US10070954B2 - Mitral heart valve replacement - Google Patents

Mitral heart valve replacement Download PDF

Info

Publication number
US10070954B2
US10070954B2 US15/076,854 US201615076854A US10070954B2 US 10070954 B2 US10070954 B2 US 10070954B2 US 201615076854 A US201615076854 A US 201615076854A US 10070954 B2 US10070954 B2 US 10070954B2
Authority
US
United States
Prior art keywords
cells
stent
heart valve
prosthetic heart
rows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/076,854
Other versions
US20160278922A1 (en
Inventor
Peter N. Braido
Mina S. Fahim
Thomas M. Benson
Theodore Paul Dale
Andrea N. Para
Mark Krans
Mathias Charles Glimsdale
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
St Jude Medical Cardiology Division Inc
Original Assignee
St Jude Medical Cardiology Division Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by St Jude Medical Cardiology Division Inc filed Critical St Jude Medical Cardiology Division Inc
Priority to US15/076,854 priority Critical patent/US10070954B2/en
Publication of US20160278922A1 publication Critical patent/US20160278922A1/en
Assigned to ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC. reassignment ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KRANS, MARK, PARA, ANDREA N., BENSON, THOMAS M., BRAIDO, PETER N., FAHIM, Mina S., DALE, THEODORE PAUL, GLIMSDALE, MATHIAS CHARLES
Application granted granted Critical
Publication of US10070954B2 publication Critical patent/US10070954B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2469Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with resilient valve members, e.g. conical spiral
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2409Support rings therefor, e.g. for connecting valves to tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/89Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements comprising two or more adjacent rings flexibly connected by separate members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical

