TWI794123B - Negative charge pump system - Google Patents

Negative charge pump system Download PDF

Info

Publication number
TWI794123B
TWI794123B TW111124602A TW111124602A TWI794123B TW I794123 B TWI794123 B TW I794123B TW 111124602 A TW111124602 A TW 111124602A TW 111124602 A TW111124602 A TW 111124602A TW I794123 B TWI794123 B TW I794123B
Authority
TW
Taiwan
Prior art keywords
voltage
transistor
negative voltage
electrically connected
bypass
Prior art date
Application number
TW111124602A
Other languages
Chinese (zh)
Other versions
TW202404243A (en
Inventor
王朝欽
吳昕哲
林宗賢
Original Assignee
國立中山大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中山大學 filed Critical 國立中山大學
Priority to TW111124602A priority Critical patent/TWI794123B/en
Application granted granted Critical
Publication of TWI794123B publication Critical patent/TWI794123B/en
Publication of TW202404243A publication Critical patent/TW202404243A/en

Links

Images

Abstract

A negative charge pump system includes a first negative voltage generating unit, a second negative voltage generating unit and a feedback circuit. The first negative voltage generating unit and the second negative voltage generating unit are used to generate negative voltage. The feedback circuit receives the negative voltage and outputs a feedback signal to the first and second negative voltage generating units for controlling, wherein the first and second bypass transistors of the first and second negative voltage generating units can be respectively bypassing the first and second negative voltage generating units, the use of the negative charge pump system is more diverse.

Description

負電壓電荷幫浦系統Negative Voltage Charge Pump System

本發明是關於一種電荷幫浦系統,特別是關於一種負電壓電荷幫浦系統。The invention relates to a charge pump system, in particular to a negative voltage charge pump system.

目前廣泛使用的可攜式行動裝置,例如智慧型手機、平板及筆記型電腦都是以內建電池進行供電,但由於行動裝置中的許多電子電路需要不同電位的電壓,因此,行動裝置中設置有直流-直流轉換器將電池電壓轉換為電子電路所需之電壓大小。Currently widely used portable mobile devices, such as smartphones, tablets and notebook computers, are powered by built-in batteries. However, since many electronic circuits in mobile devices require voltages of different potentials, the settings in mobile devices There is a DC-DC converter to convert the battery voltage to the voltage required by the electronic circuit.

直流-直流轉換器大致上可區分為使用電感元件之升壓轉換器(Boost converter)、降壓轉換器(Buck converter)、單端初級電感轉換器(SEPIC)以及使用電容元件之電荷幫浦。而在負電壓的產生中,升壓轉換器、降壓轉換器之形式的負電壓轉換器通常都需要額外的負電壓參考訊號或是Off-chip的電感元件才能建立所需的輸入訊號,進而產生負電壓。相對地,電荷幫浦形式之負電壓轉換器不須額外的參考訊號而具有電路設計難度低、低製作成本及佈局面積小的優勢。DC-DC converters can be roughly divided into boost converters using inductive elements, buck converters, single-ended primary inductive converters (SEPIC), and charge pumps using capacitive elements. In the generation of negative voltage, negative voltage converters in the form of boost converters and buck converters usually require an additional negative voltage reference signal or an off-chip inductance element to establish the required input signal. produces a negative voltage. In contrast, the negative voltage converter in the form of a charge pump does not require an additional reference signal and has the advantages of low difficulty in circuit design, low manufacturing cost, and small layout area.

本發明的主要目的在於提供負電壓電荷幫浦系統,其透過第一負電壓幫浦及第二負電壓幫浦產生負電壓,並可透過第一旁路電晶體及第二旁路電晶體分別讓第一負電壓幫浦及第二負電壓幫浦旁路,而具有更多元之應用性。The main purpose of the present invention is to provide a negative voltage charge pump system, which generates a negative voltage through the first negative voltage pump and the second negative voltage pump, and can pass through the first bypass transistor and the second bypass transistor respectively The first negative voltage pump and the second negative voltage pump are bypassed to have more diverse applications.

本發明之一種負電壓電荷幫浦系統包含一第一負電壓產生單元、一第二負電壓產生單元及一回授電路,該第一負電壓產生單元具有一第一負電壓幫浦、一第一負電壓準位位移器、一第一旁路電晶體及一第一四相非交疊時脈產生器,該第一負電壓幫浦之一第一電壓輸入端接收一輸入電壓,且該第一負電壓幫浦之一第一電壓輸出端輸出一第一輸出負電壓,該第一負電壓準位位移器用以產生一第一旁路控制電壓,該第一旁路電晶體之一第一輸入端電性連接該第一負電壓幫浦之該第一電壓輸入端,該第一旁路電晶體之一第一控制端電性連接該第一負電壓準位位移器以接收該第一旁路控制電壓,該第一旁路電晶體之一第一輸出端電性連接該第一負電壓幫浦之該第一電壓輸出端,該第一四相非交疊時脈產生器電性連接該第一負電壓幫浦,且該第一四相非交疊時脈產生器接收一回授訊號並輸出複數個第一時脈訊號至該第一負電壓幫浦進行控制,該第二負電壓產生單元具有一第二負電壓幫浦、一第二負電壓準位位移器、一第二旁路電晶體及一第二四相非交疊時脈產生器,該第二負電壓幫浦之一第二電壓輸入端電性連接該第一負電壓幫浦之該第一電壓輸出端以接收該第一輸出負電壓,且該第二負電壓幫浦之一第二電壓輸出端輸出一第二輸出負電壓,該第二負電壓準位位移器用以產生一第二旁路控制電壓,該第二旁路電晶體之一第二輸入端電性連接該第二負電壓幫浦之該第二電壓輸入端,該第二旁路電晶體之一第二控制端電性連接該第二負電壓準位位移器以接收該第二旁路控制電壓,該第二旁路電晶體之一第二輸出端電性連接該該第二負電壓幫浦之該第二電壓輸出端,該第二四相非交疊時脈產生器電性連接該第二負電壓幫浦,且該第二四相非交疊時脈產生器接收該回授訊號並輸出複數個第二時脈訊號至該第二負電壓幫浦進行控制,該回授電路電性連接該第一、二負電壓產生單元,該回授電路接收該第二負電壓幫浦之該第二輸出負電壓,且該回授電路輸出該回授訊號至該第一、二四相非交疊時脈產生器。A negative voltage charge pump system of the present invention comprises a first negative voltage generating unit, a second negative voltage generating unit and a feedback circuit, the first negative voltage generating unit has a first negative voltage pump, a first negative voltage generating unit A negative voltage level shifter, a first bypass transistor and a first four-phase non-overlapping clock generator, a first voltage input terminal of the first negative voltage pump receives an input voltage, and the One of the first voltage output terminals of the first negative voltage pump outputs a first output negative voltage, and the first negative voltage level shifter is used to generate a first bypass control voltage, and one of the first bypass transistors is first An input end is electrically connected to the first voltage input end of the first negative voltage pump, and a first control end of the first bypass transistor is electrically connected to the first negative voltage level shifter to receive the first negative voltage level shifter. A bypass control voltage, a first output terminal of the first bypass transistor is electrically connected to the first voltage output terminal of the first negative voltage pump, the first four-phase non-overlapping clock generator circuit connected to the first negative voltage pump, and the first four-phase non-overlapping clock generator receives a feedback signal and outputs a plurality of first clock signals to the first negative voltage pump for control. The two negative voltage generating units have a second negative voltage pump, a second negative voltage level shifter, a second bypass transistor and a second four-phase non-overlapping clock generator, the second negative voltage A second voltage input terminal of the pump is electrically connected to the first voltage output terminal of the first negative voltage pump to receive the first output negative voltage, and a second voltage output terminal of the second negative voltage pump Outputting a second output negative voltage, the second negative voltage level shifter is used to generate a second bypass control voltage, a second input end of the second bypass transistor is electrically connected to the second negative voltage pump The second voltage input terminal, the second control terminal of the second bypass transistor is electrically connected to the second negative voltage level shifter to receive the second bypass control voltage, the second bypass transistor A second output terminal is electrically connected to the second voltage output terminal of the second negative voltage pump, the second four-phase non-overlapping clock generator is electrically connected to the second negative voltage pump, and the The second four-phase non-overlapping clock generator receives the feedback signal and outputs a plurality of second clock signals to the second negative voltage pump for control, and the feedback circuit is electrically connected to the first and second negative voltages A generating unit, the feedback circuit receives the second output negative voltage of the second negative voltage pump, and the feedback circuit outputs the feedback signal to the first and second four-phase non-overlapping clock generators.

