TWI826087B - Dispatching system and dispatching method - Google Patents

Dispatching system and dispatching method Download PDF

Info

Publication number
TWI826087B
TWI826087B TW111141489A TW111141489A TWI826087B TW I826087 B TWI826087 B TW I826087B TW 111141489 A TW111141489 A TW 111141489A TW 111141489 A TW111141489 A TW 111141489A TW I826087 B TWI826087 B TW I826087B
Authority
TW
Taiwan
Prior art keywords
output
machine
work
product
progress
Prior art date
Application number
TW111141489A
Other languages
Chinese (zh)
Other versions
TW202420001A (en
Inventor
劉志能
王瑞慶
黃士人
李嘉韋
潘信章
劉世永
Original Assignee
力晶積成電子製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司 filed Critical 力晶積成電子製造股份有限公司
Priority to TW111141489A priority Critical patent/TWI826087B/en
Priority to CN202211459896.0A priority patent/CN117993631A/en
Application granted granted Critical
Publication of TWI826087B publication Critical patent/TWI826087B/en
Publication of TW202420001A publication Critical patent/TW202420001A/en

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

A dispatching system and a dispatching method are provided, including: obtaining a first feature set, a second feature set, and a third feature set; inputting the first feature set to a product line cycle time (CT) model to obtain a processed amount of work in process (WIP) of a first machine; inputting the second feature set to an activation model to obtain an activation of the first machine; inputting the third feature set, the processed amount of WIP, and the activation to a move model to obtain a move of the first machine; calculating a move distribution rate corresponding to the first machine and the first product according to the processed amount of WIP, the activation, the move, and a target move of the first product; and performing a dispatching process according to generate a optimal scheduling according to the move distribution rate and outputting the optimal scheduling.

Description

派工系統和派工方法Work dispatch system and work dispatch method

本發明是有關於一種派工系統和派工方法。The invention relates to a work dispatching system and a work dispatching method.

為了提升產品的生產效率,工廠時常使用基於準則(rule based)的派工系統來為生產機台分配工作。派工系統會先收集各個機台的在製品(work in process,WIP)之產品別或數量等資訊,再依據特定的派工準則排序在製品的工單。然而,在製品的數量往往會因為進貨時間等因素而動態地變化,傳統的派工系統並無法針對這種變化動態地最佳化。此外,派工準則的種類繁多,生產管理者往往無法綜合考量所有的派工準則並規劃出最有效率的生產流程。因此,如何自動化地以最佳的效率執行派工,是本領域人員的重要課題之一。In order to improve product production efficiency, factories often use rule-based dispatch systems to allocate work to production machines. The work dispatch system will first collect information such as product type or quantity of work in process (WIP) of each machine, and then sort WIP work orders according to specific dispatch criteria. However, the quantity of work-in-progress often changes dynamically due to factors such as purchase time, and the traditional labor dispatch system cannot dynamically optimize for such changes. In addition, there are many types of labor dispatch criteria, and production managers often cannot comprehensively consider all labor dispatch criteria and plan the most efficient production process. Therefore, how to automatically dispatch workers with optimal efficiency is one of the important topics for people in this field.

本發明提供一種派工系統和派工方法,可根據機器學習技術產生產品的最佳排程。The present invention provides a work dispatching system and a work dispatching method, which can generate the optimal schedule of products based on machine learning technology.

本發明的一種派工方法,包含:取得對應於第一產品的第一目標管理參數集合,並且根據第一目標管理參數集合取得第一特徵集合、第二特徵集合以及第三特徵集合,其中第一目標管理參數集合關聯於第一機台;將第一特徵集合輸入至產線周期時間模型以取得第一機台的在製品處理量;將第二特徵集合輸入至稼動率模型以取得第一機台的稼動率;將第三特徵集合、在製品處理量以及稼動率輸入至產出量模型以取得第一機台的產出量;根據在製品處理量、稼動率、產出量以及第一產品的目標產出量計算對應於第一機台和第一產品的產出量分配率;以及執行即時派工流程以根據產出量分配率產生最佳排程,並且輸出最佳排程。A work dispatching method of the present invention includes: obtaining a first target management parameter set corresponding to a first product, and obtaining a first feature set, a second feature set and a third feature set according to the first target management parameter set, wherein the A target management parameter set is associated with the first machine; the first feature set is input into the production line cycle time model to obtain the work-in-progress processing capacity of the first machine; the second feature set is input into the utilization rate model to obtain the first The utilization rate of the machine; input the third feature set, work-in-progress processing volume and utilization rate into the output model to obtain the output volume of the first machine; based on the work-in-progress processing volume, utilization rate, output volume and the third Calculate the target output of a product corresponding to the output allocation rate of the first machine and the first product; and execute the real-time dispatch process to generate the best schedule based on the output allocation rate, and output the best schedule .

在本發明的一實施例中,上述的根據在製品處理量、稼動率、產出量以及第一產品的目標產出量計算對應於第一機台和第一產品的產出量分配率的步驟包含:將第一目標管理參數集合、在製品處理量、稼動率以及產出量輸入至備援量模型以輸出第一機台的備援能力,並且根據產出量和備援能力計算第一機台的產出能力;將第一目標管理參數集合以及產出能力輸入至產出量分配模型以取得對應於第一機台和第一產品的預測產出量分配率;以及根據預測產出量分配率以及目標產出量以計算產出量分配率。In an embodiment of the present invention, the above-mentioned calculation of the output distribution rate corresponding to the first machine and the first product is based on the work-in-process processing volume, utilization rate, output volume and the target output volume of the first product. The steps include: inputting the first target management parameter set, work-in-progress processing volume, utilization rate and output volume into the reserve volume model to output the reserve capacity of the first machine, and calculating the third machine based on the output volume and reserve capacity. The output capacity of a machine; input the first target management parameter set and the output capacity into the output distribution model to obtain the predicted output distribution rate corresponding to the first machine and the first product; and according to the predicted output The output distribution rate and the target output volume are used to calculate the output distribution rate.

在本發明的一實施例中,上述的第一目標管理參數集合更關聯於第一機台的上游機台,其中將第一特徵集合輸入至產線周期時間模型以取得第一機台的在製品處理量的步驟包含:將第一特徵集合輸入至產線周期時間模型以輸出上游機台的周期時間;以及根據周期時間以及上游機台的在製品數量計算在製品處理量。In an embodiment of the present invention, the above-mentioned first target management parameter set is further associated with an upstream machine of the first machine, wherein the first feature set is input into the production line cycle time model to obtain the on-line performance of the first machine. The step of calculating the product throughput includes: inputting the first feature set into the production line cycle time model to output the cycle time of the upstream machine; and calculating the work-in-progress throughput according to the cycle time and the number of work-in-process of the upstream machine.

在本發明的一實施例中,上述的派工方法更包含:基於基因演算法而根據產出量分配率產生第一產品的最佳排程。In an embodiment of the present invention, the above-mentioned labor dispatching method further includes: generating an optimal schedule of the first product according to the output allocation rate based on a genetic algorithm.

在本發明的一實施例中,上述的基於基因演算法而根據產出量分配率產生第一產品的最佳排程的步驟包含:取得第一產品的站點流程,其中站點流程包含對應於第一機台的第一站點;以及根據在製品處理量以及第一機台的至少一周期時間產生對應於站點流程的初始個體,其中初始個體包含對應於第一站點的第一候選產出量。In an embodiment of the present invention, the above-mentioned step of generating the optimal schedule of the first product based on the output allocation rate based on the genetic algorithm includes: obtaining the site process of the first product, where the site process includes the corresponding a first site at the first machine; and generating an initial individual corresponding to the site process based on the work-in-process processing volume and at least one cycle time of the first machine, wherein the initial individual includes a first individual corresponding to the first site Candidate output.

在本發明的一實施例中,上述的基於基因演算法而根據產出量分配率產生第一產品的最佳排程的步驟更包含:根據限制式更新第一候選產出量,其中限制式將第一候選產出量限制為小於或等於第一機台的在製品數量和第一站點的上游站點的第二候選產出量的總和。In an embodiment of the present invention, the above-mentioned step of generating the optimal schedule of the first product according to the output allocation rate based on the genetic algorithm further includes: updating the first candidate output according to the restriction formula, where the restriction formula The first candidate output quantity is limited to be less than or equal to the sum of the work-in-progress quantity of the first machine and the second candidate output quantity of a site upstream of the first site.

在本發明的一實施例中,上述的限制式在第一站點的周期時間大於或等於預設值時,將第一候選產出量限制為小於或等於在製品數量。In an embodiment of the present invention, the above restriction formula limits the first candidate output quantity to be less than or equal to the WIP quantity when the cycle time of the first station is greater than or equal to the preset value.

在本發明的一實施例中,上述的派工方法更包含:計算預設值與周期時間的差值;以及計算差值與第一機台的在製品處理量的乘積,其中限制式在周期時間小於預設值時,將第一候選產出量限制為小於或等於在製品數量和乘積的總和。In an embodiment of the present invention, the above-mentioned dispatching method further includes: calculating the difference between the preset value and the cycle time; and calculating the product of the difference and the work-in-progress processing capacity of the first machine, where the limiting formula is in the cycle When the time is less than the preset value, the first candidate output quantity is limited to be less than or equal to the sum of the WIP quantity and the product.

在本發明的一實施例中,上述的派工方法更包含:根據第一候選產出量取得第一機台的總候選產出量;取得第一機台的產出能力與總候選產出量的絕對差,其中基因演算法的適應度函數關聯於絕對差。In an embodiment of the present invention, the above-mentioned work dispatching method further includes: obtaining the total candidate output of the first machine based on the first candidate output; obtaining the output capacity and the total candidate output of the first machine The absolute difference of the quantity, where the fitness function of the genetic algorithm is related to the absolute difference.

