TWI796616B - Interactive dynamic forecast system for crop growth cycle and yield - Google Patents

Interactive dynamic forecast system for crop growth cycle and yield Download PDF

Info

Publication number
TWI796616B
TWI796616B TW109141840A TW109141840A TWI796616B TW I796616 B TWI796616 B TW I796616B TW 109141840 A TW109141840 A TW 109141840A TW 109141840 A TW109141840 A TW 109141840A TW I796616 B TWI796616 B TW I796616B
Authority
TW
Taiwan
Prior art keywords
information
crop
environmental
yield
module
Prior art date
Application number
TW109141840A
Other languages
Chinese (zh)
Other versions
TW202221622A (en
Inventor
吳君孝
Original Assignee
悠由數據應用股份有限公司
吳君孝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 悠由數據應用股份有限公司, 吳君孝 filed Critical 悠由數據應用股份有限公司
Priority to TW109141840A priority Critical patent/TWI796616B/en
Publication of TW202221622A publication Critical patent/TW202221622A/en
Application granted granted Critical
Publication of TWI796616B publication Critical patent/TWI796616B/en

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

An interactive dynamic prediction system for crop growth cycle and yield is used to solve the problem that the prior art cannot dynamically correct the prediction result in real time. The system comprises: an input module for inputting a crop information and a field information of a predetermined field; an environmental information module for obtaining an environmental information of the predetermined field; a control module, which uses obtain a corresponding characteristic environmental ecological parameter which the corp information obtains from the initial environmental information, use the crop information, the field information, and the characteristic environmental ecological parameter to predict the future growth cycle of the crop planted in the predetermined field, and use the predicted The growth cycle predicts the future output of the crop, and dynamically corrects the prediction result of the crop growth cycle and output with the latest environmental information and transmits it to an output module.

Description

農作物生長週期與產量交互動態預測系統 Interactive Dynamic Prediction System of Crop Growth Cycle and Yield

本發明係關於一種預測系統,尤其是一種利用預測模型預測出一農作物的預估採收日及預估產量,並隨時進行動態調整更新的農作物生長週期與產量交互動態預測系統。 The present invention relates to a forecasting system, in particular to an interactive dynamic forecasting system for crop growth cycle and yield, which uses a forecasting model to predict the estimated harvest date and estimated yield of a crop, and dynamically adjusts and updates it at any time.

習知的農作物預測系統,具有一檢測平台及一管理平台,該檢測平台係透過一環境感測模組感測取得種植農地的環境因子,以取得一環境參數組,並且對種植於該種植農地上的農作物進行檢測,以取得該農作物在種植過程中的生長參數組;該管理平台耦接該檢測平台,並將該環境參數組及該生長參數組輸入至一預測模型中進行解析,以取得該農作物的預估產期及預估產量,類似於該習知的農作物預測系統的一實施例已揭露於中華民國公告第I695339號專利案當中。 The known crop forecasting system has a detection platform and a management platform. The detection platform senses the environmental factors of the planting land through an environmental sensing module to obtain an environmental parameter set, and the planting in the planting land to obtain the growth parameter set of the crop during planting; the management platform is coupled to the detection platform, and inputs the environmental parameter set and the growth parameter set into a prediction model for analysis to obtain The estimated production date and estimated yield of the crops, similar to an embodiment of the conventional crop forecasting system, have been disclosed in the Republic of China Publication No. I695339 Patent Case.

上述習知的農作物預測系統,由於係擷取農作物的生長週期及產量的歷史數據來進行運算,因此,該預測模組所得到的預估產期及預估產量皆為固定不變之數值,並無法根據農地之即時環境資訊,及針對不同農作物種類、生長期來選用不同環境參數作出即時運算,以動態修正該預估產期及該預估產量,使農作物的預測結果無法達到準確,亦無法令農友即時反應改變相關數值以提升產量至目標值。 The above-mentioned known crop forecasting system is based on extracting the historical data of the growth cycle and yield of the crops for calculation. Therefore, the estimated production date and estimated yield obtained by the forecasting module are all fixed values. It is impossible to make real-time calculations based on the real-time environmental information of the farmland, and to select different environmental parameters for different crop types and growth periods, so as to dynamically correct the estimated production date and the estimated yield, so that the prediction results of the crops cannot be accurate, and It is impossible for farmers to respond immediately to change the relevant values to increase the output to the target value.

有鑑於此,習知的農作物預測系統確實仍有加以改善之必要。 In view of this, the conventional crop forecasting system still needs to be improved.

為解決上述問題,本發明的目的是提供一種農作物生長週期與產量交互動態預測系統,係可以透過農作物與田地資訊,以及即時環境資訊計算符合一農作物的客製化特徵參數,並提供動態修正的預測結果,以預測出該農作物的生長週期及產量者。 In order to solve the above problems, the purpose of the present invention is to provide an interactive dynamic prediction system for crop growth cycle and yield, which can calculate the customized characteristic parameters of a crop through crop and field information, and real-time environmental information, and provide dynamic correction. Prediction results to predict the growth cycle and yield of the crop.

