TWI825822B - Semiconductor structure with a porous structure - Google Patents

Semiconductor structure with a porous structure Download PDF

Info

Publication number
TWI825822B
TWI825822B TW111125026A TW111125026A TWI825822B TW I825822 B TWI825822 B TW I825822B TW 111125026 A TW111125026 A TW 111125026A TW 111125026 A TW111125026 A TW 111125026A TW I825822 B TWI825822 B TW I825822B
Authority
TW
Taiwan
Prior art keywords
layer
porous
semiconductor structure
conductive
dielectric layer
Prior art date
Application number
TW111125026A
Other languages
Chinese (zh)
Other versions
TW202345289A (en
Inventor
黃則堯
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/742,612 external-priority patent/US20230369202A1/en
Priority claimed from US17/742,541 external-priority patent/US20230369243A1/en
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Publication of TW202345289A publication Critical patent/TW202345289A/en
Application granted granted Critical
Publication of TWI825822B publication Critical patent/TWI825822B/en

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

The present application provides a semiconductor structure having a porous structure between a conductive pad and a metal layer. The semiconductor structure includes a substrate including an interconnection structure; a dielectric layer disposed over the substrate; a conductive pad disposed over the dielectric layer; a passivation layer, disposed over the dielectric layer and partially exposing the conductive pad; and a porous layer, surrounded by the dielectric layer and extending between the substrate and the conductive pad.

Description

具有多孔結構的半導體結構Semiconductor structure with porous structure

本申請案主張美國第17/742,541及17/742,612號專利申請案之優先權(即優先權日為「2022年5月12日」),其內容以全文引用之方式併入本文中。 This application claims priority to U.S. Patent Application Nos. 17/742,541 and 17/742,612 (that is, the priority date is "May 12, 2022"), the contents of which are incorporated herein by reference in their entirety.

本揭露關於一種半導體結構,特別是有關於一種具有多孔結構的半導體結構。 The present disclosure relates to a semiconductor structure, and in particular, to a semiconductor structure having a porous structure.

半導體元件被用於各種電子應用,如個人電腦、行動電話、數位相機及其他電子裝置。半導體元件的尺寸正在不斷縮小,以滿足日益增長的計算能力的需求。然而,在縮小尺寸的過程中出現了各種問題,而且這些問題的數量和複雜性都在不斷增加。因此,在實現提高品質、產量、性能和可靠性以及降低複雜性方面仍然存在挑戰。 Semiconductor components are used in various electronic applications such as personal computers, mobile phones, digital cameras and other electronic devices. Semiconductor components are continuously shrinking in size to meet growing demands for computing power. However, various problems arise during the downsizing process, and these problems continue to increase in number and complexity. Therefore, challenges remain in achieving improvements in quality, yield, performance and reliability, and in reducing complexity.

上文之「先前技術」說明僅係提供背景技術,並未承認上文之「先前技術」說明揭示本揭露之標的,不構成本揭露之先前技術,且上文之「先前技術」之任何說明均不應作為本案之任一部分。 The above description of "prior art" is only to provide background technology, and does not admit that the above description of "prior art" reveals the subject matter of the present disclosure. It does not constitute prior art of the present disclosure, and any description of the above "prior art" None should form any part of this case.

本揭露的一個方面提供一種半導體結構。該半導體結構包括:一基底,包括一互連結構;一介電層,設置於該基底上;一導電墊, 設置於該介電層上;一鈍化層,設置於該介電層上並部分曝露該導電墊;以及一多孔層,被該介電層包圍並在該基底與該導電墊之間延伸。 One aspect of the present disclosure provides a semiconductor structure. The semiconductor structure includes: a substrate including an interconnection structure; a dielectric layer disposed on the substrate; a conductive pad, disposed on the dielectric layer; a passivation layer disposed on the dielectric layer and partially exposing the conductive pad; and a porous layer surrounded by the dielectric layer and extending between the substrate and the conductive pad.

在一些實施例中,該半導體結構更包括:一第一襯墊,圍繞該多孔層並設置於該介電層內。 In some embodiments, the semiconductor structure further includes: a first liner surrounding the porous layer and disposed in the dielectric layer.

在一些實施例中,該第一襯墊至少部分地圍繞該多孔層的一側壁及一底部表面。 In some embodiments, the first liner at least partially surrounds a side wall and a bottom surface of the porous layer.

在一些實施例中,該第一襯墊圍繞該多孔層的一側壁,而該多孔層與該基底接觸。 In some embodiments, the first liner surrounds a side wall of the porous layer and the porous layer is in contact with the substrate.

在一些實施例中,該半導體結構更包括:一導電通孔,與該多孔層相鄰設置,並且電性連接該導電墊及該互連結構。 In some embodiments, the semiconductor structure further includes: a conductive via disposed adjacent to the porous layer and electrically connected to the conductive pad and the interconnect structure.

在一些實施例中,該介電層的一部分設置於該導電通孔與該多孔層之間。 In some embodiments, a portion of the dielectric layer is disposed between the conductive via and the porous layer.

在一些實施例中,該導電通孔的一頂部橫截面積實質上大於該多孔層的一頂部橫截面積。 In some embodiments, a top cross-sectional area of the conductive via is substantially larger than a top cross-sectional area of the porous layer.

在一些實施例中,該導電通孔延伸穿過該介電層。 In some embodiments, the conductive via extends through the dielectric layer.

在一些實施例中,該導電通孔包括複數個導電通孔,且該複數個導電通孔彼此分開。 In some embodiments, the conductive via includes a plurality of conductive vias, and the plurality of conductive vias are separated from each other.

在一些實施例中,該複數個導電通孔被該導電墊覆蓋。 In some embodiments, the plurality of conductive vias are covered by the conductive pad.

在一些實施例中,該多孔層的一孔隙率在5%至30%之間。 In some embodiments, the porous layer has a porosity between 5% and 30%.

在一些實施例中,該多孔層的一孔隙率在10%至15%之間。 In some embodiments, the porous layer has a porosity between 10% and 15%.

在一些實施例中,該半導體結構更包括:一第二襯墊,設置於該多孔層與該導電墊之間。 In some embodiments, the semiconductor structure further includes: a second pad disposed between the porous layer and the conductive pad.

在一些實施例中,該多孔層被該第一襯墊及該第二襯墊包圍。 In some embodiments, the porous layer is surrounded by the first liner and the second liner.

在一些實施例中,從一俯視角度看,該多孔層設置於該導電墊的一中心區域。 In some embodiments, the porous layer is disposed in a central area of the conductive pad when viewed from a top view.

本揭露的另一個方面提供了一種半導體結構。該半導體結構包括:一基底,包括一互連結構;一介電層,設置於該基底上;一多孔柱,設置於該基底上並延伸穿過該介電層;一第一防潮層,圍繞該多孔柱並設置於該介電層內;一導電通孔,在該介電層內延伸並鄰近該多孔柱設置;以及一導電墊,設置於該介電層上並覆蓋該導電通孔及該多孔柱。 Another aspect of the present disclosure provides a semiconductor structure. The semiconductor structure includes: a substrate including an interconnection structure; a dielectric layer disposed on the substrate; a porous pillar disposed on the substrate and extending through the dielectric layer; a first moisture-proof layer, Surrounding the porous pillar and disposed in the dielectric layer; a conductive via extending in the dielectric layer and disposed adjacent to the porous post; and a conductive pad disposed on the dielectric layer and covering the conductive via and the porous column.

在一些實施例中,該半導體結構更包括:一第二防潮層,設置於該多孔柱與該導電墊之間。 In some embodiments, the semiconductor structure further includes: a second moisture-proof layer disposed between the porous pillar and the conductive pad.

在一些實施例中,該導電通孔穿透該第二防潮層並接觸該導電墊。 In some embodiments, the conductive via penetrates the second moisture barrier layer and contacts the conductive pad.

在一些實施例中,該半導體結構更包括:一鈍化層,設置於該介電層上,並藉由該第二防潮層與該介電層分開。 In some embodiments, the semiconductor structure further includes: a passivation layer disposed on the dielectric layer and separated from the dielectric layer by the second moisture-proof layer.

在一些實施例中,該多孔柱包括一種或多種低k(介電常數)材料。 In some embodiments, the porous pillars include one or more low-k (dielectric constant) materials.

在一些實施例中,該導電通孔包括鎢、銅、鈷、釕、鉬或其組合。 In some embodiments, the conductive vias include tungsten, copper, cobalt, ruthenium, molybdenum, or combinations thereof.

在一些實施例中,該導電通孔包括:一阻障部件及被該導電通孔包圍的一導電部件。 In some embodiments, the conductive via includes: a barrier component and a conductive component surrounded by the conductive via.

在一些實施例中,該阻障層包括鈦、鉭、氮化鈦、氮化鉭,或其組合。 In some embodiments, the barrier layer includes titanium, tantalum, titanium nitride, tantalum nitride, or combinations thereof.

在一些實施例中,該第一防潮層包括氮化物、高k材料或其組合。 In some embodiments, the first moisture barrier layer includes nitride, high-k material, or combinations thereof.

本揭露的另一個方面提供一種半導體結構的製備方法。該製備方法包括:在一基底上形成一介電層;在該介電層中形成一開口;形成與該開口共形的一第一襯墊;在該開口中形成一多孔層並被該第一襯墊包圍;形成穿透該介電層的一導電通孔;以及在該介電層上形成一導電墊,其中該導電墊覆蓋該多孔層及該導電通孔。 Another aspect of the present disclosure provides a method of fabricating a semiconductor structure. The preparation method includes: forming a dielectric layer on a substrate; forming an opening in the dielectric layer; forming a first pad conforming to the opening; forming a porous layer in the opening and being covered by the opening. The first liner surrounds; forming a conductive via hole penetrating the dielectric layer; and forming a conductive pad on the dielectric layer, wherein the conductive pad covers the porous layer and the conductive via hole.

在一些實施例中,該製備方法更包括:在形成該導電通孔之前,在該介電層上形成一第二襯墊,其中該導電通孔穿透該第二襯墊。 In some embodiments, the preparation method further includes: forming a second liner on the dielectric layer before forming the conductive via hole, wherein the conductive via hole penetrates the second liner.

在一些實施例中,該多孔層的一頂部表面與該第一襯墊的一頂部表面實質上對齊。 In some embodiments, a top surface of the porous layer is substantially aligned with a top surface of the first liner.

在一些實施例中,該第一襯墊的形成包括:沉積與該介電層及該開口共形的一第一氮化物層;以及移除該介電層上方及該開口中的該第一氮化物層的水平部分。 In some embodiments, forming the first liner includes: depositing a first nitride layer conformable to the dielectric layer and the opening; and removing the first nitride layer above the dielectric layer and in the opening. The horizontal portion of the nitride layer.

在一些實施例中,該導電墊的形成包括:在該介電層上沉積一導電層;在該導電層上形成一光阻層;移除通過該光阻層曝露的該導電層的一部分以形成該導電墊;以及移除該光阻層。 In some embodiments, forming the conductive pad includes: depositing a conductive layer on the dielectric layer; forming a photoresist layer on the conductive layer; removing a portion of the conductive layer exposed through the photoresist layer. forming the conductive pad; and removing the photoresist layer.

在一些實施例中,該製備方法更包括:在該介電層及該導電墊上形成一鈍化材料;以及曝露該導電墊的至少一部分。 In some embodiments, the preparation method further includes: forming a passivation material on the dielectric layer and the conductive pad; and exposing at least a portion of the conductive pad.

在一些實施例中,該多孔層的形成包括:在該介電層上及該開口中形成一能量可移除材料;對該能量可移除材料執行一能量處理;以及移除設置於該介電層上方的該能量可移除材料的一部分。 In some embodiments, forming the porous layer includes: forming an energy-removable material on the dielectric layer and in the opening; performing an energy treatment on the energy-removable material; and removing the energy-removable material disposed in the medium. This energy above the electrical layer can remove part of the material.

在一些實施例中,該能量可移除材料包括一熱分解材料、 一光子分解材料、一電子束分解材料,或其組合。 In some embodiments, the energy-removable material includes a thermally decomposable material, A photon decomposes the material, an electron beam decomposes the material, or a combination thereof.

在一些實施例中,該能量可移除材料包括一基礎材料及一可分解致孔材料。 In some embodiments, the energy-removable material includes a base material and a decomposable porogen material.

在一些實施例中,該基礎材料包括一種基於甲矽烷基的材料,而可分解致孔材料包括一種致孔有機化合物。 In some embodiments, the base material includes a silyl-based material and the decomposable porogen material includes a porogenic organic compound.

在一些實施例中,該能量處理包括將一熱源或一光源應用於該能量可移除材料。 In some embodiments, the energy treatment includes applying a heat source or a light source to the energy-removable material.

