TWI824829B - 造影影像判定方法及造影影像判定裝置 - Google Patents

造影影像判定方法及造影影像判定裝置 Download PDF

Info

Publication number
TWI824829B
TWI824829B TW111144120A TW111144120A TWI824829B TW I824829 B TWI824829 B TW I824829B TW 111144120 A TW111144120 A TW 111144120A TW 111144120 A TW111144120 A TW 111144120A TW I824829 B TWI824829 B TW I824829B
Authority
TW
Taiwan
Prior art keywords
image
images
candidate
processor
stenosis
Prior art date
Application number
TW111144120A
Other languages
English (en)
Other versions
TW202326615A (zh
Inventor
張傑閎
徐遠星
黃振盛
陳念倫
黃世旭
陳坤松
沈俊德
張瑋婷
唐國庭
陳志成
Original Assignee
仁寶電腦工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 仁寶電腦工業股份有限公司 filed Critical 仁寶電腦工業股份有限公司
Publication of TW202326615A publication Critical patent/TW202326615A/zh
Application granted granted Critical
Publication of TWI824829B publication Critical patent/TWI824829B/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration by the use of more than one image, e.g. averaging, subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration by the use of local operators
    • G06T5/30Erosion or dilatation, e.g. thinning
    • G06T5/90
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/143Segmentation; Edge detection involving probabilistic approaches, e.g. Markov random field [MRF] modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/155Segmentation; Edge detection involving morphological operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/174Segmentation; Edge detection involving the use of two or more images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/28Quantising the image, e.g. histogram thresholding for discrimination between background and foreground patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/758Involving statistics of pixels or of feature values, e.g. histogram matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone
    • G06T2207/30012Spine; Backbone
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30172Centreline of tubular or elongated structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/07Target detection

Abstract

本發明的實施例提供一種造影影像判定方法及造影影像判定裝置。所述方法包括:取得經注射顯影劑的身體部位的多張第一影像;透過對各第一影像進行第一影像前處理操作取得對應的多張第二影像;取得各第二影像的像素統計特性;基於各第二影像的像素統計特性找出候選影像;以及在所述多個第一影像中找出對應於候選影像的參考影像。