在本發明的一實施例中,上述的初始個體更包含對應於第一站點的上游站點的第二候選產出量,其中方法更包含:根據第一候選產出量取得第一機台的第一總候選產出量;以及根據第二候選產出量取得第一機台的至少一上游機台的第二總候選產出量,其中基因演算法的適應度函數關聯於第一機台的在製品數量、第一總候選產出量以及第二總候選產出量。In an embodiment of the present invention, the above-mentioned initial individual further includes a second candidate output corresponding to an upstream site of the first site, and the method further includes: obtaining the first machine according to the first candidate output. The first total candidate output volume; and obtaining the second total candidate output volume of at least one upstream machine of the first machine based on the second candidate output volume, wherein the fitness function of the genetic algorithm is associated with the first machine The number of work-in-progress, the first total candidate output, and the second total candidate output of the station.

在本發明的一實施例中,上述的即時派工流程包含:取得第一機台的多個工單的排序,並且根據排序以從多個工單選出第一工單;響應於第一工單包含佇列時間,將第一工單加入第一機台的工單排程中;以及響應於第一工單不包含佇列時間,判斷第一工單是否關聯於第一產品的最佳排程。In an embodiment of the present invention, the above-mentioned real-time work dispatch process includes: obtaining the ranking of multiple work orders of the first machine, and selecting the first work order from the plurality of work orders based on the ranking; responding to the first work order If the order contains the queue time, add the first work order to the work order schedule of the first machine; and in response to the first work order not containing the queue time, determine whether the first work order is associated with the first product's best schedule.

在本發明的一實施例中,上述的即時派工流程更包含:響應於判斷第一工單關聯於最佳排程,將第一工單加入第一機台的工單排程中;以及響應於判斷第一工單不關聯於最佳排程,根據先進先出規則將第一工單加入第一機台的工單排程中。In an embodiment of the present invention, the above-mentioned real-time work dispatch process further includes: in response to determining that the first work order is associated with the best schedule, adding the first work order to the work order schedule of the first machine; and In response to determining that the first work order is not associated with the best schedule, the first work order is added to the work order schedule of the first machine according to the first-in, first-out rule.

在本發明的一實施例中,上述的最佳排程包含對應於第一站點的第一最佳產出量,其中即時派工流程更包含:周期性地更新第一站點的在製品數量;以及根據在製品數量更新第一最佳產出量。In an embodiment of the present invention, the above-mentioned optimal schedule includes the first optimal output corresponding to the first site, and the real-time dispatch process further includes: periodically updating the work-in-progress of the first site. quantity; and update the first optimal output quantity based on the quantity of work in progress.

本發明的一種派工系統,包含處理器、儲存媒體以及收發器。儲存媒體儲存產線周期時間模型、稼動率模型以及產出量模型。處理器耦接儲存媒體和收發器,其中處理器經配置以執行:通過收發器取得對應於第一產品的第一目標管理參數集合,並且根據第一目標管理參數集合取得第一特徵集合、第二特徵集合以及第三特徵集合,其中第一目標管理參數集合關聯於第一機台;將第一特徵集合輸入至產線周期時間模型以取得第一機台的在製品處理量;將第二特徵集合輸入至稼動率模型以取得第一機台的稼動率;將第三特徵集合、在製品處理量以及稼動率輸入至產出量模型以取得第一機台的產出量;根據在製品處理量、稼動率、產出量以及第一產品的目標產出量計算對應於第一機台和第一產品的產出量分配率;以及執行即時派工流程以根據產出量分配率產生最佳排程,並且通過收發器輸出最佳排程。A work dispatching system of the present invention includes a processor, a storage medium and a transceiver. The storage medium stores the production line cycle time model, utilization rate model, and output volume model. The processor is coupled to the storage medium and the transceiver, wherein the processor is configured to: obtain a first set of target management parameters corresponding to the first product through the transceiver, and obtain a first set of features, a first set of features, and a first set of features based on the first set of target management parameters. two feature sets and a third feature set, wherein the first target management parameter set is associated with the first machine; the first feature set is input into the production line cycle time model to obtain the work-in-process processing volume of the first machine; the second set of target management parameters is associated with the first machine; The feature set is input into the utilization rate model to obtain the utilization rate of the first machine; the third feature set, the work-in-process processing volume and the utilization rate are input into the output model to obtain the output of the first machine; according to the work-in-progress Calculate the output allocation rate corresponding to the first machine and the first product through the processing capacity, utilization rate, output amount and the target output amount of the first product; and execute the real-time dispatch process to generate output according to the output allocation rate Optimum schedule, and output the optimal schedule through the transceiver.

基於上述,本發明可基於基因學習演算法等機器學習演算法,為特定產品產生最佳排程,進而最佳化產品的生產效率以及生產機台的使用率。Based on the above, the present invention can generate the best schedule for a specific product based on machine learning algorithms such as genetic learning algorithms, thereby optimizing the production efficiency of the product and the utilization rate of the production machine.

為了使本發明之內容可以被更容易明瞭,以下特舉實施例作為本發明確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。In order to make the content of the present invention easier to understand, the following embodiments are given as examples according to which the present invention can be implemented. In addition, wherever possible, elements/components/steps with the same reference numbers in the drawings and embodiments represent the same or similar parts.

圖1根據本發明的一實施例繪示一種派工系統100的示意圖。派工系統100可包含處理器110、儲存媒體120以及收發器130。FIG. 1 shows a schematic diagram of a labor dispatch system 100 according to an embodiment of the present invention. The dispatch system 100 may include a processor 110, a storage medium 120, and a transceiver 130.

處理器110例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、影像訊號處理器(image signal processor,ISP)、影像處理單元(image processing unit,IPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。處理器110可耦接至儲存媒體120以及收發器130,並且存取和執行儲存於儲存媒體120中的多個模組和各種應用程式。The processor 110 is, for example, a central processing unit (CPU), or other programmable general-purpose or special-purpose micro control unit (MCU), microprocessor, or digital signal processing unit. Digital signal processor (DSP), programmable controller, application specific integrated circuit (ASIC), graphics processing unit (GPU), image signal processor (ISP) ), image processing unit (IPU), arithmetic logic unit (ALU), complex programmable logic device (CPLD), field programmable gate array (field programmable gate array) , FPGA) or other similar components or a combination of the above components. The processor 110 can be coupled to the storage medium 120 and the transceiver 130, and access and execute multiple modules and various applications stored in the storage medium 120.

儲存媒體120例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,而用於儲存可由處理器110執行的多個模組或各種應用程式。在本實施例中,儲存媒體120可儲存包含產線周期時間模型121、稼動率模型122、產出量模型123、備援量模型124、以及產出量分配模型125等多個模組,其功能將於後續說明。The storage medium 120 is, for example, any type of fixed or removable random access memory (RAM), read-only memory (ROM), or flash memory. , hard disk drive (HDD), solid state drive (SSD) or similar components or a combination of the above components, and are used to store multiple modules or various application programs that can be executed by the processor 110 . In this embodiment, the storage medium 120 can store multiple modules including a production line cycle time model 121, a utilization rate model 122, an output model 123, a reserve model 124, and an output allocation model 125. The function will be explained later.

收發器130以無線或有線的方式傳送及接收訊號。收發器130還可以執行例如低噪聲放大、阻抗匹配、混頻、向上或向下頻率轉換、濾波、放大以及類似的操作。The transceiver 130 transmits and receives signals in a wireless or wired manner. Transceiver 130 may also perform, for example, low noise amplification, impedance matching, mixing, up or down frequency conversion, filtering, amplification, and similar operations.

圖2根據本發明的一實施例繪示評估機台能力流程的示意圖,其中圖2的各個步驟可由如圖1所示的派工系統100實施。派工系統100可用於產生產品(i)的最佳生產配置,其中最佳生產配置記載了產品(i)的每一個工站站點在工廠運作期間(例如:以1日為單位)所需加工之該產品的在製品數量。上述的i為代表產品之索引的正整數,且 ,其中N為代表產品種類的數量的正整數。舉例來說,N=3代表產線所能生產的產品種類為3種,分別為對應於i=1的產品#1,對應於i=2的產品#2以及對應於i=3的產品#3。 FIG. 2 is a schematic diagram of a machine capability evaluation process according to an embodiment of the present invention, in which each step of FIG. 2 can be implemented by the labor dispatch system 100 shown in FIG. 1 . The dispatching system 100 can be used to generate the optimal production configuration of product (i), where the optimal production configuration records the requirements of each workstation site of product (i) during the factory operation (for example: on a day-to-day basis) The quantity of work-in-progress of this product being processed. The above i is a positive integer representing the index of the product, and , where N is a positive integer representing the number of product categories. For example, N=3 means that the production line can produce three types of products, namely product #1 corresponding to i=1, product #2 corresponding to i=2, and product # corresponding to i=3. 3.

為了產生產品(i)的最佳生產配置,處理器110可通過收發器130取得對應於產品(i)的目標管理(management by objectives,MBO)參數集合(i,j),其中MBO參數集合(i,j)包含多種影響目標管理執行之參數值,諸如機台的種類、機台的數量、機台的正常運行時間(uptime)、產品批貨(Lot)的扣留率(hold rate)或產品批貨的超級急件(super hot lot,SHL)率等,本揭露不限於此。在本實施例中,MBO參數集合(i,j)可與機台(j)相關聯。上述的j為代表機台(或機台群)之索引的正整數,且 ,其中M為代表機台的數量的正整數。舉例來說,M=3代表產品上用於生產的機台共有3台,分別為對應於j=1的機台A,對應於j=2的機台B以及對應於j=3的機台C。 In order to generate the optimal production configuration of product (i), the processor 110 can obtain the management by objectives (MBO) parameter set (i, j) corresponding to the product (i) through the transceiver 130, where the MBO parameter set ( i, j) include various parameter values that affect the execution of target management, such as the type of machine, the number of machines, the uptime of the machine, the hold rate of the product lot (Lot) or the product The super hot lot (SHL) rate of batches, etc., this disclosure is not limited to this. In this embodiment, the MBO parameter set (i, j) can be associated with the machine (j). The above j is a positive integer representing the index of the machine (or machine group), and , where M is a positive integer representing the number of machines. For example, M=3 means that there are three machines used for production on the product, namely machine A corresponding to j=1, machine B corresponding to j=2, and machine B corresponding to j=3. C.

