TWI793088B - Wireless communication device and receiver for receiving and processing radio frequency signal based on carrier aggregation mode - Google Patents

Wireless communication device and receiver for receiving and processing radio frequency signal based on carrier aggregation mode Download PDF

Info

Publication number
TWI793088B
TWI793088B TW106139846A TW106139846A TWI793088B TW I793088 B TWI793088 B TW I793088B TW 106139846 A TW106139846 A TW 106139846A TW 106139846 A TW106139846 A TW 106139846A TW I793088 B TWI793088 B TW I793088B
Authority
TW
Taiwan
Prior art keywords
radio frequency
signal
amplified
amplifier
factor
Prior art date
Application number
TW106139846A
Other languages
Chinese (zh)
Other versions
TW201820809A (en
Inventor
金榮敏
李宰承
張必城
秦泰煥
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW201820809A publication Critical patent/TW201820809A/en
Application granted granted Critical
Publication of TWI793088B publication Critical patent/TWI793088B/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

A wireless communication device includes an amplifier block amplifying a radio frequency (RF) input signal. The amplifier block includes: a first amplification unit and a second amplification unit. The first amplification unit amplifies the RF input signal to generate a first RF amplified signal including a first non-linearity factor and a second RF amplified signal including a second non-linearity factor, and combines the first and second RF amplified signals to generate a third RF amplified signal. The second amplification unit receives and amplifies the third RF amplified signal to output an RF output signal corresponding to the at least one carrier. In addition, a receiver for receiving and processing an RF input signal based on a carrier aggregation mode is also provided.

Description

用於基於載波聚合模式來接收及處理無線電頻率信號的無線通訊裝置及接收器Wireless communication device and receiver for receiving and processing radio frequency signals based on carrier aggregation mode

本發明是有關於一種支援載波聚合的無線通訊裝置,且特別是有關於一種接收寬頻無線電頻率(radio frequency,RF)信號的接收器以及包括所述接收器的無線通訊裝置。The present invention relates to a wireless communication device supporting carrier aggregation, and in particular to a receiver for receiving broadband radio frequency (radio frequency, RF) signals and a wireless communication device including the receiver.

無線通訊裝置可在將資料放置在預定載波上之後對無線電頻率信號進行調變,放大經調變的無線電頻率信號,並將放大的無線電頻率信號發射到無線通訊網路。另外,無線通訊裝置可從無線通訊網路接收無線電頻率信號,且放大無線電頻率信號並對無線電頻率信號進行解調。為了發射/接收更多的資料,無線通訊裝置可支援載波聚合(carrier aggregation,CA)(即,對通過執行多載波調變(multi-carrier modulation,MCM)來調變的無線電頻率信號進行發射/接收)。然而,如果不能防止雜訊特徵或增益特徵的劣化,則無線通訊裝置可能無法有效地支援載波聚合。The wireless communication device can modulate the radio frequency signal after placing data on a predetermined carrier, amplify the modulated radio frequency signal, and transmit the amplified radio frequency signal to the wireless communication network. In addition, the wireless communication device can receive radio frequency signals from the wireless communication network, amplify the radio frequency signals and demodulate the radio frequency signals. In order to transmit/receive more data, wireless communication devices can support carrier aggregation (CA) (i.e., transmit/receive radio frequency signals modulated by performing multi-carrier modulation (MCM). take over). However, if the degradation of noise characteristics or gain characteristics cannot be prevented, the wireless communication device may not be able to effectively support carrier aggregation.

本發明的至少一個實施例提供一種能夠改善支援載波聚合(CA)的無線通訊裝置的增益特徵的接收器以及一種包括此接收器的無線通訊裝置。At least one embodiment of the present invention provides a receiver capable of improving gain characteristics of a wireless communication device supporting carrier aggregation (CA) and a wireless communication device including the receiver.

根據本發明的示例性實施例,提供一種無線通訊裝置,所述無線通訊裝置包括:放大器區塊,被配置成接收利用至少一個載波發射的無線電頻率(RF)輸入信號並放大所述無線電頻率輸入信號,以產生至少一個無線電頻率輸出信號。所述放大器區塊包括:第一放大單元,被配置成放大所述無線電頻率輸入信號,以產生包括第一非線性度因數的第一無線電頻率放大信號及包括第二非線性度因數的第二無線電頻率放大信號,並對所述第一無線電頻率放大信號與所述第二無線電頻率放大信號進行組合以產生第三無線電頻率放大信號;以及第二放大單元,被配置成接收所述第三無線電頻率放大信號並放大所述第三無線電頻率放大信號,以產生與所述至少一個載波對應的無線電頻率輸出信號。According to an exemplary embodiment of the present invention, there is provided a wireless communication device including: an amplifier block configured to receive a radio frequency (RF) input signal transmitted using at least one carrier and to amplify the radio frequency input signal to generate at least one radio frequency output signal. The amplifier block includes: a first amplifying unit configured to amplify the radio frequency input signal to generate a first radio frequency amplified signal comprising a first nonlinearity factor and a second radio frequency amplified signal comprising a second nonlinearity factor a radio frequency amplified signal, and combining the first radio frequency amplified signal and the second radio frequency amplified signal to generate a third radio frequency amplified signal; and a second amplifying unit configured to receive the third radio frequency amplified signal A frequency amplified signal and amplifies the third radio frequency amplified signal to produce a radio frequency output signal corresponding to the at least one carrier.

根據本發明的示例性實施例,提供一種接收無線電頻率輸入信號並基於載波聚合(CA)模式來處理所述無線電頻率輸入信號的接收器。所述接收器包括多個放大器區塊。所述多個放大器區塊中的每一者包括第一放大單元及第二放大單元。所述第一放大單元包括彼此具有不同性質的至少兩個輸入放大器,使得當放大所述無線電頻率輸入信號時產生的非線性度因數彼此具有不同的符號。所述第一放大單元被配置成執行所述非線性度因數的第一消除且利用所述至少兩個輸入放大器將所述無線電頻率輸入信號放大成無線電頻率放大信號。所述第二放大單元包括多個放大電路,所述多個放大電路分別包括至少一個放大器,所述至少一個放大器被配置成接收所述無線電頻率放大信號並放大所述無線電頻率放大信號,以輸出與預定載波對應的無線電頻率輸出信號。According to an exemplary embodiment of the present invention, there is provided a receiver that receives a radio frequency input signal and processes the radio frequency input signal based on a carrier aggregation (CA) mode. The receiver includes a plurality of amplifier blocks. Each of the plurality of amplifier blocks includes a first amplification unit and a second amplification unit. The first amplifying unit includes at least two input amplifiers having different properties from each other such that non-linearity factors generated when amplifying the radio frequency input signal have different signs from each other. The first amplification unit is configured to perform a first cancellation of the non-linearity factor and to amplify the radio frequency input signal into a radio frequency amplified signal with the at least two input amplifiers. The second amplifying unit includes a plurality of amplifying circuits respectively including at least one amplifier configured to receive the radio frequency amplified signal and amplify the radio frequency amplified signal to output A radio frequency output signal corresponding to a predetermined carrier.

根據本發明的示例性實施例,提供一種操作支援載波聚合的無線通訊裝置的方法。所述方法包括:將從無線電頻率(RF)信號產生的無線電頻率輸入信號放大成第一無線電頻率放大信號及第二無線電頻率放大信號,所述無線電頻率信號是利用至少一個載波發射,所述第一無線電頻率放大信號包括第一非線性度因數,所述第二無線電頻率放大信號包括第二非線性度因數,所述第二非線性度因數具有與所述第一非線性度因數的符號不同的符號;通過將所述第一無線電頻率放大信號與所述第二無線電頻率放大信號相加來產生第三無線電頻率放大信號;通過放大所述第三無線電頻率放大信號來產生與所述至少一個載波對應的無線電頻率輸出信號;以及通過對所述無線電頻率輸出信號進行下變頻來產生基帶信號。According to an exemplary embodiment of the present invention, a method of operating a wireless communication device supporting carrier aggregation is provided. The method includes amplifying a radio frequency input signal generated from a radio frequency (RF) signal into a first radio frequency amplified signal and a second radio frequency amplified signal, the radio frequency signal being transmitted using at least one carrier, the first a radio frequency amplified signal comprising a first non-linearity factor, said second radio frequency amplified signal comprising a second non-linearity factor having a sign different from said first non-linearity factor A third radio frequency amplified signal is generated by adding the first radio frequency amplified signal to the second radio frequency amplified signal; a third radio frequency amplified signal is generated by amplifying the third radio frequency amplified signal and the at least one a radio frequency output signal corresponding to the carrier; and generating a baseband signal by down-converting the radio frequency output signal.

根據本發明的示例性實施例,提供一種無線通訊裝置,所述無線通訊裝置包括第一放大器、第二放大器及第三放大器。第一放大器包括第一互補電晶體,所述第一互補電晶體具有第一寬度。所述第一放大器被配置成放大輸入無線電頻率(RF)信號以產生第一放大無線電頻率信號,所述輸入無線電頻率信號是利用至少一個載波發射。第二放大器包括非互補電晶體,所述非互補電晶體具有與所述第一寬度不同的第二寬度。所述第二放大器被配置成放大所述輸入無線電頻率信號以產生第二放大無線電頻率信號。所述第三放大器包括第二互補電晶體,所述第二互補電晶體被配置成接收所述第一放大無線電頻率信號及所述第二放大無線電頻率信號並輸出第三無線電頻率放大信號。According to an exemplary embodiment of the present invention, a wireless communication device is provided, and the wireless communication device includes a first amplifier, a second amplifier and a third amplifier. The first amplifier includes a first complementary transistor having a first width. The first amplifier is configured to amplify an input radio frequency (RF) signal transmitted using at least one carrier to generate a first amplified radio frequency signal. The second amplifier includes a non-complementary transistor having a second width different from the first width. The second amplifier is configured to amplify the input radio frequency signal to generate a second amplified radio frequency signal. The third amplifier includes a second complementary transistor configured to receive the first amplified radio frequency signal and the second amplified radio frequency signal and output a third amplified radio frequency signal.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.

圖1是執行無線通訊操作的無線通訊裝置100以及包括無線通訊裝置100的無線通訊系統10的圖。FIG. 1 is a diagram of a wireless communication device 100 performing wireless communication operations and a wireless communication system 10 including the wireless communication device 100 .

參照圖1,無線通訊系統10可為長期演化(long term evolution,LTE)系統、碼分多址(code division multiple access,CDMA)系統、全球移動通信系統(global system for mobile communication,GSM)、以及無線局域網(wireless local area network,WLAN)系統中的一者。碼分多址系統可具有各種實作形式,例如寬頻碼分多址(wideband CDMA,WCDMA)、時分同步碼分多址(time-division synchronized CDMA,TD-SCDMA)、cdma2000等。Referring to FIG. 1, the wireless communication system 10 may be a long term evolution (long term evolution, LTE) system, a code division multiple access (code division multiple access, CDMA) system, a global system for mobile communication (global system for mobile communication, GSM), and One of the wireless local area network (WLAN) systems. The CDMA system may have various implementation forms, such as wideband CDMA (WCDMA), time-division synchronized CDMA (TD-SCDMA), cdma2000, etc.

無線通訊系統10包括至少兩個基站110及112、以及系統控制器120。然而,本發明概念並非僅限於此。舉例來說,無線通訊系統10可包括至少兩個基站以及多個網路實體。無線通訊裝置100可被稱為使用者設備(user equipment,UE)、移動站(mobile station,MS)、移動終端(mobile terminal,MT)、使用者終端(user terminal,UT)、用戶站(subscribe station,SS)、可擕式裝置等。基站110及112可表示與無線通訊裝置100及/或其他基站進行通信以發射及接收資料信號及/或控制資訊的固定站。基站110及112可分別被稱為節點B、演化節點B(evolved-Node B,eNB)、基站收發系統(base transceiver system,BTS)、接入點(access point,AP)等。The wireless communication system 10 includes at least two base stations 110 and 112 and a system controller 120 . However, the inventive concept is not limited thereto. For example, the wireless communication system 10 may include at least two base stations and multiple network entities. The wireless communication device 100 may be called user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), user terminal (user terminal, UT), subscriber station (subscribe station, SS), portable devices, etc. Base stations 110 and 112 may represent fixed stations that communicate with wireless communication device 100 and/or other base stations to transmit and receive data signals and/or control information. The base stations 110 and 112 may be respectively called Node B, evolved-Node B (evolved-Node B, eNB), base transceiver system (base transceiver system, BTS), access point (access point, AP) and so on.

無線通訊裝置100可與無線通訊系統10進行通信,且可從廣播站114接收信號。此外,無線通訊裝置100可從全球導航衛星系統(global navigation satellite system,GNSS)或全球定位系統(global positioning system,GPS)的衛星130接收信號。無線通訊裝置100可支援用於無線通訊的無線電技術(例如,長期演化、cdma2000、寬頻碼分多址、時分同步碼分多址、全球移動通信系統、802.11等)。The wireless communication device 100 can communicate with the wireless communication system 10 and can receive signals from the broadcast station 114 . In addition, the wireless communication device 100 can receive signals from satellites 130 of a global navigation satellite system (GNSS) or a global positioning system (GPS). The wireless communication device 100 may support radio technologies for wireless communication (eg, long-term evolution, cdma2000, wideband CDMA, TDSCDMA, GSM, 802.11, etc.).

在實施例中,無線通訊裝置100支援用於使用多個載波來執行發射/接收操作的載波聚合。無線通訊裝置100可在低頻帶、中頻帶、及高頻帶中與無線通訊系統10執行無線通訊。低頻帶、中頻帶、及高頻帶可分別被稱為頻帶組(band group),且每一個頻帶組可包括多個頻帶。載波聚合(在下文中被稱為“CA”)可被分類為帶內載波聚合及帶間載波聚合。帶內載波聚合表示利用頻帶內的多個載波執行無線通訊操作,且帶間載波聚合表示利用不同頻帶中的多個載波執行無線通訊操作。In an embodiment, the wireless communication device 100 supports carrier aggregation for performing transmit/receive operations using multiple carriers. The wireless communication device 100 can perform wireless communication with the wireless communication system 10 in the low frequency band, the middle frequency band, and the high frequency band. The low frequency band, the mid frequency band, and the high frequency band may be respectively referred to as band groups, and each band group may include a plurality of frequency bands. Carrier aggregation (hereinafter referred to as 'CA') may be classified into intra-band carrier aggregation and inter-band carrier aggregation. Intra-band CA means performing wireless communication operations using multiple carriers within a frequency band, and inter-band CA means performing wireless communication operations using multiple carriers in different frequency bands.

根據本發明實施例的無線通訊裝置100可執行帶內載波聚合及帶間載波聚合兩者,且另外,可利用一個載波而非載波聚合(即,而非多個載波)來執行無線通訊操作。無線通訊裝置100中所包括的用於從無線通訊系統10接收無線電頻率(RF)信號的接收器的輸入阻抗在帶內載波聚合的操作及帶間載波聚合的操作期間可維持恒定。在實施例中,無線通訊裝置100接收無線電頻率信號,且接著將無線電頻率信號放大,並且同時抵消非線性度因數以改善增益特徵。因此,無線通訊裝置100的信號接收靈敏度可得到提高,從而提高無線通訊裝置100的無線通訊操作的可靠性。The wireless communication device 100 according to the embodiment of the present invention can perform both intra-band carrier aggregation and inter-band carrier aggregation, and in addition, can utilize one carrier instead of carrier aggregation (ie, instead of multiple carriers) to perform wireless communication operations. The input impedance of a receiver included in the wireless communication device 100 for receiving radio frequency (RF) signals from the wireless communication system 10 can be kept constant during the operation of the intra-band CA and the operation of the inter-band CA. In an embodiment, the wireless communication device 100 receives a radio frequency signal, and then amplifies the radio frequency signal, and at the same time cancels the non-linearity factor to improve the gain characteristic. Therefore, the signal receiving sensitivity of the wireless communication device 100 can be improved, thereby improving the reliability of the wireless communication operation of the wireless communication device 100 .

圖2A至圖2F是關於載波聚合的技術的圖。2A to 2F are diagrams related to techniques of carrier aggregation.

圖2A是示出連續的帶內載波聚合的圖。參照圖2A,圖1所示無線通訊裝置100利用為低頻帶的同一頻帶內的四個連續的載波來執行信號的發射/接收。在實施例中,當一組載波中的任意兩個載波之間不存在空間時,所述一組載波被視為連續的。Figure 2A is a diagram illustrating continuous in-band carrier aggregation. Referring to FIG. 2A, the wireless communication device 100 shown in FIG. 1 performs signal transmission/reception using four consecutive carriers within the same frequency band which is a low frequency band. In an embodiment, a set of carriers is considered contiguous when there is no space between any two carriers in the set.

圖2B是示意性地示出不連續的帶內載波聚合的圖。參照圖2B,無線通訊裝置100利用為低頻帶的同一頻帶內的四個不連續的載波來執行信號的發射/接收。在實施例中,當一組載波中的至少兩個載波之間存在空間時,這一組載波被視為不連續的。所述載波可彼此分別間隔開例如5 MHz、10 MHz、或另一個量。Figure 2B is a diagram schematically illustrating discontinuous in-band carrier aggregation. Referring to FIG. 2B , the wireless communication device 100 performs signal transmission/reception using four discontinuous carriers within the same frequency band which is a low frequency band. In an embodiment, a set of carriers is considered discontinuous when there is a space between at least two carriers in the set. The carriers may be spaced apart from each other by, for example, 5 MHz, 10 MHz, or another amount, respectively.

圖2C是示意性地示出同一頻帶組中的帶間載波聚合的圖。參照圖2C,無線通訊裝置100利用同一頻帶組中所包括的兩個頻帶中的四個載波來執行信號的發射/接收。FIG. 2C is a diagram schematically illustrating inter-band carrier aggregation in the same frequency band group. Referring to FIG. 2C , the wireless communication device 100 performs signal transmission/reception using four carriers in two frequency bands included in the same frequency band group.

圖2D是示意性地示出不同的頻帶組中的帶間載波聚合的圖。參照圖2D,無線通訊裝置100利用不同的頻帶組中所包括的四個載波來執行信號的發射/接收。詳細來說,兩個載波處於低頻帶中所包括的頻帶中,且其他兩個載波處於中頻帶中所包括的頻帶中。FIG. 2D is a diagram schematically illustrating inter-band carrier aggregation in different frequency band groups. Referring to FIG. 2D , the wireless communication device 100 performs signal transmission/reception using four carriers included in different frequency band groups. In detail, two carriers are in frequency bands included in the low frequency band, and the other two carriers are in frequency bands included in the middle frequency band.

請注意,本發明並非僅限於圖2A至圖2D所示的示例性聚合載波。舉例來說,無線通訊裝置100可針對頻帶或頻帶組來支援聚合載波的各種組合。Please note that the present invention is not limited to the exemplary aggregated carriers shown in FIG. 2A to FIG. 2D . For example, the wireless communication device 100 can support various combinations of aggregated carriers for frequency bands or frequency band groups.

參照圖2E,其呈現聚合載波技術,所述聚合載波技術通過將一個或多個基站中的多個頻帶進行組合來運行以滿足對更高位速率的要求。作為移動網路中的一種的長期演化網路可實現100 Mbps的資料傳輸速度,且因此能夠在無線通訊環境中發射/接收大容量的視頻。圖2E示出其中根據載波聚合技術將長期演化標準的五個頻帶進行組合的實例,載波聚合技術能夠將資料傳輸速度提高五倍。在圖2E中,在長期演化中定義載波(載波1至載波5)中的每一者,且在長期演化標準中,一個頻率頻寬最大被定義成20 MHz。因此,根據實施例的無線通訊裝置100可將資料速率提高至100 MHz的頻寬。Referring to FIG. 2E , an aggregated carrier technique is presented that operates by combining multiple frequency bands in one or more base stations to meet the requirement for higher bit rates. The LTE network, which is one of the mobile networks, can achieve a data transmission speed of 100 Mbps, and thus can transmit/receive large-capacity video in a wireless communication environment. FIG. 2E shows an example in which five frequency bands of the Long-Term Evolution standard are combined according to a carrier aggregation technique capable of increasing data transmission speed by five times. In FIG. 2E , each of the carriers (carrier 1 to carrier 5 ) is defined in the long-term evolution, and in the long-term evolution standard, one frequency bandwidth is defined to be 20 MHz at maximum. Therefore, the wireless communication device 100 according to the embodiment can increase the data rate to a bandwidth of 100 MHz.