Description

造影影像判定方法及造影影像判定裝置
本發明是有關於一種影像判定機制,且特別是有關於一種造影影像判定方法及造影影像判定裝置。
在現有技術中,為了辨識病患的血管是否出現狹窄的情況,需對病患施打血管顯影劑,並對經施打血管顯影劑的身體部位拍攝多張血管造影影像。之後,醫生需從這些血管造影影像中手動選出具最佳顯影效果的一張最佳血管造影影像,再於所選的最佳血管造影影像中找出對應於血管狹窄處的位置,方能進行後續的診斷。
然而,對於醫生或其他相關人員而言,從所拍攝的多張血管造影影像中挑選最佳血管造影影像並不容易。因此,對於本領域技術人員而言,如何設計一種挑選符合需求的血管造影影像的機制實為一項重要議題。
有鑑於此,本發明提供一種造影影像判定方法及造影影像判定裝置,其可用於解決上述技術問題。
本發明的實施例提供一種造影影像判定方法,適用於一造影影像判定裝置,包括:取得經注射顯影劑的一身體部位的多張第一影像;透過對各第一影像進行一第一影像前處理操作取得對應於所述多個第一影像的多張第二影像,其中各第二影像為二值化影像;取得各第二影像的一像素統計特性;基於各第二影像的像素統計特性從所述多個第二影像中找出至少一候選影像;以及在所述多個第一影像中找出對應於至少一候選影像的至少一參考影像。
本發明的實施例提供一種造影影像判定裝置,包括儲存電路及處理器。儲存電路儲存一程式碼。處理器耦接儲存電路並存取程式碼以執行:取得經注射顯影劑的一身體部位的多張第一影像;透過對各第一影像進行一第一影像前處理操作取得對應於所述多個第一影像的多張第二影像,其中各第二影像為二值化影像;取得各第二影像的一像素統計特性;基於各第二影像的像素統計特性從所述多個第二影像中找出至少一候選影像;以及在所述多個第一影像中找出對應於至少一候選影像的至少一參考影像。
請參照圖1,其是依據本發明之一實施例繪示的造影影像判定裝置示意圖。在不同的實施例中,造影影像判定裝置100可以是各式智慧型裝置、電腦裝置或任何具備影像處理/分析功能的裝置,但可不限於此。
在一些實施例中,造影影像判定裝置100例如可用於運行醫療院所的醫療資訊系統(Hospital Information System,HIS),並可用於為醫護人員提供所需的資訊,但可不限於此。
在圖1中,造影影像判定裝置100包括儲存電路102及處理器104。儲存電路102例如是任意型式的固定式或可移動式隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash memory)、硬碟或其他類似裝置或這些裝置的組合,而可用以記錄多個程式碼或模組。
處理器104耦接於儲存電路102,並可為一般用途處理器、特殊用途處理器、傳統的處理器、數位訊號處理器、多個微處理器(microprocessor)、一個或多個結合數位訊號處理器核心的微處理器、控制器、微控制器、特殊應用積體電路(Application Specific Integrated Circuit,ASIC)、現場可程式閘陣列電路(Field Programmable Gate Array,FPGA)、任何其他種類的積體電路、狀態機、基於進階精簡指令集機器(Advanced RISC Machine,ARM)的處理器以及類似品。
在本發明的實施例中,處理器104可存取儲存電路102中記錄的模組、程式碼來實現本發明提出的造影影像判定,其細節詳述如下。
請參照圖2,其是依據本發明之一實施例繪示的造影影像判定方法流程圖。本實施例的方法可由圖1的造影影像判定裝置100執行,以下即搭配圖1所示的元件說明圖2各步驟的細節。另外,為使本案概念更易於理解,以下將輔以圖3內容作說明,其中圖3是依據本發明之一實施例繪示的取得第一影像及第二影像的示意圖。
首先,在步驟S210中,處理器104取得經注射顯影劑的身體部位的多張第一影像311、…、31K、…、31N。
在圖3中,所考慮的身體部位例如是某病患的冠狀動脈,而醫護人員可在為此病患注射顯影劑後,透過相關儀器對其冠狀動脈的區域連續拍攝多張血管造影影像作為上述第一影像311、…、31K、…、31N,再由處理器104據以進行後續處理/分析,但可不限於此。