處理器110可通過收發器130取得產品(i)的站點流程D(i)。站點流程D(i)為記載了產品(i)的加工流程所需經過的站點或機台之向量。舉例來說,若站點流程D(i)=[A B C A],代表產品(i)會先經由第一站點的機台A加工,再經由第二站點的機台B加工,再經由第三站點的機台C加工,最後再由第四站點的機台A加工以完成整個加工流程。The processor 110 can obtain the site process D(i) of the product (i) through the transceiver 130 . The site process D(i) is a vector that records the sites or machines that the processing process of product (i) needs to pass through. For example, if site process D(i)=[A B C A], it means that product (i) will first be processed by machine A at the first site, then processed by machine B at the second site, and then processed by machine B at the second site. Machine C at the third station processes, and finally machine A at the fourth station completes the entire processing process.

處理器110可從MBO參數集合(i,j)中選出用於預測產品(i)在各站點的周期時間(cycle time,CT)的特徵集合。處理器110可將所述特徵集合輸入至產線周期時間模型121以預測產品(i)的周期時間CT(i)。CT(i)可為一向量,且周期時間CT(i)中的每個元素分別對應於產品(i)的多個站點。舉例來說,若產品(i)的站點流程D(i)=[A B C A],則周期時間CT(i)可等於[2 2 4 3]。假設變數ct(i,k)代表周期時間CT(i)中的第k個元素(即:k為代表站點之索引的正整數且 ),以ct(i,1)=2為例,ct(i,1)=2代表產品(i)在第一站點-機台A需花費的周期時間為2(例如:2小時)。表1為用於預測周期時間CT(i)之特徵集合中的特徵範例,其中所述特徵為一種關鍵績效指標(key performance indicator,KPI)。在一實施例中,處理器110可基於監督式機器學習演算法而根據包含表1中之特徵的訓練資料來訓練產線周期時間模型121。 表1 索引 類別 特徵 備註 1 時間 IS_HOLIDAY 是否假日 2 MONTH_EARLY 月初:1~10日 3 MONTH_MID 月中:11~20日 4 MONTH_LATE 月底:21~31日 5 設備 M_NUM 機台總數 6 TOOL_NUM 當日機台數 7 AVAIL_TIME_NENG 負荷時間率(不含:ENG) 8 C_AVAIL_TIME_NENG 機台的變異值 9 EQP_UTIL 稼動率 10 C_EQP_UTIL 稼動率的變異值 11 EQP_AVAIL_RATE 路寬/機台數 12 TC Lot連續產出的時間間隔 13 C_TC TC的變異值 14 物料 LOT_SIZE 總片數/總批數 15 C_LOT_SIZE LOT_SIZE的變異值 16 RUN_LOT_SIZE Avg(晶圓數量) 17 C_RUN_LOT_SIZE RUN_LOT_SIZE的變異值 18 WIP_BOH 07:30~08:30WIP數量 19 ENG_LOT_RATE ENG Lot的比例 20 SHOT_LOT_RATE SHOT Lot的比例 21 HOT_LOT_RATE HOT Lot的比例 22 BACKUP_BY_RATE 被它廠支援的比例 23 BACKUP_FOR_RATE 支援它廠的比例 24 REWORK_LOT_RATE REWORK Lot的比例 25 QLIMIT_RATE QTIME Lot的比例 26 SAMPLING_RATE 經量測機台做測試的比例 27 CHANGE_RECIPE 更換配方的比例 28 BATCH_SIZE 平均批次數 29 綜合 NUM_UTIL M_NUM*EQP_UTIL The processor 110 may select a feature set for predicting the cycle time (CT) of product (i) at each site from the MBO parameter set (i, j). Processor 110 may input the feature set to line cycle time model 121 to predict cycle time CT(i) for product (i). CT(i) may be a vector, and each element in cycle time CT(i) corresponds to multiple sites of product (i) respectively. For example, if the site process D(i) of product (i)=[ABCA], then the cycle time CT(i) can be equal to [2 2 4 3]. Assume that the variable ct(i,k) represents the k-th element in the cycle time CT(i) (ie: k is a positive integer representing the index of the site and ), taking ct(i,1)=2 as an example, ct(i,1)=2 means that the cycle time that product (i) needs to spend at the first site - machine A is 2 (for example: 2 hours). Table 1 is an example of features in the feature set used to predict cycle time CT(i), where the feature is a key performance indicator (KPI). In one embodiment, the processor 110 may train the line cycle time model 121 based on training data including the characteristics in Table 1 based on a supervised machine learning algorithm. Table 1 index Category Features Remarks 1 time IS_HOLIDAY Is it a holiday? 2 MONTH_EARLY First month: 1st~10th 3 MONTH_MID Mid-month: 11th~20th 4 MONTH_LATE End of month: 21st~31st 5 equipment M_NUM Total number of machines 6 TOOL_NUM Number of machines on the day 7 AVAIL_TIME_NENG Load time rate (excluding: ENG) 8 C_AVAIL_TIME_NENG Variation value of the machine 9 EQP_UTIL Utilization rate 10 C_EQP_UTIL Variation value of utilization rate 11 EQP_AVAIL_RATE Road width/number of machines 12 TC The time interval between Lot’s continuous output 13 C_TC Variation value of TC 14 materials LOT_SIZE Total number of pieces/Total number of batches 15 C_LOT_SIZE Variation value of LOT_SIZE 16 RUN_LOT_SIZE Avg(wafer quantity) 17 C_RUN_LOT_SIZE Variation value of RUN_LOT_SIZE 18 WIP_BOH 07:30~08:30WIP quantity 19 ENG_LOT_RATE Proportion of ENG Lot 20 SHOT_LOT_RATE SHOT Lot Ratio twenty one HOT_LOT_RATE HOT Lot ratio twenty two BACKUP_BY_RATE Proportion supported by other factories twenty three BACKUP_FOR_RATE Proportion of supporting other factories twenty four REWORK_LOT_RATE REWORK Lot ratio 25 QLIMIT_RATE QTIME Lot ratio 26 SAMPLING_RATE Proportion tested by measuring machine 27 CHANGE_RECIPE Replacement formula ratio 28 BATCH_SIZE Average number of batches 29 Comprehensive NUM_UTIL M_NUM*EQP_UTIL

在預測出產品(i)的周期時間CT(i)後,處理器110可根據基於方程式(1)而根據周期時間CT(i)計算出對應於機台(j)的在製品處理量(j)。在製品處理量(j)代表機台(j)在單位時間內(例如:1日內)所能處理的各類產品之在製品的數量, 代表站點的索引k為正整數, 代表產品(i)的站點流程D(i)中的第(k-1)個站點(即:第k個站點的上游站點), 代表產品(i)的站點流程D(i)中的第(k-1)個站點由機台(j)負責, 代表對應於 的周期時間,並且 代表對應於 之站點所擁有的產品(i)的在製品的庫存量。在一實施例中,處理器110可從MBO參數集合(i,j)中取得 ,且 可響應於「在製品進貨」等事件而動態地更新。 …(1) After predicting the cycle time CT(i) of the product (i), the processor 110 can calculate the work-in-progress throughput (j) corresponding to the machine (j) according to the cycle time CT(i) based on equation (1). ). The work-in-progress processing capacity (j) represents the quantity of work-in-progress of various products that the machine (j) can process in a unit time (for example: within 1 day). The index k representing the site is a positive integer, Represents the (k-1)th site in the site process D(i) of product (i) (ie: the upstream site of the k-th site), The (k-1)th station in the site process D(i) representing product (i) is responsible for the machine (j), represents corresponding to cycle time, and represents corresponding to The amount of work-in-progress inventory of product (i) held by the site. In one embodiment, the processor 110 may obtain from the MBO parameter set (i,j) ,and Can be dynamically updated in response to events such as "work in progress". …(1)

另一方面,處理器110可從MBO參數集合(i,j)中選出用於預測機台(j)之稼動率(activation)的特徵集合。處理器110可將所述特徵集合輸入至稼動率模型122以預測機台(j)的稼動率(j)。表2為用於預測稼動率(j)之特徵集合中的特徵範例,其中所述特徵為一種關鍵績效指標。在一實施例中,處理器110可基於監督式機器學習演算法而根據包含表2之特徵的訓練資料來訓練稼動率模型122。 表2 索引 類別 特徵 備註 1 時間 IS_HOLIDAY 是否假日 2 設備 M_NUM 機台總數 3 AVAIL_TIME_NENG 負荷時間率(不含:ENG) 4 TC Lot連續產出的時間間隔 5 物料 WIP_BOH 當日7:30WIP 6 CLOSE_WIP_QTY 一日內即將到站的WIP 7 ENG_LOT_RATE ENG Lot的比例 8 SHOT_LOT_RATE SHOT Lot的比例 9 HOT_LOT_RATE HOT Lot的比例 10 BATCH_SIZE 平均批次數 On the other hand, the processor 110 may select a feature set for predicting the activation rate (activation) of the machine (j) from the MBO parameter set (i, j). The processor 110 may input the feature set into the utilization model 122 to predict the utilization rate (j) of the machine (j). Table 2 is an example of features in a feature set used to predict utilization rate (j), where the feature is a key performance indicator. In one embodiment, the processor 110 may train the utilization model 122 based on training data including the characteristics of Table 2 based on a supervised machine learning algorithm. Table 2 index Category Features Remarks 1 time IS_HOLIDAY Is it a holiday? 2 equipment M_NUM Total number of machines 3 AVAIL_TIME_NENG Load time rate (excluding: ENG) 4 TC The time interval between Lot’s continuous output 5 materials WIP_BOH 7:30WIP on the same day 6 CLOSE_WIP_QTY WIP of upcoming stations within one day 7 ENG_LOT_RATE Proportion of ENG Lot 8 SHOT_LOT_RATE SHOT Lot Ratio 9 HOT_LOT_RATE HOT Lot ratio 10 BATCH_SIZE Average number of batches

