TWI830061B - field effect transistor - Google Patents

field effect transistor Download PDF

Info

Publication number
TWI830061B
TWI830061B TW110134103A TW110134103A TWI830061B TW I830061 B TWI830061 B TW I830061B TW 110134103 A TW110134103 A TW 110134103A TW 110134103 A TW110134103 A TW 110134103A TW I830061 B TWI830061 B TW I830061B
Authority
TW
Taiwan
Prior art keywords
layer
field effect
effect transistor
thickness
doping
Prior art date
Application number
TW110134103A
Other languages
Chinese (zh)
Other versions
TW202312245A (en
Inventor
華特 吳
Original Assignee
華特 吳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華特 吳 filed Critical 華特 吳
Priority to TW110134103A priority Critical patent/TWI830061B/en
Publication of TW202312245A publication Critical patent/TW202312245A/en
Application granted granted Critical
Publication of TWI830061B publication Critical patent/TWI830061B/en

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

一種場效電晶體,包含:第一半導體結構具有一通道層;第二半導體結構設在第一半導體結構上,且第二半導體結構由下而上依序堆疊一肖特基層、一第一蝕刻停止層、一寬凹層、一歐姆接觸層所構成,且在寬凹層開設一窄凹槽與在歐姆接觸層開設一寬凹槽,而寬凹槽位在窄凹槽之上方,使寬凹層之上表面形成一寬凹區域與肖特基層之上表面形成一窄凹區域;至少一δ摻雜層插入至第二半導體結構內之預定處;閘極金屬觸點形成在寬凹槽內與窄凹槽底面至窄凹區域內之預定處;源極金屬觸點設在歐姆接觸層上,且源極金屬觸點位在閘極金屬觸點之一側;以及汲極金屬觸點設在歐姆接觸層上,且汲極金屬觸點位在閘極金屬觸點之另一側。A field effect transistor includes: a first semiconductor structure has a channel layer; a second semiconductor structure is provided on the first semiconductor structure, and the second semiconductor structure stacks a Schott base layer and a first etching layer sequentially from bottom to top. It is composed of a stop layer, a wide concave layer and an ohmic contact layer, and a narrow groove is opened in the wide concave layer and a wide groove is opened in the ohmic contact layer, and the wide groove is located above the narrow groove, so that the wide groove is A wide concave area is formed on the upper surface of the concave layer and a narrow concave area is formed on the upper surface of the Schott base layer; at least one delta doped layer is inserted into a predetermined position in the second semiconductor structure; the gate metal contact is formed in the wide groove and the bottom surface of the narrow groove to a predetermined position within the narrow concave area; the source metal contact is located on the ohmic contact layer, and the source metal contact is located on one side of the gate metal contact; and the drain metal contact It is located on the ohmic contact layer, and the drain metal contact is located on the other side of the gate metal contact.

Description

場效電晶體field effect transistor

本發明係有關一種場效電晶體,尤指一種具有δ摻雜層之場效電晶體。The present invention relates to a field effect transistor, in particular to a field effect transistor with a delta doped layer.

按,場效電晶體由於施加的電壓,電子從源極注入至汲極,而電子從源極的歐姆金屬向下傳輸至通道層,沿通道傳輸至汲極,並在汲極的歐姆金屬中向上移動,且閘極觸點調節通道中的電流,限製或打開電子從源極至汲極的流動。According to the field effect transistor, due to the applied voltage, electrons are injected from the source to the drain, and the electrons are transported from the ohmic metal of the source down to the channel layer, transported along the channel to the drain, and in the ohmic metal of the drain Moves upward, and the gate contact regulates the current in the channel, restricting or opening the flow of electrons from source to drain.

次按,電子從源極至汲極的傳輸時間在閘區域與非閘區域之通道電阻的影響,而設備的速度與傳輸時間成正比,且高電子遷移率電晶體的跨導會因閘極-源極的電阻而降低,並跨導會影響器件的增益。寄生電阻會增加器件中的I-R損耗(電壓降)。當高電子遷移率電晶體做為功率放大器時,閘極-汲極電場的降低允許器件在雪崩擊穿開始之前在更高的電壓運行,更高的電壓運行而輸出功率更高。Secondly, the transmission time of electrons from source to drain is affected by the channel resistance in the gate area and non-gate area, and the speed of the device is proportional to the transmission time, and the transconductance of the high electron mobility transistor will be affected by the gate -The resistance of the source decreases, and transconductance affects the gain of the device. Parasitic resistance increases I-R losses (voltage drops) in the device. When a high electron mobility transistor is used as a power amplifier, the reduction in the gate-drain electric field allows the device to operate at a higher voltage before avalanche breakdown begins. Higher voltage operation results in higher output power.

緣是,本發明之主要目的,係在提供一種場效電晶體,其通過降低寄生電阻和修改電場分佈來提高大信號射頻性能,而提高射頻電晶體與功率放大器的效率、輸出能源、崩潰電壓、增益及帶寬。The main purpose of the present invention is to provide a field effect transistor that improves large-signal radio frequency performance by reducing parasitic resistance and modifying electric field distribution, thereby improving the efficiency, output energy, and breakdown voltage of radio frequency transistors and power amplifiers. , gain and bandwidth.

本發明之又一目的,係在提供一種場效電晶體,其降低寄生電阻可在毫米波5G和6G等高頻應用中實現更好的性能。Another object of the present invention is to provide a field effect transistor that reduces parasitic resistance and can achieve better performance in high-frequency applications such as millimeter wave 5G and 6G.

為達上述目的,本發明採用之技術手段包含:一第一半導體結構,該第一半導體結構具有一通道層;一第二半導體結構,該第二半導體結構設在該第一半導體結構上,且該第二半導體結構由下而上依序堆疊一肖特基層、一第一蝕刻停止層、一寬凹層、一歐姆接觸層所構成,且在該寬凹層開設一窄凹槽與在該歐姆接觸層開設一寬凹槽,而該寬凹槽位在該窄凹槽之上方,使該寬凹層之上表面形成一寬凹區域與該肖特基層之上表面形成一窄凹區域;至少一δ摻雜層,該δ摻雜層插入至該第二半導體結構內之預定處;一閘極金屬觸點,該閘極金屬觸點形成在該寬凹槽內與該窄凹槽底面至該窄凹區域內之預定處;一源極金屬觸點,該源極金屬觸點設在該歐姆接觸層上,且該源極金屬觸點位在該閘極金屬觸點之一側;以及一汲極金屬觸點,該汲極金屬觸點設在該歐姆接觸層上,且該汲極金屬觸點位在該閘極金屬觸點之另一側。To achieve the above object, the technical means adopted in the present invention include: a first semiconductor structure having a channel layer; a second semiconductor structure disposed on the first semiconductor structure, and The second semiconductor structure is composed of a Schottky layer, a first etching stop layer, a wide concave layer, and an ohmic contact layer sequentially stacked from bottom to top, and a narrow groove is opened in the wide concave layer and the The ohmic contact layer is provided with a wide groove, and the wide groove is located above the narrow groove, so that the upper surface of the wide concave layer forms a wide concave area and the upper surface of the Schott base layer forms a narrow concave area; At least one delta doped layer, the delta doped layer is inserted into a predetermined position in the second semiconductor structure; a gate metal contact, the gate metal contact is formed in the wide groove and the bottom surface of the narrow groove to a predetermined position within the narrow concave area; a source metal contact, the source metal contact is provided on the ohmic contact layer, and the source metal contact is located on one side of the gate metal contact; and a drain metal contact, the drain metal contact is disposed on the ohmic contact layer, and the drain metal contact is located on the other side of the gate metal contact.

依據前揭特徵,該寬凹層為n型摻雜在均勻恆定值或在該寬凹槽頂面具有峰值摻雜的漸變摻雜。According to the aforementioned characteristics, the wide concave layer is n-type doped at a uniform constant value or has a gradient doping with a peak doping on the top surface of the wide groove.

依據前揭特徵,該漸變摻雜為線性、階梯漸變、二次漸變、指數或其組合。According to the aforementioned characteristics, the gradient doping is linear, step gradient, quadratic gradient, exponential or a combination thereof.

依據前揭特徵,該場效電晶體為高電子遷移率電晶體、擬態高電子遷移率電晶體、異質結構場效應電晶體或調製摻雜FET。According to the aforementioned characteristics, the field effect transistor is a high electron mobility transistor, a pseudo high electron mobility transistor, a heterostructure field effect transistor or a modulated doped FET.

依據前揭特徵,該場效電晶體為耗盡型常開電晶體或增強型常關電晶體。According to the characteristics disclosed above, the field effect transistor is a depletion mode normally on transistor or an enhancement mode normally off transistor.