本發明藉由該第一負電壓產生單元及該第二負電壓產生單元產生負電壓,並藉由該第一旁路電晶體及該第二旁路電晶體讓迴路能夠將該第一負電壓幫浦及該第二負電壓幫浦旁路而改變輸出之負電壓的大小,增加該負電壓電荷幫浦系統的多元應用性。In the present invention, the first negative voltage generating unit and the second negative voltage generating unit generate a negative voltage, and the first bypass transistor and the second bypass transistor enable the circuit to use the first negative voltage The pump and the second negative voltage pump are bypassed to change the magnitude of the output negative voltage, increasing the multiple applicability of the negative voltage charge pump system.

請參閱第1圖,其為本發明之一第一實施例,一種負電壓電荷幫浦系統NCP的方塊圖,在本實施例中,該負電壓電荷幫浦系統NCP具有一第一負電壓產生單元100、一第二負電壓產生單元200及一回授電路300。該第一負電壓產生單元100接收一輸入電壓Vin並輸出一第一輸出負電壓Vo1,該第二負電壓產生單元200電性連接該第一負電壓產生單元100以接收該第一輸出負電壓Vo1並輸出一第二輸出負電壓Vo2,該回授電路300電性連接該第一、二負電壓產生單元100, 200,該回授電路300接收該第二負電壓幫浦210之該第二輸出負電壓Vo2,且該回授電路300輸出一回授訊號Sf至該第一、二負電壓產生單元100, 200。Please refer to Fig. 1, which is a first embodiment of the present invention, a block diagram of a negative voltage charge pump system NCP, in this embodiment, the negative voltage charge pump system NCP has a first negative voltage generator The unit 100 , a second negative voltage generating unit 200 and a feedback circuit 300 . The first negative voltage generating unit 100 receives an input voltage Vin and outputs a first output negative voltage Vo1, and the second negative voltage generating unit 200 is electrically connected to the first negative voltage generating unit 100 to receive the first output negative voltage. Vo1 and output a second output negative voltage Vo2, the feedback circuit 300 is electrically connected to the first and second negative voltage generating units 100, 200, the feedback circuit 300 receives the second negative voltage pump 210 The negative voltage Vo2 is output, and the feedback circuit 300 outputs a feedback signal Sf to the first and second negative voltage generating units 100, 200.

請參閱第1圖,該第一負電壓產生單元100具有一第一負電壓幫浦110、一第一負電壓準位位移器120、一第一旁路電晶體130及一第一四相非交疊時脈產生器140,該第一負電壓幫浦110之一第一電壓輸入端in1接收該輸入電壓Vin,且該第一負電壓幫浦110之一第一電壓輸出端ot1輸出該第一輸出負電壓Vo1。該第一負電壓準位位移器120用以產生一第一旁路控制電壓S1,該第一旁路電晶體130之一第一輸入端電性連接該第一負電壓幫浦110之該第一電壓輸入端in1,該第一旁路電晶體130之一第一控制端電性連接該第一負電壓準位位移器120以接收該第一旁路控制電壓S1,該第一旁路電晶體130之一第一輸出端電性連接該第一負電壓幫浦110之該第一電壓輸出端ot1。該第一四相非交疊時脈產生器140電性連接該第一負電壓幫浦110及該回授電路300,且該第一四相非交疊時脈產生器140接收該回授訊號Sf並輸出複數個第一時脈訊號clk11-clk14至該第一負電壓幫浦110進行控制,使該第一負電壓幫浦110輸出負電壓。Please refer to FIG. 1, the first negative voltage generating unit 100 has a first negative voltage pump 110, a first negative voltage level shifter 120, a first bypass transistor 130 and a first four-phase inverter. In the overlapping clock generator 140, a first voltage input terminal in1 of the first negative voltage pump 110 receives the input voltage Vin, and a first voltage output terminal ot1 of the first negative voltage pump 110 outputs the first - Output negative voltage Vo1. The first negative voltage level shifter 120 is used to generate a first bypass control voltage S1, and a first input terminal of the first bypass transistor 130 is electrically connected to the first negative voltage pump 110. A voltage input terminal in1, a first control terminal of the first bypass transistor 130 is electrically connected to the first negative voltage level shifter 120 to receive the first bypass control voltage S1, the first bypass transistor A first output terminal of the crystal 130 is electrically connected to the first voltage output terminal ot1 of the first negative voltage pump 110 . The first four-phase non-overlapping clock generator 140 is electrically connected to the first negative voltage pump 110 and the feedback circuit 300, and the first four-phase non-overlapping clock generator 140 receives the feedback signal Sf also outputs a plurality of first clock signals clk11-clk14 to the first negative voltage pump 110 for control, so that the first negative voltage pump 110 outputs a negative voltage.

在本實施例中,該第一旁路電晶體130為一NMOS高壓電晶體,該第一旁路電晶體130之該第一輸入端為汲極,該第一旁路電晶體130之該第一控制端為閘極,該第一旁路電晶體130之該第一輸出端為源極,且該第一輸入端僅電性連接該第一負電壓幫浦110之該第一電壓輸入端in1。In this embodiment, the first bypass transistor 130 is an NMOS high voltage transistor, the first input end of the first bypass transistor 130 is a drain, and the first bypass transistor 130 The first control terminal is the gate, the first output terminal of the first bypass transistor 130 is the source, and the first input terminal is only electrically connected to the first voltage input of the first negative voltage pump 110 terminal in1.

該第二負電壓產生單元200具有一第二負電壓幫浦210、一第二負電壓準位位移器220、一第二旁路電晶體230及一第二四相非交疊時脈產生器240。該第二負電壓幫浦210之一第二電壓輸入端in2電性連接該第一負電壓幫浦110之該第一電壓輸出端ot1以接收該第一輸出負電壓Vo1,且該第二負電壓幫浦210之一第二電壓輸出端ot2輸出該第二輸出負電壓Vo2。該第二負電壓準位位移器220用以產生一第二旁路控制電壓S2,該第二旁路電晶體230之一第二輸入端電性連接該第二負電壓幫浦210之該第二電壓輸入端in2,該第二旁路電晶體230之一第二控制端電性連接該第二負電壓準位位移器220以接收該第二旁路控制電壓S2,該第二旁路電晶體230之一第二輸出端電性連接該第二負電壓幫浦210之該第二電壓輸出端ot2。該第二四相非交疊時脈產生器240電性連接該第二負電壓幫浦210,且該第二四相非交疊時脈產生器240接收該回授訊號Sf並輸出複數個第二時脈訊號clk21-clk24至該第二負電壓幫浦210進行控制,使該第二負電壓幫浦210輸出負電壓。The second negative voltage generating unit 200 has a second negative voltage pump 210, a second negative voltage level shifter 220, a second bypass transistor 230 and a second four-phase non-overlapping clock generator 240. A second voltage input terminal in2 of the second negative voltage pump 210 is electrically connected to the first voltage output terminal ot1 of the first negative voltage pump 110 to receive the first output negative voltage Vo1, and the second negative voltage A second voltage output terminal ot2 of the voltage pump 210 outputs the second output negative voltage Vo2. The second negative voltage level shifter 220 is used to generate a second bypass control voltage S2, and a second input end of the second bypass transistor 230 is electrically connected to the first negative voltage pump 210. Two voltage input terminal in2, a second control terminal of the second bypass transistor 230 is electrically connected to the second negative voltage level shifter 220 to receive the second bypass control voltage S2, the second bypass transistor A second output terminal of the crystal 230 is electrically connected to the second voltage output terminal ot2 of the second negative voltage pump 210 . The second four-phase non-overlapping clock generator 240 is electrically connected to the second negative voltage pump 210, and the second four-phase non-overlapping clock generator 240 receives the feedback signal Sf and outputs a plurality of first Two clock signals clk21-clk24 are sent to the second negative voltage pump 210 for control, so that the second negative voltage pump 210 outputs a negative voltage.

較佳的,該第二旁路電晶體230為一NMOS高壓電晶體,該第二旁路電晶體230之該第二輸入端為汲極,該第二旁路電晶體230之該第二控制端為閘極,該第二旁路電晶體230之該第二輸出端為源極。Preferably, the second bypass transistor 230 is an NMOS high voltage transistor, the second input terminal of the second bypass transistor 230 is a drain, and the second bypass transistor 230 The control terminal is a gate, and the second output terminal of the second bypass transistor 230 is a source.

