US10573959B2 - Vehicle radar system using shaped antenna patterns - Google Patents

Vehicle radar system using shaped antenna patterns Download PDF

Info

Publication number
US10573959B2
US10573959B2 US15/598,664 US201715598664A US10573959B2 US 10573959 B2 US10573959 B2 US 10573959B2 US 201715598664 A US201715598664 A US 201715598664A US 10573959 B2 US10573959 B2 US 10573959B2
Authority
US
United States
Prior art keywords
antenna
radiators
transmitter
sensing system
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/598,664
Other versions
US20170309997A1 (en
Inventor
Stephen W. Alland
Curtis Davis
Marius Goldenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uhnder Inc
Original Assignee
Uhnder Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/IB2017/052375 external-priority patent/WO2017187341A1/en
Application filed by Uhnder Inc filed Critical Uhnder Inc
Priority to US15/598,664 priority Critical patent/US10573959B2/en
Assigned to UHNDER, INC. reassignment UHNDER, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALLAND, STEPHEN W., DAVIS, CURTIS, GOLDENBERG, MARIUS
Publication of US20170309997A1 publication Critical patent/US20170309997A1/en
Application granted granted Critical
Publication of US10573959B2 publication Critical patent/US10573959B2/en
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION, AS AGENT reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION, AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UHNDER, INC.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/2813Means providing a modification of the radiation pattern for cancelling noise, clutter or interfering signals, e.g. side lobe suppression, side lobe blanking, null-steering arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3283Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle side-mounted antennas, e.g. bumper-mounted, door-mounted
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/28Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/26265Arrangements for sidelobes suppression specially adapted to multicarrier systems, e.g. spectral precoding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • G01S2013/9375
    • G01S2013/9378
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention is directed to radar systems, and more particularly to radar systems for vehicles.
  • a radar system typically transmits radio signals and listens for the reflection of the radio signals from objects in the environment. By comparing the transmitted radio signals with the received radio signals, a radar system can determine the distance to an object. Using Doppler processing, the velocity of an object can be determined. Using various transmitter and receiver combinations, the location (angle) of an object can also be determined.
  • Methods and systems of the present invention provide for a shaped antenna pattern to enable a single radar system to support long, medium, and short range applications with a single set of sensing elements.
  • An exemplary radar system of the present invention provides for an antenna pattern with a narrow, high-gain mainlobe for long range coverage and lower gain, broad shoulders for wider field of view or sensing (FOV) medium range and/or short range coverage.
  • This exemplary radar system with the shaped antenna pattern reduces the overall number of sensors, and related cost, for vehicular applications. Difficulties, and cost of, integrating a large number of sensors on the vehicle are also mitigated.
  • a radar sensing system for a vehicle in accordance with an embodiment of the present invention includes a transmitter and a receiver.
  • the transmitter is operable to or configured to transmit a radio signal.
  • the receiver is operable to or configured to receive the transmitted radio signal reflected from objects in the environment.
  • the transmitter includes an antenna and is operable to or configured to transmit the radio signal via the antenna.
  • the antenna includes a plurality of linear arrays of radiators. An arrangement of the linear arrays of radiators is selected to form a selected or desired shaped antenna pattern having a selected or desired mainlobe shape and selected or desired shoulder shapes to cover selected sensing zones without nulls or holes in the coverage.
  • cost and size of an individual sensor is reduced as well when compared to the cost and size of a sensor with multiple sets of sensing elements assigned to different sensing zones.
  • the shaped antenna pattern is tailored to the detection ranges required for the different sensing zones with a smooth pattern shape that avoids nulls or holes in the coverage pattern, thereby mitigating drawbacks inherent in the approach using antenna pattern sidelobes to cover selected sensing zones.
  • the exemplary embodiment reduces costs. Furthermore, the exemplary embodiment is compatible with MIMO radar techniques which provide phased array type flexibility on receive via digital beamforming. MIMO radar techniques also offer advantages compared to phased array radar, including a synthetically enhanced virtual receive antenna with improved angle resolution and accuracy. Another advantage of MIMO radar with digital beamforming is the entire field of view or sensing (FOV) can be covered in a single, long duration dwell with improved Doppler resolution.
  • FOV field of view or sensing
  • FIG. 1 is a plan view of an automobile equipped with one or more radar systems
  • FIG. 2A and FIG. 2B are block diagrams of radar systems in accordance with the present invention.
  • FIG. 3 is a block diagram illustrating a radar system with a plurality of receivers and a plurality of transmitters (MIMO radar) in accordance with the present invention
  • FIG. 4 is a plan view of an automobile equipped with a radar system and exemplary multiple sensing zones for vehicular applications;
  • FIG. 5A , FIG. 5B , and FIG. 5C are plan views illustrating sensing solutions for the sensing zones illustrated in FIG. 4 ;
  • FIG. 6A is a block diagram of an exemplary sensor and a corresponding shaped antenna pattern in accordance with the present invention.
  • FIG. 6B is a graph illustrating relative gain and angle extent of an exemplary shaped antenna pattern in accordance with the present invention.
  • FIG. 7A is a block diagram illustrating an exemplary antenna in accordance with the present invention.
  • FIG. 7B is a block diagram illustrating exemplary phase and amplitude distribution implemented in a 3-way combiner of the antenna illustrated in FIG. 7A , in accordance with the present invention
  • FIG. 7C is a graph illustrating an exemplary shaped antenna pattern for the phase and amplitude distribution of FIG. 7B , in accordance with the present invention.
  • FIG. 8A is a block diagram illustrated an exemplary antenna in accordance with the present invention.
  • FIG. 8B is a block diagram illustrating exemplary phase and amplitude distribution implemented in a 6-way combiner of the antenna illustrated in FIG. 8A , in accordance with the present invention
  • FIG. 8C is a graph illustrating an exemplary shaped antenna pattern for the phase and amplitude distribution of FIG. 8B , in accordance with the present invention.
  • FIG. 9 is a graph illustrating exemplary MIMO radar antenna patterns, in accordance with the present invention.
  • FIG. 10A is a block diagram illustrating an exemplary antenna for shaping an antenna pattern in the vertical dimension, in accordance with the present invention.
  • FIG. 10B is a diagram illustrating vertical sensing zones relative to a road surface
  • FIG. 11 is a block diagram illustrating an exemplary antenna with patch radiators of varying dimensions for shaping an antenna pattern in both the horizontal and vertical dimensions, in accordance with the present invention
  • FIG. 12 is a block diagram illustrating an exemplary antenna with patch radiators of varying dimensions for shaping an antenna pattern in the both the horizontal and vertical dimensions, in accordance with the present invention.
  • FIG. 13 is a block diagram illustrating an exemplary single-layer microstrip corporate feed network used to connect a two-dimensional array of patch radiators for shaping an antenna pattern in both the horizontal and vertical dimensions, in accordance with the present invention.
  • the shaped antenna pattern of the present invention enables a single radar system with a single set of sensing elements to mitigate the number of sensors, as well as the number of sets of sensing elements per sensor, needed to cover multiple sensing zones. Multiple sensing zones are required for many current and future sensing applications, including those for vehicular active safety and autonomous driving.
  • the present invention reduces the overall number and cost of the sensors per vehicle for these applications, as well as the cost and size of an individual sensor. Challenges and cost related to integration of a large number of sensors on a vehicle are also mitigated.
  • FIG. 1 illustrates an exemplary radar system 100 configured for use in a vehicle 150 .
  • a vehicle 150 may be an automobile, truck, or bus, etc.
  • the radar system 100 may comprise one or more transmitters and one or more receivers 104 a - 104 d for a plurality of virtual radars. Other configurations are also possible.
  • the radar system 100 may comprise one or more receivers/transmitters 104 a - 104 d, control and processing module 102 and indicator 106 . Other configurations are also possible.
  • FIG. 1 illustrates the receivers/transmitters 104 a - 104 d placed to acquire and provide data for object detection and adaptive cruise control.
  • the radar system 100 (providing such object detection and adaptive cruise control or the like) may be part of an Advanced Driver Assistance System (ADAS) for the automobile 150 .
  • ADAS Advanced Driver Assistance System
  • FIG. 2A illustrates an exemplary radar system 200 with an antenna 202 that is time-shared between a transmitter 206 and a receiver 208 via a duplexer 204 .
  • output from the receiver 208 is received by a control and processing module 210 that processes the output from the receiver 208 to produce display data for the display 212 .
  • the control and processing module 210 is also operable to produce a radar data output that is provided to other control units.
  • the control and processing module 210 is also operable to control the transmitter 206 .
  • FIG. 2B illustrates an alternative exemplary radar system 250 with a pair of antennas 202 a, 202 b: an antenna 202 a for the transmitter 206 and another antenna 202 b for the receiver 208 .
  • each transmitter signal is rendered distinguishable from every other transmitter by using appropriate differences in the modulation, for example, different digital code sequences.
  • Each receiver correlates with each transmitter signal, producing a number of correlated outputs equal to the product of the number of receivers with the number of transmitters. The outputs are deemed to have been produced by a number of virtual receivers, which can exceed the number of physical receivers.
  • the radar sensing system of the present invention may utilize aspects of the radar systems described in U.S. Pat. Nos. 9,575,160 and/or 9,599,702, and/or U.S. patent applications, Ser. No. 15/481,648, filed Apr. 7, 2017, now U.S. Pat. No. 9,689,967, Ser. No. 15/416,219, filed Jan. 26, 2017, now U.S. Pat. No. 9,772,397, and/or Ser. No. 15/292,755, filed Oct. 13, 2016, now U.S. Pat. No. 9,753,121, and/or U.S. provisional applications, Ser. No. 62/382,857, filed Sep. 2, 2016, Ser. No. 62/381,808, filed Aug. 31, 2016, Ser. No.
  • FIG. 3 illustrates a radar system 300 with multiple antennas 302 , 304 , transmitters 306 and receivers 308 .
  • Using multiple antennas allows a radar system 300 to determine the angle of objects/targets in the environment. Depending on the geometry of the antenna system 300 , different angles (e.g., with respect to the horizontal or vertical) can be determined.
  • the radar system 300 may be connected to a network via an Ethernet connection or other types of network connections 314 .
  • the radar system 300 includes memory 310 , 312 to store software used for processing the received radio signals to determine range, velocity, and location of objects/targets in the environment. Memory may also be used to store information about objects/targets in the environment.
  • Still another solution for a single sensor includes the use of a phased array antenna with flexible gain, beamwidth, and scan angle. This solution provides the most flexibility, but is typically too expensive for vehicular radar.
  • FIG. 4 illustrates multiple exemplary sensing zones generally specified for vehicular applications. Three different sensing zones are often specified, for example, a long range zone 410 , a medium range zone 420 , and a short range zone 430 . Each sensing zone may be specified with a different range and horizontal angle field of view (FOV). Different angle resolutions, angle accuracies, and update rates for each sensing zone may be specified as well.
  • the exemplary sensing zones are illustrated for the region forward of a host vehicle 400 .
  • FIGS. 5A, 5B, and 5C illustrate exemplary sensing solutions for the sensing zones illustrated in FIG. 4 .
  • FIG. 5A illustrates three sensors mounted on the front of the host vehicle 400 .
  • a long range sensor 510 a medium range sensor 520 , and a short range sensor 530 are provided, such that a sensor is provided for each sensing zone.
  • the respective regions covered by each sensor are illustrated as well, with a long range sensor coverage 512 for the long range sensor 510 , a medium range sensor coverage 522 for the medium range sensor 520 , and a short range sensor coverage 532 for the short range sensor 530 .
  • FIG. 5B illustrates a single sensor 500 B with three sets of sensing elements: (i) long range antennas 540 , (ii) medium range antennas 550 , and (iii) short range antennas 560 , each set assigned to a different sensing zone. The respective regions covered by each set of antennas are shown as well, with a long range antennas coverage 542 for the long range antennas 540 , a medium range antennas coverage 552 for the medium range antennas 550 , and a short range antennas coverage 562 for the short range antennas 560 .
  • FIG. 5C illustrates a single sensor 500 C with antenna 570 consisting of a single set of antenna elements 572 .
  • the antenna 570 forms an antenna pattern 580 with a mainlobe 582 and sidelobes 584 used to cover the three sensing zones. Note the presence of “nulls” in the sidelobe structure, as illustrated by the exemplary sidelobe null 586 .
  • Sidelobe nulls are characterized by substantially reduced antenna gain compared to the nominal antenna gain in the sidelobe region. These sidelobe nulls result in substantially reduced detection range compared to the nominal detection range over the sidelobe region.
  • FIGS. 6A and 6B illustrate a single sensor embodiment of the present invention, where a single sensor 600 is illustrated with an antenna 610 consisting of a single set of antenna elements 612 .
  • the antenna 610 forms a shaped antenna pattern 620 with a mainlobe 622 and “shoulders” 624 to cover the sensing zones illustrated in FIG. 4 without nulls or holes in the coverage.
  • FIG. 6B is a graph illustrating the relative gain and angle extent of the shaped antenna pattern 630 for the mainlobe 632 and “shoulders” 634 portions of the pattern.
  • the antenna gain and horizontal FOV (angle extent) of the mainlobe 632 and “shoulders” 634 are tailored to the antenna gain and horizontal FOVs (angle extents) required for the different sensing zones ( 636 , 638 , 642 ).
  • the resulting antenna pattern is smooth without nulls or holes in the pattern.
  • FIGS. 7A, 7B, and 7C illustrate an exemplary embodiment of the present invention that uses a transmit and/or receive antenna 700 consisting of three linear arrays of radiators 710 that are arranged as vertical columns of radiators 710 , as shown in FIG. 7A .
  • the radiators may also be referred to as elements.
  • the three vertical columns of radiators are combined into a single antenna port using a three-way power combiner 740 .
  • the transmit and/or receive antennas with linear arrays of radiators or elements can be implemented using well known antenna structures and fabrication techniques, including multi-layer printed circuit board antennas with, for example, microstrip feed lines and patch radiators, substrate integrated waveguide (SIW) feed lines, and SIW slotted radiators, coplanar waveguide feed lines with SIW slotted radiators, or suitable combinations thereof. Other common types of feed and radiator structures can be used as well.
  • the antenna illustrated in FIG. 7A would typically be recognized to represent patch radiators 720 connected by microstrip feed lines 730 .
  • the shaped antenna pattern of the present invention is realized in the horizontal dimension by an appropriate phase and amplitude distribution in the power combiner 740 .
  • FIG. 7B illustrates an example phase and amplitude distribution 750 implemented in the 3-way power combiner 740 that produces the exemplary shaped antenna pattern 760 illustrated in FIG. 7C .
  • the shaped horizontal pattern is limited to two shoulders 764 , as illustrated in FIG. 7C .
  • FIG. 7C illustrates that the higher gain mainlobe region 762 of the shaped pattern typically covers long and/or medium range sensing zones.
  • the relative gain and width of the shoulder region can be adjusted by the phase and amplitude distribution in the power combiner to cover medium and/or short range sensing zones.
  • the horizontal profile of the shaped antenna pattern of the present invention can be further optimized to the specified sensing zones if greater than three vertical columns of radiators are used for an individual transmit or receive antenna. When using more than three vertical columns of radiators, the number of branches in the power combiner is correspondingly increased resulting in more degrees of freedom to adjust the phase and amplitude distribution for additional control of the horizontal antenna pattern profile.
  • FIGS. 8A, 8B and 8C illustrate an exemplary embodiment of the present invention using a transmit and/or receive antenna 800 composed of six linear arrays of radiators arranged as vertical columns of radiators 810 and a six-way power combiner 840 , as illustrated in FIG. 8A .
  • FIG. 8A also illustrates that each column of radiators 810 comprises a series of individual radiators 820 interconnected by feedline connections 830 .
  • the exemplary amplitude and phase distribution 850 illustrated in FIG. 8B , produces the shaped antenna pattern 860 illustrated in FIG. 8C .
  • FIG. 8A illustrates that each column of radiators 810 comprises a series of individual radiators 820 interconnected by feedline connections 830 .
  • the exemplary amplitude and phase distribution 850 illustrated in FIG. 8B , produces the shaped antenna pattern 860 illustrated in FIG. 8C .
  • FIG. 8C As illustrated in FIG.
  • the particular amplitude and phase distribution 850 produces an exemplary antenna pattern shape 860 with a shaped antenna pattern mainlobe 862 and shaped antenna pattern shoulders 864 . Note that there are a pair of shoulders 864 for each side of the antenna pattern.
  • MIMO radar systems generally use a set of multiple transmit and receive antennas, as illustrated in FIG. 3 .
  • each transmit and receive antenna incorporates the same or common shaped pattern, for example, the shaped antenna pattern illustrated in FIG. 7C .
  • the individual antennas may use different shaped antenna patterns.
  • a transmit antenna may use a first shaped antenna pattern (such as shown in FIG. 7C ) and a receive antenna may use a second shaped antenna pattern (such as shown in FIG. 8C ) that is different from the first shaped antenna pattern.
  • FIG. 9 illustrates MIMO radar antenna patterns 900 when using the present invention within a MIMO radar structure incorporating digital beamforming on receive.
  • MIMO radar digital beamforming is implemented in the signal processing software to combine signals associated with selected groups of transmit and receive antennas.
  • the digital beamforming process produces multiple narrow beams 900 spread across angle with a peak gain that follows the envelope of the two-way (transmit ⁇ receive) shaped antenna pattern 920 , where the x-axis of the graph is the angle in degrees and the y-axis of the graph is relative gain (dB).
  • Each individual lobe in FIG. 9 represents the antenna pattern of an individual MIMO beam.
  • the boresight beam 910 and a two-way shaped antenna pattern are indicated in FIG. 9 .
  • the exemplary embodiments of the present invention are not constrained to shaping of the horizontal antenna pattern tailored to specified horizontal sensing zones.
  • the present invention can be applied to shape the antenna pattern in the vertical dimension tailored to specified vertical sensing zones by using transmit and/or receive antennas composed of multiple horizontal rows of radiators combined into a single antenna port using a power combiner.
  • FIG. 10A illustrates an exemplary antenna 1000 arranged to shape the antenna pattern in the vertical dimension using three linear arrays of radiators arranged as horizontal rows of radiators 1010 and a 3-way power combiner 1040 .
  • a vertical antenna pattern is shaped by an appropriate amplitude and phase distribution implemented in the 3-way power combiner 1040 .
  • Vertical shaping of the antenna pattern may be appropriate, for example, when the specified vertical FOV and detection range varies substantially for long range, medium range and/or short range objects/targets. This is often the case for vehicular radar, as illustrated in FIG. 10B . Without vertical pattern shaping, the vertical extent of the mainlobe may need to be broadened for acceptable coverage at short range resulting in reduced detection range for long range objects and increased susceptibility to unwanted detection of overhead and road surface objects.
  • FIGS. 11 and 12 illustrate pattern shaping in two dimensions, horizontal and vertical, according to an embodiment of the present invention using transmit and/or receive antennas with multiple linear arrays of radiators arranged as either vertical columns of radiators 1100 or horizontal rows of radiators 1200 connected using a power combiner 1140 , 1240 , with an appropriate phase and amplitude distribution, to shape the antenna pattern in one dimension.
  • the power combiner 1140 shapes the antenna pattern in the horizontal dimension
  • the power combiner 1240 shapes the antenna in the vertical dimension.
  • phase and amplitude along individual linear arrays of radiators can be controlled with known techniques including, for example, selecting a particular width and/or length of microstrip used to interconnect individual patch radiators of a linear array of patch radiators and/or particular dimensions of the individual patch radiators.
  • FIGS. 11 and 12 illustrate the amplitude distribution along a linear array of radiators controlled by the dimensions of the individual patch radiators 1120 , 1220 while the phase distribution along a linear array of radiators is controlled by the length of the microstrip connections 1130 , 1230 .
  • FIG. 11 and 12 illustrate the amplitude distribution along a linear array of radiators controlled by the dimensions of the individual patch radiators 1120 , 1220 while the phase distribution along a linear array of radiators is controlled by the length of the microstrip connections 1130 , 1230 .
  • the amplitude and phase along a linear array of radiators may be controlled using SIW slotted radiators with the position and dimension of each slot used to control the amplitude and phase of each radiator.
  • a two-dimensional array of radiators may be implemented with both horizontal and vertical amplitude and phase distribution by use of a single or multi-layer corporate feed network to connect each individual radiator via power combiners.
  • FIG. 13 illustrates an exemplary single layer microstrip corporate feed network 1320 used to connect a two-dimensional array of patch radiators 1300 .
  • the horizontal and vertical antenna patterns are shaped by the two-dimensional amplitude and phase distribution over the array of radiators.
  • the two-dimensional amplitude distribution for an array of patch radiators may be controlled by the dimensions of the individual patch radiators 1310 and the two-dimensional phase distribution may be controlled by the length of the microstrip feed line routed to each radiator, as illustrated in FIG. 13 .
  • the length of feed line routed to each radiator 1310 can be controlled, for example, by adding a loop 1330 of varying length to individual segments of the corporate feed network 1320 .
  • the amplitude distribution may be controlled over a two-dimensional array of patch radiators by varying the width of individual segments of the microstrip corporate feed network.
  • a variety of embodiments have been presented herein that allow for the selection of a desired antenna pattern shape using only a single sensor.
  • using a variety of patch radiator shapes, microstrip feedline lengths and thicknesses, horizontal and vertical antenna pattern shapes may be created.
  • a given antenna pattern shape may be utilized as either a transmit antenna or as a receive antenna, or in the alternative as both.