依據前揭特徵,該δ摻雜層以外延材料生長藉由分子束外延、金屬有機化學氣相沉積或其組合。According to the aforementioned characteristics, the delta doped layer is grown from epitaxial material by molecular beam epitaxy, metal organic chemical vapor deposition or a combination thereof.

依據前揭特徵,該δ摻雜層之厚度以該分子束外延生長為1至2個單層厚、0.5至1.2nm。According to the aforementioned characteristics, the thickness of the delta doped layer grown by molecular beam epitaxy is 1 to 2 monolayers thick and 0.5 to 1.2 nm.

依據前揭特徵,該δ摻雜層之厚度以該金屬有機化學氣相沉積生長為1至幾個單層厚。According to the aforementioned characteristics, the thickness of the delta doped layer grown by the metal organic chemical vapor deposition is 1 to several monolayers thick.

依據前揭特徵,該外延材料為GaAs材料。According to the aforementioned characteristics, the epitaxial material is GaAs material.

依據前揭特徵,該δ摻雜層插入至在該寬凹層之該寬凹區域。According to the aforementioned characteristics, the delta doped layer is inserted into the wide concave region in the wide concave layer.

依據前揭特徵,該寬凹層包括一第一層與一第二層,該第一層位在該δ摻雜層之上表面與該寬凹層之上表面之間,且該第二層位在該δ摻雜層之下表面與該寬凹層之下表面之間,且該第一層之厚度大於或等於該第二層之厚度。According to the aforementioned characteristics, the wide concave layer includes a first layer and a second layer, the first layer is located between the upper surface of the delta doped layer and the upper surface of the wide concave layer, and the second layer is located between the lower surface of the delta doped layer and the lower surface of the wide concave layer, and the thickness of the first layer is greater than or equal to the thickness of the second layer.

依據前揭特徵,該第一層與該第二層之材料為n型AlGaAs。According to the aforementioned characteristics, the material of the first layer and the second layer is n-type AlGaAs.

依據前揭特徵,該第一層之厚度為10~20nm;該第二層之厚度為1~10nm、摻雜物種為Si及該Si摻雜濃度為1~5e17cm-3。According to the aforementioned characteristics, the thickness of the first layer is 10~20nm; the thickness of the second layer is 1~10nm, the doping species is Si, and the Si doping concentration is 1~5e17cm-3.

依據前揭特徵,該第一層之厚度為9nm;該第二層之厚度為1nm、摻雜物種為Si及該Si摻雜濃度為3e17cm-3。According to the aforementioned characteristics, the thickness of the first layer is 9 nm; the thickness of the second layer is 1 nm, the doping species is Si, and the Si doping concentration is 3e17cm-3.

依據前揭特徵,該閘極金屬觸點在該窄凹區域內的該肖特基層之上表面依序形成Ti-Pt-Au、Ti-Pt-Au-Ti、Ti-Mo-Au、Ti-Mo-Au-Ti、Ti-Pd-Au或Ti-Pd-Au-Ti。According to the front-revealing characteristics, the gate metal contact sequentially forms Ti-Pt-Au, Ti-Pt-Au-Ti, Ti-Mo-Au, and Ti- on the surface of the Schott base layer in the narrow concave area. Mo-Au-Ti, Ti-Pd-Au or Ti-Pd-Au-Ti.

依據前揭特徵,該閘極金屬觸點在該窄凹區域內的該肖特基層之上表面依序形成Pt-Ti-Pt-Au、Pt-Ti-Pt-Au-Ti、 Pt-Ti-Mo-Au、Pt-Ti-Mo-Au-Ti、Pt-Ti-Pd-Au或Pt-Ti-Pd-Au-Ti,並執行熱處理以混合該第一Pt層與該第二半導體結構之材料,而從該閘極金屬觸點於該第二半導體結構結合至該窄凹區域內的該肖特基層之上表面的下方。According to the front-revealing characteristics, the gate metal contact sequentially forms Pt-Ti-Pt-Au, Pt-Ti-Pt-Au-Ti, Pt-Ti- on the surface of the Schott base layer in the narrow concave area. Mo-Au, Pt-Ti-Mo-Au-Ti, Pt-Ti-Pd-Au or Pt-Ti-Pd-Au-Ti, and perform heat treatment to mix the materials of the first Pt layer and the second semiconductor structure , and from the gate metal contact to the second semiconductor structure to below the upper surface of the Schottky layer in the narrow recessed region.

依據前揭特徵,該δ摻雜層插入該窄凹區域與該肖特基層之下表面之間,且該閘極金屬觸點在該窄凹區域內的該肖特基層之上表面依序形成Pt-Ti-Pt-Au、Pt-Ti-Pt-Au-Ti、Pt-Ti-Mo-Au、Pt-Ti-Mo-Au-Ti、Pt-Ti-Pd-Au或Pt-Ti-Pd-Au-Ti,並執行熱處理以混合該第一Pt層與該第二半導體結構之材料,而從該閘極金屬觸點於該第二半導體結構結合至該窄凹區域內的該肖特基層之上表面的下方、於該δ摻雜層下方及於在該窄凹區域內。According to the aforementioned characteristics, the delta doped layer is inserted between the narrow concave region and the lower surface of the Schott base layer, and the gate metal contacts are sequentially formed on the upper surface of the Schott base layer in the narrow concave region. Pt-Ti-Pt-Au, Pt-Ti-Pt-Au-Ti, Pt-Ti-Mo-Au, Pt-Ti-Mo-Au-Ti, Pt-Ti-Pd-Au or Pt-Ti-Pd- Au-Ti, and perform heat treatment to mix the materials of the first Pt layer and the second semiconductor structure, and bond from the gate metal contact in the second semiconductor structure to the Schottky layer in the narrow recessed area Below the upper surface, below the delta doped layer and within the narrow concave region.

依據前揭特徵,該第二半導體結構包括一第二蝕刻停止層,該第二蝕刻停止層設在該寬凹層與該歐姆接觸層之間。According to the aforementioned features, the second semiconductor structure includes a second etch stop layer disposed between the wide concave layer and the ohmic contact layer.

依據前揭特徵,該肖特基層之材料為n型AlGaAs;該第一蝕刻停止層之材料為n型InGaP或n型AlAs;該寬凹層之材料為n型AlGaAs;該δ摻雜層之材料為n型GaAs或n型AlGaAs;該第二蝕刻停止層之材料為n型InGaP或n型AlAs;該歐姆接觸層之材料為n型GaAs或n型InGaAs,或其組合。According to the aforementioned characteristics, the material of the Schottky layer is n-type AlGaAs; the material of the first etching stop layer is n-type InGaP or n-type AlAs; the material of the wide concave layer is n-type AlGaAs; the material of the delta doped layer The material is n-type GaAs or n-type AlGaAs; the material of the second etching stop layer is n-type InGaP or n-type AlAs; the material of the ohmic contact layer is n-type GaAs or n-type InGaAs, or a combination thereof.

依據前揭特徵,該肖特基層之厚度為5~20nm、摻雜物種為Si及該Si摻雜濃度為1~3e17cm-3;該第一蝕刻停止層之厚度為5nm、摻雜物種為Si及該Si摻雜濃度大於1e19cm-3;該δ摻雜層之厚度為1ML、摻雜物種為Si及該Si摻雜濃度為0.5~1.5e12cm-2;該第二蝕刻停止層之厚度為5nm、摻雜物種為Si及該Si摻雜濃度大於1e19cm-3;該歐姆接觸層之厚度為20~120nm、摻雜物種為Si及該Si摻雜濃度大於5e18cm-3。According to the aforementioned characteristics, the thickness of the Schottky layer is 5~20nm, the doping species is Si, and the Si doping concentration is 1~3e17cm-3; the thickness of the first etching stop layer is 5nm, and the doping species is Si. And the Si doping concentration is greater than 1e19cm-3; the thickness of the delta doping layer is 1ML, the doping species is Si and the Si doping concentration is 0.5~1.5e12cm-2; the thickness of the second etching stop layer is 5nm , the doping species is Si and the Si doping concentration is greater than 1e19cm-3; the thickness of the ohmic contact layer is 20~120nm, the doping species is Si and the Si doping concentration is greater than 5e18cm-3.