Definitions

  • the present disclosure relates to heart valve replacement and, in particular, to collapsible prosthetic heart valves. More particularly, the present disclosure relates to devices and methods for replacing the functionality of a native mitral valve.
  • Prosthetic heart valves that are collapsible to a relatively small circumferential size can be delivered into a patient less invasively than valves that are not collapsible.
  • a collapsible valve may be delivered into a patient via a tube-like delivery apparatus such as a catheter, a trocar, a laparoscopic instrument, or the like. This collapsibility can avoid the need for a more invasive procedure such as full open-chest, open-heart surgery.
  • Collapsible prosthetic heart valves typically take the form of a valve structure mounted on a stent.
  • a stent There are two types of stents on which the valve structures are ordinarily mounted: a self-expanding stent and a balloon-expandable stent.
  • a self-expanding stent To place such valves into a delivery apparatus and ultimately into a patient, the valve must first be collapsed or crimped to reduce its circumferential size.
  • the prosthetic valve When a collapsed prosthetic valve has reached the desired implant site in the patient (e.g., at or near the annulus of the patient's heart valve that is to be replaced by the prosthetic valve), the prosthetic valve can be deployed or released from the delivery apparatus and re-expanded to full operating size.
  • this generally involves releasing the entire valve, assuring its proper location, and then expanding a balloon positioned within the valve stent.
  • the stent automatically expands as the sheath covering the valve is withdrawn.
  • a prosthetic heart valve having an inflow end and an outflow end includes a collapsible and expandable stent including a plurality of cells arranged in rows, each of the rows extending around a circumference of the stent, at least one of the rows forming a flared portion having a diameter that is larger than diameters of others of the rows, the stent further including engaging arms disposed adjacent the outflow end and extending toward the inflow end, the engaging arms being configured to couple to heart tissue to anchor the stent.
  • a collapsible and expandable valve assembly is disposed within the stent and having a plurality of leaflets.
  • a prosthetic heart valve having an inflow end and an outflow end includes a collapsible and expandable stent including a plurality of cells arranged in rows, each of the rows extending around a circumference of the stent, the rows including a first row of having a first diameter and a second row of cells having a second diameter, the second diameter being larger than the first diameter, a collapsible and expandable valve assembly disposed within the stent and having a plurality of leaflets, an annular cuff disposed over cells of the first row of cells, and an annular skirt disposed over cells of the second row of cells.
  • FIG. 1 is a schematic representation of a human heart showing a transapical delivery approach
  • FIG. 2A is a schematic representation of a native mitral valve and associated structures during normal operation
  • FIG. 2B is a schematic representation of a native mitral valve having a prolapsed leaflet
  • FIG. 3 is a schematic longitudinal cross-section of one embodiment of a prosthetic heart valve having a stent, a valve assembly, and a frame;
  • FIG. 4 is a schematic longitudinal cross-section of one embodiment of a prosthetic heart valve having a stent, a valve assembly, and a flared portion;
  • FIG. 5A is a developed view of one example of a stent having a flared portion and a plurality of engaging arms;
  • FIG. 5B is a developed view of another example of a stent having a flared portion and a plurality of engaging arms;
  • FIGS. 6A and 6B are highly schematic developed views of one example of a cuff configured for coupling to the stent of FIG. 5A ;
  • FIGS. 7A and 7B are highly schematic developed views of another example of a cuff configured for coupling to the stent of FIG. 5A ;
  • FIG. 8A is a highly schematic top view of a skirt for a prosthetic heart valve
  • FIGS. 8B-C are a highly schematic top view of a skirt and photographs showing the assembly of a mock skirt onto a stent
  • FIGS. 9A-C are a highly schematic top views of several variants of a skirt and the portions used to form same;
  • FIG. 10 is a highly schematic top view of another example of a skirt having multiple slits for reduced puckering at the seams;
  • FIG. 11 is a highly schematic developed view of one example of a stent having a flared portion and a plurality of engaging arms with a skirt and a cuff coupled to the stent;
  • FIGS. 12A-C are photographs showing the side, top and bottom, respectively, of a fully assembled prosthetic heart valve
  • FIG. 13 is a developed view of one example of a stent having multiple horseshoes to aid in suturing
  • FIGS. 14A and 14B are developed views showing portions of a stent having engaging arms of different shapes.
  • FIG. 15 is a developed view of one example of a stent having circular supports for accepting radiopaque markers.
  • the stent In conventional collapsible prosthetic heart valves, the stent is usually anchored within the native valve annulus via radial forces exerted by the expanding stent against the native valve annulus. If the radial force is too high, damage may occur to heart tissue. If, instead, the radial force is too low, the heart valve may move from its implanted position, for example, into the left ventricle. Because such anchoring partly depends on the presence of calcification or plaque in the native valve annulus, it may be difficult to properly anchor the valve in locations where plaque is lacking (e.g., the mitral valve annulus). Additionally, in certain situations it may be preferable to restore native valve leaflet function instead of implanting a prosthetic device to replace that function.
  • a native heart valve such as a mitral valve, a tricuspid valve, an aortic valve, or a pulmonary valve.
  • the present disclosure may address one or more of these needs. While many of the examples are described herein with reference to a specific valve (e.g., a mitral valve or a tricuspid valve), it will be understood that many of the examples are not so limited and that the concepts described apply equally to other heart valves unless expressly limited herein.
  • inflow when used in connection with a prosthetic mitral heart valve, refers to the end of the heart valve closest to the left atrium when the heart valve is implanted in a patient
  • outletflow when used in connection with a prosthetic mitral heart valve, refers to the end of the heart valve closest to the left ventricle when the heart valve is implanted in a patient.
  • inflow refers to the end closest to the left ventricle
  • outflow refers to the end closest to the aorta.
  • FIG. 1 is a schematic representation of a human heart 100 .
  • the human heart includes two atria and two ventricles: a right atrium 112 and a left atrium 122 , and a right ventricle 114 and a left ventricle 124 .
  • the heart 100 further includes an aorta 110 , and an aortic arch 120 .
  • Disposed between the left atrium and the left ventricle is the mitral valve 130 .
  • the mitral valve 130 also known as the bicuspid valve or left atrioventricular valve, is a dual-flap that opens as a result of increased pressure in the left atrium as it fills with blood. As atrial pressure increases above that of the left ventricle, the mitral valve opens and blood passes toward the left ventricle. Blood flows through heart 100 in the direction shown by arrows “B”.
  • a dashed arrow, labeled “TA”, indicates a transapical approach for repairing or replacing heart valves, such as a mitral valve.
  • transapical delivery a small incision is made between the ribs and into the apex of the left ventricle 124 at position “P 1 ” in heart wall 150 to deliver a prosthesis or device to the target site.
  • FIG. 2A is a more detailed schematic representation of a native mitral valve 130 and its associated structures.
  • Mitral valve 130 includes two flaps or leaflets, a posterior leaflet 136 and an anterior leaflet 138 , disposed between left atrium 122 and left ventricle 124 .
  • Cord-like tendons known as chordae tendineae 134 connect the two leaflets 136 , 138 to the medial and lateral papillary muscles 132 .
  • chordae tendineae 134 connect the two leaflets 136 , 138 to the medial and lateral papillary muscles 132 .
  • atrial systole blood flows from the left atrium to the left ventricle down the pressure gradient.
  • the left ventricle contracts in ventricular systole, the increased blood pressure in the chamber pushes the mitral valve to close, preventing backflow of blood into the left atrium.
  • FIG. 2B is a schematic representation of mitral valve prolapse as discussed above.
  • Posterior leaflet 136 has prolapsed into left atrium 122 .
  • certain chordae tendineae have stretched and others have ruptured.
  • mitral valve 130 is incapable of functioning properly and blood is allowed to return to the left atrium and the lungs.
  • chordae damage in addition to chordae damage, other abnormalities or failures may be responsible for mitral valve insufficiency.
  • FIG. 3 is a longitudinal cross-section of prosthetic heart valve 200 in accordance with one embodiment of the present disclosure.
  • Prosthetic heart valve 200 is a collapsible prosthetic heart valve designed to replace the function of the native mitral valve of a patient (see native mitral valve 130 of FIGS. 1-2 ).
  • prosthetic valve 200 has inflow end 210 and outflow end 212 .
  • Prosthetic valve 200 may be substantially cylindrically shaped and may include features for anchoring, as will be discussed in more detail below.
  • prosthetic valve 200 When used to replace native mitral valve 130 , prosthetic valve 200 may have a low profile so as not to interfere with atrial function.
  • Prosthetic heart valve 200 includes stent 250 , which may be formed from biocompatible materials that are capable of self-expansion, such as, for example, shape memory alloys including nitinol. Alternatively, stent 250 may be formed of a material suitable for balloon-expansion. Stent 250 may include a plurality of struts 252 that form cells 254 connected to one another in one or more annular rows around the stent. Cells 254 may all be of substantially the same size around the perimeter and along the length of stent 250 . Alternatively, cells 254 near inflow end 210 may be larger than the cells near outflow end 212 . Stent 250 may be expandable to provide a radial force to assist with positioning and stabilizing prosthetic heart valve 200 within the native mitral valve annulus.
  • Prosthetic heart valve 200 may also include valve assembly 260 , including a pair of leaflets 262 attached to a cylindrical cuff 264 .
  • Leaflets 262 replace the function of native mitral valve leaflets 136 and 138 described above with reference to FIG. 2 . That is, leaflets 262 coapt with one another to function as a one-way valve. It will be appreciated, however, that prosthetic heart valve 200 may have more than two leaflets when used to replace a mitral valve or other cardiac valves within a patient.
  • Valve assembly 260 of prosthetic heart valve 200 may be substantially cylindrical, or may taper outwardly from outflow end 212 to inflow end 210 .
  • Both cuff 264 and leaflets 262 may be wholly or partly formed of any suitable biological material, such as bovine or porcine pericardium, or polymers, such as PTFE, urethanes and the like.
  • valve assembly 260 When used to replace a native mitral valve, valve assembly 260 may be sized in the range of about 20 mm to about 40 mm in diameter. Valve assembly 260 may be secured to stent 250 by suturing to struts 252 or by using tissue glue, ultrasonic welding or other suitable methods.
  • An optional frame 300 may surround and house valve assembly 260 and stent 250 .
  • Frame 300 may be formed of a braided material in various configurations to create shapes and/or geometries for engaging tissue and filling the spaces between valve assembly 260 and the native valve annulus.
  • frame 300 includes a plurality of braided strands or wires 305 arranged in three-dimensional shapes.
  • wires 305 form a braided metal fabric that is both resilient and capable of heat treatment substantially to a desired preset shape.
  • shape memory alloys One class of materials which meets these qualifications is shape memory alloys.
  • One example of a suitable shape memory alloy is Nitinol.
  • wires 305 may comprise various materials other than Nitinol that have elastic and/or memory properties, such as spring stainless steel, alloys such as Elgiloy®, Hastelloy®, and MP35N®, CoCrNi alloys (e.g., trade name Phynox), CoCrMo alloys, or a mixture of metal and polymer fibers.
  • spring stainless steel alloys such as Elgiloy®, Hastelloy®, and MP35N®, CoCrNi alloys (e.g., trade name Phynox), CoCrMo alloys, or a mixture of metal and polymer fibers.
  • alloys such as Elgiloy®, Hastelloy®, and MP35N®
  • CoCrNi alloys e.g., trade name Phynox
  • CoCrMo alloys e.g., trade name Phynox
  • frame 300 may be formed in a cylindrical or tubular configuration having inlet end 310 , outlet end 312 and lumen 315 extending between inlet end 310 and outlet end 312 for housing stent 250 and valve assembly 260 .
  • stent 250 may be omitted, and valve assembly 260 may be directly attached to frame 300 using any of the techniques described above for attaching valve assembly 260 to stent 250 .
  • Frame 300 may be radially collapsed from a relaxed or preset configuration to a compressed or reduced configuration for delivery into the patient. Once released after delivery, the shape-memory properties of frame 300 may cause it to re-expand to its relaxed or preset configuration.
  • Frame 300 may also be locally compliant in a radial direction such that a force exerted in the direction of arrow F deforms a portion of the frame. In this manner, irregularities in the native valve annulus may be filled by frame 300 , thereby preventing paravalvular leakage. Moreover, portions of frame 300 may endothelialize and in-grow into the heart wall over time, providing permanent stability and a low thrombus surface.
  • FIG. 4 illustrates one variation in which prosthetic heart valve 400 includes additional features to aid in fixing the valve at a predetermined location within the native valve annulus.
  • Prosthetic heart valve 400 generally extends between inflow end 410 and outflow end 412 and includes all of the elements disclosed above including stent 250 formed of struts 252 , valve assembly 260 having leaflets 262 and cuff 264 .
  • Stent 250 may be substantially cylindrical and may further include flared portion 450 adjacent inflow end 410 that projects radially outward from the cylindrical stent to anchor the stent at a predetermined location in the native valve annulus. Flared portion 450 forms an angle ⁇ with the longitudinal axis of stent 250 . In some examples, angle ⁇ may be between about 80 degrees and about 180 degrees.
  • angle ⁇ may be between about 90 and 110 degrees.
  • flared portion 450 may be curved.
  • flared portion 450 may have an initial takeoff angle ⁇ and then round out along its length to form a second angle ⁇ with the longitudinal axis of stent 250 near its distal end.
  • second angle ⁇ may between about 160 degrees and about 180 degrees.
  • flared portion 450 may be compressed against the outside of collapsed stent 250 within a sheath of a delivery device and may return to its flared configuration when released from the sheath.
  • prosthetic heart valve 400 is used to replace the function of a native mitral valve
  • flared portion 450 may be disposed at least partially within the left atrium. Details of flared portion 450 are explored further below with reference to FIGS. 5A and 5B .
  • FIG. 5A is a developed view of a stent 500 A suitable for use in a mitral heart valve prosthesis.
  • Stent 500 A generally extends in a length direction between inflow end 502 and outflow end 504 and includes a plurality of struts 506 forming rows of cells 510 A, 520 A, 530 A, and a plurality of commissure features 508 .
  • First row of cells 510 A is disposed adjacent outflow end 504 and includes symmetric cells 512 , typically disposed adjacent commissure features 508 , and asymmetric cells 514 at selected positions within first row 510 A.
  • Symmetric cells 512 may be substantially diamond-shaped and include four substantially straight struts 506 a - d of substantially equal length.
  • Asymmetric cells 514 may include a pair of substantially straight struts 515 a , 515 b which form a V-shape attached to substantially curved struts 516 a , 516 b . Nested within selected ones of asymmetric cells 514 are engaging arms 518 , which extend generally from the connection of one cell 514 to the adjacent cells in either side thereof in row 510 A, and which have a curved shape which generally follows the curved shape of struts 516 a , 516 b .
  • Engaging arms 518 may be configured to engage portions of heart tissue by contacting, clasping, gripping, securing or otherwise preventing, minimizing or limiting the motion of stent 500 A (e.g., native mitral valve leaflets) when the stent is deployed in a patient as part of a prosthetic heart valve.
  • Second row of cells 520 A may include a plurality of cells 522 formed by two struts shared with cells from first row 510 A (e.g., struts 506 c , 506 d , 516 a , 516 b ) and two substantially straight struts 526 a , 526 b .
  • a third row of cells 530 A includes enlarged cells 532 formed of struts 536 a - d , each of which is longer than struts 506 a - d .
  • Third row 530 A may include cells that have a length L 1 that is greater than the lengths of other cells. In at least some examples, length L 1 may be between about 20 mm and about 30 mm.
  • Third row 530 A of enlarged cells 532 may be configured to form a diameter greater than the diameter formed by the first two rows.
  • third row 530 A of enlarged cells 532 forms a flared portion.
  • a number of retainers 540 may be disposed on selected enlarged cells 532 as well as on commissure features 508 to help hold stent 500 A in the delivery apparatus and aid in its deployment.
  • stent 500 A is formed of three rows of cells, each row having nine cells and is thus referred to as a nine-cell configuration.
  • engaging arms 518 are nested within selected asymmetric cells 514 to engage the native valve leaflets. Because the native mitral valve includes two native leaflets, the illustrated example includes two engaging arms 518 for mating with each native valve leaflet, the first pair of engaging arms being spaced apart from the second pair of engaging arms so that they are approximately contralateral to one another. It will be understood, however, that in a nine-cell stent configuration, it may be difficult to provide pairs of engaging arms that are exactly 180 degrees apart from one another.
  • FIG. 5B shows a variation in which stent 500 B has a twelve-cell configuration (i.e., each row of cells in stent 500 B includes twelve cells).
  • Stent 500 B extends between inflow end 502 and outflow end 504 and includes a first row of cells 510 B having symmetric cells 512 and asymmetric cells 514 , a second row of cells 520 B having cells 522 and a third row of cells 530 B having enlarged cells 532 .
  • Engaging arms 518 are nested within two pairs of asymmetric cells 514 a , 514 b and 514 c , 514 d each pair of asymmetric cells being spaced from one another by a symmetric cell.
  • pairs of engaging arms 518 are offset from one another as much as possible, and provide a generally more symmetric configuration than stent 500 A, which allow for simpler coupling of the belly and leaflets.
  • the positioning of the engaging arms may be affected by the number of cells in rows of a stent.
  • a cuff 600 may be disposed over a portion of stent 500 A.
  • cuff 600 includes three separate segments 610 a - c that are disposed over portions of the first and second rows of cells 510 A, 520 A and joined together at seams 612 .
  • FIG. 6B illustrates cuff segment 610 a in greater detail, cuff segments 610 B and 610 c being substantially the same.
  • cuff segment 610 a includes a first portion 620 sized to be disposed over commissure feature 508 , a second portion 622 for covering symmetric cell 512 of first row 510 A, and three substantially equal third portions 624 , 626 , 628 for covering three cells 522 of second row 520 A.
  • cuff 600 may be disposed on either the luminal or the abluminal surface of stent 500 A and that the shape of the cuff may be modified as needed for a stent having a twelve-cell configuration. Additionally, a unitary cuff may be used instead of the three-segmented example shown.
  • cuff segment 610 a When disposed on the abluminal surface of stent 500 A, cuff segment 610 a may be configured to allow engaging arms 518 to extend therethrough to reach and couple to the native valve leaflets. Thus, engaging arms 518 are preferably unobstructed by cuff 600 .
  • cuff 700 may be disposed over a portion of stent 500 A.
  • cuff 700 includes three separate segments 710 a - c that are disposed over portions of the first and second rows 510 A, 520 A and joined together at seams 712 .
  • the differences between cuff 700 and cuff 600 described above are more readily identifiable by looking at the detailed view of FIG. 7B .
  • cuff segment 710 a includes a first portion 720 sized to be disposed over commissure feature 508 .
  • Second portion 722 covers symmetric cell 512 of first row 510 A and includes two additional peaks 723 for covering asymmetric cells 514 .
  • a third portion 724 covers cells 522 of second row 520 A and has a substantially straight edge 750 that runs horizontally across the lower corners of cells 522 .
  • Cuff 700 is shaped to allow engaging arms 518 to extend over the cuff and couple to the native valve leaflets.
  • Cuff segments 710 b and 710 c may have the same configuration as cuff segment 710 a.
  • a skirt may be disposed over the third row of cells 530 A, 530 B to cover flared portion 450 of the stent.
  • FIG. 8A illustrates one example of a skirt 800 A configured to cover the third row of cells in a twelve-cell stent configuration (e.g., stent 500 B of FIG. 5B ).
  • skirt 800 A will be described as having multiple portions or components. It will be understood, however, that the skirt may be formed of a single piece of tissue, fabric or polymeric material cut into a predetermined shape and that the portions or components described herein are only indicated for the sake of description and may not be readily discernible from the whole.
  • skirt 800 A generally includes a hub 802 having a number of sides 803 .
  • Hub 802 is shown in the shape of a dodecagon in order to complement a twelve-celled stent.
  • a circular cutout 804 is formed in the center of hub 802 to form void 806 for accepting a portion of the stent.
  • cutout 804 is formed having a circumference approximately equal to the circumference of a fully expanded stent at the second row of cells.
  • a plurality of quadrilateral tabs 810 extend from the sides of hub 802 . In the case of a dodecagon hub, twelve quadrilateral tabs 810 are formed around the perimeter of the hub, one extending from each side 803 of hub 802 .
  • FIGS. 8B and 8C are photographs illustrating the assembly of a mock skirt 800 B having nine quadrilateral tabs 820 to a stent having nine cells in each row. For the sake of clarity, the valve assembly including the cuff and the leaflets is not shown.
  • Quadrilateral tabs 820 are coupled to one another at seams 830 to form a continuous surface. It will be understood that quadrilateral tabs 820 may be formed such that seams 830 align with struts of stent 500 A as shown.
  • skirt 900 is formed of three equal segments 901 A-C.
  • each segment 901 A-C may include a fraction of a hub, such as portion 902 A defining an arc 904 .
  • Each portion 901 A-C may also include a number of quadrilateral tabs 910 a - d extending from portion 902 A. It will be understood that each of segments 901 A-C may be formed to be substantially the same size and may include the same number of quadrilateral tabs.
  • An optional coupling 930 may be added to each of segments 910 A-C and configured to overlap with an adjacent segment to add integrity to the assembly.
  • segments 901 D may be formed to complement a stent of nine cells per row by having only three quadrilateral tabs 910 e - g each.
  • skirt 1000 includes more slits to reduce puckering at the seams. Similar to skirt 800 A, skirt 1000 includes a hub 1002 having circular cutout 1004 at its center to form void 1006 for accepting a portion of the stent. Extending from hub 1002 and disposed on its perimeter are a series of alternating wedges including first wedges 1010 and second wedges 1020 . In the examples shown, first wedges 1010 are substantially triangular and are attached at an edge of the triangle to hub 1002 , and second wedges 1020 are substantially triangular and are attached to hub 1002 at a point of the triangle. Collectively, wedges 1010 and 1020 define a series of triangles that alternate in their connection to hub 1002 .
  • first wedge 1010 is disposed between adjacent second wedges 1020 and spaced from the second wedges by slits 1030 a , 1030 b .
  • edges of first and second wedges 1010 , 1020 adjoin to one another to provide a continuous layer over a row of cells forming a flared portion 450 .
  • skirt 1000 may, for example, include a series of wedges in the shape of triangles instead of concave quadrilaterals that are arranged so that each triangle is inverted with respect to an adjacent triangle.
  • FIG. 11 illustrates one possible suture pattern for attaching a skirt, such as skirt 800 A, to stent 500 A having cuff 600 .
  • a first suture pattern 51 may be formed across the tops of cells 532 in third row of cells 530 A at inflow end 502 of stent 500 A, and around the circumference of the stent to attach skirt 800 A to the stent.
  • a second suture pattern S 2 may be formed parallel to the first suture pattern 51 and across the ends of cells 512 , 514 in first row of cells 510 A and approximately halfway through cells 522 in second row of cells 520 A.
  • a third suture pattern S 3 may consist of a zigzag pattern along the upper half of enlarged cells 532 of third row of cells 530 A, and a fourth suture pattern S 4 may form a second zigzag pattern along the lower half of enlarged cells 532 , the fourth suture pattern S 4 being a mirror image of the third suture pattern S 3 .
  • FIG. 12A A fully assembled prosthetic heart valve 1200 is shown in FIG. 12A and includes stent 500 A having inflow end 502 and outflow end 504 .
  • Inflow and outflow end views of prosthetic heart valve 1200 are shown in FIGS. 12B and 12C , respectively.
  • Cuff 600 is disposed on a portion of stent 500 A adjacent outflow end 504 and skirt 800 A is disposed on the flared portion 450 of stent 500 A adjacent inflow end 502 , as described above with reference to FIG. 11 .
  • three leaflets 1202 have been added to the interior of stent 500 A and attached to commissure features 506 and to selected struts of stent 500 A and/or cuff 600 to form a valve assembly as known in the art.
  • Engaging arms 518 may also extend toward inflow end 502 and clip onto, or otherwise couple to, native valve leaflets to aid in anchoring stent 500 A to the surrounding tissue. Though cuff 600 covers many cells of stent 500 A, engaging arms 518 remain unobstructed to adequately perform their function.
  • prosthetic heart valve 1200 When deployed at the mitral valve position, prosthetic heart valve 1200 allows flow of blood from atrium 122 to left ventricle 124 and impedes blood backflow from left ventricle 124 to left atrium 122 .
  • Flared portion 450 may be disposed at least partially within the native valve annulus and/or left atrium 122 to anchor prosthetic heart valve 1200 (e.g., reduce the possibility of prosthetic heart valve 1200 migrating into left ventricle 124 ) and/or seal regions around prosthetic heart valve 1200 to reduce paravalvular leakage.
  • FIG. 13 illustrates stent 1300 extending generally between inflow end 1302 and outflow end 1304 and having three rows of cells 1310 , 1320 , 1330 , similar to the cells of stent 500 A described above with reference to FIG. 5A . As shown, each row includes nine cells.
  • the main difference between stent 500 A and stent 1300 is the inclusion of horseshoes 1340 , 1342 to aid in suturing stent 1300 to a cuff and a skirt.
  • corners C 1 of cells 1322 closest to inflow end 1302 include first horseshoes 1340 to prevent slippage of sutures when coupling stent 1300 to a cuff
  • corners C 2 of enlarged cells 1332 closest to inflow end 1320 include second horseshoes 1342 to prevent slippage of sutures when coupling stent 1300 to a skirt.
  • stent 1400 A includes a first row 1410 A of cells 1412 A.
  • Each substantially diamond-shaped cell 1412 A is composed of four struts 1416 a - d joined to one another as shown, struts 1416 a and 1416 b forming an angle ⁇ 1 therebetween.
  • Nested engaging arms 1418 A are formed of two substantially straight struts 1419 that are coupled to struts 1416 c and 1416 d at first ends r 1 and to each other at second ends r 2 . Because of the shape of cells 1412 A there is little room to form engaging arms 1418 A resulting in a sharp tip at second ends r 2 and a tight angle at first ends r 1 .
  • the tube may be laser cut to create a stent in a partially expanded state. Cutting a stent from a larger diameter tube provides a larger area inside the cells of the stent to form engaging arms.
  • Stent 1400 B of FIG. 14B has been formed using this method and generally includes first row of cells 1410 B having first cells 1411 B and second cells 1412 B, second cells 1412 B being formed of struts 1417 a - d .
  • First cells 1411 B that will not receive engaging arms may be substantially diamond-shaped, while second cells 1412 B that receive engaging arms have a second shape that does not form a diamond.
  • struts 1417 a and 1417 b of cell 1412 B may form a slight curvature such that the upper portion of cell 1412 B is rounded and forms an angle ⁇ 2 , larger than angle ⁇ 1 , for receiving engaging arms.
  • an engaging arm may be formed with a curved loop 1419 having a smooth surface at position r 2 that would be less traumatic if brought in contact with body tissue.
  • curved loop 1419 includes a wider takeoff at position r 1 to reduce or eliminate a pinch point, resulting in less of a stress concentration on the anatomy that is contacted and easier loading within a delivery device.
  • engaging arms are not disposed within each cell of first row 1410 B.
  • the various features of stent 1400 B may be cut from a metal tube under different conditions. For example, cells 1411 B that do not have engaging arms 1418 B may be cut when the tube is in a radially collapsed condition, and cells that include engaging arms 1418 B may be cut when the tube is in a partially expanded condition.
  • This approach avoids the need for cutting stent 1400 B out of a large tube as the large tube can be expensive and more difficult to manufacture.
  • Selectively cutting portions in the collapsed and partially expanded conditions allows for manufacturing the configurations as shown out of a relatively small diameter of tubing.
  • stent 1500 may include features to aid in visualization during deployment.
  • Stent 1500 may be substantially similar to stent 500 A described above, and may include a first row 1510 of cells having first cells 1511 and second cells 1512 , second cells 1512 including engaging arms 1518 therein.
  • the main difference between stent 1500 and stent 500 A is the presence of a bridging strut 1520 extending between the struts forming each engaging arm 1518 as shown.
  • Bridging struts 1520 include a circular support 1525 for accepting a radiopaque marker (e.g., tantalum markers) to help make engaging arms 1518 more visible under fluoroscopy and/or echocardiography.
  • a radiopaque marker e.g., tantalum markers
  • a prosthetic heart valve having an inflow end and an outflow end includes a collapsible and expandable stent including a plurality of cells arranged in rows, each of the rows extending around a circumference of the stent, at least one of the rows forming a flared portion having a diameter that is larger than diameters of others of the rows, the stent further including engaging arms disposed adjacent the outflow end and extending toward the inflow end, the engaging arms being configured to couple to heart tissue to anchor the stent.
  • a collapsible and expandable valve assembly is disposed within the stent and having a plurality of leaflets.
  • At least one of the rows includes symmetric cells and asymmetric cells; and/or at least one of the rows includes enlarged cells for forming the flared portion; and/or each of the rows includes nine cells; and/or each of the rows includes twelve cells; and/or each of the engaging arms is nested within an asymmetric cell; and/or the engaging arms include two engaging arms for coupling to each native valve leaflet at a site of implantation; and/or the flared portion forms an angle of between about 120 degrees and about 180 degrees with respect to a longitudinal axis of the stent; and/or the valve further includes a cuff disposed over at least two rows of the stent and a skirt disposed over at least one row of the stent; and/or the cuff is divided into three segments that are joined together at seams; and/or the cuff is integrally formed from a single piece of material; and/or the valve further includes a radiopaque marker connected to at least one of the engaging arms; and/or the stent further
  • a prosthetic heart valve having an inflow end and an outflow end includes a collapsible and expandable stent including a plurality of cells arranged in rows, each of the rows extending around a circumference of the stent, the rows including a first row of having a first diameter and a second row of cells having a second diameter, the second diameter being larger than the first diameter, a collapsible and expandable valve assembly disposed within the stent and having a plurality of leaflets, an annular cuff disposed over cells of the first row of cells, and an annular skirt disposed over cells of the second row of cells.
  • the skirt includes a plurality of quadrilateral tabs with a triangular slit between each adjacent pair of tabs; and/or the plurality of quadrilateral tabs includes nine tabs; and/or the plurality of quadrilateral tabs includes a quadrilateral tab corresponding to each cell in the second row of cells; and/or the skirt includes three segments that are sewn together; and/or the skirt includes first wedges, second wedges, and a plurality of slits defined between the first and second wedges; and/or