圖2E示出其中僅將由長期演化定義的載波進行組合的實例,但本發明概念並非僅限於此。如圖2F所示,可將不同的無線通訊網路的載波進行組合。參照圖2F,當根據載波聚合技術將頻帶進行組合時,也可將第三代(3rd-generation,3G)標準與無線保真(wireless fidelity,Wi-fi)標準的頻帶進行組合。如上所述,長期演化A採用載波聚合技術,且因此,可以較快的速度執行資料傳輸。FIG. 2E shows an example where only carriers defined by long-term evolution are combined, but the inventive concept is not limited thereto. As shown in FIG. 2F , carriers of different wireless communication networks can be combined. Referring to FIG. 2F , when frequency bands are combined according to the carrier aggregation technology, frequency bands of a 3rd-generation (3G) standard and a wireless fidelity (Wi-fi) standard may also be combined. As mentioned above, LTE-A adopts carrier aggregation technology, and therefore, data transmission can be performed at a faster speed.

圖3是圖1所示無線通訊裝置100的另一個實例的方塊圖。FIG. 3 is a block diagram of another example of the wireless communication device 100 shown in FIG. 1 .

參照圖3,無線通訊裝置200包括連接到主天線210的收發器220、連接到輔助天線212的收發器250、以及資料處理器(或控制器)280。收發器220可包括多個接收器230a至230k以及多個發射器240a至240k。收發器250可包括多個接收器260a至260l以及多個發射器270a至270l。具有以上結構的收發器220及250可支援多個頻帶、多種無線電技術、載波聚合、接收分集(receiving diversity)、以及多個發射天線與多個接收天線之間的多輸入多輸出(multiple-input multiple-out,MIMO)。Referring to FIG. 3 , the wireless communication device 200 includes a transceiver 220 connected to the main antenna 210 , a transceiver 250 connected to the auxiliary antenna 212 , and a data processor (or controller) 280 . The transceiver 220 may include a plurality of receivers 230a through 230k and a plurality of transmitters 240a through 240k. The transceiver 250 may include a plurality of receivers 260a-260l and a plurality of transmitters 270a-270l. The transceivers 220 and 250 with the above structure can support multiple frequency bands, multiple radio technologies, carrier aggregation, receiving diversity (receiving diversity), and multiple-input multiple-output (multiple-input) between multiple transmit antennas and multiple receive antennas. multiple-out, MIMO).

在實施例中,第一接收器230a包括低雜訊放大器(low noise amplifier,LNA)224a以及接收電路225a。第一接收器230a的結構可應用於其他接收器230b至230k、以及260a至260l。在下文中,以下將闡述第一接收器230a的結構。為接收資料,主天線210可從基站及/或發射器站接收無線電頻率信號。在實施例中,主天線210通過對所接收到的無線電頻率信號執行頻率濾波來產生無線電頻率輸入信號,並通過天線介面電路222將經濾波的無線電頻率輸入信號路由到所選擇的接收器。天線介面電路222可包括開關裝置、雙工器(duplexer)、濾波器電路、及輸入匹配電路。低雜訊放大器224a將經濾波的無線電頻率輸入信號放大以產生無線電頻率輸出信號,並將無線電頻率輸出信號提供到資料處理器280。資料處理器280可基於無線電頻率輸出信號將資料存儲在記憶體282中。In an embodiment, the first receiver 230a includes a low noise amplifier (low noise amplifier, LNA) 224a and a receiving circuit 225a. The structure of the first receiver 230a is applicable to other receivers 230b to 230k, and 260a to 260l. Hereinafter, the structure of the first receiver 230a will be explained below. To receive data, the main antenna 210 may receive radio frequency signals from base stations and/or transmitter stations. In an embodiment, the main antenna 210 generates a radio frequency input signal by performing frequency filtering on the received radio frequency signal and routes the filtered radio frequency input signal to a selected receiver through the antenna interface circuit 222 . The antenna interface circuit 222 may include a switch device, a duplexer, a filter circuit, and an input matching circuit. The low noise amplifier 224 a amplifies the filtered radio frequency input signal to generate a radio frequency output signal and provides the radio frequency output signal to the data processor 280 . Data processor 280 may store data in memory 282 based on the radio frequency output signal.

根據本發明概念實施例的低雜訊放大器224a在根據各種載波聚合的通信操作期間將輸入阻抗恒定地維持為目標阻抗。另外,當無線電頻率輸入信號被放大時,可抵消在放大期間可能會出現的非線性度因數以改善放大期間的增益特徵及雜訊特徵。在實施例中,低雜訊放大器224a將無線電頻率輸入信號依序地放大至少兩倍以產生一個無線電頻率輸出信號,且可依序地抵消在放大至少兩倍期間產生的非線性度因數。此後將提供其詳細說明。The low noise amplifier 224 a according to an embodiment of the inventive concept constantly maintains an input impedance as a target impedance during communication operations according to various carrier aggregations. In addition, when the radio frequency input signal is amplified, the non-linearity factor that may occur during amplification can be canceled to improve the gain characteristics and noise characteristics during amplification. In one embodiment, the LNA 224a sequentially amplifies the RF input signal by at least a factor of two to generate an RF output signal, and sequentially cancels the non-linearity factor generated during the amplification by at least a factor of two. A detailed description thereof will be provided hereafter.

在實施例中,接收電路225a將從低雜訊放大器224a接收到的無線電頻率輸出信號從無線電頻率下變頻到基帶以產生基帶信號。在其他實施例中,接收電路225a可被稱為輸出電路。在實施例中,接收電路225a對基帶信號進行放大及濾波,並將經放大及濾波的基帶信號提供到資料處理器280。資料處理器280可基於經放大及濾波的基帶信號將資料存儲在記憶體282中。接收電路225a可包括混頻器、濾波器(filter)、放大器、振盪器、本地振盪器產生器(local oscillator generator)、鎖相環(Phase Locked Loop,PLL)電路等中的至少一者。In an embodiment, the receive circuit 225a downconverts the radio frequency output signal received from the low noise amplifier 224a from radio frequency to baseband to generate a baseband signal. In other embodiments, the receiving circuit 225a may be referred to as an output circuit. In an embodiment, the receiving circuit 225 a amplifies and filters the baseband signal and provides the amplified and filtered baseband signal to the data processor 280 . Data processor 280 may store data in memory 282 based on the amplified and filtered baseband signal. The receiving circuit 225 a may include at least one of a mixer, a filter (filter), an amplifier, an oscillator, a local oscillator generator (local oscillator generator), a phase locked loop (Phase Locked Loop, PLL) circuit and the like.

在實施例中,第一發射器240a包括功率放大器(Power Amplifier,PA)226a以及發射電路227a。第一發射器240a的結構可應用於其他發射器240b至240k、以及270a至270l。在下文中,以下將闡述第一發射器240a的結構。在發射資料時,資料處理器280可對待發射的資料進行處理(例如,資料編碼及資料調變),且可將類比輸出信號提供到所選擇的發射器。舉例來說,資料處理器280可將數位資料處理成類比資料以存儲在記憶體282中。In an embodiment, the first transmitter 240a includes a power amplifier (Power Amplifier, PA) 226a and a transmitting circuit 227a. The structure of the first emitter 240a is applicable to the other emitters 240b to 240k, and 270a to 270l. Hereinafter, the structure of the first transmitter 240a will be explained below. When transmitting data, the data processor 280 may perform processing (eg, data encoding and data modulation) on the data to be transmitted, and may provide an analog output signal to the selected transmitter. For example, the data processor 280 can process digital data into analog data for storage in the memory 282 .

在實施例中,發射電路257a將類比輸出信號從基帶上變頻到無線電頻率,並對類比輸出信號進行放大及濾波以產生經調變的無線電頻率信號。在實施例中,類比輸出信號的上變頻會得到具有比類比輸出信號高的頻率的經調變無線電頻率信號。發射電路257a可包括放大器、濾波器、混頻器、輸入匹配電路、振盪器、本地振盪器(local oscillator,LO)、鎖相環電路等中的至少一者。在實施例中,功率放大器226a接收並放大經調變的無線電頻率信號,並經由天線介面電路222向主天線210提供具有適當的輸出功率電平的發射無線電頻率信號。經調變的無線電頻率信號可經由主天線210被發射到基站。In an embodiment, the transmit circuit 257a upconverts the analog output signal from baseband to radio frequency, and amplifies and filters the analog output signal to generate a modulated radio frequency signal. In an embodiment, upconversion of the analog output signal results in a modulated radio frequency signal having a higher frequency than the analog output signal. The transmitting circuit 257a may include at least one of an amplifier, a filter, a mixer, an input matching circuit, an oscillator, a local oscillator (local oscillator, LO), a phase-locked loop circuit, and the like. In an embodiment, the power amplifier 226a receives and amplifies the modulated RF signal, and provides the transmit RF signal with a suitable output power level to the main antenna 210 via the antenna interface circuit 222 . The modulated radio frequency signal can be transmitted to the base station via the main antenna 210 .

收發器220及收發器250的全部或其中之一可被實作為模擬積體電路、無線電頻率積體電路、或混頻信號積體電路。舉例來說,低雜訊放大器224a至224k以及254a至254l、以及接收電路225a至225k以及255a至255l可被實作為一個模組(例如,無線電頻率積體電路)。然而,本發明概念並非僅限於此。舉例來說,可以各種不同的方式來實作收發器220及250的電路配置。All or one of the transceiver 220 and the transceiver 250 may be implemented as an analog IC, a radio frequency IC, or a mixed signal IC. For example, the low noise amplifiers 224a to 224k and 254a to 254l, and the receiving circuits 225a to 225k and 255a to 255l may be implemented as a module (eg, a radio frequency integrated circuit). However, the inventive concept is not limited thereto. For example, the circuit configurations of transceivers 220 and 250 can be implemented in a variety of different ways.

圖4是根據本發明概念示例性實施例的接收器400的方塊圖。接收器400可用於實作圖3所示接收器230a至230k及/或接收器260a至260l中的一者或多者。FIG. 4 is a block diagram of a receiver 400 according to an exemplary embodiment of the inventive concept. Receiver 400 may be used to implement one or more of receivers 230a-230k and/or receivers 260a-2601 shown in FIG.

參照圖4,接收器400包括支持非載波聚合及帶內載波聚合的載波聚合低雜訊放大器440、天線410、天線介面電路420、輸入匹配電路430、及多個輸出電路450_1至450_M。載波聚合低雜訊放大器440可對圖3所示低雜訊放大器224a至224k以及254a至254l中的至少一者的輸出進行運算。載波聚合低雜訊放大器440可包括單個輸入端及多個(M個)輸出端。舉例來說,載波聚合低雜訊放大器440可從單個輸入端接收輸入無線電頻率信號並基於輸入無線電頻率信號經由多個輸出端輸出多個無線電頻率信號。接收器400可經由天線410接收由至少一個載波發射的輸入無線電頻率信號(或下行鏈路信號)。天線410可將所接收到的無線電頻率信號提供到天線介面電路420。在實施例中,天線介面電路420執行頻率濾波以及對所接收到的無線電頻率信號進行路由以向輸入匹配電路430提供接收器輸入信號RXIN 。輸入匹配電路430可通過阻抗匹配(impedance matching)來向載波聚合低雜訊放大器440提供無線電頻率輸入信號RFIN 。輸入匹配電路430可執行載波聚合低雜訊放大器440與天線介面電路420或天線410之間的阻抗匹配。輸入匹配電路430可包含在天線介面電路420中。Referring to FIG. 4 , the receiver 400 includes a carrier aggregation low noise amplifier 440 supporting non-carrier aggregation and in-band carrier aggregation, an antenna 410 , an antenna interface circuit 420 , an input matching circuit 430 , and a plurality of output circuits 450_1 to 450_M. The CA LNA 440 can operate on the output of at least one of the LNAs 224a to 224k and 254a to 254l shown in FIG. 3 . The carrier aggregation low noise amplifier 440 may include a single input terminal and multiple (M) output terminals. For example, the carrier aggregation low noise amplifier 440 may receive an input RF signal from a single input and output multiple RF signals through multiple output terminals based on the input RF signal. The receiver 400 may receive an input radio frequency signal (or downlink signal) transmitted by at least one carrier via the antenna 410 . Antenna 410 may provide received radio frequency signals to antenna interface circuit 420 . In an embodiment, antenna interface circuit 420 performs frequency filtering and routing of received radio frequency signals to provide receiver input signal RX IN to input matching circuit 430 . The input matching circuit 430 can provide the radio frequency input signal RF IN to the CA LNA 440 through impedance matching. The input matching circuit 430 can perform impedance matching between the CA LNA 440 and the antenna interface circuit 420 or the antenna 410 . The input matching circuit 430 can be included in the antenna interface circuit 420 .

載波聚合低雜訊放大器440以利用一個載波的載波聚合形式或以非載波聚合形式來放大無線電頻率輸入信號RFIN 以經由一個低雜訊放大器輸出端輸出一個無線電頻率輸出信號,或者以包括M個載波的帶內載波聚合形式來放大無線電頻率輸入信號RFIN 以經由M個低雜訊放大器輸出端輸出M個無線電頻率輸出信號RFOUT1 至RFOUTM ,其中M大於1。在實施例中,載波聚合低雜訊放大器440從外部來源接收模式控制信號XMOD,且基於模式控制信號XMOD的值或電平來以單輸出模式或多輸出模式中的一種模式運行。在單輸出模式中,載波聚合低雜訊放大器440以一個輸入及一個輸出的配置運行,並接收無線電頻率輸入信號RFIN ,無線電頻率輸入信號RFIN 包括通過一個載波發射的至少一個信號。單輸出模式可用於接收通過一個載波而非利用載波聚合發射的信號。在多輸出模式中,載波聚合低雜訊放大器440以一個輸入及M個輸出的配置運行,並接收包括通過多個載波發射的信號的無線電頻率輸入信號RFIN 且分別向M個輸出電路450_1至450_M輸出M個無線電頻率輸出信號RFOUT1 至RFOUTM 。一個無線電頻率輸出信號可對應于一個載波。在實施例中,輸出電路450_1至450_M中的至少一者接收無線電頻率輸出信號並對無線電頻率輸出信號進行下變頻以將無線電頻率輸出信號輸出為基帶信號。在實施例中,所述下變頻將無線電頻率輸出信號變頻成較低頻率的信號。輸出電路450_1至450_M可對應於圖3所示接收電路225及255。The carrier aggregation low noise amplifier 440 amplifies the radio frequency input signal RF IN in a carrier aggregation form using a carrier or in a non-carrier aggregation form to output a radio frequency output signal through a low noise amplifier output terminal, or to include M The in-band carrier aggregation form of the carrier amplifies the radio frequency input signal RF IN to output M radio frequency output signals RF OUT1 to RF OUTM through M low noise amplifier output terminals, where M is greater than 1. In an embodiment, the CA LNA 440 receives a mode control signal XMOD from an external source, and operates in one of a single output mode or a multiple output mode based on the value or level of the mode control signal XMOD. In the single output mode, the CA LNA 440 operates in a one- input and one-output configuration and receives a radio frequency input signal RF IN comprising at least one signal transmitted via a carrier. Single output mode can be used to receive signals transmitted over one carrier instead of utilizing carrier aggregation. In the multi-output mode, the carrier aggregation low noise amplifier 440 operates in a configuration of one input and M outputs, and receives the radio frequency input signal RF IN including signals transmitted by multiple carriers and supplies the M output circuits 450_1 to M respectively. 450_M outputs M radio frequency output signals RF OUT1 to RF OUTM . One radio frequency output signal may correspond to one carrier. In an embodiment, at least one of the output circuits 450_1 to 450_M receives the radio frequency output signal and down-converts the radio frequency output signal to output the radio frequency output signal as a baseband signal. In an embodiment, the down conversion converts the radio frequency output signal to a lower frequency signal. The output circuits 450_1 to 450_M may correspond to the receiving circuits 225 and 255 shown in FIG. 3 .

圖5A及圖5B是根據示例性實施例的圖4所示接收器400的低雜訊放大器440及輸出電路450的方塊圖。5A and 5B are block diagrams of the low noise amplifier 440 and the output circuit 450 of the receiver 400 shown in FIG. 4 according to an exemplary embodiment.

參照圖5A,接收器400包括載波聚合低雜訊放大器440以及所述多個輸出電路450_1至450_M。載波聚合低雜訊放大器440包括至少一個放大器區塊AMPB。放大器區塊AMPB包括第一放大單元442及第二放大單元446。第一放大單元442包括放大電路443,放大電路443將無線電頻率輸入信號RFIN 放大且可抵消在放大期間產生的非線性度因數。第二放大單元446經由第一放大單元442的輸出節點X連接到第一放大單元442,並從第一放大單元442接收經放大的無線電頻率輸入信號。第二放大單元446包括多個放大電路446_1至446_M,且放大電路446_1至446_M中的每一者可接收啟用/禁用控制信號EN/DIS_CS以對啟用及禁用進行控制。舉例來說,當接收到以帶內載波聚合形式利用G(其中G是小於M的整數)個載波發射的無線電頻率信號時,可從放大電路446_1至446_M中選擇並啟用G個放大電路,且被啟用的放大電路可分別輸出無線電頻率輸出信號。舉例來說,當G小於可用放大電路的總數目時,可將其餘的放大電路禁用以節省電力。當假設接收到以帶內載波聚合形式利用M個載波發射的無線電頻率信號時,放大電路446_1至446_M中的每一者可將無線電頻率輸入信號放大並抵消在放大期間產生的非線性度因數以輸出無線電頻率輸出信號RFOUT1 至RFOUTMReferring to FIG. 5A , the receiver 400 includes a carrier aggregation low noise amplifier 440 and the plurality of output circuits 450_1 to 450_M. The CA LNA 440 includes at least one amplifier block AMPB. The amplifier block AMPB includes a first amplification unit 442 and a second amplification unit 446 . The first amplifying unit 442 includes an amplifying circuit 443 , which amplifies the radio frequency input signal RF IN and cancels a non-linearity factor generated during the amplification. The second amplifying unit 446 is connected to the first amplifying unit 442 via the output node X of the first amplifying unit 442 and receives an amplified radio frequency input signal from the first amplifying unit 442 . The second amplifying unit 446 includes a plurality of amplifying circuits 446_1 to 446_M, and each of the amplifying circuits 446_1 to 446_M can receive an enable/disable control signal EN/DIS_CS to control enabling and disabling. For example, when a radio frequency signal transmitted using G (where G is an integer smaller than M) carriers in the form of in-band carrier aggregation is received, G amplifying circuits may be selected and enabled from the amplifying circuits 446_1 to 446_M, and The activated amplifying circuits can respectively output radio frequency output signals. For example, when G is less than the total number of available amplifying circuits, the remaining amplifying circuits can be disabled to save power. When it is assumed that a radio frequency signal transmitted using M carriers in the form of in-band carrier aggregation is received, each of the amplifying circuits 446_1 to 446_M may amplify the radio frequency input signal and cancel a non-linearity factor generated during the amplification to Output radio frequency output signals RF OUT1 to RF OUTM .