在圖3情境中,由於顯影劑會隨著時間而使冠狀動脈附近的血管顏色逐漸變深再逐漸變淺,因此習知需由醫師從第一影像311、…、31K、…、31N挑出其認為顯影劑最明顯(即,血管顏色最深)的最佳血管造影影像,以進行後續的診斷。然而,如先前所言,挑出最佳血管造影影像的過程並不容易。因此,在一個實施例中,本發明提出的造影影像判定方法可理解為用於協助進行上述挑選,但可不限於此。以下將作進一步說明。
在取得上述第一影像311、…、31K、…、31N之後,在步驟S220中,處理器104透過對各第一影像311、…、31K、…、31N進行第一影像前處理操作取得分別對應於所述多個第一影像311、…、31K、…、31N的多張第二影像321、…、32K、…、32N。
在一實施例中,上述第一影像前處理操作例如包括二值化操作。例如,在處理器104對第一影像31K進行二值化操作時,處理器104可先判定對應於第一影像31K的灰階閾值(例如是第一影像31K中全部像素的灰階平均值),並將第一影像31K中灰階值低於灰階閾值的像素判定為具有灰階值255(其例如對應於白色),以及將第一影像31K中灰階值高於灰階閾值的像素判定為具有灰階值0(其例如對應於黑色)。簡言之,處理器104可將第一影像31K中較深色區域(例如對應於血管的區域)中的像素皆設定為灰階值255,並同時將第一影像31K中較淺色區域(例如未對應於血管的區域)中的像素皆設定為灰階值0,但可不限於此。
此外,處理器104可對其他第一影像亦進行上述二值化操作。藉此,可讓所取得的各第二影像321、…、32K、…、32N皆為二值化影像。
此外,上述第一影像前處理還可包括對比增強操作及影像形態學中的侵蝕操作的至少其中之一。例如,在處理器104對第一影像311進行對比增強操作時,可強化第一影像311中的主體(例如血管)與背景(例如血管以外的區域)之間的差異。另外,在處理器104對第一影像311進行侵蝕操作時,處理器104例如可相應地過濾第一影像311中的背景雜點,進而達到降低背景雜訊的效果。
在圖3情境中,在執行上述第一影像前處理的過程中,處理器104可對各第一影像311、…、31K、…、31N依序執行對比增強操作、二值化操作及侵蝕操作,以得到分別對應於第一影像311、…、31K、…、31N的第二影像321、…、32K、…、32N(其個別為二值化影像),但可不限於此。
在步驟S230中,處理器104取得各第二影像321、…、32K、…、32N的像素統計特性。在一實施例中,各第二影像321、…、32K、…、32N的像素統計特性包括各第二影像321、…、32K、…、32N的灰階值總和。例如,第二影像321的像素統計特性例如是第二影像321中像素的灰階值總和,第二影像32K的像素統計特性例如是第二影像32K中像素的灰階值總和,第二影像32N的像素統計特性例如是第二影像32N中像素的灰階值總和,但可不限於此。
在步驟S240中,處理器104基於各第二影像321、…、32K、…、32N的像素統計特性從所述多個第二影像中找出候選影像。在本實施例中,候選影像可理解為較可能對應於最佳(血管)造影影像的一或多個第二影像,但可不限於此。
在圖3情境中,由於各第二影像321、…、32K、…、32N中對應於血管區域的像素例如呈現為白色(即,灰階值為255),因此當某個第二影像的灰階值總和越高時,即代表此第二影像中白色的區域越多,亦即血管越明顯。
因此,處理器104例如可在第二影像321、…、32K、…、32N中找出具有最高的像素統計特性(例如最高的灰階值總和)的特定影像作為候選影像的其中之一。在圖3情境中,假設第二影像32K具有最高的灰階值總和,則處理器104例如可判定第二影像32K為上述特定影像,並將其作為候選影像的其中之一。
