illustrates the routing between the upper I/O connections SD and lower I/O connections OD. As will be appreciated, each of the upper I/O connections SD is coupled to a lower I/O connection OD in each of the left and right groups of I/O connections by conductive structure CS of the duplex terminal block assembly 120 c 2.
In the preceding specification, various embodiments have been described with reference to the accompanying drawings. It will, however, be evident that various modifications and changes may be made thereto, and additional embodiments may be implemented, without departing from the broader scope of the invention as set forth in the claims that follow. The specification and drawings are accordingly to be regarded in an illustrative rather than restrictive sense.

Claims (10)

The invention claimed is:
1. An I/O device comprising:
an I/O base;
at least two I/O modules supported on the I/O base; and
a duplex terminal block assembly supported on the I/O base;
wherein the at least two I/O modules include a first I/O module and a second I/O module coupled to the duplex terminal block assembly in parallel;
wherein the duplex terminal block assembly includes a terminal block base and a terminal block supported on the terminal block base, the terminal block base having a width that is twice a width of the terminal block and the terminal block is centered along the width of the terminal block base; and
wherein the terminal block is received in a slot of the terminal block base.
2. An I/O device comprising:
an I/O base;
at least two I/O modules supported on the I/O base; and
a duplex terminal block assembly supported on the I/O base;
wherein the at least two I/O modules include a first I/O module and a second I/O module coupled to the duplex terminal block assembly in parallel; and
further comprising a third I/O module and a simplex terminal block assembly electrically coupled to the third I/O module.
3. The I/O device of claim 2, wherein the simplex terminal block assembly has a width that is half a width of the duplex terminal block assembly.
4. The I/O device of claim 3, wherein the I/O base includes a plurality of ports, each port adapted to couple one of the plurality of I/O modules to a terminal block assembly, and wherein the duplex terminal block is received in at least two ports associated with the first and second I/O modules, and wherein the simplex terminal block is received in a port associated with the third I/O module.
5. A duplex terminal block assembly for use with an associated I/O device having an I/O base with at least two ports for receiving at least a portion of a terminal block assembly and at least two I/O modules supported on the I/O base, the duplex terminal block assembly comprising:
a terminal block base portion having connectors for coupling with the I/O base of the associated I/O device; and
a terminal block extending from the terminal block base portion and having connectors for connecting to an associated field device;
wherein the terminal block base portion has a width such that it is at least partially received in each of the at least two ports when installed in the I/O base; and
wherein the duplex terminal block includes conductive structures for coupling each of the at least two I/O modules in parallel to the connectors.
6. The duplex terminal block assembly of claim 5, wherein the terminal block base portion has a width that is twice a width of the terminal block.
7. The duplex terminal block assembly of claim 6, wherein the terminal block is centered along the width of the terminal block base portion.
8. The duplex terminal block assembly of claim 7, wherein the terminal block and terminal block base portion are separate components assembled together to form the duplex terminal block assembly.
9. The duplex terminal block assembly of claim 8, wherein the terminal block is received in a slot of the terminal block base portion.
10. A method of assembling an I/O device having at least two I/O modules connected in duplex to a field device, the method comprising:
coupling at least two I/O modules to an I/O base;
coupling a duplex terminal block to first and second ports of the I/O base;
wherein the duplex terminal block assembly includes a terminal block base portion having connectors for coupling with the I/O base of the associated I/O device, and a terminal block extending from the terminal block base portion and having connectors for connecting to the associated field device;
wherein the terminal block base portion has a width such that it is at least partially received in each of the at least two ports when installed in the I/O base; and
wherein the duplex terminal block includes conductive structures for coupling each of the at least two I/O modules in parallel to the connectors.
US16/583,971 2019-09-26 2019-09-26 Removable terminal block assembly that permits an I/O base to operate in simplex mode or duplex mode Active US10985477B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/583,971 US10985477B1 (en) 2019-09-26 2019-09-26 Removable terminal block assembly that permits an I/O base to operate in simplex mode or duplex mode
EP20190174.1A EP3798770B1 (en) 2019-09-26 2020-08-10 Removable terminal block assembly that permits an i/o base to operate in simplex mode or duplex mode
US17/186,102 US11699867B2 (en) 2019-09-26 2021-02-26 Removable terminal block assembly that permits an I/O base to operate in simplex mode or duplex mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/583,971 US10985477B1 (en) 2019-09-26 2019-09-26 Removable terminal block assembly that permits an I/O base to operate in simplex mode or duplex mode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/186,102 Continuation US11699867B2 (en) 2019-09-26 2021-02-26 Removable terminal block assembly that permits an I/O base to operate in simplex mode or duplex mode