Abstract

A radar sensing system for a vehicle, the radar sensing system including a transmitter and a receiver. The transmitter is configured to transmit a radio signal. The receiver is configured to receive the transmitted radio signal reflected from objects in the environment. The transmitter includes an antenna and is configured to transmit the radio signal via the antenna. The antenna includes a plurality of linear arrays of patch radiators. An arrangement of the linear arrays of patch radiators is selected to form a desired shaped antenna pattern having a desired mainlobe shape and desired shoulder shapes to cover selected sensing zones without nulls or holes in the coverage.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
The present application is a continuation of International Application No. PCT/IB2017/052375, filed Apr. 25, 2017, which claims the filing benefits of U.S. provisional application, Ser. No. 62/327,018, filed Apr. 25, 2016, which are hereby incorporated herein by reference in their entireties.
FIELD OF THE INVENTION
The present invention is directed to radar systems, and more particularly to radar systems for vehicles.
BACKGROUND OF THE INVENTION
The use of radar to determine range and velocity of objects in an environment is important in a number of applications including automotive radar and gesture detection. A radar system typically transmits radio signals and listens for the reflection of the radio signals from objects in the environment. By comparing the transmitted radio signals with the received radio signals, a radar system can determine the distance to an object. Using Doppler processing, the velocity of an object can be determined. Using various transmitter and receiver combinations, the location (angle) of an object can also be determined.
SUMMARY OF THE INVENTION
Methods and systems of the present invention provide for a shaped antenna pattern to enable a single radar system to support long, medium, and short range applications with a single set of sensing elements. An exemplary radar system of the present invention provides for an antenna pattern with a narrow, high-gain mainlobe for long range coverage and lower gain, broad shoulders for wider field of view or sensing (FOV) medium range and/or short range coverage. This exemplary radar system with the shaped antenna pattern reduces the overall number of sensors, and related cost, for vehicular applications. Difficulties, and cost of, integrating a large number of sensors on the vehicle are also mitigated.
A radar sensing system for a vehicle in accordance with an embodiment of the present invention includes a transmitter and a receiver. The transmitter is operable to or configured to transmit a radio signal. The receiver is operable to or configured to receive the transmitted radio signal reflected from objects in the environment. The transmitter includes an antenna and is operable to or configured to transmit the radio signal via the antenna. The antenna includes a plurality of linear arrays of radiators. An arrangement of the linear arrays of radiators is selected to form a selected or desired shaped antenna pattern having a selected or desired mainlobe shape and selected or desired shoulder shapes to cover selected sensing zones without nulls or holes in the coverage.
In an aspect of the present invention, cost and size of an individual sensor is reduced as well when compared to the cost and size of a sensor with multiple sets of sensing elements assigned to different sensing zones.
In another aspect of the present invention, the shaped antenna pattern is tailored to the detection ranges required for the different sensing zones with a smooth pattern shape that avoids nulls or holes in the coverage pattern, thereby mitigating drawbacks inherent in the approach using antenna pattern sidelobes to cover selected sensing zones.
In another aspect of the present invention, compared to the phased array solution, the exemplary embodiment reduces costs. Furthermore, the exemplary embodiment is compatible with MIMO radar techniques which provide phased array type flexibility on receive via digital beamforming. MIMO radar techniques also offer advantages compared to phased array radar, including a synthetically enhanced virtual receive antenna with improved angle resolution and accuracy. Another advantage of MIMO radar with digital beamforming is the entire field of view or sensing (FOV) can be covered in a single, long duration dwell with improved Doppler resolution.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a plan view of an automobile equipped with one or more radar systems
FIG. 2A and FIG. 2B are block diagrams of radar systems in accordance with the present invention;
FIG. 3 is a block diagram illustrating a radar system with a plurality of receivers and a plurality of transmitters (MIMO radar) in accordance with the present invention;
FIG. 4 is a plan view of an automobile equipped with a radar system and exemplary multiple sensing zones for vehicular applications;
FIG. 5A, FIG. 5B, and FIG. 5C are plan views illustrating sensing solutions for the sensing zones illustrated in FIG. 4;
FIG. 6A is a block diagram of an exemplary sensor and a corresponding shaped antenna pattern in accordance with the present invention;
FIG. 6B is a graph illustrating relative gain and angle extent of an exemplary shaped antenna pattern in accordance with the present invention;
FIG. 7A is a block diagram illustrating an exemplary antenna in accordance with the present invention;
FIG. 7B is a block diagram illustrating exemplary phase and amplitude distribution implemented in a 3-way combiner of the antenna illustrated in FIG. 7A, in accordance with the present invention;
FIG. 7C is a graph illustrating an exemplary shaped antenna pattern for the phase and amplitude distribution of FIG. 7B, in accordance with the present invention;
FIG. 8A is a block diagram illustrated an exemplary antenna in accordance with the present invention;
FIG. 8B is a block diagram illustrating exemplary phase and amplitude distribution implemented in a 6-way combiner of the antenna illustrated in FIG. 8A, in accordance with the present invention;
FIG. 8C is a graph illustrating an exemplary shaped antenna pattern for the phase and amplitude distribution of FIG. 8B, in accordance with the present invention;
FIG. 9 is a graph illustrating exemplary MIMO radar antenna patterns, in accordance with the present invention;
FIG. 10A is a block diagram illustrating an exemplary antenna for shaping an antenna pattern in the vertical dimension, in accordance with the present invention;
FIG. 10B is a diagram illustrating vertical sensing zones relative to a road surface;
FIG. 11 is a block diagram illustrating an exemplary antenna with patch radiators of varying dimensions for shaping an antenna pattern in both the horizontal and vertical dimensions, in accordance with the present invention;
FIG. 12 is a block diagram illustrating an exemplary antenna with patch radiators of varying dimensions for shaping an antenna pattern in the both the horizontal and vertical dimensions, in accordance with the present invention; and
FIG. 13 is a block diagram illustrating an exemplary single-layer microstrip corporate feed network used to connect a two-dimensional array of patch radiators for shaping an antenna pattern in both the horizontal and vertical dimensions, in accordance with the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention will now be described with reference to the accompanying figures, wherein numbered elements in the following written description correspond to like-numbered elements in the figures. The shaped antenna pattern of the present invention enables a single radar system with a single set of sensing elements to mitigate the number of sensors, as well as the number of sets of sensing elements per sensor, needed to cover multiple sensing zones. Multiple sensing zones are required for many current and future sensing applications, including those for vehicular active safety and autonomous driving. The present invention reduces the overall number and cost of the sensors per vehicle for these applications, as well as the cost and size of an individual sensor. Challenges and cost related to integration of a large number of sensors on a vehicle are also mitigated.
FIG. 1 illustrates an exemplary radar system 100 configured for use in a vehicle 150. In an aspect of the present invention, a vehicle 150 may be an automobile, truck, or bus, etc. As illustrated in FIG. 1, the radar system 100 may comprise one or more transmitters and one or more receivers 104 a-104 d for a plurality of virtual radars. Other configurations are also possible. As illustrated in FIG. 1, the radar system 100 may comprise one or more receivers/transmitters 104 a-104 d, control and processing module 102 and indicator 106. Other configurations are also possible. FIG. 1 illustrates the receivers/transmitters 104 a-104 d placed to acquire and provide data for object detection and adaptive cruise control. The radar system 100 (providing such object detection and adaptive cruise control or the like) may be part of an Advanced Driver Assistance System (ADAS) for the automobile 150.
FIG. 2A illustrates an exemplary radar system 200 with an antenna 202 that is time-shared between a transmitter 206 and a receiver 208 via a duplexer 204. As also illustrated in FIG. 2A, output from the receiver 208 is received by a control and processing module 210 that processes the output from the receiver 208 to produce display data for the display 212. The control and processing module 210 is also operable to produce a radar data output that is provided to other control units. The control and processing module 210 is also operable to control the transmitter 206.
FIG. 2B illustrates an alternative exemplary radar system 250 with a pair of antennas 202 a, 202 b: an antenna 202 a for the transmitter 206 and another antenna 202 b for the receiver 208.
An exemplary MIMO radar system is illustrated in FIG. 3. With MIMO radar systems, each transmitter signal is rendered distinguishable from every other transmitter by using appropriate differences in the modulation, for example, different digital code sequences. Each receiver correlates with each transmitter signal, producing a number of correlated outputs equal to the product of the number of receivers with the number of transmitters. The outputs are deemed to have been produced by a number of virtual receivers, which can exceed the number of physical receivers.
The radar sensing system of the present invention may utilize aspects of the radar systems described in U.S. Pat. Nos. 9,575,160 and/or 9,599,702, and/or U.S. patent applications, Ser. No. 15/481,648, filed Apr. 7, 2017, now U.S. Pat. No. 9,689,967, Ser. No. 15/416,219, filed Jan. 26, 2017, now U.S. Pat. No. 9,772,397, and/or Ser. No. 15/292,755, filed Oct. 13, 2016, now U.S. Pat. No. 9,753,121, and/or U.S. provisional applications, Ser. No. 62/382,857, filed Sep. 2, 2016, Ser. No. 62/381,808, filed Aug. 31, 2016, Ser. No. 62/327,003, filed Apr. 25, 2016, Ser. No. 62/327,004, filed Apr. 25, 2016, Ser. No. 62/327,005, filed Apr. 25, 2016, Ser. No. 62/327,006, filed Apr. 25, 2016, Ser. No. 62/327,015, filed Apr. 25, 2016, Ser. No. 62/327,016, filed Apr. 25, 2016, Ser. No. 62/327,017, filed Apr. 25, 2016, which are all hereby incorporated by reference herein in their entireties.
Shaped Antenna Patterns:
FIG. 3 illustrates a radar system 300 with multiple antennas 302, 304, transmitters 306 and receivers 308. Using multiple antennas allows a radar system 300 to determine the angle of objects/targets in the environment. Depending on the geometry of the antenna system 300, different angles (e.g., with respect to the horizontal or vertical) can be determined. The radar system 300 may be connected to a network via an Ethernet connection or other types of network connections 314. The radar system 300 includes memory 310, 312 to store software used for processing the received radio signals to determine range, velocity, and location of objects/targets in the environment. Memory may also be used to store information about objects/targets in the environment.
Current and future vehicular applications related to active safety and autonomous driving envision long, medium, and short range sensing zones with unique requirements in terms of detection range and horizontal field of view (FOV). Current sensing solutions include separate long range, medium range, and/or short range sensors, resulting in high cost and challenges in vehicle integration. Other solutions including providing different sets of sensing elements within a single sensor, with the different sets of sensing elements covering different sensing zones. Multiple sensing elements increase the size and cost of the individual sensor.
Other current solutions for a single sensor with multiple sensing zones include the use of the radar antenna pattern main lobe to cover a long range, narrow FOV sensing zone and antenna pattern sidelobes to cover medium range and/or short range sensing zones with wider FOV. The use of antenna pattern sidelobes can often be insufficient in terms of detection range for the medium range sensing zone. Further, the nulls inherent in the antenna sidelobe structure may lead to unacceptable holes in the coverage pattern.
Still another solution for a single sensor includes the use of a phased array antenna with flexible gain, beamwidth, and scan angle. This solution provides the most flexibility, but is typically too expensive for vehicular radar.
The shaped antenna pattern of the present invention enables a single radar system with a single set of sensing elements to mitigate the number of sensors, as well as the number of sets of sensing elements per sensor, needed to cover multiple sensing zones. FIG. 4 illustrates multiple exemplary sensing zones generally specified for vehicular applications. Three different sensing zones are often specified, for example, a long range zone 410, a medium range zone 420, and a short range zone 430. Each sensing zone may be specified with a different range and horizontal angle field of view (FOV). Different angle resolutions, angle accuracies, and update rates for each sensing zone may be specified as well. In FIG. 4, the exemplary sensing zones are illustrated for the region forward of a host vehicle 400.
FIGS. 5A, 5B, and 5C illustrate exemplary sensing solutions for the sensing zones illustrated in FIG. 4. FIG. 5A illustrates three sensors mounted on the front of the host vehicle 400. As illustrated in FIG. 5A, a long range sensor 510, a medium range sensor 520, and a short range sensor 530 are provided, such that a sensor is provided for each sensing zone. The respective regions covered by each sensor are illustrated as well, with a long range sensor coverage 512 for the long range sensor 510, a medium range sensor coverage 522 for the medium range sensor 520, and a short range sensor coverage 532 for the short range sensor 530.
FIG. 5B illustrates a single sensor 500B with three sets of sensing elements: (i) long range antennas 540, (ii) medium range antennas 550, and (iii) short range antennas 560, each set assigned to a different sensing zone. The respective regions covered by each set of antennas are shown as well, with a long range antennas coverage 542 for the long range antennas 540, a medium range antennas coverage 552 for the medium range antennas 550, and a short range antennas coverage 562 for the short range antennas 560.
FIG. 5C illustrates a single sensor 500C with antenna 570 consisting of a single set of antenna elements 572. The antenna 570 forms an antenna pattern 580 with a mainlobe 582 and sidelobes 584 used to cover the three sensing zones. Note the presence of “nulls” in the sidelobe structure, as illustrated by the exemplary sidelobe null 586. Sidelobe nulls are characterized by substantially reduced antenna gain compared to the nominal antenna gain in the sidelobe region. These sidelobe nulls result in substantially reduced detection range compared to the nominal detection range over the sidelobe region.
FIGS. 6A and 6B illustrate a single sensor embodiment of the present invention, where a single sensor 600 is illustrated with an antenna 610 consisting of a single set of antenna elements 612. The antenna 610 forms a shaped antenna pattern 620 with a mainlobe 622 and “shoulders” 624 to cover the sensing zones illustrated in FIG. 4 without nulls or holes in the coverage. FIG. 6B is a graph illustrating the relative gain and angle extent of the shaped antenna pattern 630 for the mainlobe 632 and “shoulders” 634 portions of the pattern. The antenna gain and horizontal FOV (angle extent) of the mainlobe 632 and “shoulders” 634 are tailored to the antenna gain and horizontal FOVs (angle extents) required for the different sensing zones (636, 638, 642). The resulting antenna pattern is smooth without nulls or holes in the pattern.
FIGS. 7A, 7B, and 7C illustrate an exemplary embodiment of the present invention that uses a transmit and/or receive antenna 700 consisting of three linear arrays of radiators 710 that are arranged as vertical columns of radiators 710, as shown in FIG. 7A. The radiators may also be referred to as elements. The three vertical columns of radiators are combined into a single antenna port using a three-way power combiner 740. The transmit and/or receive antennas with linear arrays of radiators or elements can be implemented using well known antenna structures and fabrication techniques, including multi-layer printed circuit board antennas with, for example, microstrip feed lines and patch radiators, substrate integrated waveguide (SIW) feed lines, and SIW slotted radiators, coplanar waveguide feed lines with SIW slotted radiators, or suitable combinations thereof. Other common types of feed and radiator structures can be used as well. The antenna illustrated in FIG. 7A would typically be recognized to represent patch radiators 720 connected by microstrip feed lines 730.
The shaped antenna pattern of the present invention is realized in the horizontal dimension by an appropriate phase and amplitude distribution in the power combiner 740. FIG. 7B illustrates an example phase and amplitude distribution 750 implemented in the 3-way power combiner 740 that produces the exemplary shaped antenna pattern 760 illustrated in FIG. 7C. When using three linear arrays of radiators arranged as vertical columns of radiators 710 with a three-way power combiner 740, the shaped horizontal pattern is limited to two shoulders 764, as illustrated in FIG. 7C. FIG. 7C illustrates that the higher gain mainlobe region 762 of the shaped pattern typically covers long and/or medium range sensing zones. The relative gain and width of the shoulder region can be adjusted by the phase and amplitude distribution in the power combiner to cover medium and/or short range sensing zones. The horizontal profile of the shaped antenna pattern of the present invention can be further optimized to the specified sensing zones if greater than three vertical columns of radiators are used for an individual transmit or receive antenna. When using more than three vertical columns of radiators, the number of branches in the power combiner is correspondingly increased resulting in more degrees of freedom to adjust the phase and amplitude distribution for additional control of the horizontal antenna pattern profile.
FIGS. 8A, 8B and 8C illustrate an exemplary embodiment of the present invention using a transmit and/or receive antenna 800 composed of six linear arrays of radiators arranged as vertical columns of radiators 810 and a six-way power combiner 840, as illustrated in FIG. 8A. FIG. 8A also illustrates that each column of radiators 810 comprises a series of individual radiators 820 interconnected by feedline connections 830. The exemplary amplitude and phase distribution 850, illustrated in FIG. 8B, produces the shaped antenna pattern 860 illustrated in FIG. 8C. As illustrated in FIG. 8C, the particular amplitude and phase distribution 850 produces an exemplary antenna pattern shape 860 with a shaped antenna pattern mainlobe 862 and shaped antenna pattern shoulders 864. Note that there are a pair of shoulders 864 for each side of the antenna pattern.
MIMO radar systems generally use a set of multiple transmit and receive antennas, as illustrated in FIG. 3. In a preferred embodiment using the present invention with MIMO radar, each transmit and receive antenna incorporates the same or common shaped pattern, for example, the shaped antenna pattern illustrated in FIG. 7C. In another embodiment, the individual antennas may use different shaped antenna patterns. For example, a transmit antenna may use a first shaped antenna pattern (such as shown in FIG. 7C) and a receive antenna may use a second shaped antenna pattern (such as shown in FIG. 8C) that is different from the first shaped antenna pattern.
FIG. 9 illustrates MIMO radar antenna patterns 900 when using the present invention within a MIMO radar structure incorporating digital beamforming on receive. MIMO radar digital beamforming is implemented in the signal processing software to combine signals associated with selected groups of transmit and receive antennas. The digital beamforming process produces multiple narrow beams 900 spread across angle with a peak gain that follows the envelope of the two-way (transmit×receive) shaped antenna pattern 920, where the x-axis of the graph is the angle in degrees and the y-axis of the graph is relative gain (dB). Each individual lobe in FIG. 9 represents the antenna pattern of an individual MIMO beam. As an example, the boresight beam 910 and a two-way shaped antenna pattern (shaped transmit antenna pattern×shaped receive antenna pattern) are indicated in FIG. 9.
The exemplary embodiments of the present invention are not constrained to shaping of the horizontal antenna pattern tailored to specified horizontal sensing zones. For example, the present invention can be applied to shape the antenna pattern in the vertical dimension tailored to specified vertical sensing zones by using transmit and/or receive antennas composed of multiple horizontal rows of radiators combined into a single antenna port using a power combiner. As an example, FIG. 10A illustrates an exemplary antenna 1000 arranged to shape the antenna pattern in the vertical dimension using three linear arrays of radiators arranged as horizontal rows of radiators 1010 and a 3-way power combiner 1040. In a manner analogous to shaping the horizontal antenna pattern, illustrated in FIGS. 7B and 7C, a vertical antenna pattern is shaped by an appropriate amplitude and phase distribution implemented in the 3-way power combiner 1040.
Vertical shaping of the antenna pattern may be appropriate, for example, when the specified vertical FOV and detection range varies substantially for long range, medium range and/or short range objects/targets. This is often the case for vehicular radar, as illustrated in FIG. 10B. Without vertical pattern shaping, the vertical extent of the mainlobe may need to be broadened for acceptable coverage at short range resulting in reduced detection range for long range objects and increased susceptibility to unwanted detection of overhead and road surface objects.
The present invention is also not constrained to pattern shaping in only a single dimension. FIGS. 11 and 12 illustrate pattern shaping in two dimensions, horizontal and vertical, according to an embodiment of the present invention using transmit and/or receive antennas with multiple linear arrays of radiators arranged as either vertical columns of radiators 1100 or horizontal rows of radiators 1200 connected using a power combiner 1140, 1240, with an appropriate phase and amplitude distribution, to shape the antenna pattern in one dimension. In FIG. 11, the power combiner 1140 shapes the antenna pattern in the horizontal dimension, while in FIG. 12, the power combiner 1240 shapes the antenna in the vertical dimension.
To shape an antenna pattern in the orthogonal dimension, an appropriate phase and amplitude distribution is realized along each row or column of radiators. Phase and amplitude along individual linear arrays of radiators can be controlled with known techniques including, for example, selecting a particular width and/or length of microstrip used to interconnect individual patch radiators of a linear array of patch radiators and/or particular dimensions of the individual patch radiators. FIGS. 11 and 12 illustrate the amplitude distribution along a linear array of radiators controlled by the dimensions of the individual patch radiators 1120, 1220 while the phase distribution along a linear array of radiators is controlled by the length of the microstrip connections 1130, 1230. In FIG. lithe distribution of amplitude and phase along the line/vertical column of radiators 1110 shapes the antenna pattern in the vertical dimension, while in FIG. 12 the distribution of amplitude and phase along the line/horizontal row of radiators 1210 shapes the antenna pattern in the horizontal dimension.
In another aspect of the present invention, the amplitude and phase along a linear array of radiators may be controlled using SIW slotted radiators with the position and dimension of each slot used to control the amplitude and phase of each radiator.
In yet another aspect of the present invention, a two-dimensional array of radiators may be implemented with both horizontal and vertical amplitude and phase distribution by use of a single or multi-layer corporate feed network to connect each individual radiator via power combiners.
FIG. 13 illustrates an exemplary single layer microstrip corporate feed network 1320 used to connect a two-dimensional array of patch radiators 1300. The horizontal and vertical antenna patterns are shaped by the two-dimensional amplitude and phase distribution over the array of radiators.
The two-dimensional amplitude distribution for an array of patch radiators may be controlled by the dimensions of the individual patch radiators 1310 and the two-dimensional phase distribution may be controlled by the length of the microstrip feed line routed to each radiator, as illustrated in FIG. 13. The length of feed line routed to each radiator 1310 can be controlled, for example, by adding a loop 1330 of varying length to individual segments of the corporate feed network 1320.
In yet another aspect of the present invention, the amplitude distribution may be controlled over a two-dimensional array of patch radiators by varying the width of individual segments of the microstrip corporate feed network.
A variety of embodiments have been presented herein that allow for the selection of a desired antenna pattern shape using only a single sensor. As discussed herein, using a variety of patch radiator shapes, microstrip feedline lengths and thicknesses, horizontal and vertical antenna pattern shapes may be created. As also discussed herein, a given antenna pattern shape may be utilized as either a transmit antenna or as a receive antenna, or in the alternative as both.
Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.