如上所述,根據本發明的載波聚合低雜訊放大器440可抵消在放大預定信號時產生的非線性度因數,以改善其線性度被看重的增益特徵。另外,第二放大單元446從第一放大單元442接收經放大的無線電頻率輸入信號並再次將所接收到的無線電頻率輸入信號放大,且因此,可在消耗較少的直流(direct current,DC)電流的同時輸出具有期望量值的無線電頻率輸出信號。As described above, the carrier aggregation low noise amplifier 440 according to the present invention can cancel the non-linearity factor generated when amplifying a predetermined signal, so as to improve the gain characteristic whose linearity is valued. In addition, the second amplifying unit 446 receives the amplified radio frequency input signal from the first amplifying unit 442 and amplifies the received radio frequency input signal again, and thus, can consume less direct current (DC) current while outputting a radio frequency output signal having a desired magnitude.

輸出電路450_1至450_M分別包括連接到第二放大單元446的放大電路446_1至446_M的負載電路451_1、451_2、...、451_M、以及下變頻器電路452_1至452_M。在實施例中,負載電路451_1至451_M是基帶濾波器。第一下變頻器電路452_1包括兩個混頻器453_1及454_1、以及基帶濾波器455_1及456_1。第一下變頻器電路452_1的結構可應用於其他下變頻器電路452_2至452_M。舉例來說,第二下變頻器電路452_2包括兩個混頻器453_2及454_2、以及基帶濾波器455_2及456_2,且第M下變頻器電路452_M包括混頻器453_M及454_M、以及基帶濾波器455_M及456_M。當假設接收到以帶內載波聚合形式利用M個載波發射的無線電頻率信號時,輸出電路450_1至450_M可分別將無線電頻率輸出信號RFOUT1 至RFOUTM 變頻成基帶信號XBASOUT1 至XBASOUTM 。混頻器453_1、453_2、...、453_M可接收同相本地振盪器信號ILO1,且混頻器454_1、454_2、...454_M可接收正交本地振盪器信號QLO1。The output circuits 450_1 to 450_M respectively include load circuits 451_1 , 451_2 , . In an embodiment, the load circuits 451_1 to 451_M are baseband filters. The first down-converter circuit 452_1 includes two mixers 453_1 and 454_1, and baseband filters 455_1 and 456_1. The structure of the first down-converter circuit 452_1 can be applied to other down-converter circuits 452_2 to 452_M. For example, the second downconverter circuit 452_2 includes two mixers 453_2 and 454_2, and baseband filters 455_2 and 456_2, and the Mth downconverter circuit 452_M includes mixers 453_M and 454_M, and a baseband filter 455_M and 456_M. When it is assumed that the radio frequency signals transmitted by M carriers in the form of in-band carrier aggregation are received, the output circuits 450_1 to 450_M may respectively convert the radio frequency output signals RF OUT1 to RF OUTM into baseband signals XBAS OUT1 to XBAS OUTM . The mixers 453_1 , 453_2 , . . . , 453_M may receive the in-phase local oscillator signal ILO1 , and the mixers 454_1 , 454_2 , . . . 454_M may receive the quadrature local oscillator signal QLO1 .

參照圖5B,不同於圖5A所示實例,接收器400'進一步包括開關單元444',開關單元444'包括多個開關裝置SW1 SW2 ... SWM 。因此,當接收到以帶內載波聚合形式利用N個載波發射的無線電頻率信號時,可通過開關控制信號SWCS來控制開關單元444'以使得從放大電路446_1'至446_M'中選擇N個放大電路。然而,本發明概念的實施例並非僅限於圖5A所示接收器400以及圖5B所示接收器400'的結構。Referring to FIG. 5B , unlike the example shown in FIG. 5A , the receiver 400 ′ further includes a switch unit 444 ′, and the switch unit 444 ′ includes a plurality of switching devices SW 1 , SW 2 , . . . , SW M . Therefore, when a radio frequency signal transmitted using N carriers in the form of in-band carrier aggregation is received, the switch unit 444' may be controlled by the switch control signal SWCS so that N amplifying circuits are selected from the amplifying circuits 446_1' to 446_M' . However, embodiments of the inventive concept are not limited to the structure of the receiver 400 shown in FIG. 5A and the receiver 400' shown in FIG. 5B.

圖6是根據本發明示例性實施例的接收器500的方塊圖。接收器500可用於實作圖3所示接收器230a至230k及/或接收器260a至260l中的一者或多者。FIG. 6 is a block diagram of a receiver 500 according to an exemplary embodiment of the present invention. Receiver 500 may be used to implement one or more of receivers 230a-230k and/or receivers 260a-2601 shown in FIG.

參照圖6,接收器500包括支持非載波聚合、帶內載波聚合、及帶間載波聚合的多輸入多輸出低雜訊放大器540、天線510、天線介面電路520、輸入匹配電路、及多個輸出電路550_1至550_M。輸入匹配電路可包括第一輸入匹配電路530_1至第N輸入匹配電路530_N。多輸入多輸出低雜訊放大器540可對圖3所示低雜訊放大器224及254中的一者的輸出進行運算。多輸入多輸出低雜訊放大器540可包括多個(N個)輸入端及多個(M個)輸出端。接收器500可經由天線510接收從同一頻帶或不同頻帶內的多個載波或一個載波發射的無線電頻率信號(或下行鏈路信號)。天線510可將所接收到的無線電頻率信號提供到天線介面電路520。天線介面電路520可對所接收到的無線電頻率信號執行頻率濾波。作為實例,天線介面電路520對無線電頻率信號進行濾波以產生利用第一頻帶中的載波發射的第一接收器輸入信號RXIN1 。另外,天線介面電路520對無線電頻率信號進行濾波以產生利用第N頻帶中的載波發射的第N接收器輸入信號RXINN 。天線介面電路520可產生一個至N個接收器輸入信號RXIN1 至RXINN ,且可進行路由以將接收器輸入信號提供到輸入匹配電路530_1至530_N。輸入匹配電路530_1至530_N可通過執行阻抗匹配操作來提供被應用於多輸入多輸出低雜訊放大器540的一個到N個無線電頻率輸入信號RFIN1 至RFINN6, the receiver 500 includes a multiple-input multiple-output low noise amplifier 540 supporting non-carrier aggregation, intra-band carrier aggregation, and inter-band carrier aggregation, an antenna 510, an antenna interface circuit 520, an input matching circuit, and multiple output Circuits 550_1 to 550_M. The input matching circuits may include a first input matching circuit 530_1 to an Nth input matching circuit 530_N. MIMO LNA 540 may operate on the output of one of LNAs 224 and 254 shown in FIG. 3 . The MIMO low noise amplifier 540 may include multiple (N) input terminals and multiple (M) output terminals. The receiver 500 may receive radio frequency signals (or downlink signals) transmitted from multiple carriers or one carrier within the same frequency band or different frequency bands via the antenna 510 . Antenna 510 may provide received radio frequency signals to antenna interface circuit 520 . The antenna interface circuit 520 may perform frequency filtering on the received radio frequency signal. As an example, antenna interface circuit 520 filters a radio frequency signal to generate a first receiver input signal RX IN1 that is transmitted using a carrier wave in a first frequency band. In addition, the antenna interface circuit 520 filters the radio frequency signal to generate an Nth receiver input signal RX INN transmitted using a carrier in the Nth frequency band. The antenna interface circuit 520 can generate one to N receiver input signals RX IN1 to RX INN and can be routed to provide the receiver input signals to the input matching circuits 530_1 to 530_N. The input matching circuits 530_1 to 530_N may provide one to N radio frequency input signals RF IN1 to RF INN applied to the MIMO LNA 540 by performing impedance matching operations.

多輸入多輸出低雜訊放大器540可接收一個到N個無線電頻率輸入信號RFIN1 至RFINN 。舉例來說,多輸入多輸出低雜訊放大器540可將從非載波聚合或帶內載波聚合發射的一個無線電頻率輸入信號放大成從帶間載波聚合發射的N個無線電頻率輸入信號。多輸入多輸出低雜訊放大器540可將可接收到的一個到N個無線電頻率輸入信號RFIN1 至RFINN 放大以分別向輸出電路550_1至550_M輸出無線電頻率輸出信號RFOUT1 至RFOUTMThe MIMO low noise amplifier 540 can receive one to N radio frequency input signals RF IN1 to RF INN . For example, MIMO LNA 540 may amplify one RF input signal transmitted from non-CA or intra-band CA to N radio frequency input signals transmitted from inter-band CA. The MIMO low noise amplifier 540 amplifies the received one to N radio frequency input signals RF IN1 to RF INN to output radio frequency output signals RF OUT1 to RF OUTM to the output circuits 550_1 to 550_M respectively.

在實施例中,多輸入多輸出低雜訊放大器540從外部來源接收模式控制信號XMOD,且基於模式控制信號XMOD的值或電平來以單輸出模式、帶內載波聚合模式、及帶間載波聚合模式中的一種模式運行。在單輸出模式中,多輸入多輸出低雜訊放大器540以一個輸入及一個輸出的配置運行。另外,多輸入多輸出低雜訊放大器540可接收包括通過一個載波發射的至少一個信號的無線電頻率輸入信號,並將無線電頻率輸入信號放大以輸出一個無線電頻率輸出信號。在帶內載波聚合模式中,多輸入多輸出低雜訊放大器540以一個輸入及M個輸出的配置運行,其中M大於1。另外,多輸入多輸出低雜訊放大器540可接收包括通過同一頻帶中的多個載波發射的多個傳輸的無線電頻率輸入信號,且可分別向M個輸出電路550_1至550_M輸出一到M個無線電頻率輸出信號RFOUT1 至RFOUTM 。一個無線電頻率輸出信號可對應于一個載波。在帶間載波聚合模式中,多輸入多輸出低雜訊放大器540以N個輸入及M個輸出的配置運行,其中N及M大於1。另外,多輸入多輸出低雜訊放大器540可接收包括通過一到N個不同頻帶中的一到M個載波發射的多個傳輸的無線電頻率輸入信號,且可分別向M個輸出電路550_1至550_M輸出無線電頻率輸出信號RFOUT1 至RFOUTM 。輸出電路550_1至550_M中的至少一者可接收無線電頻率輸出信號並對無線電頻率輸出信號進行下變頻以將無線電頻率輸出信號輸出為基帶信號。In an embodiment, the MIMO LNA 540 receives the mode control signal XMOD from an external source, and based on the value or level of the mode control signal XMOD operates in the single output mode, the intra-band carrier aggregation mode, and the inter-band carrier Runs in one of the aggregation modes. In single output mode, MIMO LNA 540 operates in a one input and one output configuration. In addition, the MIMO low noise amplifier 540 may receive a radio frequency input signal including at least one signal transmitted through a carrier, and amplify the radio frequency input signal to output a radio frequency output signal. In the in-band carrier aggregation mode, MIMO LNA 540 operates in a configuration of one input and M outputs, where M is greater than one. Additionally, the MIMO LNA 540 can receive a radio frequency input signal including multiple transmissions transmitted over multiple carriers in the same frequency band, and can output one to M radio frequency signals to M output circuits 550_1 to 550_M, respectively. Frequency output signals RF OUT1 to RF OUTM . One radio frequency output signal may correspond to one carrier. In the inter-band carrier aggregation mode, the MIMO LNA 540 operates in a configuration of N inputs and M outputs, where N and M are greater than one. In addition, the MIMO LNA 540 can receive a radio frequency input signal including multiple transmissions transmitted over one to M carriers in one to N different frequency bands, and can provide M output circuits 550_1 to 550_M, respectively. Output radio frequency output signals RF OUT1 to RF OUTM . At least one of the output circuits 550_1 to 550_M may receive the radio frequency output signal and down-convert the radio frequency output signal to output the radio frequency output signal as a baseband signal.

圖7A是根據示例性實施例的圖6所示接收器500的方塊圖,圖7B是說明接收器以帶間載波聚合形式進行的操作的方塊圖,且圖7C是說明接收器以帶內載波聚合形式進行的操作的方塊圖。7A is a block diagram of the receiver 500 shown in FIG. 6 according to an exemplary embodiment, FIG. 7B is a block diagram illustrating the operation of the receiver in the form of inter-band carrier aggregation, and FIG. 7C is a block diagram illustrating the operation of the receiver in the form of in-band carrier aggregation. A block diagram of operations performed in aggregate form.

參照圖7A,接收器500包括多輸入多輸出低雜訊放大器540以及多個輸出電路550_1至550_M。多輸入多輸出低雜訊放大器540包括多個放大器區塊AMPB_1至AMPB_N。所述多個放大器區塊AMPB_1至AMPB_N分別接收無線電頻率輸入信號RFIN1 至RFINN ,並將無線電頻率輸入信號RFIN1 至RFINN 放大,以產生無線電頻率輸出信號RFOUT1 至RFOUTM ,且可輸出無線電頻率輸出信號RFOUT1 至RFOUTM 。所述多個放大器區塊AMPB_1至AMPB_N連接到輸出電路550_1至550_M。舉例來說,第一放大器區塊AMPB_1可連接到M個輸出電路550_1至550_M,且其他放大器區塊AMPB_2至AMPB_M可分別連接到M個輸出電路550_1至550M。第一輸出電路550_1可包括負載電路551_1及下變頻器電路552_1。第一輸出電路550_1的結構可應用於其他輸出電路550_M。舉例來說,第M輸出電路550_M可包括第M負載電路551_M及第M下變頻器電路552_M。輸出電路550_1至550_M可分別接收無線電頻率輸出信號RFOUT1 至RFOUTM 中的一者並對無線電頻率輸出信號RFOUT1 至RFOUTM 中的所述一者進行下變頻,以輸出基帶信號XBASOUT1 至XBASOUTMReferring to FIG. 7A , the receiver 500 includes a MIMO low noise amplifier 540 and a plurality of output circuits 550_1 to 550_M. The MIMO low noise amplifier 540 includes a plurality of amplifier blocks AMPB_1 to AMPB_N. The plurality of amplifier blocks AMPB_1 to AMPB_N respectively receive radio frequency input signals RF IN1 to RF INN and amplify the radio frequency input signals RF IN1 to RF INN to generate radio frequency output signals RF OUT1 to RF OUTM , and can output Radio frequency output signals RF OUT1 to RF OUTM . The plurality of amplifier blocks AMPB_1 to AMPB_N are connected to output circuits 550_1 to 550_M. For example, the first amplifier block AMPB_1 can be connected to the M output circuits 550_1 to 550_M, and the other amplifier blocks AMPB_2 to AMPB_M can be respectively connected to the M output circuits 550_1 to 550M. The first output circuit 550_1 may include a load circuit 551_1 and a down converter circuit 552_1. The structure of the first output circuit 550_1 can be applied to other output circuits 550_M. For example, the Mth output circuit 550_M may include an Mth load circuit 551_M and an Mth down-converter circuit 552_M. The output circuits 550_1 to 550_M may respectively receive one of the radio frequency output signals RF OUT1 to RF OUTM and down-convert the one of the radio frequency output signals RF OUT1 to RF OUTM to output baseband signals XBAS OUT1 to XBAS OUTM .

圖7B是說明接收器500以帶間載波聚合形式進行的操作的圖。參照圖7B,接收器500包括多輸入多輸出低雜訊放大器540以及第一輸出電路至第五輸出電路550_1、550_2、550_3、550_4及550_5,且多輸入多輸出低雜訊放大器540包括第一放大器區塊至第八放大器區塊AMPB_1、AMPB_2、AMPB_3、AMPB_4、AMPB_5、AMPB_6、AMPB_7及AMPB_8。第一輸出電路550_1包括第一負載電路551_1及第一下變頻器電路552_1,第二輸出電路550_2包括第二負載電路551_2及第二下變頻器電路552_2,第三輸出電路550_3包括第三負載電路551_3及第三下變頻器電路552_3,第四輸出電路550_4包括第四負載電路551_4及第四下變頻器電路552_4,且第五輸出電路550_5包括第五負載電路551_5及第五下變頻器電路552_5。在下文中,將闡述其中基站利用第一頻帶的第一載波ω1、第三頻帶的第二載波ω2、以及第五頻帶的第三載波ω3來發射無線電頻率信號的情形。FIG. 7B is a diagram illustrating the operation of receiver 500 in inter-band carrier aggregation. Referring to FIG. 7B, the receiver 500 includes a MIMO low noise amplifier 540 and first to fifth output circuits 550_1, 550_2, 550_3, 550_4, and 550_5, and the MIMO low noise amplifier 540 includes a first Amplifier blocks to eighth amplifier blocks AMPB_1 , AMPB_2 , AMPB_3 , AMPB_4 , AMPB_5 , AMPB_6 , AMPB_7 and AMPB_8 . The first output circuit 550_1 includes a first load circuit 551_1 and a first down converter circuit 552_1, the second output circuit 550_2 includes a second load circuit 551_2 and a second down converter circuit 552_2, and the third output circuit 550_3 includes a third load circuit 551_3 and a third down converter circuit 552_3, the fourth output circuit 550_4 includes a fourth load circuit 551_4 and a fourth down converter circuit 552_4, and the fifth output circuit 550_5 includes a fifth load circuit 551_5 and a fifth down converter circuit 552_5 . Hereinafter, a case will be explained in which the base station transmits radio frequency signals using the first carrier ω1 of the first frequency band, the second carrier ω2 of the third frequency band, and the third carrier ω3 of the fifth frequency band.

首先,啟用放大器區塊AMPB_1至AMPB_8中的一些放大器區塊(AMPB_1、AMPB_3、及AMPB_5),且被啟用的放大器區塊AMPB_1、AMPB_3及AMPB_5分別接收與第一載波ω1至第三載波ω3對應的第一無線電頻率輸入信號RFIN1 至第三無線電頻率輸入信號RFIN3 。第一放大器區塊AMPB_1將第一無線電頻率輸入信號RFIN1 放大並抵消在放大期間產生的非線性度因數,且可向被啟用的第一輸出電路550_1輸出第一無線電頻率輸出信號RFOUT1 。第三放大器區塊AMPB_3將第二無線電頻率輸入信號RFIN2 放大並抵消在放大期間產生的非線性度因數,且可向被啟用的第二輸出電路550_2輸出第二無線電頻率輸出信號RFOUT2 。另外,第五放大器區塊AMPB_5將第三無線電頻率輸入信號RFIN3 放大並抵消在放大期間產生的非線性度因數,且可向被啟用的第三輸出電路550_3輸出第三無線電頻率輸出信號RFOUT3 。被啟用的輸出電路550_1至550_3可輸出與載波ω1至ω3對應的基帶信號XBASOUT1 至XBASOUT3First, some amplifier blocks (AMPB_1, AMPB_3, and AMPB_5) among the amplifier blocks AMPB_1 to AMPB_8 are enabled, and the enabled amplifier blocks AMPB_1, AMPB_3, and AMPB_5 receive signals corresponding to the first carrier ω1 to the third carrier ω3, respectively. The first radio frequency input signal RF IN1 to the third radio frequency input signal RF IN3 . The first amplifier block AMPB_1 amplifies the first radio frequency input signal RF IN1 and cancels the non-linearity factor generated during the amplification, and may output the first radio frequency output signal RF OUT1 to the enabled first output circuit 550_1 . The third amplifier block AMPB_3 amplifies the second radio frequency input signal RF IN2 and cancels the non-linearity factor generated during the amplification, and may output the second radio frequency output signal RF OUT2 to the enabled second output circuit 550_2 . In addition, the fifth amplifier block AMPB_5 amplifies the third radio frequency input signal RF IN3 and cancels the non-linearity factor generated during the amplification, and may output the third radio frequency output signal RF OUT3 to the enabled third output circuit 550_3 . The enabled output circuits 550_1 to 550_3 can output baseband signals XBAS OUT1 to XBAS OUT3 corresponding to carriers ω1 to ω3.