依據前揭特徵,該肖特基層之厚度為10nm、摻雜物種為Si及該Si摻雜濃度為3e17cm-3;該第一蝕刻停止層之厚度為5nm、摻雜物種為Si及該Si摻雜濃度大於1e19cm-3;該δ摻雜層之厚度為1ML、摻雜物種為Si及該Si摻雜濃度為1.0e12cm-2;該第二蝕刻停止層之厚度為5nm、摻雜物種為Si及該Si摻雜濃度大於1e19cm-3;該歐姆接觸層之厚度為50nm、摻雜物種為Si及該Si摻雜濃度大於5e18cm-3。According to the aforementioned characteristics, the thickness of the Schottky layer is 10 nm, the doping species is Si, and the Si doping concentration is 3e17cm-3; the thickness of the first etching stop layer is 5 nm, the doping species is Si, and the Si doping concentration is 3e17cm-3. The impurity concentration is greater than 1e19cm-3; the thickness of the delta doped layer is 1ML, the doping species is Si and the Si doping concentration is 1.0e12cm-2; the thickness of the second etching stop layer is 5nm, and the doping species is Si And the Si doping concentration is greater than 1e19cm-3; the thickness of the ohmic contact layer is 50nm, the doping species is Si, and the Si doping concentration is greater than 5e18cm-3.

依據前揭特徵,該第一半導體結構包括一基板、一緩衝層、一超晶緩衝緩層、一過渡層、一第一δ摻雜層、一第一間隔層、一第二間隔層、一第二δ摻雜層,且該第一半導體結構由下而上依序堆疊該基板、該緩衝層、該超晶緩衝緩層、該過渡層、該第一δ摻雜層、該第一間隔層、該通道層、該第二間隔層及該第二δ摻雜層所構成。According to the aforementioned characteristics, the first semiconductor structure includes a substrate, a buffer layer, a supercrystalline buffer layer, a transition layer, a first delta doped layer, a first spacer layer, a second spacer layer, a a second delta doped layer, and the first semiconductor structure stacks the substrate, the buffer layer, the supercrystalline buffer layer, the transition layer, the first delta doped layer, and the first spacer in order from bottom to top. layer, the channel layer, the second spacer layer and the second delta doped layer.

依據前揭特徵,該基板之材料為半絕緣GaAs;該緩衝層之材料為非故意摻雜GaAs;該超晶緩衝緩層之材料為AlGaAs/GaAs;該過渡層之材料為非故意摻雜GaAs;該第一δ摻雜層之材料為n型GaAs;該第一間隔層之材料為非故意摻雜AlGaAs;該通道層之材料為非故意摻雜InGaAs;該第二間隔層之材料為非故意摻雜AlGaAs;該第二δ摻雜層之材料為n型GaAs。According to the aforementioned characteristics, the material of the substrate is semi-insulating GaAs; the material of the buffer layer is unintentionally doped GaAs; the material of the supercrystalline buffer layer is AlGaAs/GaAs; the material of the transition layer is unintentionally doped GaAs ; The material of the first delta doped layer is n-type GaAs; the material of the first spacer layer is unintentionally doped AlGaAs; the material of the channel layer is unintentionally doped InGaAs; the material of the second spacer layer is unintentionally doped AlGaAs AlGaAs is intentionally doped; the material of the second delta doped layer is n-type GaAs.

藉助上揭技術手段,本發明改良場效電晶體之功效,其該閘極金屬觸點結合至該第二半導體結構,並在該第二半導體結構插入該δ摻雜層,而降低了閘極-汲極與閘極-源極之間的電阻,且插入該δ摻雜層降低了閘極-汲極邊緣的電場,而提高了關態與導通態的崩潰電壓,並提高射頻電晶體與功率放大器的效率、輸出能源、崩潰電壓、增益及帶寬。By means of the above-mentioned technique, the present invention improves the performance of the field-effect transistor by combining the gate metal contact with the second semiconductor structure and inserting the delta doped layer in the second semiconductor structure, thereby reducing the gate -The resistance between the drain and the gate-source, and inserting the δ-doped layer reduces the electric field at the gate-drain edge, increases the breakdown voltage of the off-state and the on-state, and improves the RF transistor and Power amplifier efficiency, output energy, breakdown voltage, gain and bandwidth.

首先,請參閱圖1~圖11所示,本發明一種場效電晶體70A、70B、70C,該場效電晶體70A、70B、70C為高電子遷移率電晶體、擬態高電子遷移率電晶體或異質結構場效應電晶體(HFET)或調製摻雜FET(MODFET),及該場效電晶體70A、70B、70C為耗盡型常開電晶體或增強型常關電晶體,包含:一第一半導體結構10,該第一半導體結構10具有一通道層11,在本實施例中,該第一半導體結構10包括一基板12、一緩衝層13、一超晶緩衝緩層14、一過渡層15、一第一δ摻雜層16、一第一間隔層17、一第二間隔層18、一第二δ摻雜層19,且該第一半導體結構10由下而上依序堆疊該基板12、該緩衝層13、該超晶緩衝緩層14、該過渡層15、該第一δ摻雜層16、該第一間隔層17、該通道層11、該第二間隔層18及該第二δ摻雜層19所構成,但不限定於此。First, please refer to Figures 1 to 11, which show a field effect transistor 70A, 70B, and 70C of the present invention. The field effect transistors 70A, 70B, and 70C are high electron mobility transistors and pseudo high electron mobility transistors. Or a heterostructure field effect transistor (HFET) or a modulated doped FET (MODFET), and the field effect transistors 70A, 70B, and 70C are depletion mode normally on transistors or enhancement mode normally off transistors, including: a first A semiconductor structure 10. The first semiconductor structure 10 has a channel layer 11. In this embodiment, the first semiconductor structure 10 includes a substrate 12, a buffer layer 13, a supercrystalline buffer layer 14, and a transition layer. 15. A first delta doped layer 16, a first spacer layer 17, a second spacer layer 18, a second delta doped layer 19, and the first semiconductor structure 10 is stacked on the substrate in sequence from bottom to top. 12. The buffer layer 13, the supercrystalline buffer layer 14, the transition layer 15, the first delta doped layer 16, the first spacer layer 17, the channel layer 11, the second spacer layer 18 and the third It is composed of two delta doped layers 19, but is not limited to this.

承上,該基板12之材料為半絕緣GaAs;該緩衝層13之材料為非故意摻雜GaAs;該超晶緩衝緩層14之材料為AlGaAs/GaAs;該過渡層15之材料為非故意摻雜GaAs;該第一δ摻雜層16之材料為n型GaAs;該第一間隔層17之材料為非故意摻雜AlGaAs;該通道層11之材料為非故意摻雜InGaAs;該第二間隔層18之材料為非故意摻雜AlGaAs;該第二δ摻雜層19之材料為n型GaAs,但不限定於此。Following the above, the material of the substrate 12 is semi-insulating GaAs; the material of the buffer layer 13 is unintentionally doped GaAs; the material of the supercrystalline buffer layer 14 is AlGaAs/GaAs; the material of the transition layer 15 is unintentionally doped GaAs. doped GaAs; the material of the first delta doped layer 16 is n-type GaAs; the material of the first spacer layer 17 is unintentionally doped AlGaAs; the material of the channel layer 11 is unintentionally doped InGaAs; the second spacer The material of the layer 18 is unintentionally doped AlGaAs; the material of the second delta doped layer 19 is n-type GaAs, but is not limited thereto.

一第二半導體結構20,該第二半導體結構20設在該第一半導體結構10上,且該第二半導體結構20由下而上依序堆疊一肖特基層21、一第一蝕刻停止層22、一寬凹層23、一歐姆接觸層25所構成,且在該寬凹層23開設一窄凹槽26與在該歐姆接觸層25開設一寬凹槽27,而該寬凹槽27位在該窄凹槽26之上方,使該寬凹層27之上表面形成一寬凹區域W與該肖特基層21之上表面形成一窄凹區域N,在本實施例中,該第二半導體結構20包括一第二蝕刻停止層24,該第二蝕刻停止層24設在該寬凹層23與該歐姆接觸層25之間,但不限定於此。A second semiconductor structure 20 is provided on the first semiconductor structure 10, and the second semiconductor structure 20 is sequentially stacked with a Schottky layer 21 and a first etching stop layer 22 from bottom to top. , composed of a wide concave layer 23 and an ohmic contact layer 25, and a narrow groove 26 is opened in the wide concave layer 23 and a wide groove 27 is opened in the ohmic contact layer 25, and the wide groove 27 is located at Above the narrow groove 26, a wide concave area W is formed on the upper surface of the wide concave layer 27 and a narrow concave area N is formed on the upper surface of the Schottky layer 21. In this embodiment, the second semiconductor structure 20 includes a second etching stop layer 24 disposed between the wide concave layer 23 and the ohmic contact layer 25, but is not limited thereto.