Claims (24)

The invention claimed is:
1. A radar sensing system for a vehicle, the radar sensing system comprising:
a plurality of transmitters configured for installation and use on the vehicle;
wherein each transmitter of the plurality of transmitters comprises an antenna, wherein each transmitter antenna comprises a substrate and a plurality of linear arrays of radiators, and wherein each respective plurality of linear arrays of radiators is disposed upon their respective transmitter antenna substrate;
wherein each transmitter is configured to transmit a radio signal via respective transmitter antenna;
a plurality of receivers configured for installation and use on the vehicle, wherein each receiver of the plurality of receivers comprises an antenna, wherein each receiver antenna comprises a substrate and a plurality of linear arrays of elements, and wherein each respective plurality of linear arrays of elements is disposed upon their respective receiver antenna substrates, and wherein the receivers are configured to receive the transmitted radio signals via the respective receiver antennas, transmitted by the transmitters, and reflected from objects in an environment; and
wherein a predetermined arrangement of a plurality of linear arrays of radiators of a first transmitter antenna forms a shaped antenna pattern having a mainlobe and sidelobes that form a mainlobe shape and shoulder shapes to cover selected sensing zones of the first transmitter antenna, as defined by resulting phase distributions and amplitude distributions of the arranged linear arrays of radiators of the first transmitter antenna, wherein a phase distribution and an amplitude distribution along each respective array of radiators of the first transmitter antenna, in combination, define the phase distributions and the amplitude distributions of the arranged linear arrays of radiators of the first transmitter antenna, and wherein the shaped antenna pattern of the first transmitter antenna comprises a relative gain value with respect to angle that is free of sidelobe nulls or holes, such that the antenna gain in the sidelobes is free of areas with substantially reduced antenna gain as compared to the nominal antenna gain in the sidelobes.
2. The radar sensing system of claim 1, wherein the shaped antenna pattern of the first transmitter antenna has a shape oriented along, or parallel to, a first axis, when each linear array of radiators of the first transmitter antenna is arranged as a column of radiators oriented along, or parallel to, a second axis, wherein the second axis is orthogonal to the first axis.
3. The radar sensing system of claim 2, wherein an antenna gain and field of view (FOV) of the mainlobe shape and shoulder shapes are adapted to the selected sensing zones of the first transmitter antenna, and wherein the FOVs are parallel with the first axis.
4. The radar sensing system of claim 2, wherein the shape of the shaped antenna pattern of the first transmitter antenna is controlled with more degrees of freedom when a plurality of radiator columns comprises more than three columns of radiators, as compared to fewer than three columns of radiators.
5. The radar sensing system of claim 2, wherein the plurality of radiator columns of the first transmitter antenna comprises three or fewer radiator columns.
6. The radar sensing system of claim 1, wherein each transmitter antenna comprises a power combiner configured to combine their respective plurality of linear arrays of radiators into a single antenna port, wherein a relative gain and width of a shoulder shape of the shaped antenna pattern of the first transmitter antenna is determined by selecting a phase and amplitude distribution along each respective array of radiators that are combined to define the phase and amplitude distributions in the power combiner.
7. The radar sensing system of claim 6, wherein a phase distribution along a linear array of radiators is determined by a selected length of microstrip used to interconnect individual radiators of the linear array of radiators, and wherein an amplitude distribution along the linear array of radiators is determined by selected dimensions of individual radiators of the linear array of radiators.
8. The radar sensing system of claim 1, wherein the shaped antenna pattern of the first transmitter antenna is oriented substantially along, or parallel to, a second axis, when each linear array of radiators is arranged as a row of radiators oriented along, or parallel to, a first axis, wherein the first axis is orthogonal to the second axis.
9. The radar sensing system of claim 1, wherein each receiver antenna is configured to receive the transmitted radio signal reflected from objects in the environment, and wherein a predetermined arrangement of the antenna elements of a first receiver antenna forms a shaped antenna pattern having a mainlobe shape and shoulder shapes to cover selected sensing zones, as defined by resulting phase distributions and amplitude distributions of the arranged linear arrays of elements of the first receiver antenna, wherein a phase distribution and an amplitude distribution along each respective array of radiators of the first receiver antenna, in combination, define the phase distributions and the amplitude distributions of the arranged linear arrays of elements, and wherein the shaped antenna pattern of the first receiver antenna comprises a relative gain value that is free of sidelobe nulls or holes, such that the antenna gain in the sidelobes is free of areas with substantially reduced antenna gain as compared to the nominal antenna gain in the sidelobes.
10. The radar sensing system of claim 9, wherein the receiver antennas and the transmitter antennas each produce a common shaped antenna pattern.
11. The radar sensing system of claim 9, wherein the receiver antennas and the transmitter antennas each produce different shaped antenna patterns, such that the respective shaped antenna patterns of the receiver antennas are different from the respective shaped antenna patterns of the transmitter antennas.
12. The radar sensing system of claim 1, wherein a radiator comprises a patch radiator, and wherein an element comprises a patch element.
13. The radar sensing system of claim 1, wherein the shaped antenna pattern of the first transmitter antenna is oriented substantially along, or parallel to, both a first axis and a second axis when each of a first portion of the plurality of linear arrays of radiators of the first transmitter antenna is arranged as a column oriented along, or parallel to, the second axis and each of a second portion of the plurality of linear arrays of radiators of the first transmitter antenna is arranged as a row oriented along, or parallel to, the first axis, respectively, and wherein the first axis is orthogonal to the second axis.
14. The radar sensing system of claim 1, wherein two-dimensional amplitude distribution for the array of radiators of the first transmitter antenna is determined by selected dimensions of individual radiators, and wherein two-dimensional phase distribution for the array of radiators of the first transmitter is determined by selected lengths of microstrip feed lines routed to individual radiators.
15. A radar sensing system for a vehicle, the radar sensing system comprising:
a transmitter configured for installation and use on the vehicle;
wherein the transmitter comprises an antenna, and wherein the transmitter antenna comprises a substrate and a plurality of linear arrays of radiators disposed upon the transmitter antenna substrate;
wherein the transmitter is configured to transmit a radio signal via the transmitter antenna;
a receiver configured for installation and use on the vehicle, wherein the receiver comprises an antenna, wherein the receiver antenna comprises a substrate and a plurality of linear arrays of elements disposed upon the receiver antenna substrate, and wherein the receiver is configured to receive the transmitted radio signal via the receiver antenna, transmitted by the transmitter, and reflected from objects in an environment; and
wherein the plurality of linear arrays of radiators of the transmitter antenna are arranged as columns of radiators oriented along, or parallel to, a second axis, wherein a predetermined arrangement of the columns of radiators of the transmitter antenna forms a shaped antenna pattern oriented along, or parallel to, a first axis and having a mainlobe and sidelobes that form a mainlobe shape and shoulder shapes to cover selected sensing zones oriented along the first axis, as defined by resulting phase distributions and amplitude distributions of the arranged columns of radiators, wherein a phase distribution and an amplitude distribution along each respective column of radiators, in combination, define the phase distributions and the amplitude distributions of the arranged columns of radiators, and wherein the shaped antenna pattern comprises a relative gain value that is free of sidelobe nulls or holes, such that the antenna gain in the sidelobes is free of areas with substantially reduced antenna gain as compared to the nominal antenna gain in the sidelobes.
16. The radar sensing system of claim 15, wherein a shape of the shaped antenna pattern of the transmitter antenna is controlled with more degrees of freedom when a plurality of linear arrays of radiators arranged as columns comprises more than three columns of radiators, as compared to fewer than three columns of radiators.
17. The radar sensing system of claim 15, wherein the transmitter antenna comprises a power combiner configured to combine the plurality of linear arrays of radiators into a single antenna port, wherein a relative gain and width of a shoulder shape of the shaped antenna pattern of the transmitter antenna is determined by selecting a phase and amplitude distribution along each respective column of radiators of the transmitter antenna that are combined to define the phase and amplitude distributions in the power combiner.
18. The radar sensing system of claim 17, wherein a phase distribution along a linear array of radiators of the transmitter antenna is determined by a selected length of microstrip used to interconnect individual radiators of the linear array of radiators.
19. The radar sensing system of claim 17, wherein an amplitude distribution along a linear array of radiators of the transmitter antenna is determined by selected dimensions of individual radiators of the linear array of radiators.
20. A radar sensing system for a vehicle, the radar sensing system comprising:
a transmitter configured for installation and use on the vehicle, wherein the transmitter is configured to transmit a radio signal;
wherein the transmitter comprises an antenna, and wherein the transmitter antenna comprises a substrate and a plurality of linear arrays of radiators disposed upon the transmitter antenna substrate;
wherein the transmitter is configured to transmit a radio signal via the transmitter antenna;
a receiver configured for installation and use on the vehicle, wherein the receiver comprises an antenna, wherein the receiver antenna comprises a substrate and a plurality of linear arrays of elements disposed upon the receiver antenna substrate, and wherein the receiver is configured to receive the transmitted radio signal via the receiver antenna, transmitted by the transmitter, and reflected from objects in an environment; and
wherein the plurality of linear arrays of radiators of the transmitter antenna are arranged as rows of radiators oriented along, or parallel to, a first axis, wherein a predetermined arrangement of the rows of radiators of the transmitter antenna forms a shaped antenna pattern oriented along, or parallel to, a second axis and having a mainlobe and sidelobes that form a mainlobe shape and shoulder shapes to cover selected sensing zones, as defined by resulting phase distributions and amplitude distributions of the arranged rows of radiators, wherein a phase distribution and an amplitude distribution along each respective row of radiators, in combination, define the phase distributions and the amplitude distributions of the arranged rows of radiators, wherein the shaped antenna pattern comprises a relative gain value that is free of sidelobe nulls or holes, such that the antenna gain in the sidelobes is free of areas with substantially reduced antenna gain as compared to the nominal antenna gain in the sidelobes, and wherein the first axis is orthogonal to the second axis.
21. The radar sensing system of claim 20, wherein a shape of the shaped antenna pattern of the transmitter antenna is controlled with more degrees of freedom when a plurality of linear arrays of radiators arranged as rows comprises more than three rows of radiators, as compared to fewer than three rows of radiators.
22. The radar sensing system of claim 20, wherein the transmitter antenna comprises a power combiner configured to combine the plurality of linear arrays of radiators into a single antenna port, wherein a relative gain and width of a shoulder shape of the shaped antenna pattern of the transmitter antenna is determined by selecting a phase and amplitude distribution along each respective row of radiators of the transmitter antenna that are combined to define the phase and amplitude distributions in the power combiner.
23. The radar sensing system of claim 22, wherein a phase distribution along a linear array of radiators of the transmitter antenna is determined by a selected length of microstrip used to interconnect individual radiators of the linear array of radiators.
24. The radar sensing system of claim 22, wherein an amplitude distribution along a linear array of radiators of the transmitter antenna is determined by selected dimensions of individual radiators of the linear array of radiators.
US15/598,664 2016-04-25 2017-05-18 Vehicle radar system using shaped antenna patterns Active US10573959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/598,664 US10573959B2 (en) 2016-04-25 2017-05-18 Vehicle radar system using shaped antenna patterns