圖7C是說明接收器500以帶內載波聚合形式進行的操作的圖。參照圖7C,接收器500包括多輸入多輸出低雜訊放大器540以及第一輸出電路550_1至第五輸出電路550_5,且多輸入多輸出低雜訊放大器540包括第一放大器區塊AMPB_1至第八放大器區塊AMPB_8。在下文中,將闡述其中基站利用同一頻帶的第一載波ω1、第二載波ω2、以及第三載波ω3來發射無線電頻率信號的情形。FIG. 7C is a diagram illustrating the operation of receiver 500 in in-band carrier aggregation. 7C, the receiver 500 includes a MIMO low noise amplifier 540 and a first output circuit 550_1 to a fifth output circuit 550_5, and the MIMO low noise amplifier 540 includes a first amplifier block AMPB_1 to an eighth Amplifier block AMPB_8. Hereinafter, a case where a base station transmits a radio frequency signal using the first carrier ω1, the second carrier ω2, and the third carrier ω3 of the same frequency band will be explained.

首先,從放大器區塊AMPB_1至AMPB_8中啟用第一放大器區塊AMPB_1,且被啟用的放大器區塊AMPB_1接收與第一載波ω1至第三載波ω3對應的第一無線電頻率輸入信號RFIN1 。第一放大器區塊AMPB_1將第一無線電頻率輸入信號RFIN1 放大並抵消在放大期間產生的非線性度因數,並向被啟用的第一輸出電路550_1輸出與第一載波ω1對應的第一無線電頻率輸出信號RFOUT1 。另外,第一放大器區塊AMPB_1將第一無線電頻率輸入信號RFIN1 放大並抵消在放大期間產生的非線性度因數,並向被啟用的第二輸出電路550_2輸出與第二載波ω2對應的第二無線電頻率輸出信號RFOUT2 。最後,第一放大器區塊AMPB_1將第一無線電頻率輸入信號RFIN1 放大並抵消在放大期間產生的非線性度因數,並向被啟用的第三輸出電路550_3輸出與第三載波ω3對應的第三無線電頻率輸出信號RFOUT3 。被啟用的輸出電路550_1至550_3可輸出與載波ω1至ω3對應的基帶信號XBASOUT1 至XBASOUT3 。在下文中,以下將闡述根據本發明概念實施例的放大器區塊的詳細結構的特徵。First, the first amplifier block AMPB_1 is enabled from the amplifier blocks AMPB_1 to AMPB_8 , and the enabled amplifier block AMPB_1 receives the first radio frequency input signal RF IN1 corresponding to the first carrier ω1 to the third carrier ω3 . The first amplifier block AMPB_1 amplifies the first radio frequency input signal RF IN1 and cancels the non-linearity factor generated during the amplification, and outputs the first radio frequency corresponding to the first carrier ω1 to the enabled first output circuit 550_1 output signal RF OUT1 . In addition, the first amplifier block AMPB_1 amplifies the first radio frequency input signal RF IN1 and cancels the non-linearity factor generated during the amplification, and outputs the second signal corresponding to the second carrier ω2 to the enabled second output circuit 550_2 . radio frequency output signal RF OUT2 . Finally, the first amplifier block AMPB_1 amplifies the first radio frequency input signal RF IN1 and cancels the non-linearity factor generated during the amplification, and outputs the third signal corresponding to the third carrier ω3 to the enabled third output circuit 550_3 . radio frequency output signal RF OUT3 . The enabled output circuits 550_1 to 550_3 can output baseband signals XBAS OUT1 to XBAS OUT3 corresponding to carriers ω1 to ω3. Hereinafter, features of a detailed structure of an amplifier block according to an embodiment of the inventive concept will be set forth below.

圖8A及圖8B是根據本發明示例性實施例的圖5A所示第一放大單元442的方塊圖。8A and 8B are block diagrams of the first amplifying unit 442 shown in FIG. 5A according to an exemplary embodiment of the present invention.

參照圖8A,第一放大單元442A包括第一輸入放大器442_1A及第二輸入放大器442_2A。第一輸入放大器442_1A與第二輸入放大器442_2A可並聯連接到彼此。也就是說,第一輸入放大器442_1A的輸入端與第二輸入放大器442_2A的輸入端通過Y節點連接,且第一輸入放大器442_1A的輸出端與第二輸入放大器442_2A的輸出端通過X節點連接。Referring to FIG. 8A , the first amplifying unit 442A includes a first input amplifier 442_1A and a second input amplifier 442_2A. The first input amplifier 442_1A and the second input amplifier 442_2A may be connected to each other in parallel. That is, the input terminal of the first input amplifier 442_1A is connected to the input terminal of the second input amplifier 442_2A through the Y node, and the output terminal of the first input amplifier 442_1A is connected to the output terminal of the second input amplifier 442_2A through the X node.

第一輸入放大器442_1A接收無線電頻率輸入信號RFIN ,並將無線電頻率輸入信號RFIN 放大以產生包括第一非線性度因數NLF1的第一無線電頻率放大信號RFIN_B1 。第二輸入放大器442_2A接收無線電頻率輸入信號RFIN ,並將無線電頻率輸入信號放大以產生包括第二非線性度因數NLF2的第二無線電頻率放大信號RFIN_B2 。非線性度因數可為在由預定的放大器將信號放大時產生的信號,且非線性度因數可包括會妨礙放大器的線性度因數中的至少一者。作為實例,當放大器包括電晶體時,由與電晶體的跨導相關的係數產生的信號可對應於非線性度因數。The first input amplifier 442_1A receives the radio frequency input signal RF IN and amplifies the radio frequency input signal RF IN to generate a first radio frequency amplified signal RF IN_B1 including a first nonlinearity factor NLF1 . The second input amplifier 442_2A receives the radio frequency input signal RF IN and amplifies the radio frequency input signal to generate a second radio frequency amplified signal RF IN_B2 including the second nonlinearity factor NLF2 . The non-linearity factor may be a signal generated when a signal is amplified by a predetermined amplifier, and the non-linearity factor may include at least one of the linearity factors that hinder the amplifier. As an example, when the amplifier includes a transistor, a signal generated by a coefficient related to the transconductance of the transistor may correspond to a non-linearity factor.

作為實例,彼此不同地設定第一輸入放大器442_1A的特徵與第二輸入放大器442_2A的特徵,且因而,由第一輸入放大器442_1A產生的第一非線性度因數NLF1的符號不同於由第二輸入放大器442_2A產生的第二非線性度因數NLF2的符號。舉例來說,當第一非線性度因數NLF1具有正號時,第二非線性度因數NLF2具有負號。第一無線電頻率放大信號RFIN_B1 與第二無線電頻率放大信號RFIN_B2 可在X節點處進行組合並輸出為第三無線電頻率放大信號RFIN_B3 。此處,由於第一非線性度因數NLF1的符號與第二非線性度因數NLF2的符號彼此不同,因此第一非線性度因數NLF1與第二非線性度因數NLF2可彼此抵消。第一放大單元442A中的非線性度因數的抵消可被稱為第一消除。因此,第三無線電頻率放大信號RFIN_B3 可包括第三非線性度因數NLF3,第三非線性度因數NLF3是第一非線性度因數NLF1與第二非線性度因數NLF2之間的抵消的結果。As an example, the characteristics of the first input amplifier 442_1A and the characteristics of the second input amplifier 442_2A are set differently from each other, and thus, the sign of the first nonlinearity factor NLF1 produced by the first input amplifier 442_1A is different from that produced by the second input amplifier 442_1A. Sign of the second nonlinearity factor NLF2 generated by 442_2A. For example, when the first nonlinearity factor NLF1 has a positive sign, the second nonlinearity factor NLF2 has a negative sign. The first amplified radio frequency signal RF IN_B1 and the second amplified radio frequency signal RF IN_B2 may be combined at node X and output as a third amplified radio frequency signal RF IN_B3 . Here, since the signs of the first nonlinearity factor NLF1 and the second nonlinearity factor NLF2 are different from each other, the first nonlinearity factor NLF1 and the second nonlinearity factor NLF2 can cancel each other out. The cancellation of the non-linearity factor in the first amplification unit 442A may be referred to as a first cancellation. Accordingly, the third radio frequency amplified signal RF IN_B3 may comprise a third non-linearity factor NLF3 which is the result of a cancellation between the first non-linearity factor NLF1 and the second non-linearity factor NLF2.

參照圖8B,當與圖8A所示第一放大單元442A的配置進行比較時,第一放大單元442B可進一步包括回饋電路442_3B。回饋電路442_3B可並聯連接到第一輸入放大器442_1B及第二輸入放大器442_2B。也就是說,回饋電路442_3B可連接在X節點與Y節點之間。由於第一放大單元442B包括回饋電路442_3B,因此第一放大單元442B的輸入阻抗ZIN 可恒定地維持為預定值。在實施例中,回饋電路442_3B被配置成使第一放大單元442B的輸入阻抗ZIN 對應於預定目標阻抗(例如,50歐姆)。另外,回饋電路442_3B可使得能夠充分執行對包括第一放大單元442B的低雜訊放大器的輸入匹配操作。此外,回饋電路442_3B可將第一放大單元442B的放大增益設定成恒定的以使第一放大單元442B的線性度可得到提高。Referring to FIG. 8B , when compared with the configuration of the first amplifying unit 442A shown in FIG. 8A , the first amplifying unit 442B may further include a feedback circuit 442_3B. The feedback circuit 442_3B can be connected in parallel to the first input amplifier 442_1B and the second input amplifier 442_2B. That is to say, the feedback circuit 442_3B can be connected between the X node and the Y node. Since the first amplifying unit 442B includes a feedback circuit 442_3B, the input impedance Z IN of the first amplifying unit 442B can be constantly maintained at a predetermined value. In an embodiment, the feedback circuit 442_3B is configured to make the input impedance Z IN of the first amplifying unit 442B correspond to a predetermined target impedance (for example, 50 ohms). In addition, the feedback circuit 442_3B may enable the input matching operation to the low noise amplifier including the first amplifying unit 442B to be sufficiently performed. In addition, the feedback circuit 442_3B can set the amplification gain of the first amplifying unit 442B to be constant so that the linearity of the first amplifying unit 442B can be improved.

圖9A及圖9B是示出圖5A所示第二放大單元446的實例的方塊圖。9A and 9B are block diagrams showing an example of the second amplifying unit 446 shown in FIG. 5A.

參照圖9A,如在圖5A中一樣,第二放大單元446A可包括多個放大電路。放大電路446_1A可為所述多個放大電路中的一者,且放大電路446_1A的配置可應用於所述多個放大電路。放大電路446_1A包括放大器446_11A。放大器446_11A從第一放大單元442A接收包括第三非線性度因數NLF3的第三無線電頻率放大信號RFIN_B3 。放大器446_11A可通過將第三無線電頻率放大信號RFIN_B3 放大來產生無線電頻率輸出信號RFOUT 。根據本發明概念實施例的放大器446_11A在將第三無線電頻率放大信號RFIN_B3 放大時會產生第四非線性度因數NLF4,第四非線性度因數NLF4具有與第三經放大非線性度因數BNLF3的符號不同的符號。此處,當放大器446_11A將第三無線電頻率放大信號放大時,放大器446_11A可通過將所產生的第四非線性度因數NLF4與經放大的第三非線性度因數BNLF3相加來抵消第四非線性度因數NLF4以及經放大的第三非線性度因數BNLF3。第二放大單元446A中的非線性度因數的抵消可被稱為第二消除。因此,無線電頻率輸出信號RFOUT 可包括最終非線性度因數FNLF,最終非線性度因數FNLF是第四非線性度因數NLF4與經放大的第三非線性度因數BNLF之間抵消的結果。最終非線性度因數FNLF可具有值0或接近0的值。由此,第二放大單元446A將非線性度因數移除,並提高第二放大單元446A的線性度。然而,本發明概念並非僅限於圖8A所示第一放大單元442A及圖9A所示第二放大單元446A。舉例來說,第一放大單元442A或第二放大單元446A除了第一消除及第二消除之外還可包括用於抵消非線性度因數的更多的電路配置。Referring to FIG. 9A , as in FIG. 5A , the second amplification unit 446A may include a plurality of amplification circuits. The amplification circuit 446_1A may be one of the plurality of amplification circuits, and the configuration of the amplification circuit 446_1A may be applied to the plurality of amplification circuits. The amplification circuit 446_1A includes an amplifier 446_11A. The amplifier 446_11A receives the third radio frequency amplified signal RF IN_B3 including the third non-linearity factor NLF3 from the first amplifying unit 442A. The amplifier 446_11A can generate the radio frequency output signal RF OUT by amplifying the third radio frequency amplified signal RF IN_B3 . The amplifier 446_11A according to the embodiment of the inventive concept generates a fourth nonlinearity factor NLF4 when amplifying the third radio frequency amplified signal RF IN_B3 , and the fourth nonlinearity factor NLF4 has the same value as the third amplified nonlinearity factor BNLF3. Sign different symbols. Here, when the amplifier 446_11A amplifies the third radio frequency amplified signal, the amplifier 446_11A can cancel the fourth nonlinearity by adding the generated fourth nonlinearity factor NLF4 to the amplified third nonlinearity factor BNLF3 degree factor NLF4 and an amplified third non-linearity factor BNLF3. The cancellation of the non-linearity factor in the second amplification unit 446A may be referred to as a second cancellation. Accordingly, the radio frequency output signal RF OUT may comprise a final non-linearity factor FNLF which is the result of cancellation between the fourth non-linearity factor NLF4 and the amplified third non-linearity factor BNLF. The final nonlinearity factor FNLF may have a value of 0 or a value close to 0. Thus, the second amplifying unit 446A removes the nonlinearity factor and improves the linearity of the second amplifying unit 446A. However, the concept of the present invention is not limited to the first amplifying unit 442A shown in FIG. 8A and the second amplifying unit 446A shown in FIG. 9A . For example, the first amplifying unit 442A or the second amplifying unit 446A may include more circuit configurations for canceling the non-linearity factor besides the first cancellation and the second cancellation.

參照圖9B,當與圖9A所示第二放大單元446A進行比較時,第二放大單元446B的放大電路446_1B可進一步包括電流緩衝器446_12B。由於存在電流緩衝器446_12B,因此可向放大電路446_1B提供大的輸入/輸出阻抗,且因此,放大電路446_1B的放大增益可得到提高。另外,電流緩衝器446_12B可降低流經放大電路446_1B的電流的變化程度,且因此,可執行穩定的放大操作。Referring to FIG. 9B , when compared with the second amplifying unit 446A shown in FIG. 9A , the amplifying circuit 446_1B of the second amplifying unit 446B may further include a current buffer 446_12B. Due to the existence of the current buffer 446_12B, a large input/output impedance can be provided to the amplification circuit 446_1B, and thus, the amplification gain of the amplification circuit 446_1B can be improved. In addition, the current buffer 446_12B can reduce the degree of variation of the current flowing through the amplifying circuit 446_1B, and thus, a stable amplifying operation can be performed.

圖10是說明根據本發明示例性實施例的將要被抵消的非線性度因數的曲線圖。FIG. 10 is a graph illustrating non-linearity factors to be canceled according to an exemplary embodiment of the present invention.

參照圖10,電晶體的相對於包括預定電晶體的放大器的跨導二階導數gm''成為在放大器的放大操作期間妨礙線性度的因數。具體來說,gm''的值根據電晶體的閘極-源極電壓(gate-source voltage,VGS)或偏壓而變化。更詳細來說,基於預定參考值VR ,gm''可具有處於區A中的正值且可具有處於區B中的負值。儘管電晶體的gm''的特性可根據電晶體的電路配置而變化,然而將基於圖10所示曲線圖來提供以下說明。Referring to FIG. 10 , the transconductance second derivative gm'' of the transistor with respect to the amplifier including the predetermined transistor becomes a factor hindering linearity during the amplification operation of the amplifier. Specifically, the value of gm'' varies according to the gate-source voltage (VGS) or bias voltage of the transistor. In more detail, gm'' may have a positive value in zone A and may have a negative value in zone B based on a predetermined reference value V R . Although the characteristics of gm'' of the transistor may vary depending on the circuit configuration of the transistor, the following description will be provided based on the graph shown in FIG. 10 .

圖11A至圖11C是根據本發明示例性實施例的低雜訊放大器500A、500B及500C的詳細電路圖。11A to 11C are detailed circuit diagrams of low noise amplifiers 500A, 500B and 500C according to exemplary embodiments of the present invention.

參照圖11A,低雜訊放大器500A包括第一放大單元510A、第二放大單元520A及開關530A。在圖11A至圖11C中的第二放大單元520A、520B及520C中示出多個放大電路中的僅一個放大電路。第一放大單元510A包括第一輸入放大器512A及第二輸入放大器514A。第一輸入放大器512A包括作為NMOS電晶體的MA1 電晶體,且第二輸入放大器514A包括作為PMOS電晶體的MA2 電晶體。MA1 電晶體的源極與MA2 電晶體的漏極可經由X節點連接到彼此,且MA1 電晶體的閘極與MA2 電晶體的閘極可經由Y節點連接到彼此。MA2 電晶體的源極可接收電源電壓VDD ,且MA1 電晶體的漏極可接收接地電壓。第二放大單元520A包括放大器522A,且放大器522A包括作為NMOS電晶體的MB1 電晶體。開關530A包括根據開關控制信號SWCS而接通或斷開的開關裝置SW,且在下文中,將在開關裝置SW處於導通狀態的假設下進行闡述。Referring to FIG. 11A , the low noise amplifier 500A includes a first amplifying unit 510A, a second amplifying unit 520A and a switch 530A. Only one amplification circuit among the plurality of amplification circuits is shown in the second amplification units 520A, 520B, and 520C in FIGS. 11A to 11C . The first amplifying unit 510A includes a first input amplifier 512A and a second input amplifier 514A. The first input amplifier 512A includes a M A1 transistor that is an NMOS transistor, and the second input amplifier 514A includes a M A2 transistor that is a PMOS transistor. The source of the MA1 transistor and the drain of the MA2 transistor may be connected to each other via an X node, and the gate of the MA1 transistor and the gate of the MA2 transistor may be connected to each other via a Y node. The source of the M A2 transistor can receive the power voltage V DD , and the drain of the M A1 transistor can receive the ground voltage. The second amplifying unit 520A includes an amplifier 522A, and the amplifier 522A includes an M B1 transistor that is an NMOS transistor. The switch 530A includes a switching device SW that is turned on or off according to a switch control signal SWCS, and hereinafter, an explanation will be made on the assumption that the switching device SW is in a conductive state.

首先,將無線電頻率輸入信號RFIN 施加到MA1 電晶體的閘極以及MA2 電晶體的閘極。MA1 電晶體將無線電頻率輸入信號RFIN 放大,以產生第一無線電頻率放大信號RFIN_B1 。在下文中,非線性度原因信號(non-linearity cause signal)是與上述非線性度因數對應的信號,且基波信號(fundamental signal)可為包括圖3所示資料處理器280執行資料處理操作時所需要的資訊的信號。First, a radio frequency input signal RF IN is applied to the gates of the MA1 transistor and the gates of the MA2 transistor. The M A1 transistor amplifies the radio frequency input signal RF IN to generate a first radio frequency amplified signal RF IN_B1 . Hereinafter, the non-linearity cause signal (non-linearity cause signal) is a signal corresponding to the above-mentioned non-linearity factor, and the fundamental signal (fundamental signal) may include when the data processor 280 shown in FIG. 3 performs data processing operations signal that information is required.