承上,該肖特基層21之材料為n型AlGaAs;該第一蝕刻停止層22之材料為n型InGaP或n型AlAs;該寬凹層23之材料為n型AlGaAs;該δ摻雜層30之材料為n型GaAs或n型AlGaAs;該第二蝕刻停止層24之材料為n型InGaP或n型AlAs;該歐姆接觸層25之材料為n型GaAs或n型InGaAs,或其組合,但不限定於此。Following the above, the material of the Schottky layer 21 is n-type AlGaAs; the material of the first etching stop layer 22 is n-type InGaP or n-type AlAs; the material of the wide concave layer 23 is n-type AlGaAs; the δ-doped layer The material of 30 is n-type GaAs or n-type AlGaAs; the material of the second etching stop layer 24 is n-type InGaP or n-type AlAs; the material of the ohmic contact layer 25 is n-type GaAs or n-type InGaAs, or a combination thereof, But it is not limited to this.

承上,該肖特基層21之厚度為5~20nm、摻雜物種為Si及該Si摻雜濃度為1~3e17cm-3;該第一蝕刻停止層22之厚度為5nm、摻雜物種為Si及該Si摻雜濃度大於1e19cm-3;該δ摻雜層30之厚度為1ML、摻雜物種為Si及該Si摻雜濃度為0.5~1.5e12cm-2;該第二蝕刻停止層24之厚度為5nm、摻雜物種為Si及該Si摻雜濃度大於1e19cm-3;該歐姆接觸層25之厚度為20~120nm、摻雜物種為Si及該Si摻雜濃度大於5e18cm-3,但不限定於此。Following the above, the thickness of the Schottky layer 21 is 5~20nm, the doping species is Si, and the Si doping concentration is 1~3e17cm-3; the thickness of the first etching stop layer 22 is 5nm, and the doping species is Si. And the Si doping concentration is greater than 1e19cm-3; the thickness of the delta doping layer 30 is 1ML, the doping species is Si and the Si doping concentration is 0.5~1.5e12cm-2; the thickness of the second etching stop layer 24 is 5nm, the doping species is Si and the Si doping concentration is greater than 1e19cm-3; the thickness of the ohmic contact layer 25 is 20~120nm, the doping species is Si and the Si doping concentration is greater than 5e18cm-3, but is not limited Here it is.

承上,該肖特基層21之厚度為10nm、摻雜物種為Si及該Si摻雜濃度為3e17cm-3;該第一蝕刻停止層22之厚度為5nm、摻雜物種為Si及該Si摻雜濃度大於1e19cm-3;該δ摻雜層30之厚度為1ML、摻雜物種為Si及該Si摻雜濃度為1.0e12cm-2;該第二蝕刻停止層24之厚度為5nm、摻雜物種為Si及該Si摻雜濃度大於1e19cm-3;該歐姆接觸層25之厚度為50nm、摻雜物種為Si及該Si摻雜濃度大於5e18cm-3,但不限定於此。Following the above, the thickness of the Schottky layer 21 is 10 nm, the doping species is Si, and the Si doping concentration is 3e17cm-3; the thickness of the first etching stop layer 22 is 5 nm, the doping species is Si, and the Si doping concentration is 5 nm. The impurity concentration is greater than 1e19cm-3; the thickness of the delta doped layer 30 is 1ML, the doping species is Si, and the Si doping concentration is 1.0e12cm-2; the thickness of the second etching stop layer 24 is 5nm, and the doping species It is Si and the Si doping concentration is greater than 1e19cm-3; the thickness of the ohmic contact layer 25 is 50nm, the doping species is Si and the Si doping concentration is greater than 5e18cm-3, but is not limited thereto.

至少一δ摻雜層30,該δ摻雜層30插入至該第二半導體結構20內之預定處,在本實施例中,該δ摻雜層30以外延材料生長藉由分子束外延(MBE)、金屬有機化學氣相沉積(MOCVD)或其組合;該δ摻雜層30之厚度以該分子束外延生長為1至2個單層(ML)厚、0.5至1.2nm;該δ摻雜層30之厚度以該金屬有機化學氣相沉積生長為1至幾個單層厚;該外延材料為GaAs材料,但不限定於此。At least one δ-doped layer 30 is inserted into a predetermined position in the second semiconductor structure 20. In this embodiment, the δ-doped layer 30 is grown by epitaxial material through molecular beam epitaxy (MBE). ), metal organic chemical vapor deposition (MOCVD) or a combination thereof; the thickness of the delta doped layer 30 is 1 to 2 monolayers (ML) thick and 0.5 to 1.2 nm grown by molecular beam epitaxy; the delta doped layer The thickness of the layer 30 is 1 to several single layers grown by metal organic chemical vapor deposition; the epitaxial material is GaAs material, but is not limited thereto.

一閘極金屬觸點40,該閘極金屬觸點40形成在該寬凹槽27內與該窄凹槽26之底面至該窄凹區域N內之預定處;一源極金屬觸點50,該源極金屬觸點50設在該歐姆接觸層25上,且該源極金屬觸點50位在該閘極金屬觸點40之一側;一汲極金屬觸點60,該汲極金屬觸點60設在該歐姆接觸層25上,且該汲極金屬觸點60位在該閘極金屬觸點40之另一側。a gate metal contact 40, the gate metal contact 40 is formed in the wide groove 27 and the bottom surface of the narrow groove 26 to a predetermined place in the narrow concave area N; a source metal contact 50, The source metal contact 50 is disposed on the ohmic contact layer 25, and the source metal contact 50 is located on one side of the gate metal contact 40; a drain metal contact 60, the drain metal contact Point 60 is provided on the ohmic contact layer 25 , and the drain metal contact 60 is located on the other side of the gate metal contact 40 .

如圖1~4所示,其為第一實施例之場效電晶體70A,該δ摻雜層30插入至在該寬凹層23之該寬凹區域W,在該寬凹層23包括一第一層231與一第二層232,該第一層231位在該δ摻雜層30之上表面與該寬凹層23之上表面之間,且該第二層232位在該δ摻雜層30之下表面與該寬凹層23之下表面之間,而該第一層231之厚度B大於或等於該第二層232之厚度A,在本實施例中,該第一層231與該第二層232之材料為n型AlGaAs;該第一層231之厚度為10~20nm;該第二層232之厚度為1~10nm、摻雜物種為Si及該Si摻雜濃度為1~5e17cm-3;該第一層231之厚度為9nm;該第二層232之厚度為1nm、摻雜物種為Si及該Si摻雜濃度為3e17cm-3,但不限定於此。As shown in FIGS. 1 to 4 , which is a field effect transistor 70A of the first embodiment, the delta doped layer 30 is inserted into the wide concave region W of the wide concave layer 23 , and the wide concave layer 23 includes a A first layer 231 and a second layer 232. The first layer 231 is located between the upper surface of the δ-doped layer 30 and the upper surface of the wide concave layer 23, and the second layer 232 is located between the δ-doped layer 30 and the upper surface of the wide concave layer 23. between the lower surface of the hybrid layer 30 and the lower surface of the wide concave layer 23, and the thickness B of the first layer 231 is greater than or equal to the thickness A of the second layer 232. In this embodiment, the first layer 231 The material of the second layer 232 is n-type AlGaAs; the thickness of the first layer 231 is 10~20nm; the thickness of the second layer 232 is 1~10nm, the doping species is Si, and the Si doping concentration is 1 ~5e17cm-3; the thickness of the first layer 231 is 9nm; the thickness of the second layer 232 is 1nm, the doping species is Si and the Si doping concentration is 3e17cm-3, but is not limited thereto.

如圖2所示,其在施加的電壓下減少閘極-汲極區域GD的電場分佈,而電場將在閘極-汲極區域GD達到峰值,並由於較高的電場引起的碰撞電離,而開始限制了該場效電晶體70A的擊穿,並延長擊穿電壓而使該場效電晶體70A能夠在高功率密度下運行,且閘極-源極區域GS與閘極-汲極區域GD的電阻降低,這些寄生電阻的降低提高了電晶體與功率放大器的增益、輸出能源、帶寬與效率,並改善了低噪聲放大器的噪聲特性,使電子e有效從該源極金屬觸點50注入該通道層11至該汲極金屬觸點60來改善該歐姆接觸層25的電阻,且在該寬凹層23在界面處與沿側壁具有電子e與陷阱D,該陷阱D會影響器件性能,但使用該寬凹層23中的該δ摻雜層30,亦將該陷阱D與該肖特基層21下方的該通道層11進行隔離。As shown in Figure 2, it reduces the electric field distribution in the gate-drain region GD under the applied voltage, and the electric field will reach a peak in the gate-drain region GD, and due to impact ionization caused by the higher electric field, The breakdown of the field effect transistor 70A is initially limited, and the breakdown voltage is extended so that the field effect transistor 70A can operate at high power density, and the gate-source region GS and the gate-drain region GD The resistance is reduced. The reduction of these parasitic resistances increases the gain, output energy, bandwidth and efficiency of the transistor and power amplifier, and improves the noise characteristics of the low-noise amplifier, allowing electrons to be effectively injected from the source metal contact 50 into the The channel layer 11 to the drain metal contact 60 improves the resistance of the ohmic contact layer 25, and the wide concave layer 23 has electrons e and traps D at the interface and along the sidewall. The trap D will affect the device performance, but The trap D is also isolated from the channel layer 11 below the Schottky layer 21 by using the delta doped layer 30 in the wide concave layer 23 .