本發明的次一目的是提供一種農作物生長週期與產量交互動態預測系統,針對不同生長階段取用不同的特徵環境生態參數。 The second object of the present invention is to provide an interactive dynamic prediction system for crop growth cycle and yield, which uses different characteristic environmental ecological parameters for different growth stages.

本發明全文所述之「種植方式」,係指新植,以及宿根及嫁接苗等非新植方式,惟非用以限制本發明。 The "planting method" mentioned throughout the present invention refers to new planting, and non-new planting methods such as perennial roots and grafted seedlings, but is not intended to limit the present invention.

本發明全文所述之「栽培方式」,係指有機農業、慣行農業、無毒栽培及自然農法等方式,惟非用以限制本發明。 The "cultivation methods" mentioned throughout the present invention refer to methods such as organic agriculture, conventional agriculture, non-toxic cultivation and natural farming methods, but are not intended to limit the present invention.

本發明全文所記載的元件及構件使用「一」或「一個」之量詞,僅是為了方便使用且提供本發明範圍的通常意義;於本發明中應被解讀為包括一個或至少一個,且單一的概念也包括複數的情況,除非其明顯意指其他意思。 The elements and components described throughout the present invention use the quantifier "a" or "an" only for convenience and to provide the usual meaning of the scope of the present invention; in the present invention, it should be interpreted as including one or at least one, and singular The notion of also includes the plural unless it is obvious that it means otherwise.

本發明的農作物生長週期與產量交互動態預測系統,包含:一輸入模組,供一使用者輸入一預定田地的一農作物資訊及一田地資訊;一環境資訊模組,用以取得該預定田地的一環境資訊;一輸出模組,用以輸出一預測結果,該預測結果供該使用者進行採收時程規畫及通路的安排;及一控制模組,耦接該輸入模組、該環境資訊模組及該輸出模組,該控制模組由該輸入模組取得該農作物資訊及該田地資訊,並由該環境資訊模組取得該環境資訊,該控制模組根據該農作物資訊,由最初的環境資訊中擷取相對應的一 特徵環境生態參數,該控制模組根據該農作物資訊、該田地資訊及該特徵環境生態參數,對種植於該預定田地的農作物的未來生長週期進行預測,以獲得一預計採收日,該控制模組根據該預計採收日、該農作物資訊、該田地資訊及該特徵環境生態參數進行預測,以獲得一預計產量,該控制模組以該預計採收日及該預計產量作為該預測結果,並持續根據由最新的環境資訊所轉換取得的特徵環境生態參數動態修正該預測結果,該控制模組將該預測結果傳送至該輸出模組;其中,該控制模組根據該環境資訊產生一環境資訊矩陣,該環境資訊矩陣的行列資訊分別為該環境資訊與該環境資訊所取得的日期,該控制模組透過一演算法根據該農作物資訊及該田地資訊,將該環境資訊矩陣轉換成一特徵環境生態參數矩陣,由該特徵環境生態參數矩陣中取得一農作物的特徵環境生態參數,並與該農作物資訊及該田地資訊一併輸入至內建的一生長週期及產量預測模型,使該生長週期及產量預測模型預測並輸出該農作物的預計採收日及預計產量;及該控制模組根據該預定田地所種植的農作物的生長階段之不同時期的生長週期,由該環境資訊中擷取相對應的特徵環境生態參數,且該特徵環境生態參數係對應該農作物不同時期的生長週期而變動。 The crop growth cycle and yield interactive dynamic prediction system of the present invention includes: an input module for a user to input crop information and field information of a predetermined field; an environmental information module for obtaining the predetermined field information One environmental information; one output module, used to output a prediction result, the prediction result is used for the user to plan the harvesting schedule and arrange the passage; and a control module, coupled to the input module, the environment information module and the output module, the control module obtains the crop information and the field information from the input module, and obtains the environmental information from the environmental information module, and the control module initially Extract the corresponding one from the environmental information The characteristic environmental ecological parameters, the control module predicts the future growth cycle of the crops planted in the predetermined field according to the crop information, the field information and the characteristic environmental ecological parameters, so as to obtain an expected harvest date, the control module The group performs forecasting based on the expected harvest date, the crop information, the field information and the characteristic environmental ecological parameters to obtain an estimated yield, the control module uses the expected harvest date and the expected yield as the forecast result, and Continuously modify the prediction result dynamically according to the characteristic environmental ecological parameters converted from the latest environmental information, and the control module transmits the prediction result to the output module; wherein, the control module generates an environmental information according to the environmental information matrix, the row and column information of the environmental information matrix is the environmental information and the date when the environmental information was obtained respectively, and the control module converts the environmental information matrix into a characteristic environmental ecology according to the crop information and the field information through an algorithm The parameter matrix is to obtain the characteristic environmental ecological parameters of a crop from the characteristic environmental ecological parameter matrix, and input them together with the crop information and the field information into a built-in growth cycle and yield prediction model, so that the growth cycle and yield The prediction model predicts and outputs the expected harvest date and expected yield of the crop; and the control module extracts the corresponding characteristics from the environmental information according to the growth cycle of the crops planted in the predetermined field in different stages of growth Environmental ecological parameters, and the characteristic environmental ecological parameters change corresponding to the growth cycles of the crops in different periods.