第一無線電頻率放大信號RFIN_B1 可包括與非線性度因數對應的第一非線性度原因信號NCS1、以及第一基波信號FSIN_B1 。MA2 電晶體可將無線電頻率輸入信號放大,以產生第二無線電頻率放大信號RFIN_B2 。第二無線電頻率放大信號RFIN_B2 可包括與非線性度因數對應的第二非線性度原因信號NCS2以及第二基波信號FSIN_B2 。非線性度原因信號是由電晶體的gm''分量產生,且可為降低第一放大單元510A或第二放大單元520A的線性度的原因。The first radio frequency amplified signal RF IN_B1 may include a first nonlinearity cause signal NCS1 corresponding to a nonlinearity factor, and a first fundamental wave signal FS IN_B1 . The M A2 transistor can amplify the radio frequency input signal to generate a second radio frequency amplified signal RF IN_B2 . The second radio frequency amplified signal RF IN_B2 may include a second nonlinearity cause signal NCS2 corresponding to a nonlinearity factor and a second fundamental wave signal FS IN_B2 . The non-linearity cause signal is generated by the gm'' component of the transistor, and may be the reason for reducing the linearity of the first amplifying unit 510A or the second amplifying unit 520A.

在根據實施例的第一放大單元510A中,為抵消第一非線性度原因信號NCS1及第二非線性度原因信號NCS2,第一輸入放大器512A可產生具有正值的第一非線性度原因信號NCS1,且第二輸入放大器514A可產生具有負值的第二非線性度原因信號NCS2。在實施例中,為產生具有不同符號的非線性度原因信號,MA1 電晶體的偏壓與MA2 電晶體的偏壓不同。在實施例中,為對具有不同符號的非線性度原因信號的量值進行調整,MA1 電晶體的寬度(或寬度函數)與MA2 電晶體的寬度不同。當電晶體的寬度增大時,包括電晶體的放大器可能需要比達到目標放大增益所需的偏壓更小的偏壓。In the first amplifying unit 510A according to the embodiment, in order to cancel the first non-linearity cause signal NCS1 and the second non-linearity cause signal NCS2, the first input amplifier 512A may generate the first non-linearity cause signal having a positive value NCS1, and the second input amplifier 514A can generate a second nonlinearity cause signal NCS2 with a negative value. In an embodiment, the M A1 transistor is biased differently from the M A2 transistor in order to generate the non-linearity cause signal with a different sign. In an embodiment, the width (or function of width) of the M A1 transistor is different from the width of the M A2 transistor in order to adjust the magnitude of the non-linearity cause signal with a different sign. As the width of the transistor increases, an amplifier including the transistor may require a smaller bias voltage than is required to achieve a target amplification gain.

參照圖10,當第一電晶體TRWD1 具有第一寬度WD1且第二電晶體TRWD2 具有比第一寬度WD1小的第二寬度WD2時,第一電晶體TRWD1 需要第一偏壓VGS1 且第二電晶體TRWD2 需要比第一偏壓VGS1 大的第二偏壓VGS2 以達到相同的目標增益。當向第一電晶體TRWD1 施加第一偏壓VGS1 時,第一電晶體TRWD1 的gm''可具有正值,且當向第二電晶體TRWD2 施加第二偏壓VGS2 時,第二電晶體TRWD2 的gm''可具有負值。Referring to FIG. 10, when the first transistor TR WD1 has a first width WD1 and the second transistor TR WD2 has a second width WD2 smaller than the first width WD1, the first transistor TR WD1 needs a first bias voltage V GS1 And the second transistor TR WD2 requires the second bias voltage V GS2 greater than the first bias voltage V GS1 to achieve the same target gain. When the first bias voltage V GS1 is applied to the first transistor TR WD1 , the gm'' of the first transistor TR WD1 may have a positive value, and when the second bias voltage V GS2 is applied to the second transistor TR WD2 , gm'' of the second transistor TR WD2 may have a negative value.

基於以上特性,MA1 電晶體的寬度以及MA2 電晶體的寬度可被設定成使得MA1 電晶體的gm''具有負值且MA2 電晶體的gm''具有正值,且放大器可在此基礎上進行設計。綜上所述,對MA1 電晶體的運行區與MA2 電晶體的運行區進行不同地設定,且因此,可在放大的同時抵消非線性度因數。Based on the above characteristics, the width of the M A1 transistor and the width of the M A2 transistor can be set such that the gm'' of the M A1 transistor has a negative value and the gm'' of the M A2 transistor has a positive value, and the amplifier can be Design on this basis. To sum up, the operating region of the M A1 transistor is set differently from that of the M A2 transistor, and thus, the non-linearity factor can be canceled out while amplifying.

作為實例,可將MA1 電晶體的寬度以及MA2 電晶體的寬度設定成使得由第一輸入放大器512A產生的第一非線性度原因信號NCS1的絕對值與由第二輸入放大器514A產生的第二非線性度原因信號NCS2的絕對值彼此相等。作為實例,MA2 電晶體的寬度可大於MA1 電晶體的寬度。此處,在組合第一無線電頻率放大信號RFIN_B1 以及第二無線電頻率放大信號RFIN_B2 之後從X節點輸出的第三無線電頻率放大信號RFIN_B3 ,以使得第三無線電頻率放大信號RFIN_B3 不包括非線性度原因信號NCS3,而是只包括第三基波信號FSIN_B3As an example, the width of the M A1 transistor and the width of the M A2 transistor can be set such that the absolute value of the first non-linearity cause signal NCS1 generated by the first input amplifier 512A is the same as the absolute value of the first non-linearity cause signal NCS1 generated by the second input amplifier 514A. The absolute values of the two non-linearity cause signals NCS2 are equal to each other. As an example, the width of the MA2 transistor may be greater than the width of the MA1 transistor. Here, the third radio frequency amplified signal RF IN_B3 output from the X node after combining the first radio frequency amplified signal RF IN_B1 and the second radio frequency amplified signal RF IN_B2 such that the third radio frequency amplified signal RF IN_B3 does not include The linearity cause signal NCS3 instead only includes the third fundamental signal FS IN — B3 .

第三無線電頻率放大信號RFIN_B3 可被施加到MB1 電晶體的閘極。MB1 電晶體可將第三無線電頻率放大信號RFIN_B3 放大,以產生無線電頻率輸出信號RFOUT 。無線電頻率輸出信號RFOUT 可包括基波輸出信號FSOUT 及第四非線性度原因信號NCS4。由於在第一放大單元510A中對非線性度原因信號進行抵消,因此無線電頻率輸出信號RFOUT 不包括除第四非線性度原因信號NCS4之外的非線性度原因信號,且因此可確保線性度。MB1 電晶體的漏極可接收接地電壓且MB1 電晶體的源極可提供無線電頻率輸出信號RFOUTThe third radio frequency amplified signal RF IN_B3 may be applied to the gate of the M B1 transistor. The M B1 transistor can amplify the third radio frequency amplification signal RF IN_B3 to generate the radio frequency output signal RF OUT . The radio frequency output signal RF OUT may include a fundamental output signal FS OUT and a fourth nonlinearity cause signal NCS4 . Since the non-linearity cause signal is canceled in the first amplifying unit 510A, the radio frequency output signal RF OUT does not include the non-linearity cause signal except the fourth non-linearity cause signal NCS4, and thus the linearity can be ensured. . The drain of M B1 transistor can receive ground voltage and the source of M B1 transistor can provide radio frequency output signal RF OUT .

參照圖11B,低雜訊放大器500B包括MA1 '電晶體、MA2 ' 電晶體及MB1 '電晶體,MA1 '電晶體、MA2 '電晶體及MB1 '電晶體具有與圖11A所示低雜訊放大器500A中所包括的MA1 電晶體、MA2 電晶體及MB1 電晶體不同的寬度。由第一輸入放大器512B產生的第一非線性度原因信號NCS1'具有正號且由第二輸入放大器514B產生的第二非線性度原因信號NCS2'具有負號,且可將MA1 '電晶體的寬度以及MA2 '電晶體的寬度設定成使得第一非線性度原因信號NCS1'的絕對值大於第二非線性度原因信號NCS2'的絕對值。作為實例,MA2 '電晶體的寬度可大於MA1 '電晶體的寬度。結果,由第一放大器510B產生的第三無線電頻率放大信號RFIN_B3 '可包括具有預定正值的第三非線性度原因信號NCS3'。Referring to FIG. 11B , the low noise amplifier 500B includes M A1 'transistor, M A2 'transistor and M B1 'transistor, M A1 'transistor, M A2 'transistor and M B1 'transistor have the same It shows the different widths of the M A1 transistor, the M A2 transistor and the M B1 transistor included in the low noise amplifier 500A. The first nonlinearity cause signal NCS1' generated by the first input amplifier 512B has a positive sign and the second nonlinearity cause signal NCS2' generated by the second input amplifier 514B has a negative sign, and the M A1 ' transistor The width of and the width of the M A2 'transistor are set such that the absolute value of the first non-linearity cause signal NCS1' is greater than the absolute value of the second non-linearity cause signal NCS2'. As an example, the width of the M A2 ' transistor may be greater than the width of the M A1 ' transistor. As a result, the third radio frequency amplified signal RF IN_B3 ' generated by the first amplifier 510B may include the third non-linearity cause signal NCS3' having a predetermined positive value.

放大器522B可將第三無線電頻率放大信號RFIN_B3 '放大,以輸出無線電頻率輸出信號RFOUT '。在實施例中,MB1 '電晶體的寬度被設定成使由放大器522B產生的第四非線性度原因信號NCS4'具有與第三經放大非線性度原因信號BNCS3'的符號不同的符號,且具有與第三經放大非線性度原因信號BNCS3'的絕對值相同的絕對值。作為實例,如以上參照圖10所述,MB1 '電晶體的寬度可被設定成使MB1 '電晶體的gm''具有正值。因此,第四非線性度原因信號NCS4'與第三經放大非線性度原因信號BNCS3'可彼此抵消,且無線電頻率輸出信號RFOUT '可僅包括基波輸出信號FSOUT 。因此,低雜訊放大器500B的線性度可得到提高。The amplifier 522B can amplify the third radio frequency amplified signal RF IN_B3 ′ to output a radio frequency output signal RF OUT ′. In an embodiment, the width of the M B1 ' transistor is set such that the fourth non-linearity cause signal NCS4' produced by the amplifier 522B has a different sign than the third amplified non-linearity cause signal BNCS3', and has the same absolute value as that of the third amplified non-linearity cause signal BNCS3'. As an example, as described above with reference to FIG. 10 , the width of the M B1 ' transistor may be set such that gm'' of the M B1 ' transistor has a positive value. Therefore, the fourth nonlinearity cause signal NCS4 ′ and the third amplified nonlinearity cause signal BNCS3 ′ can cancel each other out, and the radio frequency output signal RF OUT ′ can only include the fundamental output signal FS OUT . Therefore, the linearity of the low noise amplifier 500B can be improved.

參照圖11C,低雜訊放大器500C包括MA1 ''電晶體及MA2' 電晶體,MA1 ''電晶體及MA2 ''電晶體具有與圖11B所示低雜訊放大器500B中所包括的MA1 '電晶體及MA2 '電晶體不同的寬度。作為實例,可將MA1 ''電晶體的寬度及MA2 ''電晶體的寬度設定成使得由第一輸入放大器512C產生的第一非線性度原因信號NCS1''具有正號且由第二輸入放大器514C產生的第二非線性度原因信號NCS2''具有負號,且第一非線性度原因信號NCS1''的絕對值小於第二非線性度原因信號NCS2''的絕對值。作為實例, 'MA1 ''電晶體的寬度可小於MA2 ''電晶體的寬度。結果,由第一放大器510C產生的第三無線電頻率放大信號RFIN_B3 ''可包括具有預定負值的第三非線性度原因信號NCS3''。Referring to FIG. 11C, the low noise amplifier 500C includes a M A1 '' transistor and a M A2 ' transistor, and the M A1 '' transistor and the M A2 '' transistor have the same characteristics as those included in the low noise amplifier 500B shown in FIG. 11B The M A1 ' transistor and the M A2 ' transistor are of different widths. As an example, the width of the M A1 ″ transistor and the width of the M A2 ″ transistor can be set such that the first non-linearity cause signal NCS1 ″ generated by the first input amplifier 512C has a positive sign and is generated by the second The second nonlinearity cause signal NCS2 ″ generated by the input amplifier 514C has a negative sign, and the absolute value of the first nonlinearity cause signal NCS1 ″ is smaller than the absolute value of the second nonlinearity cause signal NCS2 ″. As an example, the width of the 'M A1 '' transistor may be smaller than the width of the M A2 '' transistor. As a result, the third radio frequency amplified signal RF IN_B3 ″ generated by the first amplifier 510C may include the third non-linearity cause signal NCS3 ″ having a predetermined negative value.

放大器522C可將第三無線電頻率放大信號RFIN_B3 ''放大,以輸出無線電頻率輸出信號RFOUT ''' 。MB1 ''電晶體的寬度可被設定成使由放大器522C產生的第四非線性度原因信號NCS4''具有與第三經放大非線性度原因信號BNCS3''的符號不同的符號,且具有與第三經放大非線性度原因信號BNCS3''的絕對值相等的絕對值。作為實例,如以上參照圖10所說明,MB1 ''電晶體的寬度可被設定成使MB1 ''電晶體的gm''具有負值。因此,第四非線性度原因信號NCS4''與第三經放大非線性度原因信號BNCS3''可彼此抵消,且無線電頻率輸出信號RFOUT ''可僅包括基波輸出信號FSOUT ''。因此,低雜訊放大器500C的線性度可得到提高。然而,本發明概念並非僅限於參照圖11A至圖11C所說明的低雜訊放大器的實施例。另外,可提供各種實施例,在所述實施例中,第一放大器中在非線性度原因信號之間進行的第一消除以及第二放大器中在非線性度原因信號之間進行的第二消除。The amplifier 522C can amplify the third radio frequency amplified signal RF IN_B3 ″ to output a radio frequency output signal RF OUT . The width of the M B1 '' transistor can be set such that the fourth non-linearity cause signal NCS4'' produced by the amplifier 522C has a sign different from that of the third amplified non-linearity cause signal BNCS3'' and has An absolute value equal to the absolute value of the third amplified non-linearity cause signal BNCS3''. As an example, as explained above with reference to FIG. 10, the width of the M B1 '' transistor may be set such that gm'' of the M B1 '' transistor has a negative value. Therefore, the fourth nonlinearity cause signal NCS4 ″ and the third amplified nonlinearity cause signal BNCS3 ″ may cancel each other out, and the radio frequency output signal RF OUT ″ may only include the fundamental output signal FS OUT ″. Therefore, the linearity of the low noise amplifier 500C can be improved. However, the inventive concept is not limited to the LNA embodiment described with reference to FIGS. 11A-11C . Additionally, various embodiments may be provided in which a first cancellation between non-linearity-causing signals in a first amplifier and a second cancellation between non-linearity-causing signals in a second amplifier .

圖12A至圖12C是根據本發明示例性實施例的低雜訊放大器600A、600B及600C的詳細電路圖。12A to 12C are detailed circuit diagrams of low noise amplifiers 600A, 600B and 600C according to exemplary embodiments of the present invention.

參照圖12A,低雜訊放大器600A包括第一放大單元610A及第二放大單元620A。圖12A至圖12C示出第二放大單元620A中所包括的多個放大電路中的僅一個放大電路。第一放大單元610A包括第一輸入放大器612A、第二輸入放大器614A及回饋電路616A。回饋電路616A可包括電阻器裝置RF (例如,電阻器)以及電容器裝置CF 。電阻器裝置RF 與電容器裝置CF 可串聯連接到彼此。回饋電路616A連接到Y節點及X節點以並聯連接到第一輸入放大器612A及第二輸入放大器614A。以上已參照圖11A至圖11C闡述了第一輸入放大器612A及第二輸入放大器614A的配置,且因此,此處不再對其予以詳述。Referring to FIG. 12A , the low noise amplifier 600A includes a first amplifying unit 610A and a second amplifying unit 620A. 12A to 12C illustrate only one amplification circuit among a plurality of amplification circuits included in the second amplification unit 620A. The first amplifying unit 610A includes a first input amplifier 612A, a second input amplifier 614A and a feedback circuit 616A. The feedback circuit 616A may include a resistor device R F (eg, a resistor) and a capacitor device C F . The resistor means R F and the capacitor means CF may be connected to each other in series. The feedback circuit 616A is connected to the Y node and the X node to be connected in parallel to the first input amplifier 612A and the second input amplifier 614A. The configurations of the first input amplifier 612A and the second input amplifier 614A have been explained above with reference to FIGS. 11A to 11C , and therefore, will not be described in detail here.

第二放大單元620A包括放大器622A及電流緩衝器624A。電流緩衝器624A可包括作為NMOS電晶體的MB2 電晶體。MB2 電晶體可與放大器622A的MB1 電晶體形成級聯結構,且可被稱為級聯電晶體。作為實例,可根據開關控制信號SWCS2來控制MB2 電晶體的接通/斷開。可通過控制MB2 電晶體的接通/斷開來啟用或禁用第二放大單元620A。The second amplifying unit 620A includes an amplifier 622A and a current buffer 624A. Current buffer 624A may include M B2 transistor which is an NMOS transistor. The M B2 transistor may form a cascode structure with the M B1 transistor of amplifier 622A, and may be referred to as a cascode transistor. As an example, the M B2 transistor can be controlled on/off according to the switch control signal SWCS2. The second amplifying unit 620A can be enabled or disabled by controlling on/off of the M B2 transistor.

參照圖12B,當與圖12A所示低雜訊放大器600A的配置進行比較時,第一放大單元610B及第二放大單元620B可進一步包括第一互連電路及第二互連電路617B、618B及626B。第一互連電路617B可包括具有足夠大的電容的CC1 耦合電容器,從而具有比MA1 電晶體的跨導(或1/gm)小的阻抗。第二互連電路618B可包括具有足夠大的電容的CC2 耦合電容器,從而具有比MA2 電晶體的跨導(或1/gm)小的阻抗。另外,第一互連電路626B可包括具有足夠大的電容的CC3 耦合電容器,從而具有比MB1 電晶體的跨導(或1/gm)小的阻抗。12B, when compared with the configuration of the low-noise amplifier 600A shown in FIG. 626B. The first interconnection circuit 617B may include a CC1 coupling capacitor having a capacitance large enough to have an impedance smaller than the transconductance (or 1/gm) of the MA1 transistor. The second interconnection circuit 618B may include a C C2 coupling capacitor having a capacitance large enough to have an impedance smaller than the transconductance (or 1/gm) of the MA2 transistor. Additionally, the first interconnection circuit 626B may include a C C3 coupling capacitor having a capacitance large enough to have an impedance smaller than the transconductance (or 1/gm) of the M B1 transistor.

如以上參照圖8B所闡述,第一放大單元610B的輸入阻抗ZIN1 可因回饋電路616A而具有恒定的目標阻抗。因此,第一放大單元610B的放大增益可具有恒定值,以提高低雜訊放大器600B的線性度。另外,對於第二放大單元620B的輸入阻抗ZIN2 來說,如以上參照圖9B所闡述,第二放大單元620B可因電流緩衝器624B而具有大的輸入/輸出阻抗,且可具有比第一放大單元610B的輸出阻抗ZOUT 大得多的阻抗值。因此,第二放大單元620B可包括多個放大電路(圖中未示出),且即使在啟用或禁用一個放大電路(例如,包括放大器622B及電流緩衝器624B的放大電路)時也可包括多個放大電路。第二放大單元620B的輸入阻抗ZIN2 非常大,且因此,在其他放大電路中流動的電流量會變化。因此,第二放大單元620B中所包括的放大電路中的每一者可具有為恒定值的放大增益,從而提高低雜訊放大器600B的線性度。As explained above with reference to FIG. 8B , the input impedance Z IN1 of the first amplifying unit 610B can have a constant target impedance due to the feedback circuit 616A. Therefore, the amplification gain of the first amplifying unit 610B can have a constant value to improve the linearity of the low noise amplifier 600B. In addition, regarding the input impedance Z IN2 of the second amplifying unit 620B, as explained above with reference to FIG. The output impedance Z OUT of the amplifying unit 610B has a much larger impedance value. Therefore, the second amplifying unit 620B may include a plurality of amplifying circuits (not shown in the figure), and may include multiple amplifying circuits even when one amplifying circuit (for example, an amplifying circuit including the amplifier 622B and the current buffer 624B) is enabled or disabled. an amplifier circuit. The input impedance Z IN2 of the second amplifying unit 620B is very large, and thus, the amount of current flowing in other amplifying circuits varies. Therefore, each of the amplifying circuits included in the second amplifying unit 620B may have an amplifying gain of a constant value, thereby improving the linearity of the low-noise amplifier 600B.