Abstract

A prosthetic heart valve having an inflow end and an outflow end includes a collapsible and expandable stent including a plurality of cells arranged in rows extending around a circumference of the stent, at least one of the rows forming a flared portion having a diameter that is larger than diameters of others of the rows. The stent further includes engaging arms disposed adjacent the outflow end and extending toward the inflow end, the engaging arms being configured to couple to heart tissue to anchor the stent. A collapsible and expandable valve assembly has a plurality of leaflets disposed within the stent.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
The present application claims the benefit of the filing date of U.S. Provisional Patent Application No. 62/137,411 filed Mar. 24, 2015, the disclosure of which is hereby incorporated herein by reference.
BACKGROUND OF THE INVENTION
The present disclosure relates to heart valve replacement and, in particular, to collapsible prosthetic heart valves. More particularly, the present disclosure relates to devices and methods for replacing the functionality of a native mitral valve.
Diseased and/or defective heart valves may lead to serious health complications. One method of addressing this condition is to replace a non-functioning heart valve with a prosthetic valve. Prosthetic heart valves that are collapsible to a relatively small circumferential size can be delivered into a patient less invasively than valves that are not collapsible. For example, a collapsible valve may be delivered into a patient via a tube-like delivery apparatus such as a catheter, a trocar, a laparoscopic instrument, or the like. This collapsibility can avoid the need for a more invasive procedure such as full open-chest, open-heart surgery.
Collapsible prosthetic heart valves typically take the form of a valve structure mounted on a stent. There are two types of stents on which the valve structures are ordinarily mounted: a self-expanding stent and a balloon-expandable stent. To place such valves into a delivery apparatus and ultimately into a patient, the valve must first be collapsed or crimped to reduce its circumferential size.
When a collapsed prosthetic valve has reached the desired implant site in the patient (e.g., at or near the annulus of the patient's heart valve that is to be replaced by the prosthetic valve), the prosthetic valve can be deployed or released from the delivery apparatus and re-expanded to full operating size. For balloon-expandable valves, this generally involves releasing the entire valve, assuring its proper location, and then expanding a balloon positioned within the valve stent. For self-expanding valves, on the other hand, the stent automatically expands as the sheath covering the valve is withdrawn.
SUMMARY OF THE INVENTION
In some embodiments, a prosthetic heart valve having an inflow end and an outflow end includes a collapsible and expandable stent including a plurality of cells arranged in rows, each of the rows extending around a circumference of the stent, at least one of the rows forming a flared portion having a diameter that is larger than diameters of others of the rows, the stent further including engaging arms disposed adjacent the outflow end and extending toward the inflow end, the engaging arms being configured to couple to heart tissue to anchor the stent. A collapsible and expandable valve assembly is disposed within the stent and having a plurality of leaflets.
In some embodiments a prosthetic heart valve having an inflow end and an outflow end, includes a collapsible and expandable stent including a plurality of cells arranged in rows, each of the rows extending around a circumference of the stent, the rows including a first row of having a first diameter and a second row of cells having a second diameter, the second diameter being larger than the first diameter, a collapsible and expandable valve assembly disposed within the stent and having a plurality of leaflets, an annular cuff disposed over cells of the first row of cells, and an annular skirt disposed over cells of the second row of cells.
BRIEF DESCRIPTION OF THE DRAWINGS
Various embodiments of the present disclosure are disclosed herein with reference to the drawings, wherein:
FIG. 1 is a schematic representation of a human heart showing a transapical delivery approach;
FIG. 2A is a schematic representation of a native mitral valve and associated structures during normal operation;
FIG. 2B is a schematic representation of a native mitral valve having a prolapsed leaflet;
FIG. 3 is a schematic longitudinal cross-section of one embodiment of a prosthetic heart valve having a stent, a valve assembly, and a frame;
FIG. 4 is a schematic longitudinal cross-section of one embodiment of a prosthetic heart valve having a stent, a valve assembly, and a flared portion;
FIG. 5A is a developed view of one example of a stent having a flared portion and a plurality of engaging arms;
FIG. 5B is a developed view of another example of a stent having a flared portion and a plurality of engaging arms;
FIGS. 6A and 6B are highly schematic developed views of one example of a cuff configured for coupling to the stent of FIG. 5A;
FIGS. 7A and 7B are highly schematic developed views of another example of a cuff configured for coupling to the stent of FIG. 5A;
FIG. 8A is a highly schematic top view of a skirt for a prosthetic heart valve;
FIGS. 8B-C are a highly schematic top view of a skirt and photographs showing the assembly of a mock skirt onto a stent;
FIGS. 9A-C are a highly schematic top views of several variants of a skirt and the portions used to form same;
FIG. 10 is a highly schematic top view of another example of a skirt having multiple slits for reduced puckering at the seams;
FIG. 11 is a highly schematic developed view of one example of a stent having a flared portion and a plurality of engaging arms with a skirt and a cuff coupled to the stent;
FIGS. 12A-C are photographs showing the side, top and bottom, respectively, of a fully assembled prosthetic heart valve;
FIG. 13 is a developed view of one example of a stent having multiple horseshoes to aid in suturing;
FIGS. 14A and 14B are developed views showing portions of a stent having engaging arms of different shapes; and
FIG. 15 is a developed view of one example of a stent having circular supports for accepting radiopaque markers.
Various embodiments of the present disclosure will now be described with reference to the appended drawings. It is to be appreciated that these drawings depict only some embodiments of the disclosure and are therefore not to be considered limiting of its scope.
DETAILED DESCRIPTION
In conventional collapsible prosthetic heart valves, the stent is usually anchored within the native valve annulus via radial forces exerted by the expanding stent against the native valve annulus. If the radial force is too high, damage may occur to heart tissue. If, instead, the radial force is too low, the heart valve may move from its implanted position, for example, into the left ventricle. Because such anchoring partly depends on the presence of calcification or plaque in the native valve annulus, it may be difficult to properly anchor the valve in locations where plaque is lacking (e.g., the mitral valve annulus). Additionally, in certain situations it may be preferable to restore native valve leaflet function instead of implanting a prosthetic device to replace that function.
In view of the foregoing, there is a need for further improvements to the devices, systems, and methods for replacing the function of a native heart valve, such as a mitral valve, a tricuspid valve, an aortic valve, or a pulmonary valve. Among other advantages, the present disclosure may address one or more of these needs. While many of the examples are described herein with reference to a specific valve (e.g., a mitral valve or a tricuspid valve), it will be understood that many of the examples are not so limited and that the concepts described apply equally to other heart valves unless expressly limited herein.
Blood flows through the mitral valve from the left atrium to the left ventricle. As used herein, the term “inflow,” when used in connection with a prosthetic mitral heart valve, refers to the end of the heart valve closest to the left atrium when the heart valve is implanted in a patient, whereas the term “outflow,” when used in connection with a prosthetic mitral heart valve, refers to the end of the heart valve closest to the left ventricle when the heart valve is implanted in a patient. When used in connection with a prosthetic aortic valve, “inflow” refers to the end closest to the left ventricle and “outflow” refers to the end closest to the aorta. The same convention is applicable for other valves wherein “inflow” and “outflow” are defined by the direction of blood flow therethrough. Also, as used herein, the words “substantially,” “approximately,” “generally” and “about” are intended to mean that slight variations from absolute are included within the scope of the structure or process recited.
FIG. 1 is a schematic representation of a human heart 100. The human heart includes two atria and two ventricles: a right atrium 112 and a left atrium 122, and a right ventricle 114 and a left ventricle 124. As illustrated in FIG. 1, the heart 100 further includes an aorta 110, and an aortic arch 120. Disposed between the left atrium and the left ventricle is the mitral valve 130. The mitral valve 130, also known as the bicuspid valve or left atrioventricular valve, is a dual-flap that opens as a result of increased pressure in the left atrium as it fills with blood. As atrial pressure increases above that of the left ventricle, the mitral valve opens and blood passes toward the left ventricle. Blood flows through heart 100 in the direction shown by arrows “B”.
A dashed arrow, labeled “TA”, indicates a transapical approach for repairing or replacing heart valves, such as a mitral valve. In transapical delivery, a small incision is made between the ribs and into the apex of the left ventricle 124 at position “P1” in heart wall 150 to deliver a prosthesis or device to the target site.
FIG. 2A is a more detailed schematic representation of a native mitral valve 130 and its associated structures. Mitral valve 130 includes two flaps or leaflets, a posterior leaflet 136 and an anterior leaflet 138, disposed between left atrium 122 and left ventricle 124. Cord-like tendons known as chordae tendineae 134 connect the two leaflets 136, 138 to the medial and lateral papillary muscles 132. During atrial systole, blood flows from the left atrium to the left ventricle down the pressure gradient. When the left ventricle contracts in ventricular systole, the increased blood pressure in the chamber pushes the mitral valve to close, preventing backflow of blood into the left atrium. Since the blood pressure in the left atrium is much lower than that in the left ventricle, the flaps attempt to evert to the low pressure regions. The chordae tendineae prevent the eversion by becoming tense, thus pulling the flaps and holding them in the closed position.
FIG. 2B is a schematic representation of mitral valve prolapse as discussed above. Posterior leaflet 136 has prolapsed into left atrium 122. Moreover, certain chordae tendineae have stretched and others have ruptured. Because of damaged chordae 134 a, even if posterior leaflet 136 returns to its intended position, it will eventually resume the prolapsed position due to being inadequately secured. Thus, mitral valve 130 is incapable of functioning properly and blood is allowed to return to the left atrium and the lungs. It will be understood that, in addition to chordae damage, other abnormalities or failures may be responsible for mitral valve insufficiency.
FIG. 3 is a longitudinal cross-section of prosthetic heart valve 200 in accordance with one embodiment of the present disclosure. Prosthetic heart valve 200 is a collapsible prosthetic heart valve designed to replace the function of the native mitral valve of a patient (see native mitral valve 130 of FIGS. 1-2). Generally, prosthetic valve 200 has inflow end 210 and outflow end 212. Prosthetic valve 200 may be substantially cylindrically shaped and may include features for anchoring, as will be discussed in more detail below. When used to replace native mitral valve 130, prosthetic valve 200 may have a low profile so as not to interfere with atrial function.
Prosthetic heart valve 200 includes stent 250, which may be formed from biocompatible materials that are capable of self-expansion, such as, for example, shape memory alloys including nitinol. Alternatively, stent 250 may be formed of a material suitable for balloon-expansion. Stent 250 may include a plurality of struts 252 that form cells 254 connected to one another in one or more annular rows around the stent. Cells 254 may all be of substantially the same size around the perimeter and along the length of stent 250. Alternatively, cells 254 near inflow end 210 may be larger than the cells near outflow end 212. Stent 250 may be expandable to provide a radial force to assist with positioning and stabilizing prosthetic heart valve 200 within the native mitral valve annulus.
Prosthetic heart valve 200 may also include valve assembly 260, including a pair of leaflets 262 attached to a cylindrical cuff 264. Leaflets 262 replace the function of native mitral valve leaflets 136 and 138 described above with reference to FIG. 2. That is, leaflets 262 coapt with one another to function as a one-way valve. It will be appreciated, however, that prosthetic heart valve 200 may have more than two leaflets when used to replace a mitral valve or other cardiac valves within a patient. Valve assembly 260 of prosthetic heart valve 200 may be substantially cylindrical, or may taper outwardly from outflow end 212 to inflow end 210. Both cuff 264 and leaflets 262 may be wholly or partly formed of any suitable biological material, such as bovine or porcine pericardium, or polymers, such as PTFE, urethanes and the like.
When used to replace a native mitral valve, valve assembly 260 may be sized in the range of about 20 mm to about 40 mm in diameter. Valve assembly 260 may be secured to stent 250 by suturing to struts 252 or by using tissue glue, ultrasonic welding or other suitable methods.
An optional frame 300 may surround and house valve assembly 260 and stent 250. Frame 300 may be formed of a braided material in various configurations to create shapes and/or geometries for engaging tissue and filling the spaces between valve assembly 260 and the native valve annulus. As shown in FIG. 3, frame 300 includes a plurality of braided strands or wires 305 arranged in three-dimensional shapes. In one example, wires 305 form a braided metal fabric that is both resilient and capable of heat treatment substantially to a desired preset shape. One class of materials which meets these qualifications is shape memory alloys. One example of a suitable shape memory alloy is Nitinol. It is also contemplated that wires 305 may comprise various materials other than Nitinol that have elastic and/or memory properties, such as spring stainless steel, alloys such as Elgiloy®, Hastelloy®, and MP35N®, CoCrNi alloys (e.g., trade name Phynox), CoCrMo alloys, or a mixture of metal and polymer fibers. Depending on the individual material selected, the strand diameter, number of strands, and pitch may be altered to achieve desired properties for frame 300.
In the simplest configuration of frame 300, shown in FIG. 3, frame 300 may be formed in a cylindrical or tubular configuration having inlet end 310, outlet end 312 and lumen 315 extending between inlet end 310 and outlet end 312 for housing stent 250 and valve assembly 260. However, in certain embodiments stent 250 may be omitted, and valve assembly 260 may be directly attached to frame 300 using any of the techniques described above for attaching valve assembly 260 to stent 250. Frame 300 may be radially collapsed from a relaxed or preset configuration to a compressed or reduced configuration for delivery into the patient. Once released after delivery, the shape-memory properties of frame 300 may cause it to re-expand to its relaxed or preset configuration. Frame 300 may also be locally compliant in a radial direction such that a force exerted in the direction of arrow F deforms a portion of the frame. In this manner, irregularities in the native valve annulus may be filled by frame 300, thereby preventing paravalvular leakage. Moreover, portions of frame 300 may endothelialize and in-grow into the heart wall over time, providing permanent stability and a low thrombus surface.
FIG. 4 illustrates one variation in which prosthetic heart valve 400 includes additional features to aid in fixing the valve at a predetermined location within the native valve annulus. Prosthetic heart valve 400 generally extends between inflow end 410 and outflow end 412 and includes all of the elements disclosed above including stent 250 formed of struts 252, valve assembly 260 having leaflets 262 and cuff 264. Stent 250 may be substantially cylindrical and may further include flared portion 450 adjacent inflow end 410 that projects radially outward from the cylindrical stent to anchor the stent at a predetermined location in the native valve annulus. Flared portion 450 forms an angle α with the longitudinal axis of stent 250. In some examples, angle α may be between about 80 degrees and about 180 degrees. In some examples, angle α may be between about 90 and 110 degrees. Moreover, as shown in FIG. 4, flared portion 450 may be curved. Thus, flared portion 450 may have an initial takeoff angle α and then round out along its length to form a second angle β with the longitudinal axis of stent 250 near its distal end. As a result of the rounding, second angle β may between about 160 degrees and about 180 degrees. During delivery, flared portion 450 may be compressed against the outside of collapsed stent 250 within a sheath of a delivery device and may return to its flared configuration when released from the sheath. When prosthetic heart valve 400 is used to replace the function of a native mitral valve, flared portion 450 may be disposed at least partially within the left atrium. Details of flared portion 450 are explored further below with reference to FIGS. 5A and 5B.