據此,本發明的農作物生長週期與產量交互動態預測系統,係能夠藉由農作物資訊、田地資訊以及即時環境資訊計算一符合農作物生理、客製化的特徵環境生態參數,並提供動態修正的預測結果;該控制模組係可以計算出該農作物於每日對應的特徵環境生態參數,並將這些參數輸至入該農作物生長週期及產量預測模型,以提供使用者最即時的生長週期及產量的預測結果。如此,本發明的農作物生長週期與產量交互動態預測系統,係可以達到協助使用者對未來採收時程規劃及通路之安排以降低人力成本的功效。另,該控制模組係能夠根據農作物的生長階段選用不同的特徵環境生態 參數,係具有提升農作物生長週期及產量的預測精確度的功效。 Accordingly, the crop growth cycle and yield interactive dynamic prediction system of the present invention is able to calculate a characteristic environmental ecological parameter in line with crop physiology and customization based on crop information, field information, and real-time environmental information, and provide dynamically corrected predictions. As a result; the control module can calculate the characteristic environmental ecological parameters of the crops in each day, and input these parameters into the crop growth cycle and yield prediction model to provide users with the most real-time growth cycle and yield forecast result. In this way, the crop growth cycle and yield interactive dynamic prediction system of the present invention can achieve the effect of assisting users in future harvesting schedule planning and route arrangement to reduce labor costs. In addition, the control module can select different characteristic environmental ecology according to the growth stage of crops. The parameters have the effect of improving the prediction accuracy of crop growth cycle and yield.

其中,該環境資訊包含一大氣溫度、一濕度、一光照強度、一土壤含水量、一土壤電導度及一土壤溫度中的至少一個。如此,係具有提升農作物生長週期及產量的預測精確度的功效。 Wherein, the environmental information includes at least one of an atmospheric temperature, a humidity, a light intensity, a soil water content, a soil electrical conductivity and a soil temperature. In this way, it has the effect of improving the prediction accuracy of crop growth cycle and yield.

其中,該農作物資訊包含一種植地點、一農作物種類及一種植日,該田地資訊包含一農作物植株數量、一種植方式、一栽培方式及一田地面積。如此,係具有提升農作物生長週期及產量的預測精確度的功效。 Wherein, the crop information includes a planting location, a crop type and a planting date, and the field information includes a crop plant quantity, a planting method, a cultivation method and a field area. In this way, it has the effect of improving the prediction accuracy of crop growth cycle and yield.

其中,該預定田地所種植的農作物係為小番茄時,該特徵環境生態參數包含一白天長度、一夜晚長度、一光照強度、一夜晚平均氣溫、一白天最高氣溫及一農作物生長積溫。如此,係具有精準預測小番茄的預計採收日及產量的功效。 Wherein, when the crop planted in the predetermined field is tomato, the characteristic environmental ecological parameters include a day length, a night length, a light intensity, a night average temperature, a day maximum temperature and a crop growth accumulated temperature. In this way, it has the effect of accurately predicting the expected harvest date and output of the small tomato.

〔本發明〕 〔this invention〕

100:農作物生長週期與產量交互動態預測系統 100:Crop growth cycle and yield interactive dynamic forecasting system

1:輸入模組 1: Input module

2:環境資訊模組 2: Environmental information module

3:輸出模組 3: Output module

4:控制模組 4: Control module

41:生長週期及產量預測模型 41: Growth cycle and yield prediction model

200:預測方法 200: Forecasting Methods

S11:步驟 S11: step

S13:步驟 S13: step

S15:步驟 S15: step

S17:步驟 S17: step

〔第1圖〕本發明一較佳實施例的系統方塊圖。 [Fig. 1] A system block diagram of a preferred embodiment of the present invention.

〔第2圖〕本發明一較佳實施例的操作流程圖。 [Fig. 2] the operation flowchart of a preferred embodiment of the present invention.

〔第3圖〕本發明一較佳實施例於種植日當天的預測結果示意圖。 [Fig. 3] A schematic diagram of the prediction results of a preferred embodiment of the present invention on the day of planting.

〔第4圖〕本發明一較佳實施例於種植日過後10天的預測結果示意圖。 [Fig. 4] A schematic diagram of the prediction results of a preferred embodiment of the present invention 10 days after the planting date.

〔第5圖〕本發明一較佳實施例於種植日過後60天的預測結果示意圖。 [Fig. 5] A schematic diagram of the prediction results of a preferred embodiment of the present invention 60 days after the planting date.

為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式,作詳細說明如下。 In order to make the above and other objects, features and advantages of the present invention more comprehensible, preferred embodiments of the present invention will be described in detail below together with the accompanying drawings.

請參照第1圖所示,其係本發明農作物生長週期與產量交互動 態預測系統100的一較佳實施例,係包含一輸入模組1、一環境資訊模組2、一輸出模組3及一控制模組4。 Please refer to shown in Fig. 1, it is that the crop growth cycle of the present invention interacts with output A preferred embodiment of the state prediction system 100 includes an input module 1 , an environment information module 2 , an output module 3 and a control module 4 .