如圖4所示,該閘極金屬觸點40在該窄凹區域N內的該肖特基層21之上表面依序形成Pt-Ti-Pt-Au、Pt-Ti-Pt-Au-Ti、Pt-Ti-Mo-Au、Pt-Ti-Mo-Au-Ti、Pt-Ti-Pd-Au或Pt-Ti-Pd-Au-Ti,並執行熱處理以混合該第一Pt層41與該第二半導體結構20之材料,而從該閘極金屬觸點40於該第二半導體結構20結合至該窄凹區域N內的該肖特基層21之上表面的下方,在本實施例中,該第一Pt層41在熱處理的溫度為300~400°C與該肖特基層21之材料為n型AlGaAs進行混合,且進一步說明該閘極金屬觸點40形成Pt-Ti-Pt-Au-Ti,如同該閘極金屬觸點40依序由該第一Pt層41、該第一Ti層42、該第二Pt層43、該Au層44、該第二Ti層45所構成,並以該第一Pt層41底部Lg為圓角界面,但不限定於此。As shown in FIG. 4 , the gate metal contact 40 is sequentially formed with Pt-Ti-Pt-Au, Pt-Ti-Pt-Au-Ti, Pt-Ti-Mo-Au, Pt-Ti-Mo-Au-Ti, Pt-Ti-Pd-Au or Pt-Ti-Pd-Au-Ti, and perform heat treatment to mix the first Pt layer 41 and the The material of the second semiconductor structure 20 is bonded from the gate metal contact 40 to the bottom of the upper surface of the Schottky layer 21 in the narrow concave region N from the second semiconductor structure 20. In this embodiment, the The first Pt layer 41 is mixed with the n-type AlGaAs material of the Schott base layer 21 at a heat treatment temperature of 300°C to 400°C, and further illustrates that the gate metal contact 40 forms Pt-Ti-Pt-Au-Ti. , as if the gate metal contact 40 is composed of the first Pt layer 41, the first Ti layer 42, the second Pt layer 43, the Au layer 44, and the second Ti layer 45 in sequence, and is composed of the The bottom Lg of the first Pt layer 41 has a rounded interface, but is not limited thereto.

如圖5~6所示,其為第二實施例之場效電晶體70B,與第一實施例之場效電晶體70A的差異在於該閘極金屬觸點40在該窄凹區域N內的該肖特基層21之上表面依序形成Ti-Pt-Au、Ti-Pt-Au-Ti、Ti-Mo-Au、Ti-Mo-Au-Ti、Ti-Pd-Au或Ti-Pd-Au-Ti,並以該第一Pt層41底部Lg為平角界面,但不限定於此。As shown in FIGS. 5 to 6 , this is a field effect transistor 70B of the second embodiment. The difference from the field effect transistor 70A of the first embodiment lies in the position of the gate metal contact 40 in the narrow concave area N. The upper surface of the Schott base layer 21 is sequentially formed with Ti-Pt-Au, Ti-Pt-Au-Ti, Ti-Mo-Au, Ti-Mo-Au-Ti, Ti-Pd-Au or Ti-Pd-Au. -Ti, and the bottom Lg of the first Pt layer 41 is a flat-angle interface, but is not limited to this.

如圖7~10所示,其為第三實施例之場效電晶體70C,與第一及第二實施例之場效電晶體70A、70B的差異在於該δ摻雜層30插入該窄凹區域N與該肖特基層21之下表面之間,且該閘極金屬觸點40在該窄凹區域N內的該肖特基層21之上表面依序形成Pt-Ti-Pt-Au、Pt-Ti-Pt-Au-Ti、Pt-Ti-Mo-Au、Pt-Ti-Mo-Au-Ti、Pt-Ti-Pd-Au或Pt-Ti-Pd-Au-Ti,並執行熱處理以混合該第一Pt層41與該第二半導體結構20之材料,而從該閘極金屬觸點40於該第二半導體結構20結合至該窄凹區域N內的該肖特基層21之上表面的下方、於該δ摻雜層30下方及於在該窄凹區域N內,並以該第一Pt層41底部Lg為圓角界面,但不限定於此。As shown in Figures 7 to 10, it is a field effect transistor 70C of the third embodiment. The difference from the field effect transistors 70A and 70B of the first and second embodiments is that the delta doped layer 30 is inserted into the narrow recess. Between the area N and the lower surface of the Schottky layer 21, and the gate metal contact 40 is sequentially formed on the upper surface of the Schottky layer 21 in the narrow concave area N, Pt-Ti-Pt-Au, Pt -Ti-Pt-Au-Ti, Pt-Ti-Mo-Au, Pt-Ti-Mo-Au-Ti, Pt-Ti-Pd-Au or Pt-Ti-Pd-Au-Ti and perform heat treatment to mix The materials of the first Pt layer 41 and the second semiconductor structure 20 are combined from the gate metal contact 40 in the second semiconductor structure 20 to the upper surface of the Schottky layer 21 in the narrow concave region N. Below, below the delta doped layer 30 and in the narrow concave region N, and with the bottom Lg of the first Pt layer 41 as a rounded interface, but is not limited thereto.

如圖10~13所示,其為第四實施例之場效電晶體70D,與第三實施例之場效電晶體70C的差異在並不包含該寬凹層23與該第一蝕刻停止層22,該場效電晶體70D為一單層結構。As shown in FIGS. 10 to 13 , it is a field effect transistor 70D of the fourth embodiment. The difference from the field effect transistor 70C of the third embodiment is that it does not include the wide concave layer 23 and the first etching stop layer. 22. The field effect transistor 70D has a single-layer structure.

此外,該緩衝層13之厚度為200nm;該超晶緩衝緩層14之厚度為18.5/1.5nm;該過渡層15之厚度為10~80nm;該第一δ摻雜層16之厚度為1ML,摻雜物種為Si及該Si摻雜濃度為0.5~1.5e12cm-2;該第一間隔層17之厚度為3.5~4.0nm;該通道層(11)之厚度為8~15nm;該第二間隔層18之材料為3.5~4.5nm;該第二δ摻雜層19之厚度為1ML,摻雜物種為Si及該Si摻雜濃度為3.5~5e12cm-2,或該緩衝層13之厚度為200nm;該超晶緩衝緩層14之厚度為18.5/1.5nm;該過渡層15之厚度為40nm;該第一δ摻雜層16之厚度為1ML,摻雜物種為Si及該Si摻雜濃度為0.8e12cm-2;該第一間隔層17之厚度為4.5nm;該通道層11之厚度為13nm;該第二間隔層18之材料為4.5nm;該第二δ摻雜層19之厚度為1ML,摻雜物種為Si及該Si摻雜濃度為4.2e12cm-2。該超晶緩衝緩層(14)之週期為15。In addition, the thickness of the buffer layer 13 is 200nm; the thickness of the supercrystalline buffer layer 14 is 18.5/1.5nm; the thickness of the transition layer 15 is 10~80nm; the thickness of the first δ doped layer 16 is 1ML. The doping species is Si and the Si doping concentration is 0.5~1.5e12cm-2; the thickness of the first spacer layer 17 is 3.5~4.0nm; the thickness of the channel layer (11) is 8~15nm; the second spacer The material of layer 18 is 3.5~4.5nm; the thickness of the second delta doped layer 19 is 1ML, the doping species is Si and the Si doping concentration is 3.5~5e12cm-2, or the thickness of the buffer layer 13 is 200nm ; The thickness of the supercrystal buffer layer 14 is 18.5/1.5nm; the thickness of the transition layer 15 is 40nm; the thickness of the first δ doped layer 16 is 1ML, the doping species is Si and the Si doping concentration is 0.8e12cm-2; the thickness of the first spacer layer 17 is 4.5nm; the thickness of the channel layer 11 is 13nm; the material of the second spacer layer 18 is 4.5nm; the thickness of the second δ doped layer 19 is 1ML , the doping species is Si and the Si doping concentration is 4.2e12cm-2. The period of the supercrystalline buffer layer (14) is 15.