較佳的,由於該第一旁路電晶體130及該第二旁路電晶體230的基極(Bulk)會運作在負電壓中,因此,該第一旁路電晶體130及該第二旁路電晶體230之結構具有一深層P型井(Deep P-well)及一N型掩埋層(N+ Buried layer)做為絕緣環,以避免內部之PN接面之二極體導通。Preferably, since the bases (Bulk) of the first bypass transistor 130 and the second bypass transistor 230 will operate in a negative voltage, the first bypass transistor 130 and the second bypass transistor 130 The structure of the circuit crystal 230 has a deep P-well (Deep P-well) and an N-type buried layer (N+ Buried layer) as an insulating ring to prevent the diodes of the internal PN junction from conducting.

請參閱第1及2圖,該第一負電壓幫浦110具有一第一N型電晶體111、一第一輔助電容112、一第二N型電晶體113、一第一幫浦電容114、一第三N型電晶體115、一第二輔助電容116、一第四N型電晶體117、一第二幫浦電容118及一交叉耦合電晶體對119。該第一N型電晶體111之一源極接收該輸入電壓Vin,該第一N型電晶體111之一閘極電性連接一第一節點n1,該第一N型電晶體之111一汲極電性連接一第二節點n2。該第一輔助電容112之一端接收其中之一該第一時脈訊號clk11,該第一輔助電容112之另一端電性連接該第一節點n1。該第二N型電晶體113之一閘極接收該輸入電壓Vin,該第二N型電晶體113之一源極電性連接該第一節點n1,該第二N型電晶體113之一汲極電性連接該第二節點n2。該第一幫浦電容114之一端電性連接該第二節點n2,該第一幫浦電容114之另一端接收其中之一該第一時脈訊號clk12。該第三N型電晶體115之一汲極接收該輸入電壓Vin,該第三N型電晶體115之一閘極電性連接一第三節點n3,該第三N型電晶體115之一源極電性連接一第四節點n4。該第二輔助電容116之一端接收其中之一該第一時脈訊號clk13,該第二輔助電容116之另一端電性連接該第三節點n3。該第四N型電晶體117之一閘極接收該輸入電壓Vin,該第四N型電晶體117之一汲極電性連接該第三節點n3,該第四N型電晶體117之一源極電性連接該第四節點n4。該第二幫浦電容118之一端電性連接該第四節點n4,該第二幫浦電容118之另一端接收其中之一該第一時脈訊號clk14。該交叉耦合電晶體對119電性連接該第二節點n2及該第四節點n4,且該交叉耦合電晶體對119輸出該第一輸出負電壓Vo1。Please refer to Figures 1 and 2, the first negative voltage pump 110 has a first N-type transistor 111, a first auxiliary capacitor 112, a second N-type transistor 113, a first pump capacitor 114, A third N-type transistor 115 , a second auxiliary capacitor 116 , a fourth N-type transistor 117 , a second pump capacitor 118 and a cross-coupled transistor pair 119 . A source of the first N-type transistor 111 receives the input voltage Vin, a gate of the first N-type transistor 111 is electrically connected to a first node n1, and a drain of the first N-type transistor 111 The pole is electrically connected to a second node n2. One end of the first auxiliary capacitor 112 receives one of the first clock signals clk11, and the other end of the first auxiliary capacitor 112 is electrically connected to the first node n1. A gate of the second N-type transistor 113 receives the input voltage Vin, a source of the second N-type transistor 113 is electrically connected to the first node n1, and a drain of the second N-type transistor 113 The pole is electrically connected to the second node n2. One end of the first pump capacitor 114 is electrically connected to the second node n2, and the other end of the first pump capacitor 114 receives one of the first clock signals clk12. A drain of the third N-type transistor 115 receives the input voltage Vin, a gate of the third N-type transistor 115 is electrically connected to a third node n3, a source of the third N-type transistor 115 The pole is electrically connected to a fourth node n4. One end of the second auxiliary capacitor 116 receives one of the first clock signals clk13, and the other end of the second auxiliary capacitor 116 is electrically connected to the third node n3. A gate of the fourth N-type transistor 117 receives the input voltage Vin, a drain of the fourth N-type transistor 117 is electrically connected to the third node n3, a source of the fourth N-type transistor 117 The pole is electrically connected to the fourth node n4. One end of the second pump capacitor 118 is electrically connected to the fourth node n4, and the other end of the second pump capacitor 118 receives one of the first clock signals clk14. The cross-coupled transistor pair 119 is electrically connected to the second node n2 and the fourth node n4, and the cross-coupled transistor pair 119 outputs the first output negative voltage Vo1.

在本實施例中,該交叉耦合電晶體對119具有一第一交叉耦合電晶體119a及一第二交叉耦合電晶體119b,該第一交叉耦合電晶體119a之一源極電性連接該第二節點n2,該第一交叉耦合電晶體119a之一閘極電性連接該第四節點n4。該第二交叉耦合電晶體119b之一汲極電性連接該第四節點n4,該第二交叉耦合電晶體119b之一閘極電性連接該第二節點n2,該第二交叉耦合電晶體119b之一源極電性連接該第一交叉耦合電晶體119a之一汲極,且該第二交叉耦合電晶體119b之該源極及該第一交叉耦合電晶體119a之該汲極輸出該第一輸出負電壓Vo1。In this embodiment, the cross-coupled transistor pair 119 has a first cross-coupled transistor 119a and a second cross-coupled transistor 119b, and a source of the first cross-coupled transistor 119a is electrically connected to the second At the node n2, one gate of the first cross-coupling transistor 119a is electrically connected to the fourth node n4. One drain of the second cross-coupling transistor 119b is electrically connected to the fourth node n4, one gate of the second cross-coupling transistor 119b is electrically connected to the second node n2, and the second cross-coupling transistor 119b One source is electrically connected to the drain of the first cross-coupling transistor 119a, and the source of the second cross-coupling transistor 119b and the drain of the first cross-coupling transistor 119a output the first Output negative voltage Vo1.

本實施例透過該些第一時脈訊號clk11-clk14的控制,讓該第一負電壓幫浦110操作在上下兩個階段,由於上下兩個階段的電路作動及訊號變化為鏡像關係,因此僅針對上階段進行說明,該些第一時脈訊號clk11-clk14的時序圖可參考第6頁。在上階段中可分為5個時段,在第1時段中,該輸入電壓Vin為低電位,該第一時脈訊號clk11、clk12為低電位,該第一時脈訊號clk13、clk14為高電位,此時,該第一節點n1及該第二節點n2的電位為-VDD,該第三節點n3之電位為VDD-Vth,該第四節點n4之電位為0,該第三N型電晶體115及第二交叉耦合電晶體119b導通而交換電荷,該第一N型電晶體111及該第一交叉耦合電晶體119a截止,另外,該第二N型電晶體113亦導通以確保該第一N型電晶體111及該第一交叉耦合電晶體119a完全截止。在第2時段中,該第一時脈訊號clk13降為低電位,此時,該第三節點n3之電位降為-Vth而截止該第三N型電晶體115,該第四N型電晶體117則稍微導通。在第3時段中,該第一時脈訊號clk14降至低電位,此時,該第三及四節點n3、n4之電位降為-VDD,該第二N型電晶體113及該第四N型電晶體117導通以確保其餘之開關皆截止。在第4時段中,該第一時脈訊號clk12升至高電位,此時,該第一節點n1之電位升至-Vth,該第二節點n2之電位升至0。在第5時段中,該第一時脈訊號clk11升至高電位,此時,該第一節點n1之電位升至VDD-Vth,該第二N型電晶體113截止,該第一N型電晶體111及該第一交叉耦合電晶體119a導通而交換電荷,藉此可讓該第一負電壓幫浦110輸出負電壓-VDD。In this embodiment, through the control of the first clock signals clk11-clk14, the first negative voltage pump 110 is operated in the upper and lower stages. Since the circuit operation and signal changes in the upper and lower stages are in a mirror image relationship, only For the description of the previous stage, please refer to page 6 for the timing diagram of the first clock signals clk11-clk14. The last stage can be divided into five periods. In the first period, the input voltage Vin is at low potential, the first clock signals clk11 and clk12 are at low potential, and the first clock signals clk13 and clk14 are at high potential , at this time, the potentials of the first node n1 and the second node n2 are -VDD, the potential of the third node n3 is VDD-Vth, the potential of the fourth node n4 is 0, and the third N-type transistor 115 and the second cross-coupling transistor 119b are turned on to exchange charges, the first N-type transistor 111 and the first cross-coupling transistor 119a are turned off, and the second N-type transistor 113 is also turned on to ensure that the first The N-type transistor 111 and the first cross-coupled transistor 119a are completely turned off. In the second period, the first clock signal clk13 drops to a low potential, at this time, the potential of the third node n3 drops to -Vth and the third N-type transistor 115 is turned off, and the fourth N-type transistor 117 is slightly turned on. In the third period, the first clock signal clk14 drops to a low potential. At this time, the potentials of the third and fourth nodes n3 and n4 drop to -VDD, and the second N-type transistor 113 and the fourth N-type transistor 113 Mode transistor 117 is turned on to ensure that the remaining switches are turned off. In the fourth period, the first clock signal clk12 rises to a high potential, at this time, the potential of the first node n1 rises to -Vth, and the potential of the second node n2 rises to 0. In the fifth period, the first clock signal clk11 rises to a high potential, at this time, the potential of the first node n1 rises to VDD-Vth, the second N-type transistor 113 is turned off, and the first N-type transistor 111 and the first cross-coupling transistor 119a are turned on to exchange charges, thereby enabling the first negative voltage pump 110 to output a negative voltage -VDD.