該輸入模組1供一使用者輸入一預定田地的一農作物資訊及一田地資訊。詳言之,該農作物資訊係可以包含一種植地點(如:地號、地段)、一農作物種類、及一種植日,較佳地,該農作物資訊還可以具有一施肥時程或/及一灌溉時程等農務操作資訊;該田地資訊係可以包含一農作物植株數量、一種植方式、一栽培方式及一田地面積。 The input module 1 is for a user to input crop information and field information of a predetermined field. Specifically, the crop information can include a planting location (such as land number, field), a crop type, and a planting date. Preferably, the crop information can also have a fertilization schedule or/and an irrigation Agricultural operation information such as schedule; the field information may include a crop plant quantity, a planting method, a cultivation method and a field area.

另外要強調的是,在本發明中,該輸入模組1係可以為與該控制模組4以有線或無線方式相連接的滑鼠鍵盤組,亦可以為透過網路與該控制模組4相連接的雲端伺服器或具有網路及輸入功能的智慧行動裝置(如:智慧手機、平板或筆記型電腦),惟非用以作為本發明的限制。 In addition, it should be emphasized that in the present invention, the input module 1 can be a mouse and keyboard group connected to the control module 4 in a wired or wireless manner, or can be connected to the control module 4 through a network. A connected cloud server or a smart mobile device (such as a smart phone, a tablet or a notebook computer) with network and input functions is not used as a limitation of the present invention.

該環境資訊模組2用以取得該預定田地的一環境資訊,在本實施例中,該環境資訊係可以包含一大氣溫度、一濕度、一光照強度、一土壤含水量、一土壤電導度及一土壤溫度中的至少一個。舉例而言,上述環境資訊係可以透過一空拍機、一衛星或/及一田間監測伺服器(Filed Server,FS)等環境資訊模組2取得,亦可以由氣象局的公開天氣資訊中取得。值得一提的是,該環境資訊模組2係可以每間隔一週期時間發送該環境資訊至該控制模組4,在本實施例中,該週期時間係為一小時,惟不以此為限。 The environmental information module 2 is used to obtain an environmental information of the predetermined field. In this embodiment, the environmental information may include an atmospheric temperature, a humidity, an illumination intensity, a soil water content, a soil electrical conductivity and at least one of a soil temperature. For example, the above environmental information can be obtained through an aerial camera, a satellite or/and a field monitoring server (Filed Server, FS) and other environmental information module 2, and can also be obtained from the public weather information of the Bureau of Meteorology. It is worth mentioning that the environmental information module 2 can send the environmental information to the control module 4 at intervals of a cycle time. In this embodiment, the cycle time is one hour, but it is not limited to this .

該輸出模組3用以輸出一預測結果,在本發明中,該預測結果係可以包含一農作物的預計採收日及預計產量等資訊,以供該使用者進行採收時程規畫及通路的安排。本發明相關領域中具有通常知識者可以理解,若該農作物係屬於葉菜類,則可以不需要預測其開花日,若該農作物係屬於水果類,則必須預測其開花日,因此,根據該農作物種類,該預測結果較佳係還可以具有該農作物的預計開花日。例如但不限制地,該輸出模組3係可以為 一顯示器或具有顯示功能的智慧行動裝置。 The output module 3 is used to output a forecast result. In the present invention, the forecast result can include information such as an expected harvest date and expected yield of a crop, so that the user can plan the harvest schedule and route s arrangement. Those with ordinary knowledge in the relevant fields of the present invention can understand that if the crops belong to leafy vegetables, then it is not necessary to predict their flowering date; if the crops belong to fruits, then their flowering days must be predicted. The line with a better prediction result may also have an expected flowering date of the crop. For example but without limitation, the output module 3 series can be A display or an intelligent mobile device with a display function.

該控制模組4耦接該輸入模組1、該環境資訊模組2及該輸出模組3,該控制模組4由該輸入模組1取得該農作物資訊及該田地資訊,並由該環境資訊模組2取得該環境資訊;該控制模組4根據該農作物資訊,由最初的環境資訊中擷取相對應的一特徵環境生態參數,該特徵環境生態參數會根據該農作物種類的不同而有所變化;該控制模組4根據該農作物資訊、該田地資訊及該特徵環境生態參數,對種植於該預定田地的農作物的未來生長週期進行預測,以獲得一預計採收日;該控制模組4根據該預計採收日、該農作物資訊、該田地資訊及該特徵環境生態參數進行預測,以獲得一預計產量;該控制模組4將該預計採收日及該預計產量作為該預測結果,並持續根據由最新的環境資訊所轉換取得的特徵環境生態參數動態修正該預測結果;該控制模組4將該預測結果傳送至該輸出模組3,使該輸出模組3將該預測結果顯示給該使用者察看。 The control module 4 is coupled to the input module 1, the environment information module 2 and the output module 3, the control module 4 obtains the crop information and the field information from the input module 1, and obtains the information from the environment The information module 2 obtains the environmental information; the control module 4 extracts a corresponding characteristic environmental ecological parameter from the initial environmental information according to the crop information, and the characteristic environmental ecological parameter will vary according to the type of the agricultural crop. changed; the control module 4 predicts the future growth cycle of the crops planted in the predetermined field according to the crop information, the field information and the characteristic environmental ecological parameters, so as to obtain an estimated harvest date; the control module 4 making predictions based on the expected harvest date, the crop information, the field information and the characteristic environmental and ecological parameters to obtain an estimated yield; the control module 4 takes the expected harvest date and the expected yield as the forecast result, And continue to dynamically correct the prediction result according to the characteristic environmental ecological parameters converted from the latest environmental information; the control module 4 transmits the prediction result to the output module 3, so that the output module 3 displays the prediction result for this user to view.