上文已相當廣泛地概述本揭露之技術特徵及優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵及優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可作為修改或設計其它結構或過程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。 The technical features and advantages of the present disclosure have been summarized rather broadly above so that the detailed description of the present disclosure below may be better understood. Other technical features and advantages that constitute the subject matter of the patentable scope of the present disclosure will be described below. It should be understood by those of ordinary skill in the art that the concepts and specific embodiments disclosed below can be readily used to modify or design other structures or processes to achieve the same purposes of the present disclosure. Those with ordinary knowledge in the technical field to which the present disclosure belongs should also understand that such equivalent constructions cannot depart from the spirit and scope of the present disclosure as defined in the appended patent application scope.

10:基底 10: Base

11:基底層 11: Basal layer

12:互連結構 12:Interconnect structure

21:介電層 21: Dielectric layer

31:第一襯墊 31: first liner

32:能量可移除材料 32: Energy removable materials

33:多孔層 33: Porous layer

34:第二襯墊 34:Second pad

35:第三襯墊 35:Third pad

41:阻障層 41:Barrier layer

42:導電材料 42: Conductive materials

43:阻障部件 43:Barrier components

44:導電部件 44: Conductive parts

45:導電通孔 45:Conductive vias

51:接觸材料 51:Contact materials

52:導電墊 52:Conductive pad

53:鈍化材料 53: Passivation material

54:鈍化層 54: Passivation layer

61:光阻層 61: Photoresist layer

62:光阻層 62: Photoresist layer

63:光阻層 63: Photoresist layer

71:能量處理 71:Energy processing

81:乾式蝕刻操作 81: Dry etching operation

82:回蝕操作 82: Erosion back operation

83:定圖形操作 83: Fixed graphics operation

84:蝕刻操作 84:Etching operation

91:開口 91:Open your mouth

92:開口 92:Open your mouth

93:開口 93:Open your mouth

100:半導體結構 100:Semiconductor Structure

101:頂部表面 101: Top surface

121:金屬間介電(IMD)層 121: Intermetal dielectric (IMD) layer

122:通孔 122:Through hole

123:IMD層 123:IMD layer

124:金屬線 124:Metal wire

200:半導體結構 200:Semiconductor Structure

211:頂部表面 211: Top surface

300:半導體結構 300:Semiconductor Structure

321:頂部表面 321:Top surface

331:頂部表面 331:Top surface

332:底部表面 332: Bottom surface

341:頂部表面 341:Top surface

351:頂部表面 351:Top surface

451:頂部表面 451:Top surface

521:頂部表面 521:Top surface

522:側壁 522:Side wall

523:中心區域 523:Central area

524:週邊區域 524: Surrounding area

525:中心 525:center

531:頂部表面 531: Top surface

911:側壁 911:Side wall

912:底部表面 912: Bottom surface

A-A':線 A-A': line

B-B':線 B-B': line

C-C':線 C-C': line

M1:金屬層 M1: metal layer

Mn:金屬層 Mn: metal layer

S1:製備方法 S1: Preparation method

S11:操作 S11: Operation

S12:操作 S12: Operation

S13:操作 S13: Operation

S14:操作 S14: Operation

S15:操作 S15: Operation

S16:操作 S16: Operation

參閱實施方式與申請專利範圍合併考量圖式時,可得以更全面了解本申請案之揭示內容,圖式中相同的元件符號係指相同的元件。 The disclosure content of this application can be more fully understood by referring to the embodiments and the patent scope combined with the drawings. The same element symbols in the drawings refer to the same elements.

圖1是橫截面圖,例示本揭露一些實施例之半導體結構。 FIG. 1 is a cross-sectional view illustrating a semiconductor structure according to some embodiments of the present disclosure.

圖2是俯視圖,例示本揭露一些實施例之半導體結構。 FIG. 2 is a top view illustrating a semiconductor structure according to some embodiments of the present disclosure.

圖3是流程圖,例示本揭露一些實施例之半導體結構的製備方法。 FIG. 3 is a flow chart illustrating a method of manufacturing a semiconductor structure according to some embodiments of the present disclosure.

圖4至圖26是橫截面圖,例示本揭露一些實施例之半導體結構的製備中間階段。 4-26 are cross-sectional views illustrating intermediate stages of fabrication of semiconductor structures according to some embodiments of the present disclosure.

圖27是俯視圖,例示本揭露一些實施例之半導體結構。 27 is a top view illustrating a semiconductor structure according to some embodiments of the present disclosure.

圖28至圖31是橫截面圖,例示本揭露一些實施例之半導體結構的製備中間階段。 28-31 are cross-sectional views illustrating intermediate stages of fabrication of semiconductor structures according to some embodiments of the present disclosure.

圖32是俯視圖,例示本揭露一些實施例之半導體結構。 32 is a top view illustrating a semiconductor structure according to some embodiments of the present disclosure.

現在用具體的語言來描述附圖中說明的本揭露的實施例,或實例。應理解的是,在此不打算限制本揭露的範圍。對所描述的實施例的任何改變或修改,以及對本文所描述的原理的任何進一步應用,都應被認為是與本揭露內容有關的技術領域的普通技術人員通常會做的。參考數字可以在整個實施例中重複,但這並不一定表示一實施例的特徵適用於另一實施例,即使它們共用相同的參考數字。 Specific language will now be used to describe the embodiments, or examples, of the present disclosure illustrated in the drawings. It should be understood that there is no intention to limit the scope of the present disclosure. Any changes or modifications to the described embodiments, and any further applications of the principles described herein, are deemed to be commonly made by one of ordinary skill in the art to which this disclosure relates. Reference numbers may be repeated throughout the embodiments, but this does not necessarily mean that features of one embodiment apply to another embodiment, even if they share the same reference number.

應理解的是,儘管用語第一、第二、第三等可用於描述各種元素、元件、區域、層或部分,但這些元素、元件、區域、層或部分不受這些用語的限制。相反,這些用語只是用來區分一元素、元件、區域、層或部分與另一元素、元件、區域、層或部分。因此,下面討論的第一元素、元件、區域、層或部分可以稱為第二元素、元件、區域、層或部分而不偏離本發明概念的教導。 It will be understood that, although the terms first, second, third, etc. may be used to describe various elements, components, regions, layers or sections, these elements, elements, regions, layers or sections are not limited by these terms. Rather, these terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the inventive concept.

本文使用的用語僅用於描述特定的實施例,並不打算局限於本發明的概念。正如本文所使用的,單數形式的"一"、"一個"及"該"也包括複數形式,除非上下文明確指出。應進一步理解,用語"包含"及"包括",當在本說明書中使用時,指出了所述特徵、整數、步驟、操作、元素或元件的存在,但不排除存在或增加一個或多個其他特徵、整數、步驟、操作、元素、元件或其組。 The terminology used herein is for describing particular embodiments only and is not intended to limit the concepts of the invention. As used herein, the singular forms "a", "an" and "the" include the plural forms as well, unless the context clearly dictates otherwise. It will be further understood that the terms "comprises" and "includes", when used in this specification, indicate the presence of stated features, integers, steps, operations, elements or components, but do not exclude the presence or addition of one or more other Characteristic, integer, step, operation, element, component, or group thereof.

圖1是橫截面圖,例示本揭露一些實施例之半導體結構 100。半導體結構100可包括基底10、介電層21、導電墊52、鈍化層54及多孔層33。在一些實施例中,基底10包括互連結構12。為了便於說明及簡化附圖,圖1中只描繪最上面的金屬層Mn。在一些實施例中,金屬層Mn包括多個金屬線124及圍繞金屬線124的金屬間介電(IMD)層123。金屬線124可以藉由IMD層123彼此分開及電性隔離。在一些實施例中,介電層21設置於基底10上。在一些實施例中,導電墊52設置於介電層21上。在一些實施例中,鈍化層54設置於介電層21上。在一些實施例中,鈍化層54覆蓋導電墊52。在一些實施例中,導電墊52至少部分地通過鈍化層54曝露。在一些實施例中,多孔層33在導電墊52與基底10之間延伸。在一些實施例中,多孔層33夾於導電墊52與基底10之間。在一些實施例中,多孔層33由介電層21包圍。在一些實施例中,多孔層33的孔隙率在5%至30%之間。在一些實施例中,多孔層33的孔隙率在10%至15%之間。在一些實施例中,多孔層33包括低k(介電常數)材料。在一些實施例中,多孔層33具有柱狀構造。在一些實施例中,多孔層33可以被稱為多孔柱33。 1 is a cross-sectional view illustrating a semiconductor structure of some embodiments of the present disclosure. 100. The semiconductor structure 100 may include a substrate 10 , a dielectric layer 21 , a conductive pad 52 , a passivation layer 54 and a porous layer 33 . In some embodiments, substrate 10 includes interconnect structure 12 . In order to facilitate explanation and simplify the drawings, only the uppermost metal layer Mn is depicted in FIG. 1 . In some embodiments, the metal layer Mn includes a plurality of metal lines 124 and an inter-metal dielectric (IMD) layer 123 surrounding the metal lines 124 . The metal lines 124 may be separated and electrically isolated from each other by the IMD layer 123 . In some embodiments, the dielectric layer 21 is disposed on the substrate 10 . In some embodiments, the conductive pad 52 is disposed on the dielectric layer 21 . In some embodiments, passivation layer 54 is disposed on dielectric layer 21 . In some embodiments, passivation layer 54 covers conductive pad 52 . In some embodiments, conductive pad 52 is at least partially exposed through passivation layer 54 . In some embodiments, porous layer 33 extends between conductive pad 52 and substrate 10 . In some embodiments, porous layer 33 is sandwiched between conductive pad 52 and substrate 10 . In some embodiments, porous layer 33 is surrounded by dielectric layer 21 . In some embodiments, porous layer 33 has a porosity between 5% and 30%. In some embodiments, porous layer 33 has a porosity between 10% and 15%. In some embodiments, porous layer 33 includes a low-k (dielectric constant) material. In some embodiments, porous layer 33 has a columnar configuration. In some embodiments, porous layer 33 may be referred to as porous pillars 33.

多孔層33的製作技術可包含能量可移除材料,如下文所述。在一些實施例中,能量可移除材料可包括例如熱分解材料、光子分解材料、電子束分解材料,或其組合。例如,能量可移除材料可包括一基礎材料及一可分解致孔材料,該材料在曝露於能量源時被犧牲掉。 Fabrication techniques for porous layer 33 may include energy removable materials, as described below. In some embodiments, energy removable materials may include, for example, thermal decomposition materials, photon decomposition materials, electron beam decomposition materials, or combinations thereof. For example, energy-removable materials may include a base material and a decomposable porogen material that is sacrificed upon exposure to an energy source.

多孔層33可包括骨架及設置於骨架之間的複數個空位。複數個空位可以相互連接,並可以填充空氣。骨架可包括,例如,氧化矽或甲基矽倍半氧烷(methylsilsesquioxane)。多孔層33在半導體結構100的製程期間或在應用半導體結構100時可做為力的吸收者。在一些實施例中, 由於多孔結構的特性,多孔層33可以在製程期間吸收半導體結構100或導電墊52的結合力。因此,可以減少半導體結構100的缺陷或損壞,並且提高半導體結構100或其應用的性能及生產產量。 The porous layer 33 may include a skeleton and a plurality of vacancies disposed between the skeleton. Multiple vacancies can be connected to each other and filled with air. The backbone may include, for example, silicon oxide or methylsilsesquioxane. The porous layer 33 may act as a force absorber during the processing of the semiconductor structure 100 or when the semiconductor structure 100 is used. In some embodiments, Due to the characteristics of the porous structure, the porous layer 33 can absorb the bonding force of the semiconductor structure 100 or the conductive pad 52 during the process. Therefore, defects or damage to the semiconductor structure 100 may be reduced, and the performance and production yield of the semiconductor structure 100 or its application may be improved.

半導體結構100還可包括圍環多孔層33的第一襯墊31。在一些實施例中,第一襯墊31延伸穿過介電層21。在一些實施例中,第一襯墊31的至少一部分設置於介電層21內。在一些實施例中,第一襯墊31也設置於介電層21上。在一些實施例中,第一襯墊31僅圍繞多孔層33的側壁(在圖1中未顯示)。在一些實施例中,第一襯墊31圍繞多孔層33的側壁及底部表面332。在一些實施例中,第一襯墊31包括氮化物、高k材料或其組合。在一些實施例中,第一襯墊31包括氮化矽。 The semiconductor structure 100 may further include a first liner 31 surrounding the porous layer 33 . In some embodiments, first pad 31 extends through dielectric layer 21 . In some embodiments, at least a portion of the first pad 31 is disposed within the dielectric layer 21 . In some embodiments, the first pad 31 is also disposed on the dielectric layer 21 . In some embodiments, first liner 31 only surrounds the sidewalls of porous layer 33 (not shown in Figure 1). In some embodiments, first liner 31 surrounds sidewalls and bottom surface 332 of porous layer 33 . In some embodiments, first liner 31 includes nitride, a high-k material, or a combination thereof. In some embodiments, first liner 31 includes silicon nitride.