較佳的,由於該第一負電壓幫浦110中電晶體的基極(Bulk)都會運作在負電壓中,因此,該第一N型電晶體111、該第二N型電晶體113、該第三N型電晶體115、該第四N型電晶體117、該第一交叉耦合電晶體119a及該第二交叉耦合電晶體119b之結構具有一深層P型井(Deep P-well)及一N型掩埋層(N+ Buried layer)做為絕緣環,以避免PN接面之二極體導通。Preferably, since the bases (Bulk) of the transistors in the first negative voltage pump 110 all operate at negative voltages, the first N-type transistor 111, the second N-type transistor 113, the The structures of the third N-type transistor 115, the fourth N-type transistor 117, the first cross-coupling transistor 119a and the second cross-coupling transistor 119b have a deep P-well (Deep P-well) and a The N-type buried layer (N+ Buried layer) is used as an insulating ring to prevent the diodes of the PN junction from conducting.

請參閱第1圖,該第二負電壓產生單元200之該第二負電壓幫浦210的電路結構及作動皆與該第一負電壓幫浦110相同,因此不再贅述。Please refer to FIG. 1 , the circuit structure and operation of the second negative voltage pump 210 of the second negative voltage generating unit 200 are the same as those of the first negative voltage pump 110 , so details are not repeated here.

請參閱第1及3圖,該第一負電壓準位位移器120具有一第一高壓PMOS電晶體121、一反向器122、一第二高壓PMOS電晶體123、一第一高壓NMOS電晶體124及一第二高壓NMOS電晶體125。該第一高壓PMOS電晶體121之一源極接收一高電位電壓VH,在本實施例中,該高電位電壓VH為一電源電壓VDD,該第一高壓PMOS電晶體121之一閘極接收一第一準位位移控制訊號Bc1。該反向器122接收該第一準位位移控制訊號Bc1並輸出反向之該第一準位位移控制訊號Bc1,該第二高壓PMOS電晶體123之一源極接收該高電位電壓VH,該第二高壓PMOS電晶體123之一閘極電性連接該反向器122以接收反向之該第一準位位移控制訊號。該第一高壓NMOS電晶體124之一汲極電性連接該第一高壓PMOS電晶體121之一汲極,該第一高壓NMOS電晶體124之一閘極電性連接該第二高壓PMOS電晶體123之一汲極,該第一高壓NMOS電晶體124之一源極接收一低電位電壓VL,在本實施例中,該低電位電壓VL為該第一負電壓幫浦110輸出之該第一輸出負電壓Vo1。該第二高壓NMOS電晶體125之一汲極電性連接該第二高壓PMOS電晶體123之一汲極,第二高壓NMOS電晶體125之一閘極電性連接該第一高壓PMOS電晶體121之該汲極,該第二高壓NMOS電晶體125之一源極接收該低電位電壓VL,其中,該第二高壓PMOS電晶體123及該第二高壓NMOS電晶體125之該汲極輸出該第一旁路控制電壓S1至該第一旁路電晶體130之該閘極。Please refer to Figures 1 and 3, the first negative voltage level shifter 120 has a first high voltage PMOS transistor 121, an inverter 122, a second high voltage PMOS transistor 123, a first high voltage NMOS transistor 124 and a second high voltage NMOS transistor 125 . One source of the first high-voltage PMOS transistor 121 receives a high-potential voltage VH. In this embodiment, the high-potential voltage VH is a power supply voltage VDD, and one gate of the first high-voltage PMOS transistor 121 receives a high-potential voltage VH. The first level shift control signal Bc1. The inverter 122 receives the first level-shift control signal Bc1 and outputs an inverted first level-shift control signal Bc1, a source of the second high voltage PMOS transistor 123 receives the high potential voltage VH, the A gate of the second high voltage PMOS transistor 123 is electrically connected to the inverter 122 to receive the reversed first level shift control signal. A drain of the first high-voltage NMOS transistor 124 is electrically connected to a drain of the first high-voltage PMOS transistor 121, and a gate of the first high-voltage NMOS transistor 124 is electrically connected to the second high-voltage PMOS transistor. A drain of 123 and a source of the first high-voltage NMOS transistor 124 receive a low potential voltage VL. In this embodiment, the low potential voltage VL is the first negative voltage output from the first negative voltage pump 110. Output negative voltage Vo1. A drain of the second high voltage NMOS transistor 125 is electrically connected to a drain of the second high voltage PMOS transistor 123 , and a gate of the second high voltage NMOS transistor 125 is electrically connected to the first high voltage PMOS transistor 121 The drain, the source of the second high-voltage NMOS transistor 125 receives the low potential voltage VL, wherein the drains of the second high-voltage PMOS transistor 123 and the second high-voltage NMOS transistor 125 output the first A bypass control voltage S1 to the gate of the first bypass transistor 130 .

請參閱第4圖,當該第一準位位移控制訊號Bc1為高電位時,該第一高壓PMOS電晶體121及該第二高壓NMOS電晶體125截止,該第二高壓PMOS電晶體123及該第一高壓NMOS電晶體124導通,此時,輸出之該第一旁路控制電壓S1為該高電位電壓VH。而當該第一準位位移控制訊號Bc1為低電位時,該第一高壓PMOS電晶體121及該第二高壓NMOS電晶體125導通,該第二高壓PMOS電晶體123及該第一高壓NMOS電晶體124截止,此時,輸出之該第一旁路控制電壓S1為該低電位電壓VL。該第一負電壓準位位移器120用以將工作範圍由0V~VDD的該第一準位位移控制訊號Bc1轉換為工作範圍VL~VDD的該第一旁路控制電壓S1,藉此可用以控制基極(Bulk)為負電壓之該第一旁路電晶體130的導通或截止。Please refer to FIG. 4, when the first level shift control signal Bc1 is at a high potential, the first high voltage PMOS transistor 121 and the second high voltage NMOS transistor 125 are turned off, and the second high voltage PMOS transistor 123 and the The first high-voltage NMOS transistor 124 is turned on, and at this time, the output first bypass control voltage S1 is the high potential voltage VH. And when the first level-shift control signal Bc1 is at low potential, the first high-voltage PMOS transistor 121 and the second high-voltage NMOS transistor 125 are turned on, and the second high-voltage PMOS transistor 123 and the first high-voltage NMOS transistor are turned on. The crystal 124 is turned off, and at this moment, the outputted first bypass control voltage S1 is the low potential voltage VL. The first negative voltage level shifter 120 is used to convert the first level shift control signal Bc1 whose working range is from 0V~VDD to the first bypass control voltage S1 whose working range is VL~VDD, thereby being used for The first bypass transistor 130 whose base (Bulk) is negative voltage is controlled to be turned on or off.

較佳的,由於該第一高壓NMOS電晶體124及該第二高壓NMOS電晶體125的基極(Bulk)也會運作在負電壓中,因此,該第一高壓NMOS電晶體124及該第二高壓NMOS電晶體125之結構具有一深層P型井(Deep P-well)及一N型掩埋層(N+ Buried layer)做為絕緣環,以避免PN接面之二極體導通。Preferably, since the bases (Bulk) of the first high-voltage NMOS transistor 124 and the second high-voltage NMOS transistor 125 also operate at negative voltages, the first high-voltage NMOS transistor 124 and the second high-voltage NMOS transistor The structure of the high-voltage NMOS transistor 125 has a deep P-well (Deep P-well) and an N-type buried layer (N+ Buried layer) as an insulating ring to prevent the diodes of the PN junction from conducting.

請參閱第1圖,該第二負電壓產生單元200之該第二負電壓準位位移器220的電路結構及作動皆與該第一負電壓準位位移器120相同,因此不再贅述。Please refer to FIG. 1 , the circuit structure and operation of the second negative voltage level shifter 220 of the second negative voltage generating unit 200 are the same as those of the first negative voltage level shifter 120 , so details will not be repeated here.