參照圖12C,與圖12A所示低雜訊放大器600A相比,第二放大單元620C可進一步包括電流引導電路626C。電流引導電路626C包括MB3 電晶體,且MB3 電晶體的接通/斷開可根據開關控制信號SWCS3來控制。更詳細來說,如果需要減小無線電頻率輸出信號RFOUT 的量值,則可接通MB3 電晶體。也就是說,當接通MB3 電晶體時,在放大器622C中流動的電流中的一些電流朝電流引導電路626C流動,且因此,可輸出具有量值的無線電頻率輸出信號RFOUT ,其中所述量值小於在斷開MB3 電晶體時輸出的量值。第二放大單元620C的放大增益可利用電流引導電路626C來調整。Referring to FIG. 12C , compared with the low noise amplifier 600A shown in FIG. 12A , the second amplifying unit 620C may further include a current steering circuit 626C. The current steering circuit 626C includes an M B3 transistor, and the on/off of the M B3 transistor can be controlled according to the switch control signal SWCS3. In more detail, the M B3 transistor can be turned on if it is desired to reduce the magnitude of the radio frequency output signal RF OUT . That is, when the M B3 transistor is turned on, some of the current flowing in the amplifier 622C flows toward the current steering circuit 626C, and thus, may output a radio frequency output signal RF OUT having a magnitude wherein The magnitude is less than the magnitude of the output when the M B3 transistor is turned off. The amplification gain of the second amplification unit 620C can be adjusted by using the current steering circuit 626C.

圖13是根據本發明示例性實施例的低雜訊放大器700的詳細電路圖,且圖14A及圖14B是說明低雜訊放大器700的放大操作的電路圖。FIG. 13 is a detailed circuit diagram of the low noise amplifier 700 according to an exemplary embodiment of the present invention, and FIGS. 14A and 14B are circuit diagrams illustrating an amplification operation of the low noise amplifier 700. Referring to FIG.

參照圖13,低雜訊放大器700包括第一放大單元710及第二放大單元720。第一放大單元710包括第一輸入放大器712、第二輸入放大器714、回饋電路716、以及互連電路717及718。第一放大單元710的結構與參照圖12A的以上說明相同,且不再對其予以詳述。Referring to FIG. 13 , the low noise amplifier 700 includes a first amplifying unit 710 and a second amplifying unit 720 . The first amplifying unit 710 includes a first input amplifier 712 , a second input amplifier 714 , a feedback circuit 716 , and interconnection circuits 717 and 718 . The structure of the first amplifying unit 710 is the same as that described above with reference to FIG. 12A , and will not be described in detail again.

第二放大單元720包括多個放大電路720_1、720_2、...、720_M。放大電路720_1至720_M可分別包括放大器722_1、722_2、...、722_M、電流緩衝器724_1、724_2、...、724_M、以及互連電路726_1、726_2、...、726_M。第一放大器722_1可包括電晶體MB1_1 ,第二放大器722_2可包括電晶體MB1_2 ,且第M放大器722_M可包括電晶體MB1_M 。第一電流緩衝器724_1可包括電晶體MB2_1 ,第二電流緩衝器724_2可包括電晶體MB2_2 ,且第M電流緩衝器724_M可包括電晶體MB2_M 。第一互連電路726_1可包括電容器CC3_1 ,第二互連電路726_2可包括電容器CC3_2 ,且第M互連電路726_M可包括電容器CC3_M 。儘管圖13未示出,然而放大電路720_1至720_M中的每一者可進一步包括圖12C所示電流引導電路626C。第二放大單元720的放大電路720_1至720_M的啟用及禁用可根據開關控制信號SWCS2_1、SWCS2_2、...、SWCS2_M來進行控制,且被啟用的放大電路720_1至720_M可從第一放大單元710接收經放大的無線電頻率輸入信號並將經放大的無線電頻率輸入信號放大以輸出無線電頻率輸出信號RFOUT1 至RFOUTMThe second amplifying unit 720 includes a plurality of amplifying circuits 720_1, 720_2, . . . , 720_M. The amplification circuits 720_1 to 720_M may respectively include amplifiers 722_1 , 722_2 , . . . , 722_M, current buffers 724_1 , 724_2 , . The first amplifier 722_1 may include a transistor M B1_1 , the second amplifier 722_2 may include a transistor M B1_2 , and the Mth amplifier 722_M may include a transistor M B1_M . The first current buffer 724_1 may include a transistor M B2_1 , the second current buffer 724_2 may include a transistor M B2_2 , and the Mth current buffer 724_M may include a transistor M B2_M . The first interconnection circuit 726_1 may include a capacitor C C3_1 , the second interconnection circuit 726_2 may include a capacitor C C3_2 , and the Mth interconnection circuit 726_M may include a capacitor C C3_M . Although not shown in FIG. 13 , each of the amplifying circuits 720_1 to 720_M may further include a current steering circuit 626C shown in FIG. 12C . The enabling and disabling of the amplifying circuits 720_1 to 720_M of the second amplifying unit 720 can be controlled according to switch control signals SWCS2_1, SWCS2_2, . The amplified radio frequency input signal and the amplified radio frequency input signal are amplified to output radio frequency output signals RF OUT1 to RF OUTM .

圖14A是說明低雜訊放大器700以非載波聚合或帶間載波聚合形式進行的放大操作的圖。參照圖14A,第一放大單元710通過預定頻帶中的第一載波ω1接收無線電頻率輸入信號RFIN 。如上所述,第一放大單元710可將無線電頻率輸入信號RFIN 放大,並抵消在放大期間產生的非線性因數。在實施例中,通過開關控制信號SWCS2_1啟用第二放大單元720的放大電路720_1至720_M中的僅第一放大電路720_1,且通過開關控制信號SWCS2_2至SWCS2_M禁用其他放大電路712_2至720_M。第一放大電路720_1從第一放大單元710接收經放大的無線電頻率輸入信號,將經放大的無線電頻率輸入信號放大,並抵消在放大期間產生的非線性因數以及先前存在的非線性因數。第一放大電路720_1可輸出與第一載波ω1對應的第一無線電頻率輸出信號RFOUT1FIG. 14A is a diagram illustrating the amplification operation of the LNA 700 in a non-CA or inter-band CA form. Referring to FIG. 14A , the first amplifying unit 710 receives a radio frequency input signal RF IN through a first carrier ω1 in a predetermined frequency band. As described above, the first amplifying unit 710 can amplify the radio frequency input signal RF IN and cancel the nonlinear factor generated during the amplification. In an embodiment, only the first amplifying circuit 720_1 of the amplifying circuits 720_1 to 720_M of the second amplifying unit 720 is enabled by the switch control signal SWCS2_1 , and the other amplifying circuits 712_2 to 720_M are disabled by the switch control signals SWCS2_2 to SWCS2_M. The first amplifying circuit 720_1 receives the amplified radio frequency input signal from the first amplifying unit 710, amplifies the amplified radio frequency input signal, and cancels a nonlinear factor generated during amplification and a pre-existing nonlinear factor. The first amplifying circuit 720_1 can output the first radio frequency output signal RF OUT1 corresponding to the first carrier ω1.

圖14B是說明低雜訊放大器700以帶內載波聚合形式進行的放大操作的圖。參照圖14B,第一放大單元710接收通過預定頻帶中的第一載波ω1及第二載波ω2發射的無線電頻率輸入信號RFIN 。如上所述,第一放大單元710可將無線電頻率輸入信號RFIN 放大,並抵消在放大期間產生的非線性因數。在實施例中,通過開關控制信號SWCS2_1及SWCS2_2啟用第二放大單元720的放大電路720_1至720_M中的僅第一放大電路720_1及第二放大電路720_2,且通過開關控制信號SWCS2_M禁用其他放大電路720_M。第一放大電路720_1及第二放大電路720_2從第一放大單元710接收經放大的無線電頻率輸入信號,將經放大的無線電頻率輸入信號放大,並抵消在放大期間產生的非線性因數以及先前存在的非線性因數。第一放大電路720_1輸出與第一載波ω1對應的第一無線電頻率輸出信號RFOUT1 ,且第二放大電路720_2輸出與第二載波ω2對應的第二無線電頻率輸出信號RFOUT2FIG. 14B is a diagram illustrating the amplification operation of the low noise amplifier 700 in the form of in-band carrier aggregation. Referring to FIG. 14B , the first amplifying unit 710 receives a radio frequency input signal RF IN transmitted through a first carrier ω1 and a second carrier ω2 in a predetermined frequency band. As described above, the first amplifying unit 710 can amplify the radio frequency input signal RF IN and cancel the nonlinear factor generated during the amplification. In an embodiment, only the first amplifying circuit 720_1 and the second amplifying circuit 720_2 among the amplifying circuits 720_1 to 720_M of the second amplifying unit 720 are enabled by the switch control signals SWCS2_1 and SWCS2_2, and the other amplifying circuits 720_M are disabled by the switch control signal SWCS2_M . The first amplifying circuit 720_1 and the second amplifying circuit 720_2 receive the amplified radio frequency input signal from the first amplifying unit 710, amplify the amplified radio frequency input signal, and cancel the nonlinear factor generated during the amplification and the pre-existing nonlinear factor. The first amplifying circuit 720_1 outputs a first radio frequency output signal RF OUT1 corresponding to the first carrier ω1, and the second amplifying circuit 720_2 outputs a second radio frequency output signal RF OUT2 corresponding to the second carrier ω2 .

圖15是說明根據本發明示例性實施例的無線通訊裝置的操作的流程圖。FIG. 15 is a flowchart illustrating the operation of a wireless communication device according to an exemplary embodiment of the present invention.

參照圖15,所述無線通訊裝置的放大器區塊中所包括的第一放大單元接收無線電頻率輸入信號,並將無線電頻率輸入信號放大成第一無線電頻率放大信號及第二無線電頻率放大信號,所述第一無線電頻率放大信號包括第一非線性度因數,所述第二無線電頻率放大信號包括第二非線性度因數,所述第二非線性度因數具有與所述第一非線性度因數的符號不同的符號(S100)。第一放大單元通過對第一無線電頻率放大信號與第二無線電頻率放大信號進行組合來產生第三無線電頻率放大信號,第三無線電頻率放大信號包括將第一非線性度因數與第二非線性度因數彼此抵消的結果(或第三非線性度因數)(S110)。放大器區塊中所包括的第二放大單元從第一放大器接收第三無線電頻率放大信號並放大第三無線電頻率放大信號,以產生與預定載波對應的無線電頻率輸出信號(S120)。無線通訊裝置中所包括的輸出電路從第二放大單元接收無線電頻率輸出信號,並對無線電頻率輸出信號進行下變頻以產生基帶信號(S130)。Referring to FIG. 15 , the first amplifying unit included in the amplifier block of the wireless communication device receives a radio frequency input signal, and amplifies the radio frequency input signal into a first radio frequency amplified signal and a second radio frequency amplified signal, so The first radio frequency amplified signal includes a first non-linearity factor, the second radio frequency amplified signal includes a second non-linearity factor, the second non-linearity factor has a Symbols with different symbols (S100). The first amplifying unit generates a third radio frequency amplified signal by combining the first radio frequency amplified signal with the second radio frequency amplified signal, the third radio frequency amplified signal comprising the first nonlinearity factor and the second nonlinearity factor The result of the factors canceling each other (or the third non-linearity factor) (S110). The second amplifying unit included in the amplifier block receives the third radio frequency amplified signal from the first amplifier and amplifies the third radio frequency amplified signal to generate a radio frequency output signal corresponding to a predetermined carrier (S120). The output circuit included in the wireless communication device receives the radio frequency output signal from the second amplifying unit, and down-converts the radio frequency output signal to generate a baseband signal (S130).

圖16是說明根據本發明示例性實施例的圖15所示操作S120的流程圖。FIG. 16 is a flowchart illustrating operation S120 shown in FIG. 15 according to an exemplary embodiment of the present invention.

參照圖16,在操作S110之後,第二放大單元將第三無線電頻率放大信號放大成使得經放大的第三非線性度因數的符號不同於在放大第三無線電頻率放大信號時產生的第四非線性度因數的符號(S122)。第二放大單元產生無線電頻率輸出信號,無線電頻率輸出信號包括對經放大的第三非線性度因數與第四非線性度因數進行抵消的結果(S124)。之後,可執行操作S130。Referring to FIG. 16, after operation S110, the second amplifying unit amplifies the third radio frequency amplified signal such that the sign of the amplified third non-linearity factor is different from the fourth non-linearity factor generated when amplifying the third radio frequency amplified signal. Sign of the linearity factor (S122). The second amplifying unit generates a radio frequency output signal including a result of canceling the amplified third nonlinearity factor and the fourth nonlinearity factor ( S124 ). Thereafter, operation S130 may be performed.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be defined by the scope of the appended patent application.