在預測出產品(i)的周期時間CT(i)以及機台(j)的稼動率(j)後,處理器110可從從MBO參數集合(i,j)中選出用於預測機台(j)的產出量(j)的特徵集合。處理器110可將所述特徵集合以及預測的周期時間CT(i)和稼動率(j)輸入至產出量模型123以預測機台(j)的產出量(j)。表3為用於預測產出量(j)之特徵集合中的特徵範例,其中所述特徵為一種關鍵績效指標。在一實施例中,處理器110可基於監督式機器學習演算法而根據包含表3之特徵、周期時間以及稼動率的訓練資料來訓練產出量模型123。 表3 索引 類別 特徵 備註 1 時間 IS_HOLIDAY 是否假日 2 MONTH_EARLY 月初:1~10日 3 MONTH_MID 月中:11~20日 4 MONTH_LATE 月底:21~31日 5 設備 M_NUM 機台總數 6 TOOL_NUM 當日機台數 7 AVAIL_TIME_NENG 負荷時間率(不含:ENG) 8 C_AVAIL_TIME_NENG 負荷時間率的變異值 9 EQP_UTIL 稼動率 10 C_EQP_UTIL 稼動率的變異值 11 EQP_AVAIL_RATE 路寬/機台數 12 TC Lot連續產出的時間間隔 13 C_TC TC的變異值 14 物料 LOT_SIZE 總片數/總批數 15 C_LOT_SIZE LOT_SIZE的變異值 16 RUN_LOT_SIZE Avg(晶圓數量) 17 C_RUN_LOT_SIZE RUN_LOT_SIZE的變異值 18 WIP_BOH 07:30~08:30WIP數量 19 CLOSE_WIP_QTY 一日內即將到站的WIP 20 C_CLOSE_WIP WIP的變異值 21 ENG_LOT_RATE ENG Lot的比例 22 SHOT_LOT_RATE SHOT Lot的比例 23 HOT_LOT_RATE HOT Lot的比例 24 BACKUP_BY_RATE 被它廠支援的比例 25 BACKUP_FOR_RATE 支援它廠的比例 26 REWORK_LOT_RATE REWORK Lot的比例 27 QLIMIT_RATE QTIME Lot的比例 28 SAMPLING_RATE 經量測機台做測試的比例 29 CHANGE_RECIPE 更換配方的比例 30 BATCH_SIZE 平均批次數 31 綜合 NUM_UTIL M_NUM*EQP_UTIL After predicting the cycle time CT(i) of the product (i) and the utilization rate (j) of the machine (j), the processor 110 may select from the MBO parameter set (i, j) for predicting the machine ( The characteristic set of output (j) of j). The processor 110 may input the feature set and the predicted cycle time CT(i) and utilization rate (j) to the throughput model 123 to predict the throughput (j) of the machine (j). Table 3 is an example of features in a feature set used to predict output (j), where the feature is a key performance indicator. In one embodiment, the processor 110 may train the throughput model 123 based on a supervised machine learning algorithm based on training data including the characteristics, cycle time, and availability of Table 3. table 3 index Category Features Remarks 1 time IS_HOLIDAY Is it a holiday? 2 MONTH_EARLY First month: 1st~10th 3 MONTH_MID Mid-month: 11th~20th 4 MONTH_LATE End of month: 21st~31st 5 equipment M_NUM Total number of machines 6 TOOL_NUM Number of machines on the day 7 AVAIL_TIME_NENG Load time rate (excluding: ENG) 8 C_AVAIL_TIME_NENG Variation value of load time rate 9 EQP_UTIL Utilization rate 10 C_EQP_UTIL Variation value of utilization rate 11 EQP_AVAIL_RATE Road width/number of machines 12 TC The time interval between Lot’s continuous output 13 C_TC Variation value of TC 14 materials LOT_SIZE Total number of pieces/Total number of batches 15 C_LOT_SIZE Variation value of LOT_SIZE 16 RUN_LOT_SIZE Avg(wafer quantity) 17 C_RUN_LOT_SIZE Variation value of RUN_LOT_SIZE 18 WIP_BOH 07:30~08:30WIP quantity 19 CLOSE_WIP_QTY WIP of upcoming stations within one day 20 C_CLOSE_WIP Variation value of WIP twenty one ENG_LOT_RATE Proportion of ENG Lot twenty two SHOT_LOT_RATE SHOT Lot Ratio twenty three HOT_LOT_RATE HOT Lot ratio twenty four BACKUP_BY_RATE Proportion supported by other factories 25 BACKUP_FOR_RATE Proportion of supporting other factories 26 REWORK_LOT_RATE REWORK Lot ratio 27 QLIMIT_RATE QTIME Lot ratio 28 SAMPLING_RATE Proportion tested by measuring machine 29 CHANGE_RECIPE Replacement formula ratio 30 BATCH_SIZE Average number of batches 31 Comprehensive NUM_UTIL M_NUM*EQP_UTIL

處理器110可取得用於預測機台(j)的備援能力(j)的輸入參數),其中輸入參數可包含HBO參數集合(i,j)、在製品處理量(j)、稼動率(j)以及產出量(j)。處理器110可將輸入參數(i,j)輸入至備援量模型124以預測機台(j)對其他機台(q)的備援能力(j,q)。上述的q為代表機台(或機台群)之索引的正整數,且 ,其中M為代表機台的數量的正整數。表4為用於預測備援能力(j,q)之特徵集合中的特徵範例,其中所述特徵為一種關鍵績效指標,且所述特徵可為支援機台的特徵或被支援機台的特徵。在一實施例中,處理器110可基於監督式學習演算法而根據包含表4之特徵、在製品處理量、稼動率以及產出量等特徵的訓練資料來訓練備援量模型124。 表4 索引 類別 特徵 備註 1 時間 IS_HOLIDAY 是否假日 2 MONTH_EARLY 月初:1~10日 3 MONTH_MID 月中:11~20日 4 MONTH_LATE 月底:21~31日 5 設備 AVAIL_TIME_NENG 負荷時間率(不含:ENG) 6 C_AVAIL_TIME_NENG 負荷時間率的變異值 7 EQP_UTIL 稼動率 8 C_EQP_UTIL 稼動率的變異值 9 TOOL_NUM 當日機台數 10 M_NUM 機台總數 11 物料 WIP_BOH 07:30~08:30WIP數量 12 CLOSE_WIP_QTY 一日內即將到站的WIP 13 MOVE_QTY_INTERNAL 當日產出總量(不含:被支援/再製/跨廠Lot) 14 QLIMIT_RATE QTIME Lot的比例 15 TC Lot連續產出的時間間隔 16 C_TC TC的變異值 The processor 110 may obtain input parameters for predicting the backup capability (j) of the machine (j), where the input parameters may include the HBO parameter set (i, j), the work-in-progress throughput (j), and the utilization rate ( j) and output (j). The processor 110 may input the input parameters (i, j) into the backup capacity model 124 to predict the backup capability (j, q) of the machine (j) to other machines (q). The above q is a positive integer representing the index of the machine (or machine group), and , where M is a positive integer representing the number of machines. Table 4 is an example of features in the feature set used to predict redundancy capability (j, q), where the feature is a key performance indicator, and the feature can be a feature of the supporting machine or a feature of the supported machine. . In one embodiment, the processor 110 may train the reserve capacity model 124 based on a supervised learning algorithm based on training data including the characteristics of Table 4, WIP throughput, utilization rate, and output. Table 4 index Category Features Remarks 1 time IS_HOLIDAY Is it a holiday? 2 MONTH_EARLY First month: 1st~10th 3 MONTH_MID Mid-month: 11th~20th 4 MONTH_LATE End of month: 21st~31st 5 equipment AVAIL_TIME_NENG Load time rate (excluding: ENG) 6 C_AVAIL_TIME_NENG Variation value of load time rate 7 EQP_UTIL Utilization rate 8 C_EQP_UTIL Variation value of utilization rate 9 TOOL_NUM Number of machines on the day 10 M_NUM Total number of machines 11 materials WIP_BOH 07:30~08:30WIP quantity 12 CLOSE_WIP_QTY WIP of upcoming stations within one day 13 MOVE_QTY_INTERNAL Total output of the day (excluding: supported/remanufactured/cross-factory Lot) 14 QLIMIT_RATE QTIME Lot ratio 15 TC The time interval between Lot’s continuous output 16 C_TC Variation value of TC

在預測出機台(j)的產出量(j)和備援能力(j,q)後,處理器110可基於方程式(2)而根據產出量(j)和備援能力(j)計算機台(j)的產出能力(j)。 …(2) After predicting the output (j) and backup capacity (j, q) of the machine (j), the processor 110 can calculate the output (j) and the backup capacity (j) based on equation (2). The output capacity (j) of the computer station (j). …(2)