FIG. 5A is a developed view of a stent 500A suitable for use in a mitral heart valve prosthesis. Stent 500A generally extends in a length direction between inflow end 502 and outflow end 504 and includes a plurality of struts 506 forming rows of cells 510A, 520A, 530A, and a plurality of commissure features 508. First row of cells 510A is disposed adjacent outflow end 504 and includes symmetric cells 512, typically disposed adjacent commissure features 508, and asymmetric cells 514 at selected positions within first row 510A. Symmetric cells 512 may be substantially diamond-shaped and include four substantially straight struts 506 a-d of substantially equal length. Asymmetric cells 514 may include a pair of substantially straight struts 515 a, 515 b which form a V-shape attached to substantially curved struts 516 a, 516 b. Nested within selected ones of asymmetric cells 514 are engaging arms 518, which extend generally from the connection of one cell 514 to the adjacent cells in either side thereof in row 510A, and which have a curved shape which generally follows the curved shape of struts 516 a, 516 b. Engaging arms 518 may be configured to engage portions of heart tissue by contacting, clasping, gripping, securing or otherwise preventing, minimizing or limiting the motion of stent 500A (e.g., native mitral valve leaflets) when the stent is deployed in a patient as part of a prosthetic heart valve. Second row of cells 520A may include a plurality of cells 522 formed by two struts shared with cells from first row 510A (e.g., struts 506 c, 506 d, 516 a, 516 b) and two substantially straight struts 526 a, 526 b. A third row of cells 530A includes enlarged cells 532 formed of struts 536 a-d, each of which is longer than struts 506 a-d. Third row 530A may include cells that have a length L1 that is greater than the lengths of other cells. In at least some examples, length L1 may be between about 20 mm and about 30 mm. Third row 530A of enlarged cells 532 may be configured to form a diameter greater than the diameter formed by the first two rows. Thus, as shown in the cross-sectional schematic of FIG. 4, when stent 500A fully expands, third row 530A of enlarged cells 532 forms a flared portion. Optionally, a number of retainers 540 may be disposed on selected enlarged cells 532 as well as on commissure features 508 to help hold stent 500A in the delivery apparatus and aid in its deployment.
As shown in FIG. 5A, stent 500A is formed of three rows of cells, each row having nine cells and is thus referred to as a nine-cell configuration. As briefly discussed, engaging arms 518 are nested within selected asymmetric cells 514 to engage the native valve leaflets. Because the native mitral valve includes two native leaflets, the illustrated example includes two engaging arms 518 for mating with each native valve leaflet, the first pair of engaging arms being spaced apart from the second pair of engaging arms so that they are approximately contralateral to one another. It will be understood, however, that in a nine-cell stent configuration, it may be difficult to provide pairs of engaging arms that are exactly 180 degrees apart from one another.
FIG. 5B shows a variation in which stent 500B has a twelve-cell configuration (i.e., each row of cells in stent 500B includes twelve cells). Stent 500B extends between inflow end 502 and outflow end 504 and includes a first row of cells 510B having symmetric cells 512 and asymmetric cells 514, a second row of cells 520 B having cells 522 and a third row of cells 530B having enlarged cells 532. Engaging arms 518 are nested within two pairs of asymmetric cells 514 a, 514 b and 514 c, 514 d each pair of asymmetric cells being spaced from one another by a symmetric cell. In this example, pairs of engaging arms 518 are offset from one another as much as possible, and provide a generally more symmetric configuration than stent 500A, which allow for simpler coupling of the belly and leaflets. Thus, the positioning of the engaging arms may be affected by the number of cells in rows of a stent.
As shown in FIGS. 6A and 6B, a cuff 600 may be disposed over a portion of stent 500A. As illustrated, cuff 600 includes three separate segments 610 a-c that are disposed over portions of the first and second rows of cells 510A, 520A and joined together at seams 612. By using a cuff formed of three segments, greater flexibility is provided for making finer adjustments to facilitate the assembly process. FIG. 6B illustrates cuff segment 610 a in greater detail, cuff segments 610B and 610 c being substantially the same. As shown, cuff segment 610 a includes a first portion 620 sized to be disposed over commissure feature 508, a second portion 622 for covering symmetric cell 512 of first row 510A, and three substantially equal third portions 624,626,628 for covering three cells 522 of second row 520A. It will be understood that cuff 600 may be disposed on either the luminal or the abluminal surface of stent 500A and that the shape of the cuff may be modified as needed for a stent having a twelve-cell configuration. Additionally, a unitary cuff may be used instead of the three-segmented example shown. When disposed on the abluminal surface of stent 500A, cuff segment 610 a may be configured to allow engaging arms 518 to extend therethrough to reach and couple to the native valve leaflets. Thus, engaging arms 518 are preferably unobstructed by cuff 600.
In another variation shown in FIGS. 7A and 7B, cuff 700 may be disposed over a portion of stent 500A. As illustrated, cuff 700 includes three separate segments 710 a-c that are disposed over portions of the first and second rows 510A,520A and joined together at seams 712. The differences between cuff 700 and cuff 600 described above are more readily identifiable by looking at the detailed view of FIG. 7B. As shown, cuff segment 710 a includes a first portion 720 sized to be disposed over commissure feature 508. Second portion 722 covers symmetric cell 512 of first row 510A and includes two additional peaks 723 for covering asymmetric cells 514. A third portion 724 covers cells 522 of second row 520A and has a substantially straight edge 750 that runs horizontally across the lower corners of cells 522. Cuff 700 is shaped to allow engaging arms 518 to extend over the cuff and couple to the native valve leaflets. Cuff segments 710 b and 710 c may have the same configuration as cuff segment 710 a.
In addition to the cuff, a skirt may be disposed over the third row of cells 530A,530B to cover flared portion 450 of the stent. FIG. 8A illustrates one example of a skirt 800A configured to cover the third row of cells in a twelve-cell stent configuration (e.g., stent 500B of FIG. 5B). For the sake of clarity, skirt 800A will be described as having multiple portions or components. It will be understood, however, that the skirt may be formed of a single piece of tissue, fabric or polymeric material cut into a predetermined shape and that the portions or components described herein are only indicated for the sake of description and may not be readily discernible from the whole.
As shown, skirt 800A generally includes a hub 802 having a number of sides 803. Hub 802 is shown in the shape of a dodecagon in order to complement a twelve-celled stent. A circular cutout 804 is formed in the center of hub 802 to form void 806 for accepting a portion of the stent. In at least some examples, cutout 804 is formed having a circumference approximately equal to the circumference of a fully expanded stent at the second row of cells. A plurality of quadrilateral tabs 810 extend from the sides of hub 802. In the case of a dodecagon hub, twelve quadrilateral tabs 810 are formed around the perimeter of the hub, one extending from each side 803 of hub 802.
Due to the desired increasing diameter of flared portion 450 of the stent, triangular slits 812 are provided between quadrilateral tabs 810. However, when fully assembled to the stent, edges 811 a,811 b of adjacent quadrilateral tabs 810 a, 810 b will be sewn or otherwise coupled together to close slits 812. FIGS. 8B and 8C are photographs illustrating the assembly of a mock skirt 800B having nine quadrilateral tabs 820 to a stent having nine cells in each row. For the sake of clarity, the valve assembly including the cuff and the leaflets is not shown. Quadrilateral tabs 820 are coupled to one another at seams 830 to form a continuous surface. It will be understood that quadrilateral tabs 820 may be formed such that seams 830 align with struts of stent 500A as shown.
Instead of being formed as a single piece of material, a skirt may be formed in multiple segments. As seen in FIG. 9A, skirt 900 is formed of three equal segments 901A-C. As shown in FIG. 9B, each segment 901A-C may include a fraction of a hub, such as portion 902A defining an arc 904. Each portion 901A-C may also include a number of quadrilateral tabs 910 a-d extending from portion 902A. It will be understood that each of segments 901A-C may be formed to be substantially the same size and may include the same number of quadrilateral tabs. An optional coupling 930 may be added to each of segments 910A-C and configured to overlap with an adjacent segment to add integrity to the assembly. It will be understood that variations are possible by changing the size and/or shape of the segments. For example, segments 901D, one of which is shown in FIG. 9C, may be formed to complement a stent of nine cells per row by having only three quadrilateral tabs 910 e-g each.
In another variation, shown in FIG. 10, skirt 1000 includes more slits to reduce puckering at the seams. Similar to skirt 800A, skirt 1000 includes a hub 1002 having circular cutout 1004 at its center to form void 1006 for accepting a portion of the stent. Extending from hub 1002 and disposed on its perimeter are a series of alternating wedges including first wedges 1010 and second wedges 1020. In the examples shown, first wedges 1010 are substantially triangular and are attached at an edge of the triangle to hub 1002, and second wedges 1020 are substantially triangular and are attached to hub 1002 at a point of the triangle. Collectively, wedges 1010 and 1020 define a series of triangles that alternate in their connection to hub 1002. Each first wedge 1010 is disposed between adjacent second wedges 1020 and spaced from the second wedges by slits 1030 a, 1030 b. When fully assembled, edges of first and second wedges 1010, 1020 adjoin to one another to provide a continuous layer over a row of cells forming a flared portion 450. It will be understood, however, that the shapes of first and second wedges 1010, 1020 may be varied from the shapes shown and described herein and that skirt 1000 may, for example, include a series of wedges in the shape of triangles instead of concave quadrilaterals that are arranged so that each triangle is inverted with respect to an adjacent triangle.
FIG. 11 illustrates one possible suture pattern for attaching a skirt, such as skirt 800A, to stent 500 A having cuff 600. A first suture pattern 51 may be formed across the tops of cells 532 in third row of cells 530A at inflow end 502 of stent 500A, and around the circumference of the stent to attach skirt 800A to the stent. A second suture pattern S2 may be formed parallel to the first suture pattern 51 and across the ends of cells 512, 514 in first row of cells 510A and approximately halfway through cells 522 in second row of cells 520A. A third suture pattern S3 may consist of a zigzag pattern along the upper half of enlarged cells 532 of third row of cells 530A, and a fourth suture pattern S4 may form a second zigzag pattern along the lower half of enlarged cells 532, the fourth suture pattern S4 being a mirror image of the third suture pattern S3.
A fully assembled prosthetic heart valve 1200 is shown in FIG. 12A and includes stent 500A having inflow end 502 and outflow end 504. Inflow and outflow end views of prosthetic heart valve 1200 are shown in FIGS. 12B and 12C, respectively. Cuff 600 is disposed on a portion of stent 500A adjacent outflow end 504 and skirt 800A is disposed on the flared portion 450 of stent 500A adjacent inflow end 502, as described above with reference to FIG. 11. Additionally, three leaflets 1202 have been added to the interior of stent 500A and attached to commissure features 506 and to selected struts of stent 500A and/or cuff 600 to form a valve assembly as known in the art. Engaging arms 518 may also extend toward inflow end 502 and clip onto, or otherwise couple to, native valve leaflets to aid in anchoring stent 500A to the surrounding tissue. Though cuff 600 covers many cells of stent 500A, engaging arms 518 remain unobstructed to adequately perform their function. When deployed at the mitral valve position, prosthetic heart valve 1200 allows flow of blood from atrium 122 to left ventricle 124 and impedes blood backflow from left ventricle 124 to left atrium 122. Flared portion 450 may be disposed at least partially within the native valve annulus and/or left atrium 122 to anchor prosthetic heart valve 1200 (e.g., reduce the possibility of prosthetic heart valve 1200 migrating into left ventricle 124) and/or seal regions around prosthetic heart valve 1200 to reduce paravalvular leakage.
Several variations of the stent for a prosthetic heart valve are possible. For example, FIG. 13 illustrates stent 1300 extending generally between inflow end 1302 and outflow end 1304 and having three rows of cells 1310,1320,1330, similar to the cells of stent 500A described above with reference to FIG. 5A. As shown, each row includes nine cells. The main difference between stent 500A and stent 1300 is the inclusion of horseshoes 1340,1342 to aid in suturing stent 1300 to a cuff and a skirt. Specifically, corners C1 of cells 1322 closest to inflow end 1302 include first horseshoes 1340 to prevent slippage of sutures when coupling stent 1300 to a cuff, and corners C2 of enlarged cells 1332 closest to inflow end 1320 include second horseshoes 1342 to prevent slippage of sutures when coupling stent 1300 to a skirt.
The shape of the engaging arms may also be modified in several ways. In the simplest configuration, shown in FIG. 14A, stent 1400A includes a first row 1410A of cells 1412A. Each substantially diamond-shaped cell 1412A is composed of four struts 1416 a-d joined to one another as shown, struts 1416 a and 1416 b forming an angle β1 therebetween. Nested engaging arms 1418A are formed of two substantially straight struts 1419 that are coupled to struts 1416 c and 1416 d at first ends r1 and to each other at second ends r2. Because of the shape of cells 1412A there is little room to form engaging arms 1418A resulting in a sharp tip at second ends r2 and a tight angle at first ends r1.
Instead of laser cutting a tube to create a stent in a collapsed state, the tube may be laser cut to create a stent in a partially expanded state. Cutting a stent from a larger diameter tube provides a larger area inside the cells of the stent to form engaging arms. Stent 1400B of FIG. 14B has been formed using this method and generally includes first row of cells 1410B having first cells 1411B and second cells 1412B, second cells 1412B being formed of struts 1417 a-d. First cells 1411B that will not receive engaging arms may be substantially diamond-shaped, while second cells 1412B that receive engaging arms have a second shape that does not form a diamond. Specifically, struts 1417 a and 1417 b of cell 1412B may form a slight curvature such that the upper portion of cell 1412B is rounded and forms an angle β2, larger than angle β1, for receiving engaging arms. With the larger angle β2, an engaging arm may be formed with a curved loop 1419 having a smooth surface at position r2 that would be less traumatic if brought in contact with body tissue. Additionally, curved loop 1419 includes a wider takeoff at position r1 to reduce or eliminate a pinch point, resulting in less of a stress concentration on the anatomy that is contacted and easier loading within a delivery device.
As described in the previous examples, engaging arms are not disposed within each cell of first row 1410B. Thus, in forming a stent having engaging arms, the various features of stent 1400B may be cut from a metal tube under different conditions. For example, cells 1411B that do not have engaging arms 1418B may be cut when the tube is in a radially collapsed condition, and cells that include engaging arms 1418B may be cut when the tube is in a partially expanded condition. This approach avoids the need for cutting stent 1400B out of a large tube as the large tube can be expensive and more difficult to manufacture. Selectively cutting portions in the collapsed and partially expanded conditions allows for manufacturing the configurations as shown out of a relatively small diameter of tubing.
In another variation shown in FIG. 15, stent 1500 may include features to aid in visualization during deployment. Stent 1500 may be substantially similar to stent 500A described above, and may include a first row 1510 of cells having first cells 1511 and second cells 1512, second cells 1512 including engaging arms 1518 therein. The main difference between stent 1500 and stent 500A is the presence of a bridging strut 1520 extending between the struts forming each engaging arm 1518 as shown. Bridging struts 1520 include a circular support 1525 for accepting a radiopaque marker (e.g., tantalum markers) to help make engaging arms 1518 more visible under fluoroscopy and/or echocardiography. Thus, the orientation of stent 1500 with respect to the native valve annulus may be more accurately detected so that engaging arms 1518 may be aligned with the native valve leaflets.
In some embodiments, a prosthetic heart valve having an inflow end and an outflow end includes a collapsible and expandable stent including a plurality of cells arranged in rows, each of the rows extending around a circumference of the stent, at least one of the rows forming a flared portion having a diameter that is larger than diameters of others of the rows, the stent further including engaging arms disposed adjacent the outflow end and extending toward the inflow end, the engaging arms being configured to couple to heart tissue to anchor the stent. A collapsible and expandable valve assembly is disposed within the stent and having a plurality of leaflets.
In some examples, at least one of the rows includes symmetric cells and asymmetric cells; and/or at least one of the rows includes enlarged cells for forming the flared portion; and/or each of the rows includes nine cells; and/or each of the rows includes twelve cells; and/or each of the engaging arms is nested within an asymmetric cell; and/or the engaging arms include two engaging arms for coupling to each native valve leaflet at a site of implantation; and/or the flared portion forms an angle of between about 120 degrees and about 180 degrees with respect to a longitudinal axis of the stent; and/or the valve further includes a cuff disposed over at least two rows of the stent and a skirt disposed over at least one row of the stent; and/or the cuff is divided into three segments that are joined together at seams; and/or the cuff is integrally formed from a single piece of material; and/or the valve further includes a radiopaque marker connected to at least one of the engaging arms; and/or the stent further includes a plurality of horseshoes formed on one end of selected cells in at least two of the rows.
In some embodiments a prosthetic heart valve having an inflow end and an outflow end, includes a collapsible and expandable stent including a plurality of cells arranged in rows, each of the rows extending around a circumference of the stent, the rows including a first row of having a first diameter and a second row of cells having a second diameter, the second diameter being larger than the first diameter, a collapsible and expandable valve assembly disposed within the stent and having a plurality of leaflets, an annular cuff disposed over cells of the first row of cells, and an annular skirt disposed over cells of the second row of cells.
In some examples, the skirt includes a plurality of quadrilateral tabs with a triangular slit between each adjacent pair of tabs; and/or the plurality of quadrilateral tabs includes nine tabs; and/or the plurality of quadrilateral tabs includes a quadrilateral tab corresponding to each cell in the second row of cells; and/or the skirt includes three segments that are sewn together; and/or the skirt includes first wedges, second wedges, and a plurality of slits defined between the first and second wedges; and/or
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims (20)