具體而言,該控制模組4係可以根據由該環境資訊模組2所取得的環境資訊產生一環境資訊矩陣,該環境資訊矩陣的行列資訊分別為該環境資訊與該環境資訊所取得的日期。該控制模組4係可以透過一演算法,根據該農作物資訊及該田地資訊,將該環境資訊矩陣轉換成一特徵環境生態參數矩陣。該控制模組4由該特徵環境生態矩陣中取得該農作物的特徵環境生態參數,並與該農作物資訊及該田地資訊一併輸入至內建的一生長週期及產量預測模型41,使該生長週期及產量預測模型41對該農作物的未來生長週期進行預測,以獲得該農作物的預計開花日及預計採收日;該生長週期及產量預測模型41根據該預計開花日及該預計採收日、該農作物資料、該田地資訊及該特徵環境生態參數,對該農作物的未來產量進行預測,以獲得該農作物的預計產量;該生長週期及產量預測模型41將該預計採收日及該預計產量 作為該預測結果並進行輸出。其中,該生長週期及產量預測模型41係能夠以一回歸模型、一隨機森林模型或一神經網路模型等方式,對該農作物的預計開花日、預計採收日及預計產量進行預測,惟不以此為限。 Specifically, the control module 4 can generate an environmental information matrix according to the environmental information obtained by the environmental information module 2, and the row and column information of the environmental information matrix are respectively the environmental information and the date when the environmental information was obtained . The control module 4 can convert the environmental information matrix into a characteristic environmental ecological parameter matrix according to the crop information and the field information through an algorithm. The control module 4 obtains the characteristic environmental ecological parameters of the crop from the characteristic environmental ecological matrix, and inputs them together with the crop information and the field information into a built-in growth cycle and yield prediction model 41, so that the growth cycle and the yield prediction model 41 predict the future growth cycle of the crop to obtain the expected flowering date and the expected harvest date of the crop; the growth cycle and yield prediction model 41 is based on the expected flowering date and the expected harvest The crop data, the field information and the characteristic environmental ecological parameters are used to predict the future yield of the crop to obtain the expected yield of the crop; It is output as the prediction result. Among them, the growth cycle and yield prediction model 41 can use a regression model, a random forest model or a neural network model to predict the expected flowering date, expected harvest date and expected yield of the crop, but not This is the limit.

舉例而言,本發明以「小番茄」作為預測的農作物進行說明,其預測方式200描述如下。使用者(如:田間工作者)係可以透過該輸入模組1輸入該農作物資訊及該田地資訊,並將該農作物資訊及該田地資訊傳送至該控制模組4,該控制模組4由該環境資訊模組2取得種植小番茄的田地的環境資訊,例如:大氣溫度、濕度、光照強度、土壤含水量、土壤電導度、土壤溫度(步驟S11);由於,適合小番茄生長的溫度在白天與晚上分別有所不同,因此,該控制模組4係可以透過該演算法根據小番茄的農作物資訊及田地資訊,由上述環境資訊中提取符合的該特徵環境生態參數,意即,由該演算法係可以根據該種植地點計算出經緯度座標,並依據日期計算出每天的日出日落時間,以取得會影響小番茄生長因素的白天長度及夜晚長度,該演算法亦可以透過光照強度計算取得該白天長度及該夜晚長度;另一方面,由該大氣溫度中取得會影響小番茄生長因素的夜晚平均氣溫及白天最高氣溫,以及藉由換算該大氣溫度,以取得會影響小番茄生長因素的農作物生長積溫(步驟S13)。 For example, the present invention uses "tomato" as the predicted crop for illustration, and its prediction method 200 is described as follows. Users (such as: field workers) can input the crop information and the field information through the input module 1, and send the crop information and the field information to the control module 4, and the control module 4 is controlled by the The environmental information module 2 obtains the environmental information of the field for planting small tomatoes, such as: atmospheric temperature, humidity, light intensity, soil water content, soil electrical conductivity, soil temperature (step S11); because the temperature suitable for small tomato growth is during the day It is different from night time. Therefore, the control module 4 can extract the corresponding characteristic environmental ecological parameters from the above environmental information based on the crop information and field information of the tomato through the algorithm. That is, the algorithm can The French system can calculate the latitude and longitude coordinates based on the planting location, and calculate the daily sunrise and sunset times based on the date, so as to obtain the length of day and night that will affect the growth factors of small tomatoes. The length of the day and the length of the night; on the other hand, the average night temperature and the maximum temperature during the day that will affect the growth factors of the small tomato are obtained from the atmospheric temperature, and the crops that will affect the growth factors of the small tomato are obtained by converting the atmospheric temperature Growth accumulated temperature (step S13).