半導體結構100還可包括設置於多孔層33與導電墊52之間的第二襯墊34。在一些實施例中,第二襯墊34更設置於介電層21與導電墊52之間。在一些實施例中,第二襯墊34更設置於介電層21與鈍化層54之間。在一些實施例中,多孔層33被第一襯墊31及第二襯墊34包圍。在一些實施例中,第二襯墊34是平面層。在一些實施例中,第二襯墊34包括氮化物。在一些實施例中,第二襯墊34包括與第一襯墊31相同的材料。第一襯墊31及第二襯墊34經配置以防止水氣進入多孔層33。在一些實施例中,第一襯墊31及第二襯墊34被稱為第一防潮層31及第二防潮層34。 The semiconductor structure 100 may further include a second pad 34 disposed between the porous layer 33 and the conductive pad 52 . In some embodiments, the second pad 34 is further disposed between the dielectric layer 21 and the conductive pad 52 . In some embodiments, the second pad 34 is further disposed between the dielectric layer 21 and the passivation layer 54 . In some embodiments, porous layer 33 is surrounded by first liner 31 and second liner 34 . In some embodiments, second liner 34 is a planar layer. In some embodiments, second liner 34 includes nitride. In some embodiments, second gasket 34 includes the same material as first gasket 31 . The first liner 31 and the second liner 34 are configured to prevent moisture from entering the porous layer 33 . In some embodiments, the first liner 31 and the second liner 34 are referred to as the first moisture-proof layer 31 and the second moisture-proof layer 34 .

半導體結構100還可包括至少一個導電通孔45。導電通孔45可將導電墊52與互連結構12電性連接。更具體地說,導電通孔45可將導電墊52與互連結構12的最上面的金屬層Mn中的金屬線124電性連接。在一些實施例中,導電通孔45設置於基底10上的介電層21中。在一些實 施例中,導電通孔45與多孔層33相鄰。在一些實施例中,介電層21的一部分設置於導電通孔45與多孔層33之間。在一些實施例中,導電通孔45藉由介電層21與多孔層33物理隔離。在一些實施例中,導電通孔45延伸穿過介電層21。在一些實施例中,導電通孔45延伸穿過第一襯墊31。在一些實施例中,導電通孔45延伸穿過第二襯墊34。在一些實施例中,導電通孔45包括鎢、銅、鈷、釕、鉬,或其組合。 Semiconductor structure 100 may also include at least one conductive via 45 . The conductive vias 45 can electrically connect the conductive pads 52 to the interconnect structure 12 . More specifically, the conductive vias 45 can electrically connect the conductive pads 52 to the metal lines 124 in the uppermost metal layer Mn of the interconnect structure 12 . In some embodiments, the conductive via 45 is disposed in the dielectric layer 21 on the substrate 10 . In some practical In the embodiment, the conductive via 45 is adjacent to the porous layer 33 . In some embodiments, a portion of dielectric layer 21 is disposed between conductive via 45 and porous layer 33 . In some embodiments, conductive vias 45 are physically isolated from porous layer 33 by dielectric layer 21 . In some embodiments, conductive vias 45 extend through dielectric layer 21 . In some embodiments, conductive via 45 extends through first pad 31 . In some embodiments, conductive via 45 extends through second pad 34 . In some embodiments, conductive vias 45 include tungsten, copper, cobalt, ruthenium, molybdenum, or combinations thereof.

圖2是俯視圖,例示本揭露一些實施例之導電墊52、導電通孔45及多孔層33。在一些實施例中,圖1是沿圖2中A-A'線的橫截面圖。在一些實施例中,半導體結構100包括如圖1及圖2所示的多個導電通孔45。在一些實施例中,導電通孔45是彼此分開。在一些實施例中,導電通孔45全部由導電墊52覆蓋。在一些實施例中,多孔層33設置於導電墊52的中心區域523。在一些實施例中,多孔層33與導電墊52的中心525(用點表示)重疊。在一些實施例中,如圖2所示,導電通孔45圍繞著多孔層33。然而,只要導電墊52能與基底10的互連結構12電性連接,導電通孔45的排列在此不受限制。在一些實施例中,導電通孔45的頂部橫截面積(從圖2所示的俯視角度看到的面積)實質上大於多孔層33的頂部橫截面積(從圖2所示的俯視角度看到的面積),以達到降低電阻及提高導電性的目的。在一些實施例中,導電通孔45的頂部橫截面積是導電通孔45的頂部表面的總面積。在一些實施例中,多孔層33的頂部橫截面積是多孔層33的頂部表面的面積。 FIG. 2 is a top view illustrating the conductive pads 52 , conductive vias 45 and porous layer 33 according to some embodiments of the present disclosure. In some embodiments, FIG. 1 is a cross-sectional view along line AA' in FIG. 2 . In some embodiments, the semiconductor structure 100 includes a plurality of conductive vias 45 as shown in FIGS. 1 and 2 . In some embodiments, conductive vias 45 are separate from each other. In some embodiments, conductive vias 45 are entirely covered by conductive pads 52 . In some embodiments, the porous layer 33 is disposed in the central region 523 of the conductive pad 52 . In some embodiments, porous layer 33 overlaps center 525 (indicated by a dot) of conductive pad 52 . In some embodiments, as shown in FIG. 2 , conductive vias 45 surround porous layer 33 . However, the arrangement of the conductive vias 45 is not limited as long as the conductive pads 52 can be electrically connected to the interconnection structure 12 of the substrate 10 . In some embodiments, the top cross-sectional area of the conductive vias 45 (the area seen from the top view of FIG. 2 ) is substantially larger than the top cross-sectional area of the porous layer 33 (the area as seen from the top view of FIG. 2 area) to achieve the purpose of reducing resistance and improving conductivity. In some embodiments, the top cross-sectional area of conductive via 45 is the total area of the top surface of conductive via 45 . In some embodiments, the top cross-sectional area of porous layer 33 is the area of the top surface of porous layer 33 .

圖3是流程圖,例示本揭露一些實施例之半導體結構(類似於半導體結構100)的製備方法S1。製備方法S1包括一些操作(S11、S12、S13、S14、S15及S16),描述和說明不應視為對操作順序的限制。在操作 S11中,在一基底上形成一介電層。在操作S12中,在該介電層中形成一開口。在操作S13中,形成與該開口共形的一第一襯墊。在操作S14中,在該開口中形成一多孔層,並且該多孔層被該第一襯墊包圍。在操作S15中,形成穿透該介電層的一導電通孔。在操作S16中,在該介電層上形成一導電墊,其中該導電墊覆蓋該多孔層及該導電通孔。應該注意的是,製備方法S1的操作可以在各方面的範圍內重新安排或以其他方式修改。在製備方法S1之前、期間和之後可以提供額外的製程,而且一些其他的製程在此可能只是簡單地描述。因此,在本文描述的各方面的範圍內,其他實施方式是可能的。 FIG. 3 is a flowchart illustrating a method S1 for fabricating a semiconductor structure (similar to the semiconductor structure 100 ) according to some embodiments of the present disclosure. Preparation method S1 includes some operations (S11, S12, S13, S14, S15 and S16), and the description and explanation should not be regarded as limiting the order of operations. in operation In S11, a dielectric layer is formed on a substrate. In operation S12, an opening is formed in the dielectric layer. In operation S13, a first pad conforming to the opening is formed. In operation S14, a porous layer is formed in the opening and surrounded by the first liner. In operation S15, a conductive via hole is formed penetrating the dielectric layer. In operation S16, a conductive pad is formed on the dielectric layer, wherein the conductive pad covers the porous layer and the conductive via hole. It should be noted that the operations of preparation method S1 may be rearranged or otherwise modified within various aspects. Additional processes may be provided before, during and after preparation method S1, and some other processes may be briefly described here. Accordingly, other implementations are possible within the scope of the aspects described herein.

圖4至圖26是橫截面圖,例示本揭露一些實施例之半導體結構200的製備方法S1所構建的各種製備階段。圖4至圖26中所示的階段也在圖3的製備流程中示意性地說明。在隨後的討論中,參照圖3中的製備操作來討論圖4至圖26中所示的製備階段。 4 to 26 are cross-sectional views illustrating various fabrication stages constructed by the fabrication method S1 of the semiconductor structure 200 according to some embodiments of the present disclosure. The stages shown in FIGS. 4 to 26 are also schematically illustrated in the preparation sequence of FIG. 3 . In the ensuing discussion, the preparation stages shown in FIGS. 4 to 26 are discussed with reference to the preparation operations in FIG. 3 .

參照圖4,圖4是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在操作S11之前,提供、接收或形成基底10。 Referring to FIG. 4 , FIG. 4 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. Before operation S11, a substrate 10 is provided, received or formed.

基底10可包括設置於或形成於基底層11上的互連結構12。基底層11可以是半導體基底,例如塊狀(bulk)半導體、絕緣體上的半導體(SOI)基底等。基底層11可以包含第一導電性類型,例如P型基底(電子接受者類型),或第二導電性類型,例如N型半導體基底(電子給予者類型)。另外,基底層11可包括元素的(elementary)半導體,包括單晶形式、多晶形式或無定形(amorphou)形式的矽或鍺;複合半導體材料,包括碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦及銻化銦中的至少一種;合金半導體材料,包括SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP及GaInAsP 中的至少一種;任何其他適合的材料;或其組合。在一些實施例中,合金半導體基底可以是具有梯度Si:Ge特徵的SiGe合金,其中Si及Ge的成分從梯度SiGe特徵的位置的比例變為另位置的比例。在另一實施例中,SiGe合金是形成在矽基底上。在一些實施例中,SiGe合金可以被與SiGe合金接觸的另一種材料機械地拉緊。 The substrate 10 may include an interconnect structure 12 disposed or formed on the base layer 11 . The base layer 11 may be a semiconductor substrate, such as a bulk semiconductor, a semiconductor on insulator (SOI) substrate, or the like. The base layer 11 may include a first conductivity type, such as a P-type substrate (electron acceptor type), or a second conductivity type, such as an N-type semiconductor substrate (electron donor type). In addition, the base layer 11 may include elemental semiconductors, including silicon or germanium in single crystal form, polycrystalline form or amorphous form; composite semiconductor materials, including silicon carbide, gallium arsenide, gallium phosphide, At least one of indium phosphide, indium arsenide and indium antimonide; alloy semiconductor materials including SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP and GaInAsP At least one of; any other suitable materials; or a combination thereof. In some embodiments, the alloy semiconductor substrate may be a SiGe alloy having a gradient Si:Ge feature, where the compositions of Si and Ge change from a ratio at one location of the gradient SiGe feature to a ratio at another location. In another embodiment, the SiGe alloy is formed on a silicon substrate. In some embodiments, the SiGe alloy can be mechanically strained by another material in contact with the SiGe alloy.

在一些實施例中,基底層11可以是多層結構,或者基底層11可包括多層化合物半導體結構。在一些實施例中,基底層11包括半導體元件、電組件(electrical component)、電元素(electrical element)或其組合。在一些實施例中,基底層11包括電晶體或電晶體的功能單元。半導體元件、電組件或電元素可以按照半導體的常規製備方法形成在基底層11中。半導體元件、電組件或電元素可以是主動(active)組件或元件,並且可包括不同類型或不同世代的元件。半導體元件、電組件或電元素可包括平面電晶體、多閘極電晶體、閘極環繞場效應電晶體(GAAFET)、鰭式場效應電晶體(FinFET)、垂直電晶體、奈米片電晶體、奈米線電晶體、被動(passive)元件、電容器、記憶體元件或其組合。 In some embodiments, the base layer 11 may be a multi-layer structure, or the base layer 11 may include a multi-layer compound semiconductor structure. In some embodiments, the base layer 11 includes a semiconductor element, an electrical component, an electrical element, or a combination thereof. In some embodiments, the base layer 11 includes a transistor or a functional unit of a transistor. Semiconductor elements, electrical components or electrical elements may be formed in the base layer 11 according to conventional semiconductor manufacturing methods. Semiconductor components, electrical components or electrical elements may be active components or components, and may include different types or generations of components. Semiconductor components, electrical components or electrical elements may include planar transistors, multi-gate transistors, gate surround field effect transistors (GAAFET), fin field effect transistors (FinFET), vertical transistors, nanosheet transistors, Nanowire transistors, passive components, capacitors, memory components or combinations thereof.