請參照圖4,其是依據本發明之一實施例繪示的像素統計特性變化示意圖。在圖4中,橫軸例如是第二影像321、…、32K、…、32N的索引值,縱軸例如是各第二影像321、…、32K、…、32N對應的像素統計特性(例如,灰階值總和)。在圖4情境中,可看出最高的像素統計特性約略對應於索引值為48的第二影像。基此,處理器104例如可將第二影像321、…、32K、…、32N中排序第48的第二影像作為上述特定影像,但可不限於此。
在一些實施例中,處理器104還可基於特定影像在第二影像321、…、32K、…、32N中找出至少一其他影像,其中各其他影像與特定影像之間的時間差小於時間閾值。舉例而言,假設所考慮的時間閾值為3秒,則處理器104例如可將與特定影像(例如第二影像32K)相距3秒內的其他第二影像作為上述其他影像,但可不限於此。之後,處理器104可判定上述其他影像亦屬於候選影像。亦即,處理器104除了可將上述特定影像作為候選影像之外,亦可將與特定影像在時間上相近的其他影像亦作為候選影像,但可不限於此。
之後,在步驟S250中,處理器104在所述多個第一影像311、…、31K、…、31N中找出對應於候選影像的參考影像。在一實施例中,假設所考慮的候選影像僅包括第二影像32K,則處理器104例如可將對應於第二影像32K的第一影像31K作為參考影像。
在其他實施例中,假設所考慮的候選影像除了包括第二影像32K之外還包括其他第二影像,則處理器104可將對應於第二影像32K的第一影像31K及對應於所述其他第二影像的其他第一影像皆作為參考影像,但可不限於此。
由上可知,本發明實施例可用於在多張第一影像311、…、31K、…、31N中找出具最佳顯影效果的其中之一(例如第一影像31K)。藉此,可有效提升找出最佳造影影像的效率,從而讓醫師能夠便利地依據最佳造影影像進行後續診斷。
此外,本發明實施例可將與具最佳顯影效果的造影影像與其他時間上相近的影像一併作為參考影像供醫師參考,進而讓醫師能夠依其主觀意識而選擇所需的造影影像作為後續診斷的依據,但可不限於此。
在其他實施例中,處理器104亦可基於其他方式從第一影像311、…、31K、…、31N中找出一或多張參考影像。
在第一實施例中,處理器104可直接計算第一影像311、…、31K、…、31N個別的灰階值總和,並將第一影像311、…、31K、…、31N中具最低灰階值總和的一者判定為參考影像。
在第二實施例中,處理器104可先從第一影像311、…、31K、…、31N中分割出一特定區域,再計算各第一影像311、…、31K、…、31N中特定區域的灰階值總和。在第二實施例中,處理器104可透過將各第一影像311、…、31K、…、31N去除(固定)邊界區域的方式來在第一影像311、…、31K、…、31N中分割出特定區域。例如,當處理器104在第一影像311中分割特定區域時,處理器104可透過將第一影像311的四個邊界分別移除固定寬度的區域來得到第一影像311中的特定區域,但可不限於此。之後,處理器104可計算第一影像311中特定區域的灰階值總和。
對於其他的第一影像,處理器104可進行相似的處理以得到各第一影像的特定區域及對應的灰階值總和。之後,處理器104將第一影像311、…、31K、…、31N中對應於最低灰階值總和的一者判定為參考影像。
在第三實施例中,處理器104同樣可從第一影像311、…、31K、…、31N中分割出特定區域,再計算各第一影像311、…、31K、…、31N中特定區域的灰階值總和,惟處理器104可採用不同於第二實施例的方式在各從第一影像311、…、31K、…、31N中分割出特定區域。
以第一影像311為例,處理器104可從第一影像311的上側邊界往下搜尋,直至找到出現明顯灰階值變化的列,再以此列作為第一影像311的特定區域的上邊界。另外,處理器104可從第一影像311的下側邊界往上搜尋,直至找到出現明顯灰階值變化的列,再以此列作為第一影像311的特定區域的下邊界。相似地,處理器104可從第一影像311的左、右側邊界分別往右、左搜尋,直至找到出現明顯灰階值變化的兩個行,再以此二行作為第一影像311的特定區域的左、右邊界。之後,處理器104可計算第一影像311中特定區域的灰階值總和。