圖3根據本發明的一實施例繪示評估產出量分配率的示意圖,其中圖3的各個步驟可由如圖1所示的派工系統100實施。在預測出產出能力(j)後,處理器110可從MBO參數集合(i,j)中選出用於產生預測產出量分配率(i,j)的特徵集合,其中預測產出量分配率(i,j)代表機台(j)的產出能力(j)被分給產品(i)的比率。處理器110可將所述特徵集合以及產出能力(j)輸入至產出量分配模型125以產生機台(j)對產品(i)的預測產出量分配率(i,j)。表5為用於預測產出量分配率(i,j)之特徵集合中的特徵範例,其中所述特徵為一種關鍵績效指標。在一實施例中,處理器110可基於監督式機器學習演算法而根據包含表5之特徵以及產出能力(j)的訓練資料來訓練產出量分配模型125。 表5 索引 類別 特徵 備註 1 時間 MONTH_EARLY 月初:1~10日 2 MONTH_MID 月中:11~20日 3 MONTH_LATE 月底:21~31日 4 設備 M_NUM 機台總數 5 MOVE_QTY_TG 當日機台的產出量 6 物料 WIP_BOH_TG 當日7:30WIP 7 WIP_BOH 當日7:30WIP數量 8 CLOSE_WIP_QTY_TG 一日內即將到站的WIP 9 CLOSE_WIP_QTY 一日內即將到站的WIP數量 10 綜合 MOVE_RATIO_F 當日機台WIP>MOVE:特徵值為WIP比率; 當日機台WIP≤MOVE:(1)機台周期時間≥預設值(如:日):特徵值為WIP比率;(2)機台周期時間<預設值:特徵值=WIP+在製品處理量*(1-周期時間) FIG. 3 is a schematic diagram for evaluating the output allocation rate according to an embodiment of the present invention, in which each step of FIG. 3 can be implemented by the labor dispatch system 100 shown in FIG. 1 . After predicting the output capacity (j), the processor 110 may select a feature set from the MBO parameter set (i, j) for generating the predicted output allocation rate (i, j), where the predicted output allocation rate The rate (i,j) represents the ratio of the output capacity (j) of the machine (j) to the product (i). The processor 110 may input the feature set and the throughput capacity (j) into the throughput allocation model 125 to generate a predicted throughput allocation rate (i,j) of the machine (j) to the product (i). Table 5 is an example of features in the feature set used to predict the output allocation rate (i, j), where the feature is a key performance indicator. In one embodiment, the processor 110 may train the throughput allocation model 125 based on a supervised machine learning algorithm based on training data including the characteristics of Table 5 and the throughput capacity (j). table 5 index Category Features Remarks 1 time MONTH_EARLY First month: 1st~10th 2 MONTH_MID Mid-month: 11th~20th 3 MONTH_LATE End of month: 21st~31st 4 equipment M_NUM Total number of machines 5 MOVE_QTY_TG The output of the machine on the day 6 materials WIP_BOH_TG 7:30WIP on the same day 7 WIP_BOH 7:30 WIP quantity on the same day 8 CLOSE_WIP_QTY_TG WIP of upcoming stations within one day 9 CLOSE_WIP_QTY Number of WIPs arriving at the station within a day 10 Comprehensive MOVE_RATIO_F Machine WIP>MOVE on the day: the characteristic value is the WIP ratio; WIP≤MOVE on the machine on the day: (1) Machine cycle time ≥ preset value (such as day): the characteristic value is the WIP ratio; (2) Machine cycle time <Default value: Characteristic value = WIP + work in process processing volume * (1-cycle time)

在取得預測產出量分配率(i,j)後,處理器110可根據機台(j)對產品(i)的預測產出量分配率(i,j)以及機台(j)的目標產出量(j)計算機台(j)對產品(i)的產出量分配率(i,j),如方程式(3)所示。舉例來說,「產出量分配率(i,j)=50%」代表機台(j)預計將會使用產出能力(j)的50%在加工產品(i)的在製品。在一實施例中,目標產出量(j)可由生產管理人員自定義。處理器110可通過收發器130取得目標產出量(j)。產出量分配率(i,j)可為預測產出量分配率(i,j)以及目標產出量(j)兩者的函數。處理器110可根據機台(j)在過去的平均產出量、產品(i)的優先度、機台(j)之下游機台的負載、產線運作的日期、產品(i)的在製品庫存或產品(i)的在製品來貨數量等參數來計算產出量分配率(i,j),本發明並不限定產出量分配率(i,j)的計算方式。 …(3) After obtaining the predicted output allocation rate (i, j), the processor 110 can calculate the predicted output allocation rate (i, j) of the product (i) based on the machine (j) and the target of the machine (j). Output (j) The output distribution rate (i,j) of computer station (j) to product (i) is shown in equation (3). For example, "output allocation rate (i, j) = 50%" means that machine (j) is expected to use 50% of the output capacity (j) of the in-process product (i). In one embodiment, the target output volume (j) can be customized by the production manager. The processor 110 can obtain the target throughput (j) through the transceiver 130 . The output allocation rate (i,j) can be a function of both the predicted output allocation rate (i,j) and the target output (j). The processor 110 can determine the output of the machine (j) based on the average output of the machine (j) in the past, the priority of the product (i), the load of the machine downstream of the machine (j), the date of the production line operation, and the current status of the product (i). The output distribution rate (i, j) is calculated using parameters such as product inventory or the in-process incoming goods quantity of product (i). The present invention does not limit the calculation method of the output distribution rate (i, j). …(3)

在決定機台(j)對產品(i)的產出量分配率(i,j)後,處理器110可基於基因演算法(genetic algorithm,GA)而根據產出量分配率(i,j)產生產品(i)的最佳生產配置(i),並且通過收發器130輸出最佳生產配置(i)以供生產管理人員參考。最佳生產配置(i)為一向量,且最佳生產配置(i)中的每一個元素用以指示產品(i)在對應站點的候選產出量。舉例來說,假設產品(i)的站點流程D(i)=[A B C A],若最佳生產配置(i)=[100 100 50 25],代表產品(i)的第一站點(即:機台A)在單位時間內(例如:1日內)需產出100個產品(i)的在製品或成品,產品(i)的第二站點(即:機台B)在單位時間內需產出100個產品(i)的在製品或成品,產品(i)的第三站點(即:機台C)在單位時間內需產出50個產品(i)的在製品或成品,並且產品(i)的第四站點(即:機台A)在單位時間內需產出25個產品(i)的在製品或成品。After determining the output allocation rate (i, j) of the machine (j) to the product (i), the processor 110 can determine the output allocation rate (i, j) based on a genetic algorithm (GA). ) generates the optimal production configuration (i) of product (i), and outputs the optimal production configuration (i) through the transceiver 130 for reference by production managers. The optimal production configuration (i) is a vector, and each element in the optimal production configuration (i) is used to indicate the candidate output of product (i) at the corresponding site. For example, assume that the site process D(i) of product (i) = [A B C A], if the optimal production configuration (i) = [100 100 50 25], represents the first site of product (i) (i.e. : Machine A) needs to produce 100 in-process or finished products of product (i) within unit time (for example: within 1 day), and the second station of product (i) (ie: machine B) needs to produce 100 pieces of work-in-process or finished product of product (i) within unit time. To produce 100 work-in-progress or finished products of product (i), the third station of product (i) (ie: machine C) needs to produce 50 work-in-progress or finished products of product (i) in unit time, and the product The fourth station of (i) (i.e., machine A) needs to produce 25 in-process or finished products of product (i) per unit time.

具體來說,為了產生產品(i)的最佳生產配置(i),處理器110可根據方程式(4)計算機台(j)對產品(i)的總產出量(i,j)。接著,處理器110可根據機台(j)的在製品處理量(j)、機台(j)的周期時間 以及總產出量(i,j)產生基因演算法的初始個體(i),其中初始個體(i)與產品(i)的站點流程D(i)相對應。 …(4) Specifically, in order to generate the optimal production configuration (i) for product (i), processor 110 may calculate the total output (i, j) of station (j) for product (i) according to equation (4). Then, the processor 110 can process the work-in-progress (j) of the machine (j) according to the cycle time of the machine (j). And the total output (i,j) generates the initial individual (i) of the genetic algorithm, where the initial individual (i) corresponds to the site process D(i) of the product (i). …(4)

初始個體(i)的基因可包含產品(i)的對應站點的候選產出量(i,k),如方程式(5)所示,其中候選產出量(i,k)代表產品(i)的第k個站點的候選產出量。舉例來說,假設產品(i)的站點流程D(i)=[A B C A],則初始個體(i)可包含四個依序排列的基因,如表6所示。以初始個體(i)的基因#1為例,基因#1記錄了產品(i)的第一站點為機台A,且機台A的候選產出量為50個。 …(5) 表6 基因 #1 #2 #3 #4 機台 A B C A 候選產出量 50 80 40 60 The gene of the initial individual (i) can contain the candidate output amount (i,k) of the corresponding site of the product (i), as shown in equation (5), where the candidate output amount (i,k) represents the product (i ) candidate output of the k-th site. For example, assuming that the site process D(i)=[ABCA] of product (i), the initial individual (i) can contain four genes arranged in sequence, as shown in Table 6. Taking gene #1 of the initial individual (i) as an example, gene #1 records that the first site of product (i) is machine A, and the candidate output of machine A is 50. …(5) Table 6 Gene #1 #2 #3 #4 machine A B C A Candidate output 50 80 40 60