互連結構12可包括多個金屬層M1至Mn,其中n是大於1的正整數。互連結構12還可包括在金屬層之間交替排列的多個通孔層,用於金屬層之間的電氣連接。在一些實施例中,每個金屬層包含金屬線及圍繞金屬線的金屬間介電(IMD)層。在一些實施例中,每個通孔層包含金屬通孔及圍繞金屬通孔的IMD層。在一些實施例中,互連結構12的金屬層M1是基底層11上方的第一金屬層。在一些實施例中,金屬層Mn代表互連結構12的最上面的金屬層。在一些實施例中,金屬層Mn包括IMD層123及由IMD層123包圍的多個金屬線124。在一些實施例中,最上面的通孔層包 括IMD層121及多個通孔122,將金屬線124與下面的金屬層電性連接。為了簡單起見,在下面的描述及相關數字中只描述及說明基底10的金屬層Mn,但這種描述並不是為了限制本揭露內容。在一些實施例中,金屬線124包括一種或多種金屬,如鎢、銅、鈷、釕、鉬、鈦、鉭、鎳、鉑、鉺、其組合、其合金或其合金的組合。在一些實施例中,金屬線124包括鎢、銅、鉑或其組合。 The interconnect structure 12 may include a plurality of metal layers M1 to Mn, where n is a positive integer greater than 1. The interconnect structure 12 may also include a plurality of via layers alternately arranged between the metal layers for electrical connection between the metal layers. In some embodiments, each metal layer includes a metal line and an inter-metal dielectric (IMD) layer surrounding the metal line. In some embodiments, each via layer includes a metal via and an IMD layer surrounding the metal via. In some embodiments, metal layer M1 of interconnect structure 12 is the first metal layer above base layer 11 . In some embodiments, metal layer Mn represents the uppermost metal layer of interconnect structure 12 . In some embodiments, the metal layer Mn includes an IMD layer 123 and a plurality of metal lines 124 surrounded by the IMD layer 123 . In some embodiments, the uppermost via layer contains It includes an IMD layer 121 and a plurality of through holes 122 to electrically connect the metal lines 124 to the underlying metal layer. For the sake of simplicity, only the metal layer Mn of the substrate 10 is described and illustrated in the following description and related numbers, but this description is not intended to limit the disclosure. In some embodiments, metal wire 124 includes one or more metals, such as tungsten, copper, cobalt, ruthenium, molybdenum, titanium, tantalum, nickel, platinum, erbium, combinations thereof, alloys thereof, or combinations of alloys thereof. In some embodiments, metal lines 124 include tungsten, copper, platinum, or combinations thereof.

參照圖5,圖5是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在提供、接收或形成基底10後,在操作S11中,在基底10上形成介電層21。在一些實施例中,介電層21形成在基底10的頂部表面101上。在一些實施例中,介電層21是層間介電質(ILD)層。在一些實施例中,介電層21包括一種或多種介電材料。在一些實施例中,介電材料包括氧化矽(SiOx)、氮化矽(SixNy)、氮氧化矽(SiON),或其組合。在一些實施例中,介電層21包括二氧化矽(SiO2)。 Referring to FIG. 5 , FIG. 5 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. After the substrate 10 is provided, received or formed, a dielectric layer 21 is formed on the substrate 10 in operation S11. In some embodiments, dielectric layer 21 is formed on top surface 101 of substrate 10 . In some embodiments, dielectric layer 21 is an interlayer dielectric (ILD) layer. In some embodiments, dielectric layer 21 includes one or more dielectric materials. In some embodiments, the dielectric material includes silicon oxide (SiOx), silicon nitride (SixNy), silicon oxynitride (SiON), or combinations thereof. In some embodiments, dielectric layer 21 includes silicon dioxide (SiO2).

在一些實施例中,介電材料包括聚合物材料、有機材料、無機材料、光阻材料或其組合。在一些實施例中,介電材料包括一種或多種低k介電材料,其介電常數(k值)小於3.9。在一些實施例中,低k介電材料包括氟摻雜的二氧化矽、有機矽玻璃(OSG)、碳摻雜的氧化物(CDO)、多孔二氧化矽、旋塗有機聚合物介電質、旋塗矽基聚合物介電質,或其組合。在一些實施例中,介電材料包括一種或多種高k介電材料,其介電常數(k值)大於3.9。高k介電材料可包括氧化鉿(HfO2)、氧化鋯(ZrO2)、氧化鑭(La2O3)、氧化釔(Y2O3)、氧化鋁(Al2O3)、氧化鈦(TiO2)或其他適用材料。其他適合的材料也在本揭露的考量範圍之內。 In some embodiments, the dielectric material includes polymeric materials, organic materials, inorganic materials, photoresist materials, or combinations thereof. In some embodiments, the dielectric material includes one or more low-k dielectric materials with a dielectric constant (k value) less than 3.9. In some embodiments, low-k dielectric materials include fluorine-doped silicon dioxide, organosilicon glass (OSG), carbon-doped oxide (CDO), porous silicon dioxide, spin-on organic polymer dielectrics , spin-on silicone-based polymer dielectrics, or combinations thereof. In some embodiments, the dielectric material includes one or more high-k dielectric materials with a dielectric constant (k value) greater than 3.9. High-k dielectric materials may include hafnium oxide (HfO2), zirconium oxide (ZrO2), lanthanum oxide (La2O3), yttrium oxide (Y2O3), aluminum oxide (Al2O3), titanium oxide (TiO2), or other suitable materials. Other suitable materials are contemplated by this disclosure.

在一些實施例中,介電層21的製作技術包含毯狀沉積。在 一些實施例中,介電層21的製作技術包含化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、低壓化學氣相沉積(LPCVD)、電漿增強CVD(PECVD)或其組合。 In some embodiments, the fabrication technique of dielectric layer 21 includes blanket deposition. exist In some embodiments, the manufacturing technology of the dielectric layer 21 includes chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), plasma enhanced CVD ( PECVD) or a combination thereof.

參照圖6,圖6是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在操作S12之前,在介電層21上形成光阻層61。在一些實施例中,介電層21的一部分由光阻層61界定並通過光阻層61曝露。光阻層61經配置以在隨後執行的定圖形(patterning)操作中保護被光阻層61覆蓋的介電層21的部分。 Referring to FIG. 6 , FIG. 6 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. Before operation S12, a photoresist layer 61 is formed on the dielectric layer 21. In some embodiments, a portion of dielectric layer 21 is bounded by and exposed through photoresist layer 61 . Photoresist layer 61 is configured to protect portions of dielectric layer 21 covered by photoresist layer 61 during subsequent patterning operations.

參照圖7,圖7是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在操作S12中,介電層21經定圖形以曝露基底10的一部分並形成開口91。在一些實施例中,基底10的部分通過介電層21曝露在開口91中。在一些實施例中,開口91是由介電層21及基底10界定。在一些實施例中,介電層21的定圖形包括離子束蝕刻、定向乾式蝕刻、反應性離子蝕刻或其組合。在一些實施例中,介電層21的定圖形包括乾式蝕刻操作81,並且乾式蝕刻操作81在基底10的曝光處停止。在一些實施例中,開口91曝露基底10中金屬線124的一部分。在一些實施例中,在操作S11之後及操作S12之前,依次執行預清潔操作、光阻應用(光阻層21的形成)、曝光、顯影及蝕刻,以形成開口91。 Referring to FIG. 7 , FIG. 7 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. In operation S12 , the dielectric layer 21 is patterned to expose a portion of the substrate 10 and form the opening 91 . In some embodiments, a portion of substrate 10 is exposed in opening 91 through dielectric layer 21 . In some embodiments, opening 91 is defined by dielectric layer 21 and substrate 10 . In some embodiments, patterning dielectric layer 21 includes ion beam etching, directional dry etching, reactive ion etching, or a combination thereof. In some embodiments, patterning of dielectric layer 21 includes a dry etching operation 81 , and dry etching operation 81 stops at the exposure of substrate 10 . In some embodiments, opening 91 exposes a portion of metal line 124 in substrate 10 . In some embodiments, after operation S11 and before operation S12 , a pre-cleaning operation, photoresist application (formation of the photoresist layer 21 ), exposure, development and etching are performed sequentially to form the opening 91 .

參照圖8,圖8是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在操作S12之後,光阻層61被移除。在一些實施例中,執行濕式蝕刻操作以移除光阻層61。在一些實施例中,在移除光阻層61之後,可選擇地執行後清洗操作。 Referring to FIG. 8 , FIG. 8 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. After operation S12, the photoresist layer 61 is removed. In some embodiments, a wet etching operation is performed to remove the photoresist layer 61 . In some embodiments, after removing the photoresist layer 61, a post-cleaning operation may be optionally performed.

參照圖9,圖9是橫截面圖,例示本揭露一些實施例之製備 方法S1的製備階段。在操作S13中,在介電層21上形成第一襯墊31。在一些實施例中,第一襯墊31襯著開口91及介電層21的頂部表面211。在一些實施例中,第一襯墊31的輪廓與介電層21及基底10的輪廓共形。在一些實施例中,執行沉積以形成第一襯墊31。在一些實施例中,第一襯墊31的製作技術包含化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、低壓化學氣相沉積(LPCVD)、電漿增強CVD(PECVD)或其組合。在一些實施例中,第一襯墊31包括一種或多種介電材料。在一些實施例中,第一襯墊31包括氮化物、氧化物、高k材料,或其組合。在一些實施例中,第一襯墊31包括氮化矽。在一些實施例中,第一襯墊31的厚度在1至50奈米之間,以達到防潮的目的。在一些實施例中,第一襯墊31的厚度在整個第一襯墊31中實質上一致。 Referring to Figure 9, Figure 9 is a cross-sectional view illustrating the preparation of some embodiments of the present disclosure. Preparation stage of method S1. In operation S13, the first pad 31 is formed on the dielectric layer 21. In some embodiments, the first liner 31 lines the opening 91 and the top surface 211 of the dielectric layer 21 . In some embodiments, the contour of the first pad 31 is conformal to the contours of the dielectric layer 21 and the substrate 10 . In some embodiments, deposition is performed to form first liner 31 . In some embodiments, the manufacturing technology of the first liner 31 includes chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), plasma enhanced CVD (PECVD) or combination thereof. In some embodiments, first pad 31 includes one or more dielectric materials. In some embodiments, first liner 31 includes nitride, oxide, high-k material, or combinations thereof. In some embodiments, first liner 31 includes silicon nitride. In some embodiments, the thickness of the first liner 31 is between 1 and 50 nanometers to prevent moisture. In some embodiments, the thickness of first liner 31 is substantially uniform throughout first liner 31 .

參照圖10,圖10是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在操作S14之前,在介電層21上及開口91中形成能量可移除材料32。更具體地說,能量可移除材料32形成在第一襯墊31上及開口91中。在一些實施例中,能量可移除材料32的製作技術包含毯狀沉積。在一些實施例中,能量可移除材料32至少填充開口91。在一些實施例中,能量可移除材料32的頂部表面321位於第一襯墊31上方。在一些實施例中,能量可移除材料32的頂部表面321實質上是平面的。能量可移除材料32可包括一種材料,如熱分解材料、光子分解材料、電子束分解材料,或其組合。例如,能量可移除材料32可包括基礎材料及可分解致孔材料,該材料在曝露於能量源時被犧牲掉。基礎材料可包括一種基於甲矽烷基的材料。可分解致孔材料可包括一種致孔有機化合物,在曝露於能量源後為能量可移除材料32的基礎材料提供孔隙率。或者,在另一實施例中, 基礎材料可以是氧化矽。可分解致孔材料可包括不飽和鍵的化合物,如雙鍵或三鍵化合物。 Referring to FIG. 10 , FIG. 10 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. Before operation S14 , energy removable material 32 is formed on dielectric layer 21 and in opening 91 . More specifically, energy removable material 32 is formed on first pad 31 and in opening 91 . In some embodiments, the fabrication technique for energy removable material 32 includes blanket deposition. In some embodiments, energy removable material 32 fills at least opening 91 . In some embodiments, top surface 321 of energy removable material 32 is located above first pad 31 . In some embodiments, top surface 321 of energy removable material 32 is substantially planar. Energy removable material 32 may include a material such as a thermal decomposition material, a photon decomposition material, an electron beam decomposition material, or a combination thereof. For example, energy removable material 32 may include a base material and a decomposable porogenic material that is sacrificed when exposed to an energy source. The base material may include a silyl-based material. The decomposable porogenic material may include a porogenic organic compound that provides porosity to the base material of energy removable material 32 upon exposure to an energy source. Or, in another embodiment, The base material may be silicon oxide. The decomposable porogenic material may include unsaturated bonded compounds, such as double bonded or triple bonded compounds.