接著,該控制模組4係可以將該農作物資訊、該田地資訊及該特徵環境生態參數輸入至該生長週期及產量預測模型41,使該生長週期及產量預測模型41根據每天不同時段所接收到的特徵環境生態參數進行預測,以預測出小番茄的預計開花日、預計採收日及預計產量等資訊的預測結果,以提供最即時的生長週期及產量預測(步驟S15)。最終,該控制模組4係將該農作物的預計開花日、預計採收日及預計產量等預測結果藉由該輸出模組3輸出,以供該使用者進行採收時程規畫及通路的安排(步驟S17)。 Then, the control module 4 can input the crop information, the field information and the characteristic environmental ecological parameters into the growth cycle and yield prediction model 41, so that the growth cycle and yield prediction model 41 can receive The characteristic environmental and ecological parameters are predicted, so as to predict the predicted flowering date, expected harvest date and expected yield of the tomato, so as to provide the most real-time growth cycle and yield forecast (step S15). Finally, the control module 4 outputs the forecast results of the crop's expected flowering date, expected harvest date, and expected yield through the output module 3, so that the user can plan the harvest schedule and route. Schedule (step S17).

值得一提的是,由於該控制模組4係可以根據該預定田地所種植的農作物的生長階段,由該環境資訊中擷取相對應的特徵環境生態參數,例如:小番茄在不同時期的生長週期(如:幼苗期和開花期),可能對於光照強度、溫差、土壤含水量、白天土壤含水量差值、土壤電導度及土壤電導度差值的要求也會有所不同,故,在該生長週期及產量預測模型41中,便會將這些變數一併考量進去,以提供更精確的預測結果。 It is worth mentioning that since the control module 4 can extract corresponding characteristic environmental and ecological parameters from the environmental information according to the growth stages of the crops planted in the predetermined field, for example: the growth of small tomatoes in different periods Period (such as: seedling stage and flowering stage), may have different requirements for light intensity, temperature difference, soil moisture content, daytime soil moisture content difference, soil electrical conductivity, and soil electrical conductivity difference. Therefore, in this In the growth cycle and yield prediction model 41, these variables will be taken into consideration to provide more accurate prediction results.

請參照第3~5圖所示,小番茄的種植日在2019年12月20日,在小番茄種植日當天,由於尚未取得任何環境資訊,因此,本發明的農作物生長週期與產量交互動態預測系統100係可以先以歷史環境資訊推估小番茄的預計採收日,且所推估的預計採收日為2020年4月15日至2020年5月25日區間,以及每日的預估產量為590~690公斤/分之間。隨著時間推移,接收到的即時環境資訊的數據與歷史環境資訊的數據必不相同,因此,在小番茄種植日的十天之後,隨著該環境資訊及該特徵環境生態參數的變化,本發明的系統100對小番茄的預計採收日的推估,也逐步修正為2020年3月10日至2020年4月10日區間。由於,小番茄的預計採收日的預測變動,使得該生長週期及產量預測模型41會根據這樣的變動去重新預測小番茄的預測產量,以重新推估出小番茄的每日預估產量為450~480公斤/分之間。隨著小番茄的種植天數來到第六十天,該生長週期及產量預測模型41推估小番茄的預計採收日落在2020年4月1日至2020年5月7日區間,每日的預計產量落在530~560公斤/分之間,且與該使用者實際採收的日子只相差兩天。因此,使用者係能夠透過本發明的系統100,根據預計採收日及預計產量等資訊,提早進行採收時程規劃及通路的安排以降低人力成本。 Please refer to Figures 3 to 5, the planting date of the small tomato is December 20, 2019. On the day of the planting of the small tomato, since no environmental information has been obtained, the interactive dynamic prediction of the crop growth cycle and yield in the present invention The system 100 can first estimate the expected harvest date of small tomatoes based on historical environmental information, and the estimated expected harvest date is from April 15, 2020 to May 25, 2020, and the daily estimated The output is between 590~690 kg/min. As time goes by, the data of the real-time environmental information received will be different from the data of the historical environmental information. Therefore, after ten days after the tomato planting day, with the changes of the environmental information and the characteristic environmental ecological parameters, this The invented system 100 estimates the expected harvest date of small tomatoes, and gradually corrects it to the interval from March 10, 2020 to April 10, 2020. Due to the forecast change of the expected harvest date of the tomato, the growth cycle and yield forecasting model 41 will re-predict the forecast yield of the tomato according to such a change, so as to re-estimate the estimated daily yield of the tomato as Between 450~480 kg/min. As the number of planting days of small tomatoes reaches the 60th day, the growth cycle and yield prediction model 41 estimates that the expected harvest sunset of small tomatoes will be between April 1, 2020 and May 7, 2020, and the daily The expected yield is between 530 and 560 kg/min, and there is only two days' difference from the actual harvesting date of the user. Therefore, through the system 100 of the present invention, the user can plan the harvest schedule and arrange the passage in advance according to the information such as the expected harvest date and the expected output, so as to reduce the labor cost.