請參閱第1圖,透過該第一旁路控制電壓S1及該第二旁路控制電壓S2對該第一旁路電晶體130及該第二旁路電晶體230的控制,使得該第一旁路電晶體130及該第二旁路電晶體230導通時能夠分別將該第一負電壓幫浦110及該第二負電壓幫浦210旁路,讓該負電壓電荷幫浦系統NCP能夠選擇性地使用單一個該第一負電壓幫浦110或該第二負電壓幫浦210產生負電壓,或是同時使用該第一負電壓幫浦110及該第二負電壓幫浦210產生負電壓。Please refer to Figure 1, the first bypass transistor 130 and the second bypass transistor 230 are controlled by the first bypass control voltage S1 and the second bypass control voltage S2, so that the first bypass When the pass transistor 130 and the second bypass transistor 230 are turned on, they can respectively bypass the first negative voltage pump 110 and the second negative voltage pump 210, so that the negative voltage charge pump system NCP can selectively Either the first negative voltage pump 110 or the second negative voltage pump 210 is used alone to generate negative voltage, or the first negative voltage pump 110 and the second negative voltage pump 210 are used simultaneously to generate negative voltage.

請參閱第1圖,該回授電路300具有一分壓電路310、一比較器320及一壓控振盪器330,該分壓電路310電性連接該第二負電壓產生單元200以接收該第二輸出負電壓Vo2,且該分壓電路310輸出一分路電壓Vd,該比較器320電性連接該分壓電路310,該比較器320接收該分路電壓Vd及一參考電壓Vr進行比較而輸出一比較電壓Vc,該壓控振盪器330電性連接該比較器320以接收該比較電壓Vc,且該壓控振盪器330輸出該回授訊號Sf至該第一四相非交疊時脈產生器140及該第二四相非交疊時脈產生器240。透過該回授電路300之該壓控振盪器330產生之振盪訊號作為該回授訊號Sf對該第一負電壓產生單元100及該第二負電壓產生單元200進行控制能夠降低該第一負電壓幫浦110及該第二負電壓幫浦210的切換損失,而提高該負電壓電荷幫浦系統NCP的轉換效率。Please refer to FIG. 1, the feedback circuit 300 has a voltage divider 310, a comparator 320 and a voltage controlled oscillator 330, the voltage divider 310 is electrically connected to the second negative voltage generating unit 200 to receive The second output negative voltage Vo2, and the voltage divider 310 outputs a shunt voltage Vd, the comparator 320 is electrically connected to the voltage divider 310, the comparator 320 receives the shunt voltage Vd and a reference voltage Vr is compared to output a comparison voltage Vc, the voltage-controlled oscillator 330 is electrically connected to the comparator 320 to receive the comparison voltage Vc, and the voltage-controlled oscillator 330 outputs the feedback signal Sf to the first four-phase inverter The overlapping clock generator 140 and the second four-phase non-overlapping clock generator 240 . Controlling the first negative voltage generating unit 100 and the second negative voltage generating unit 200 through the oscillating signal generated by the voltage-controlled oscillator 330 of the feedback circuit 300 as the feedback signal Sf can reduce the first negative voltage The switching loss of the pump 110 and the second negative voltage pump 210 improves the conversion efficiency of the negative voltage charge pump system NCP.

請參閱第1圖,較佳的,該回授訊號Sf是分別經由一第一及閘Ad1及一第二及閘Ad2傳送至該第一四相非交疊時脈產生器140及該第二四相非交疊時脈產生器240,且該第一及閘Ad1及該第二及閘Ad2還分別接收一第一啟動訊號en1及一第二啟動訊號en2,而可透過該第一啟動訊號en1及該第二啟動訊號en2選擇性地開啟或關閉該第一負電壓產生單元100及該第二負電壓產生單元200。Please refer to FIG. 1. Preferably, the feedback signal Sf is sent to the first four-phase non-overlapping clock generator 140 and the second gate Ad2 through a first sum gate Ad1 and a second sum gate Ad2 respectively. The four-phase non-overlapping clock generator 240, and the first AND gate Ad1 and the second AND gate Ad2 also receive a first activation signal en1 and a second activation signal en2 respectively, and can pass through the first activation signal en1 and the second enable signal en2 selectively turn on or turn off the first negative voltage generating unit 100 and the second negative voltage generating unit 200 .

請參閱第1及5圖,該第一四相非交疊時脈產生器140接收該第一及閘Ad1的輸出訊號,由於在該第一啟動訊號en1為高電位的情況下,該第一及閘Ad1輸出訊號的電位與該回授訊號Sf相同,因此第5圖的輸入訊號由該回授訊號Sf表示。請同時參閱第6圖,藉由該第一四相非交疊時脈產生器140中的電路設計,可根據該回授訊號Sf讓該些第一時脈訊號clk11-14上緣及下緣錯開,而產生四組非交疊之該第一時脈訊號clk11-14,再由非交疊之該第一時脈訊號clk11-14控制該第一負電壓幫浦110,以避免同時導通產生的功耗。由於可達成該些第一時脈訊號clk11-14的電路設計有許多形式,因此第5圖之電路架構僅為本案之一實施例,並非本案之所限。Please refer to Figures 1 and 5, the first four-phase non-overlapping clock generator 140 receives the output signal of the first AND gate Ad1, because the first enable signal en1 is at a high potential, the first The potential of the output signal of the AND gate Ad1 is the same as the feedback signal Sf, so the input signal in FIG. 5 is represented by the feedback signal Sf. Please refer to FIG. 6 at the same time, through the circuit design in the first four-phase non-overlapping clock generator 140, the upper and lower edges of the first clock signals clk11-14 can be made according to the feedback signal Sf Staggered to generate four groups of non-overlapping first clock signals clk11-14, and then control the first negative voltage pump 110 by the non-overlapping first clock signals clk11-14 to avoid simultaneous conduction power consumption. Since there are many forms of circuit designs that can realize the first clock signals clk11-14, the circuit structure in FIG. 5 is only an embodiment of this case, and is not a limitation of this case.

請參閱第7圖,其為本發明之一第二實施例,其與第一實施例的差異在於該負電壓電荷幫浦系統NCP另具有一第三負電壓產生單元400及一第四負電壓產生單元500,而可提供更大之負電壓,且透過該些旁路電晶體130、230、430、530的設置,可任意地開啟所欲使用之負電壓產生單元,讓使用上更加靈活。Please refer to FIG. 7, which is a second embodiment of the present invention. The difference from the first embodiment is that the negative voltage charge pump system NCP has a third negative voltage generating unit 400 and a fourth negative voltage The generation unit 500 can provide a larger negative voltage, and through the setting of these bypass transistors 130, 230, 430, 530, the desired negative voltage generation unit can be turned on arbitrarily, making the use more flexible.

本發明藉由該第一負電壓產生單元100及該第二負電壓產生單元200產生負電壓,並藉由該第一旁路電晶體130及該第二旁路電晶體230讓迴路能夠將該第一負電壓幫浦110及該第二負電壓幫浦210旁路而改變輸出之負電壓的大小,增加該負電壓電荷幫浦系統NCP的多元應用性。The present invention uses the first negative voltage generating unit 100 and the second negative voltage generating unit 200 to generate a negative voltage, and uses the first bypass transistor 130 and the second bypass transistor 230 to enable the loop to The first negative voltage pump 110 and the second negative voltage pump 210 are bypassed to change the magnitude of the output negative voltage, increasing the multiple applicability of the negative voltage charge pump system NCP.

本發明之保護範圍當視後附之申請專利範圍所界定者為準,任何熟知此項技藝者,在不脫離本發明之精神和範圍內所作之任何變化與修改,均屬於本發明之保護範圍。The scope of protection of the present invention should be defined by the scope of the appended patent application. Any changes and modifications made by anyone who is familiar with this technology without departing from the spirit and scope of the present invention belong to the scope of protection of the present invention. .