在第三實施例中,處理器104可基於上述教示而在其他的第一影像中分割特定區域,並計算對應的灰階值總和。之後,處理器104將第一影像311、…、31K、…、31N中對應於最低灰階值總和的一者判定為參考影像,但可不限於此。
在一實施例中,處理器104可基於所取得的一或多張參考影像個別作進一步分析/處理,以得到進一步的判定結果。以下將作進一步說明。
為便於理解,以下僅以所取得的一或多張參考影像的其中之一(下稱第一參考影像)為例作說明,而本領域具通常知識者應可相應推得處理器104對其他參考影像所進行的操作。
請參照圖5,其是依據本發明之一實施例繪示的判定管狀物件狹窄比例的方法流程圖。本實施例的方法可由圖1的造影影像判定裝置100執行,以下即搭配圖1所示的元件說明圖5各步驟的細節。
首先,在步驟S510中,處理器104在第一參考影像中辨識包括管狀物件的第一目標區域影像。在本發明實施例中,所述管狀物件例如是出現血管狹窄病灶的血管區段,但可不限於此。
請參照圖6,其是依據本發明之一實施例繪示的辨識第一目標區域影像的示意圖。在圖6中,假設第一參考影像600為經圖2方法所取得的其中一張參考影像,則處理器104例如可在第一參考影像600中辨識分別包括管狀物件611a、612a的第一目標區域影像611、612。在本實施例中,管狀物件611a、612a個別例如是出現血管狹窄病灶的血管區段,但可不限於此。
在一實施例中,處理器104例如可將第一參考影像600輸入經預訓練的機器學習模型,而此機器學習模型可相應地在第一參考影像600中標示出第一目標區域影像611、612。
在一實施例中,為使上述機器學習模型具備上述能力,在此機器學習模型的訓練過程中,設計者可將經特殊設計的訓練資料饋入此機器學習模型,以讓此機器學習模型進行相應的學習。舉例而言,在取得某張已標註為包括感興趣區域(例如管狀物件)的影像之後,處理器104可據以產生對應的特徵向量,並將其饋入上述機器學習模型。藉此,可讓上述機器學習模型從此特徵向量中學習有關於感興趣區域(例如管狀物件)的相關特徵。在此情況下,當此機器學習模型日後接收對應於上述特徵向量的影像時,此機器學習模型即可相應地判定此影像中包括感興趣區域(例如管狀物件),但可不限於此。
之後,在步驟S520中,處理器104透過對第一目標區域影像進行第二影像前處理操作而取得第二目標區域影像。為使本案概念更易於理解,以下將輔以圖7內容作說明,其中圖7是依據本發明之一實施例繪示的取得第二目標區域影像的示意圖。
在圖7中,假設第一目標區域影像711(其包括管狀物件711a)係由處理器104在某個第一參考影像中辨識而得。在此情況下,處理器104可對第一目標區域影像711進行第二影像前處理操作。
在圖7中,在處理器104對第一目標區域影像711進行第二影像前處理操作的過程中,處理器104例如可依序對第一目標區域影像711進行平滑濾波、自適應二值化及影像形態學等影像處理,以得到第二目標區域影像714,其中第二目標區域影像714為二值化影像。
在本實施例中,處理器104例如可透過上述平滑濾波來對第一目標區域影像711進行影像平滑處理,以得到影像712。藉此,可達到降低影像雜訊的效果。
另外,在進行上述自適應二值化的過程中,處理器104例如可針對影像712中的每個像素進行計算而決定對應的灰階閾值,並據以對每個像素進行二值化,進而得到影像713。藉此,可避免因像素灰階分布不均而衍生其他後續問題。
再者,在基於影像形態學處理影像713的過程中,處理器104可對影像713的中的白色區域進行關閉(closing),再對影像713中的白色區域進行開啟(opening),以得到第二目標區域影像714。藉此,可達到去除血管內雜點的效果。在一實施例中,上述關閉操作例如是令影像713中的白色區域先往外膨脹再往內侵蝕,藉以過濾血管內的細微黑點。另外,上述開啟操作例如是將經開啟處理的影像713中的白色區域往內侵蝕再往外膨脹,藉以過濾外部背景中的細微白點,但可不限於此。