綜上所述,本發明的農作物生長週期與產量交互動態預測系統,係能夠藉由農作物資訊、田地資訊以及即時環境資訊計算一符合農作物 生理、客製化的特徵環境生態參數,並提供動態修正的預測結果。如此,本發明的農作物生長週期與產量交互動態預測系統,係可以達到協助使用者對未來採收時程規劃及通路之安排以及規劃以降低人力成本的功效。 To sum up, the crop growth cycle and yield interactive dynamic prediction system of the present invention can calculate a suitable crop information based on crop information, field information and real-time environmental information. Physiological and customized characteristic environmental ecological parameters, and provide dynamically corrected prediction results. In this way, the crop growth cycle and yield interactive dynamic forecasting system of the present invention can achieve the effect of assisting users in future harvesting schedule planning and path arrangement and planning to reduce labor costs.

雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed by using the above-mentioned preferred embodiments, it is not intended to limit the present invention. It is still within the scope of this invention for anyone skilled in the art to make various changes and modifications relative to the above-mentioned embodiments without departing from the spirit and scope of the present invention. The technical scope protected by the invention, therefore, the scope of protection of the present invention should be defined by the scope of the appended patent application.

100:農作物生長週期與產量交互動態預測系統 100:Crop growth cycle and yield interactive dynamic forecasting system

1:輸入模組 1: Input module

2:環境資訊模組 2: Environmental information module

3:輸出模組 3: Output module

4:控制模組 4: Control module

41:生長週期及產量預測模型 41: Growth cycle and yield prediction model

Claims (4)

一種農作物生長週期與產量交互動態預測系統,包含:一輸入模組,供一使用者輸入一預定田地的一農作物資訊及一田地資訊;一環境資訊模組,用以取得該預定田地的一環境資訊;一輸出模組,用以輸出一預測結果,該預測結果供該使用者進行採收時程規畫及通路的安排;及一控制模組,耦接該輸入模組、該環境資訊模組及該輸出模組,該控制模組由該輸入模組取得該農作物資訊及該田地資訊,並由該環境資訊模組取得該環境資訊,該控制模組根據該農作物資訊,由最初的環境資訊中擷取相對應的一特徵環境生態參數,該控制模組根據該農作物資訊、該田地資訊及該特徵環境生態參數,對種植於該預定田地的農作物的未來生長週期進行預測,以獲得一預計採收日,該控制模組根據該預計採收日、該農作物資訊、該田地資訊及該特徵環境生態參數進行預測,以獲得一預計產量,該控制模組以該預計採收日及該預計產量作為該預測結果,並持續根據由最新的環境資訊所轉換取得的特徵環境生態參數動態修正該預測結果,該控制模組將該預測結果傳送至該輸出模組;其中,該控制模組根據該環境資訊產生一環境資訊矩陣,該環境資訊矩陣的行列資訊分別為該環境資訊與該環境資訊所取得的日期,該控制模組透過一演算法根據該農作物資訊及該田地資訊,將該環境資訊矩陣轉換成一特徵環境生態參數矩陣,由該特徵環境生態參數矩陣中取得一農作物的特徵環境生態參數,並與該農作物資訊及該田地資訊一併輸入至內建的一生長週期及產量預測模型,使該生長週期及產量預測模型預測並輸出該農作物的預計採收日及預計產量;及該控制模組根據該預定田地所種植的農作物的生長階段之不同時期的生長 週期,由該環境資訊中擷取相對應的特徵環境生態參數,且該特徵環境生態參數係對應該農作物不同時期的生長週期而變動。 An interactive dynamic prediction system for crop growth cycle and output, comprising: an input module for a user to input crop information and field information of a predetermined field; an environment information module for obtaining an environment of the predetermined field Information; an output module, used to output a prediction result, the prediction result is used for the user to plan the harvesting schedule and route arrangement; and a control module, coupled to the input module, the environmental information module group and the output module, the control module obtains the crop information and the field information from the input module, and obtains the environmental information from the environmental information module, and the control module obtains the environmental information from the initial environmental information based on the crop information A corresponding characteristic environmental ecological parameter is extracted from the information, and the control module predicts the future growth cycle of the crops planted in the predetermined field according to the crop information, the field information and the characteristic environmental ecological parameter, so as to obtain a The estimated harvest date, the control module predicts according to the estimated harvest date, the crop information, the field information and the characteristic environmental ecological parameters to obtain an estimated yield, the control module uses the estimated harvest date and the The estimated output is taken as the forecast result, and the forecast result is continuously corrected dynamically according to the characteristic environmental ecological parameters converted from the latest environmental information, and the control module transmits the forecast result to the output module; wherein, the control module An environmental information matrix is generated according to the environmental information, and the row and column information of the environmental information matrix are respectively the environmental information and the date when the environmental information was obtained, and the control module uses an algorithm to generate the environmental information based on the crop information and the field information. The environmental information matrix is converted into a characteristic environmental ecological parameter matrix, and the characteristic environmental ecological parameters of a crop are obtained from the characteristic environmental ecological parameter matrix, and are input together with the crop information and the field information into a built-in growth cycle and yield forecast A model that enables the growth cycle and yield forecasting model to predict and output the expected harvest date and expected yield of the crop; and the growth of the control module in different periods of the growth stage of the crop planted in the predetermined field The cycle is to extract the corresponding characteristic environmental ecological parameters from the environmental information, and the characteristic environmental ecological parameters change corresponding to the growth cycles of the crops in different periods. 如請求項1之農作物生長週期與產量交互動態預測系統,其中,該環境資訊包含一大氣溫度、一濕度、一光照強度、一土壤含水量、一土壤電導度及一土壤溫度中的至少一個。 According to claim 1, the crop growth cycle and yield interactive dynamic prediction system, wherein the environmental information includes at least one of atmospheric temperature, humidity, light intensity, soil water content, soil electrical conductivity, and soil temperature. 如請求項1之農作物生長週期與產量交互動態預測系統,其中,該農作物資訊包含一種植地點、一農作物種類及一種植日,該田地資訊包含一農作物植株數量、一種植方式、一栽培方式及一田地面積。 For example, the crop growth cycle and yield interactive dynamic forecasting system of claim 1, wherein the crop information includes a planting location, a crop type and a planting day, and the field information includes a crop plant number, a planting method, a cultivation method and A field area. 如請求項1之農作物生長週期與產量交互動態預測系統,其中,該預定田地所種植的農作物係為小番茄時,該特徵環境生態參數包含一白天長度、一夜晚長度、一光照強度、一夜晚平均氣溫、一白天最高氣溫及一農作物生長積溫。 For example, the crop growth cycle and yield interactive dynamic prediction system of claim 1, wherein, when the crop planted in the predetermined field is tomato, the characteristic environmental ecological parameters include a length of day, a length of night, a light intensity, and a night The average temperature, the maximum temperature during the day and the accumulated temperature for crop growth.
TW109141840A 2020-11-27 2020-11-27 Interactive dynamic forecast system for crop growth cycle and yield TWI796616B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109141840A TWI796616B (en) 2020-11-27 2020-11-27 Interactive dynamic forecast system for crop growth cycle and yield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109141840A TWI796616B (en) 2020-11-27 2020-11-27 Interactive dynamic forecast system for crop growth cycle and yield