NCP:負電壓電荷幫浦系統 100:第一負電壓產生單元 110:第一負電壓幫浦 in1:第一電壓輸入端 ot1:第一電壓輸出端 111:第一N型電晶體 112:第一輔助電容 113:第二N型電晶體 114:第一幫浦電容 115:第三N型電晶體 116:第二輔助電容 117:第四N型電晶體 118:第二幫浦電容 119:交叉耦合電晶體對 119a:第一交叉耦合電晶體 119b:第二交叉耦合電晶體 120:第一負電壓準位位移器 121:第一高壓PMOS電晶體 122:反向器 123:第二高壓PMOS電晶體 124:第一高壓NMOS電晶體 125:第二高壓NMOS電晶體 130:第一旁路電晶體 140:第一四相非交疊時脈產生器 200:第二負電壓產生單元 210:第二負電壓幫浦 in2:第二電壓輸入端 ot2:第二電壓輸出端 220:第二負電壓準位位移器 230:第二旁路電晶體 240:第二四相非交疊時脈產生器 300:回授電路 310:分壓電路 320:比較器 330:壓控振盪器 VDD:電源電壓 Vin:輸入電壓 Vo1:第一輸出負電壓 S1:第一旁路控制電壓 Sf:回授訊號 clk11-clk14:第一時脈訊號 Vo2:第二輸出負電壓 S2:第二旁路控制電壓 VH:高電位電壓 Bc1:第一準位位移控制訊號 VL:低電位電壓 n1:第一節點 n2:第二節點 n3:第三節點 n4:第四節點 Vd:分路電壓 Vr:參考電壓 Vc:比較電壓 en1:第一啟動訊號 en2:第二啟動訊號 400:第三負電壓產生單元 430:第三旁路電晶體 500:第四負電壓產生單元 530:第四旁路電晶體 clk21-clk24:第二時脈訊號 GND:接地電位NCP: negative voltage charge pump system 100: the first negative voltage generating unit 110: The first negative voltage pump in1: the first voltage input terminal ot1: the first voltage output terminal 111: The first N-type transistor 112: the first auxiliary capacitor 113: The second N-type transistor 114: First pump capacitor 115: The third N-type transistor 116: the second auxiliary capacitor 117: The fourth N-type transistor 118: Second pump capacitor 119: Cross-coupled transistor pair 119a: first cross-coupled transistor 119b: second cross-coupled transistor 120: the first negative voltage level shifter 121: The first high-voltage PMOS transistor 122: Inverter 123: The second high voltage PMOS transistor 124: The first high-voltage NMOS transistor 125: Second high-voltage NMOS transistor 130: The first bypass transistor 140: The first four-phase non-overlapping clock generator 200: the second negative voltage generating unit 210: Second negative voltage pump in2: the second voltage input terminal ot2: the second voltage output terminal 220: second negative voltage level shifter 230: Second bypass transistor 240: The second four-phase non-overlapping clock generator 300: feedback circuit 310: Voltage divider circuit 320: comparator 330:Voltage Controlled Oscillator VDD: power supply voltage Vin: input voltage Vo1: the first output negative voltage S1: The first bypass control voltage Sf: Feedback signal clk11-clk14: first clock signal Vo2: Second output negative voltage S2: Second bypass control voltage VH: high potential voltage Bc1: first level displacement control signal VL: low potential voltage n1: the first node n2: second node n3: the third node n4: the fourth node Vd: shunt voltage Vr: reference voltage Vc: comparison voltage en1: the first start signal en2: Second start signal 400: the third negative voltage generating unit 430: The third bypass transistor 500: the fourth negative voltage generating unit 530: The fourth bypass transistor clk21-clk24: second clock signal GND: ground potential

第1圖:依據本發明之一第一實施例,一負電壓電荷幫浦系統的方塊圖。 第2圖:依據本發明之第一實施例,一第一負電壓幫浦的電路圖。 第3圖:依據本發明之第一實施例,一第一負電壓準位位移器的電路圖。 第4圖:依據本發明之第一實施例,該第一負電壓準位位移器之訊號的時序圖。 第5圖:依據本發明之第一實施例,一第一四相非交疊時脈產生器的電路圖。 第6圖:依據本發明之第一實施例,該第一四相非交疊時脈產生器之訊號的時序圖。 第7圖:依據本發明之一第二實施例,一負電壓電荷幫浦系統的方塊圖。 Figure 1: A block diagram of a negative voltage charge pump system according to a first embodiment of the present invention. Fig. 2: According to the first embodiment of the present invention, a circuit diagram of a first negative voltage pump. Fig. 3: According to the first embodiment of the present invention, a circuit diagram of a first negative voltage level shifter. Fig. 4: According to the first embodiment of the present invention, the timing diagram of the signal of the first negative voltage level shifter. Fig. 5: According to the first embodiment of the present invention, a circuit diagram of a first four-phase non-overlapping clock generator. FIG. 6: A timing diagram of signals of the first four-phase non-overlapping clock generator according to the first embodiment of the present invention. Fig. 7: A block diagram of a negative voltage charge pump system according to a second embodiment of the present invention.

NCP:負電壓電荷幫浦系統 NCP: negative voltage charge pump system

100:第一負電壓產生單元 100: the first negative voltage generating unit

110:第一負電壓幫浦 110: The first negative voltage pump

in1:第一電壓輸入端 in1: the first voltage input terminal

ot1:第一輸出端 ot1: the first output terminal

120:第一負電壓準位位移器 120: the first negative voltage level shifter

130:第一旁路電晶體 130: The first bypass transistor

140:第一四相非交疊時脈產生器 140: The first four-phase non-overlapping clock generator

200:第二負電壓產生單元 200: the second negative voltage generating unit

210:第二負電壓幫浦 210: Second negative voltage pump

in2:第二電壓輸入端 in2: the second voltage input terminal

ot2:第二輸出端 ot2: the second output terminal

220:第二負電壓準位位移器 220: second negative voltage level shifter

230:第二旁路電晶體 230: Second bypass transistor

240:第二四相非交疊時脈產生器 240: The second four-phase non-overlapping clock generator

300:回授電路 300: feedback circuit

310:分壓電路 310: Voltage divider circuit

320:比較器 320: Comparator

330:壓控振盪器 330:Voltage Controlled Oscillator

VDD:電源電壓 VDD: power supply voltage

Vin:輸入電壓 Vin: input voltage

Vo1:第一輸出負電壓 Vo1: the first output negative voltage

S1:第一旁路控制電壓 S1: The first bypass control voltage

Sf:回授訊號 Sf: Feedback signal

clk11-clk14:第一時脈訊號 clk11-clk14: first clock signal

Vo2:第二輸出負電壓 Vo2: Second output negative voltage

S2:第二旁路控制電壓 S2: Second bypass control voltage

Bc1:第一準位位移控制訊號 Bc1: first level displacement control signal

Vd:分路電壓 Vd: shunt voltage

Vr:參考電壓 Vr: reference voltage

Vc:比較電壓 Vc: comparison voltage

en1:第一啟動訊號 en1: the first start signal

en2:第二啟動訊號 en2: Second start signal

clk21-clk24:第二時脈訊號 clk21-clk24: second clock signal

Claims (10)