在取得第二目標區域影像714之後,在步驟S530中,處理器104基於第二目標區域影像714判定管狀物件711a的管徑變化,並據以判定管狀物件711a的狹窄位置。
請參照圖8,其是依據圖7繪示的判定狹窄位置的示意圖。在圖8中,處理器104例如可在圖7的第二目標區域影像714中判定管狀物件711a的中心線811,其中中心線811包括多個候選位置。
在一實施例中,處理器104可將第二目標區域影像714中的各個白色區域進行骨架化(細線化),並使用連通標記法標記出最大連通區域,以獲得管狀物件711a的中心線811。藉此,可避免計算到其他背景雜點的骨架。
在一實施例中,處理器104可基於名為「scikit-image」的影像前處理函式庫中的medial_axis函式來進行上述骨架化的操作,但可不限於此。
之後,處理器104可判定管狀物件711a在中心線811上各候選位置處的管徑,並據以判定管狀物件711a的管徑變化。
在圖8中,假設候選位置811a、811b、811c為中心線811上的其中三個候選位置,而處理器104可相應地判定各候選位置811a、811b、811c的管徑D1、D2、D3。對於中心線811上的其他候選位置,處理器104亦可判定對應的管徑。
之後,處理器104例如可判定中心線811上的候選位置中具最小管徑的一者為狹窄位置。舉例而言,假設管徑D2為最小管徑,則處理器104可判定候選位置811b即為上述狹窄位置,但可不限於此。
在判定狹窄位置之後,在步驟S540中,處理器104基於管徑變化及狹窄位置判定對應狹窄位置的狹窄比例。
在圖8中,處理器104可基於管徑變化在狹窄位置的兩側判定位於中心線811上的第一位置及第二位置。在本實施例中,假設候選位置811a、811c分別為所考慮的第一位置及第二位置,但可不限於此。之後,處理器104可基於第一位置的管徑D1及第二位置的管徑D3估計對應於狹窄位置(例如候選位置811b)的估計管徑(以下稱為ED)。在一實施例中,處理器104例如可透過內插法估計介於管徑D1、D3之間的估計管徑ED,但可不限於此。
接著,處理器104可基於估計管徑ED與狹窄位置(例如候選位置811b)的管徑D2判定對應狹窄位置的狹窄比例。在一實施例中,上述狹窄比例可表徵為「1-(D2/ED)x100%」,但可不限於此。
在一實施例中,第一目標區域影像711可理解為出現血管堵塞的區域,因此處理器104亦可基於中心線811的長度判定管狀物件711a的長度,亦即出現堵塞現象的血管長度,但可不限於此。
綜上所述,本發明實施例提出可在多張造影影像中找出具最佳造影品質的參考影像,進而提升找出最佳造影影像的效率。藉此,可讓醫師能夠便利地依據最佳造影影像進行後續診斷。此外,本發實施例另提出基於參考影像判定管狀物件上的狹窄位置及對應的狹窄比例的方法,進而可作為醫師後續診斷上的參考。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100:造影影像判定裝置 102:儲存電路 104:處理器 311, …, 31K, …, 31N:第一影像 321, …, 32K, …, 32N:第二影像 600:第一參考影像 611, 612, 711:第一目標區域影像 611a, 612a, 711a:管狀物件 712, 713:影像 714:第二目標區域影像 811:中心線 811a, 811b, 811c:候選位置 D1, D2, D3:管徑 ED:估計管徑 S210~S250, S510~S540:步驟
圖1是依據本發明之一實施例繪示的造影影像判定裝置示意圖。 圖2是依據本發明之一實施例繪示的造影影像判定方法流程圖。 圖3是依據本發明之一實施例繪示的取得第一影像及第二影像的示意圖。 圖4是依據本發明之一實施例繪示的像素統計特性變化示意圖。 圖5是依據本發明之一實施例繪示的判定管狀物件狹窄比例的方法流程圖。 圖6是依據本發明之一實施例繪示的辨識第一目標區域影像的示意圖。 圖7是依據本發明之一實施例繪示的取得第二目標區域影像的示意圖。 圖8是依據圖7繪示的判定狹窄位置的示意圖。
S210~S250:步驟