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662327018P 2016-04-25 2016-04-25
PCT/IB2017/052375 WO2017187341A1 (en) 2016-04-25 2017-04-25 Vehicle radar system using shaped antenna patterns
US15/598,664 US10573959B2 (en) 2016-04-25 2017-05-18 Vehicle radar system using shaped antenna patterns

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/052375 Continuation WO2017187341A1 (en) 2016-04-25 2017-04-25 Vehicle radar system using shaped antenna patterns

Publications (2)

Publication Number Publication Date
US20170309997A1 US20170309997A1 (en) 2017-10-26
US10573959B2 true US10573959B2 (en) 2020-02-25

Family

ID=60088580

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/598,664 Active US10573959B2 (en) 2016-04-25 2017-05-18 Vehicle radar system using shaped antenna patterns

Country Status (1)

Country Link
US (1) US10573959B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210190929A1 (en) * 2019-12-19 2021-06-24 Utc Fire & Security Emea Bvba Radar presence sensor device
US20210242577A1 (en) * 2018-11-19 2021-08-05 Denso Corporation Radar device
US11119184B2 (en) * 2018-05-23 2021-09-14 Zendar Inc. Systems and methods for enhancing target detection
US11181614B2 (en) * 2019-06-06 2021-11-23 GM Global Technology Operations LLC Antenna array tilt and processing to eliminate false detections in a radar system
US11262434B2 (en) * 2019-04-01 2022-03-01 GM Global Technology Operations LLC Antenna array design and processing to eliminate false detections in a radar system
US20220101650A1 (en) * 2019-02-01 2022-03-31 Samsung Electronics Co., Ltd. Method for recognizing object by using millimeter wave and electronic device supporting same method
WO2022229386A1 (en) 2021-04-30 2022-11-03 Provizio Limited Mimo radar using a frequency scanning antenna
US20220407225A1 (en) * 2021-06-16 2022-12-22 Denso Corporation Antenna array for high frequency device

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9846228B2 (en) 2016-04-07 2017-12-19 Uhnder, Inc. Software defined automotive radar systems
WO2017175190A1 (en) 2016-04-07 2017-10-12 Uhnder, Inc. Adaptive transmission and interference cancellation for mimo radar
US10261179B2 (en) 2016-04-07 2019-04-16 Uhnder, Inc. Software defined automotive radar
WO2017187331A1 (en) 2016-04-25 2017-11-02 Uhnder, Inc. Vehicle radar system with a shared radar and communication system
US10573959B2 (en) 2016-04-25 2020-02-25 Uhnder, Inc. Vehicle radar system using shaped antenna patterns
US9791564B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Adaptive filtering for FMCW interference mitigation in PMCW radar systems
US9791551B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Vehicular radar system with self-interference cancellation
WO2017187278A1 (en) 2016-04-25 2017-11-02 Uhnder, Inc. Pmcw – pmcw interference mitigation
US9806914B1 (en) 2016-04-25 2017-10-31 Uhnder, Inc. Successive signal interference mitigation
WO2017187304A2 (en) 2016-04-25 2017-11-02 Uhnder, Inc. Digital frequency modulated continuous wave radar using handcrafted constant envelope modulation
US9753121B1 (en) 2016-06-20 2017-09-05 Uhnder, Inc. Power control for improved near-far performance of radar systems
EP3267220A1 (en) * 2016-07-08 2018-01-10 Autoliv Development AB A vehicle radar system
US9869762B1 (en) 2016-09-16 2018-01-16 Uhnder, Inc. Virtual radar configuration for 2D array
EP3343697B1 (en) * 2016-12-30 2020-08-12 Nxp B.V. Patch antenna
WO2018146530A1 (en) 2017-02-10 2018-08-16 Uhnder, Inc. Reduced complexity fft-based correlation for automotive radar
US11454697B2 (en) 2017-02-10 2022-09-27 Uhnder, Inc. Increasing performance of a receive pipeline of a radar with memory optimization
WO2018146634A1 (en) 2017-02-10 2018-08-16 Uhnder, Inc. Increasing performance of a receive pipeline of a radar with memory optimization
US20190033440A1 (en) * 2017-07-25 2019-01-31 Bae Systems Technology Solutions & Services Inc. Interferometric multiple object tracking radar system for precision time space position information data acquisiton
US11105890B2 (en) 2017-12-14 2021-08-31 Uhnder, Inc. Frequency modulated signal cancellation in variable power mode for radar applications
US11169251B2 (en) * 2018-03-28 2021-11-09 Qualcomm Incorporated Proximity detection using multiple power levels
DE102018205532A1 (en) * 2018-04-12 2019-10-17 Robert Bosch Gmbh Method for detecting an obstacle in front of a vehicle
US11050167B2 (en) 2018-04-19 2021-06-29 Samsung Electronics Co., Ltd. Antenna array and operation method of antenna array
KR102516365B1 (en) 2018-05-25 2023-03-31 삼성전자주식회사 Method and apparatus for controlling radar of vehicle
LU100837B1 (en) * 2018-06-12 2019-12-12 Iee Sa Antenna array system for monitoring vital signs of people
EP3859388A4 (en) * 2018-09-27 2022-06-15 Kyocera Corporation Electronic device, control method for electronic device, and control program for electronic device
CN109301465B (en) * 2018-09-28 2021-03-16 中电海康集团有限公司 Passive antenna array applied to millimeter wave communication and design method thereof
US11474225B2 (en) 2018-11-09 2022-10-18 Uhnder, Inc. Pulse digital mimo radar system
RU2695934C1 (en) * 2018-11-13 2019-07-29 Самсунг Электроникс Ко., Лтд. Mimo antenna array with wide viewing angle
US11754670B2 (en) * 2018-12-18 2023-09-12 Movano Inc. Stepped frequency radar systems with spectral agility
WO2020183392A1 (en) 2019-03-12 2020-09-17 Uhnder, Inc. Method and apparatus for mitigation of low frequency noise in radar systems
CN110161493B (en) * 2019-04-23 2023-05-02 中国西安卫星测控中心 Spacecraft tracking forecasting method under multi-constraint condition
EP4030555A4 (en) * 2019-09-10 2022-11-30 Sony Group Corporation Antenna device
CN114502981A (en) * 2019-10-15 2022-05-13 欧姆龙株式会社 Radar device and mobile device
WO2021144711A2 (en) 2020-01-13 2021-07-22 Uhnder, Inc. Method and system for intefrence management for digital radars
US20240012101A1 (en) * 2020-11-18 2024-01-11 Atcodi Co., Ltd Asymmetric wide-angle radar module
US20230204748A1 (en) * 2021-12-29 2023-06-29 Nxp B.V. Beam Shaping Array for Compact Dual-Range Automotive Radar