一種負電壓電荷幫浦系統,其包含: 一第一負電壓產生單元,具有一第一負電壓幫浦、一第一負電壓準位位移器、一第一旁路電晶體及一第一四相非交疊時脈產生器,該第一負電壓幫浦之一第一電壓輸入端接收一輸入電壓,且該第一負電壓幫浦之一第一電壓輸出端輸出一第一輸出負電壓,該第一負電壓準位位移器用以產生一第一旁路控制電壓,該第一旁路電晶體之一第一輸入端電性連接該第一負電壓幫浦之該第一電壓輸入端,該第一旁路電晶體之一第一控制端電性連接該第一負電壓準位位移器以接收該第一旁路控制電壓,該第一旁路電晶體之一第一輸出端電性連接該第一負電壓幫浦之該第一電壓輸出端,該第一四相非交疊時脈產生器電性連接該第一負電壓幫浦,且該第一四相非交疊時脈產生器接收一回授訊號並輸出複數個第一時脈訊號至該第一負電壓幫浦進行控制; 一第二負電壓產生單元,具有一第二負電壓幫浦、一第二負電壓準位位移器、一第二旁路電晶體及一第二四相非交疊時脈產生器,該第二負電壓幫浦之一第二電壓輸入端電性連接該第一負電壓幫浦之該第一電壓輸出端以接收該第一輸出負電壓,且該第二負電壓幫浦之一第二電壓輸出端輸出一第二輸出負電壓,該第二負電壓準位位移器用以產生一第二旁路控制電壓,該第二旁路電晶體之一第二輸入端電性連接該第二負電壓幫浦之該第二電壓輸入端,該第二旁路電晶體之一第二控制端電性連接該第二負電壓準位位移器以接收該第二旁路控制電壓,該第二旁路電晶體之一第二輸出端電性連接該該第二負電壓幫浦之該第二電壓輸出端,該第二四相非交疊時脈產生器電性連接該第二負電壓幫浦,且該第二四相非交疊時脈產生器接收該回授訊號並輸出複數個第二時脈訊號至該第二負電壓幫浦進行控制;以及 一回授電路,電性連接該第一、二負電壓產生單元,該回授電路接收該第二負電壓幫浦之該第二輸出負電壓,且該回授電路輸出該回授訊號至該第一、二四相非交疊時脈產生器。 A negative voltage charge pump system comprising: A first negative voltage generating unit has a first negative voltage pump, a first negative voltage level shifter, a first bypass transistor and a first four-phase non-overlapping clock generator, the first A first voltage input terminal of a negative voltage pump receives an input voltage, and a first voltage output terminal of the first negative voltage pump outputs a first output negative voltage, and the first negative voltage level shifter is used for A first bypass control voltage is generated, a first input end of the first bypass transistor is electrically connected to the first voltage input end of the first negative voltage pump, and a first input end of the first bypass transistor A control terminal is electrically connected to the first negative voltage level shifter to receive the first bypass control voltage, and a first output terminal of the first bypass transistor is electrically connected to the first negative voltage pump. The first voltage output terminal, the first four-phase non-overlapping clock generator is electrically connected to the first negative voltage pump, and the first four-phase non-overlapping clock generator receives a feedback signal and outputs a complex number a first clock signal to the first negative voltage pump for control; A second negative voltage generating unit has a second negative voltage pump, a second negative voltage level shifter, a second bypass transistor and a second four-phase non-overlapping clock generator, the first One of the second voltage input terminals of the two negative voltage pumps is electrically connected to the first voltage output terminal of the first negative voltage pump to receive the first output negative voltage, and one of the second negative voltage pumps is second The voltage output end outputs a second output negative voltage. The second negative voltage level shifter is used to generate a second bypass control voltage. A second input end of the second bypass transistor is electrically connected to the second negative voltage. The second voltage input terminal of the voltage pump, the second control terminal of the second bypass transistor is electrically connected to the second negative voltage level shifter to receive the second bypass control voltage, the second bypass transistor A second output end of the circuit crystal is electrically connected to the second voltage output end of the second negative voltage pump, and the second four-phase non-overlapping clock generator is electrically connected to the second negative voltage pump , and the second four-phase non-overlapping clock generator receives the feedback signal and outputs a plurality of second clock signals to the second negative voltage pump for control; and A feedback circuit electrically connected to the first and second negative voltage generating units, the feedback circuit receives the second output negative voltage of the second negative voltage pump, and the feedback circuit outputs the feedback signal to the The first and second four-phase non-overlapping clock generators. 如請求項1之負電壓電荷幫浦系統,其中該第一旁路電晶體為一NMOS高壓電晶體,該第一旁路電晶體之該第一輸入端為汲極,該第一旁路電晶體之該第一控制端為閘極,該第一旁路電晶體之該第一輸出端為源極,且該第一輸入端僅電性連接該第一負電壓幫浦之該第一電壓輸入端。Such as the negative voltage charge pump system of claim 1, wherein the first bypass transistor is an NMOS high voltage transistor, the first input terminal of the first bypass transistor is a drain, and the first bypass The first control end of the transistor is a gate, the first output end of the first bypass transistor is a source, and the first input end is only electrically connected to the first negative voltage pump. voltage input. 如請求項2之負電壓電荷幫浦系統,其中該第二旁路電晶體為一NMOS高壓電晶體,該第二旁路電晶體之該第二輸入端為汲極,該第二旁路電晶體之該第二控制端為閘極,該第二旁路電晶體之該第二輸出端為源極。Such as the negative voltage charge pump system of claim 2, wherein the second bypass transistor is an NMOS high voltage transistor, the second input terminal of the second bypass transistor is a drain, and the second bypass transistor The second control end of the transistor is a gate, and the second output end of the second bypass transistor is a source. 如請求項3之負電壓電荷幫浦系統,其中該第一、二旁路電晶體之結構具有一深層P型井(Deep P-well)及一N型掩埋層(N+ Buried layer)。The negative voltage charge pump system according to claim 3, wherein the structure of the first and second bypass transistors has a deep P-well (Deep P-well) and an N-type buried layer (N+ Buried layer). 如請求項1之負電壓電荷幫浦系統,其中該第一負電壓準位位移器具有一第一高壓PMOS電晶體、一反向器、一第二高壓PMOS電晶體、一第一高壓NMOS電晶體及一第二高壓NMOS電晶體,該第一高壓PMOS電晶體之一源極接收一高電位電壓,該第一高壓PMOS電晶體之一閘極接收一第一準位位移控制訊號,該反向器接收該第一準位位移控制訊號並輸出反向之該第一準位位移控制訊號,該第二高壓PMOS電晶體之一源極接收該高電位電壓,該第二高壓PMOS電晶體之一閘極電性連接該反向器以接收反向之該第一準位位移控制訊號,該第一高壓NMOS電晶體之一汲極電性連接該第一高壓PMOS電晶體之一汲極,該第一高壓NMOS電晶體之一閘極電性連接該第二高壓PMOS電晶體之一汲極,該第一高壓NMOS電晶體之一源極接收一低電位電壓,該第二高壓NMOS電晶體之一汲極電性連接該第二高壓PMOS電晶體之一汲極,第二高壓NMOS電晶體之一閘極電性連接該第一高壓PMOS電晶體之該汲極,該第二高壓NMOS電晶體之一源極接收該低電位電壓,其中,該第二高壓PMOS電晶體及該第二高壓NMOS電晶體之該汲極輸出該第一旁路控制電壓。The negative voltage charge pump system according to claim 1, wherein the first negative voltage level shifter has a first high voltage PMOS transistor, an inverter, a second high voltage PMOS transistor, and a first high voltage NMOS transistor and a second high-voltage NMOS transistor, one source of the first high-voltage PMOS transistor receives a high potential voltage, one gate of the first high-voltage PMOS transistor receives a first level shift control signal, and the reverse The device receives the first level shift control signal and outputs the reverse first level shift control signal, one source of the second high voltage PMOS transistor receives the high potential voltage, one of the second high voltage PMOS transistor The gate is electrically connected to the inverter to receive the reversed first level-shift control signal, and the drain of the first high-voltage NMOS transistor is electrically connected to the drain of the first high-voltage PMOS transistor. A gate of the first high-voltage NMOS transistor is electrically connected to a drain of the second high-voltage PMOS transistor, a source of the first high-voltage NMOS transistor receives a low potential voltage, and a gate of the second high-voltage NMOS transistor receives a low potential voltage. A drain is electrically connected to a drain of the second high-voltage PMOS transistor, a gate of the second high-voltage NMOS transistor is electrically connected to the drain of the first high-voltage PMOS transistor, and the second high-voltage NMOS transistor One source receives the low potential voltage, wherein the drains of the second high voltage PMOS transistor and the second high voltage NMOS transistor output the first bypass control voltage. 如請求項5之負電壓電荷幫浦系統,其中該第一、二高壓NMOS電晶體之結構具有一深層P型井(Deep P-well)及一N型掩埋層(N+ Buried layer)。The negative voltage charge pump system according to claim 5, wherein the structure of the first and second high-voltage NMOS transistors has a deep P-well (Deep P-well) and an N-type buried layer (N+ Buried layer). 如請求項1之負電壓電荷幫浦系統,其中該第一負電壓幫浦具有一第一N型電晶體、一第一輔助電容、一第二N型電晶體、一第一幫浦電容、一第三N型電晶體、一第二輔助電容、一第四N型電晶體、一第二幫浦電容及一交叉耦合電晶體對,該第一N型電晶體之一源極接收該輸入電壓,該第一N型電晶體之一閘極電性連接一第一節點,該第一N型電晶體之一汲極電性連接一第二節點,該第一輔助電容之一端接收其中之一該第一時脈訊號,該第一輔助電容之另一端電性連接該第一節點,該第二N型電晶體之一閘極接收該輸入電壓,該第二N型電晶體之一源極電性連接該第一節點,該第二N型電晶體之一汲極電性連接該第二節點,該第一幫浦電容之一端電性連接該第二節點,該第一幫浦電容之另一端接收其中之一該第一時脈訊號,該第三N型電晶體之一汲極接收該輸入電壓,該第三N型電晶體之一閘極電性連接一第三節點,該第三N型電晶體之一源極電性連接一第四節點,該第二輔助電容之一端接收其中之一該第一時脈訊號,該第二輔助電容之另一端電性連接該第三節點,該第四N型電晶體之一閘極接收該輸入電壓,該第四N型電晶體之一汲極電性連接該第三節點,該第四N型電晶體之一源極電性連接該第四節點,該第二幫浦電容之一端電性連接該第四節點,該第二幫浦電容之另一端接收其中之一該第一時脈訊號,該交叉耦合電晶體對電性連接該第二節點及該第四節點,且該交叉耦合電晶體對輸出該第一輸出負電壓。Such as the negative voltage charge pump system of claim 1, wherein the first negative voltage pump has a first N-type transistor, a first auxiliary capacitor, a second N-type transistor, a first pump capacitor, A third N-type transistor, a second auxiliary capacitor, a fourth N-type transistor, a second pump capacitor and a pair of cross-coupled transistors, one source of the first N-type transistor receives the input voltage, a gate of the first N-type transistor is electrically connected to a first node, a drain of the first N-type transistor is electrically connected to a second node, and one end of the first auxiliary capacitor receives the A first clock signal, the other end of the first auxiliary capacitor is electrically connected to the first node, a gate of the second N-type transistor receives the input voltage, a source of the second N-type transistor one pole of the second N-type transistor is electrically connected to the second node, one end of the first pump capacitor is electrically connected to the second node, and the first pump capacitor The other end of the third N-type transistor receives the first clock signal, the drain of the third N-type transistor receives the input voltage, and the gate of the third N-type transistor is electrically connected to a third node. One source of the third N-type transistor is electrically connected to a fourth node, one end of the second auxiliary capacitor receives one of the first clock signals, and the other end of the second auxiliary capacitor is electrically connected to the third node, one gate of the fourth N-type transistor receives the input voltage, one drain of the fourth N-type transistor is electrically connected to the third node, and one source of the fourth N-type transistor is electrically connected to the third node. connected to the fourth node, one end of the second pump capacitor is electrically connected to the fourth node, the other end of the second pump capacitor receives one of the first clock signals, and the cross-coupled transistor is electrically connected to The second node and the fourth node are connected, and the cross-coupled transistor pair outputs the first output negative voltage. 如請求項7之負電壓電荷幫浦系統,其中該交叉耦合電晶體對具有一第一交叉耦合電晶體及一第二交叉耦合電晶體,該第一交叉耦合電晶體之一源極電性連接該第二節點,該第一交叉耦合電晶體之一閘極電性連接該第四節點,該第二交叉耦合電晶體之一汲極電性連接該第四節點,該第二交叉耦合電晶體之一閘極電性連接該第二節點,該第二交叉耦合電晶體之一源極電性連接該第一交叉耦合電晶體之一汲極,且該第二交叉耦合電晶體之該源極及該第一交叉耦合電晶體之該汲極輸出該第一輸出負電壓。The negative voltage charge pump system according to claim 7, wherein the pair of cross-coupled transistors has a first cross-coupled transistor and a second cross-coupled transistor, and a source of the first cross-coupled transistor is electrically connected On the second node, one gate of the first cross-coupling transistor is electrically connected to the fourth node, one drain of the second cross-coupling transistor is electrically connected to the fourth node, and the second cross-coupling transistor A gate is electrically connected to the second node, a source of the second cross-coupled transistor is electrically connected to a drain of the first cross-coupled transistor, and the source of the second cross-coupled transistor And the drain of the first cross-coupling transistor outputs the first output negative voltage. 如請求項1之負電壓電荷幫浦系統,其中該回授電路具有一分壓電路、一比較器及一壓控振盪器,該分壓電路電性連接該第二負電壓產生單元以接收該第二輸出負電壓,且該分壓電路輸出一分路電壓,該比較器電性連接該分壓電路,該比較器接收該分路電壓及一參考電壓進行比較而輸出一比較電壓,該壓控振盪器電性連接該比較器以接收該比較電壓,且該壓控振盪器輸出該回授訊號至該第一四相非交疊時脈產生器及該第二四相非交疊時脈產生器。The negative voltage charge pump system according to claim 1, wherein the feedback circuit has a voltage divider circuit, a comparator and a voltage controlled oscillator, and the voltage divider circuit is electrically connected to the second negative voltage generating unit to receiving the second output negative voltage, and the voltage divider circuit outputs a shunt voltage, the comparator is electrically connected to the voltage divider circuit, the comparator receives the shunt voltage and a reference voltage for comparison and outputs a comparison voltage, the voltage controlled oscillator is electrically connected to the comparator to receive the comparison voltage, and the voltage controlled oscillator outputs the feedback signal to the first four-phase non-overlapping clock generator and the second four-phase non-overlapping clock generator Overlapping clock generator. 如請求項9之負電壓電荷幫浦系統,其中該第一四相非交疊時脈產生器根據該回授訊號產生四組非交疊之該第一時脈訊號。The negative voltage charge pump system according to claim 9, wherein the first four-phase non-overlapping clock generator generates four sets of non-overlapping first clock signals according to the feedback signal.
TW111124602A 2022-06-30 2022-06-30 Negative charge pump system TWI794123B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111124602A TWI794123B (en) 2022-06-30 2022-06-30 Negative charge pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111124602A TWI794123B (en) 2022-06-30 2022-06-30 Negative charge pump system