Publications (2)

Publication Number Publication Date
US20210098904A1 US20210098904A1 (en) 2021-04-01
US10985477B1 true US10985477B1 (en) 2021-04-20

Family

ID=72039357

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/583,971 Active US10985477B1 (en) 2019-09-26 2019-09-26 Removable terminal block assembly that permits an I/O base to operate in simplex mode or duplex mode
US17/186,102 Active 2039-11-22 US11699867B2 (en) 2019-09-26 2021-02-26 Removable terminal block assembly that permits an I/O base to operate in simplex mode or duplex mode

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/186,102 Active 2039-11-22 US11699867B2 (en) 2019-09-26 2021-02-26 Removable terminal block assembly that permits an I/O base to operate in simplex mode or duplex mode

Country Status (2)

Country Link
US (2) US10985477B1 (en)
EP (1) EP3798770B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11699867B2 (en) * 2019-09-26 2023-07-11 Rockwell Automation Technologies, Inc. Removable terminal block assembly that permits an I/O base to operate in simplex mode or duplex mode
US11852691B2 (en) 2021-08-24 2023-12-26 Rockwell Automation Technologies, Inc. Input/output (IO) module power supply with online load test capability
US11860599B2 (en) 2021-09-27 2024-01-02 Rockwell Automation Technologies, Inc. High availability redundant power distribution system diagnostic operations
US11899445B2 (en) 2021-09-27 2024-02-13 Rockwell Automation Technologies, Inc. High availability redundant power distribution systems and methods
US11994962B2 (en) 2021-11-04 2024-05-28 Rockwell Automation Technologies, Inc. Concurrent operation of input/output (IO) modules in a duplex configuration

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116315798B (en) * 2023-03-02 2023-12-19 广州市迪士普音响科技有限公司 Pluggable modularized digital signal and analog signal application interface