參照圖11及圖12,圖11及12是橫截面圖,例示本揭露一些實施例之製備方法S1的不同製備階段。在操作S14中,對如圖11所示的能量可移除材料32執行能量處理71,以形成如圖12所示的多孔層33。能量處理71可以通過將能量源施加到如圖11所示的中間半導體結構上來執行。該能量源可包括熱、光或其組合。當熱做為能量源時,能量處理71的溫度可以在大約800℃至大約1000℃之間。當光做為能量源時,可以使用紫外線。能量處理71可以將可分解致孔材料從能量可移除材料32中移除,以產生空隙或孔隙,而基礎材料仍留在原處。在如上所述的其他實施例中,基礎材料可以是氧化矽,而可分解致孔材料可包括具有不飽和鍵的化合物,如雙鍵或三鍵化合物。在這樣的實施例中,在能量處理71期間,可分解致孔材料的不飽和鍵可與基礎材料的氧化矽交聯。因此,可分解致孔材料可能會收縮並產生空隙或孔隙,而基礎材料則保持原位。空的空隙或孔隙可以用空氣填充,以便多孔層33可以為將在多孔層33上方形成的導電墊提供支撐,也可以做為緩衝墊或緩衝區來吸收半導體結構100上的力而不被損壞。在一些實施例中,多孔層33的孔隙率在5%至30%之間。在一些實施例中,多孔層33的孔隙率在10%至15%之間。在一些實施例中,多孔層33包括低k材料。 Referring to FIGS. 11 and 12 , FIGS. 11 and 12 are cross-sectional views illustrating different preparation stages of the preparation method S1 of some embodiments of the present disclosure. In operation S14, energy treatment 71 is performed on the energy-removable material 32 as shown in FIG. 11 to form the porous layer 33 as shown in FIG. 12. Energy treatment 71 may be performed by applying an energy source to the intermediate semiconductor structure as shown in FIG. 11 . The energy source may include heat, light, or a combination thereof. When heat is used as the energy source, the temperature of the energy treatment 71 can be between about 800°C and about 1000°C. When light is used as the energy source, ultraviolet light can be used. Energy treatment 71 may remove decomposable porogenic material from energy removable material 32 to create voids or pores while the base material remains in place. In other embodiments as described above, the base material may be silicon oxide, and the decomposable porogenic material may include compounds with unsaturated bonds, such as double or triple bond compounds. In such embodiments, during energy treatment 71, the unsaturated bonds of the decomposable porogenic material may be cross-linked with the silicon oxide of the base material. Therefore, the decomposable porogenic material may shrink and create voids or pores, while the base material remains in place. The empty voids or pores can be filled with air so that the porous layer 33 can provide support for the conductive pad to be formed over the porous layer 33 and can also serve as a cushion or buffer zone to absorb forces on the semiconductor structure 100 without being damaged. . In some embodiments, porous layer 33 has a porosity between 5% and 30%. In some embodiments, porous layer 33 has a porosity between 10% and 15%. In some embodiments, porous layer 33 includes a low-k material.

多孔層33的孔隙率可以由可分解致孔材料及能量可移除材料32的基礎材料的濃度決定。為了形成具有5%至30%(或如上所述的10%至15%)孔隙率的多孔層33,能量可移除材料32可包括相對較低濃度的可分解致孔材料及相對較高濃度的基礎材料。例如,能量可移除材料32可包 括大約5%或更多的可分解致孔材料,以及大約95%或更少的基礎材料。在另一個例子中,能量可移除材料32可包括約10%或更多的可分解致孔材料,以及約90%或更少的基礎材料。在另一個例子中,能量可移除材料32可包括約15%的可分解致孔材料,以及約85%的基礎材料。 The porosity of the porous layer 33 may be determined by the concentration of the base material of the decomposable porogenic material and the energy removable material 32 . To form porous layer 33 with a porosity of 5% to 30% (or 10% to 15% as described above), energy removable material 32 may include a relatively low concentration of decomposable porogenic material and a relatively high concentration of basic materials. For example, energy removable material 32 may include Includes approximately 5% or more decomposable porogen material and approximately 95% or less base material. In another example, the energy removable material 32 may include about 10% or more decomposable porogenic material and about 90% or less base material. In another example, energy removable material 32 may include about 15% decomposable porogen material, and about 85% base material.

參照圖13,圖13是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在操作S14之後,如圖12所示,對多孔層33執行回蝕操作81。在一些實施例中,第一襯墊31或介電層21上方的多孔層33的一部分被移除。在一些實施例中,當檢測到第一襯墊31的曝露時,回蝕操作81停止。在一些實施例中,在回蝕操作81之後,開口91中的多孔層33的一部分仍然存在。在一些實施例中,多孔層33的剩餘部分的頂部表面331實質上與第一襯墊31的頂部表面311對齊。在一些實施例中,多孔層33的剩餘部分的頂部表面331與第一襯墊31的頂部表面311實質上共面。在一些實施例中,多孔層33在回蝕操作81後具有柱狀構造。在一些實施例中,多孔層33在回蝕操作81後被稱為多孔柱33。 Referring to FIG. 13 , FIG. 13 is a cross-sectional view illustrating the preparation stage of the preparation method S1 according to some embodiments of the present disclosure. After operation S14, as shown in FIG. 12, an etch-back operation 81 is performed on the porous layer 33. In some embodiments, a portion of the porous layer 33 above the first liner 31 or dielectric layer 21 is removed. In some embodiments, the etchback operation 81 stops when exposure of the first pad 31 is detected. In some embodiments, after the etch back operation 81, a portion of the porous layer 33 in the opening 91 remains. In some embodiments, the top surface 331 of the remaining portion of the porous layer 33 is substantially aligned with the top surface 311 of the first liner 31 . In some embodiments, the top surface 331 of the remaining portion of the porous layer 33 is substantially coplanar with the top surface 311 of the first liner 31 . In some embodiments, porous layer 33 has a columnar configuration after etchback operation 81 . In some embodiments, porous layer 33 is referred to as porous pillar 33 after etchback operation 81 .

應該注意的是,如圖9至圖11所示的操作順序可以改變,以實現圖11所示結構的相同結果。在一些實施例中,能量處理71可以在回蝕操作81之後執行。第一襯墊31或介電層21上方的能量可移除材料32的一部分可以通過回蝕操作81移除。然後對設置於開口91中的能量可移除材料32的剩餘部分執行能量處理71,以形成多孔柱33,如圖13所示。 It should be noted that the order of operations shown in Figures 9 to 11 can be changed to achieve the same results with the structure shown in Figure 11. In some embodiments, energy processing 71 may be performed after etchback operation 81 . A portion of the energy-removable material 32 above the first liner 31 or dielectric layer 21 may be removed by an etchback operation 81 . Energy treatment 71 is then performed on the remaining portion of energy removable material 32 disposed in opening 91 to form porous pillars 33 as shown in FIG. 13 .

參照圖14,圖14是橫截面圖,例示本揭露一些實施例的製備方法S1的製備階段。在操作S15之前,在多孔柱33上形成第二襯墊34。在一些實施例中,執行沉積以形成第二襯墊34。在一些實施例中,第二襯墊34的製作技術包含化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層 沉積(ALD)、低壓化學氣相沉積(LPCVD)、電漿增強CVD(PECVD)或其組合。在一些實施例中,第二襯墊34的製作技術包含毯狀沉積。在一些實施例中,第二襯墊34設置於多孔柱33及第一襯墊31上。在一些實施例中,第二襯墊34與多孔柱33的頂部表面331及第一襯墊31的頂部表面311接觸。在一些實施例中,第二襯墊34包括一種或多種介電材料。在一些實施例中,第二襯墊34包括氮化物、氧化物、高k材料或其組合。在一些實施例中,第二襯墊34包括氮化矽。在一些實施例中,第二襯墊34的厚度在1至50奈米的範圍內,以達到防潮的目的。在一些實施例中,第二襯墊34的厚度在整個第二襯墊34中實質上一致。在一些實施例中,第二襯墊34的介電材料與第一襯墊31的介電材料相同,以便在後續製程中蝕刻形成導電通孔。在一些實施例中,多孔柱33被第一襯墊31及第二襯墊34包圍。 Referring to FIG. 14 , FIG. 14 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. Before operation S15, a second liner 34 is formed on the porous pillar 33. In some embodiments, deposition is performed to form second liner 34 . In some embodiments, the manufacturing technology of the second liner 34 includes chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), plasma enhanced CVD (PECVD) or a combination thereof. In some embodiments, the fabrication technique for the second pad 34 includes blanket deposition. In some embodiments, the second liner 34 is disposed on the porous column 33 and the first liner 31 . In some embodiments, the second liner 34 is in contact with the top surface 331 of the porous post 33 and the top surface 311 of the first liner 31 . In some embodiments, second pad 34 includes one or more dielectric materials. In some embodiments, second liner 34 includes nitride, oxide, high-k material, or combinations thereof. In some embodiments, second liner 34 includes silicon nitride. In some embodiments, the thickness of the second liner 34 ranges from 1 to 50 nanometers to achieve moisture resistance. In some embodiments, the thickness of second liner 34 is substantially uniform throughout second liner 34 . In some embodiments, the dielectric material of the second pad 34 is the same as the dielectric material of the first pad 31 so that conductive vias can be formed by etching in subsequent processes. In some embodiments, porous column 33 is surrounded by first liner 31 and second liner 34 .

參照圖15,圖15是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在第二襯墊34的形成之後及操作S15之前,部分的基底10被曝露。在一些實施例中,對第二襯墊34、第一襯墊31及介電層21執行蝕刻操作。在一些實施例中,部分的第二襯墊34、第一襯墊31及介電層21被蝕刻操作所移除。一個或多個開口92的製作技術包含蝕刻操作。在一些實施例中,金屬線124的一個或多個部分由一個或多個開口92曝露。在一些實施例中,一個或多個開口92由基底10、介電層21、第一襯墊31及第二襯墊34界定。在一些實施例中,一個或多個開口92與多孔柱33分開。在一些實施例中,一個或多個開口92延伸穿過介電層21。在一些實施例中,一個或多個開口92穿透介電層21、第一襯墊31及第二襯墊34。在一些具有一個開口92的實施例中,開口92與多孔柱33相鄰或圍 繞多孔柱3。在一些具有多個開口92的實施例中,開口92是彼此分開。 Referring to FIG. 15 , FIG. 15 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. After the formation of the second liner 34 and before operation S15, a portion of the substrate 10 is exposed. In some embodiments, an etching operation is performed on the second liner 34 , the first liner 31 and the dielectric layer 21 . In some embodiments, portions of the second liner 34 , the first liner 31 and the dielectric layer 21 are removed by the etching operation. Fabrication techniques for one or more openings 92 include etching operations. In some embodiments, one or more portions of metal line 124 are exposed by one or more openings 92 . In some embodiments, one or more openings 92 are defined by the substrate 10 , the dielectric layer 21 , the first pad 31 and the second pad 34 . In some embodiments, one or more openings 92 are separate from the porous column 33 . In some embodiments, one or more openings 92 extend through dielectric layer 21 . In some embodiments, one or more openings 92 penetrate the dielectric layer 21 , the first pad 31 and the second pad 34 . In some embodiments having one opening 92, the opening 92 is adjacent to or surrounding the porous post 33. Around the porous column 3. In some embodiments with multiple openings 92, the openings 92 are spaced apart from each other.

在一些實施例中,開口92的製作技術包含一個或多個蝕刻操作。在一些實施例中,開口92的製作技術包含一個蝕刻操作,在蝕刻操作中使用的蝕刻劑對第一襯墊31、第二襯墊34及介電層21的選擇性很低。在一些實施例中,第一襯墊31及第二襯墊34包括相同的材料,這可以有利於蝕刻操作的蝕刻劑的選擇。在一些實施例中,第一襯墊31、第二襯墊34及介電層21可以通過一系列不同的蝕刻操作來移除。在一些實施例中,每個不同的蝕刻操作對相應的目標層(例如,第一襯墊31、第二襯墊34或介電層21)具有高選擇性。 In some embodiments, the fabrication technique of opening 92 includes one or more etching operations. In some embodiments, the fabrication technique of the opening 92 includes an etching operation, and the etchant used in the etching operation has low selectivity to the first liner 31 , the second liner 34 and the dielectric layer 21 . In some embodiments, the first liner 31 and the second liner 34 include the same material, which may facilitate etchant selection for the etching operation. In some embodiments, the first liner 31 , the second liner 34 and the dielectric layer 21 may be removed through a series of different etching operations. In some embodiments, each different etching operation is highly selective to a corresponding target layer (eg, first liner 31, second liner 34, or dielectric layer 21).

參照圖16,圖16是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在形成開口92之後,形成與開口92共形的阻障層41。在一些實施例中,阻障層41襯著開口92。在一些實施例中,阻障層41覆蓋第二襯墊34。在一些實施例中,阻障層41的製作技術包含共形沉積。在一些實施例中,阻障層41的製作技術包含化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、低壓化學氣相沉積(LPCVD)、電漿增強CVD(PECVD),或其組合。在一些實施例中,阻障層41包括鈦、鉭、其氮化物、其合金,或其組合。在一些實施例中,阻障層41可以是多層結構。在一些實施例中,阻障層41包括鈦子層及氮化鈦子層。然而,本發明並不限於此。 Referring to FIG. 16 , FIG. 16 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. After the opening 92 is formed, the barrier layer 41 is formed conforming to the opening 92 . In some embodiments, barrier layer 41 lines opening 92. In some embodiments, barrier layer 41 covers second liner 34 . In some embodiments, the fabrication technique of barrier layer 41 includes conformal deposition. In some embodiments, the barrier layer 41 is fabricated using chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), and plasma enhanced CVD. (PECVD), or a combination thereof. In some embodiments, barrier layer 41 includes titanium, tantalum, nitrides thereof, alloys thereof, or combinations thereof. In some embodiments, barrier layer 41 may be a multi-layer structure. In some embodiments, barrier layer 41 includes a titanium sublayer and a titanium nitride sublayer. However, the present invention is not limited to this.