The invention claimed is:
1. A prosthetic heart valve having an inflow end and an outflow end, comprising:
a collapsible and expandable stent including a plurality of cells arranged in rows, each of the rows extending around a circumference of the stent, at least one of the rows forming a flared portion having a diameter that is larger than diameters of others of the rows, at least one of the rows including a plurality of cells having a first shape and a plurality of cells having a second shape different than the first shape, the stent further including engaging arms disposed adjacent the outflow end and extending toward the inflow end, the engaging arms being configured to couple to heart tissue to anchor the stent; and
a collapsible and expandable valve assembly disposed within the stent and having a plurality of leaflets.
2. The prosthetic heart valve of claim 1, wherein at least one of the rows includes symmetric cells and asymmetric cells.
3. The prosthetic heart valve of claim 2, wherein the symmetric cells are substantially diamond shaped and the asymmetric cells comprise a curved portion.
4. The prosthetic heart valve of claim 1, wherein at least one row forming the flared portion includes cells having a dimension along the circumference of the stent that is larger than a dimension along the circumference of the stent of cells of other rows.
5. The prosthetic heart valve of claim 1, wherein each of the rows includes nine cells.
6. The prosthetic heart valve of claim 1, wherein each of the rows includes twelve cells.
7. The prosthetic heart valve of claim 1, wherein each of the engaging arms is nested within a respective one of the cells having the second shape.
8. The prosthetic heart valve of claim 1, wherein the engaging arms are positioned on the stent so that, in use, two engaging arms are arranged to couple to each native valve leaflet at a site of implantation.
9. The prosthetic heart valve of claim 1, wherein the flared portion forms an angle of between about 120 degrees and about 180 degrees with respect to a longitudinal axis of the stent.
10. The prosthetic heart valve of claim 1, further comprising a cuff disposed over at least two rows of the stent and a skirt disposed over at least one row of the stent.
11. The prosthetic heart valve of claim 10, wherein the cuff comprises three segments that are joined together at seams.
12. The prosthetic heart valve of claim 10, wherein the cuff is integrally formed from a single piece of material.
13. The prosthetic heart valve of claim 1, further comprising a radiopaque marker connected to at least one of the engaging arms.
14. The prosthetic heart valve of claim 1, wherein the stent further includes a plurality of horseshoes formed on one end of selected cells in at least two of the rows.
15. A prosthetic heart valve having an inflow end and an outflow end, comprising:
a collapsible and expandable stent including a plurality of cells arranged in rows, each of the rows extending around a circumference of the stent, the rows including a first row of cells having a first diameter and a second row of cells having a second diameter, the second diameter being larger than the first diameter, the first row including a plurality of cells having a first shape and a plurality of cells having a second shape different than the first shape the stent further including engaging arms nested within at least one of the plurality of cells having the second shape;
a collapsible and expandable valve assembly disposed within the stent and having a plurality of leaflets;
an annular cuff disposed over cells of the first row of cells; and
an annular skirt disposed over cells of the second row of cells.
16. The prosthetic heart valve of claim 15, wherein the skirt includes a plurality of quadrilateral tabs with a triangular slit between each adjacent pair of tabs.
17. The prosthetic heart valve of claim 16, wherein the plurality of quadrilateral tabs includes nine tabs.
18. The prosthetic heart valve of claim 16, wherein the plurality of quadrilateral tabs includes a quadrilateral tab corresponding to each cell in the second row of cells.
19. The prosthetic heart valve of claim 15, wherein the skirt includes three segments that are sewn together.
20. The prosthetic heart valve of claim 15, wherein the skirt includes first wedges, second wedges, and a plurality of slits defined between the first wedges and the second wedges.
US15/076,854 2015-03-24 2016-03-22 Mitral heart valve replacement Active 2036-07-10 US10070954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/076,854 US10070954B2 (en) 2015-03-24 2016-03-22 Mitral heart valve replacement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562137411P 2015-03-24 2015-03-24
US15/076,854 US10070954B2 (en) 2015-03-24 2016-03-22 Mitral heart valve replacement

Publications (2)

Publication Number Publication Date
US20160278922A1 US20160278922A1 (en) 2016-09-29
US10070954B2 true US10070954B2 (en) 2018-09-11

Family

ID=55640974

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/076,854 Active 2036-07-10 US10070954B2 (en) 2015-03-24 2016-03-22 Mitral heart valve replacement

Country Status (3)

Country Link
US (1) US10070954B2 (en)
EP (1) EP3273910A2 (en)
WO (1) WO2016154172A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180206985A1 (en) * 2017-01-23 2018-07-26 Spencer NOE Replacement mitral valves
US10912644B2 (en) 2018-10-05 2021-02-09 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
US11090158B2 (en) 2017-01-23 2021-08-17 Cephea Valve Technologies, Inc. Replacement mitral valves
US11324591B2 (en) * 2013-03-14 2022-05-10 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US11471282B2 (en) 2019-03-19 2022-10-18 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
US11617646B2 (en) 2015-05-14 2023-04-04 Cephea Valve Technologies, Inc. Replacement mitral valves
US11666444B2 (en) 2017-08-03 2023-06-06 The Regents Of The University Of California Atrial cage for placement, securing and anchoring of atrioventricular valves
US11684474B2 (en) 2018-01-25 2023-06-27 Edwards Lifesciences Corporation Delivery system for aided replacement valve recapture and repositioning post-deployment
US11833034B2 (en) 2016-01-13 2023-12-05 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006063199A2 (en) 2004-12-09 2006-06-15 The Foundry, Inc. Aortic valve repair
CN103491900B (en) 2010-12-23 2017-03-01 托尔福公司 System for mitral valve repair and replacement
CN103997990A (en) 2011-06-21 2014-08-20 托尔福公司 Prosthetic heart valve devices and associated systems and methods
EP3984500A1 (en) 2011-10-19 2022-04-20 Twelve, Inc. Prosthetic heart valve devices
US9655722B2 (en) 2011-10-19 2017-05-23 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
EP3943047B1 (en) 2011-10-19 2023-08-30 Twelve, Inc. Device for heart valve replacement
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9579198B2 (en) 2012-03-01 2017-02-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
CN105246431B (en) 2013-05-20 2018-04-06 托尔福公司 Implantable cardiac valve device, mitral valve repair device and related system and method
US10179042B2 (en) 2015-06-12 2019-01-15 St. Jude Medical, Cardiology Division, Inc. Heart valve repair and replacement
US10238490B2 (en) 2015-08-21 2019-03-26 Twelve, Inc. Implant heart valve devices, mitral valve repair devices and associated systems and methods
WO2017189276A1 (en) 2016-04-29 2017-11-02 Medtronic Vascular Inc. Prosthetic heart valve devices with tethered anchors and associated systems and methods
EP3454787A1 (en) * 2016-05-12 2019-03-20 St. Jude Medical, Cardiology Division, Inc. Mitral heart valve replacement
US10653523B2 (en) 2017-01-19 2020-05-19 4C Medical Technologies, Inc. Systems, methods and devices for delivery systems, methods and devices for implanting prosthetic heart valves
US10561495B2 (en) 2017-01-24 2020-02-18 4C Medical Technologies, Inc. Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve
US10575950B2 (en) 2017-04-18 2020-03-03 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US10433961B2 (en) 2017-04-18 2019-10-08 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
US10792151B2 (en) 2017-05-11 2020-10-06 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
US10646338B2 (en) 2017-06-02 2020-05-12 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US10709591B2 (en) 2017-06-06 2020-07-14 Twelve, Inc. Crimping device and method for loading stents and prosthetic heart valves
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10729541B2 (en) 2017-07-06 2020-08-04 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US11672680B2 (en) 2017-08-11 2023-06-13 The Charles Stark Draper Laboratory, Inc. Growth adaptive expandable stent
US11857441B2 (en) 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
US11931253B2 (en) * 2020-01-31 2024-03-19 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: ball-slide attachment
WO2021158509A1 (en) * 2020-02-06 2021-08-12 Laplace Interventional Inc. Transcatheter heart valve prosthesis assembled inside heart chambers or blood vessels
CN112089508B (en) * 2020-08-28 2022-11-18 江苏大学 Anti-migration aortic valve stent
WO2023144673A1 (en) * 2022-01-28 2023-08-03 Medtronic, Inc. Valve skirts for prosthetic devices
US11510777B1 (en) 2022-02-10 2022-11-29 Laplace Interventional Inc. Prosthetic heart valves
US11712336B1 (en) 2022-07-20 2023-08-01 Laplace Interventional Inc. Prosthetic heart valves