基於如此之構成,該寬凹層23為n型摻雜在均勻恆定值或在該寬凹槽頂面具有峰值摻雜的漸變摻雜。該漸變摻雜為線性、階梯漸變、二次漸變、指數或其組合,配合圖14所示,該寬凹層23的摻雜曲線分佈為一第一曲線C 1、一第二曲線C 2、一第三曲線C 3及一第四曲線C 4,進一步說明該第一曲線C 1為恆定且均勻的輪廓、該第二曲線C 2為線性漸變輪廓、該第三曲線C 3為指數或二次漸變曲線及一第四曲線C 4為階梯式,如此一來,該該寬凹層23中的該δ摻雜層30具有之功效,如在該源極金屬觸點50與該汲極金屬觸點60的該歐姆接觸層25下,使電子e有效從該源極金屬觸點50注入該通道層11至該汲極金屬觸點60,且在閘極-源極區域GS,而電場被該δ摻雜層30降低,允許電子e自由地在該通道層中流動,降低陷阱D的電子侷限,並於閘極-源極區域GS的電阻率也降低了,配合圖3、圖9所示。 Based on this structure, the wide concave layer 23 is gradually doped with n-type doping at a uniform constant value or with a peak doping at the top surface of the wide groove. The gradient doping is linear, step gradient, quadratic gradient, exponential or a combination thereof. As shown in Figure 14, the doping curve distribution of the wide concave layer 23 is a first curve C 1 , a second curve C 2 , A third curve C 3 and a fourth curve C 4 further illustrate that the first curve C 1 is a constant and uniform profile, the second curve C 2 is a linear gradient profile, and the third curve C 3 is an exponential or quadratic profile. The secondary gradient curve and a fourth curve C 4 are stepped. In this way, the delta doped layer 30 in the wide concave layer 23 has the function of connecting the source metal contact 50 and the drain metal Under the ohmic contact layer 25 of the contact 60, electrons e are effectively injected from the source metal contact 50 to the channel layer 11 to the drain metal contact 60, and in the gate-source region GS, the electric field is The δ-doped layer 30 is lowered, allowing electrons e to flow freely in the channel layer, reducing the electron confinement of the trap D, and the resistivity of the gate-source region GS is also reduced. As shown in Figures 3 and 9 Show.

綜上所述,本發明所揭示之技術手段,確具「新穎性」、「進步性」及「可供產業利用」等發明專利要件,祈請  鈞局惠賜專利,以勵創作,無任德感。To sum up, the technical means disclosed in the present invention indeed meet the requirements for invention patents such as "novelty", "progressivity" and "available for industrial utilization". We pray that the Jun Bureau will grant patents to encourage creation without any restrictions. Sense of morality.

惟,上述所揭露之圖式、說明,僅為本發明之較佳實施例,大凡熟悉此項技藝人士,依本案精神範疇所作之修飾或等效變化,仍應包括在本案申請專利範圍內。However, the above disclosed drawings and descriptions are only preferred embodiments of the present invention. Modifications or equivalent changes made by those familiar with the art in accordance with the spirit and scope of this case should still be included in the patent application scope of this case.

70A、70B、70C:場效電晶體 10:第一半導體結構 11:通道層 12:基板 13:緩衝層 14:超晶緩衝緩層 15:過渡層 16:第一δ摻雜層 17:第一間隔層 18:第二間隔層 19:第二δ摻雜層 20:第二半導體結構 21:肖特基層 22:第一蝕刻停止層 23:寬凹層 231:第一層 232:第二層 24:第二蝕刻停止層 25:歐姆接觸層 26:窄凹槽 27:寬凹槽 30:δ摻雜層 40:閘極金屬觸點 50:源極金屬觸點 60:汲極金屬觸點 A:第二層之厚度 B:第一層之厚度 C 1:第一曲線 C 2:第二曲線 C 3:第三曲線 C 4:第四曲線 D:缺陷 GS:閘極-源極區域 GD:閘極-汲極區域 Lg:底部 N:窄凹區域 W:寬凹區域 e:電子 70A, 70B, 70C: field effect transistor 10: first semiconductor structure 11: channel layer 12: substrate 13: buffer layer 14: super crystal buffer layer 15: transition layer 16: first δ doping layer 17: first Spacer layer 18: second spacer layer 19: second delta doped layer 20: second semiconductor structure 21: Schottky layer 22: first etching stop layer 23: wide concave layer 231: first layer 232: second layer 24 : Second etch stop layer 25: Ohmic contact layer 26: Narrow groove 27: Wide groove 30: Delta doping layer 40: Gate metal contact 50: Source metal contact 60: Drain metal contact A: Thickness of the second layer B: Thickness of the first layer C 1 : First curve C 2 : Second curve C 3 : Third curve C 4 : Fourth curve D: Defect GS: Gate-source area GD: Gate Pole-drain region Lg: bottom N: narrow concave region W: wide concave region e: electrons

圖1係本發明第一實施例之場效電晶體示意圖。 圖2係本發明第一實施例之閘極金屬觸點與第二半導體結構示意圖。 圖3係本發明第一實施例之電子經過通道層示意圖。 圖4係本發明第一實施例之閘極金屬觸點結合至肖特基層示意圖。 圖5係本發明第二實施例之場效電晶體示意圖。 圖6係本發明第二實施例之閘極金屬觸點結合至肖特基層示意圖。 圖7係本發明第三實施例之場效電晶體示意圖。 圖8係本發明第三實施例之閘極金屬觸點與第二半導體結構示意圖。 圖9係本發明第三實施例之電子經過通道層示意圖。 圖10係本發明第三實施例之閘極金屬觸點結合至肖特基層示意圖。 圖11係本發明第四實施例之場效電晶體示意圖。 圖12係本發明第四實施例之閘極金屬觸點與第二半導體結構示意圖。 圖13係本發明第四實施例之電子經過通道層示意圖。 圖14係本發明寬凹層為n型摻雜之曲線示意圖。 FIG. 1 is a schematic diagram of a field effect transistor according to the first embodiment of the present invention. FIG. 2 is a schematic diagram of the structure of the gate metal contact and the second semiconductor according to the first embodiment of the present invention. Figure 3 is a schematic diagram of electrons passing through the channel layer according to the first embodiment of the present invention. FIG. 4 is a schematic diagram of the gate metal contact bonded to the Schott base layer according to the first embodiment of the present invention. FIG. 5 is a schematic diagram of a field effect transistor according to a second embodiment of the present invention. FIG. 6 is a schematic diagram of the gate metal contact bonded to the Schott base layer according to the second embodiment of the present invention. FIG. 7 is a schematic diagram of a field effect transistor according to a third embodiment of the present invention. FIG. 8 is a schematic diagram of the structure of the gate metal contact and the second semiconductor according to the third embodiment of the present invention. Figure 9 is a schematic diagram of electrons passing through the channel layer according to the third embodiment of the present invention. FIG. 10 is a schematic diagram of the gate metal contact bonded to the Schott base layer according to the third embodiment of the present invention. Figure 11 is a schematic diagram of a field effect transistor according to the fourth embodiment of the present invention. FIG. 12 is a schematic diagram of the structure of the gate metal contact and the second semiconductor according to the fourth embodiment of the present invention. Figure 13 is a schematic diagram of electrons passing through the channel layer according to the fourth embodiment of the present invention. Figure 14 is a schematic diagram of the n-type doping curve of the wide concave layer of the present invention.

70A:場效電晶體 70A: Field effect transistor

10:第一半導體結構 10: First semiconductor structure

11:通道層 11: Channel layer

12:基板 12:Substrate

13:緩衝層 13: Buffer layer

14:超晶緩衝緩層 14:Super crystal buffer layer

15:過渡層 15: Transition layer

16:第一δ摻雜層 16: First delta doped layer

17:第一間隔層 17:First spacer layer

18:第二間隔層 18:Second spacer layer

19:第二δ摻雜層 19: Second delta doped layer

20:第二半導體結構 20: Second semiconductor structure

21:肖特基層 21: Schott grassroots

22:第一蝕刻停止層 22: First etch stop layer

23:寬凹層 23:Wide concave layer

231:第一層 231:First floor

232:第二層 232:Second floor

24:第二蝕刻停止層 24: Second etch stop layer

25:歐姆接觸層 25: Ohmic contact layer

26:窄凹槽 26: Narrow groove

27:寬凹槽 27:Wide groove

30:δ摻雜層 30: δ doping layer

40:閘極金屬觸點 40: Gate metal contact

50:源極金屬觸點 50: Source metal contact

60:汲極金屬觸點 60: Drain metal contact

A:第二層之厚度 A:Thickness of the second layer

B:第一層之厚度 B:Thickness of the first layer

N:窄凹區域 N: Narrow concave area

W:寬凹區域 W: wide concave area

Claims (19)