參照圖17,圖17是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在形成阻障層41後,在阻障層41上形成導電材料42。在一些實施例中,導電材料42填充開口92,並設置於阻障層41上。在一些實施例中,導電材料42包括一種或多種金屬,如鎢、銅、鈷、釕、 鉬、鈦、鉭、鎳、鉑、鉺、其組合、其合金或其合金的組合。在一些實施例中,導電材料42包括鎢、銅或其組合。在一些實施例中,導電材料42的製作技術包含化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、低壓化學氣相沉積(LPCVD)、電漿增強CVD(PECVD)、電鍍、無電解鍍、濺鍍或其組合。 Referring to FIG. 17 , FIG. 17 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. After the barrier layer 41 is formed, the conductive material 42 is formed on the barrier layer 41 . In some embodiments, conductive material 42 fills opening 92 and is disposed on barrier layer 41 . In some embodiments, conductive material 42 includes one or more metals, such as tungsten, copper, cobalt, ruthenium, Molybdenum, titanium, tantalum, nickel, platinum, erbium, combinations thereof, alloys thereof or combinations of alloys thereof. In some embodiments, conductive material 42 includes tungsten, copper, or combinations thereof. In some embodiments, the manufacturing technology of the conductive material 42 includes chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), plasma enhanced CVD ( PECVD), electroplating, electroless plating, sputtering or combinations thereof.

參照圖18,圖18是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在操作S15中,在圖17中所示的導電材料42及阻障層41上執行回蝕操作82,以形成圖18中所示的一個或多個導電通孔45。在一些實施例中,第二襯墊34上方的導電材料42及阻障層41的部分被回蝕操作82移除。在一些實施例中,留在開口92中的導電材料42的一個或多個部分成為一個或多個導電部件44。在一些實施例中,留在開口92中的阻障層41的部分成為一個或多個阻障部件43。在一些實施例中,阻障部件43及導電部件44共同成為一個或多個導電通孔45。在一些實施例中,每個導電通孔45包括導電部件44及阻障部件43。在一些實施例中,阻障部件43圍繞著導電部件44。在一些實施例中,導電部件44藉由阻障部件43與介電層21、第一襯墊31或第二襯墊34分開。在一些實施例中,導電通孔45的頂部表面451位於介電層21的頂部表面211或第一襯墊31的頂部表面311上方的標高處。在一些實施例中,導電通孔45的頂部表面451實質上與第二襯墊34的頂部表面341對齊。 Referring to FIG. 18 , FIG. 18 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. In operation S15, an etchback operation 82 is performed on the conductive material 42 and the barrier layer 41 shown in FIG. 17 to form one or more conductive vias 45 shown in FIG. 18. In some embodiments, portions of the conductive material 42 and barrier layer 41 above the second pad 34 are removed by an etch back operation 82 . In some embodiments, one or more portions of conductive material 42 remaining in opening 92 become one or more conductive features 44 . In some embodiments, the portion of barrier layer 41 that remains in opening 92 becomes one or more barrier features 43 . In some embodiments, the barrier component 43 and the conductive component 44 together form one or more conductive vias 45 . In some embodiments, each conductive via 45 includes a conductive component 44 and a barrier component 43 . In some embodiments, barrier component 43 surrounds conductive component 44 . In some embodiments, the conductive component 44 is separated from the dielectric layer 21 , the first pad 31 or the second pad 34 by the barrier component 43 . In some embodiments, the top surface 451 of the conductive via 45 is located at an elevation above the top surface 211 of the dielectric layer 21 or the top surface 311 of the first pad 31 . In some embodiments, the top surface 451 of the conductive via 45 is substantially aligned with the top surface 341 of the second pad 34 .

參照圖19,圖19是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在操作S16之前,在介電層21上形成接觸材料51。在一些實施例中,接觸材料51設置於多孔柱33、導電通孔45及第二襯墊34上。在一些實施例中,接觸材料51包括一種或多種金屬,如鎢、銅、 鋁、鈷、釕、鉬、鈦、鉭、鎳、鉑、鉺、其組合、其合金或其合金的組合。在一些實施例中,接觸材料51包括鋁。在一些實施例中,接觸材料51的製作技術包含化學氣相沉積(CVD)、物理氣相沉積(PVD)、低壓化學氣相沉積(LPCVD)、電漿增強CVD(PECVD)、電鍍、無電解鍍、濺鍍或其組合。在一些實施例中,接觸材料51藉由第二襯墊34與多孔柱33分開。 Referring to FIG. 19 , FIG. 19 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. Before operation S16, contact material 51 is formed on dielectric layer 21. In some embodiments, the contact material 51 is disposed on the porous pillar 33 , the conductive via 45 and the second pad 34 . In some embodiments, contact material 51 includes one or more metals, such as tungsten, copper, Aluminum, cobalt, ruthenium, molybdenum, titanium, tantalum, nickel, platinum, erbium, combinations thereof, alloys thereof or combinations of alloys thereof. In some embodiments, contact material 51 includes aluminum. In some embodiments, the manufacturing technology of the contact material 51 includes chemical vapor deposition (CVD), physical vapor deposition (PVD), low pressure chemical vapor deposition (LPCVD), plasma enhanced CVD (PECVD), electroplating, electroless plating, sputtering or a combination thereof. In some embodiments, contact material 51 is separated from porous post 33 by second liner 34 .

參照圖20,圖20是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在操作S16之前,在接觸材料51上形成光阻層62。在一些實施例中,接觸材料51的一部分由光阻層62界定並通過光阻層62曝露。光阻層62經配置以在隨後執行的定圖形操作中保護被光阻層62覆蓋的介電層21的部分。 Referring to FIG. 20 , FIG. 20 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. Before operation S16, a photoresist layer 62 is formed on the contact material 51. In some embodiments, a portion of contact material 51 is bounded by and exposed through photoresist layer 62 . Photoresist layer 62 is configured to protect portions of dielectric layer 21 covered by photoresist layer 62 during subsequent patterning operations.

參照圖21,圖21是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在操作S16中,接觸材料51經定圖形以形成導電墊52。在一些實施例中,通過光阻層62曝露的接觸材料51的一部分經定圖形操作82而移除。在一些實施例中,定圖形操作82包括離子束蝕刻、定向乾式蝕刻、反應性離子蝕刻,或其組合。在一些實施例中,接觸材料51的定圖形操作82包括乾式蝕刻操作。在一些實施例中,乾式蝕刻操作在第二襯墊34的曝光處(或第二襯墊34的材料的曝光處)停止。 Referring to FIG. 21 , FIG. 21 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. In operation S16, contact material 51 is patterned to form conductive pads 52. In some embodiments, a portion of contact material 51 exposed through photoresist layer 62 is removed through patterning operation 82 . In some embodiments, patterning operation 82 includes ion beam etching, directional dry etching, reactive ion etching, or a combination thereof. In some embodiments, patterning operation 82 of contact material 51 includes a dry etching operation. In some embodiments, the dry etching operation stops at the exposure of second liner 34 (or the exposure of the material of second liner 34 ).

在一些實施例中,導電墊52至少覆蓋多孔柱33及導電通孔45。在一些實施例中,導電墊52覆蓋多孔柱33的全部及導電通孔45的全部。在一些實施例中,導電墊52與導電通孔45電性連接。在一些實施例中,導電墊52與導電通孔45物理接觸。在一些實施例中,導電墊52通過導電通孔45與基底10的互連結構12的金屬線124電性連接。 In some embodiments, the conductive pad 52 covers at least the porous pillar 33 and the conductive via 45 . In some embodiments, the conductive pad 52 covers all of the porous posts 33 and all of the conductive vias 45 . In some embodiments, the conductive pad 52 is electrically connected to the conductive via 45 . In some embodiments, conductive pad 52 is in physical contact with conductive via 45 . In some embodiments, the conductive pads 52 are electrically connected to the metal lines 124 of the interconnect structure 12 of the substrate 10 through the conductive vias 45 .

參照圖22,圖22是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在操作S16之後,光阻層62被移除。在一些實施例中,執行濕式蝕刻操作以移除光阻層62。在一些實施例中,在移除光阻層62之後,可選擇地執行後清洗操作。 Referring to FIG. 22 , FIG. 22 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. After operation S16, the photoresist layer 62 is removed. In some embodiments, a wet etching operation is performed to remove photoresist layer 62 . In some embodiments, after removing the photoresist layer 62, a post-cleaning operation may optionally be performed.

參照圖23,圖23是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在移除光阻層62後,在導電墊52上形成鈍化材料53。在一些實施例中,鈍化材料53設置於導電墊52及第二襯墊34上。在一些實施例中,鈍化材料53接觸導電墊52及第二襯墊34。在一些實施例中,鈍化材料53與導電墊52及第二襯墊34接觸。在一些實施例中,鈍化材料53覆蓋導電墊52的全部。在一些實施例中,鈍化材料53的頂部表面531實質上是平面的。在其他實施例中,鈍化材料53的頂部表面531與導電墊52及第二襯墊34的輪廓共形,這取決於鈍化材料53的製作方法。 Referring to FIG. 23, FIG. 23 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. After the photoresist layer 62 is removed, a passivation material 53 is formed on the conductive pad 52 . In some embodiments, passivation material 53 is disposed on conductive pad 52 and second pad 34 . In some embodiments, passivation material 53 contacts conductive pad 52 and second pad 34 . In some embodiments, passivation material 53 is in contact with conductive pad 52 and second pad 34 . In some embodiments, passivation material 53 covers all of conductive pad 52 . In some embodiments, top surface 531 of passivation material 53 is substantially planar. In other embodiments, the top surface 531 of the passivation material 53 conforms to the contours of the conductive pad 52 and the second pad 34 , depending on how the passivation material 53 is made.

參照圖24,圖24是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在形成鈍化材料53之後,在鈍化材料53上形成光阻層63。在一些實施例中,鈍化材料53的一部分由光阻層63界定並通過光阻層63曝露。光阻層63經配置以在隨後執行的定圖形操作中保護被光阻層63覆蓋的鈍化材料53的部分。 Referring to FIG. 24 , FIG. 24 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. After the passivation material 53 is formed, a photoresist layer 63 is formed on the passivation material 53 . In some embodiments, a portion of passivation material 53 is bounded by and exposed through photoresist layer 63 . Photoresist layer 63 is configured to protect portions of passivation material 53 covered by photoresist layer 63 during subsequent patterning operations.

參照圖25,圖25是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在形成光阻層63之後,鈍化材料53經定圖形以形成鈍化層54。在一些實施例中,通過光阻層63曝露的鈍化材料53的一部分經定圖形操作83而移除。在一些實施例中,定圖形操作83包括離子束蝕刻、定向乾式蝕刻、反應性離子蝕刻,或其組合。在一些實施例中,鈍化材料53上的定圖形操作83包括乾式蝕刻操作。在一些實施例中,乾式 蝕刻操作在鈍化材料53(或鈍化層54)的曝光處停止。 Referring to FIG. 25 , FIG. 25 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. After photoresist layer 63 is formed, passivation material 53 is patterned to form passivation layer 54 . In some embodiments, a portion of passivation material 53 exposed through photoresist layer 63 is removed via patterning operation 83 . In some embodiments, patterning operation 83 includes ion beam etching, directional dry etching, reactive ion etching, or a combination thereof. In some embodiments, patterning operation 83 on passivation material 53 includes a dry etching operation. In some embodiments, dry The etching operation stops at the exposure of passivation material 53 (or passivation layer 54).

在一些實施例中,導電墊52的至少一部分通過鈍化層54曝露。在一些實施例中,導電墊52的頂部表面521的至少一部分通過鈍化層54曝露。如圖25所示,鈍化層54覆蓋導電墊52的頂部表面521的週邊。在其他實施例中,導電墊52的整個頂部表面521都通過鈍化層54曝露。在一些實施例中,鈍化層54至少覆蓋導電墊52的側壁522。導電墊52的頂部表面521的至少一部分的曝露是為了與其它電組件或電氣元件進行電氣連接。 In some embodiments, at least a portion of conductive pad 52 is exposed through passivation layer 54 . In some embodiments, at least a portion of the top surface 521 of the conductive pad 52 is exposed through the passivation layer 54 . As shown in FIG. 25 , passivation layer 54 covers the perimeter of top surface 521 of conductive pad 52 . In other embodiments, the entire top surface 521 of conductive pad 52 is exposed through passivation layer 54 . In some embodiments, passivation layer 54 covers at least sidewalls 522 of conductive pad 52 . At least a portion of the top surface 521 of the conductive pad 52 is exposed for electrical connection with other electrical components or components.