Citations (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657744A (en) 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US4275469A (en) 1979-12-13 1981-06-30 Shelhigh Inc. Prosthetic heart valve
US4491986A (en) 1976-05-12 1985-01-08 Shlomo Gabbay Heart valve
US4759758A (en) 1984-12-07 1988-07-26 Shlomo Gabbay Prosthetic heart valve
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4922905A (en) 1985-11-30 1990-05-08 Strecker Ernst P Dilatation catheter
US4994077A (en) 1989-04-21 1991-02-19 Dobben Richard L Artificial heart valve for implantation in a blood vessel
WO1991017720A1 (en) 1990-05-18 1991-11-28 Henning Rud Andersen A valve prosthesis for implantation in the body and a catheter for implantating such valve prosthesis
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
US5415664A (en) 1994-03-30 1995-05-16 Corvita Corporation Method and apparatus for introducing a stent or a stent-graft
US5480423A (en) 1993-05-20 1996-01-02 Boston Scientific Corporation Prosthesis delivery
WO1997016133A1 (en) 1995-11-01 1997-05-09 Biocompatibles Limited Braided stent
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
WO1998032412A2 (en) 1997-01-24 1998-07-30 Scimed Life Systems Inc Bistable spring construction for a stent and other medical apparatus
US5843167A (en) 1993-04-22 1998-12-01 C. R. Bard, Inc. Method and apparatus for recapture of hooked endoprosthesis
US5855601A (en) 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
WO1999013801A1 (en) 1997-09-16 1999-03-25 Zadno Azizi Gholam Reza Body fluid flow control device
US5935163A (en) 1998-03-31 1999-08-10 Shelhigh, Inc. Natural tissue heart valve prosthesis
US5961549A (en) 1997-04-03 1999-10-05 Baxter International Inc. Multi-leaflet bioprosthetic heart valve
EP1000590A1 (en) 1998-11-09 2000-05-17 Cordis Corporation An improved stent which is easly recaptured and repositioned within the body
US6077297A (en) 1993-11-04 2000-06-20 C. R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
DE19857887A1 (en) 1998-12-15 2000-07-06 Fraunhofer Ges Forschung Anchoring support for a heart valve prosthesis comprises a single-piece component which is formed of rod shaped elements made of a memory metal, and has at least in part a lattice structure
US6090140A (en) 1999-02-17 2000-07-18 Shelhigh, Inc. Extra-anatomic heart valve apparatus
WO2001028459A1 (en) 1999-10-21 2001-04-26 Scimed Life Systems, Inc. Implantable prosthetic valve
WO2001049213A2 (en) 1999-12-31 2001-07-12 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US6264691B1 (en) 1999-04-23 2001-07-24 Shlomo Gabbay Apparatus and method for supporting a heart valve
WO2001054625A1 (en) 2000-01-31 2001-08-02 Cook Biotech Incorporated Stent valves and uses of same
WO2001056500A2 (en) 2000-02-03 2001-08-09 Cook Incorporated Implantable vascular device
WO2001076510A2 (en) 2000-04-06 2001-10-18 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US20020036220A1 (en) 2000-09-26 2002-03-28 Shlomo Gabbay Curved implantable sheath and method of making same
US6368348B1 (en) 2000-05-15 2002-04-09 Shlomo Gabbay Annuloplasty prosthesis for supporting an annulus of a heart valve
WO2002036048A1 (en) 2000-10-31 2002-05-10 Jacques Seguin Tubular support for setting, by percutaneous route, a substitution cusp
WO2002047575A2 (en) 2000-12-15 2002-06-20 Angiomed Gmbh & Co. Medizintechnik Kg Stent with valve
US6419695B1 (en) 2000-05-22 2002-07-16 Shlomo Gabbay Cardiac prosthesis for helping improve operation of a heart valve
WO2002067782A2 (en) 2001-02-26 2002-09-06 Ev3 Peripheral, Inc. Implant delivery system with interlock
US6468660B2 (en) 2000-12-29 2002-10-22 St. Jude Medical, Inc. Biocompatible adhesives
DE10121210A1 (en) 2001-04-30 2002-11-14 Universitaetsklinikum Freiburg Replacement heart valve, comprises an anchoring element, and has a starting volume which is opened up to the normal volume using a catheter
US20030023303A1 (en) 1999-11-19 2003-01-30 Palmaz Julio C. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US6517576B2 (en) 2000-12-11 2003-02-11 Shlomo Gabbay Implantable patch prosthesis having one or more cusps for improved competency
US20030050694A1 (en) 2001-09-13 2003-03-13 Jibin Yang Methods and apparatuses for deploying minimally-invasive heart valves
US6533810B2 (en) 1995-11-27 2003-03-18 Schneider (Europe) Ag Conical stent
WO2003047468A1 (en) 2001-10-11 2003-06-12 Percutaneous Valve Technologies Implantable prosthetic valve
US6582464B2 (en) 2000-05-03 2003-06-24 Shlomo Gabbay Biomechanical heart valve prosthesis and method for making same
US20030130726A1 (en) 1999-09-10 2003-07-10 Thorpe Patricia E. Combination valve and stent for treating vascular reflux
US6623518B2 (en) 2001-02-26 2003-09-23 Ev3 Peripheral, Inc. Implant delivery system with interlock
EP1360942A1 (en) 2002-05-11 2003-11-12 Willy Rüsch GmbH Stent
US6685625B2 (en) 2000-09-26 2004-02-03 Shlomo Gabbay Curved implantable sheath and method of making same
US6719789B2 (en) 1993-11-01 2004-04-13 3F Therapeutics, Inc. Replacement heart valve
FR2847800A1 (en) 2002-11-28 2004-06-04 Perouse Laboratoires Prosthetic valve, has carrier framework with branches for centripetal compression of framework towards its folded position in contrast to elastic action, valve expanded and contracted in respective obstruction and release positions
FR2850008A1 (en) 2003-01-17 2004-07-23 Daniel Roux Vascular prosthesis has tube and collar for adapting to blood vessel ends of different diameters
US6783556B1 (en) 2000-09-26 2004-08-31 Shlomo Gabbay System and method for making a calotte-shaped implantable sheath
US20040210304A1 (en) 1999-11-17 2004-10-21 Corevalve, S.A. Prosthetic valve for transluminal delivery
US6814746B2 (en) 2002-11-01 2004-11-09 Ev3 Peripheral, Inc. Implant delivery system with marker interlock
US6830584B1 (en) 1999-11-17 2004-12-14 Jacques Seguin Device for replacing a cardiac valve by percutaneous route
US6869444B2 (en) 2000-05-22 2005-03-22 Shlomo Gabbay Low invasive implantable cardiac prosthesis and method for helping improve operation of a heart valve
US20050096726A1 (en) 2000-05-30 2005-05-05 Jacques Sequin Noncylindrical stent deployment system for treating vascular bifurcations
US20050137695A1 (en) 2003-12-23 2005-06-23 Sadra Medical Replacement valve and anchor
US20050137697A1 (en) 2003-12-23 2005-06-23 Amr Salahieh Leaflet engagement elements and methods for use thereof
WO2005070343A1 (en) 2003-12-23 2005-08-04 Laboratoires Perouse Kit which is intended to be implanted in a conduit
EP1584306A1 (en) 1999-02-02 2005-10-12 Bard Peripheral Vascular, Inc. Partial encapsulation of stents using bands
US20050240200A1 (en) 2004-04-23 2005-10-27 Bjarne Bergheim Method and system for cardiac valve delivery
US20050256566A1 (en) 2004-05-03 2005-11-17 Shlomo Gabbay Apparatus and method for improving ventricular function
EP1598031A2 (en) 1998-03-04 2005-11-23 Boston Scientific Limited Stent having variable properties
US20060008497A1 (en) 2004-07-09 2006-01-12 Shlomo Gabbay Implantable apparatus having improved biocompatibility and process of making the same
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US20060074484A1 (en) 2004-10-02 2006-04-06 Huber Christoph H Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
US7025780B2 (en) 2000-09-12 2006-04-11 Shlomo Gabbay Valvular prosthesis
US20060122692A1 (en) 2004-05-10 2006-06-08 Ran Gilad Stent valve and method of using same
US20060149360A1 (en) 2003-07-08 2006-07-06 Ventor Technologies Ltd. Fluid flow prosthetic device
WO2006073626A2 (en) 2005-01-05 2006-07-13 The Cleveland Clinic Foundation Method for fixing tissue
US20060173532A1 (en) 2004-12-20 2006-08-03 Jacob Flagle Intraluminal support frame and medical devices including the support frame
US20060178740A1 (en) 2005-02-10 2006-08-10 Sorin Biomedica Cardio S.R.L. Cardiac-valve prosthesis
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US20060195180A1 (en) 2005-02-25 2006-08-31 Arash Kheradvar Implantable small percutaneous valve and methods of delivery
US20060206202A1 (en) 2004-11-19 2006-09-14 Philippe Bonhoeffer Apparatus for treatment of cardiac valves and method of its manufacture
US20060241745A1 (en) 2005-04-21 2006-10-26 Solem Jan O Blood flow controlling apparatus
US20060241744A1 (en) 2003-03-20 2006-10-26 Aortech International Plc Valve
US20060259120A1 (en) 2005-05-12 2006-11-16 Ev3, Inc. Implant delivery system with interlocked RX port orientation
US20060259137A1 (en) 2003-10-06 2006-11-16 Jason Artof Minimally invasive valve replacement system
US7137184B2 (en) 2002-09-20 2006-11-21 Edwards Lifesciences Corporation Continuous heart valve support frame and method of manufacture
US20060265056A1 (en) 2005-05-13 2006-11-23 Corevalve, Inc. Heart valve prosthesis and methods of manufacture and use
US20060276813A1 (en) 2005-05-20 2006-12-07 The Cleveland Clinic Foundation Apparatus and methods for repairing the function of a diseased valve and method for making same
US7160322B2 (en) 2003-08-13 2007-01-09 Shlomo Gabbay Implantable cardiac prosthesis for mitigating prolapse of a heart valve
US20070010876A1 (en) 2003-12-23 2007-01-11 Amr Salahieh Externally Expandable Heart Valve Anchor and Method
US20070027534A1 (en) 2005-07-27 2007-02-01 Bjarne Bergheim Methods and systems for cardiac valve delivery
US20070043435A1 (en) 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US20070055358A1 (en) 2005-08-22 2007-03-08 Krolik Jeffrey A Axially compressible flared stents and apparatus and methods for delivering them
US20070067029A1 (en) 2005-09-16 2007-03-22 Shlomo Gabbay Support apparatus to facilitate implantation of cardiac prosthesis
US20070093890A1 (en) 2005-10-26 2007-04-26 Eliasen Kenneth A Heart valve implant
US20070100435A1 (en) 2003-04-24 2007-05-03 Cook Incorporated Artificial prostheses with preferred geometries
US20070118210A1 (en) 2005-11-18 2007-05-24 Leonard Pinchuk Trileaflet Heart Valve
WO2007071436A2 (en) 2005-12-22 2007-06-28 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US7247167B2 (en) 2004-02-19 2007-07-24 Shlomo Gabbay Low profile heart valve prosthesis
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US20070233228A1 (en) 2006-03-28 2007-10-04 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US20070244552A1 (en) 2003-12-23 2007-10-18 Amr Salahieh Assessing the location and performance of replacement heart valves
US20070244545A1 (en) 2006-04-14 2007-10-18 Medtronic Vascular, Inc. Prosthetic Conduit With Radiopaque Symmetry Indicators
US20070288087A1 (en) 2006-05-30 2007-12-13 Cook Incorporated Artificial valve prosthesis
US7311730B2 (en) 2004-02-13 2007-12-25 Shlomo Gabbay Support apparatus and heart valve prosthesis for sutureless implantation
US20080021552A1 (en) 2001-10-09 2008-01-24 Shlomo Gabbay Apparatus To Facilitate Implantation
US20080039934A1 (en) 2004-09-07 2008-02-14 Laboratoires Perouse Interchangeable Prosthetic Valve
US20080071369A1 (en) 2006-09-19 2008-03-20 Yosi Tuval Valve fixation member having engagement arms
US20080082164A1 (en) 2006-10-02 2008-04-03 Friedman Robert S Sutureless heart valve attachment
US20080097595A1 (en) 2006-08-22 2008-04-24 Shlomo Gabbay Intraventricular cardiac prosthesis
US20080114452A1 (en) 2007-11-14 2008-05-15 Shlomo Gabbay Prosthesis exhibiting post-implantation size change
US7374573B2 (en) 2004-05-03 2008-05-20 Shlomo Gabbay System and method for improving ventricular function
EP1926455A2 (en) 2005-09-20 2008-06-04 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
WO2008070797A2 (en) 2006-12-06 2008-06-12 Medtronic Corevalve, Inc. System and method for transapical delivery of an annulus anchored self-expanding valve
US20080147183A1 (en) 2006-12-14 2008-06-19 Mikolaj Styrc Endovalve
US20080154355A1 (en) 2006-12-22 2008-06-26 Netanel Benichou Implantable prosthetic valve assembly and method of making the same
US20080243245A1 (en) 2004-03-11 2008-10-02 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous Heart Valve Prosthesis
US20080255662A1 (en) 2004-03-03 2008-10-16 Sorin Biomedica Cardio S.R.L. Minimally-invasive cardiac-valve prosthesis
US20080262602A1 (en) 1998-09-10 2008-10-23 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
US20080269879A1 (en) 2005-07-27 2008-10-30 Rahul Dilip Sathe Implantable Prosthetic Vascular Valve
US7452371B2 (en) 1999-06-02 2008-11-18 Cook Incorporated Implantable vascular device
DE202008009610U1 (en) 2008-07-17 2008-12-11 Nvt Ag Prosthetic heart valve system
US7510572B2 (en) 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US7524331B2 (en) 2006-04-06 2009-04-28 Medtronic Vascular, Inc. Catheter delivered valve having a barrier to provide an enhanced seal
US20090112309A1 (en) 2005-07-21 2009-04-30 The Florida International University Board Of Trustees Collapsible Heart Valve with Polymer Leaflets
US20090138079A1 (en) 2007-10-10 2009-05-28 Vector Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US20090192591A1 (en) * 2008-01-24 2009-07-30 Medtronic, Inc. Markers for Prosthetic Heart Valves
US20100004740A1 (en) 1999-11-17 2010-01-07 Jacques Seguin Prosthetic Valve for Transluminal Delivery
WO2010008548A2 (en) 2008-07-15 2010-01-21 St. Jude Medical, Inc. Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
WO2010008549A1 (en) 2008-07-15 2010-01-21 St. Jude Medical, Inc. Axially anchoring collapsible and re-expandable prosthetic heart valves for various disease states
US20100036484A1 (en) 2008-06-06 2010-02-11 Edwards Lifesciences Corporation Low profile transcatheter heart valve
US20100049306A1 (en) 2008-02-25 2010-02-25 Medtronic Vascular, Inc. Infundibular Reducer Devices
US7682390B2 (en) 2001-07-31 2010-03-23 Medtronic, Inc. Assembly for setting a valve prosthesis in a corporeal duct
US20100087907A1 (en) 2007-02-16 2010-04-08 Emory University Apparatus And Methods For Treating The Aorta
US20100131055A1 (en) 2003-04-24 2010-05-27 Cook Incorporated Artificial valve prosthesis with improved flow dynamics
US20100168839A1 (en) 2007-06-04 2010-07-01 Braido Peter N Prosthetic heart valves
US20100168778A1 (en) 2007-06-08 2010-07-01 Braido Peter N Devices for transcatheter prosthetic heart valve implantation and access closure
US20100185277A1 (en) 2007-09-26 2010-07-22 St. Jude Medical, Inc. Collapsible prosthetic heart valves
US20100191326A1 (en) 2007-06-26 2010-07-29 Alkhatib Yousef F Apparatus and method for implanting collapsible/expandable prosthetic heart valves
US20100204781A1 (en) 2007-08-24 2010-08-12 Alkhatib Yousef F Prosthetic aortic heart valves
US20100204785A1 (en) 2007-09-28 2010-08-12 Alkhatib Yousef F Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
WO2010096176A1 (en) 2009-02-20 2010-08-26 St. Jude Medical, Inc. Devices and methods for collapsing prosthetic heart valves
US20100217382A1 (en) 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
WO2010098857A1 (en) 2009-02-27 2010-09-02 St. Jude Medical, Inc. Stent features for collapsible prosthetic heart valves
US20100249923A1 (en) 2007-09-28 2010-09-30 St Jude Medical Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US20100249911A1 (en) 2007-11-05 2010-09-30 St Jude Medical Inc. Collapsible/expandable prosthetic heart valves with non-expanding stent posts and retrieval features
US20100286768A1 (en) 2008-01-16 2010-11-11 Alkhatib Yousef F Delivery and retrieval systems for collapsible/expandable prosthetic heart valves
US20100298931A1 (en) 2009-04-15 2010-11-25 Arshad Quadri Vascular implant and delivery system
US20110029072A1 (en) 2009-08-03 2011-02-03 Shlomo Gabbay Heart valve prosthesis and method of implantation thereof
USD648854S1 (en) 2010-09-20 2011-11-15 St. Jude Medical, Inc. Commissure points
US20110313515A1 (en) * 2010-06-21 2011-12-22 Arshad Quadri Replacement heart valve
USD652927S1 (en) 2010-09-20 2012-01-24 St. Jude Medical, Inc. Surgical stent
USD652926S1 (en) 2010-09-20 2012-01-24 St. Jude Medical, Inc. Forked end
USD653341S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical stent
USD653342S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Stent connections
USD653343S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical cuff
USD654169S1 (en) 2010-09-20 2012-02-14 St. Jude Medical Inc. Forked ends
USD654170S1 (en) 2010-09-20 2012-02-14 St. Jude Medical, Inc. Stent connections
USD660432S1 (en) 2010-09-20 2012-05-22 St. Jude Medical, Inc. Commissure point
USD660433S1 (en) 2010-09-20 2012-05-22 St. Jude Medical, Inc. Surgical stent assembly
USD660967S1 (en) 2010-09-20 2012-05-29 St. Jude Medical, Inc. Surgical stent
US20120303116A1 (en) 2009-11-05 2012-11-29 The Trustees Of The University Of Pennsylvania Valve prosthesis
WO2012177942A2 (en) 2011-06-21 2012-12-27 Hanson Gifford, Iii Prosthetic heart valve devices and associated systems and methods
USD684692S1 (en) 2010-09-20 2013-06-18 St. Jude Medical, Inc. Forked ends
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US20140330371A1 (en) 2013-05-03 2014-11-06 Medtronic, Inc. Prosthetic valves and associated appartuses, systems and methods
WO2014181336A1 (en) 2013-05-09 2014-11-13 Mitrassist Medical Ltd. Heart valve assistive prosthesis
WO2015148241A1 (en) 2014-03-26 2015-10-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve stent frames