Claims (13)

  1. 一種造影影像判定方法,適用於一造影影像判定裝置,包括: 取得經注射顯影劑的一身體部位的多張第一影像; 透過對各該第一影像進行一第一影像前處理操作取得對應於該些第一影像的多張第二影像,其中各該第二影像為二值化影像; 取得各該第二影像的一像素統計特性; 基於各該第二影像的該像素統計特性從該些第二影像中找出至少一候選影像;以及 在該些第一影像中找出對應於該至少一候選影像的至少一參考影像。
  2. 如請求項1所述的方法,其中各該第一影像為一血管造影影像。
  3. 如請求項1所述的方法,其中該第一影像前處理至少包括二值化操作。
  4. 如請求項3所述的方法,其中該第一影像前處理更包括一對比增強操作及一侵蝕操作的至少其中之一。
  5. 如請求項1所述的方法,其中各該第二影像的該像素統計特性包括各該第二影像的灰階值總和。
  6. 如請求項1所述的方法,其中基於各該第二影像的該像素統計特性從該些第二影像中找出該至少一候選影像的步驟包括: 在該些第二影像中找出具有最高的該像素統計特性的一特定影像作為該至少一候選影像的其中之一。
  7. 如請求項6所述的方法,其中該些第一影像為經連續拍攝而得,且基於各該第二影像的該像素統計特性從該些第二影像中找出該至少一候選影像的步驟更包括: 基於該特定影像在該些第二影像找出至少一其他影像,其中各該其他影像與該特定影像之間的一時間差小於一時間閾值; 判定該至少一其他影像屬於該至少一候選影像。
  8. 如請求項1所述的方法,其中該至少一參考影像包括一第一參考影像,且所述方法更包括: 在該第一參考影像中辨識包括一管狀物件的一第一目標區域影像; 透過對該第一目標區域影像進行一第二影像前處理操作而取得一第二目標區域影像,其中該第二目標區域影像為二值化影像; 基於該第二目標區域影像判定該管狀物件的一管徑變化,並據以判定該管狀物件的一狹窄位置;以及 基於該管徑變化及該狹窄位置判定對應該狹窄位置的一狹窄比例。
  9. 如請求項8所述的方法,其中基於該第二目標區域影像判定該管狀物件的該管徑變化的步驟包括: 在該第二目標區域影像中判定該管狀物件的中心線,其中該中心線包括多個候選位置; 判定該管狀物件在各該候選位置處的管徑,並據以判定該管狀物件的該管徑變化。
  10. 如請求項9所述的方法,其中該狹窄位置對應於該些候選位置中具一最小管徑的一者。
  11. 如請求項9所述的方法,其中基於該管徑變化及該狹窄位置判定對應該狹窄位置的該狹窄比例的步驟包括: 基於該管徑變化在該狹窄位置的兩側判定位於該中心線上的一第一位置及一第二位置; 基於該第一位置的該管徑及該第二位置的該管徑估計對應於該狹窄位置的一估計管徑;以及 基於該估計管徑與該狹窄位置的該管徑判定對應該狹窄位置的該狹窄比例。
  12. 如請求項9所述的方法,更包括: 基於該中心線的長度判定該管狀物件的長度。
  13. 一種造影影像判定裝置,包括: 一儲存電路,其儲存一程式碼;以及 一處理器,其耦接該儲存電路並存取該程式碼以執行: 取得經注射顯影劑的一身體部位的多張第一影像; 透過對各該第一影像進行一第一影像前處理操作取得對應於該些第一影像的多張第二影像,其中各該第二影像為二值化影像; 取得各該第二影像的一像素統計特性; 基於各該第二影像的該像素統計特性從該些第二影像中找出至少一候選影像;以及 在該些第一影像中找出對應於該至少一候選影像的至少一參考影像。
TW111144120A 2021-12-20 2022-11-18 造影影像判定方法及造影影像判定裝置 TWI824829B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163291461P 2021-12-20 2021-12-20
US63/291,461 2021-12-20