Publications (2)

Publication Number Publication Date
TWI794123B true TWI794123B (en) 2023-02-21
TW202404243A TW202404243A (en) 2024-01-16

Family

ID=86689392

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111124602A TWI794123B (en) 2022-06-30 2022-06-30 Negative charge pump system

Country Status (1)

Country Link
TW (1) TWI794123B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051882A (en) * 1989-01-27 1991-09-24 Teledyne Industries Three reservoir capacitor charge pump circuit
US20020000869A1 (en) * 1999-02-12 2002-01-03 Isamu Kobayashi Charge pump circuit with bypass transistor
US20050140426A1 (en) * 2003-12-25 2005-06-30 Nec Electronics Corporation Charge pump circuit
TWI427905B (en) * 2007-08-08 2014-02-21 Advanced Analogic Tech Inc Multiple output charge pump and method for operating the same
US20160380632A1 (en) * 2014-09-30 2016-12-29 Skyworks Solutions, Inc. Voltage generator with charge pump and related methods and apparatus
US9553507B1 (en) * 2016-06-06 2017-01-24 Xcelsem, Llc Self regulating current to current charge pump
EP2415049B1 (en) * 2009-03-31 2020-10-21 NXP USA, Inc. Negative voltage generation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051882A (en) * 1989-01-27 1991-09-24 Teledyne Industries Three reservoir capacitor charge pump circuit
US20020000869A1 (en) * 1999-02-12 2002-01-03 Isamu Kobayashi Charge pump circuit with bypass transistor
US20050140426A1 (en) * 2003-12-25 2005-06-30 Nec Electronics Corporation Charge pump circuit
TWI427905B (en) * 2007-08-08 2014-02-21 Advanced Analogic Tech Inc Multiple output charge pump and method for operating the same
US20150015325A1 (en) * 2007-08-08 2015-01-15 Advanced Analogic Technologies Incorporated Multiple output charge pump with multiple flying capacitors
TWI499185B (en) * 2007-08-08 2015-09-01 Advanced Analogic Tech Inc Multiple output charge pump and method for operating the same
EP2415049B1 (en) * 2009-03-31 2020-10-21 NXP USA, Inc. Negative voltage generation
US20160380632A1 (en) * 2014-09-30 2016-12-29 Skyworks Solutions, Inc. Voltage generator with charge pump and related methods and apparatus
US9553507B1 (en) * 2016-06-06 2017-01-24 Xcelsem, Llc Self regulating current to current charge pump

Also Published As

Publication number Publication date
TW202404243A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
US7116156B2 (en) Charge pump circuit
KR100399693B1 (en) Charge pump circuit
WO2009109104A1 (en) A signal output apparatus, a charge pump, a voltage doubler and a method to output current
JP2007257813A5 (en)
WO2007066587A1 (en) Charge pump circuit, lcd driver ic, and electronic device
US8362824B2 (en) Exponential voltage conversion switched capacitor charge pump
CN108809084B (en) Charge pump circuit
TWI794123B (en) Negative charge pump system
EP3437181B1 (en) Negative charge pump and audio asic with such negative charge pump
TW201225539A (en) High voltage generator and method of generating high voltage
US20190372458A1 (en) Elementary cell and charge pumps comprising such an elementary cell
CN100588094C (en) Charge pump circuit
WO2018036475A1 (en) Clock voltage step-up circuit
KR100883791B1 (en) High voltage generator and low voltage generator for driving gate line
TWI493855B (en) Voltage converter
CN107453602B (en) Charge pump and memory device
KR100909837B1 (en) Unit charge pump
JP2007311906A (en) Clock voltage doubler
Singh et al. Transient response and dynamic power dissipation comparison of various Dickson charge pump configurations based on charge transfer switches
US9431901B2 (en) Charge pump stage and a charge pump
TWI834449B (en) Power supply circuit for switching converter
CN113746327B (en) Charge pump circuit, charge pump system and integrated circuit chip
CN116191683A (en) Flexible energy collecting chip and system based on TFT
Wong et al. A novel gate boosting circuit for 2-phase high voltage CMOS charge pump
CN114421760A (en) Power generation circuit in time-interleaved charge pump