Patent Citations (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657744A (en) 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US4491986A (en) 1976-05-12 1985-01-08 Shlomo Gabbay Heart valve
US4275469A (en) 1979-12-13 1981-06-30 Shelhigh Inc. Prosthetic heart valve
US4759758A (en) 1984-12-07 1988-07-26 Shlomo Gabbay Prosthetic heart valve
US4922905A (en) 1985-11-30 1990-05-08 Strecker Ernst P Dilatation catheter
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4994077A (en) 1989-04-21 1991-02-19 Dobben Richard L Artificial heart valve for implantation in a blood vessel
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
WO1991017720A1 (en) 1990-05-18 1991-11-28 Henning Rud Andersen A valve prosthesis for implantation in the body and a catheter for implantating such valve prosthesis
US5843167A (en) 1993-04-22 1998-12-01 C. R. Bard, Inc. Method and apparatus for recapture of hooked endoprosthesis
US5480423A (en) 1993-05-20 1996-01-02 Boston Scientific Corporation Prosthesis delivery
US6719789B2 (en) 1993-11-01 2004-04-13 3F Therapeutics, Inc. Replacement heart valve
US6077297A (en) 1993-11-04 2000-06-20 C. R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
US5415664A (en) 1994-03-30 1995-05-16 Corvita Corporation Method and apparatus for introducing a stent or a stent-graft
WO1997016133A1 (en) 1995-11-01 1997-05-09 Biocompatibles Limited Braided stent
USRE40816E1 (en) 1995-11-01 2009-06-30 Biocompatibles Uk Limited Biocompatible crosslinked coating and crosslinkable coating polymer composition for forming such a coating
US6083257A (en) 1995-11-01 2000-07-04 Biocompatibles Limited Braided stent
US6533810B2 (en) 1995-11-27 2003-03-18 Schneider (Europe) Ag Conical stent
US5855601A (en) 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US7846204B2 (en) 1996-12-31 2010-12-07 Edwards Lifesciences Pvt, Inc. Aortic valve prosthesis having natural tissue and an internal cover
US7846203B2 (en) 1996-12-31 2010-12-07 Edwards Lifesciences Pvt, Inc. Implanting a stent valve prosthesis at the native aortic valve
US7585321B2 (en) 1996-12-31 2009-09-08 Edwards Lifesciences Pvt, Inc. Methods of implanting a prosthetic heart valve within a native heart valve
US6908481B2 (en) 1996-12-31 2005-06-21 Edwards Lifesciences Pvt, Inc. Value prosthesis for implantation in body channels
US6488702B1 (en) 1997-01-24 2002-12-03 Jomed Gmbh Bistable spring construction for a stent and other medical apparatus
WO1998032412A2 (en) 1997-01-24 1998-07-30 Scimed Life Systems Inc Bistable spring construction for a stent and other medical apparatus
US5961549A (en) 1997-04-03 1999-10-05 Baxter International Inc. Multi-leaflet bioprosthetic heart valve
WO1999013801A1 (en) 1997-09-16 1999-03-25 Zadno Azizi Gholam Reza Body fluid flow control device
EP1598031A2 (en) 1998-03-04 2005-11-23 Boston Scientific Limited Stent having variable properties
US5935163A (en) 1998-03-31 1999-08-10 Shelhigh, Inc. Natural tissue heart valve prosthesis
US20080262602A1 (en) 1998-09-10 2008-10-23 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
US6267783B1 (en) 1998-11-09 2001-07-31 Cordis Corporation Stent which is easily recaptured and repositioned within the body
US6214036B1 (en) 1998-11-09 2001-04-10 Cordis Corporation Stent which is easily recaptured and repositioned within the body
EP1000590A1 (en) 1998-11-09 2000-05-17 Cordis Corporation An improved stent which is easly recaptured and repositioned within the body
DE19857887A1 (en) 1998-12-15 2000-07-06 Fraunhofer Ges Forschung Anchoring support for a heart valve prosthesis comprises a single-piece component which is formed of rod shaped elements made of a memory metal, and has at least in part a lattice structure
EP1584306A1 (en) 1999-02-02 2005-10-12 Bard Peripheral Vascular, Inc. Partial encapsulation of stents using bands
US6090140A (en) 1999-02-17 2000-07-18 Shelhigh, Inc. Extra-anatomic heart valve apparatus
US6264691B1 (en) 1999-04-23 2001-07-24 Shlomo Gabbay Apparatus and method for supporting a heart valve
US7452371B2 (en) 1999-06-02 2008-11-18 Cook Incorporated Implantable vascular device
US20030130726A1 (en) 1999-09-10 2003-07-10 Thorpe Patricia E. Combination valve and stent for treating vascular reflux
US7267686B2 (en) 1999-10-21 2007-09-11 Boston Scientific Scimed, Inc Implantable prosthetic valve
WO2001028459A1 (en) 1999-10-21 2001-04-26 Scimed Life Systems, Inc. Implantable prosthetic valve
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US20040210304A1 (en) 1999-11-17 2004-10-21 Corevalve, S.A. Prosthetic valve for transluminal delivery
US6830584B1 (en) 1999-11-17 2004-12-14 Jacques Seguin Device for replacing a cardiac valve by percutaneous route
US20070043435A1 (en) 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US20100004740A1 (en) 1999-11-17 2010-01-07 Jacques Seguin Prosthetic Valve for Transluminal Delivery
US20030023303A1 (en) 1999-11-19 2003-01-30 Palmaz Julio C. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
WO2001049213A2 (en) 1999-12-31 2001-07-12 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US20080125853A1 (en) 1999-12-31 2008-05-29 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
WO2001054625A1 (en) 2000-01-31 2001-08-02 Cook Biotech Incorporated Stent valves and uses of same
US20040049262A1 (en) 2000-01-31 2004-03-11 Obermiller Joseph F. Stent valves and uses of same
US20080154356A1 (en) 2000-01-31 2008-06-26 Obermiller Joseph F Percutaneous heart valve devices
WO2001056500A2 (en) 2000-02-03 2001-08-09 Cook Incorporated Implantable vascular device
WO2001076510A2 (en) 2000-04-06 2001-10-18 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US7381218B2 (en) 2000-04-06 2008-06-03 Edwards Lifesciences Corporation System and method for implanting a two-part prosthetic heart valve
US6582464B2 (en) 2000-05-03 2003-06-24 Shlomo Gabbay Biomechanical heart valve prosthesis and method for making same
US6610088B1 (en) 2000-05-03 2003-08-26 Shlomo Gabbay Biologically covered heart valve prosthesis
US6368348B1 (en) 2000-05-15 2002-04-09 Shlomo Gabbay Annuloplasty prosthesis for supporting an annulus of a heart valve
US6419695B1 (en) 2000-05-22 2002-07-16 Shlomo Gabbay Cardiac prosthesis for helping improve operation of a heart valve
US6869444B2 (en) 2000-05-22 2005-03-22 Shlomo Gabbay Low invasive implantable cardiac prosthesis and method for helping improve operation of a heart valve
US20050096726A1 (en) 2000-05-30 2005-05-05 Jacques Sequin Noncylindrical stent deployment system for treating vascular bifurcations
US7803185B2 (en) 2000-09-12 2010-09-28 Shlomo Gabbay Method of implantation of a heart valve prosthesis through a tubular catheter
US7025780B2 (en) 2000-09-12 2006-04-11 Shlomo Gabbay Valvular prosthesis
US7510572B2 (en) 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US20020036220A1 (en) 2000-09-26 2002-03-28 Shlomo Gabbay Curved implantable sheath and method of making same
US6783556B1 (en) 2000-09-26 2004-08-31 Shlomo Gabbay System and method for making a calotte-shaped implantable sheath
US6685625B2 (en) 2000-09-26 2004-02-03 Shlomo Gabbay Curved implantable sheath and method of making same
WO2002036048A1 (en) 2000-10-31 2002-05-10 Jacques Seguin Tubular support for setting, by percutaneous route, a substitution cusp
US6517576B2 (en) 2000-12-11 2003-02-11 Shlomo Gabbay Implantable patch prosthesis having one or more cusps for improved competency
US20040093075A1 (en) 2000-12-15 2004-05-13 Titus Kuehne Stent with valve and method of use thereof
WO2002047575A2 (en) 2000-12-15 2002-06-20 Angiomed Gmbh & Co. Medizintechnik Kg Stent with valve
US6468660B2 (en) 2000-12-29 2002-10-22 St. Jude Medical, Inc. Biocompatible adhesives
US6623518B2 (en) 2001-02-26 2003-09-23 Ev3 Peripheral, Inc. Implant delivery system with interlock
WO2002067782A2 (en) 2001-02-26 2002-09-06 Ev3 Peripheral, Inc. Implant delivery system with interlock
DE10121210A1 (en) 2001-04-30 2002-11-14 Universitaetsklinikum Freiburg Replacement heart valve, comprises an anchoring element, and has a starting volume which is opened up to the normal volume using a catheter
US6790230B2 (en) 2001-04-30 2004-09-14 Universitatsklinikum Freiburg Vascular implant
US7682390B2 (en) 2001-07-31 2010-03-23 Medtronic, Inc. Assembly for setting a valve prosthesis in a corporeal duct
US20030050694A1 (en) 2001-09-13 2003-03-13 Jibin Yang Methods and apparatuses for deploying minimally-invasive heart valves
US20080021552A1 (en) 2001-10-09 2008-01-24 Shlomo Gabbay Apparatus To Facilitate Implantation
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
WO2003047468A1 (en) 2001-10-11 2003-06-12 Percutaneous Valve Technologies Implantable prosthetic valve
US6730118B2 (en) 2001-10-11 2004-05-04 Percutaneous Valve Technologies, Inc. Implantable prosthetic valve
US7731742B2 (en) 2002-05-11 2010-06-08 Boston Scientific Scimed, Inc. Stent
EP1360942A1 (en) 2002-05-11 2003-11-12 Willy Rüsch GmbH Stent
US7137184B2 (en) 2002-09-20 2006-11-21 Edwards Lifesciences Corporation Continuous heart valve support frame and method of manufacture
US6814746B2 (en) 2002-11-01 2004-11-09 Ev3 Peripheral, Inc. Implant delivery system with marker interlock
FR2847800A1 (en) 2002-11-28 2004-06-04 Perouse Laboratoires Prosthetic valve, has carrier framework with branches for centripetal compression of framework towards its folded position in contrast to elastic action, valve expanded and contracted in respective obstruction and release positions
FR2850008A1 (en) 2003-01-17 2004-07-23 Daniel Roux Vascular prosthesis has tube and collar for adapting to blood vessel ends of different diameters
US20060241744A1 (en) 2003-03-20 2006-10-26 Aortech International Plc Valve
US20100131055A1 (en) 2003-04-24 2010-05-27 Cook Incorporated Artificial valve prosthesis with improved flow dynamics
US20070100435A1 (en) 2003-04-24 2007-05-03 Cook Incorporated Artificial prostheses with preferred geometries
US20060149360A1 (en) 2003-07-08 2006-07-06 Ventor Technologies Ltd. Fluid flow prosthetic device
US7160322B2 (en) 2003-08-13 2007-01-09 Shlomo Gabbay Implantable cardiac prosthesis for mitigating prolapse of a heart valve
US20060259137A1 (en) 2003-10-06 2006-11-16 Jason Artof Minimally invasive valve replacement system
US20070010876A1 (en) 2003-12-23 2007-01-11 Amr Salahieh Externally Expandable Heart Valve Anchor and Method
US20070244552A1 (en) 2003-12-23 2007-10-18 Amr Salahieh Assessing the location and performance of replacement heart valves
US20050137695A1 (en) 2003-12-23 2005-06-23 Sadra Medical Replacement valve and anchor
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US20050137697A1 (en) 2003-12-23 2005-06-23 Amr Salahieh Leaflet engagement elements and methods for use thereof
WO2005070343A1 (en) 2003-12-23 2005-08-04 Laboratoires Perouse Kit which is intended to be implanted in a conduit
US7311730B2 (en) 2004-02-13 2007-12-25 Shlomo Gabbay Support apparatus and heart valve prosthesis for sutureless implantation
US7247167B2 (en) 2004-02-19 2007-07-24 Shlomo Gabbay Low profile heart valve prosthesis
US20080255662A1 (en) 2004-03-03 2008-10-16 Sorin Biomedica Cardio S.R.L. Minimally-invasive cardiac-valve prosthesis
US20080243245A1 (en) 2004-03-11 2008-10-02 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous Heart Valve Prosthesis
US20050240200A1 (en) 2004-04-23 2005-10-27 Bjarne Bergheim Method and system for cardiac valve delivery
US7374573B2 (en) 2004-05-03 2008-05-20 Shlomo Gabbay System and method for improving ventricular function
US20050256566A1 (en) 2004-05-03 2005-11-17 Shlomo Gabbay Apparatus and method for improving ventricular function
US20060122692A1 (en) 2004-05-10 2006-06-08 Ran Gilad Stent valve and method of using same
US20060008497A1 (en) 2004-07-09 2006-01-12 Shlomo Gabbay Implantable apparatus having improved biocompatibility and process of making the same
US20080039934A1 (en) 2004-09-07 2008-02-14 Laboratoires Perouse Interchangeable Prosthetic Valve
US20060074484A1 (en) 2004-10-02 2006-04-06 Huber Christoph H Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
US20060206202A1 (en) 2004-11-19 2006-09-14 Philippe Bonhoeffer Apparatus for treatment of cardiac valves and method of its manufacture
US20060173532A1 (en) 2004-12-20 2006-08-03 Jacob Flagle Intraluminal support frame and medical devices including the support frame
WO2006073626A2 (en) 2005-01-05 2006-07-13 The Cleveland Clinic Foundation Method for fixing tissue
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US20060178740A1 (en) 2005-02-10 2006-08-10 Sorin Biomedica Cardio S.R.L. Cardiac-valve prosthesis
US20060195180A1 (en) 2005-02-25 2006-08-31 Arash Kheradvar Implantable small percutaneous valve and methods of delivery
US20060241745A1 (en) 2005-04-21 2006-10-26 Solem Jan O Blood flow controlling apparatus
US20060259120A1 (en) 2005-05-12 2006-11-16 Ev3, Inc. Implant delivery system with interlocked RX port orientation
US20060265056A1 (en) 2005-05-13 2006-11-23 Corevalve, Inc. Heart valve prosthesis and methods of manufacture and use
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US20060276813A1 (en) 2005-05-20 2006-12-07 The Cleveland Clinic Foundation Apparatus and methods for repairing the function of a diseased valve and method for making same
US20090112309A1 (en) 2005-07-21 2009-04-30 The Florida International University Board Of Trustees Collapsible Heart Valve with Polymer Leaflets
US20080269879A1 (en) 2005-07-27 2008-10-30 Rahul Dilip Sathe Implantable Prosthetic Vascular Valve
US20070027534A1 (en) 2005-07-27 2007-02-01 Bjarne Bergheim Methods and systems for cardiac valve delivery
US20070055358A1 (en) 2005-08-22 2007-03-08 Krolik Jeffrey A Axially compressible flared stents and apparatus and methods for delivering them
US20070067029A1 (en) 2005-09-16 2007-03-22 Shlomo Gabbay Support apparatus to facilitate implantation of cardiac prosthesis
EP1926455A2 (en) 2005-09-20 2008-06-04 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US20070093890A1 (en) 2005-10-26 2007-04-26 Eliasen Kenneth A Heart valve implant
US20070118210A1 (en) 2005-11-18 2007-05-24 Leonard Pinchuk Trileaflet Heart Valve
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
WO2007071436A2 (en) 2005-12-22 2007-06-28 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US20070233228A1 (en) 2006-03-28 2007-10-04 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US7524331B2 (en) 2006-04-06 2009-04-28 Medtronic Vascular, Inc. Catheter delivered valve having a barrier to provide an enhanced seal
US20070244545A1 (en) 2006-04-14 2007-10-18 Medtronic Vascular, Inc. Prosthetic Conduit With Radiopaque Symmetry Indicators
US20070288087A1 (en) 2006-05-30 2007-12-13 Cook Incorporated Artificial valve prosthesis
US20080097595A1 (en) 2006-08-22 2008-04-24 Shlomo Gabbay Intraventricular cardiac prosthesis
US20080071369A1 (en) 2006-09-19 2008-03-20 Yosi Tuval Valve fixation member having engagement arms
US20080082164A1 (en) 2006-10-02 2008-04-03 Friedman Robert S Sutureless heart valve attachment
WO2008070797A2 (en) 2006-12-06 2008-06-12 Medtronic Corevalve, Inc. System and method for transapical delivery of an annulus anchored self-expanding valve
US20080140189A1 (en) 2006-12-06 2008-06-12 Corevalve, Inc. System and method for transapical delivery of an annulus anchored self-expanding valve
US20080147183A1 (en) 2006-12-14 2008-06-19 Mikolaj Styrc Endovalve
US20080154355A1 (en) 2006-12-22 2008-06-26 Netanel Benichou Implantable prosthetic valve assembly and method of making the same
US20100087907A1 (en) 2007-02-16 2010-04-08 Emory University Apparatus And Methods For Treating The Aorta
US20100168839A1 (en) 2007-06-04 2010-07-01 Braido Peter N Prosthetic heart valves
US20100168778A1 (en) 2007-06-08 2010-07-01 Braido Peter N Devices for transcatheter prosthetic heart valve implantation and access closure
US20100191326A1 (en) 2007-06-26 2010-07-29 Alkhatib Yousef F Apparatus and method for implanting collapsible/expandable prosthetic heart valves
US20100204781A1 (en) 2007-08-24 2010-08-12 Alkhatib Yousef F Prosthetic aortic heart valves
US20100185277A1 (en) 2007-09-26 2010-07-22 St. Jude Medical, Inc. Collapsible prosthetic heart valves
US20100204785A1 (en) 2007-09-28 2010-08-12 Alkhatib Yousef F Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
US20100249923A1 (en) 2007-09-28 2010-09-30 St Jude Medical Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US20090138079A1 (en) 2007-10-10 2009-05-28 Vector Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US20100249911A1 (en) 2007-11-05 2010-09-30 St Jude Medical Inc. Collapsible/expandable prosthetic heart valves with non-expanding stent posts and retrieval features
US20080114452A1 (en) 2007-11-14 2008-05-15 Shlomo Gabbay Prosthesis exhibiting post-implantation size change
US20100286768A1 (en) 2008-01-16 2010-11-11 Alkhatib Yousef F Delivery and retrieval systems for collapsible/expandable prosthetic heart valves
US20090192591A1 (en) * 2008-01-24 2009-07-30 Medtronic, Inc. Markers for Prosthetic Heart Valves
US20100049306A1 (en) 2008-02-25 2010-02-25 Medtronic Vascular, Inc. Infundibular Reducer Devices
US20100036484A1 (en) 2008-06-06 2010-02-11 Edwards Lifesciences Corporation Low profile transcatheter heart valve
WO2010008548A2 (en) 2008-07-15 2010-01-21 St. Jude Medical, Inc. Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
WO2010008549A1 (en) 2008-07-15 2010-01-21 St. Jude Medical, Inc. Axially anchoring collapsible and re-expandable prosthetic heart valves for various disease states
DE202008009610U1 (en) 2008-07-17 2008-12-11 Nvt Ag Prosthetic heart valve system
WO2010096176A1 (en) 2009-02-20 2010-08-26 St. Jude Medical, Inc. Devices and methods for collapsing prosthetic heart valves
US20100217382A1 (en) 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
WO2010098857A1 (en) 2009-02-27 2010-09-02 St. Jude Medical, Inc. Stent features for collapsible prosthetic heart valves
US20100298931A1 (en) 2009-04-15 2010-11-25 Arshad Quadri Vascular implant and delivery system
US20110029072A1 (en) 2009-08-03 2011-02-03 Shlomo Gabbay Heart valve prosthesis and method of implantation thereof
US20120303116A1 (en) 2009-11-05 2012-11-29 The Trustees Of The University Of Pennsylvania Valve prosthesis
US20110313515A1 (en) * 2010-06-21 2011-12-22 Arshad Quadri Replacement heart valve
USD660967S1 (en) 2010-09-20 2012-05-29 St. Jude Medical, Inc. Surgical stent
USD660432S1 (en) 2010-09-20 2012-05-22 St. Jude Medical, Inc. Commissure point
USD653342S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Stent connections
USD653343S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical cuff
USD652926S1 (en) 2010-09-20 2012-01-24 St. Jude Medical, Inc. Forked end
USD654170S1 (en) 2010-09-20 2012-02-14 St. Jude Medical, Inc. Stent connections
USD653341S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical stent
USD660433S1 (en) 2010-09-20 2012-05-22 St. Jude Medical, Inc. Surgical stent assembly
USD654169S1 (en) 2010-09-20 2012-02-14 St. Jude Medical Inc. Forked ends
USD652927S1 (en) 2010-09-20 2012-01-24 St. Jude Medical, Inc. Surgical stent
USD648854S1 (en) 2010-09-20 2011-11-15 St. Jude Medical, Inc. Commissure points
USD684692S1 (en) 2010-09-20 2013-06-18 St. Jude Medical, Inc. Forked ends
WO2012177942A2 (en) 2011-06-21 2012-12-27 Hanson Gifford, Iii Prosthetic heart valve devices and associated systems and methods
US20140330371A1 (en) 2013-05-03 2014-11-06 Medtronic, Inc. Prosthetic valves and associated appartuses, systems and methods
WO2014181336A1 (en) 2013-05-09 2014-11-13 Mitrassist Medical Ltd. Heart valve assistive prosthesis
WO2015148241A1 (en) 2014-03-26 2015-10-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve stent frames