一種場效電晶體,包含:一第一半導體結構,該第一半導體結構具有一通道層;一第二半導體結構,該第二半導體結構設在該第一半導體結構上,且該第二半導體結構由下而上依序堆疊一肖特基層、一第一蝕刻停止層、一寬凹層、一歐姆接觸層所構成,且在該寬凹層開設一窄凹槽與在該歐姆接觸層開設一寬凹槽,而該寬凹槽位在該窄凹槽之上方,使該寬凹層之上表面形成一寬凹區域與該肖特基層之上表面形成一窄凹區域,該寬凹層的摻雜方式為在該寬凹槽頂面或在該寬凹槽頂面5奈米內具有峰值摻雜的漸變摻雜,該漸變摻雜包括為線性、階梯漸變、二次漸變、指數其中之一或其組合;至少一δ摻雜層,該δ摻雜層插入至該第二半導體結構內之預定處;一閘極金屬觸點,該閘極金屬觸點形成在該寬凹槽內與該窄凹槽底面至該窄凹區域內之預定處;一源極金屬觸點,該源極金屬觸點設在該歐姆接觸層上,且該源極金屬觸點位在該閘極金屬觸點之一側;以及一汲極金屬觸點,該汲極金屬觸點設在該歐姆接觸層上,且該汲極金屬觸點位在該閘極金屬觸點之另一側。 A field effect transistor includes: a first semiconductor structure having a channel layer; a second semiconductor structure disposed on the first semiconductor structure, and the second semiconductor structure It consists of sequentially stacking a Schottky layer, a first etching stop layer, a wide concave layer, and an ohmic contact layer from bottom to top, and a narrow groove is opened in the wide concave layer and a narrow groove is opened in the ohmic contact layer. A wide groove is located above the narrow groove, so that the upper surface of the wide concave layer forms a wide concave area and the upper surface of the Schott base layer forms a narrow concave area. The doping method is gradient doping with peak doping on the top surface of the wide groove or within 5 nanometers of the top surface of the wide groove. The gradient doping includes linear, step gradient, quadratic gradient, and exponential. One or a combination thereof; at least one delta doped layer, the delta doped layer is inserted into the second semiconductor structure at a predetermined location; a gate metal contact, the gate metal contact is formed in the wide groove and from the bottom surface of the narrow groove to a predetermined position within the narrow concave area; a source metal contact, the source metal contact is provided on the ohmic contact layer, and the source metal contact is located on the gate metal contact one side of the point; and a drain metal contact, the drain metal contact is provided on the ohmic contact layer, and the drain metal contact is located on the other side of the gate metal contact. 如請求項1所述之場效電晶體,其中,該場效電晶體包括為高電子遷移率電晶體、擬態高電子遷移率電晶體、異質結構場效應電晶體或調製摻雜FET。 The field effect transistor of claim 1, wherein the field effect transistor includes a high electron mobility transistor, a pseudo high electron mobility transistor, a heterostructure field effect transistor or a modulated doped FET. 如請求項2所述之場效電晶體,其中,該場效電晶體包括為耗盡型常開電晶體或增強型常關電晶體。 The field effect transistor according to claim 2, wherein the field effect transistor includes a depletion mode normally on transistor or an enhancement mode normally off transistor. 如請求項3所述之場效電晶體,其中,該δ摻雜層以外延材料生長藉由分子束外延、金屬有機化學氣相沉積或其組合。 The field effect transistor of claim 3, wherein the δ-doped layer is grown from an epitaxial material by molecular beam epitaxy, metal-organic chemical vapor deposition or a combination thereof. 如請求項4所述之場效電晶體,其中,該δ摻雜層之厚度以該分子束外延生長為1至2個單層厚、0.5至1.2nm。 The field effect transistor of claim 4, wherein the thickness of the delta doped layer is 1 to 2 single layers thick and 0.5 to 1.2 nm grown by the molecular beam epitaxy. 如請求項4所述之場效電晶體,其中,該δ摻雜層之厚度以該金屬有機化學氣相沉積生長為1至幾個單層厚。 The field effect transistor of claim 4, wherein the thickness of the delta doped layer is grown by the metal organic chemical vapor deposition to be 1 to several single layer thicknesses. 如請求項4所述之場效電晶體,其中,該外延材料為GaAs材料。 The field effect transistor of claim 4, wherein the epitaxial material is GaAs material. 如請求項4所述之場效電晶體,其中,該δ摻雜層插入至在該寬凹層之該寬凹區域。 The field effect transistor of claim 4, wherein the delta doped layer is inserted into the wide concave region of the wide concave layer. 如請求項8所述之場效電晶體,其中,該寬凹層包括一第一層與一第二層,該第一層位在該δ摻雜層之上表面與該寬凹層之上表面之間,且該第二層位在該δ摻雜層之下表面與該寬凹層之下表面之間,且該第一層之厚度大於或等於該第二層之厚度。 The field effect transistor of claim 8, wherein the wide concave layer includes a first layer and a second layer, and the first layer is located on the upper surface of the delta doped layer and the wide concave layer. between the surfaces, and the second layer is between the lower surface of the delta doped layer and the lower surface of the wide concave layer, and the thickness of the first layer is greater than or equal to the thickness of the second layer. 如請求項9所述之場效電晶體,其中,該第一層與該第二層之材料為n型AlGaAs。 The field effect transistor according to claim 9, wherein the material of the first layer and the second layer is n-type AlGaAs. 如請求項9所述之場效電晶體,其中,該第一層之厚度為10~20nm;該第二層之厚度為1~10nm、摻雜物種為Si及該Si摻雜濃度為1~5e17cm-3。 The field effect transistor as described in claim 9, wherein the thickness of the first layer is 10~20nm; the thickness of the second layer is 1~10nm, the doping species is Si, and the Si doping concentration is 1~ 5e17cm-3. 如請求項9所述之場效電晶體,其中,該第一層之厚度為9nm;該第二層之厚度為1nm、摻雜物種為Si及該Si摻雜濃度為3e17cm-3。 The field effect transistor of claim 9, wherein the thickness of the first layer is 9 nm; the thickness of the second layer is 1 nm, the doping species is Si, and the Si doping concentration is 3e17cm-3. 如請求項9所述之場效電晶體,其中,該閘極金屬觸點在該窄凹區域內的該肖特基層之上表面依序形成Ti-Pt-Au、Ti-Pt-Au-Ti、Ti-Mo-Au、Ti-Mo-Au-Ti、Ti-Pd-Au或Ti-Pd-Au-Ti。 The field effect transistor of claim 9, wherein the gate metal contact is sequentially formed with Ti-Pt-Au, Ti-Pt-Au-Ti on the surface of the Schott base layer in the narrow concave area. , Ti-Mo-Au, Ti-Mo-Au-Ti, Ti-Pd-Au or Ti-Pd-Au-Ti. 如請求項8所述之場效電晶體,其中,該閘極金屬觸點在該窄凹區域內的該肖特基層之上表面依序形成Pt-Ti-Pt-Au、Pt-Ti-Pt-Au-Ti、Pt-Ti-Mo-Au、Pt-Ti-Mo-Au-Ti、Pt-Ti-Pd-Au或Pt-Ti-Pd-Au-Ti,並執行熱處理以混合該第 一Pt層與該第二半導體結構之材料,而從該閘極金屬觸點於該第二半導體結構結合至該窄凹區域內的該肖特基層之上表面的下方。 The field effect transistor according to claim 8, wherein the gate metal contact is sequentially formed on the surface of the Schott base layer in the narrow concave area by Pt-Ti-Pt-Au, Pt-Ti-Pt -Au-Ti, Pt-Ti-Mo-Au, Pt-Ti-Mo-Au-Ti, Pt-Ti-Pd-Au or Pt-Ti-Pd-Au-Ti and perform heat treatment to mix the A Pt layer is bonded to the material of the second semiconductor structure from the gate metal contact below the upper surface of the Schottky layer in the narrow recessed region from the second semiconductor structure. 如請求項4所述之場效電晶體,其中,該δ摻雜層插入該窄凹區域與該肖特基層之下表面之間,且該閘極金屬觸點在該窄凹區域內的該肖特基層之上表面依序形成Pt-Ti-Pt-Au、Pt-Ti-Pt-Au-Ti、Pt-Ti-Mo-Au、Pt-Ti-Mo-Au-Ti、Pt-Ti-Pd-Au或Pt-Ti-Pd-Au-Ti,並執行熱處理以混合該第一Pt層與該第二半導體結構之材料,而從該閘極金屬觸點於該第二半導體結構結合至該窄凹區域內的該肖特基層之上表面的下方、於該δ摻雜層下方及於在該窄凹區域內。 The field effect transistor of claim 4, wherein the delta doped layer is inserted between the narrow concave region and the lower surface of the Schottky layer, and the gate metal contact is in the narrow concave region. The surface above the Schott base layer forms Pt-Ti-Pt-Au, Pt-Ti-Pt-Au-Ti, Pt-Ti-Mo-Au, Pt-Ti-Mo-Au-Ti, and Pt-Ti-Pd in sequence. -Au or Pt-Ti-Pd-Au-Ti, and perform heat treatment to mix the materials of the first Pt layer and the second semiconductor structure, and bond from the gate metal contact to the second semiconductor structure to the narrow Below the upper surface of the Schottky layer in the concave region, below the delta doped layer and within the narrow concave region. 如請求項1所述之場效電晶體,其中,該第二半導體結構更包括一第二蝕刻停止層,該第二蝕刻停止層設在該寬凹層與該歐姆接觸層之間。 The field effect transistor of claim 1, wherein the second semiconductor structure further includes a second etching stop layer disposed between the wide concave layer and the ohmic contact layer. 如請求項16所述之場效電晶體,其中,該肖特基層之材料為n型AlGaAs;該第一蝕刻停止層之材料為n型InGaP或n型AlAs;該寬凹層之材料為n型AlGaAs;該δ摻雜層之材料為n型GaAs或n型AlGaAs;該第二蝕刻停止層之材料為n型InGaP或n型AlAs;該歐姆接觸層之材料為n型GaAs或n型InGaAs,或其組合。 The field effect transistor of claim 16, wherein the material of the Schottky layer is n-type AlGaAs; the material of the first etching stop layer is n-type InGaP or n-type AlAs; the material of the wide concave layer is n-type Type AlGaAs; the material of the delta doped layer is n-type GaAs or n-type AlGaAs; the material of the second etching stop layer is n-type InGaP or n-type AlAs; the material of the ohmic contact layer is n-type GaAs or n-type InGaAs , or a combination thereof. 如請求項16所述之場效電晶體,其中,該肖特基層之厚度為5~20nm、摻雜物種為Si及該Si摻雜濃度為1~3e17cm-3;該第一蝕刻停止層之厚度為5nm、摻雜物種為Si及該Si摻雜濃度大於1e19cm-3;該δ摻雜層之厚度為1ML、摻雜物種為Si及該Si摻雜濃度為0.5~1.5e12cm-2;該第二蝕刻停止層之厚度為5nm、摻雜物種為Si及該Si摻雜濃度大於1e19cm-3;該歐姆接觸層之厚度為20~120nm、摻雜物種為Si及該Si摻雜濃度大於5e18cm-3。 The field effect transistor of claim 16, wherein the thickness of the Schottky layer is 5~20nm, the doping species is Si, and the Si doping concentration is 1~3e17cm-3; the first etching stop layer is The thickness is 5nm, the doping species is Si and the Si doping concentration is greater than 1e19cm-3; the thickness of the delta doped layer is 1ML, the doping species is Si and the Si doping concentration is 0.5~1.5e12cm-2; the The thickness of the second etching stop layer is 5nm, the doping species is Si, and the Si doping concentration is greater than 1e19cm-3; the thickness of the ohmic contact layer is 20~120nm, the doping species is Si, and the Si doping concentration is greater than 5e18cm -3. 如請求項16所述之場效電晶體,其中,該肖特基層之厚度為10nm、摻雜物種為Si及該Si摻雜濃度為3e17cm-3;該第一蝕刻停止層之厚度 為5nm、摻雜物種為Si及該Si摻雜濃度大於1e19cm-3;該δ摻雜層之厚度為1ML、摻雜物種為Si及該Si摻雜濃度為1.0e12cm-2;該第二蝕刻停止層之厚度為5nm、摻雜物種為Si及該Si摻雜濃度大於1e19cm-3;該歐姆接觸層之厚度為50nm、摻雜物種為Si及該Si摻雜濃度大於5e18cm-3。 The field effect transistor of claim 16, wherein the thickness of the Schottky layer is 10 nm, the doping species is Si, and the Si doping concentration is 3e17cm-3; the thickness of the first etching stop layer is 5nm, the doping species is Si and the Si doping concentration is greater than 1e19cm-3; the thickness of the delta doping layer is 1ML, the doping species is Si and the Si doping concentration is 1.0e12cm-2; the second etching The thickness of the stop layer is 5nm, the doping species is Si, and the Si doping concentration is greater than 1e19cm-3; the thickness of the ohmic contact layer is 50nm, the doping species is Si, and the Si doping concentration is greater than 5e18cm-3.
TW110134103A 2021-09-13 2021-09-13 field effect transistor TWI830061B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110134103A TWI830061B (en) 2021-09-13 2021-09-13 field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110134103A TWI830061B (en) 2021-09-13 2021-09-13 field effect transistor