處理器110可根據與產生初始個體(i)相同的方式產生多個初始個體(i)以形成初始群體(initialize population),並且對初始群體執行交配(crossover)或突變(mutation)以產生新群體。處理器110可基於輪盤法(roulette wheel selection)、競爭法(tournament selection)或等級輪盤法(rank based wheel selection)等方式不斷地更新群體,直到找出適應度符合條件的最佳個體(i)為止。最佳個體(i)可包含產品(i)的對應站點的最佳產出量(i,k),其中最佳產出量(i,k)代表產品(i)的第k個站點的最佳產出量。處理器110可取出最佳個體(i)中的各個基因以作為產品(i)的最佳生產配置。舉例來說,假設產品(i)的站點流程D(i)=[A B C A],則最佳個體(i)可包含四個依序排列的基因,如表7所示。以最佳個體(i)的基因#1為例,基因#1記錄了產品(i)的第一站點為機台A,且機台A的最佳產出量為100個。處理器110可取出表7中的各個基因以取得產品(i)的最佳生產配置[100 100 50 25]。 表7 基因(站點) #1 #2 #3 #4 站點的機台 A B C A 最佳產出量 100 100 50 25 The processor 110 may generate a plurality of initial individuals (i) to form an initial population in the same manner as the initial individual (i), and perform crossover or mutation on the initial population to generate a new population. . The processor 110 can continuously update the group based on methods such as roulette wheel selection, competition selection or rank based wheel selection until the best individual whose fitness meets the conditions is found ( i) until. The best individual (i) can include the best output (i,k) of the corresponding site of product (i), where the best output (i,k) represents the k-th site of product (i) optimal output. The processor 110 can extract each gene in the best individual (i) as the best production configuration of the product (i). For example, assuming that the site process D(i)=[ABCA] of product (i), the best individual (i) can contain four genes arranged in sequence, as shown in Table 7. Taking gene #1 of the best individual (i) as an example, gene #1 records that the first site of product (i) is machine A, and the optimal output of machine A is 100 pieces. The processor 110 can extract each gene in Table 7 to obtain the optimal production configuration [100 100 50 25] for product (i). Table 7 Gene (site) #1 #2 #3 #4 site machine A B C A optimal output 100 100 50 25

在一實施例中,在處理器110根據基因演算法計算出最佳個體(i)的過程中,基因演算法的每一個個體上的基因(即:候選產出量)之更新需滿足特定的限制式,如方程式(6)、方程式(7)和方程式(8)所示,其中預設值可由生產管理人員自定義,例如生產管理人員可將預設值設為機台的正常運行時間(uptime)或設為1日。 …(6) …(7) …(8) In one embodiment, in the process of the processor 110 calculating the best individual (i) according to the genetic algorithm, the update of the genes (i.e., candidate output) on each individual of the genetic algorithm needs to meet specific requirements. Limiting formulas, as shown in Equations (6), Equations (7) and Equations (8), in which the preset value can be customized by the production manager. For example, the production manager can set the preset value as the normal operating time of the machine ( uptime) or set to 1 day. …(6) …(7) …(8)

在一實施例中,基因演算法的適應度函數可關聯於函數(9)和函數(10)。當個體的資訊被帶入函數(9)時,函數值越小代表機台的使用效率越高,且代表個體的適應度越大。當個體的資訊被帶入函數(10)時,函數值越小代表機台(j)的預測在製品數量(j)越接近機台(j)的安全水位(j),且代表個體的適應度越大。安全水位(j)可由生產管理人員自定義。在一實施例中,基因演算法的適應度函數可表示為方程式(11)。 …(9) (10) In one embodiment, the fitness function of the genetic algorithm can be associated with function (9) and function (10). When individual information is brought into function (9), the smaller the function value, the higher the efficiency of machine use, and the greater the fitness of the individual. When individual information is brought into function (10), the smaller the function value, the closer the predicted work-in-progress quantity (j) of machine (j) is to the safe water level (j) of machine (j), and represents the individual's adaptation. The greater the degree. The safety water level (j) can be customized by production management personnel. In one embodiment, the fitness function of the genetic algorithm can be expressed as equation (11). …(9) (10)

在產生產品(i)的最佳生產配置(i)後,處理器110可將包含最佳生產配置(i)的工單加入即時派工流程的佇列中,以等待產線執行該工單。圖4根據本發明的一實施例繪示即時派工流程的流程圖,其中所述即時派工流程可由如圖1所示的派工系統100實施。在開始步驟S401之前,處理器110將變數y設為1,其中y代表待排入即時派工流程之序列的多個工單的排序。在步驟S401中,處理器110可判斷排序y是否小於或等於常數Y,其中常數Y為待排入即時派工流程之序列的工單之總數。若排序y小於或等於常數Y,則進入步驟S402。若排序y大於常數Y,則處理器110將排序y重設為1,並進入步驟S404。After generating the optimal production configuration (i) of product (i), the processor 110 can add the work order containing the optimal production configuration (i) to the queue of the real-time dispatch process to wait for the production line to execute the work order. . FIG. 4 illustrates a flow chart of a real-time labor dispatch process according to an embodiment of the present invention, wherein the real-time labor dispatch process can be implemented by the labor dispatch system 100 shown in FIG. 1 . Before starting step S401, the processor 110 sets the variable y to 1, where y represents the ordering of multiple work orders to be queued into the sequence of the immediate dispatch process. In step S401, the processor 110 may determine whether the sorting y is less than or equal to a constant Y, where the constant Y is the total number of work orders to be queued into the sequence of the real-time dispatch process. If the sorting y is less than or equal to the constant Y, then enter step S402. If the sorting y is greater than the constant Y, the processor 110 resets the sorting y to 1 and proceeds to step S404.

在步驟S402中,處理器110可從Y個工單中選出對應於排序y的工單,並且判斷工單是否包含佇列時間。佇列時間是由生產管理人員自定義的,以確保工單能在指定時間之前開始執行。因此,包含佇列時間的工單具有比一般工單或人工智慧工單高的優先度。據此,若工單包含佇列時間,則進入步驟S403,處理器110可將工單加入機台的工單排程中。在一實施例中,處理器110可根據先進先出規則將工單加入機台的工單排程中。另一方面,若工單不包含佇列時間,則處理器110將排序y的值增加1,並且重新執行步驟S401In step S402, the processor 110 may select the work order corresponding to sorting y from the Y work orders, and determine whether the work order includes the queue time. Queue time is customized by production managers to ensure that work orders can be executed before the specified time. Therefore, tickets that include queue time have higher priority than regular tickets or AI tickets. Accordingly, if the work order includes queuing time, step S403 is entered, and the processor 110 can add the work order to the work order schedule of the machine. In one embodiment, the processor 110 may add the work order to the work order schedule of the machine according to the first-in, first-out rule. On the other hand, if the work order does not include queuing time, the processor 110 increases the value of sorting y by 1 and re-executes step S401

在步驟S404中,處理器110可判斷排序y是否小於或等於常數Y。若排序y小於或等於常數Y,則進入步驟S405。若排序y大於常數Y,則處理器110將排序y重設為1,並進入步驟S407。In step S404, the processor 110 may determine whether the sorting y is less than or equal to the constant Y. If the sorting y is less than or equal to the constant Y, then enter step S405. If the sorting y is greater than the constant Y, the processor 110 resets the sorting y to 1 and proceeds to step S407.

在步驟S405中,處理器110可從Y個工單中選出對應於排序y的工單,並且判斷工單是否關聯於最佳生產配置。若工單關聯於最佳生產配置,代表工單為人工智慧工單,且工單具有比一般工單高的優先度。據此,若工單關聯於最佳生產配置,則進入步驟S406,處理器110可將工單加入機台的工單排程中。在一實施例中,處理器110可根據先進先出規則將工單加入機台的工單排程中。另一方面,若工單與最佳生產配置不相關,則處理器110可判斷工單為一般工單。處理器110可將排序y的值增加1,並且重新執行步驟S404。In step S405, the processor 110 may select a work order corresponding to sorting y from the Y work orders, and determine whether the work order is associated with the optimal production configuration. If the work order is associated with the optimal production configuration, it means that the work order is an artificial intelligence work order, and the work order has a higher priority than a general work order. Accordingly, if the work order is associated with the optimal production configuration, step S406 is entered, and the processor 110 can add the work order to the work order schedule of the machine. In one embodiment, the processor 110 may add the work order to the work order schedule of the machine according to the first-in, first-out rule. On the other hand, if the work order is not related to the optimal production configuration, the processor 110 may determine that the work order is a general work order. The processor 110 may increase the value of sort y by 1 and re-execute step S404.

在步驟S407中,處理器110可判斷排序y是否小於或等於常數Y。若排序y小於或等於常數Y,則進入步驟S408。若排序y大於常數Y,則處理器110結束即時派工流程。在完成即時派工流程後,機台最終的工單排程即為最佳排程。In step S407, the processor 110 may determine whether the sorting y is less than or equal to the constant Y. If the sorting y is less than or equal to the constant Y, then enter step S408. If the sorting y is greater than the constant Y, the processor 110 ends the immediate dispatch process. After completing the real-time dispatch process, the machine's final work order schedule is the best schedule.

在步驟S408中,可將工單加入機台的工單排程中。在一實施例中,處理器110可根據先進先出規則將工單加入機台的工單排程中。In step S408, the work order can be added to the work order schedule of the machine. In one embodiment, the processor 110 may add the work order to the work order schedule of the machine according to the first-in, first-out rule.

在一實施例中,產品(i)的最佳生產配置(i)可包含對應於第k個站點的最佳產出量(i,k)。處理器110可週期性地更新第k個站點的在製品數量(i),進而基於圖2和圖3的流程根據在製品數量(i)更新最佳產出量(i,k)。如此,產品(i)的最佳生產配置(i)可動態地更新,以適應隨時可能變動之在製品的庫存狀況。In one embodiment, the optimal production configuration (i) of product (i) may include the optimal output volume (i,k) corresponding to the k-th site. The processor 110 may periodically update the work-in-progress quantity (i) of the k-th site, and then update the optimal output quantity (i, k) based on the work-in-progress quantity (i) based on the processes of FIGS. 2 and 3 . In this way, the optimal production configuration (i) of product (i) can be dynamically updated to adapt to the inventory status of work-in-progress that may change at any time.