Citations (275)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1882128A (en) 1927-06-01 1932-10-11 Edward W Fearing Radiofrequency amplification system
US3374478A (en) 1966-12-07 1968-03-19 Spectronics Inc Radar signaliing system with reduced clutter effect
US3735395A (en) 1971-01-04 1973-05-22 Iwatsu Electric Co Ltd Projection type keyboard device
US3750169A (en) 1972-03-13 1973-07-31 Sperry Rand Corp Vehicular safety system
US3896434A (en) 1973-03-06 1975-07-22 Thomson Csf Pulse type radar system
US4078234A (en) 1975-04-25 1978-03-07 The United States Of America As Represented By The Secretary Of The Army Continuous wave correlation radar system
US4176351A (en) 1978-08-18 1979-11-27 Raytheon Company Method of operating a continuous wave radar
US4566010A (en) 1982-04-28 1986-01-21 Raytheon Company Processing arrangement for pulse compression radar
US4612547A (en) * 1982-09-07 1986-09-16 Nec Corporation Electronically scanned antenna
US4882668A (en) 1987-12-10 1989-11-21 General Dynamics Corp., Pomona Division Adaptive matched filter
US4910464A (en) 1985-11-06 1990-03-20 Formula Systems Limited Proximity detector
US4939685A (en) 1986-06-05 1990-07-03 Hughes Aircraft Company Normalized frequency domain LMS adaptive filter
US5001486A (en) 1989-08-04 1991-03-19 Siemens-Albis Radar system for determining the position of two or more objects
US5012254A (en) * 1987-03-26 1991-04-30 Hughes Aircraft Company Plural level beam-forming netowrk
US5034906A (en) 1990-03-30 1991-07-23 Microwave Logic Pseudorandom Binary Sequence delay systems
US5087918A (en) 1990-04-02 1992-02-11 Delco Electronics Corporation FMCW/2FD implementation for vehicle near obstacle detection system
US5151702A (en) 1991-07-22 1992-09-29 General Electric Company Complementary-sequence pulse radar with matched filtering following doppler filtering
US5175710A (en) 1990-12-14 1992-12-29 Hutson William H Multi-dimensional data processing and display
US5218619A (en) 1990-12-17 1993-06-08 Ericsson Ge Mobile Communications Holding, Inc. CDMA subtractive demodulation
US5272663A (en) 1992-05-05 1993-12-21 The Board Of Trustees Of The University Of Illinois Apparatus and method for wide bandwidth adaptive filtering
US5280288A (en) 1992-08-14 1994-01-18 Vorad Safety Systems, Inc. Interference avoidance system for vehicular radar system
US5302956A (en) 1992-08-14 1994-04-12 Vorad Safety Systems, Inc. Multi-frequency, multi-target vehicular radar system using digital signal processing
US5341141A (en) 1993-03-09 1994-08-23 Hughes Missile Systems Company Three dimensional imaging radar
US5345470A (en) 1993-03-31 1994-09-06 Alexander Richard O Methods of minimizing the interference between many multiple FMCW radars
US5376939A (en) 1993-06-21 1994-12-27 Martin Marietta Corporation Dual-frequency, complementary-sequence pulse radar
US5379322A (en) 1992-01-07 1995-01-03 Sanyo Electric Co., Ltd. Baseband signal generator for digital modulator
US5497162A (en) 1995-01-09 1996-03-05 Northrop Grumman Corporation Radar signal selection based upon antenna bearing
US5508706A (en) 1991-09-30 1996-04-16 Trw Inc. Radar signal processor
EP0725480A1 (en) 1995-02-01 1996-08-07 Nec Corporation Adaptively controlled filter
US5581464A (en) 1992-08-14 1996-12-03 Vorad Safety Systems, Inc. Recording of operational events in an automotive vehicle
US5657021A (en) 1994-06-30 1997-08-12 Ehsani Engineering Enterprises, Inc. System and method for radar-vision for vehicles in traffic
US5657023A (en) 1996-05-02 1997-08-12 Hughes Electronics Self-phase up of array antennas with non-uniform element mutual coupling and arbitrary lattice orientation
US5691724A (en) 1995-02-10 1997-11-25 Aker; John L. Police traffic radar using FFT processing to find fastest target
FR2751086A1 (en) 1986-08-01 1998-01-16 Thomson Csf Mutual interference eliminating method for radar groups transmitting and receiving signals
US5712640A (en) 1994-11-28 1998-01-27 Honda Giken Kogyo Kabushiki Kaisha Radar module for radar system on motor vehicle
US5724041A (en) 1994-11-24 1998-03-03 The Furukawa Electric Co., Ltd. Spread spectrum radar device using pseudorandom noise signal for detection of an object
US5892477A (en) 1996-11-13 1999-04-06 Trw Inc. Anti-jam FM/CW radar
US5917430A (en) 1995-08-28 1999-06-29 The Safety Warning System, L.C. Radar based highway safety warning system
US5920285A (en) 1996-06-06 1999-07-06 University Of Bristol Post-reception focusing in remote detection systems
US5931893A (en) 1997-11-11 1999-08-03 Ericsson, Inc. Efficient correlation over a sliding window
US5959571A (en) 1996-04-22 1999-09-28 The Furukawa Electric Co., Ltd. Radar device
US5970400A (en) 1996-04-30 1999-10-19 Magellan Corporation Adjusting the timing and synchronization of a radio's oscillator with a signal from an SATPS satellite
US6067314A (en) 1996-07-10 2000-05-23 Kabushiki Kaisha Toshiba Direct spread spectrum signal receiving apparatus and synchronism acquisition circuit
US6069581A (en) 1998-02-20 2000-05-30 Amerigon High performance vehicle radar system
US6121872A (en) 1989-04-15 2000-09-19 Bayerische Motoren Werke Ag Object sensing device for motor vehicles
US6121918A (en) 1996-10-17 2000-09-19 Celsiustech Electronics Ab Procedure for the elimination of interference in a radar unit of the FMCW type
US6151366A (en) 1998-04-17 2000-11-21 Advanced Microdevices, Inc. Method and apparatus for modulating signals
US6163252A (en) 1999-04-07 2000-12-19 Mitsubishi Denki Kabushiki Kaisha Device for detecting obstacles, for use in vehicles
US6184829B1 (en) 1999-01-08 2001-02-06 Trueposition, Inc. Calibration for wireless location system
US20010002919A1 (en) 1998-02-17 2001-06-07 Essam Sourour Flexible sliding correlator for direct sequence spread spectrum systems
US6288672B1 (en) 1998-09-14 2001-09-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Holographic radar
US6307622B1 (en) 1999-02-17 2001-10-23 Infineon Technologies North America Corp. Correlation based optical ranging and proximity detector
US20020004692A1 (en) 1994-05-31 2002-01-10 Winged Systems Corporation High accuracy, high integrity scene mapped navigation
US20020044082A1 (en) * 2000-08-16 2002-04-18 Woodington Walter Gordon Radar detection method and apparatus
US6400308B1 (en) 1998-02-20 2002-06-04 Amerigon Inc. High performance vehicle radar system
US6411250B1 (en) 1997-09-01 2002-06-25 Cambridge Consultants Limited Electromagnetic sensor system
US6417796B1 (en) 1998-09-16 2002-07-09 Mph Industries, Inc. Doppler-based traffic radar system
US6424289B2 (en) 2000-06-01 2002-07-23 Mitsubishi Denki Kabushiki Kaisha Obstacle detection device and obstacle detection system
US20020118522A1 (en) 2001-02-28 2002-08-29 Siliconware Precision Industries Co., Ltd. Ball grid array package with interdigitated power ring and ground ring
US20020130811A1 (en) 2001-02-22 2002-09-19 Klaus Voigtlaender Method of detecting interference conditions of a radar device and a radar device
US20020147534A1 (en) * 2000-08-16 2002-10-10 Delcheccolo Michael Joseph Near object detection system
US20020155811A1 (en) 2001-04-18 2002-10-24 Jerry Prismantas System and method for adapting RF transmissions to mitigate the effects of certain interferences
US20030011519A1 (en) * 2000-08-16 2003-01-16 Caroline Breglia Slot antenna element for an array antenna
US20030058166A1 (en) 2001-09-17 2003-03-27 Nec Corporation Apparatus and method for calibrating array antenna
US20030073463A1 (en) * 1997-03-03 2003-04-17 Joseph Shapira Active antenna array configuration and control for cellular communication systems
US20030080713A1 (en) 2001-10-30 2003-05-01 Kirmuss Charles Bruno Pre-heating a mobile electronic device
US20030102997A1 (en) 2000-02-13 2003-06-05 Hexagon System Engineering Ltd. Vehicle communication network
US6583753B1 (en) 2002-04-03 2003-06-24 Delphi Technologies, Inc. Vehicle back-up and parking aid radar system
US6614387B1 (en) 1998-09-29 2003-09-02 Qinetiq Limited Proximity measuring apparatus
US6624784B1 (en) 1998-07-13 2003-09-23 Ntt Mobile Communications Network, Inc. Adaptive array antenna
US20030235244A1 (en) 2002-06-24 2003-12-25 Pessoa Lucio F. C. Method and apparatus for performing adaptive filtering
US6674908B1 (en) 2002-05-04 2004-01-06 Edward Lasar Aronov Method of compression of binary data with a random number generator
US20040015529A1 (en) 2002-07-16 2004-01-22 Tellabs Operations, Inc. Selective-partial-update proportionate normalized least-mean-square adaptive filtering for network echo cancellation
US20040012516A1 (en) 2002-07-16 2004-01-22 Schiffmann Jan K. Tracking system and method employing multiple overlapping sensors
US6714956B1 (en) 2000-07-24 2004-03-30 Via Technologies, Inc. Hardware accelerator for normal least-mean-square algorithm-based coefficient adaptation
US20040066323A1 (en) 2000-12-01 2004-04-08 Karl-Heinz Richter Pulse radar method, pulse radar sensor and corresponding system
US6747595B2 (en) 2002-01-21 2004-06-08 Nec Corporation Array antenna calibration apparatus and array antenna calibration method
US20040138802A1 (en) 2003-01-10 2004-07-15 Hitachi, Ltd. Vehiclar travel control device
US6768391B1 (en) 2000-06-22 2004-07-27 Ericsson Inc. Class-B biased gilbert cells and quadrature modulators
US6865218B1 (en) 2000-11-27 2005-03-08 Ericsson Inc. Multipath interference reduction for a CDMA system
US20050069162A1 (en) 2003-09-23 2005-03-31 Simon Haykin Binaural adaptive hearing aid
US20050156780A1 (en) * 2004-01-16 2005-07-21 Ghz Tr Corporation Methods and apparatus for automotive radar sensors
US20050201457A1 (en) 2004-03-10 2005-09-15 Allred Daniel J. Distributed arithmetic adaptive filter and method
US20050225476A1 (en) 2002-09-06 2005-10-13 Juergen Hoetzel Radar measurement device, especially for a motor vehicle, and method for operating a radar measurement device
US20050273480A1 (en) 2000-10-27 2005-12-08 Pugh Daniel J Gold code generator design
US6975246B1 (en) 2003-05-13 2005-12-13 Itt Manufacturing Enterprises, Inc. Collision avoidance using limited range gated video
US20060012511A1 (en) 2004-07-13 2006-01-19 Fujitsu Limited Radar apparatus, radar apparatus controlling method
US20060036353A1 (en) 2002-06-18 2006-02-16 A.D.C. Automotive Distance Control Systems Gmbh Method of suppressing interferences in systems for detecting objects
US20060050707A1 (en) 2004-09-09 2006-03-09 Intel Corporation Methods and apparatus for multiple bit rate serial communication
US20060093078A1 (en) 2001-11-20 2006-05-04 Michael Lewis Preamble aided synchronization
US20060109170A1 (en) 2002-11-26 2006-05-25 Klaus Voigtlaender Method and device for the adaptive regulation of power
US20060109931A1 (en) 2004-11-05 2006-05-25 Ntt Docomo, Inc. Mobile communication receiver and transmitter
US20060114324A1 (en) 2004-11-16 2006-06-01 Northrop Grumman Corporation Method and apparatus for collaborative aggregate situation awareness
US20060140249A1 (en) 2003-02-25 2006-06-29 Yokohama Tlo Company, Ltd. Pulse waveform producing method
US20060181448A1 (en) 2005-02-14 2006-08-17 Denso Corporation FMCW radar device and method for detecting interference
US7119739B1 (en) 2002-05-14 2006-10-10 Bae Systems Information And Electronic Systems Integration Inc. Near field to far field DF antenna array calibration technique
US20060244653A1 (en) 2003-07-07 2006-11-02 Szajnowski Wieslaw J Generations of sequences of waveforms
US20060262007A1 (en) * 2004-01-16 2006-11-23 Clariant Technologies, Corp. Methods and apparatus for automotive radar sensors
US20060262009A1 (en) 2005-05-20 2006-11-23 Denso Corporation Method of preventing interference between radars and radar system having interference preventing function
US20070018884A1 (en) 2005-07-08 2007-01-25 Raytheon Company Single transmit multi-receiver modulation radar, multi-modulation receiver and method
US20070018886A1 (en) 2005-04-15 2007-01-25 Denso Corporation Interference determination method and fmcw radar using the same
US20070109175A1 (en) 2005-06-22 2007-05-17 Matsushita Electric Industrial Co., Ltd. Spread spectrum radar apparatus
US20070115869A1 (en) 2005-07-20 2007-05-24 Novowave, Inc. Systems and method for high data rate ultra wideband communication
US20070120731A1 (en) 2004-12-15 2007-05-31 Kelly Thomas M Jr System and method for reducing the effect of a radar interference signal
US20070132633A1 (en) 2004-10-14 2007-06-14 Masaharu Uchino Small-sized low-power dissipation short-range radar that can arbitrarily change delay time between transmission and reception with high time resolution and method of controlling the same
US20070152871A1 (en) 2006-01-05 2007-07-05 Puglia Kenneth V Time duplex apparatus and method for radar sensor front-ends
US20070152872A1 (en) 2005-12-30 2007-07-05 Woodington Walter G Reducing undesirable coupling of signal(s) between two or more signal paths in a radar system
US20070152870A1 (en) 2005-12-30 2007-07-05 Woodington Walter G Vehicle radar system having multiple operating modes
US20070164896A1 (en) 2005-11-10 2007-07-19 Hitachi, Ltd. In-vehicle radar device and communication device
US20070171122A1 (en) 2006-01-25 2007-07-26 Fujitsu Ten Limited Radar apparatus and interference detection method
US20070182623A1 (en) 2006-02-03 2007-08-09 Shuqing Zeng Method and apparatus for on-vehicle calibration and orientation of object-tracking systems
US20070182619A1 (en) * 2004-07-16 2007-08-09 Fujitsu Ten Limited Monopulse radar apparatus and antenna switch
US20070188373A1 (en) 2006-02-15 2007-08-16 Fujitsu Limited Search/detection apparatus
US20070200747A1 (en) 2006-02-28 2007-08-30 Hitachi, Ltd. Radar apparatus and radar system for a vehicle
US7289058B2 (en) 2004-06-21 2007-10-30 Fujitsu Ten Limited Radar apparatus
US20070263748A1 (en) 2006-05-12 2007-11-15 Northrop Grumman Corporation Common antenna array using baseband adaptive beamforming and digital IF conversion
US7299251B2 (en) 2000-11-08 2007-11-20 Qinetiq Limited Adaptive filter
US20070279303A1 (en) * 2004-09-13 2007-12-06 Robert Bosch Gmbh Antenna Structure for Series-Fed Planar Antenna Elements
US7338450B2 (en) 2004-08-27 2008-03-04 General Electric Company Method and apparatus for performing CW doppler ultrasound utilizing a 2D matrix array
US20080088499A1 (en) * 2006-05-24 2008-04-17 Bonthron Andrew J Methods and apparatus for hyperview automotive radar
US7395084B2 (en) 2005-01-24 2008-07-01 Sikorsky Aircraft Corporation Dynamic antenna allocation system
US20080208472A1 (en) 2004-06-25 2008-08-28 Christopher John Morcom Traffic Safety System
US20080258964A1 (en) * 2004-12-13 2008-10-23 Thomas Schoeberl Radar System
US20080272955A1 (en) * 2007-05-04 2008-11-06 Yonak Serdar H Active radar system
US7460055B2 (en) 2006-06-02 2008-12-02 Panasonic Corporation Radar apparatus
US20090003412A1 (en) 2007-03-02 2009-01-01 Matsushita Electric Industrial Co., Ltd. Spread spectrum radar apparatus
US7474258B1 (en) 2005-06-06 2009-01-06 Signal Labs, Inc. System and method for detection and discrimination of targets in the presence of interference
US20090015464A1 (en) 2005-03-31 2009-01-15 Matsushita Electric Industrial Co., Ltd. Spread spectrum radar apparatus
US20090015459A1 (en) 2004-05-28 2009-01-15 Michael Mahler Method for Reducing Interference Signal Influences on a High-Frequency Measurement Device and High-Frequency Measurement Device
US20090051581A1 (en) 2006-12-25 2009-02-26 Fuji Jukogyo Kabushiki Kaisha Pulse radar, car radar and landing assistance radar
US20090073025A1 (en) 2007-09-13 2009-03-19 Matsushita Electric Industrial Co., Ltd. Radar apparatus, method for controlling the same, and vehicle including the same
US20090072957A1 (en) 2007-09-14 2009-03-19 Honeywell International Inc. Radio frequency proximity sensor and sensor system
US20090079617A1 (en) 2007-09-26 2009-03-26 Fujitsu Limited Detection and ranging appartus and detection and ranging method
US20090085827A1 (en) 2007-10-02 2009-04-02 Furukawa Electric Co., Ltd Antenna installed on radar
US20090103593A1 (en) 2007-10-17 2009-04-23 Marcos Antonio Bergamo Array Antenna System and Spread Spectrum Beamformer Method
US20090121918A1 (en) 2007-11-12 2009-05-14 Denso Corporation Radar apparatus enabling simplified suppression of interference signal components which result from reception of directly transmitted radar waves from another radar apparatus
US7545321B2 (en) 2005-05-19 2009-06-09 Fujitsu Limited Array antenna calibration apparatus and method
US7545310B2 (en) 2007-08-17 2009-06-09 Mitsubishi Electric Corporation In-vehicle mount radar device
US7564400B2 (en) 2007-09-19 2009-07-21 Panasonic Corporation Spread spectrum radar apparatus
US7567204B2 (en) 2007-03-20 2009-07-28 Denso Corporation Method for determining noise floor level and radar using the same
US20090212998A1 (en) 2005-10-24 2009-08-27 Mitsubishi Electric Corporation Object Detection
US20090237293A1 (en) 2008-03-21 2009-09-24 Denso Corporation Recognition system for vehicle
US7609198B2 (en) 2007-05-21 2009-10-27 Spatial Digital Systems, Inc. Apparatus and method for radar imaging by measuring spatial frequency components
US20090267822A1 (en) * 2008-04-28 2009-10-29 Hitachi, Ltd. Mobile radar and planar antenna
US20090289831A1 (en) 2006-10-27 2009-11-26 Mitsubishi Electric Corporation Radar device
US20090295623A1 (en) 2008-06-03 2009-12-03 Saab Ab Radar receiver and a method for processing radar returns
US20100001897A1 (en) 2007-01-25 2010-01-07 Lyman Niall R Radar Sensing System for Vehicle
US20100019950A1 (en) 2006-12-27 2010-01-28 Denso Corporation Electronically scanned radar system
US7663533B2 (en) 2004-01-29 2010-02-16 Robert Bosch Gmbh Radar system for motor vehicles
US20100116365A1 (en) 2008-11-11 2010-05-13 Mccarty Michael Wildie Remotely readable valve position indicators
US7728762B2 (en) 2007-03-20 2010-06-01 Denso Corporation Method for detecting interference in radar system and radar using the same
US20100156690A1 (en) 2008-12-22 2010-06-24 Electronics And Telecommunications Research Institute Digital direct conversion receiving apparatus and method
US20100198513A1 (en) 2009-02-03 2010-08-05 Gm Global Technology Operations, Inc. Combined Vehicle-to-Vehicle Communication and Object Detection Sensing
US7791528B2 (en) 2008-11-24 2010-09-07 Autoliv Asp, Inc. Method and apparatus for radar signal processing
US20100277359A1 (en) 2009-05-01 2010-11-04 Denso Corporation Vehicle radar apparatus having variable output power controlled based on speed of vehicle
US20100289692A1 (en) 2008-01-31 2010-11-18 Infineon Technologies Ag Radar methods and systems using ramp sequences
US7847731B2 (en) 2007-08-23 2010-12-07 Universitat Karlsruhe Method for the operation of an antenna group having a plurality of transmitters and a plurality of receivers and associated apparatus
US7855677B2 (en) 2006-04-04 2010-12-21 Panasonic Corporation Code generation apparatus
US20110006944A1 (en) 2009-06-19 2011-01-13 U.S. Government As Represented By The Secretary Of The Army Computationally efficent radar processing method and sytem for sar and gmti on a slow moving platform
US20110032138A1 (en) 2007-12-19 2011-02-10 Robert Bosch Gmbh Method for operating an electrical device and electrical device
US20110074620A1 (en) 2008-07-02 2011-03-31 Adc Automotive Distance Control Systems Gmbh Radar System With Elevation Measuring Capability
US20110187600A1 (en) 2010-01-29 2011-08-04 Tc License Ltd. System and method for measurement of distance to a tag by a modulated backscatter rfid reader
US20110196568A1 (en) 2010-02-11 2011-08-11 Gm Global Technology Operations, Inc. Vehicle safety systems and methods
US8019352B2 (en) 2004-07-23 2011-09-13 Wireless Valley Communications, Inc. System, method, and apparatus for determining and using the position of wireless devices or infrastructure for wireless network enhancements
EP2374217A1 (en) 2008-12-09 2011-10-12 Telefonaktiebolaget L M Ericsson (PUBL) Cross-coupling interference cancellation in multiple receive branches with independent demodulation signals
US20110248796A1 (en) 2010-04-09 2011-10-13 Raytheon Company Rf feed network for modular active aperture electronically steered arrays
US8049663B2 (en) 2008-05-21 2011-11-01 Raytheon Company Hardware compensating pulse compression filter system and method
US8059026B1 (en) 2006-03-01 2011-11-15 The United States Of America As Represented By The Secretary Of The Air Force Interference avoiding transform domain radar
US20110279303A1 (en) 2010-05-13 2011-11-17 The United States Of America As Represented By The Secretary Of The Navy Active-radar-assisted passive composite imagery for aiding navigation or detecting threats
US20110279307A1 (en) 2010-05-14 2011-11-17 Massachusetts Institute Of Technology High Duty Cycle Radar with Near/Far Pulse Compression Interference Mitigation
US20110291875A1 (en) 2010-05-27 2011-12-01 Mitsubishi Electric Corporation Automotive radar with radio-frequency interference avoidance
US20110292971A1 (en) 2010-05-28 2011-12-01 Ronny Hadani Communications method employing orthonormal time-frequency shifting and spectral shaping
US20110291874A1 (en) 2010-06-01 2011-12-01 De Mersseman Bernard Vehicle radar system and method for detecting objects
US20120001791A1 (en) 2009-04-06 2012-01-05 Conti Temic Microelectronic Gmbh Radar System Having Arrangements and Methods for the Decoupling of Transmitting and Receiving Signals and for the Suppression of Interference Radiation
US20120050093A1 (en) 2009-03-02 2012-03-01 Stefan Heilmann Radar sensor having a blindness detection device
US20120105268A1 (en) 2009-02-20 2012-05-03 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method of Detecting a Scatterer in a Structure, a Radar System and a Computer Program Product
US20120112957A1 (en) 2010-11-09 2012-05-10 U.S. Government As Represented By The Secretary Of The Army Multidirectional target detecting system and method
US20120133547A1 (en) 2010-11-29 2012-05-31 Freescale Semiconductor, Inc. Automotive Radar System and Method for Using Same
US20120173246A1 (en) 2010-12-31 2012-07-05 Korea Electronics Technology Institute Variable order short-term predictor
US20120195349A1 (en) 2008-05-11 2012-08-02 Qualcomm Incorporated Spread-spectrum coding of data bursts
US20120249356A1 (en) 2011-03-30 2012-10-04 Sandia Research Corporation Surface penetrating radar system and target zone investigation methodology
US20120257643A1 (en) 2011-04-08 2012-10-11 the Communications Research Centre of Canada Method and system for wireless data communication
US8330650B2 (en) 2010-05-07 2012-12-11 The United States Of America, As Represented By The Secretary Of The Army Radar system and antenna with delay lines and method thereof
US20120314799A1 (en) 2010-02-15 2012-12-13 Einar In De Betou Method and apparatus providing protection and dc balance in a communication system
US20120319900A1 (en) * 2010-02-08 2012-12-20 Telefonaktiebolaget Lm Ericsson(Publ) Antenna with adjustable beam characteristics
US20130016761A1 (en) 2011-07-15 2013-01-17 Renesas Mobile Corporation Transmitter with a Variable Sampling Rate
US20130021196A1 (en) 2011-07-22 2013-01-24 Armin Himmelstoss Fmcw radar system and interference recognition method for fmcw radar systems
US20130027240A1 (en) 2010-03-05 2013-01-31 Sazzadur Chowdhury Radar system and method of manufacturing same
US20130069818A1 (en) 2011-09-20 2013-03-21 Fujitsu Limited System and method for detection and ranging
US20130102254A1 (en) 2010-05-27 2013-04-25 Ubiquam Ltd. Method and system of interference cancelation in collocated transceivers configurations
US20130113652A1 (en) 2010-03-08 2013-05-09 Nederlandse Organisatie voor toegepast- natuurwetendschappelijk onderzoek TNO Method of compensating sub-array or element failure in a phased array radar system, a phased array radar system and a computer program product
US20130113653A1 (en) 2010-07-16 2013-05-09 Panasonic Corporation Radar device
US20130135140A1 (en) 2010-09-02 2013-05-30 Panasonic Corporation Radar device
US20130169485A1 (en) 2011-12-28 2013-07-04 Hrl Labroratories, Llc Coded aperture beam analysis method and apparatus
US20130176154A1 (en) 2012-01-09 2013-07-11 International Business Machines Corporation Off-line gain calibration in a time-interleaved analog-to-digital converter
US20130214961A1 (en) * 2012-02-22 2013-08-22 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid radar integrated into single package
US20130229301A1 (en) 2007-12-25 2013-09-05 Honda Elesys Co., Ltd. Electronic scanning type radar device, estimation method of direction of reception wave, and program estimating direction of reception wave
US8532159B2 (en) 2007-08-30 2013-09-10 Toyota Jidosha Kabushiki Kaisha Transmitter, receiver, wireless communication system, and communication method
US20130244710A1 (en) 2012-03-09 2013-09-19 U.S. Army Research Laboratory ATTN: RDRL-LOC-1 Method and System for Removal of Noise in Signal
US20130249730A1 (en) 2009-08-03 2013-09-26 Scott E. Adcook Interference mitigation in through the wall radar
US20130314271A1 (en) 2012-05-25 2013-11-28 Brandt Braswell Vehicle-borne radar systems with continuous-time, sigma delta analog-to-digital converters, and methods of their operation
US20130321196A1 (en) 2010-12-29 2013-12-05 Robert Bosch Gmbh Radar sensor for motor vehicles
US20140022108A1 (en) 2012-07-23 2014-01-23 Motorola Mobility Llc Inter-vehicle alert system with nagable video look ahead
US20140028491A1 (en) 2012-07-27 2014-01-30 Honeywell International Inc. Method of system compensation to reduce the effects of self interference in frequency modulated continuous wave altimeter systems
US20140035774A1 (en) 2012-08-01 2014-02-06 Audi Ag Radar sensor for a motor vehicle, motor vehicle and communication method
US20140070985A1 (en) 2012-09-10 2014-03-13 Honeywell Interntional Inc. Systems and methods for combined frequency-modulation continuous-wave and pulse-compression transmission operation
US20140085128A1 (en) 2011-06-01 2014-03-27 Panasonic Corporation Radar device
US8686894B2 (en) 2010-08-09 2014-04-01 Panasonic Corporation Radar imaging apparatus, imaging method, and program thereof
US8694306B1 (en) 2012-05-04 2014-04-08 Kaonyx Labs LLC Systems and methods for source signal separation
US20140111372A1 (en) 2012-10-22 2014-04-24 Saab-Sensis Corporation Sensor system and method for determining target location using sparsity-based processing
US20140139322A1 (en) 2011-05-03 2014-05-22 Nationz Technologies Inc. Communication method, device, and system
US20140159948A1 (en) 2012-12-07 2014-06-12 Fujitsu Ten Limited Radar apparatus and signal processing method
US20140220903A1 (en) 2013-02-04 2014-08-07 Gary D. Schulz Operation of radio devices for long-range high-speed wireless communication
US20140253345A1 (en) 2000-09-08 2014-09-11 Intelligent Technologies International, Inc. Travel information sensing and communication method and system
US20140285373A1 (en) 2013-03-19 2014-09-25 Honda Elesys Co., Ltd. On-board radar apparatus
US20140327566A1 (en) 2012-05-09 2014-11-06 Stmicroelectronics S.R.L. Method and devices for processing radar signals
US20140348253A1 (en) 2011-02-01 2014-11-27 Research In Motion Limited Mixed rank downlink multi-user interference alignment scheme
US20150002357A1 (en) 2013-02-04 2015-01-01 John R. Sanford Dual receiver/transmitter radio devices with choke
US20150002329A1 (en) 2013-06-27 2015-01-01 GM Global Technology Operations LLC Multiple transmission methods for improving the operation of automotive radar systems
EP2821808A1 (en) 2012-03-02 2015-01-07 Tokyo Keiki Inc. Radar apparatus and radar signal processing method
US20150035662A1 (en) 2013-07-31 2015-02-05 Elwha, Llc Systems and methods for adaptive vehicle sensing systems
US20150061922A1 (en) 2013-02-22 2015-03-05 Panasonic Corporation Radar apparatus
US20150103745A1 (en) 2012-06-21 2015-04-16 CBF Networks, Inc. Intelligent backhaul radio with co-band zero division duplexing
US20150198709A1 (en) 2013-08-29 2015-07-16 Panasonic Intellectual Property Management Co., Ltd. Radar system and target detection method
US20150204966A1 (en) 2013-06-13 2015-07-23 Panasonic Corporation Radar apparatus
US20150204971A1 (en) 2014-01-22 2015-07-23 Fujitsu Ten Limited Radar apparatus
US20150226848A1 (en) 2014-02-11 2015-08-13 Electronics And Telecommunications Research Institute Method and apparatus for detecting target using radar
US20150234045A1 (en) 2014-02-20 2015-08-20 Mobileye Vision Technologies Ltd. Navigation based on radar-cued visual imaging
US9121943B2 (en) 2011-05-23 2015-09-01 Sony Corporation Beam forming device and method
US20150247924A1 (en) 2014-02-28 2015-09-03 Panasonic Corporation Radar apparatus
US20150255867A1 (en) * 2012-11-23 2015-09-10 Furukawa Electric Co., Ltd. Array antenna device
US20150301172A1 (en) 2012-11-08 2015-10-22 Valeo Schalter Und Sensoren Gmbh Method for operating a radar sensor of a motor vehicle, driver assistance device and motor vehicle
US20150323660A1 (en) 2014-05-12 2015-11-12 Autoliv Asp, Inc. Radar system and method for determining range, relative velocity and bearing of an object using continuous-wave and chirp signals
WO2015175078A2 (en) 2014-02-24 2015-11-19 Massachusetts Institute Of Technology Object tracking via radio reflections
US20150331090A1 (en) 2013-07-05 2015-11-19 Mando Corporation Frequency modulated continuous wave radar device, and object detection method using continuous wave thereof
WO2015185058A1 (en) 2014-06-05 2015-12-10 Conti Temic Microelectronic Gmbh Radar system with optimized storage of temporary data
US20160003939A1 (en) 2014-07-03 2016-01-07 GM Global Technology Operations LLC Vehicle radar control
US20160003938A1 (en) 2014-07-03 2016-01-07 GM Global Technology Operations LLC Vehicle radar with beam adjustment
US20160018511A1 (en) 2014-07-17 2016-01-21 Texas Instruments Incorporated Distributed Radar Signal Processing in a Radar System
US20160033631A1 (en) 2014-07-29 2016-02-04 Delphi Technologies, Inc. Radar data compression system and method
US20160033632A1 (en) 2014-03-05 2016-02-04 Delphi Technologies, Inc. Mimo antenna with elevation detection
US20160041260A1 (en) 2014-08-05 2016-02-11 Panasonic Intellectual Property Management Co., Ltd. Radar apparatus and object sensing method
WO2016030656A1 (en) 2014-08-28 2016-03-03 Aveillant Limited Radar system and associated apparatus and methods
US20160061935A1 (en) 2014-08-28 2016-03-03 Google Inc. Methods and Systems for Vehicle Radar Coordination and Interference Reduction
US9282945B2 (en) 2009-04-14 2016-03-15 Maui Imaging, Inc. Calibration of ultrasound probes
US20160084943A1 (en) 2014-09-19 2016-03-24 Delphi Technologies, Inc. Radar System For Automated Vehicle With Phase Change Based Target Catagorization
US20160084941A1 (en) 2014-09-19 2016-03-24 Delphi Technologies, Inc. Radar system with phase based multi-target detection
US20160091595A1 (en) 2014-09-29 2016-03-31 Delphi Technologies, Inc. Radar system and method for virtual antenna signals
US20160124086A1 (en) 2014-10-30 2016-05-05 Nxp, B.V. Radar ambiguity resolving detector
US9335402B2 (en) 2012-06-21 2016-05-10 Furuno Electric Co., Ltd. Apparatus and method for detecting target object
US20160139254A1 (en) 2014-11-13 2016-05-19 The Boeing Company Short-Range Point Defense Radar
US20160146931A1 (en) 2014-11-21 2016-05-26 Texas Instruments Incorporated Techniques for high arrival angle resolution using multiple nano-radars
US9400328B2 (en) 2013-04-18 2016-07-26 Wistron Neweb Corporation Radar device for an automotive radar system
US20160213258A1 (en) 2014-12-24 2016-07-28 Bahman LASHKARI Methods for generating multiple mismatched coded excitation signals
US20160238694A1 (en) 2015-02-16 2016-08-18 Panasonic Intellectual Property Management Co., Ltd. Radar device
US20170023661A1 (en) 2015-07-20 2017-01-26 Brain Corporation Apparatus and methods for detection of objects using broadband signals
US20170023663A1 (en) 2014-09-30 2017-01-26 Texas Instruments Incorporated Loopback techniques for synchronization of oscillator signal in radar
US9568600B2 (en) 2014-03-05 2017-02-14 Delphi Technologies, Inc. MIMO antenna with elevation detection
US9575160B1 (en) 2016-04-25 2017-02-21 Uhnder, Inc. Vehicular radar sensing system utilizing high rate true random number generator
US9599702B1 (en) 2016-04-25 2017-03-21 Uhnder, Inc. On-demand multi-scan micro doppler for vehicle
US20170117950A1 (en) * 2015-10-23 2017-04-27 Cambium Networks Limited Method and apparatus for controlling equivalent isotropic radiated power
US20170219689A1 (en) 2016-04-15 2017-08-03 Mediatek Inc. Radar Interference Mitigation Method And Apparatus
US20170234968A1 (en) 2016-02-16 2017-08-17 Infineon Technologies Ag Radar Employing Preacquisition Ramps
US9753121B1 (en) 2016-06-20 2017-09-05 Uhnder, Inc. Power control for improved near-far performance of radar systems
US9772397B1 (en) 2016-04-25 2017-09-26 Uhnder, Inc. PMCW-PMCW interference mitigation
WO2017175190A1 (en) 2016-04-07 2017-10-12 Uhnder, Inc. Adaptive transmission and interference cancellation for mimo radar
US20170293025A1 (en) 2016-04-07 2017-10-12 Uhnder, Inc. Software defined automotive radar systems
US9791564B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Adaptive filtering for FMCW interference mitigation in PMCW radar systems
US9791551B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Vehicular radar system with self-interference cancellation
US20170307728A1 (en) 2016-04-25 2017-10-26 Uhnder, Inc. Digital frequency modulated continuous wave radar using handcrafted constant envelope modulation
US20170309997A1 (en) 2016-04-25 2017-10-26 Uhnder, Inc. Vehicle radar system using shaped antenna patterns
US20170310758A1 (en) 2016-04-25 2017-10-26 Uhnder, Inc. Vehicle radar system with a shared radar and communication system
US9806914B1 (en) 2016-04-25 2017-10-31 Uhnder, Inc. Successive signal interference mitigation
WO2017187330A1 (en) 2016-04-25 2017-11-02 Uhnder, Inc. Software defined automotive radar
US9869762B1 (en) 2016-09-16 2018-01-16 Uhnder, Inc. Virtual radar configuration for 2D array