10‧‧‧無線通訊系統100、200‧‧‧無線通訊裝置110、112‧‧‧基站114‧‧‧廣播站120‧‧‧系統控制器130‧‧‧衛星210‧‧‧主天線212‧‧‧輔助天線220、250‧‧‧收發器222、420、520‧‧‧天線介面電路224a~224k、254a~254l、500A、500B、500C、600A、600B、600C、700‧‧‧低雜訊放大器225a~225k、255a~255l‧‧‧接收電路226a‧‧‧功率放大器227a‧‧‧發射電路230a‧‧‧接收器/第一接收器230b~230k、260a~260l、400、400'、500‧‧‧接收器240a‧‧‧發射器/第一發射器240b~240k、270a~270l‧‧‧發射器280‧‧‧資料處理器282‧‧‧記憶體410、510‧‧‧天線430‧‧‧輸入匹配電路440‧‧‧載波聚合低雜訊放大器/低雜訊放大器442、442A、442B、510A、610A、610B、710‧‧‧第一放大單元442_1A、442_1B、512A、512B、512C、612A、712‧‧‧第一輸入放大器442_2A、442_2B、514A、514B、514C、614A、714‧‧‧第二輸入放大器442_3B、616A、716‧‧‧回饋電路443、446_1、446_1A、446_1B、446_2~446_M、446_1'、446_2'~446_M'、720_3~720_M‧‧‧放大電路444'‧‧‧開關單元446、446A、446B、520A、520B、520C、620A、620B、620C、720‧‧‧第二放大單元446_11A、522A、522B、522C、622A、622B、622C‧‧‧放大器446_12B、624A、624B‧‧‧電流緩衝器450_1、450_2~450_M‧‧‧輸出電路451_1、451_2~451_M‧‧‧負載電路452_1、552_1‧‧‧下變頻器電路/第一下變頻器電路452_2~452_M‧‧‧下變頻器電路/第二下變頻器電路~第M下變頻器電路453_1、453_2~453_M、454_1、454_2~454_M‧‧‧混頻器455_1、455_2~455_M、456_1、456_2~456_M‧‧‧基帶濾波器510B、510C‧‧‧第一放大器530A‧‧‧開關530_1‧‧‧第一輸入匹配電路/輸入匹配電路530_N‧‧‧第N輸入匹配電路/輸入匹配電路540‧‧‧多輸入多輸出低雜訊放大器550_1‧‧‧輸出電路/第一輸出電路550_2‧‧‧輸出電路/第二輸出電路550_3‧‧‧輸出電路/第三輸出電路550_4‧‧‧輸出電路/第四輸出電路550_5~550_M‧‧‧輸出電路/第五輸出電路~第M輸出電路551_1‧‧‧負載電路/第一負載電路551_2‧‧‧負載電路/第二負載電路551_3‧‧‧負載電路/第三負載電路551_4‧‧‧負載電路/第四負載電路551_5~551_M‧‧‧負載電路/第五負載電路~第M負載電路552_2‧‧‧下變頻器電路/第二下變頻器電路552_3‧‧‧下變頻器電路/第三下變頻器電路552_4‧‧‧下變頻器電路/第四下變頻器電路552_5~552_M‧‧‧下變頻器電路/第五下變頻器電路~第M下變頻器電路617B、626B‧‧‧第一互連電路618B‧‧‧第二互連電路626C‧‧‧電流引導電路717、718‧‧‧互連電路720_1‧‧‧第一放大電路/放大電路720_2‧‧‧第二放大電路/放大電路722_1‧‧‧放大器/第一放大器722_2~722_M‧‧‧放大器/第二放大器~第m放大器724_1‧‧‧電流緩衝器/第一電流緩衝器724_2~724_M‧‧‧電流緩衝器/第二電流緩衝器~第m電流緩衝器726_1‧‧‧互連電路/第一互連電路726_2~726_M‧‧‧互連電路/第二互連電路~第m互連電路AMPB、AMPB_9~AMPB_N‧‧‧放大器區塊AMPB_1‧‧‧放大器區塊/第一放大器區塊AMPB_2‧‧‧放大器區塊/第二放大器區塊AMPB_3‧‧‧放大器區塊/第三放大器區塊AMPB_4‧‧‧放大器區塊/第四放大器區塊AMPB_5‧‧‧放大器區塊/第五放大器區塊AMPB_6‧‧‧放大器區塊/第六放大器區塊AMPB_7‧‧‧放大器區塊/第七放大器區塊AMPB_8‧‧‧放大器區塊/第八放大器區塊BNCS3'、BNCS3''‧‧‧第三經放大非線性度原因信號BNLF3‧‧‧第三經放大非線性度因數/經放大的第三非線性度因數CC1 、CC2 、CC3 ‧‧‧耦合電容器CC3_1 、CC3_2 、CC3_M ‧‧‧電容器CF ‧‧‧電容器裝置EN/DIS_CS‧‧‧啟用/禁用控制信號FSIN_B1 ‧‧‧第一基波信號FSIN_B2 ‧‧‧第二基波信號FSIN_B3 ‧‧‧第三基波信號FSOUT 、FSOUT ''‧‧‧基波輸出信號FNLF‧‧‧最終非線性度因數ILO1‧‧‧同相本地振盪器信號MA1 、MA1 '、MA1 ''、MA2 、MA2 '、MA2 ''、MB1 、MB1 '、MB1 ''、MB2 、MB3 、MB1_1 、MB1_2 、MB1_M 、MB2_1 、MB2_2 、MB2_M ‧‧‧電晶體NCS1、NCS1'、NCS1''‧‧‧第一非線性度原因信號NCS2、NCS2'、NCS2''‧‧‧第二非線性度原因信號NCS3‧‧‧非線性度原因信號NCS3'、NCS3''‧‧‧第三非線性度原因信號NCS4、NCS4'、NCS4''‧‧‧第四非線性度原因信號NLF1‧‧‧第一非線性度因數NLF2‧‧‧第二非線性度因數NLF3‧‧‧第三非線性度因數NLF4‧‧‧第四非線性度因數QLO1‧‧‧正交本地振盪器信號RF ‧‧‧電阻器裝置RFIN 、RFIN4 ~RFINN ‧‧‧無線電頻率輸入信號RFIN1 ‧‧‧無線電頻率輸入信號/第一無線電頻率輸入信號RFIN2 ‧‧‧無線電頻率輸入信號/第二無線電頻率輸入信號RFIN3 ‧‧‧無線電頻率輸入信號/第三無線電頻率輸入信號RFIN_B1 ‧‧‧第一無線電頻率放大信號RFIN_B2 ‧‧‧第二無線電頻率放大信號RFIN_B3 、RFIN_B3 '、RFIN_B3 ''‧‧‧第三無線電頻率放大信號RFOUT 、RFOUT '、RFOUT ''‧‧‧無線電頻率輸出信號RFOUT1 ‧‧‧無線電頻率輸出信號/第一無線電頻率輸出信號RFOUT2 ‧‧‧無線電頻率輸出信號/第二無線電頻率輸出信號RFOUT3 ‧‧‧無線電頻率輸出信號/第三無線電頻率輸出信號RFOUT4 ~RFOUTM ‧‧‧無線電頻率輸出信號RXIN ‧‧‧接收器輸入信號RXIN1 ‧‧‧第一接收器輸入信號/接收器輸入信號RXINN ‧‧‧第N接收器輸入信號/接收器輸入信號S100、S110、S120、S122、S124、S130‧‧‧步驟SW、SW1 、SW2 ~SWM ‧‧‧開關裝置SWCS、SWCS2、SWCS3、SWCS2_1、SWCS2_2~SWCS2_M‧‧‧開關控制信號TRWD1 ‧‧‧第一電晶體TRWD2 ‧‧‧第二電晶體VDD ‧‧‧電源電壓VGS1 ‧‧‧第一偏壓VGS2 ‧‧‧第二偏壓VR ‧‧‧預定參考值WD1‧‧‧第一寬度WD2‧‧‧第二寬度X、Y‧‧‧節點XBASOUT1 、XBASOUT2 、XBASOUT3 ~XBASOUTM ‧‧‧基帶信號XMOD‧‧‧模式控制信號ZIN 、ZIN1 、ZIN2 ‧‧‧輸入阻抗ZOUT ‧‧‧輸出阻抗ω1‧‧‧第一載波/載波ω2‧‧‧第二載波/載波ω3‧‧‧第三載波/載波10‧‧‧Wireless Communication System 100, 200‧‧‧Wireless Communication Device 110, 112‧‧‧Base Station 114‧‧‧Broadcasting Station 120‧‧‧System Controller 130‧‧‧Satellite 210‧‧‧Main Antenna 212‧‧ ‧Auxiliary antenna 220, 250‧‧‧Transceiver 222, 420, 520‧‧‧Antenna interface circuit 224a~224k, 254a~254l, 500A, 500B, 500C, 600A, 600B, 600C, 700‧‧‧Low noise amplifier 225a~225k, 255a~255l‧‧‧receiving circuit 226a‧‧‧power amplifier 227a‧‧‧transmitting circuit 230a‧‧‧receiver/first receiver 230b~230k, 260a~260l, 400, 400', 500‧ ‧‧Receiver 240a‧‧‧Transmitter/First Transmitter 240b~240k, 270a~270l‧‧‧Transmitter 280‧‧‧Data Processor 282‧‧‧Memory 410, 510‧‧‧Antenna 430‧‧ ‧Input matching circuit 440‧‧‧carrier aggregation low noise amplifier/low noise amplifier 442, 442A, 442B, 510A, 610A, 610B, 710‧‧‧first amplifying unit 442_1A, 442_1B, 512A, 512B, 512C, 612A , 712‧‧‧first input amplifier 442_2A, 442_2B, 514A, 514B, 514C, 614A, 714‧‧‧second input amplifier 442_3B, 616A, 716‧‧‧feedback circuit 443, 446_1, 446_1A, 446_1B, 446_2~446_M , 446_1', 446_2'~446_M', 720_3~720_M‧‧‧amplifier circuit 444'‧‧‧switch unit 446, 446A, 446B, 520A, 520B, 520C, 620A, 620B, 620C, 720‧‧‧second amplifier Unit 446_11A, 522A, 522B, 522C, 622A, 622B, 622C‧‧‧amplifier 446_12B, 624A, 624B‧‧‧current buffer 450_1, 450_2~450_M‧‧‧output circuit 451_1, 451_2~451_M‧‧‧load circuit 452_1 , 552_1‧‧‧down converter circuit/first down converter circuit 452_2~452_M‧‧‧down converter circuit/second down converter circuit~Mth down converter circuit 453_1, 453_2~453_M, 454_1, 454_2~ 454_M‧‧‧mixer 455_1, 455_2~455_M, 456_1, 456_2~456_M‧‧‧baseband filter 510B, 510C‧‧‧first amplifier 530A‧‧‧switch 530_1‧‧‧first input matching circuit /Input matching circuit 530_N‧‧‧Nth input matching circuit/input matching circuit 540‧‧‧multi-input multi-output low noise amplifier 550_1‧‧‧output circuit/first output circuit 550_2‧‧‧output circuit/second output Circuit 550_3‧‧‧output circuit/third output circuit 550_4‧‧‧output circuit/fourth output circuit 550_5~550_M‧‧‧output circuit/fifth output circuit~Mth output circuit 551_1‧‧‧load circuit/first Load circuit 551_2‧‧‧load circuit/second load circuit 551_3‧‧‧load circuit/third load circuit 551_4‧‧‧load circuit/fourth load circuit 551_5~551_M‧‧‧load circuit/fifth load circuit~the first M load circuit 552_2‧‧‧down converter circuit/second down converter circuit 552_3‧‧‧down converter circuit/third down converter circuit 552_4‧‧‧down converter circuit/fourth down converter circuit 552_5~ 552_M‧‧‧down-converter circuit/fifth down-converter circuit~Mth down-converter circuit 617B, 626B‧‧‧first interconnection circuit 618B‧‧‧second interconnection circuit 626C‧‧‧current guiding circuit 717 , 718‧‧‧interconnection circuit 720_1‧‧‧first amplifier circuit/amplifier circuit 720_2‧‧‧second amplifier circuit/amplifier circuit 722_1‧‧‧amplifier/first amplifier 722_2~722_M‧‧‧amplifier/second amplifier ~mth amplifier 724_1‧‧‧current buffer/first current buffer 724_2~724_M‧‧‧current buffer/second current buffer~mth current buffer 726_1‧‧‧interconnection circuit/first interconnection Circuits 726_2~726_M‧‧‧interconnection circuit/second interconnection circuit~mth interconnection circuit AMPB, AMPB_9~AMPB_N‧‧‧amplifier block AMPB_1‧‧‧amplifier block/first amplifier block AMPB_2‧‧‧ Amplifier block/second amplifier block AMPB_3‧‧‧amplifier block/third amplifier block AMPB_4‧‧‧amplifier block/fourth amplifier block AMPB_5‧‧‧amplifier block/fifth amplifier block AMPB_6‧ ‧‧amplifier block/sixth amplifier block AMPB_7‧‧‧amplifier block/seventh amplifier block AMPB_8‧‧‧amplifier block/eighth amplifier block BNCS3', BNCS3''‧‧‧the third is amplified Non-linearity cause signal BNLF3‧‧‧Third amplified nonlinearity factor/Amplified third nonlinearity factor C C1 , C C2 , C C3 ‧‧‧Coupling capacitors C C3_1 , C C3_2 , C C3_M ‧‧ ‧Capacitor C F ‧‧Capacitor device EN/DIS_CS ‧‧Enable/disable control signal FS IN_B1 ‧‧First fundamental signal FS IN_B2 ‧‧ ‧Second fundamental signal FS IN_B3 ‧‧‧Third fundamental signal FS OUT , FS OUT ''‧‧‧Fundamental output signal FNLF‧‧‧Final nonlinearity factor ILO1‧‧‧In-phase local oscillator signal M A1 , M A1 ', M A1 '', M A2 , M A2 ', M A2 '', M B1 , M B1 ', M B1 '', M B2 , M B3 , M B1_1 , M B1_2 , M B1_M , M B2_1 、 M B2_2 、 M B2_M ‧‧‧transistor NCS1, NCS1', NCS1''‧‧‧first non-linearity cause signal NCS2, NCS2', NCS2''‧‧‧second non-linearity cause signal NCS3‧ ‧‧Nonlinearity Cause Signal NCS3', NCS3''‧‧‧The Third Nonlinearity Cause Signal NCS4, NCS4', NCS4''‧‧The Fourth Nonlinearity Cause Signal NLF1‧‧‧The First Nonlinearity Factor NLF2‧‧‧Second Nonlinearity Factor NLF3‧‧‧Third Nonlinearity Factor NLF4‧‧‧Fourth Nonlinearity Factor QLO1‧‧‧Quadrature Local Oscillator Signal R F ‧‧‧Resistor Device RF IN , RF IN4 ~RF INN ‧‧‧radio frequency input signal RF IN1 ‧‧‧radio frequency input signal/first radio frequency input signal RF IN2 ‧‧‧radio frequency input signal/second radio frequency input signal RF IN3 ‧‧ ‧Radio Frequency Input Signal/Third Radio Frequency Input Signal RF IN_B1 ‧‧‧First Radio Frequency Amplified Signal RF IN_B2 ‧‧‧Second Radio Frequency Amplified Signal RF IN_B3 , RF IN_B3 ', RF IN_B3 ''‧‧‧Third Radio frequency amplified signal RF OUT , RF OUT ', RF OUT ''‧‧‧radio frequency output signal RF OUT1 ‧‧‧radio frequency output signal/first radio frequency output signal RF OUT2 ‧‧‧radio frequency output signal/second Radio Frequency Output Signal RF OUT3 ‧‧‧Radio Frequency Output Signal/Third Radio Frequency Output Signal RF OUT4 ~RF OUTM ‧‧‧Radio Frequency Output Signal RX IN ‧‧‧Receiver Input Signal RX IN1 ‧‧‧First Receiver Input signal/receiver input signal RX INN ‧‧‧Nth receiver input signal/receiver input signal S100, S110, S120, S122, S124, S130‧‧‧Step SW, SW 1 , SW 2 ~SW M ‧‧ ‧Switch devices SWCS, SWCS2, SWCS3, SWCS2_1, SWCS2_2~SWCS2_M‧‧‧Switch control signal TR WD1 ‧‧‧ The first transistor TR WD2 ‧‧‧the second transistor V DD ‧‧‧power supply voltage V GS1 ‧‧‧the first bias voltage V GS2 ‧‧‧the second bias voltage V R ‧‧‧predetermined reference value WD1‧‧‧ First width WD2‧‧‧Second width X, Y‧‧‧Nodes XBAS OUT1 , XBAS OUT2 , XBAS OUT3 ~XBAS OUTM ‧‧‧Baseband signal XMOD‧‧‧Mode control signal Z IN , Z IN1 , Z IN2 ‧‧ ‧Input impedance Z OUT ‧‧‧Output impedance ω1‧‧‧First carrier/carrier ω2‧‧‧Second carrier/carrier ω3‧‧‧Third carrier/carrier

圖1是根據本發明示例性實施例的無線通訊裝置以及包括所述無線通訊裝置的無線通訊系統的圖。 圖2A至圖2F是說明根據本發明示例性實施例的載波聚合(CA)技術的圖。 圖3是圖1所示無線通訊裝置的實例的方塊圖。 圖4是根據本發明示例性實施例的接收器的方塊圖。 圖5A及圖5B是根據本發明示例性實施例的圖4所示接收器的方塊圖。 圖6是根據本發明示例性實施例的接收器的方塊圖。 圖7A是根據本發明示例性實施例的圖6所示接收器的方塊圖。 圖7B是說明接收器以帶間載波聚合形式進行的操作的方塊圖。 圖7C是說明接收器以帶內載波聚合形式進行的操作的方塊圖。 圖8A及圖8B是根據本發明示例性實施例的圖5A所示第一放大器的方塊圖。 圖9A及圖9B是根據本發明示例性實施例的圖5A所示第二放大器的方塊圖。 圖10是說明根據本發明示例性實施例的將被進行補償的非線性度因數的曲線圖。 圖11A至圖11C是根據本發明示例性實施例的低雜訊放大器(low noise amplifier,LNA)的詳細電路圖。 圖12A至圖12C是根據本發明示例性實施例的低雜訊放大器的詳細電路圖。 圖13是根據本發明示例性實施例的低雜訊放大器的詳細電路圖。 圖14A及圖14B是說明低雜訊放大器的放大操作的電路圖。 圖15是說明根據本發明示例性實施例的無線通訊裝置的操作的流程圖。 圖16是說明根據本發明示例性實施例的圖15所示操作S120的流程圖。FIG. 1 is a diagram of a wireless communication device and a wireless communication system including the wireless communication device according to an exemplary embodiment of the present invention. 2A to 2F are diagrams illustrating a carrier aggregation (CA) technique according to an exemplary embodiment of the present invention. FIG. 3 is a block diagram of an example of the wireless communication device shown in FIG. 1 . FIG. 4 is a block diagram of a receiver according to an exemplary embodiment of the present invention. 5A and 5B are block diagrams of the receiver shown in FIG. 4 according to an exemplary embodiment of the present invention. FIG. 6 is a block diagram of a receiver according to an exemplary embodiment of the present invention. FIG. 7A is a block diagram of the receiver shown in FIG. 6 according to an exemplary embodiment of the present invention. Figure 7B is a block diagram illustrating the operation of a receiver in the form of inter-band carrier aggregation. Figure 7C is a block diagram illustrating the operation of a receiver in the form of in-band carrier aggregation. 8A and 8B are block diagrams of the first amplifier shown in FIG. 5A according to an exemplary embodiment of the present invention. 9A and 9B are block diagrams of the second amplifier shown in FIG. 5A according to an exemplary embodiment of the present invention. FIG. 10 is a graph illustrating a non-linearity factor to be compensated according to an exemplary embodiment of the present invention. 11A to 11C are detailed circuit diagrams of a low noise amplifier (LNA) according to an exemplary embodiment of the present invention. 12A to 12C are detailed circuit diagrams of a low noise amplifier according to an exemplary embodiment of the present invention. FIG. 13 is a detailed circuit diagram of a low noise amplifier according to an exemplary embodiment of the present invention. 14A and 14B are circuit diagrams illustrating the amplification operation of the low noise amplifier. FIG. 15 is a flowchart illustrating the operation of a wireless communication device according to an exemplary embodiment of the present invention. FIG. 16 is a flowchart illustrating operation S120 shown in FIG. 15 according to an exemplary embodiment of the present invention.

400‧‧‧接收器 400‧‧‧Receiver

440‧‧‧載波聚合低雜訊放大器/低雜訊放大器 440‧‧‧Carrier Aggregation Low Noise Amplifier / Low Noise Amplifier

442‧‧‧第一放大單元 442‧‧‧The first amplification unit

443、446_1、446_2、446_M‧‧‧放大電路 443, 446_1, 446_2, 446_M‧‧‧amplifier circuit

446‧‧‧第二放大單元 446‧‧‧Second amplifier unit

450_1、450_2、450_M‧‧‧輸出電路 450_1, 450_2, 450_M‧‧‧output circuit

451_1、451_2、451_M‧‧‧負載電路 451_1, 451_2, 451_M‧‧‧load circuit

452_1‧‧‧下變頻器電路/第一下變頻器電路 452_1‧‧‧down-converter circuit/first down-converter circuit

452_2、452_M‧‧‧下變頻器電路/第二下變頻器電路、第M下變頻器電路 452_2, 452_M‧‧‧down-converter circuit/second down-converter circuit, Mth down-converter circuit

453_1、453_2、453_M、454_1、454_2、454_M‧‧‧混頻器 453_1, 453_2, 453_M, 454_1, 454_2, 454_M‧‧‧mixer

455_1、455_2、455_M、456_1、456_2、456_M‧‧‧基帶濾波器 455_1, 455_2, 455_M, 456_1, 456_2, 456_M‧‧‧Baseband filter

AMPB‧‧‧放大器區塊 AMPB‧‧‧amplifier block

EN/DIS_CS‧‧‧啟用/禁用控制信號 EN/DIS_CS‧‧‧enable/disable control signal

ILO1‧‧‧同相本地振盪器信號 ILO1‧‧‧in-phase local oscillator signal

QLO1‧‧‧正交本地振盪器信號 QLO1‧‧‧Quadrature local oscillator signal

RFIN‧‧‧無線電頻率輸入信號 RF IN ‧‧‧radio frequency input signal

RFOUT1‧‧‧無線電頻率輸出信號/第一無線電頻率輸出信號 RF OUT1 ‧‧‧radio frequency output signal/first radio frequency output signal

RFOUT2‧‧‧無線電頻率輸出信號/第二無線電頻率輸出信號 RF OUT2 ‧‧‧radio frequency output signal/second radio frequency output signal

RFOUTM‧‧‧無線電頻率輸出信號 RF OUTM ‧‧‧radio frequency output signal

X‧‧‧節點 X‧‧‧node

XBASOUT1、XBASOUT2、XBASOUTM‧‧‧基帶信號 XBAS OUT1 , XBAS OUT2 , XBAS OUTM ‧‧‧Baseband signal

Claims (23)