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Closed heart surgery: Back to the future", Samuel V. Lichtenstein, The Journal of Thoracic and Cardiovascular Surgery, vol. 131, No. 5, pp. 941-943.
"Direct-Access Valve Replacement", Christoph H. Huber, et al., Journal of the American College of Cardiology, vol. 46, No. 2, (Jul. 19, 2005).
"Minimally invasive cardiac surgery", M. J. Mack, Surgical Endoscopy, 2006, 20:S488-S492, DOI: 10.1007/s00464-006-0110-8 (presented Apr. 24, 2006).
"Percutaneous Aortic Valve Implantation Retrograde From the Femoral Artery", John G. Webb et al., Circulation, 2006; 113:842-850 (Feb. 6, 2006).
"Transapical aortic valve implantation: an animal feasibility study"; Todd M. Dewey et al., The annals of thoracic surgery 2006; 82: 110-6 (Feb. 13, 2006).
"Transapical approach for sutureless stent-fixed aortic valve implantation: experimental results"; Th. Walther et al., European Journal of Cardio-thoracic Surgery 29 (2006) 703-708 (Jan. 30, 2006).
"Transapical Transcatheter Aortic Valve Implantation in Humans", Samuel V. Lichtenstein et al., Circulation. 2006; 114: 591-596 (Jul. 31, 2006).
Catheter-implanted prosthetic heart valves, Knudsen, L.L., et al., The International Journal of Artificial Organs, vol. 16, No. 5 1993, pp. 253-262.
International Search Report for PCT/US2016/023518 dated Sep. 19, 2016.
Is It Reasonable to Treat All Calcified Stenotic Aortic Valves With a Valved Stent?, 579-584, Zegdi, Rachid, MD, PhD et al., J. of the American College of Cardiology, vol. 51, No. 5, Feb. 5, 2008.
Percutaneous aortic valve replacement: resection before implantation, 836-840, Quaden, Rene et al., European J. of Cardio-thoracic Surgery, 27 (2005).
Ruiz, Carlos, Overview of PRE-CE Mark Transcatheter Aortic Valve Technologies, Euro PCR.
Textbook "Transcatheter Valve Repair", 2006, pp. 165-186.
Transluminal Aortic Valve Placement, Moazami, Nader, et al., ASAIO Journal, 1996; 42:M381-M385.
Transluminal Catheter Implanted Prosthetic Heart Valves, Andersen, Henning Rud, International Journal of Angiology 7:102-106 (1998).
Transluminal implantation of artificial heart valves, Andersen, H. R., et al., European Heart Journal (1992) 13, 704-708.

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11324591B2 (en) * 2013-03-14 2022-05-10 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US11617646B2 (en) 2015-05-14 2023-04-04 Cephea Valve Technologies, Inc. Replacement mitral valves
US11833034B2 (en) 2016-01-13 2023-12-05 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
US11633278B2 (en) 2017-01-23 2023-04-25 Cephea Valve Technologies, Inc. Replacement mitral valves
US10828153B2 (en) * 2017-01-23 2020-11-10 Cephea Valve Technologies, Inc. Replacement mitral valves
US11058535B2 (en) 2017-01-23 2021-07-13 Cephea Valve Technologies, Inc. Replacement mitral valves
US11090158B2 (en) 2017-01-23 2021-08-17 Cephea Valve Technologies, Inc. Replacement mitral valves
US20180206985A1 (en) * 2017-01-23 2018-07-26 Spencer NOE Replacement mitral valves
US11666444B2 (en) 2017-08-03 2023-06-06 The Regents Of The University Of California Atrial cage for placement, securing and anchoring of atrioventricular valves
US11684474B2 (en) 2018-01-25 2023-06-27 Edwards Lifesciences Corporation Delivery system for aided replacement valve recapture and repositioning post-deployment
US11672657B2 (en) 2018-10-05 2023-06-13 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
US10912644B2 (en) 2018-10-05 2021-02-09 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
US11471282B2 (en) 2019-03-19 2022-10-18 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods

Also Published As

Publication number Publication date
WO2016154172A3 (en) 2016-11-03
EP3273910A2 (en) 2018-01-31
US20160278922A1 (en) 2016-09-29
WO2016154172A2 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
US10070954B2 (en) Mitral heart valve replacement
US20230090160A1 (en) Mitral Heart Valve Replacement
US11007054B2 (en) Subannular sealing for paravalvular leak protection
US10856974B2 (en) Heart valve repair and replacement
US11219521B2 (en) Self-actuating sealing portions for paravalvular leak protection
US11364117B2 (en) Braid connections for prosthetic heart valves
US10743992B2 (en) Prosthetic mitral valve
US9687341B2 (en) Self-actuating sealing portions for paravalvular leak protection
US10321993B2 (en) Self-expanding heart valves for coronary perfusion and sealing
US10117743B2 (en) Hybrid orientation paravalvular sealing stent
US9119713B2 (en) Transcatheter valve replacement

Legal Events

Date Code Title Description
AS Assignment

Owner name: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC., MINNE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRAIDO, PETER N.;FAHIM, MINA S.;BENSON, THOMAS M.;AND OTHERS;SIGNING DATES FROM 20180301 TO 20180328;REEL/FRAME:045371/0377

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4