Patent Citations (296)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1882128A (en) 1927-06-01 1932-10-11 Edward W Fearing Radiofrequency amplification system
US3374478A (en) 1966-12-07 1968-03-19 Spectronics Inc Radar signaliing system with reduced clutter effect
US3735395A (en) 1971-01-04 1973-05-22 Iwatsu Electric Co Ltd Projection type keyboard device
US3750169A (en) 1972-03-13 1973-07-31 Sperry Rand Corp Vehicular safety system
US3896434A (en) 1973-03-06 1975-07-22 Thomson Csf Pulse type radar system
US4078234A (en) 1975-04-25 1978-03-07 The United States Of America As Represented By The Secretary Of The Army Continuous wave correlation radar system
US4176351A (en) 1978-08-18 1979-11-27 Raytheon Company Method of operating a continuous wave radar
US4566010A (en) 1982-04-28 1986-01-21 Raytheon Company Processing arrangement for pulse compression radar
US4612547A (en) * 1982-09-07 1986-09-16 Nec Corporation Electronically scanned antenna
US4910464A (en) 1985-11-06 1990-03-20 Formula Systems Limited Proximity detector
US4939685A (en) 1986-06-05 1990-07-03 Hughes Aircraft Company Normalized frequency domain LMS adaptive filter
FR2751086A1 (en) 1986-08-01 1998-01-16 Thomson Csf Mutual interference eliminating method for radar groups transmitting and receiving signals
US5012254A (en) * 1987-03-26 1991-04-30 Hughes Aircraft Company Plural level beam-forming netowrk
US4882668A (en) 1987-12-10 1989-11-21 General Dynamics Corp., Pomona Division Adaptive matched filter
US6121872A (en) 1989-04-15 2000-09-19 Bayerische Motoren Werke Ag Object sensing device for motor vehicles
US5001486A (en) 1989-08-04 1991-03-19 Siemens-Albis Radar system for determining the position of two or more objects
US5034906A (en) 1990-03-30 1991-07-23 Microwave Logic Pseudorandom Binary Sequence delay systems
US5087918A (en) 1990-04-02 1992-02-11 Delco Electronics Corporation FMCW/2FD implementation for vehicle near obstacle detection system
US5175710A (en) 1990-12-14 1992-12-29 Hutson William H Multi-dimensional data processing and display
US5218619A (en) 1990-12-17 1993-06-08 Ericsson Ge Mobile Communications Holding, Inc. CDMA subtractive demodulation
US5151702A (en) 1991-07-22 1992-09-29 General Electric Company Complementary-sequence pulse radar with matched filtering following doppler filtering
US5508706A (en) 1991-09-30 1996-04-16 Trw Inc. Radar signal processor
US5379322A (en) 1992-01-07 1995-01-03 Sanyo Electric Co., Ltd. Baseband signal generator for digital modulator
US5272663A (en) 1992-05-05 1993-12-21 The Board Of Trustees Of The University Of Illinois Apparatus and method for wide bandwidth adaptive filtering
US5280288A (en) 1992-08-14 1994-01-18 Vorad Safety Systems, Inc. Interference avoidance system for vehicular radar system
US5302956A (en) 1992-08-14 1994-04-12 Vorad Safety Systems, Inc. Multi-frequency, multi-target vehicular radar system using digital signal processing
US5581464B1 (en) 1992-08-14 1999-02-09 Vorad Safety Systems Inc Recording of operational events in an automotive vehicle
US5581464A (en) 1992-08-14 1996-12-03 Vorad Safety Systems, Inc. Recording of operational events in an automotive vehicle
US5341141A (en) 1993-03-09 1994-08-23 Hughes Missile Systems Company Three dimensional imaging radar
US5345470A (en) 1993-03-31 1994-09-06 Alexander Richard O Methods of minimizing the interference between many multiple FMCW radars
US5376939A (en) 1993-06-21 1994-12-27 Martin Marietta Corporation Dual-frequency, complementary-sequence pulse radar
US20020004692A1 (en) 1994-05-31 2002-01-10 Winged Systems Corporation High accuracy, high integrity scene mapped navigation
US6347264B2 (en) 1994-05-31 2002-02-12 Winged Systems Corporation High accuracy, high integrity scene mapped navigation
US5657021A (en) 1994-06-30 1997-08-12 Ehsani Engineering Enterprises, Inc. System and method for radar-vision for vehicles in traffic
US5724041A (en) 1994-11-24 1998-03-03 The Furukawa Electric Co., Ltd. Spread spectrum radar device using pseudorandom noise signal for detection of an object
US5712640A (en) 1994-11-28 1998-01-27 Honda Giken Kogyo Kabushiki Kaisha Radar module for radar system on motor vehicle
US5497162A (en) 1995-01-09 1996-03-05 Northrop Grumman Corporation Radar signal selection based upon antenna bearing
EP0725480A1 (en) 1995-02-01 1996-08-07 Nec Corporation Adaptively controlled filter
US5691724A (en) 1995-02-10 1997-11-25 Aker; John L. Police traffic radar using FFT processing to find fastest target
US5917430A (en) 1995-08-28 1999-06-29 The Safety Warning System, L.C. Radar based highway safety warning system
US5959571A (en) 1996-04-22 1999-09-28 The Furukawa Electric Co., Ltd. Radar device
US5970400A (en) 1996-04-30 1999-10-19 Magellan Corporation Adjusting the timing and synchronization of a radio's oscillator with a signal from an SATPS satellite
US5657023A (en) 1996-05-02 1997-08-12 Hughes Electronics Self-phase up of array antennas with non-uniform element mutual coupling and arbitrary lattice orientation
US5920285A (en) 1996-06-06 1999-07-06 University Of Bristol Post-reception focusing in remote detection systems
US6067314A (en) 1996-07-10 2000-05-23 Kabushiki Kaisha Toshiba Direct spread spectrum signal receiving apparatus and synchronism acquisition circuit
US6121918A (en) 1996-10-17 2000-09-19 Celsiustech Electronics Ab Procedure for the elimination of interference in a radar unit of the FMCW type
US6191726B1 (en) 1996-10-17 2001-02-20 Celsiustech Electronics Ab Procedure for the elimination of interference in a radar unit of the FMCW type
US5892477A (en) 1996-11-13 1999-04-06 Trw Inc. Anti-jam FM/CW radar
US20030073463A1 (en) * 1997-03-03 2003-04-17 Joseph Shapira Active antenna array configuration and control for cellular communication systems
US6411250B1 (en) 1997-09-01 2002-06-25 Cambridge Consultants Limited Electromagnetic sensor system
US5931893A (en) 1997-11-11 1999-08-03 Ericsson, Inc. Efficient correlation over a sliding window
US20010002919A1 (en) 1998-02-17 2001-06-07 Essam Sourour Flexible sliding correlator for direct sequence spread spectrum systems
US6069581A (en) 1998-02-20 2000-05-30 Amerigon High performance vehicle radar system
US6400308B1 (en) 1998-02-20 2002-06-04 Amerigon Inc. High performance vehicle radar system
US6151366A (en) 1998-04-17 2000-11-21 Advanced Microdevices, Inc. Method and apparatus for modulating signals
US6624784B1 (en) 1998-07-13 2003-09-23 Ntt Mobile Communications Network, Inc. Adaptive array antenna
US6288672B1 (en) 1998-09-14 2001-09-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Holographic radar
US6417796B1 (en) 1998-09-16 2002-07-09 Mph Industries, Inc. Doppler-based traffic radar system
US6614387B1 (en) 1998-09-29 2003-09-02 Qinetiq Limited Proximity measuring apparatus
US6184829B1 (en) 1999-01-08 2001-02-06 Trueposition, Inc. Calibration for wireless location system
US6307622B1 (en) 1999-02-17 2001-10-23 Infineon Technologies North America Corp. Correlation based optical ranging and proximity detector
US6163252A (en) 1999-04-07 2000-12-19 Mitsubishi Denki Kabushiki Kaisha Device for detecting obstacles, for use in vehicles
US20030102997A1 (en) 2000-02-13 2003-06-05 Hexagon System Engineering Ltd. Vehicle communication network
US6424289B2 (en) 2000-06-01 2002-07-23 Mitsubishi Denki Kabushiki Kaisha Obstacle detection device and obstacle detection system
US6768391B1 (en) 2000-06-22 2004-07-27 Ericsson Inc. Class-B biased gilbert cells and quadrature modulators
US6714956B1 (en) 2000-07-24 2004-03-30 Via Technologies, Inc. Hardware accelerator for normal least-mean-square algorithm-based coefficient adaptation
US20020075178A1 (en) 2000-08-16 2002-06-20 Woodington Walter Gordon Radar transmitter circuitry and techniques
US20020044082A1 (en) * 2000-08-16 2002-04-18 Woodington Walter Gordon Radar detection method and apparatus
US20020147534A1 (en) * 2000-08-16 2002-10-10 Delcheccolo Michael Joseph Near object detection system
US20030001772A1 (en) 2000-08-16 2003-01-02 Woodington Walter Gordon Radar detection method and apparatus
US20030011519A1 (en) * 2000-08-16 2003-01-16 Caroline Breglia Slot antenna element for an array antenna
US20140253345A1 (en) 2000-09-08 2014-09-11 Intelligent Technologies International, Inc. Travel information sensing and communication method and system
US20050273480A1 (en) 2000-10-27 2005-12-08 Pugh Daniel J Gold code generator design
US7299251B2 (en) 2000-11-08 2007-11-20 Qinetiq Limited Adaptive filter
US6865218B1 (en) 2000-11-27 2005-03-08 Ericsson Inc. Multipath interference reduction for a CDMA system
US20040066323A1 (en) 2000-12-01 2004-04-08 Karl-Heinz Richter Pulse radar method, pulse radar sensor and corresponding system
US20020130811A1 (en) 2001-02-22 2002-09-19 Klaus Voigtlaender Method of detecting interference conditions of a radar device and a radar device
US20020118522A1 (en) 2001-02-28 2002-08-29 Siliconware Precision Industries Co., Ltd. Ball grid array package with interdigitated power ring and ground ring
US20020155811A1 (en) 2001-04-18 2002-10-24 Jerry Prismantas System and method for adapting RF transmissions to mitigate the effects of certain interferences
US20030058166A1 (en) 2001-09-17 2003-03-27 Nec Corporation Apparatus and method for calibrating array antenna
US20030080713A1 (en) 2001-10-30 2003-05-01 Kirmuss Charles Bruno Pre-heating a mobile electronic device
US20060093078A1 (en) 2001-11-20 2006-05-04 Michael Lewis Preamble aided synchronization
US6747595B2 (en) 2002-01-21 2004-06-08 Nec Corporation Array antenna calibration apparatus and array antenna calibration method
US6583753B1 (en) 2002-04-03 2003-06-24 Delphi Technologies, Inc. Vehicle back-up and parking aid radar system
US6674908B1 (en) 2002-05-04 2004-01-06 Edward Lasar Aronov Method of compression of binary data with a random number generator
US7119739B1 (en) 2002-05-14 2006-10-10 Bae Systems Information And Electronic Systems Integration Inc. Near field to far field DF antenna array calibration technique
US20060036353A1 (en) 2002-06-18 2006-02-16 A.D.C. Automotive Distance Control Systems Gmbh Method of suppressing interferences in systems for detecting objects
US20030235244A1 (en) 2002-06-24 2003-12-25 Pessoa Lucio F. C. Method and apparatus for performing adaptive filtering
US20040015529A1 (en) 2002-07-16 2004-01-22 Tellabs Operations, Inc. Selective-partial-update proportionate normalized least-mean-square adaptive filtering for network echo cancellation
US20040012516A1 (en) 2002-07-16 2004-01-22 Schiffmann Jan K. Tracking system and method employing multiple overlapping sensors
US20050225476A1 (en) 2002-09-06 2005-10-13 Juergen Hoetzel Radar measurement device, especially for a motor vehicle, and method for operating a radar measurement device
US20060109170A1 (en) 2002-11-26 2006-05-25 Klaus Voigtlaender Method and device for the adaptive regulation of power
US20040138802A1 (en) 2003-01-10 2004-07-15 Hitachi, Ltd. Vehiclar travel control device
US20060140249A1 (en) 2003-02-25 2006-06-29 Yokohama Tlo Company, Ltd. Pulse waveform producing method
US6975246B1 (en) 2003-05-13 2005-12-13 Itt Manufacturing Enterprises, Inc. Collision avoidance using limited range gated video
US20060244653A1 (en) 2003-07-07 2006-11-02 Szajnowski Wieslaw J Generations of sequences of waveforms
US20050069162A1 (en) 2003-09-23 2005-03-31 Simon Haykin Binaural adaptive hearing aid
US20060262007A1 (en) * 2004-01-16 2006-11-23 Clariant Technologies, Corp. Methods and apparatus for automotive radar sensors
US20050156780A1 (en) * 2004-01-16 2005-07-21 Ghz Tr Corporation Methods and apparatus for automotive radar sensors
US7663533B2 (en) 2004-01-29 2010-02-16 Robert Bosch Gmbh Radar system for motor vehicles
US20050201457A1 (en) 2004-03-10 2005-09-15 Allred Daniel J. Distributed arithmetic adaptive filter and method
US20090015459A1 (en) 2004-05-28 2009-01-15 Michael Mahler Method for Reducing Interference Signal Influences on a High-Frequency Measurement Device and High-Frequency Measurement Device
US7289058B2 (en) 2004-06-21 2007-10-30 Fujitsu Ten Limited Radar apparatus
US20080208472A1 (en) 2004-06-25 2008-08-28 Christopher John Morcom Traffic Safety System
US20060012511A1 (en) 2004-07-13 2006-01-19 Fujitsu Limited Radar apparatus, radar apparatus controlling method
US20070182619A1 (en) * 2004-07-16 2007-08-09 Fujitsu Ten Limited Monopulse radar apparatus and antenna switch
US8019352B2 (en) 2004-07-23 2011-09-13 Wireless Valley Communications, Inc. System, method, and apparatus for determining and using the position of wireless devices or infrastructure for wireless network enhancements
US7338450B2 (en) 2004-08-27 2008-03-04 General Electric Company Method and apparatus for performing CW doppler ultrasound utilizing a 2D matrix array
US20060050707A1 (en) 2004-09-09 2006-03-09 Intel Corporation Methods and apparatus for multiple bit rate serial communication
US20070279303A1 (en) * 2004-09-13 2007-12-06 Robert Bosch Gmbh Antenna Structure for Series-Fed Planar Antenna Elements
US20070132633A1 (en) 2004-10-14 2007-06-14 Masaharu Uchino Small-sized low-power dissipation short-range radar that can arbitrarily change delay time between transmission and reception with high time resolution and method of controlling the same
US20060109931A1 (en) 2004-11-05 2006-05-25 Ntt Docomo, Inc. Mobile communication receiver and transmitter
US20060114324A1 (en) 2004-11-16 2006-06-01 Northrop Grumman Corporation Method and apparatus for collaborative aggregate situation awareness
US20080258964A1 (en) * 2004-12-13 2008-10-23 Thomas Schoeberl Radar System
US20070120731A1 (en) 2004-12-15 2007-05-31 Kelly Thomas M Jr System and method for reducing the effect of a radar interference signal
US7395084B2 (en) 2005-01-24 2008-07-01 Sikorsky Aircraft Corporation Dynamic antenna allocation system
US20060181448A1 (en) 2005-02-14 2006-08-17 Denso Corporation FMCW radar device and method for detecting interference
US20090015464A1 (en) 2005-03-31 2009-01-15 Matsushita Electric Industrial Co., Ltd. Spread spectrum radar apparatus
US7642952B2 (en) 2005-03-31 2010-01-05 Panasonic Corporation Spread spectrum radar apparatus
US20070018886A1 (en) 2005-04-15 2007-01-25 Denso Corporation Interference determination method and fmcw radar using the same
US7545321B2 (en) 2005-05-19 2009-06-09 Fujitsu Limited Array antenna calibration apparatus and method
US20060262009A1 (en) 2005-05-20 2006-11-23 Denso Corporation Method of preventing interference between radars and radar system having interference preventing function
US7474258B1 (en) 2005-06-06 2009-01-06 Signal Labs, Inc. System and method for detection and discrimination of targets in the presence of interference
US20090027257A1 (en) 2005-06-06 2009-01-29 Orhan Arikan System and method for detection and discrimination of targets in the presence of interference
US20070109175A1 (en) 2005-06-22 2007-05-17 Matsushita Electric Industrial Co., Ltd. Spread spectrum radar apparatus
US20070018884A1 (en) 2005-07-08 2007-01-25 Raytheon Company Single transmit multi-receiver modulation radar, multi-modulation receiver and method
US20070115869A1 (en) 2005-07-20 2007-05-24 Novowave, Inc. Systems and method for high data rate ultra wideband communication
US8154436B2 (en) 2005-10-24 2012-04-10 Mitsubishi Electric Information Technology Centre Europe B.V. Object detection
US20090212998A1 (en) 2005-10-24 2009-08-27 Mitsubishi Electric Corporation Object Detection
US20070164896A1 (en) 2005-11-10 2007-07-19 Hitachi, Ltd. In-vehicle radar device and communication device
US20070152870A1 (en) 2005-12-30 2007-07-05 Woodington Walter G Vehicle radar system having multiple operating modes
US20070152872A1 (en) 2005-12-30 2007-07-05 Woodington Walter G Reducing undesirable coupling of signal(s) between two or more signal paths in a radar system
US20070152871A1 (en) 2006-01-05 2007-07-05 Puglia Kenneth V Time duplex apparatus and method for radar sensor front-ends
US20070171122A1 (en) 2006-01-25 2007-07-26 Fujitsu Ten Limited Radar apparatus and interference detection method
US20070182623A1 (en) 2006-02-03 2007-08-09 Shuqing Zeng Method and apparatus for on-vehicle calibration and orientation of object-tracking systems
US20070188373A1 (en) 2006-02-15 2007-08-16 Fujitsu Limited Search/detection apparatus
US20070200747A1 (en) 2006-02-28 2007-08-30 Hitachi, Ltd. Radar apparatus and radar system for a vehicle
US8059026B1 (en) 2006-03-01 2011-11-15 The United States Of America As Represented By The Secretary Of The Air Force Interference avoiding transform domain radar
US7855677B2 (en) 2006-04-04 2010-12-21 Panasonic Corporation Code generation apparatus
US20070263748A1 (en) 2006-05-12 2007-11-15 Northrop Grumman Corporation Common antenna array using baseband adaptive beamforming and digital IF conversion
US20080088499A1 (en) * 2006-05-24 2008-04-17 Bonthron Andrew J Methods and apparatus for hyperview automotive radar
US7460055B2 (en) 2006-06-02 2008-12-02 Panasonic Corporation Radar apparatus
US20090289831A1 (en) 2006-10-27 2009-11-26 Mitsubishi Electric Corporation Radar device
US20090051581A1 (en) 2006-12-25 2009-02-26 Fuji Jukogyo Kabushiki Kaisha Pulse radar, car radar and landing assistance radar
US20100019950A1 (en) 2006-12-27 2010-01-28 Denso Corporation Electronically scanned radar system
US20110285576A1 (en) 2007-01-25 2011-11-24 Lynam Niall R Forward facing sensing system for a vehicle
US20100001897A1 (en) 2007-01-25 2010-01-07 Lyman Niall R Radar Sensing System for Vehicle
US20090003412A1 (en) 2007-03-02 2009-01-01 Matsushita Electric Industrial Co., Ltd. Spread spectrum radar apparatus
US7728762B2 (en) 2007-03-20 2010-06-01 Denso Corporation Method for detecting interference in radar system and radar using the same
US7567204B2 (en) 2007-03-20 2009-07-28 Denso Corporation Method for determining noise floor level and radar using the same
US20080272955A1 (en) * 2007-05-04 2008-11-06 Yonak Serdar H Active radar system
US7609198B2 (en) 2007-05-21 2009-10-27 Spatial Digital Systems, Inc. Apparatus and method for radar imaging by measuring spatial frequency components
US7545310B2 (en) 2007-08-17 2009-06-09 Mitsubishi Electric Corporation In-vehicle mount radar device
US7847731B2 (en) 2007-08-23 2010-12-07 Universitat Karlsruhe Method for the operation of an antenna group having a plurality of transmitters and a plurality of receivers and associated apparatus
US8532159B2 (en) 2007-08-30 2013-09-10 Toyota Jidosha Kabushiki Kaisha Transmitter, receiver, wireless communication system, and communication method
US20090073025A1 (en) 2007-09-13 2009-03-19 Matsushita Electric Industrial Co., Ltd. Radar apparatus, method for controlling the same, and vehicle including the same
US20090072957A1 (en) 2007-09-14 2009-03-19 Honeywell International Inc. Radio frequency proximity sensor and sensor system
US7564400B2 (en) 2007-09-19 2009-07-21 Panasonic Corporation Spread spectrum radar apparatus
US7859450B2 (en) 2007-09-26 2010-12-28 Fujitsu Limited Detection and ranging appartus and detection and ranging method
US20090079617A1 (en) 2007-09-26 2009-03-26 Fujitsu Limited Detection and ranging appartus and detection and ranging method
US20090085827A1 (en) 2007-10-02 2009-04-02 Furukawa Electric Co., Ltd Antenna installed on radar
US20090103593A1 (en) 2007-10-17 2009-04-23 Marcos Antonio Bergamo Array Antenna System and Spread Spectrum Beamformer Method
US20090121918A1 (en) 2007-11-12 2009-05-14 Denso Corporation Radar apparatus enabling simplified suppression of interference signal components which result from reception of directly transmitted radar waves from another radar apparatus
US20110032138A1 (en) 2007-12-19 2011-02-10 Robert Bosch Gmbh Method for operating an electrical device and electrical device
US20130229301A1 (en) 2007-12-25 2013-09-05 Honda Elesys Co., Ltd. Electronic scanning type radar device, estimation method of direction of reception wave, and program estimating direction of reception wave
US20100289692A1 (en) 2008-01-31 2010-11-18 Infineon Technologies Ag Radar methods and systems using ramp sequences
US20090237293A1 (en) 2008-03-21 2009-09-24 Denso Corporation Recognition system for vehicle
US20090267822A1 (en) * 2008-04-28 2009-10-29 Hitachi, Ltd. Mobile radar and planar antenna
US20120195349A1 (en) 2008-05-11 2012-08-02 Qualcomm Incorporated Spread-spectrum coding of data bursts
US8049663B2 (en) 2008-05-21 2011-11-01 Raytheon Company Hardware compensating pulse compression filter system and method
US20090295623A1 (en) 2008-06-03 2009-12-03 Saab Ab Radar receiver and a method for processing radar returns
US20110074620A1 (en) 2008-07-02 2011-03-31 Adc Automotive Distance Control Systems Gmbh Radar System With Elevation Measuring Capability
US8390507B2 (en) 2008-07-02 2013-03-05 Adc Automotive Distance Control Systems Gmbh Radar system with elevation measuring capability
US20100116365A1 (en) 2008-11-11 2010-05-13 Mccarty Michael Wildie Remotely readable valve position indicators
US7791528B2 (en) 2008-11-24 2010-09-07 Autoliv Asp, Inc. Method and apparatus for radar signal processing
EP2374217A1 (en) 2008-12-09 2011-10-12 Telefonaktiebolaget L M Ericsson (PUBL) Cross-coupling interference cancellation in multiple receive branches with independent demodulation signals
US20100156690A1 (en) 2008-12-22 2010-06-24 Electronics And Telecommunications Research Institute Digital direct conversion receiving apparatus and method
US20100198513A1 (en) 2009-02-03 2010-08-05 Gm Global Technology Operations, Inc. Combined Vehicle-to-Vehicle Communication and Object Detection Sensing
US20120105268A1 (en) 2009-02-20 2012-05-03 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method of Detecting a Scatterer in a Structure, a Radar System and a Computer Program Product
US20120050093A1 (en) 2009-03-02 2012-03-01 Stefan Heilmann Radar sensor having a blindness detection device
US20120001791A1 (en) 2009-04-06 2012-01-05 Conti Temic Microelectronic Gmbh Radar System Having Arrangements and Methods for the Decoupling of Transmitting and Receiving Signals and for the Suppression of Interference Radiation
US9282945B2 (en) 2009-04-14 2016-03-15 Maui Imaging, Inc. Calibration of ultrasound probes
US20100277359A1 (en) 2009-05-01 2010-11-04 Denso Corporation Vehicle radar apparatus having variable output power controlled based on speed of vehicle
US20110006944A1 (en) 2009-06-19 2011-01-13 U.S. Government As Represented By The Secretary Of The Army Computationally efficent radar processing method and sytem for sar and gmti on a slow moving platform
US20130249730A1 (en) 2009-08-03 2013-09-26 Scott E. Adcook Interference mitigation in through the wall radar
US20110187600A1 (en) 2010-01-29 2011-08-04 Tc License Ltd. System and method for measurement of distance to a tag by a modulated backscatter rfid reader
US20120319900A1 (en) * 2010-02-08 2012-12-20 Telefonaktiebolaget Lm Ericsson(Publ) Antenna with adjustable beam characteristics
US20110196568A1 (en) 2010-02-11 2011-08-11 Gm Global Technology Operations, Inc. Vehicle safety systems and methods
US20120314799A1 (en) 2010-02-15 2012-12-13 Einar In De Betou Method and apparatus providing protection and dc balance in a communication system
US20130027240A1 (en) 2010-03-05 2013-01-31 Sazzadur Chowdhury Radar system and method of manufacturing same
US20130113652A1 (en) 2010-03-08 2013-05-09 Nederlandse Organisatie voor toegepast- natuurwetendschappelijk onderzoek TNO Method of compensating sub-array or element failure in a phased array radar system, a phased array radar system and a computer program product
US20110248796A1 (en) 2010-04-09 2011-10-13 Raytheon Company Rf feed network for modular active aperture electronically steered arrays
US8330650B2 (en) 2010-05-07 2012-12-11 The United States Of America, As Represented By The Secretary Of The Army Radar system and antenna with delay lines and method thereof
US20110279303A1 (en) 2010-05-13 2011-11-17 The United States Of America As Represented By The Secretary Of The Navy Active-radar-assisted passive composite imagery for aiding navigation or detecting threats
US8102306B2 (en) 2010-05-13 2012-01-24 The United States Of America As Represented By The Secretary Of The Navy Active-radar-assisted passive composite imagery for aiding navigation or detecting threats
US20110279307A1 (en) 2010-05-14 2011-11-17 Massachusetts Institute Of Technology High Duty Cycle Radar with Near/Far Pulse Compression Interference Mitigation
US20130102254A1 (en) 2010-05-27 2013-04-25 Ubiquam Ltd. Method and system of interference cancelation in collocated transceivers configurations
US8471760B2 (en) 2010-05-27 2013-06-25 Mitsubishi Electric Corporation Automotive radar with radio-frequency interference avoidance
US20110291875A1 (en) 2010-05-27 2011-12-01 Mitsubishi Electric Corporation Automotive radar with radio-frequency interference avoidance
US20110292971A1 (en) 2010-05-28 2011-12-01 Ronny Hadani Communications method employing orthonormal time-frequency shifting and spectral shaping
US8547988B2 (en) 2010-05-28 2013-10-01 Ronny Hadani Communications method employing orthonormal time-frequency shifting and spectral shaping
US20110291874A1 (en) 2010-06-01 2011-12-01 De Mersseman Bernard Vehicle radar system and method for detecting objects
US20130113653A1 (en) 2010-07-16 2013-05-09 Panasonic Corporation Radar device
US8686894B2 (en) 2010-08-09 2014-04-01 Panasonic Corporation Radar imaging apparatus, imaging method, and program thereof
US20130135140A1 (en) 2010-09-02 2013-05-30 Panasonic Corporation Radar device
US20120112957A1 (en) 2010-11-09 2012-05-10 U.S. Government As Represented By The Secretary Of The Army Multidirectional target detecting system and method
US20120133547A1 (en) 2010-11-29 2012-05-31 Freescale Semiconductor, Inc. Automotive Radar System and Method for Using Same
US20130321196A1 (en) 2010-12-29 2013-12-05 Robert Bosch Gmbh Radar sensor for motor vehicles
US20120173246A1 (en) 2010-12-31 2012-07-05 Korea Electronics Technology Institute Variable order short-term predictor
US20140348253A1 (en) 2011-02-01 2014-11-27 Research In Motion Limited Mixed rank downlink multi-user interference alignment scheme
US20120249356A1 (en) 2011-03-30 2012-10-04 Sandia Research Corporation Surface penetrating radar system and target zone investigation methodology
US20120257643A1 (en) 2011-04-08 2012-10-11 the Communications Research Centre of Canada Method and system for wireless data communication
US20140139322A1 (en) 2011-05-03 2014-05-22 Nationz Technologies Inc. Communication method, device, and system
US9121943B2 (en) 2011-05-23 2015-09-01 Sony Corporation Beam forming device and method
US20140085128A1 (en) 2011-06-01 2014-03-27 Panasonic Corporation Radar device
US20130016761A1 (en) 2011-07-15 2013-01-17 Renesas Mobile Corporation Transmitter with a Variable Sampling Rate
US20130021196A1 (en) 2011-07-22 2013-01-24 Armin Himmelstoss Fmcw radar system and interference recognition method for fmcw radar systems
US20130069818A1 (en) 2011-09-20 2013-03-21 Fujitsu Limited System and method for detection and ranging
US20130169485A1 (en) 2011-12-28 2013-07-04 Hrl Labroratories, Llc Coded aperture beam analysis method and apparatus
US20130176154A1 (en) 2012-01-09 2013-07-11 International Business Machines Corporation Off-line gain calibration in a time-interleaved analog-to-digital converter
US20130214961A1 (en) * 2012-02-22 2013-08-22 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid radar integrated into single package
EP2821808A1 (en) 2012-03-02 2015-01-07 Tokyo Keiki Inc. Radar apparatus and radar signal processing method
US20130244710A1 (en) 2012-03-09 2013-09-19 U.S. Army Research Laboratory ATTN: RDRL-LOC-1 Method and System for Removal of Noise in Signal
US8694306B1 (en) 2012-05-04 2014-04-08 Kaonyx Labs LLC Systems and methods for source signal separation
US20140327566A1 (en) 2012-05-09 2014-11-06 Stmicroelectronics S.R.L. Method and devices for processing radar signals
US9239379B2 (en) 2012-05-09 2016-01-19 Stmicroelectronics S.R.L. Method and devices for processing radar signals
US20130314271A1 (en) 2012-05-25 2013-11-28 Brandt Braswell Vehicle-borne radar systems with continuous-time, sigma delta analog-to-digital converters, and methods of their operation
US9335402B2 (en) 2012-06-21 2016-05-10 Furuno Electric Co., Ltd. Apparatus and method for detecting target object
US20150103745A1 (en) 2012-06-21 2015-04-16 CBF Networks, Inc. Intelligent backhaul radio with co-band zero division duplexing
US20140022108A1 (en) 2012-07-23 2014-01-23 Motorola Mobility Llc Inter-vehicle alert system with nagable video look ahead
US20140028491A1 (en) 2012-07-27 2014-01-30 Honeywell International Inc. Method of system compensation to reduce the effects of self interference in frequency modulated continuous wave altimeter systems
US20140035774A1 (en) 2012-08-01 2014-02-06 Audi Ag Radar sensor for a motor vehicle, motor vehicle and communication method
US20140070985A1 (en) 2012-09-10 2014-03-13 Honeywell Interntional Inc. Systems and methods for combined frequency-modulation continuous-wave and pulse-compression transmission operation
US20140111372A1 (en) 2012-10-22 2014-04-24 Saab-Sensis Corporation Sensor system and method for determining target location using sparsity-based processing
US20150301172A1 (en) 2012-11-08 2015-10-22 Valeo Schalter Und Sensoren Gmbh Method for operating a radar sensor of a motor vehicle, driver assistance device and motor vehicle
US20150255867A1 (en) * 2012-11-23 2015-09-10 Furukawa Electric Co., Ltd. Array antenna device
US20140159948A1 (en) 2012-12-07 2014-06-12 Fujitsu Ten Limited Radar apparatus and signal processing method
US20150002357A1 (en) 2013-02-04 2015-01-01 John R. Sanford Dual receiver/transmitter radio devices with choke
US20140220903A1 (en) 2013-02-04 2014-08-07 Gary D. Schulz Operation of radio devices for long-range high-speed wireless communication
US20150061922A1 (en) 2013-02-22 2015-03-05 Panasonic Corporation Radar apparatus
US20140285373A1 (en) 2013-03-19 2014-09-25 Honda Elesys Co., Ltd. On-board radar apparatus
US9400328B2 (en) 2013-04-18 2016-07-26 Wistron Neweb Corporation Radar device for an automotive radar system
US20150204966A1 (en) 2013-06-13 2015-07-23 Panasonic Corporation Radar apparatus
US20150002329A1 (en) 2013-06-27 2015-01-01 GM Global Technology Operations LLC Multiple transmission methods for improving the operation of automotive radar systems
US20150331090A1 (en) 2013-07-05 2015-11-19 Mando Corporation Frequency modulated continuous wave radar device, and object detection method using continuous wave thereof
US20150035662A1 (en) 2013-07-31 2015-02-05 Elwha, Llc Systems and methods for adaptive vehicle sensing systems
US20150198709A1 (en) 2013-08-29 2015-07-16 Panasonic Intellectual Property Management Co., Ltd. Radar system and target detection method
US20150204971A1 (en) 2014-01-22 2015-07-23 Fujitsu Ten Limited Radar apparatus
US20150226848A1 (en) 2014-02-11 2015-08-13 Electronics And Telecommunications Research Institute Method and apparatus for detecting target using radar
US20150234045A1 (en) 2014-02-20 2015-08-20 Mobileye Vision Technologies Ltd. Navigation based on radar-cued visual imaging
WO2015175078A2 (en) 2014-02-24 2015-11-19 Massachusetts Institute Of Technology Object tracking via radio reflections
US20150247924A1 (en) 2014-02-28 2015-09-03 Panasonic Corporation Radar apparatus
US9541639B2 (en) 2014-03-05 2017-01-10 Delphi Technologies, Inc. MIMO antenna with elevation detection
US9568600B2 (en) 2014-03-05 2017-02-14 Delphi Technologies, Inc. MIMO antenna with elevation detection
US20160033632A1 (en) 2014-03-05 2016-02-04 Delphi Technologies, Inc. Mimo antenna with elevation detection
US20150323660A1 (en) 2014-05-12 2015-11-12 Autoliv Asp, Inc. Radar system and method for determining range, relative velocity and bearing of an object using continuous-wave and chirp signals
WO2015185058A1 (en) 2014-06-05 2015-12-10 Conti Temic Microelectronic Gmbh Radar system with optimized storage of temporary data
US20160003938A1 (en) 2014-07-03 2016-01-07 GM Global Technology Operations LLC Vehicle radar with beam adjustment
US20160003939A1 (en) 2014-07-03 2016-01-07 GM Global Technology Operations LLC Vehicle radar control
WO2016011407A1 (en) 2014-07-17 2016-01-21 Texas Instruments Incorporated Distributed radar signal processing in a radar system
US20160018511A1 (en) 2014-07-17 2016-01-21 Texas Instruments Incorporated Distributed Radar Signal Processing in a Radar System
US20160033631A1 (en) 2014-07-29 2016-02-04 Delphi Technologies, Inc. Radar data compression system and method
US20160041260A1 (en) 2014-08-05 2016-02-11 Panasonic Intellectual Property Management Co., Ltd. Radar apparatus and object sensing method
US20160061935A1 (en) 2014-08-28 2016-03-03 Google Inc. Methods and Systems for Vehicle Radar Coordination and Interference Reduction
WO2016030656A1 (en) 2014-08-28 2016-03-03 Aveillant Limited Radar system and associated apparatus and methods
US20160084943A1 (en) 2014-09-19 2016-03-24 Delphi Technologies, Inc. Radar System For Automated Vehicle With Phase Change Based Target Catagorization
US20160084941A1 (en) 2014-09-19 2016-03-24 Delphi Technologies, Inc. Radar system with phase based multi-target detection
US20160091595A1 (en) 2014-09-29 2016-03-31 Delphi Technologies, Inc. Radar system and method for virtual antenna signals
US20170023663A1 (en) 2014-09-30 2017-01-26 Texas Instruments Incorporated Loopback techniques for synchronization of oscillator signal in radar
US20160124086A1 (en) 2014-10-30 2016-05-05 Nxp, B.V. Radar ambiguity resolving detector
US20160139254A1 (en) 2014-11-13 2016-05-19 The Boeing Company Short-Range Point Defense Radar
US20160146931A1 (en) 2014-11-21 2016-05-26 Texas Instruments Incorporated Techniques for high arrival angle resolution using multiple nano-radars
US20160213258A1 (en) 2014-12-24 2016-07-28 Bahman LASHKARI Methods for generating multiple mismatched coded excitation signals
US20160238694A1 (en) 2015-02-16 2016-08-18 Panasonic Intellectual Property Management Co., Ltd. Radar device
US20170023661A1 (en) 2015-07-20 2017-01-26 Brain Corporation Apparatus and methods for detection of objects using broadband signals
US20170117950A1 (en) * 2015-10-23 2017-04-27 Cambium Networks Limited Method and apparatus for controlling equivalent isotropic radiated power
US20170234968A1 (en) 2016-02-16 2017-08-17 Infineon Technologies Ag Radar Employing Preacquisition Ramps
US20170293027A1 (en) 2016-04-07 2017-10-12 Uhnder, Inc. Adaptive transmission and interference cancellation for mimo radar
WO2017175190A1 (en) 2016-04-07 2017-10-12 Uhnder, Inc. Adaptive transmission and interference cancellation for mimo radar
US9846228B2 (en) 2016-04-07 2017-12-19 Uhnder, Inc. Software defined automotive radar systems
US20170293025A1 (en) 2016-04-07 2017-10-12 Uhnder, Inc. Software defined automotive radar systems
US20170219689A1 (en) 2016-04-15 2017-08-03 Mediatek Inc. Radar Interference Mitigation Method And Apparatus
US9791551B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Vehicular radar system with self-interference cancellation
US20170336495A1 (en) 2016-04-25 2017-11-23 Uhnder, Inc. Vehicular radar sensing system utilizing high rate true random number generator
US9772397B1 (en) 2016-04-25 2017-09-26 Uhnder, Inc. PMCW-PMCW interference mitigation
US9791564B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Adaptive filtering for FMCW interference mitigation in PMCW radar systems
US9599702B1 (en) 2016-04-25 2017-03-21 Uhnder, Inc. On-demand multi-scan micro doppler for vehicle
US20170307728A1 (en) 2016-04-25 2017-10-26 Uhnder, Inc. Digital frequency modulated continuous wave radar using handcrafted constant envelope modulation
US20170309997A1 (en) 2016-04-25 2017-10-26 Uhnder, Inc. Vehicle radar system using shaped antenna patterns
US20170310758A1 (en) 2016-04-25 2017-10-26 Uhnder, Inc. Vehicle radar system with a shared radar and communication system
US9806914B1 (en) 2016-04-25 2017-10-31 Uhnder, Inc. Successive signal interference mitigation
WO2017187330A1 (en) 2016-04-25 2017-11-02 Uhnder, Inc. Software defined automotive radar
US9575160B1 (en) 2016-04-25 2017-02-21 Uhnder, Inc. Vehicular radar sensing system utilizing high rate true random number generator
US9829567B1 (en) 2016-06-20 2017-11-28 Uhnder, Inc. Power control for improved near-far performance of radar systems
US9753121B1 (en) 2016-06-20 2017-09-05 Uhnder, Inc. Power control for improved near-far performance of radar systems
US9869762B1 (en) 2016-09-16 2018-01-16 Uhnder, Inc. Virtual radar configuration for 2D array