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6425770B1 (en) 2000-04-14 2002-07-30 Rockwell Automation Technologies, Inc. Input/output device having removable module
US20020172467A1 (en) * 2001-01-10 2002-11-21 Anderson Jerry Max High-density optical connecting block
US6549034B1 (en) 2001-12-27 2003-04-15 Rockwell Automation Technologies, Inc. Programmable logic controller for safety systems with reduced cross-wiring
DE10135980C1 (en) 2001-07-24 2003-04-24 Abb Patent Gmbh Arrangement for connection of decentralized local field devices to remote central station, has input/output units with system- and field-side communications interfaces in same plug plane
US6909923B2 (en) 1999-12-22 2005-06-21 Rockwell Automation Technologies, Inc. Safety communication on a single backplane
US6939153B1 (en) * 2003-05-14 2005-09-06 Pent Technologies, Inc. Double “E” electrical distribution block
US7101188B1 (en) * 2005-03-30 2006-09-05 Intel Corporation Electrical edge connector adaptor
US20070016701A1 (en) 2005-06-27 2007-01-18 Rockwell Automation Technologies, Inc. Method and apparatus for providing redundant I/O adapters in machine and process controllers
US7602617B2 (en) 2005-09-30 2009-10-13 Rockwell Automation Technologies, Inc. On-machine backplane mounted modular power and data distribution system
US8149554B2 (en) 2008-11-18 2012-04-03 Rockwell Automation Technologies, Inc. Apparatus for fault tolerant digital inputs
US8184417B2 (en) 2008-11-18 2012-05-22 Rockwell Automation Technologies, Inc. Apparatus for fault tolerant analog inputs
EP2698677A1 (en) 2012-08-17 2014-02-19 Siemens Aktiengesellschaft Peripheral system
US8769158B2 (en) 2011-07-08 2014-07-01 Rockwell Automation Technologies, Inc. High availability device level ring backplane
US20150045936A1 (en) 2013-08-08 2015-02-12 General Electric Company System and method for modular controller assembly supporting redundant configurations
US20150270652A1 (en) 2014-03-21 2015-09-24 Rockwell Automation Technologies, Inc. Control system components with key
US9325110B2 (en) 2014-02-27 2016-04-26 Rockwell Automation Technologies, Inc. Input/output module
US10483663B2 (en) 2017-11-09 2019-11-19 Rockwell Automation Asia Pacific Business Center Pte. Ltd. Terminal block with retention features for a removable I/O module
US10579558B1 (en) 2019-03-06 2020-03-03 Honeywell International Inc. Flexible redundant input/output (I/O) schemes for I/O channels
US10631426B1 (en) 2018-09-28 2020-04-21 Rockwell Automation Technologies, Inc. Electronics module mounting system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080280475A1 (en) * 2007-05-11 2008-11-13 Norman R. Byrne Modular electrical system utilizing four wire circuitry
US10985477B1 (en) * 2019-09-26 2021-04-20 Rockwell Automation Technologies, Inc. Removable terminal block assembly that permits an I/O base to operate in simplex mode or duplex mode

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6909923B2 (en) 1999-12-22 2005-06-21 Rockwell Automation Technologies, Inc. Safety communication on a single backplane
US6425770B1 (en) 2000-04-14 2002-07-30 Rockwell Automation Technologies, Inc. Input/output device having removable module
US20020172467A1 (en) * 2001-01-10 2002-11-21 Anderson Jerry Max High-density optical connecting block
DE10135980C1 (en) 2001-07-24 2003-04-24 Abb Patent Gmbh Arrangement for connection of decentralized local field devices to remote central station, has input/output units with system- and field-side communications interfaces in same plug plane
US6549034B1 (en) 2001-12-27 2003-04-15 Rockwell Automation Technologies, Inc. Programmable logic controller for safety systems with reduced cross-wiring
US6939153B1 (en) * 2003-05-14 2005-09-06 Pent Technologies, Inc. Double “E” electrical distribution block
US7101188B1 (en) * 2005-03-30 2006-09-05 Intel Corporation Electrical edge connector adaptor
US20070016701A1 (en) 2005-06-27 2007-01-18 Rockwell Automation Technologies, Inc. Method and apparatus for providing redundant I/O adapters in machine and process controllers
US7596635B2 (en) 2005-06-27 2009-09-29 Rockwell Automation Technologies, Inc. Method and apparatus for providing redundant I/O adapters in machine and process controllers
US7602617B2 (en) 2005-09-30 2009-10-13 Rockwell Automation Technologies, Inc. On-machine backplane mounted modular power and data distribution system
US8149554B2 (en) 2008-11-18 2012-04-03 Rockwell Automation Technologies, Inc. Apparatus for fault tolerant digital inputs
US8184417B2 (en) 2008-11-18 2012-05-22 Rockwell Automation Technologies, Inc. Apparatus for fault tolerant analog inputs
US8441766B2 (en) 2008-11-18 2013-05-14 Rockwell Automation Technologies, Inc. Apparatus for fault tolerant digital outputs
US8769158B2 (en) 2011-07-08 2014-07-01 Rockwell Automation Technologies, Inc. High availability device level ring backplane
US20140226460A1 (en) 2011-07-08 2014-08-14 Rockwell Automation, Inc. System And Method For Industrial Control Using A High Availability Backplane
EP2698677A1 (en) 2012-08-17 2014-02-19 Siemens Aktiengesellschaft Peripheral system
US20150045936A1 (en) 2013-08-08 2015-02-12 General Electric Company System and method for modular controller assembly supporting redundant configurations
US9325110B2 (en) 2014-02-27 2016-04-26 Rockwell Automation Technologies, Inc. Input/output module
US20150270652A1 (en) 2014-03-21 2015-09-24 Rockwell Automation Technologies, Inc. Control system components with key
US10483663B2 (en) 2017-11-09 2019-11-19 Rockwell Automation Asia Pacific Business Center Pte. Ltd. Terminal block with retention features for a removable I/O module
US10631426B1 (en) 2018-09-28 2020-04-21 Rockwell Automation Technologies, Inc. Electronics module mounting system
US10579558B1 (en) 2019-03-06 2020-03-03 Honeywell International Inc. Flexible redundant input/output (I/O) schemes for I/O channels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
European Search Report, dated Jan. 21, 2021, in connection with EP Appln. No. 20190174.1.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11699867B2 (en) * 2019-09-26 2023-07-11 Rockwell Automation Technologies, Inc. Removable terminal block assembly that permits an I/O base to operate in simplex mode or duplex mode
US11852691B2 (en) 2021-08-24 2023-12-26 Rockwell Automation Technologies, Inc. Input/output (IO) module power supply with online load test capability
US11860599B2 (en) 2021-09-27 2024-01-02 Rockwell Automation Technologies, Inc. High availability redundant power distribution system diagnostic operations
US11899445B2 (en) 2021-09-27 2024-02-13 Rockwell Automation Technologies, Inc. High availability redundant power distribution systems and methods
US11994962B2 (en) 2021-11-04 2024-05-28 Rockwell Automation Technologies, Inc. Concurrent operation of input/output (IO) modules in a duplex configuration