參照圖26,圖26是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在圖25所示的定圖形操作83之後,光阻層63被移除。在一些實施例中,執行濕式蝕刻操作以移除光阻層63。在一些實施例中,在移除光阻層63後,可選擇執行後清洗操作。 Referring to FIG. 26 , FIG. 26 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. After the patterning operation 83 shown in Figure 25, the photoresist layer 63 is removed. In some embodiments, a wet etching operation is performed to remove the photoresist layer 63 . In some embodiments, after removing the photoresist layer 63, a post-cleaning operation may be optionally performed.

如圖26所示,與半導體結構100相似的半導體結構200由此形成。在一些實施例中,多孔柱33經設計以在導電墊52的中心區域523,而導電通孔45經設計以在導電墊52的週邊區域524。在一些實施例中,圖26所示的半導體結構200的導電墊52的俯視圖可以類似於圖2所示,其中圖26所示的構造可以是沿線A-A'的截面。然而,從俯視圖來看,導電通孔45的配置在此不受限制。 As shown in FIG. 26, a semiconductor structure 200 similar to semiconductor structure 100 is thus formed. In some embodiments, the porous pillars 33 are designed to be in the central region 523 of the conductive pad 52 and the conductive vias 45 are designed to be in the peripheral region 524 of the conductive pad 52 . In some embodiments, the top view of the conductive pad 52 of the semiconductor structure 200 shown in FIG. 26 may be similar to that shown in FIG. 2 , wherein the configuration shown in FIG. 26 may be a cross-section along line AA'. However, from a top view, the configuration of the conductive vias 45 is not limited here.

參考圖27,圖27是俯視圖,例示本揭露一些實施例之半導體結構200的導電墊52、多孔柱33、第一襯墊31及導電通孔45。在一些實施例中,圖26中所示的半導體結構200可以是沿圖27中所示的B-B'線的橫截面。在一些實施例中,每個導電通孔45具有環形形狀。在一些實施例中,導電通孔45中的每具有方形環的構造。在一些實施例中,每個導電通 孔45都圍繞著多孔柱33及/或第一襯墊31。在一些實施例中,每個導電通孔45都環繞著多孔柱33及/或第一襯墊31。在一些實施例中,導電通孔45的頂部橫截面積實質上大於多孔柱33的頂部橫截面積,以達到降低電阻及提高導電性的目的。 Referring to FIG. 27 , FIG. 27 is a top view illustrating the conductive pad 52 , the porous pillar 33 , the first pad 31 and the conductive via 45 of the semiconductor structure 200 according to some embodiments of the present disclosure. In some embodiments, the semiconductor structure 200 shown in FIG. 26 may be a cross-section along line BB′ shown in FIG. 27 . In some embodiments, each conductive via 45 has an annular shape. In some embodiments, each of the conductive vias 45 has a square ring configuration. In some embodiments, each conductive pass The holes 45 surround the porous pillar 33 and/or the first pad 31 . In some embodiments, each conductive via 45 surrounds the porous pillar 33 and/or the first pad 31 . In some embodiments, the top cross-sectional area of the conductive vias 45 is substantially larger than the top cross-sectional area of the porous pillars 33 to achieve the purpose of reducing resistance and improving conductivity.

本揭露提供一種半導體結構及該結構的製備方法。本揭露的半導體結構包括多孔結構,特別是在互連結構的最上面的金屬層與被鈍化層覆蓋的導電墊之間。多孔結構具有吸收半導體結構上的應力(例如,在製程期間的接合應力)的功能,並且可以改善半導體結構的容力公差(force tolerance)。因此,可以防止因半導體結構上的力或應力(例如,在半導體結構與另一晶片、晶圓或電氣結構的結合製程期間)造成的損壞或缺陷。產品的產量及性能可以因此得到改善。 The present disclosure provides a semiconductor structure and a method of manufacturing the structure. The semiconductor structure of the present disclosure includes a porous structure, particularly between the uppermost metal layer of the interconnect structure and the conductive pad covered by the passivation layer. The porous structure has the function of absorbing stress on the semiconductor structure (eg, bonding stress during the manufacturing process) and can improve the force tolerance of the semiconductor structure. Therefore, damage or defects caused by forces or stresses on the semiconductor structure (eg, during a bonding process of the semiconductor structure to another wafer, wafer, or electrical structure) may be prevented. Product yield and performance can be improved as a result.

圖28至圖31是示意圖,例示本揭露備選實施例之半導體結構300的製備方法S1所構建的各種製備階段。圖28至圖31中所示的階段也在圖3的製備流程中示意性地說明。在隨後的討論中,參照圖3中的製備步驟來討論圖28至圖31中所示的製備階段。 FIGS. 28 to 31 are schematic diagrams illustrating various manufacturing stages constructed by the manufacturing method S1 of the semiconductor structure 300 according to an alternative embodiment of the present disclosure. The stages shown in FIGS. 28 to 31 are also schematically illustrated in the preparation flow chart of FIG. 3 . In the ensuing discussion, the preparation stages shown in FIGS. 28 to 31 are discussed with reference to the preparation steps in FIG. 3 .

為了便於說明,具有類似或相同功能及特性的參考數字在不同的實施例及圖中被重複。為了簡潔起見,在以下說明中,只強調與上述實施例的不同之處,而省略對類似或相同的元素、功能、特性及/或處理的描述。 For ease of explanation, reference numerals with similar or identical functions and characteristics are repeated in different embodiments and figures. For the sake of brevity, in the following description, only the differences from the above-described embodiments are emphasized, and descriptions of similar or identical elements, functions, characteristics and/or processes are omitted.

參照圖28,圖28是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。在一些實施例中,在形成能量可移除材料32之前,對圖9所示的中間結構的第一襯墊31執行蝕刻操作84。在一些實施例中,蝕刻操作84包括定向蝕刻操作。在一些實施例中,介電層21上方及 開口91中的第一襯墊31的水平部分被移除。在一些實施例中,第一襯墊31的剩餘部分成為第三襯墊35。在一些實施例中,第三襯墊35襯著開口91的側壁911。在一些實施例中,在蝕刻操作84之後,基底10的一部分(或基底10的金屬線124)被曝露。換句話說,在蝕刻操作84之後,開口91的底部表面912可以曝露。 Referring to FIG. 28 , FIG. 28 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. In some embodiments, an etching operation 84 is performed on the first liner 31 of the intermediate structure shown in FIG. 9 prior to forming the energy removable material 32 . In some embodiments, etch operation 84 includes a directional etch operation. In some embodiments, above dielectric layer 21 and The horizontal portion of the first pad 31 in the opening 91 is removed. In some embodiments, the remaining portion of first pad 31 becomes third pad 35 . In some embodiments, third gasket 35 lines sidewall 911 of opening 91 . In some embodiments, after etching operation 84, a portion of substrate 10 (or metal lines 124 of substrate 10) is exposed. In other words, after the etching operation 84, the bottom surface 912 of the opening 91 may be exposed.

參照圖29,圖29是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。類似於圖10至圖14所示的操作被應用於圖28所示的中間結構,並在多孔柱33、第三襯墊35及介電層21上形成第二襯墊34。在一些實施例中,多孔柱33的頂部表面331與介電層21的頂部表面211及/或第三襯墊35的頂部表面351實質上對齊。在一些實施例中,多孔柱33的頂部表面331與介電層21的頂部表面211及/或第三襯墊35的頂部表面351實質上共面。在一些實施例中,第二襯墊34與介電層21的頂部表面211接觸。 Referring to FIG. 29, FIG. 29 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. Operations similar to those shown in FIGS. 10 to 14 are applied to the intermediate structure shown in FIG. 28 , and the second liner 34 is formed on the porous pillar 33 , the third liner 35 and the dielectric layer 21 . In some embodiments, the top surface 331 of the porous pillar 33 is substantially aligned with the top surface 211 of the dielectric layer 21 and/or the top surface 351 of the third pad 35 . In some embodiments, the top surface 331 of the porous pillar 33 is substantially coplanar with the top surface 211 of the dielectric layer 21 and/or the top surface 351 of the third pad 35 . In some embodiments, second pad 34 is in contact with top surface 211 of dielectric layer 21 .

參照圖30,圖30是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。類似於圖15所示的操作被應用於圖29所示的中間結構,並形成開口93。在一些實施例中,開口93圍繞著多孔柱33及第三襯墊35(在下面的描述中提供進一步的說明)。在一些實施例中,開口93由介電層21及第二襯墊34界定。 Referring to FIG. 30 , FIG. 30 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. An operation similar to that shown in Figure 15 is applied to the intermediate structure shown in Figure 29, and openings 93 are formed. In some embodiments, opening 93 surrounds porous post 33 and third liner 35 (further explanation is provided in the description below). In some embodiments, opening 93 is defined by dielectric layer 21 and second pad 34 .

參照圖31,圖31是橫截面圖,例示本揭露一些實施例之製備方法S1的製備階段。類似於圖16至圖26所示的操作被應用於圖30所示的中間結構,並由此形成半導體結構300。在一些實施例中,形成圍繞多孔柱33的一個導電通孔45。 Referring to FIG. 31 , FIG. 31 is a cross-sectional view illustrating the preparation stage of the preparation method S1 of some embodiments of the present disclosure. Operations similar to those shown in FIGS. 16 to 26 are applied to the intermediate structure shown in FIG. 30 , and the semiconductor structure 300 is thereby formed. In some embodiments, a conductive via 45 is formed surrounding the porous post 33 .

參照圖32,圖32是俯視圖,例示本揭露一些實施例之半導 體結構300的導電墊52、多孔柱33、第三襯墊35及導電通孔45。在一些實施例中,圖31中所示的半導體結構300可以是沿圖32中所示的C-C'線的橫截面。在一些實施例中,半導體結構300只包括單個的導電通孔45。在一些實施例中,導電通孔45圍繞或環繞多孔柱33及第三襯墊35。應該注意的是,導電通孔45的構造及多孔柱33的構造在此不受限制。在圖32所示的實施例中,導電通孔45是環繞著矩形多孔柱33的矩形環。在其他實施例中,導電通孔45及多孔柱33都可以是圓形,導電通孔45可以是圓形環或多邊形環。在一些實施例中,導電通孔45的形狀可以對應於圖32中所示的多孔柱33的形狀。在其他實施例中,導電通孔45及多孔柱33的形狀可以不同。 Referring to FIG. 32, FIG. 32 is a top view illustrating a semiconductor device according to some embodiments of the present disclosure. The conductive pad 52, the porous pillar 33, the third pad 35 and the conductive via 45 of the bulk structure 300. In some embodiments, the semiconductor structure 300 shown in FIG. 31 may be a cross-section along line CC′ shown in FIG. 32 . In some embodiments, semiconductor structure 300 includes only a single conductive via 45 . In some embodiments, conductive vias 45 surround or surround porous posts 33 and third pad 35 . It should be noted that the structures of the conductive vias 45 and the porous pillars 33 are not limited here. In the embodiment shown in FIG. 32 , the conductive vias 45 are rectangular rings surrounding the rectangular porous posts 33 . In other embodiments, both the conductive via 45 and the porous pillar 33 may be circular, and the conductive via 45 may be a circular ring or a polygonal ring. In some embodiments, the shape of conductive vias 45 may correspond to the shape of porous pillars 33 shown in FIG. 32 . In other embodiments, the shapes of the conductive vias 45 and the porous pillars 33 may be different.

本揭露的一個方面提供一種半導體結構。該半導體結構包括:一基底,包括一互連結構;一介電層,設置於該基底上;一多孔柱,設置於該基底上並延伸穿過該介電層;一第一防潮層,圍繞該多孔柱並設置於該介電層內;一導電通孔,在該介電層內延伸並鄰近該多孔柱設置;以及一導電墊,設置於該介電層上並覆蓋該導電通孔及該多孔柱。 One aspect of the present disclosure provides a semiconductor structure. The semiconductor structure includes: a substrate including an interconnection structure; a dielectric layer disposed on the substrate; a porous pillar disposed on the substrate and extending through the dielectric layer; a first moisture-proof layer, Surrounding the porous pillar and disposed in the dielectric layer; a conductive via extending in the dielectric layer and disposed adjacent to the porous post; and a conductive pad disposed on the dielectric layer and covering the conductive via and the porous column.

本揭露的另一個方面提供一種半導體結構的製備方法。該製備方法包括:在一基底上形成一介電層;在該介電層中形成一開口;形成與該開口共形的一第一襯墊;在該開口中形成一多孔層並被該第一襯墊包圍;形成穿透該介電層的一導電通孔;以及在該介電層上形成一導電墊,其中該導電墊覆蓋該多孔層及該導電通孔。 Another aspect of the present disclosure provides a method of fabricating a semiconductor structure. The preparation method includes: forming a dielectric layer on a substrate; forming an opening in the dielectric layer; forming a first pad conforming to the opening; forming a porous layer in the opening and being covered by the opening. The first liner surrounds; forming a conductive via hole penetrating the dielectric layer; and forming a conductive pad on the dielectric layer, wherein the conductive pad covers the porous layer and the conductive via hole.