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Chambers et al., An article entitled "Real-Time Vehicle Mounted Multistatic Ground Penetrating Radar Imaging System for Buried Object Detection," Lawrence Livermore National Laboratory Reports (LLNL-TR-615452), Feb. 4, 2013; Retrieved from the Internet from https://e-reports-ext.llnl.gov/pdf/711892.pdf.
Fraser, "Design and simulation of a coded sequence ground penetrating radar," In: Diss. University of British Columbia, Dec. 3, 2015.
International Search Report and Written Opinion dated Sep. 5, 2017 from corresponding PCT Application No. PCT/IB2017/052375.
Óscar Faus Garcia, " Signal Processing for mm Wave MIMO Radar," University of Gavle, Faculty of Engineering and Sustainable Development, Jun. 2015; Retrieved from the Internet from http://www.diva-portal.se/smash/get/diva2:826028/FULLTEXT01.pdf.
V. Giannini et al., "A 79 GHz Phase-Modulated 4 GHz-BW CW Radar Transmitter in 28 nm CMOS, "in IEEE Journal of Solid-State Circuits, vol. 49, No. 12, pp. 2925-2937, Dec. 2014. (Year: 2014).
Zhou et al., "Linear extractors for extracting randomness from noisy sources," In: Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on Oct. 3, 2011.