圖5根據本發明的一實施例繪示一種派工方法的流程圖,其中所述派工方法可由如圖1所示的派工系統實施。在步驟S501中,取得對應於第一產品的第一目標管理參數集合,並且根據第一目標管理參數集合取得第一特徵集合、第二特徵集合以及第三特徵集合,其中第一目標管理參數集合關聯於第一機台。在步驟S502中,將第一特徵集合輸入至產線周期時間模型以取得第一機台的在製品處理量。在步驟S503中,將第二特徵集合輸入至稼動率模型以取得第一機台的稼動率。在步驟S504中,將第三特徵集合、在製品處理量以及稼動率輸入至產出量模型以取得第一機台的產出量。在步驟S505中,根據在製品處理量、稼動率、產出量以及第一產品的目標產出量計算對應於第一機台和第一產品的產出量分配率。在步驟S506中,執行即時派工流程以根據產出量分配率產生最佳排程,並且輸出最佳排程。FIG. 5 illustrates a flow chart of a labor dispatching method according to an embodiment of the present invention, wherein the labor dispatching method can be implemented by the labor dispatching system shown in FIG. 1 . In step S501, a first target management parameter set corresponding to the first product is obtained, and a first feature set, a second feature set and a third feature set are obtained according to the first target management parameter set, wherein the first target management parameter set Associated with the first machine. In step S502, the first feature set is input into the production line cycle time model to obtain the work-in-progress throughput of the first machine. In step S503, the second feature set is input into the utilization rate model to obtain the utilization rate of the first machine. In step S504, the third feature set, the work-in-progress throughput, and the utilization rate are input into the output model to obtain the output of the first machine. In step S505, the output distribution rate corresponding to the first machine and the first product is calculated based on the work-in-progress processing volume, utilization rate, output volume, and the target output volume of the first product. In step S506, the real-time dispatch process is executed to generate an optimal schedule based on the output allocation rate, and the optimal schedule is output.

綜上所述,本發明的派工系統可根據機器學習演算法以及生產管理參數預測諸如機台的在製品處理量、周期時間和總產出量等指標,並利用基因演算法和指標來為特定產品規劃出最佳排程。在執行即時派工流程時,派工系統可根據工單的佇列時間以及工單是否為人工智慧工單等因素決定工單的優先度,並且根據優先度決定工單排程。To sum up, the work dispatching system of the present invention can predict indicators such as the machine's work-in-process processing volume, cycle time, and total output based on machine learning algorithms and production management parameters, and use genetic algorithms and indicators to provide Plan the best schedule for a specific product. When executing the real-time dispatch process, the dispatch system can determine the priority of the work order based on factors such as the queuing time of the work order and whether the work order is an artificial intelligence work order, and determine the work order schedule based on the priority.

100:派工系統 110:處理器 120:儲存媒體 121:產線周期時間模型 122:稼動率模型 123:產出量模型 124:備援量模型 125:產出量分配模型 130:收發器 S401、S402、S403、S404、S405、S406、S407、S408、S501、S502、S503、S504、S505、S506:步驟100: Work dispatch system 110: Processor 120:Storage media 121:Production line cycle time model 122: Utilization rate model 123:Output model 124: Reserve capacity model 125:Output distribution model 130:Transceiver S401, S402, S403, S404, S405, S406, S407, S408, S501, S502, S503, S504, S505, S506: Steps

圖1根據本發明的一實施例繪示一種派工系統的示意圖。 圖2根據本發明的一實施例繪示評估機台能力流程的示意圖。 圖3根據本發明的一實施例繪示評估產出量分配率的示意圖。 圖4根據本發明的一實施例繪示即時派工流程的流程圖。 圖5根據本發明的一實施例繪示一種派工方法的流程圖。 Figure 1 is a schematic diagram of a labor dispatch system according to an embodiment of the present invention. FIG. 2 is a schematic diagram illustrating a process for evaluating machine capabilities according to an embodiment of the present invention. FIG. 3 illustrates a schematic diagram for evaluating the output allocation rate according to an embodiment of the present invention. FIG. 4 illustrates a flow chart of the real-time dispatch process according to an embodiment of the present invention. FIG. 5 illustrates a flow chart of a method for dispatching workers according to an embodiment of the present invention.

S501、S502、S503、S504、S505、S506:步驟 S501, S502, S503, S504, S505, S506: steps

Claims (14)