Publications (2)

Publication Number Publication Date
TW202326615A TW202326615A (zh) 2023-07-01
TWI824829B true TWI824829B (zh) 2023-12-01

Family

ID=86768623

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111144120A TWI824829B (zh) 2021-12-20 2022-11-18 造影影像判定方法及造影影像判定裝置

Country Status (3)

Country Link
US (1) US20230196568A1 (zh)
CN (1) CN116309264A (zh)
TW (1) TWI824829B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117078698B (zh) * 2023-08-22 2024-03-05 山东第一医科大学第二附属医院 一种基于深度学习的外周血管影像辅助分割方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170103526A1 (en) * 2015-10-13 2017-04-13 Toshiba Medical Systems Corporation Medical image processing apparatus and medical image processing method
US20180350080A1 (en) * 2017-06-06 2018-12-06 National Yang-Ming University Analysis method and system of digital subtraction angiographic images
US20190357778A1 (en) * 2018-05-23 2019-11-28 Acist Medical Systems, Inc. Flow measurement using image data
TW202008304A (zh) * 2018-07-20 2020-02-16 巫湘沂 以動態影像判斷血流量變化及血管阻塞區域之方法
TW202045100A (zh) * 2019-06-11 2020-12-16 宏碁股份有限公司 血管狀態評估方法與血管狀態評估裝置
TW202103181A (zh) * 2019-07-11 2021-01-16 宏碁股份有限公司 血管狀態評估方法與血管狀態評估裝置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170103526A1 (en) * 2015-10-13 2017-04-13 Toshiba Medical Systems Corporation Medical image processing apparatus and medical image processing method
US20180350080A1 (en) * 2017-06-06 2018-12-06 National Yang-Ming University Analysis method and system of digital subtraction angiographic images
US20190357778A1 (en) * 2018-05-23 2019-11-28 Acist Medical Systems, Inc. Flow measurement using image data
TW202008304A (zh) * 2018-07-20 2020-02-16 巫湘沂 以動態影像判斷血流量變化及血管阻塞區域之方法
TW202045100A (zh) * 2019-06-11 2020-12-16 宏碁股份有限公司 血管狀態評估方法與血管狀態評估裝置
TW202103181A (zh) * 2019-07-11 2021-01-16 宏碁股份有限公司 血管狀態評估方法與血管狀態評估裝置

Also Published As

Publication number Publication date
TW202326615A (zh) 2023-07-01
US20230196568A1 (en) 2023-06-22
CN116309264A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US11576626B2 (en) Systems and methods for numerically evaluating vasculature
Lareyre et al. A fully automated pipeline for mining abdominal aortic aneurysm using image segmentation
Cha et al. Urinary bladder segmentation in CT urography using deep‐learning convolutional neural network and level sets
CN108280827B (zh) 基于深度学习的冠状动脉病变自动检测方法、系统和设备
CN110223271B (zh) 血管图像的自动水平集分割方法及装置
CN110648338B (zh) 图像分割方法、可读存储介质及图像处理装置
TWI698225B (zh) 血管狀態評估方法與血管狀態評估裝置
Xu et al. An improved algorithm for vessel centerline tracking in coronary angiograms
TWI824829B (zh) 造影影像判定方法及造影影像判定裝置
CN112840408A (zh) 用于根据脂肪组织来评估心血管疾病和治疗效果的系统和方法
WO2017187269A1 (en) Enhanced personalized evaluation of coronary artery disease using an integration of multiple medical imaging techniques
CN111598853A (zh) 针对肺炎的ct影像评分方法、装置及设备
Iwao et al. Integrated lung field segmentation of injured region with anatomical structure analysis by failure–recovery algorithm from chest CT images
CN114066886A (zh) 骨骼分割边界确定方法、装置、电子设备及存储介质
CN115439533A (zh) 获得颅内动脉瘤在血管分段位置的方法、计算机设备、可读存储介质和程序产品
Guo et al. A bone age assessment system for real-world X-ray images based on convolutional neural networks
Kim et al. New parametric imaging method with fluorescein angiograms for detecting areas of capillary nonperfusion
CN113362958A (zh) 治疗方案的应用后效果的预测方法及装置
Xiao et al. Automatic vasculature identification in coronary angiograms by adaptive geometrical tracking
WO2021117043A1 (en) Automatic stenosis detection
Wan et al. Automatic vessel segmentation in X-ray angiogram using spatio-temporal fully-convolutional neural network
TWI790179B (zh) 心導管影像辨識及評估方法
EP4113434A1 (en) Generation of plaque information
Zhang et al. Segmentation for pulmonary artery from mediastinum to lung in CTA datasets
Jevitha et al. Analysis of left main coronary bifurcation angle to detect stenosis