Publications (2)

Publication Number Publication Date
TW202221622A TW202221622A (en) 2022-06-01
TWI796616B true TWI796616B (en) 2023-03-21

Family

ID=83062480

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109141840A TWI796616B (en) 2020-11-27 2020-11-27 Interactive dynamic forecast system for crop growth cycle and yield

Country Status (1)

Country Link
TW (1) TWI796616B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107077650A (en) * 2014-09-12 2017-08-18 克莱米特公司 Method and system for managing rural activity
TWM610801U (en) * 2020-11-27 2021-04-21 悠由數據應用股份有限公司 Interactive Dynamic Prediction System for Crop Growth Cycle and Yield

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107077650A (en) * 2014-09-12 2017-08-18 克莱米特公司 Method and system for managing rural activity
TWM610801U (en) * 2020-11-27 2021-04-21 悠由數據應用股份有限公司 Interactive Dynamic Prediction System for Crop Growth Cycle and Yield

Also Published As

Publication number Publication date
TW202221622A (en) 2022-06-01

Similar Documents

Publication Publication Date Title
US11617313B2 (en) Controlling agricultural production areas
US10028426B2 (en) Agronomic systems, methods and apparatuses
US20180014452A1 (en) Agronomic systems, methods and apparatuses
Bhatia et al. Analysis of potential yields and yield gaps of rainfed soybean in India using CROPGRO-Soybean model
Chaudhary et al. Application of wireless sensor networks for greenhouse parameter control in precision agriculture
Migliaccio et al. Smartphone apps for irrigation scheduling
Karimi et al. Web-based monitoring system using Wireless Sensor Networks for traditional vineyards and grape drying buildings
Deihimfard et al. Yield gap analysis in major wheat growing areas of Khorasan province, Iran, through crop modelling
US20140067745A1 (en) Targeted agricultural recommendation system
TWM610801U (en) Interactive Dynamic Prediction System for Crop Growth Cycle and Yield
AU2023203307A1 (en) Controlling Agricultural Production Areas
BAI et al. Growth simulation and yield prediction for perennial jujube fruit tree by integrating age into the WOFOST model
López et al. GAIA2: A multifunctional wireless device for enhancing crop management
Amarasingha et al. Aligning sowing dates with the onset of rains to improve rice yields and water productivity: modelling rice (Oryza sativa L.) yield of the Maha season in the dry zone of Sri Lanka
Chen et al. Pest incidence forecasting based on internet of things and long short-term memory network
Wang et al. Modelling rice yield with temperature optima of rice productivity derived from satellite NIRv in tropical monsoon area
Ezekiel et al. Calibrating and validating AquaCrop model for maize crop in Northern zone of Nigeria
CA3196136A1 (en) Advanced crop manager for crops stress mitigation
KR102355211B1 (en) Cultivation monitoring system
Ambildhuke et al. IoT based Portable Weather Station for Irrigation Management using Real-Time Parameters
TWI796616B (en) Interactive dynamic forecast system for crop growth cycle and yield
Todorovic et al. HYDRO-TECH: An integrated decision support system for sustainable irrigation management (i): Main algorithms and field testing
Cheviron et al. The Optirrig model for the generation, analysis and optimization of irrigation scenarios: rationale and scopes
TWI821719B (en) System and method for forecasting water demand of rice
Kaur et al. Factors affecting paddy pant at different growth stages