綜上所述,本申請揭露一種半導體結構的製備方法及其半導體結構。本申請揭露的半導體結構包括多孔結構,特別是在互連結構的最上面的金屬層與被鈍化層覆蓋的導電墊之間。多孔結構具有吸收半導體 結構上的應力(例如,在製程期間的接合應力)的功能,並且可以改善半導體結構的容力公差(force tolerance)。因此,可以防止因半導體結構上的力或應力(例如,在半導體結構與另一晶片、晶圓或電氣結構的結合期間)造成的損壞或缺陷。產品的產量及性能可以因此得到改善。 In summary, this application discloses a method for preparing a semiconductor structure and a semiconductor structure thereof. The semiconductor structure disclosed herein includes a porous structure, particularly between the uppermost metal layer of the interconnect structure and the conductive pad covered by the passivation layer. The porous structure has an absorbing semiconductor Stress on the structure (eg, bonding stress during processing) and can improve the force tolerance of the semiconductor structure. Thus, damage or defects caused by forces or stresses on the semiconductor structure (eg, during bonding of the semiconductor structure to another wafer, wafer, or electrical structure) may be prevented. Product yield and performance can be improved as a result.

雖然已詳述本揭露及其優點,然而應理解可進行各種變化、取代與替代而不脫離申請專利範圍所界定之本揭露的精神與範圍。例如,可用不同的方法實施上述的許多過程,並且以其他過程或其組合替代上述的許多過程。 Although the disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and substitutions can be made without departing from the spirit and scope of the disclosure as claimed. For example, many of the processes described above may be implemented in different ways and may be substituted for many of the processes described above with other processes or combinations thereof.

再者,本申請案的範圍並不受限於說明書中所述之過程、機械、製造、物質組成物、手段、方法與步驟之特定實施例。該技藝之技術人士可自本揭露的揭示內容理解可根據本揭露而使用與本文所述之對應實施例具有相同功能或是達到實質上相同結果之現存或是未來發展之過程、機械、製造、物質組成物、手段、方法、或步驟。據此,此等過程、機械、製造、物質組成物、手段、方法、或步驟係包括於本申請案之申請專利範圍內。 Furthermore, the scope of the present application is not limited to the specific embodiments of the process, machinery, manufacture, material compositions, means, methods and steps described in the specification. Those skilled in the art will understand from the disclosure of this disclosure that existing or future developed processes, machines, manufacturing, etc. can be used in accordance with the disclosure to have the same function or achieve substantially the same results as the corresponding embodiments described herein. A material composition, means, method, or step. Accordingly, such processes, machines, manufacturing, material compositions, means, methods, or steps are included in the patentable scope of this application.

10:基底 12:互連結構 21:介電層 31:第一襯墊 33:多孔層 34:第二襯墊 45:導電通孔 52:導電墊 54:鈍化層 100:半導體結構 123:金屬間介電(IMD)層 124:金屬線 331:頂部表面 332:底部表面 Mn:金屬層 10: Base 12:Interconnect structure 21: Dielectric layer 31: first liner 33: Porous layer 34:Second pad 45:Conductive vias 52:Conductive pad 54: Passivation layer 100:Semiconductor Structure 123: Intermetal dielectric (IMD) layer 124:Metal wire 331:Top surface 332: Bottom surface Mn: metal layer

Claims (18)

一種半導體結構,包括:一基底,包括一互連結構;一介電層,設置於該基底上;一導電墊,設置於該介電層上;一鈍化層,設置於該介電層上並部分曝露該導電墊;以及一多孔層,被該介電層包圍,並在該基底與該導電墊之間延伸;其中從一俯視角度看,該多孔層設置於該導電墊的一中心區域。 A semiconductor structure includes: a substrate including an interconnection structure; a dielectric layer disposed on the substrate; a conductive pad disposed on the dielectric layer; a passivation layer disposed on the dielectric layer and The conductive pad is partially exposed; and a porous layer is surrounded by the dielectric layer and extends between the substrate and the conductive pad; wherein from a top view, the porous layer is disposed in a central area of the conductive pad . 如請求項1所述的半導體結構,更包括:一第一襯墊,圍繞該多孔層並設置於該介電層內,其中該第一襯墊至少部分地圍繞該多孔層的一側壁及一底部表面。 The semiconductor structure of claim 1, further comprising: a first liner surrounding the porous layer and disposed in the dielectric layer, wherein the first liner at least partially surrounds one side wall of the porous layer and a bottom surface. 如請求項2所述的半導體結構,其中該第一襯墊圍繞環該多孔層的一側壁,而該多孔層與該基底接觸。 The semiconductor structure of claim 2, wherein the first liner surrounds a side wall of the porous layer, and the porous layer is in contact with the substrate. 如請求項1所述的半導體結構,更包括:一導電通孔,與該多孔層相鄰設置,並且電性連接該導電墊及該互連結構。 The semiconductor structure of claim 1, further comprising: a conductive via disposed adjacent to the porous layer and electrically connected to the conductive pad and the interconnect structure. 如請求項4所述的半導體結構,其中該介電層的一部分設置於該導電通孔與該多孔層之間。 The semiconductor structure of claim 4, wherein a portion of the dielectric layer is disposed between the conductive via and the porous layer. 如請求項4所述的半導體結構,其中該導電通孔的一頂部橫截面積實質上大於該多孔層的一頂部橫截面積。 The semiconductor structure of claim 4, wherein a top cross-sectional area of the conductive via hole is substantially larger than a top cross-sectional area of the porous layer. 如請求項4所述的半導體結構,其中該導電通孔延伸穿過該介電層。 The semiconductor structure of claim 4, wherein the conductive via extends through the dielectric layer. 如請求項4所述的半導體結構,其中該導電通孔包括複數個導電通孔,該複數個導電通孔彼此分開,且該複數個導電通孔被該導電墊覆蓋。 The semiconductor structure of claim 4, wherein the conductive vias include a plurality of conductive vias, the plurality of conductive vias are separated from each other, and the plurality of conductive vias are covered by the conductive pad. 如請求項1所述的半導體結構,其中該多孔層的一孔隙率在5%至30%之間。 The semiconductor structure of claim 1, wherein the porous layer has a porosity between 5% and 30%. 如請求項1所述的半導體結構,其中該多孔層的一孔隙率在10%至15%之間。 The semiconductor structure as claimed in claim 1, wherein the porous layer has a porosity between 10% and 15%. 如請求項2所述的半導體結構,更包括:一第二襯墊,設置於該多孔層與該導電墊之間,其中該多孔層被該第一襯墊及該第二襯墊包圍。 The semiconductor structure of claim 2, further comprising: a second liner disposed between the porous layer and the conductive pad, wherein the porous layer is surrounded by the first liner and the second liner. 一種半導體結構,包括:一基底,包括一互連結構;一介電層,設置於該基底上;一多孔柱,設置於該基底上並延伸穿過該介電層; 一第一防潮層,圍繞該多孔柱並設置於該介電層內;一導電通孔,在該介電層內延伸並鄰近該多孔柱設置;以及一導電墊,設置於該介電層上,覆蓋該導電通孔及該多孔柱;其中該第一防潮層包括氮化物、高k材料或其組合。 A semiconductor structure includes: a substrate including an interconnect structure; a dielectric layer disposed on the substrate; a porous pillar disposed on the substrate and extending through the dielectric layer; a first moisture-proof layer surrounding the porous column and disposed in the dielectric layer; a conductive via extending in the dielectric layer and disposed adjacent to the porous column; and a conductive pad disposed on the dielectric layer , covering the conductive via and the porous pillar; wherein the first moisture-proof layer includes nitride, high-k material or a combination thereof. 如請求項12所述的半導體結構,更包括:一第二防潮層,設置於該多孔柱與該導電墊之間。 The semiconductor structure of claim 12, further comprising: a second moisture-proof layer disposed between the porous pillar and the conductive pad. 如請求項13所述的半導體結構,其中該導電通孔穿透該第二防潮層並接觸該導電墊。 The semiconductor structure of claim 13, wherein the conductive via penetrates the second moisture-proof layer and contacts the conductive pad. 如請求項13所述的半導體結構,更包括:一鈍化層,設置於該介電層上,並藉由該第二防潮層與該介電層分開。 The semiconductor structure of claim 13, further comprising: a passivation layer disposed on the dielectric layer and separated from the dielectric layer by the second moisture-proof layer. 如請求項12所述的半導體結構,其中該多孔柱包括一種或多種低k(介電常數)材料。 The semiconductor structure of claim 12, wherein the porous pillars include one or more low-k (dielectric constant) materials. 如請求項12所述的半導體結構,其中該導電通孔包括鎢、銅、鈷、釕、鉬或其組合。 The semiconductor structure of claim 12, wherein the conductive via includes tungsten, copper, cobalt, ruthenium, molybdenum or a combination thereof. 如請求項12所述的半導體結構,其中該導電通孔包括一阻障部件及被該導電通孔包圍的一導電部件,該阻障部件包括鈦、鉭、氮化鈦、氮化 鉭或其組合。The semiconductor structure of claim 12, wherein the conductive via hole includes a barrier component and a conductive component surrounded by the conductive via hole, and the barrier component includes titanium, tantalum, titanium nitride, nitride Tantalum or combinations thereof.
TW111125026A 2022-05-12 2022-07-04 Semiconductor structure with a porous structure TWI825822B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17/742,612 US20230369202A1 (en) 2022-05-12 2022-05-12 Method for manufacturing semiconductor structure having a porous structure
US17/742,541 2022-05-12
US17/742,612 2022-05-12
US17/742,541 US20230369243A1 (en) 2022-05-12 2022-05-12 Semiconductor structure with a porous structure

Publications (2)

Publication Number Publication Date
TW202345289A TW202345289A (en) 2023-11-16
TWI825822B true TWI825822B (en) 2023-12-11

Family

ID=89720361

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111125026A TWI825822B (en) 2022-05-12 2022-07-04 Semiconductor structure with a porous structure

Country Status (1)

Country Link
TW (1) TWI825822B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI596701B (en) * 2015-07-20 2017-08-21 台灣積體電路製造股份有限公司 Semiconductor device structure and method for forming the same
TW202143418A (en) * 2020-05-11 2021-11-16 聯發科技股份有限公司 Interconnect strcture for a redistribution layer and semiconductor package
TW202209600A (en) * 2020-04-27 2022-03-01 台灣積體電路製造股份有限公司 Package structure and method for forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI596701B (en) * 2015-07-20 2017-08-21 台灣積體電路製造股份有限公司 Semiconductor device structure and method for forming the same
TW202209600A (en) * 2020-04-27 2022-03-01 台灣積體電路製造股份有限公司 Package structure and method for forming the same
TW202143418A (en) * 2020-05-11 2021-11-16 聯發科技股份有限公司 Interconnect strcture for a redistribution layer and semiconductor package

Also Published As

Publication number Publication date
TW202345213A (en) 2023-11-16
TW202345289A (en) 2023-11-16

Similar Documents

Publication Publication Date Title
TWI595652B (en) Devices including gate spacer with gap or void and methods of forming the same
US11271112B2 (en) Method for forming fin field effect transistor (FINFET) device structure with conductive layer between gate and gate contact
US20210202732A1 (en) Fin field effect transistor (finfet) device structure with isolation layer and method for forming the same
US11011636B2 (en) Fin field effect transistor (FinFET) device structure with hard mask layer over gate structure and method for forming the same
US11088250B2 (en) Fin field effect transistor (FinFET) device structure with dual spacers and method for forming the same
TW201320197A (en) Methods of fabricating semiconductor devices
TWI749847B (en) Semiconductor device structure with air gap and method for forming the same
US11164948B2 (en) Field-effect transistor and method of manufacturing the same
TWI825822B (en) Semiconductor structure with a porous structure
TWI840863B (en) Method for fabricating semiconductor structure with a porous structure
US20230369202A1 (en) Method for manufacturing semiconductor structure having a porous structure
US20230369243A1 (en) Semiconductor structure with a porous structure
TWI793742B (en) Method for forming semiconductor device with air gap between bit line and capacitor contact
TWI786821B (en) Semiconductor device with air gap between two conductive features and method for prepraring
TWI817408B (en) Semiconductor device structure and method of forming the same
TWI817694B (en) Semiconductor structure having contact plug and method of manufacturing the same
TWI820691B (en) Semiconductor structure and method of manufacture
US20230290705A1 (en) Semiconductor structure with improved heat dissipation
KR102436689B1 (en) Capacitance reduction for back-side power rail device
US20220319981A1 (en) Semiconductor device structure and method for forming the same
TWI793599B (en) Semiconductor device with porous insulating layers and method for fabricating the same
US11837638B2 (en) Semiconductor device
US20230207667A1 (en) Ultra-dense three-dimensional transistor design
US20240021711A1 (en) Semiconductor structure and method for forming the same
TW202347708A (en) Semiconductor structure with single side capacitor