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11119184B2 (en) * 2018-05-23 2021-09-14 Zendar Inc. Systems and methods for enhancing target detection
US20220065984A1 (en) * 2018-05-23 2022-03-03 Zendar Inc. Systems and methods for enhancing target detection
US20210242577A1 (en) * 2018-11-19 2021-08-05 Denso Corporation Radar device
US11855338B2 (en) * 2018-11-19 2023-12-26 Denso Corporation Radar device
US20220101650A1 (en) * 2019-02-01 2022-03-31 Samsung Electronics Co., Ltd. Method for recognizing object by using millimeter wave and electronic device supporting same method
US11262434B2 (en) * 2019-04-01 2022-03-01 GM Global Technology Operations LLC Antenna array design and processing to eliminate false detections in a radar system
US11181614B2 (en) * 2019-06-06 2021-11-23 GM Global Technology Operations LLC Antenna array tilt and processing to eliminate false detections in a radar system
US20210190929A1 (en) * 2019-12-19 2021-06-24 Utc Fire & Security Emea Bvba Radar presence sensor device
US11789136B2 (en) * 2019-12-19 2023-10-17 Utc Fire & Security Emea Bvba Radar presence sensor device
WO2022229386A1 (en) 2021-04-30 2022-11-03 Provizio Limited Mimo radar using a frequency scanning antenna
US20220407225A1 (en) * 2021-06-16 2022-12-22 Denso Corporation Antenna array for high frequency device
US11967774B2 (en) * 2021-06-16 2024-04-23 Denso Corporation Antenna array for high frequency device

Also Published As

Publication number Publication date
US20170309997A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
US10573959B2 (en) Vehicle radar system using shaped antenna patterns
US10197671B2 (en) Virtual radar configuration for 2D array
CN104345311B (en) Radar and the method for operating the radar for vehicle
CN105929370B (en) Digital beamforming-based resolution of grating lobe detection
US11422254B2 (en) Radar sensor apparatus for vehicle, object detecting method, and antenna apparatus therefor
EP1742081B1 (en) Digital beamforming for an electronically scanned radar system
US20170363713A1 (en) Radar apparatus and method for processing radar signal
US20140070994A1 (en) 3d short range detection with phased array radar
US9279884B2 (en) Method and device for estimating direction of arrival
US7864099B2 (en) Low cost short range radar
JP6481020B2 (en) Modular planar multi-sector 90 degree FOV radar antenna architecture
CN111656213B (en) Radar and antenna built in radar
CN111226131A (en) Imaging radar system with a receive array for determining the angle of an object in two dimensions by an extended arrangement of one-dimensional receive antennas
KR102354167B1 (en) Patch array antenna and apparatus for transmitting and receiving radar signal with patch array antenna
WO2017187341A1 (en) Vehicle radar system using shaped antenna patterns
KR102431263B1 (en) Radar apparatus
JP2024500444A (en) Multiple input multiple control output (MIMSO) radar
KR101688587B1 (en) Microstrip antenna of vehicle radar system
KR102539927B1 (en) Array antenna structure and alignment method for vehicle radar
CN110620297B (en) Multi-mode radar antenna
US11251542B2 (en) Antenna array for a radar sensor
JP2023535511A (en) Method for operating radar system, radar system and vehicle comprising at least one radar system
CN101520507B (en) Ow cost short range radar
KR101458700B1 (en) Radar Apparatus for a Vehicle and Radar Antenna for the Radar Apparatus
CN215579056U (en) Antenna, radar and vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: UHNDER, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALLAND, STEPHEN W.;DAVIS, CURTIS;GOLDENBERG, MARIUS;REEL/FRAME:042424/0920

Effective date: 20170425

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
AS Assignment

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS AGENT, DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:UHNDER, INC.;REEL/FRAME:057602/0451

Effective date: 20210923

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4