Publications (2)

Publication Number Publication Date
TW202312245A TW202312245A (en) 2023-03-16
TWI830061B true TWI830061B (en) 2024-01-21

Family

ID=86690624

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110134103A TWI830061B (en) 2021-09-13 2021-09-13 field effect transistor

Country Status (1)

Country Link
TW (1) TWI830061B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364816A (en) * 1993-01-29 1994-11-15 The United States Of America As Represented By The Secretary Of The Navy Fabrication method for III-V heterostructure field-effect transistors
JP2008227501A (en) * 2007-03-12 2008-09-25 Cree Inc Cap layer including aluminum nitride for nitride-based transistor, and method of fabricating the same
TW201216463A (en) * 2010-10-13 2012-04-16 Win Semiconductors Corp An improved structure and fabrication method thereof for hetero-structure field effect transistor
EP2608270A2 (en) * 2011-12-21 2013-06-26 Fujitsu Limited Semiconductor device and method of manufacturing the same
US20140138746A1 (en) * 2012-11-16 2014-05-22 Avago Technologies General Ip (Singapore) Pte. Ltd Pseudomorphic high electron mobility transistor comprising doped low temperature buffer layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364816A (en) * 1993-01-29 1994-11-15 The United States Of America As Represented By The Secretary Of The Navy Fabrication method for III-V heterostructure field-effect transistors
JP2008227501A (en) * 2007-03-12 2008-09-25 Cree Inc Cap layer including aluminum nitride for nitride-based transistor, and method of fabricating the same
TW201216463A (en) * 2010-10-13 2012-04-16 Win Semiconductors Corp An improved structure and fabrication method thereof for hetero-structure field effect transistor
EP2608270A2 (en) * 2011-12-21 2013-06-26 Fujitsu Limited Semiconductor device and method of manufacturing the same
US20140138746A1 (en) * 2012-11-16 2014-05-22 Avago Technologies General Ip (Singapore) Pte. Ltd Pseudomorphic high electron mobility transistor comprising doped low temperature buffer layer

Also Published As

Publication number Publication date
TW202312245A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
Xing et al. InAlN/GaN HEMTs on Si with high ${{f}} _ {\text {T}} $ of 250 GHz
Yue et al. InAlN/AlN/GaN HEMTs with regrown ohmic contacts and $ f_ {T} $ of 370 GHz
US7612390B2 (en) Heterojunction transistors including energy barriers
Palacios et al. High-power AlGaN/GaN HEMTs for ka-band applications
US8624667B2 (en) High electron mobility transistors with multiple channels
CA3044512C (en) Semiconductor device and method for designing semiconductor device
Shinohara et al. GaN-based field-effect transistors with laterally gated two-dimensional electron gas
TW200406065A (en) Ga/A1Gan heterostructure field effect transistor with dielectric recessed gate
JP2008235613A (en) Semiconductor device
CN111213244A (en) High electron mobility transistor having a semiconductor layer with a thickness that varies along the transistor width
Brown et al. Self-Aligned AlGaN/GaN FinFETs
US10079297B2 (en) Compound semiconductor device
Shrestha et al. Design and simulation of high performance lattice matched double barrier normally off AlInGaN/GaN HEMTs
Meneghesso et al. Failure modes and mechanisms of InP-based and metamorphic high electron mobility transistors
TWI830061B (en) field effect transistor
TWI823775B (en) field effect transistor
Malmkvist et al. Epitaxial optimization of 130-nm gate-length InGaAs/InAlAs/InP HEMTs for high-frequency applications
Mohanty et al. Demonstration of N-polar GaN MIS-HEMT with high-k atomic layer deposited HfO2 as gate dielectric
Dubey et al. Impact of gate recessing on DC, RF and noise parameters of 6H-SiC-based Al0. 30Ga0. 70N/GaN HEMT for RF and low noise applications
Zhang et al. Fabrication and Performance of 0.25-$\mu $ m Gate Length Depletion-Mode GaAs-Channel MOSFETs With Self-Aligned InAlP Native Oxide Gate Dielectric
JP2549206B2 (en) Field effect transistor
US11876128B2 (en) Field effect transistor
CN115995488A (en) Field effect transistor
Rao et al. Performance analysis of normally-on dual gate AlGaN/GaN HEMT
Mohapatra et al. Improvement of Transconductance in double channel AlGaN/GaN HEMT