一種無線通訊裝置,包括:放大器區塊,被配置成接收利用至少一個載波發射的無線電頻率輸入信號並放大所述無線電頻率輸入信號,以產生至少一個無線電頻率輸出信號,其中所述放大器區塊包括:第一放大單元,被配置成放大所述無線電頻率輸入信號,以產生第一無線電頻率放大信號及第二無線電頻率放大信號,並對所述第一無線電頻率放大信號與所述第二無線電頻率放大信號進行組合以產生第三無線電頻率放大信號,所述第一無線電頻率放大信號包括第一非線性度因數,所述第二無線電頻率放大信號包括與所述第一非線性度因數不同的第二非線性度因數,且所述第二非線性度因數用於抵消所述第一非線性度因數;以及第二放大單元,被配置成接收所述第三無線電頻率放大信號並放大所述第三無線電頻率放大信號,以產生與所述至少一個載波對應的無線電頻率輸出信號,其中所述第三無線電頻率放大信號包括第三非線性度因數,其中所述第二放大單元在放大所述第三無線電頻率放大信號的同時產生與所述第三非線性度因數不同的第四非線性度因數,且所述第四非線性度因數用於抵消經放大的所述第三非線性度因數。 A wireless communication device comprising: an amplifier block configured to receive a radio frequency input signal transmitted using at least one carrier and to amplify the radio frequency input signal to generate at least one radio frequency output signal, wherein the amplifier block includes : a first amplifying unit configured to amplify the radio frequency input signal to generate a first radio frequency amplified signal and a second radio frequency amplified signal, and to amplify the first radio frequency amplified signal and the second radio frequency amplified signal The amplified signals are combined to produce a third radio frequency amplified signal, the first radio frequency amplified signal includes a first non-linearity factor, the second radio frequency amplified signal includes a first non-linearity factor different from the first non-linearity factor two non-linearity factors, and the second non-linearity factor is used to cancel the first non-linearity factor; and a second amplifying unit configured to receive the third radio frequency amplified signal and amplify the first non-linearity factor Three radio frequency amplified signals to generate a radio frequency output signal corresponding to the at least one carrier, wherein the third radio frequency amplified signal includes a third non-linearity factor, wherein the second amplifying unit amplifies the first Three radio frequencies amplify the signal while generating a fourth non-linearity factor different from the third non-linearity factor, and the fourth non-linearity factor is used to cancel the amplified third non-linearity factor. 如申請專利範圍第1項所述的無線通訊裝置,其中 所述第一非線性度因數的符號與所述第二非線性度因數的符號彼此相反,且其中所述組合是通過將所述第一無線電頻率放大信號與所述第二無線電頻率放大信號相加來執行。 The wireless communication device described in item 1 of the scope of the patent application, wherein The sign of the first non-linearity factor and the sign of the second non-linearity factor are opposite to each other, and wherein the combination is obtained by combining the first radio frequency amplified signal with the second radio frequency amplified signal Calais to execute. 如申請專利範圍第2項所述的無線通訊裝置,其中所述第一非線性度因數的絕對值與所述第二非線性度因數的絕對值彼此相等。 The wireless communication device according to claim 2, wherein the absolute value of the first nonlinearity factor and the absolute value of the second nonlinearity factor are equal to each other. 如申請專利範圍第1項所述的無線通訊裝置,其中所述第一放大單元包括:第一輸入放大器,被配置成接收所述無線電頻率輸入信號並放大所述無線電頻率輸入信號,以輸出所述第一無線電頻率放大信號;以及第二輸入放大器,並聯連接到所述第一輸入放大器,且被配置成接收所述無線電頻率輸入信號並放大所述無線電頻率輸入信號,以輸出所述第二無線電頻率放大信號。 The wireless communication device according to claim 1 of the scope of the patent application, wherein the first amplifying unit includes: a first input amplifier configured to receive the radio frequency input signal and amplify the radio frequency input signal to output the the first radio frequency amplified signal; and a second input amplifier connected in parallel to the first input amplifier and configured to receive the radio frequency input signal and amplify the radio frequency input signal to output the second Radio frequency amplifies the signal. 如申請專利範圍第4項所述的無線通訊裝置,其中所述第一輸入放大器的輸出節點連接到所述第二輸入放大器的輸出節點。 The wireless communication device according to claim 4, wherein the output node of the first input amplifier is connected to the output node of the second input amplifier. 如申請專利範圍第4項所述的無線通訊裝置,其中所述第一輸入放大器包括第一寬度的第一電晶體,所述第一電晶體具有閘極,所述無線電頻率輸入信號施加到所述閘極,所述第二輸入放大器包括第二寬度的第二電晶體,所述第 二電晶體具有閘極,所述無線電頻率輸入信號被施加到所述閘極,其中所述第二寬度不同於所述第一寬度,且所述第一電晶體的工作區不同於所述第二電晶體的工作區。 The wireless communication device as described in item 4 of the patent scope of the application, wherein the first input amplifier includes a first transistor with a first width, the first transistor has a gate, and the radio frequency input signal is applied to the the gate, the second input amplifier includes a second transistor with a second width, and the first Two transistors have gates to which the radio frequency input signal is applied, wherein the second width is different from the first width, and the operating region of the first transistor is different from the first width. The working area of the second transistor. 如申請專利範圍第6項所述的無線通訊裝置,其中所述第一電晶體被配置成將所述無線電頻率輸入信號放大成所述第一無線電頻率放大信號,所述第一無線電頻率放大信號包括具有第一符號的所述第一非線性度因數,且所述第二電晶體被配置成將所述無線電頻率輸入信號放大成所述第二無線電頻率放大信號,所述第二無線電頻率放大信號包括具有與所述第一符號不同的第二符號的所述第二非線性度因數。 The wireless communication device according to item 6 of the scope of patent application, wherein the first transistor is configured to amplify the radio frequency input signal into the first radio frequency amplified signal, and the first radio frequency amplified signal including said first nonlinearity factor having a first sign, and said second transistor configured to amplify said radio frequency input signal into said second radio frequency amplified signal, said second radio frequency amplified The signal includes the second nonlinearity factor having a second sign different from the first sign. 如申請專利範圍第4項所述的無線通訊裝置,其中所述第一放大單元進一步包括並聯連接到所述第一輸入放大器及所述第二輸入放大器的回饋電路,所述回饋電路包括至少一個電阻器裝置及至少一個電容器裝置。 The wireless communication device as described in item 4 of the patent scope of the application, wherein the first amplifying unit further includes a feedback circuit connected in parallel to the first input amplifier and the second input amplifier, and the feedback circuit includes at least one Resistor means and at least one capacitor means. 如申請專利範圍第1項所述的無線通訊裝置,其中所述第四非線性度因數的符號與經放大的所述第三非線性度因數的符號相反,且其中所述輸出無線電頻率信號的最終非線性度因數是將所述第四非線性度因數與經放大的所述第三非線性度因數相加的結果。 The wireless communication device according to claim 1, wherein the sign of the fourth non-linearity factor is opposite to that of the amplified third non-linearity factor, and wherein the output radio frequency signal The final non-linearity factor is the result of adding the fourth non-linearity factor and the amplified third non-linearity factor. 如申請專利範圍第9項所述的無線通訊裝置,其中所述第四非線性度因數的絕對值等於經放大的所述第三非線性度因數的絕對值。 The wireless communication device according to claim 9, wherein the absolute value of the fourth nonlinearity factor is equal to the amplified absolute value of the third nonlinearity factor. 如申請專利範圍第1項所述的無線通訊裝置,其中所述第二放大單元包括多個放大電路,所述多個放大電路的每一者包括電晶體,所述電晶體具有閘極,所述第三無線電頻率放大信號被施加到所述閘極,且所述電晶體具有寬度,使得所述第四非線性度因數的符號與經放大的所述第三非線性度因數的符號相反。 The wireless communication device described in item 1 of the scope of the patent application, wherein the second amplifying unit includes a plurality of amplifying circuits, each of the amplifying circuits includes a transistor, and the transistor has a gate, so The third radio frequency amplified signal is applied to the gate, and the transistor has a width such that the fourth nonlinearity factor has an opposite sign to the amplified third nonlinearity factor. 如申請專利範圍第11項所述的無線通訊裝置,其中所述多個放大電路的每一者進一步包括串聯連接到所述電晶體的電流緩衝器,且所述電流緩衝器被配置成基於從外部來源發射的開關控制信號而接通或斷開,以啟用或禁用所述放大電路的每一者。 The wireless communication device according to claim 11, wherein each of the plurality of amplifying circuits further includes a current buffer connected in series to the transistor, and the current buffer is configured based on the slave A switch control signal transmitted from an external source is turned on or off to enable or disable each of the amplifying circuits. 如申請專利範圍第1項所述的無線通訊裝置,其中所述第二放大單元的輸入阻抗大於所述第一放大單元的輸出阻抗。 The wireless communication device according to claim 1 of the patent application, wherein the input impedance of the second amplifying unit is greater than the output impedance of the first amplifying unit. 如申請專利範圍第1項所述的無線通訊裝置,進一步包括輸出電路,所述輸出電路用於在將所述無線電頻率輸出信號下變頻成基帶信號之後輸出所述無線電頻率輸出信號。 The wireless communication device according to claim 1, further comprising an output circuit for outputting the radio frequency output signal after down-converting the radio frequency output signal into a baseband signal. 如申請專利範圍第1項所述的無線通訊裝置,進一步包括:至少一個天線,被配置成接收無線電頻率資料; 天線介面電路,被配置成根據預定頻率頻寬來對所述無線電頻率資料進行濾波;以及輸入匹配電路,被配置成執行所述至少一個天線與所述放大器區塊之間的阻抗匹配,並利用經所述天線介面電路濾波的所述無線電頻率資料來產生所述無線電頻率輸入信號。 The wireless communication device described in item 1 of the scope of the patent application further includes: at least one antenna configured to receive radio frequency data; an antenna interface circuit configured to filter the radio frequency data according to a predetermined frequency bandwidth; and an input matching circuit configured to perform impedance matching between the at least one antenna and the amplifier block, and utilize The radio frequency data is filtered by the antenna interface circuit to generate the radio frequency input signal. 一種接收器,用於接收無線電頻率輸入信號並基於載波聚合模式來處理所述無線電頻率輸入信號,其中所述接收器包括:多個放大器區塊,其中所述多個放大器區塊中的每一者包括:第一放大單元,包括彼此具有不同性質的至少兩個輸入放大器,使得當放大所述無線電頻率輸入信號時產生的多個非線性度因數彼此具有不同的符號,所述第一放大單元被配置成執行所述多個非線性度因數的第一消除且利用所述至少兩個輸入放大器將所述無線電頻率輸入信號放大成無線電頻率放大信號;以及第二放大單元,包括多個放大電路,所述多個放大電路各包括至少一個放大器,所述至少一個放大器被配置成接收所述無線電頻率放大信號並放大所述無線電頻率放大信號,以輸出與預定載波對應的無線電頻率輸出信號,其中所述無線電頻率放大信號包括第三非線性度因數,所述第二放大單元被配置成利用所述至少一個放大器執行當放大所述無線電頻率放大信號時所產生的第四非線性度因數以及所述無 線電頻率放大信號的經放大的所述第三非線性度因數之間的第二消除。 A receiver for receiving a radio frequency input signal and processing the radio frequency input signal based on a carrier aggregation mode, wherein the receiver includes: a plurality of amplifier blocks, wherein each of the plurality of amplifier blocks or comprising: a first amplifying unit comprising at least two input amplifiers having different properties from each other such that a plurality of non-linearity factors generated when amplifying said radio frequency input signal have different signs from each other, said first amplifying unit configured to perform a first cancellation of the plurality of non-linearity factors and amplify the radio frequency input signal into a radio frequency amplified signal using the at least two input amplifiers; and a second amplification unit comprising a plurality of amplification circuits , each of the plurality of amplifying circuits includes at least one amplifier configured to receive the radio frequency amplified signal and amplify the radio frequency amplified signal to output a radio frequency output signal corresponding to a predetermined carrier, wherein The radio frequency amplified signal includes a third non-linearity factor, and the second amplifying unit is configured to perform, with the at least one amplifier, a fourth non-linearity factor generated when amplifying the radio frequency amplified signal and the Say nothing A second cancellation between the amplified third non-linearity factor of the line frequency amplified signal. 如申請專利範圍第16項所述的接收器,其中所述至少一個放大器具有預定特性,使得當放大所述無線電頻率放大信號時所產生的所述第四非線性度因數與所述無線電頻率放大信號的經放大的所述第三非線性度因數具有彼此不同的符號。 The receiver according to claim 16, wherein said at least one amplifier has predetermined characteristics such that said fourth non-linearity factor produced when amplifying said radio frequency amplified signal is equal to said radio frequency amplified The amplified third non-linearity factors of the signal have different signs from one another. 如申請專利範圍第17項所述的接收器,其中所述放大器包括電晶體,所述電晶體具有閘極,所述無線電頻率放大信號被施加到所述閘極,且所述電晶體具有預定寬度,其中當放大所述無線電頻率放大信號時所述電晶體產生具有與所述無線電頻率放大信號的經放大的所述第三非線性度因數的符號不同的符號的所述第四非線性度因數。 The receiver according to claim 17, wherein the amplifier includes a transistor having a gate to which the radio frequency amplified signal is applied, and the transistor has a predetermined width, wherein said transistor produces said fourth nonlinearity having a sign different from that of said amplified third nonlinearity factor of said radio frequency amplified signal when amplifying said radio frequency amplified signal factor. 如申請專利範圍第16項所述的接收器,其中所述至少兩個輸入放大器中的每一者包括電晶體,所述電晶體具有閘極,所述無線電頻率輸入信號被施加到所述閘極,且所述電晶體具有彼此不同的寬度,使得所述電晶體的工作區彼此不同。 The receiver of claim 16, wherein each of said at least two input amplifiers includes a transistor having a gate to which said radio frequency input signal is applied poles, and the transistors have different widths from each other, so that the operating regions of the transistors are different from each other. 如申請專利範圍第16項所述的接收器,其中當所述接收器處於帶內模式且接收利用第一頻帶中的第一載波及第二載波發射的無線電頻率信號時, 所述多個放大器區塊中的第一放大器區塊被啟用,以接收所述無線電頻率信號中所包含的第一無線電頻率輸入信號,所述第一放大器區塊的所述第一放大單元進一步被配置成放大所述第一無線電頻率輸入信號以將第一無線電頻率放大信號輸出到所述第二放大單元,且所述第一放大器區塊的所述第二放大單元中所包含的多個放大電路中的第一放大電路及第二放大電路被啟用,所述第一放大電路被配置成接收並放大所述第一無線電頻率放大信號以輸出與所述第一載波對應的第一無線電頻率輸出信號,且所述第二放大電路被配置成接收並放大所述第一無線電頻率放大信號以輸出與所述第二載波對應的第二無線電頻率輸出信號。 The receiver of claim 16, wherein when the receiver is in an in-band mode and receives a radio frequency signal transmitted using a first carrier and a second carrier in a first frequency band, A first amplifier block of the plurality of amplifier blocks is enabled to receive a first radio frequency input signal included in the radio frequency signal, the first amplification unit of the first amplifier block is further configured to amplify the first radio frequency input signal to output a first radio frequency amplified signal to the second amplifying unit, and a plurality of A first amplifying circuit and a second amplifying circuit in the amplifying circuit are enabled, the first amplifying circuit is configured to receive and amplify the first radio frequency amplified signal to output a first radio frequency corresponding to the first carrier output signal, and the second amplifying circuit is configured to receive and amplify the first radio frequency amplified signal to output a second radio frequency output signal corresponding to the second carrier. 一種無線通訊裝置,包括:第一放大器,包括第一互補電晶體,所述第一互補電晶體具有第一寬度,所述第一放大器被配置成放大輸入無線電頻率信號以產生第一放大無線電頻率信號,所述輸入無線電頻率信號是利用至少一個載波發射;第二放大器,包括非互補電晶體,所述非互補電晶體具有與所述第一寬度不同的第二寬度,所述第二放大器被配置成放大所述輸入無線電頻率信號以產生第二放大無線電頻率信號,其中所述第二放大無線電頻率信號所包括的第二非線性度因數用於抵消所述第一放大無線電頻率信號所包括的第一非線性度因數;以及 第三放大器,包括第二互補電晶體,所述第二互補電晶體被配置成接收所述第一放大無線電頻率信號及所述第二放大無線電頻率信號並輸出第三無線電頻率放大信號,其中所述第一放大無線電頻率信號與所述第二放大無線電頻率信號之和所形成的信號包括一第三非線性度因數,且所述第三無線電頻率放大信號所包括第四非線性度因數用於抵消經放大的所述第三非線性度因數。 A wireless communication device comprising: a first amplifier including a first complementary transistor having a first width, the first amplifier configured to amplify an input radio frequency signal to generate a first amplified radio frequency signal, said input radio frequency signal is transmitted using at least one carrier; a second amplifier comprising a non-complementary transistor having a second width different from said first width, said second amplifier being configured to amplify the input radio frequency signal to produce a second amplified radio frequency signal, wherein the second amplified radio frequency signal includes a second non-linearity factor for canceling a non-linearity factor included in the first amplified radio frequency signal a first nonlinearity factor; and A third amplifier comprising a second complementary transistor configured to receive the first amplified radio frequency signal and the second amplified radio frequency signal and output a third amplified radio frequency signal, wherein the The signal formed by the sum of the first amplified radio frequency signal and the second amplified radio frequency signal includes a third non-linearity factor, and the third amplified radio frequency signal includes a fourth non-linearity factor for The amplified third non-linearity factor is cancelled. 如申請專利範圍第21項所述的無線通訊裝置,其中所述第一寬度及所述第二寬度被設定成使所述第一放大無線電頻率信號的所述第一非線性度因數的符號與所述第二放大無線電頻率信號的所述第二非線性度因數的符號相反。 The wireless communication device according to claim 21, wherein the first width and the second width are set so that the sign of the first nonlinearity factor of the first amplified radio frequency signal is the same as The sign of the second nonlinearity factor of the second amplified radio frequency signal is opposite. 如申請專利範圍第22項所述的無線通訊裝置,其中所述第二互補電晶體的寬度被設定成使經放大的所述第三非線性度因數的符號與所述第四非線性度因數的符號相反。 The wireless communication device according to claim 22, wherein the width of the second complementary transistor is set such that the sign of the amplified third nonlinearity factor is the same as that of the fourth nonlinearity factor sign is opposite.
TW106139846A 2016-11-18 2017-11-17 Wireless communication device and receiver for receiving and processing radio frequency signal based on carrier aggregation mode TWI793088B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2016-0154443 2016-11-18
KR20160154443 2016-11-18
??10-2016-0154443 2016-11-18
??10-2017-0098072 2017-08-02
KR10-2017-0098072 2017-08-02
KR1020170098072A KR102504292B1 (en) 2016-11-18 2017-08-02 A receiver receiving a wideband radio frequency signal, a wireless communication device including the same and a operating method of the wireless communication device

Publications (2)

Publication Number Publication Date
TW201820809A TW201820809A (en) 2018-06-01
TWI793088B true TWI793088B (en) 2023-02-21

Family

ID=62451340

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106139846A TWI793088B (en) 2016-11-18 2017-11-17 Wireless communication device and receiver for receiving and processing radio frequency signal based on carrier aggregation mode

Country Status (2)

Country Link
KR (1) KR102504292B1 (en)
TW (1) TWI793088B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102653890B1 (en) * 2019-10-18 2024-04-02 삼성전자주식회사 A Radio Frequency Integrated Chip supporting carrier aggregation and an wireless communication apparatus including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070207752A1 (en) * 2006-03-06 2007-09-06 Broadcom Corporation Radio Receiver with shared low noise amplifier for multi-standard operation in a single antenna system with loft isolation and flexible gain control
TW201029317A (en) * 2009-01-19 2010-08-01 Qualcomm Inc Ultra low noise high linearity LNA for multi-mode transceiver
CN103795353A (en) * 2012-10-30 2014-05-14 Dsp集团有限公司 Radio frequency front end module circuit incorporating an efficient high linearity power amplifier
US20160164476A1 (en) * 2014-12-04 2016-06-09 Qualcomm Incorporated Amplifier with triple-coupled inductors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379673B2 (en) * 2014-05-30 2016-06-28 Qualcomm Incorporated Distortion cancellation for dual stage carrier-aggregation (CA) low noise amplifier (LNA) non-linear second order products

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070207752A1 (en) * 2006-03-06 2007-09-06 Broadcom Corporation Radio Receiver with shared low noise amplifier for multi-standard operation in a single antenna system with loft isolation and flexible gain control
TW201029317A (en) * 2009-01-19 2010-08-01 Qualcomm Inc Ultra low noise high linearity LNA for multi-mode transceiver
CN103795353A (en) * 2012-10-30 2014-05-14 Dsp集团有限公司 Radio frequency front end module circuit incorporating an efficient high linearity power amplifier
US20160164476A1 (en) * 2014-12-04 2016-06-09 Qualcomm Incorporated Amplifier with triple-coupled inductors

Also Published As

Publication number Publication date
KR102504292B1 (en) 2023-02-28
KR20180056356A (en) 2018-05-28
TW201820809A (en) 2018-06-01

Similar Documents

Publication Publication Date Title
US9154357B2 (en) Multiple-input multiple-output (MIMO) low noise amplifiers for carrier aggregation
US8548410B2 (en) RF front-end for intra-band carrier aggregation
CN108075794B (en) Receiver for receiving broadband radio frequency signal and wireless communication device
JP6509888B2 (en) Low noise amplifier (LNA) with high current efficiency
US11515843B2 (en) Radio frequency (RF) integrated circuit performing signal amplification operation to support carrier aggregation and receiver including the same
CN104885388A (en) Reconfigurable receiver circuits for test signal generation
US10374850B2 (en) Receiver and wireless terminal for signal processing
JP2018523947A (en) Cascaded switch between multiple LNAs
EP3134966B1 (en) Differential cascode amplifier with selectively coupled gate terminals
US9642166B2 (en) Cross-connected cascode low noise amplifier for carrier aggregation
JP6686016B2 (en) Receiver front-end architecture for in-band carrier aggregation
TWI793088B (en) Wireless communication device and receiver for receiving and processing radio frequency signal based on carrier aggregation mode
Huang et al. A compact 5–6 GHz T/R module based on SiGe BiCMOS and SOI that enhances 256 QAM 802.11 ac WLAN radio front-end designs
KR102384866B1 (en) Receiver, Wireless Terminal, Operating Method of Wireless Terminal
US20240178795A1 (en) Oscillator Feedthrough Calibration
KR20230068940A (en) A low noise amplifier
KR20230108097A (en) Low noise amplifier and apparatus including the same