一種派工方法,包括: 取得對應於第一產品的第一目標管理參數集合,並且根據所述第一目標管理參數集合取得第一特徵集合、第二特徵集合以及第三特徵集合,其中所述第一目標管理參數集合關聯於第一機台; 將所述第一特徵集合輸入至產線周期時間模型以取得所述第一機台的在製品處理量; 將所述第二特徵集合輸入至稼動率模型以取得所述第一機台的稼動率; 將所述第三特徵集合、所述在製品處理量以及所述稼動率輸入至產出量模型以取得所述第一機台的產出量; 根據所述在製品處理量、所述稼動率、所述產出量以及所述第一產品的目標產出量計算對應於所述第一機台和所述第一產品的產出量分配率;以及 執行即時派工流程以根據所述產出量分配率產生最佳排程,並且輸出所述最佳排程。 A method of dispatching workers, including: Obtain a first target management parameter set corresponding to the first product, and obtain a first feature set, a second feature set and a third feature set according to the first target management parameter set, wherein the first target management parameter set is associated with at the first machine; Input the first feature set into the production line cycle time model to obtain the work-in-progress throughput of the first machine; Input the second feature set into the utilization rate model to obtain the utilization rate of the first machine; Input the third feature set, the work-in-progress throughput and the utilization rate into the output model to obtain the output of the first machine; Calculate the output distribution rate corresponding to the first machine and the first product based on the work-in-process processing volume, the utilization rate, the output volume, and the target output volume of the first product. ;as well as Execute a real-time dispatch process to generate an optimal schedule based on the output allocation rate, and output the optimal schedule. 如請求項1所述的派工方法,其中根據所述在製品處理量、所述稼動率、所述產出量以及所述第一產品的所述目標產出量計算對應於所述第一機台和所述第一產品的所述產出量分配率的步驟包括: 將所述第一目標管理參數集合、所述在製品處理量、所述稼動率以及所述產出量輸入至備援量模型以輸出所述第一機台的備援能力,並且根據所述產出量和所述備援能力計算所述第一機台的產出能力; 將所述第一目標管理參數集合以及所述產出能力輸入至產出量分配模型以取得對應於所述第一機台和所述第一產品的預測產出量分配率;以及 根據所述預測產出量分配率以及所述目標產出量以計算所述產出量分配率。 The labor dispatch method according to claim 1, wherein the number of workers corresponding to the first product is calculated based on the work-in-progress processing volume, the utilization rate, the output volume and the target output volume of the first product. The step of allocating the output volume of the machine and the first product includes: The first target management parameter set, the work-in-progress processing volume, the utilization rate and the output volume are input into the reserve volume model to output the reserve capacity of the first machine, and according to the The output volume and the backup capacity are used to calculate the output capacity of the first machine; Input the first target management parameter set and the output capacity into an output allocation model to obtain a predicted output allocation rate corresponding to the first machine and the first product; and The output allocation rate is calculated based on the predicted output allocation rate and the target output. 如請求項1所述的派工方法,其中所述第一目標管理參數集合更關聯於所述第一機台的上游機台,其中將所述第一特徵集合輸入至所述產線周期時間模型以取得所述第一機台的所述在製品處理量的步驟包括: 將所述第一特徵集合輸入至所述產線周期時間模型以輸出所述上游機台的周期時間;以及 根據所述周期時間以及所述上游機台的在製品數量計算所述在製品處理量。 The method of dispatching work according to claim 1, wherein the first target management parameter set is further associated with an upstream machine of the first machine, and the first feature set is input to the production line cycle time The step of modeling to obtain the work-in-progress throughput of the first machine includes: Input the first feature set into the production line cycle time model to output the cycle time of the upstream machine; and The WIP throughput is calculated based on the cycle time and the WIP quantity of the upstream machine. 如請求項1所述的派工方法,更包括: 基於基因演算法而根據所述產出量分配率產生所述第一產品的所述最佳排程。 The method of dispatching workers as described in request item 1 further includes: The optimal schedule of the first product is generated based on the output allocation rate based on a genetic algorithm. 如請求項4所述的派工方法,其中基於所述基因演算法而根據所述產出量分配率產生所述第一產品的所述最佳排程的步驟包括: 取得所述第一產品的站點流程,其中所述站點流程包括對應於所述第一機台的第一站點;以及 根據所述在製品處理量以及所述第一機台的至少一周期時間產生對應於所述站點流程的初始個體,其中所述初始個體包括對應於所述第一站點的第一候選產出量。 The work dispatching method according to claim 4, wherein the step of generating the optimal schedule of the first product according to the output allocation rate based on the genetic algorithm includes: Obtain a site process for the first product, wherein the site process includes a first site corresponding to the first machine; and An initial individual corresponding to the site process is generated according to the work-in-progress throughput and at least one cycle time of the first machine, wherein the initial individual includes a first candidate product corresponding to the first site. Output. 如請求項5所述的派工方法,其中基於所述基因演算法而根據所述產出量分配率產生所述第一產品的所述最佳排程的步驟更包括: 根據限制式更新所述第一候選產出量,其中所述限制式將所述第一候選產出量限制為小於或等於所述第一機台的在製品數量和所述第一站點的上游站點的第二候選產出量的總和。 The work dispatching method of claim 5, wherein the step of generating the optimal schedule of the first product based on the output allocation rate based on the genetic algorithm further includes: The first candidate output quantity is updated according to the restriction formula, wherein the restriction formula limits the first candidate output quantity to be less than or equal to the work-in-progress quantity of the first machine and the quantity of work-in-progress of the first site. The sum of the output quantities of the second candidates at the upstream site. 如請求項6所述的派工方法,其中所述限制式在所述第一站點的周期時間大於或等於預設值時,將所述第一候選產出量限制為小於或等於所述在製品數量。The labor dispatch method of claim 6, wherein the restriction formula limits the first candidate output to be less than or equal to the Quantity of work in progress. 如請求項7所述的派工方法,更包括: 計算所述預設值與所述周期時間的差值;以及 計算所述差值與所述第一機台的所述在製品處理量的乘積,其中 所述限制式在所述周期時間小於所述預設值時,將所述第一候選產出量限制為小於或等於所述在製品數量和所述乘積的總和。 The method of dispatching workers as described in request item 7 further includes: Calculate the difference between the preset value and the cycle time; and Calculate the product of the difference and the work-in-progress throughput of the first machine, where The restriction formula limits the first candidate output quantity to be less than or equal to the sum of the work-in-progress quantity and the product when the cycle time is less than the preset value. 如請求項4所述的派工方法,更包括: 根據所述第一候選產出量取得所述第一機台的總候選產出量; 取得所述第一機台的產出能力與所述總候選產出量的絕對差,其中 所述基因演算法的適應度函數關聯於所述絕對差。 The method of dispatching workers as described in request item 4 further includes: Obtain the total candidate output of the first machine according to the first candidate output; Obtain the absolute difference between the output capacity of the first machine and the total candidate output, where The fitness function of the genetic algorithm is related to the absolute difference. 如請求項4所述的派工方法,其中所述初始個體更包括對應於所述第一站點的上游站點的第二候選產出量,其中所述方法更包括: 根據所述第一候選產出量取得所述第一機台的第一總候選產出量;以及 根據所述第二候選產出量取得所述第一機台的至少一上游機台的第二總候選產出量,其中 所述基因演算法的適應度函數關聯於所述第一機台的在製品數量、所述第一總候選產出量以及所述第二總候選產出量。 The method of dispatching work as described in claim 4, wherein the initial individual further includes a second candidate output corresponding to an upstream site of the first site, wherein the method further includes: Obtain the first total candidate output of the first machine according to the first candidate output; and The second total candidate output of at least one upstream machine of the first machine is obtained according to the second candidate output, wherein The fitness function of the genetic algorithm is related to the work-in-progress quantity of the first machine, the first total candidate output volume, and the second total candidate output volume. 如請求項1所述的派工方法,其中所述即時派工流程包括: 取得所述第一機台的多個工單的排序,並且根據所述排序以從所述多個工單選出第一工單; 響應於所述第一工單包括佇列時間,將所述第一工單加入所述第一機台的工單排程中;以及 響應於所述第一工單不包括所述佇列時間,判斷所述第一工單是否關聯於所述第一產品的所述最佳排程。 The method of dispatching workers as described in request item 1, wherein the instant dispatch process includes: Obtain the ranking of multiple work orders of the first machine, and select a first work order from the plurality of work orders based on the ranking; In response to the first work order including the queue time, adding the first work order to the work order schedule of the first machine; and In response to the first work order not including the queue time, it is determined whether the first work order is associated with the optimal schedule of the first product. 如請求項11所述的派工方法,其中所述即時派工流程更包括: 響應於判斷所述第一工單關聯於所述最佳排程,將所述第一工單加入所述第一機台的所述工單排程中;以及 響應於判斷所述第一工單不關聯於所述最佳排程,根據先進先出規則將所述第一工單加入所述第一機台的所述工單排程中。 The method of dispatching workers as described in request item 11, wherein the instant dispatch process further includes: In response to determining that the first work order is associated with the optimal schedule, add the first work order to the work order schedule of the first machine; and In response to determining that the first work order is not associated with the optimal schedule, the first work order is added to the work order schedule of the first machine according to a first-in, first-out rule. 如請求項11所述的派工方法,其中所述最佳排程包括對應於第一站點的第一最佳產出量,其中所述即時派工流程更包括: 周期性地更新所述第一站點的在製品數量;以及 根據所述在製品數量更新所述第一最佳產出量。 The method of dispatching workers as described in claim 11, wherein the optimal schedule includes the first optimal output corresponding to the first site, and the real-time dispatch process further includes: Periodically updating the work-in-progress quantity at the first site; and The first optimal output quantity is updated according to the quantity of work in progress. 一種派工系統,包括: 收發器; 儲存媒體,儲存產線周期時間模型、稼動率模型以及產出量模型; 處理器,耦接所述儲存媒體和所述收發器,其中所述處理器經配置以執行: 通過所述收發器取得對應於第一產品的第一目標管理參數集合,並且根據所述第一目標管理參數集合取得第一特徵集合、第二特徵集合以及第三特徵集合,其中所述第一目標管理參數集合關聯於第一機台; 將所述第一特徵集合輸入至所述產線周期時間模型以取得所述第一機台的在製品處理量; 將所述第二特徵集合輸入至所述稼動率模型以取得所述第一機台的稼動率; 將所述第三特徵集合、所述在製品處理量以及所述稼動率輸入至所述產出量模型以取得所述第一機台的產出量; 根據所述在製品處理量、所述稼動率、所述產出量以及所述第一產品的目標產出量計算對應於所述第一機台和所述第一產品的產出量分配率;以及 執行即時派工流程以根據所述產出量分配率產生最佳排程,並且通過所述收發器輸出所述最佳排程。 A labor dispatch system including: transceiver; Storage media to store the production line cycle time model, utilization rate model and output volume model; A processor coupled the storage medium and the transceiver, wherein the processor is configured to perform: Obtain a first target management parameter set corresponding to the first product through the transceiver, and obtain a first feature set, a second feature set and a third feature set according to the first target management parameter set, wherein the first The target management parameter set is associated with the first machine; Input the first feature set into the production line cycle time model to obtain the work-in-progress throughput of the first machine; Input the second feature set into the utilization rate model to obtain the utilization rate of the first machine; Input the third feature set, the work-in-progress throughput, and the utilization rate into the output model to obtain the output of the first machine; Calculate the output distribution rate corresponding to the first machine and the first product based on the work-in-process processing volume, the utilization rate, the output volume, and the target output volume of the first product. ;as well as A real-time dispatch process is executed to generate an optimal schedule according to the output allocation rate, and the optimal schedule is output through the transceiver.
TW111141489A 2022-11-01 2022-11-01 Dispatching system and dispatching method TWI826087B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111141489A TWI826087B (en) 2022-11-01 2022-11-01 Dispatching system and dispatching method
CN202211459896.0A CN117993631A (en) 2022-11-01 2022-11-16 Dispatching system and dispatching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111141489A TWI826087B (en) 2022-11-01 2022-11-01 Dispatching system and dispatching method

Publications (2)

Publication Number Publication Date
TWI826087B true TWI826087B (en) 2023-12-11
TW202420001A TW202420001A (en) 2024-05-16

Family

ID=90053153

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111141489A TWI826087B (en) 2022-11-01 2022-11-01 Dispatching system and dispatching method

Country Status (2)

Country Link
CN (1) CN117993631A (en)
TW (1) TWI826087B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200816063A (en) * 2006-09-20 2008-04-01 Univ Nat Chiao Tung Matching method for interdependent scheduling
TW201714122A (en) * 2015-10-08 2017-04-16 橋弘軟件開發(上海)有限公司 Production scheduling method and automatically scheduling system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200816063A (en) * 2006-09-20 2008-04-01 Univ Nat Chiao Tung Matching method for interdependent scheduling
TW201714122A (en) * 2015-10-08 2017-04-16 橋弘軟件開發(上海)有限公司 Production scheduling method and automatically scheduling system

Also Published As

Publication number Publication date
CN117993631A (en) 2024-05-07

Similar Documents

Publication Publication Date Title
CN109784806B (en) Supply chain control method, system and storage medium
Yang et al. Multiple attribute decision-making methods for the dynamic operator allocation problem
TW201933199A (en) Method and apparatus for dynamic intelligent scheduling
Petrovic et al. Fuzzy job shop scheduling with lot-sizing
Wang et al. Two-stage hybrid flow shop batching and lot streaming with variable sublots and sequence-dependent setups
Zhang et al. Multi-level inventory matching and order planning under the hybrid Make-To-Order/Make-To-Stock production environment for steel plants via Particle Swarm Optimization
JP5134601B2 (en) Production schedule creation device
CN107609289A (en) The building material cost management-control method and system of structural fortification based on BIM models
Chang et al. A case-based reasoning approach for due-date assignment in a wafer fabrication factory
JP2003256635A (en) Support method for manufacture instruction quantity determination and program therefor
Wong et al. Intelligent multi-objective decision-making model with RFID technology for production planning
CN108665092A (en) A kind of whole process scheduled production and optimization method based on mixing glowworm swarm algorithm
Erden et al. Solving integrated process planning, dynamic scheduling, and due date assignment using metaheuristic algorithms
Jiang et al. A multi-stage dynamic soft scheduling algorithm for the uncertain steelmaking-continuous casting scheduling problem
Tseng et al. Hybrid evolutionary multi-objective algorithms for integrating assembly sequence planning and assembly line balancing
Mohanavelu et al. Simulation modelling and development of analytic hierarchy process-based priority dispatching rule for a dynamic press shop
CN106327053B (en) Construction method of weaving process recommendation model based on multi-mode set
Cheng et al. Inventory and total completion time minimization for assembly job-shop scheduling considering material integrity and assembly sequential constraint
CN106560850A (en) Plan Generating Device And Plan Generating Method
TWI826087B (en) Dispatching system and dispatching method
Vaghefinezhad et al. A genetic algorithm approach for solving a flexible job shop scheduling problem
JP2013033450A (en) Manufacturing work period prediction device, manufacturing work period prediction method, and computer program
CN107742183A (en) task scheduling system, method and storage medium
Song et al. An adaptive differential evolution algorithm with DBSCAN for the integrated slab allocation problem in steel industry
CN115689201A (en) Multi-criterion intelligent decision optimization method and system for enterprise resource supply and demand allocation