Also Published As

Publication number Publication date
US20210098904A1 (en) 2021-04-01
EP3798770A1 (en) 2021-03-31
US11699867B2 (en) 2023-07-11
US20210249798A1 (en) 2021-08-12
EP3798770C0 (en) 2023-11-22
EP3798770B1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
US11699867B2 (en) Removable terminal block assembly that permits an I/O base to operate in simplex mode or duplex mode
US11564324B2 (en) Input/output system
US11243504B2 (en) Distributed modular I/O device with configurable single-channel I/O submodules
US11347195B2 (en) Modular backplane for an industrial controller
CN101728725B (en) Pluggable bases with different levels of redundancy
US7581053B2 (en) Distributed modular input/output system with wireless backplane extender
CN101192056B (en) Safety module and automation system
US7917675B2 (en) Method and apparatus for interconnecting modules
US20160283427A1 (en) Method and System for Defining Slot Addresses
US20100125345A1 (en) Apparatus for Fault Tolerant Analog Inputs
CN113261396B (en) Basic module and functional module for a switchgear cabinet system and switchgear cabinet system
US11412632B2 (en) Isolated power smart terminal block
CN110119369B (en) Flexible scalable automation device with hot pluggable I/O units
US9861002B1 (en) Single channel I/O in a modular sub-chassis
US11665846B2 (en) Distributed modular input/output (I/O) system with redundant ethernet backplane networks for improved fault tolerance
CN101141362B (en) System interface and apparatus comprising the system interface
KR102014691B1 (en) Remote input-output apparatus for industrial controllers with duplicated power and compler module
EP4284130A1 (en) An inlay element, a module termination unit, an input/output device, a modular process control system and a method for assembling an input/output device

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: ROCKWELL AUTOMATION TECHNOLOGIES, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WROBEL, ADAM M.;LOSTOSKI, DOUG A.;KILLIAN, DANIEL E.;SIGNING DATES FROM 20190919 TO 20190920;REEL/FRAME:050550/0292

STCF Information on status: patent grant

Free format text: PATENTED CASE