TWI776199B - Parameter estimation method for solar cell double-diode model - Google Patents

Parameter estimation method for solar cell double-diode model Download PDF

Info

Publication number
TWI776199B
TWI776199B TW109126293A TW109126293A TWI776199B TW I776199 B TWI776199 B TW I776199B TW 109126293 A TW109126293 A TW 109126293A TW 109126293 A TW109126293 A TW 109126293A TW I776199 B TWI776199 B TW I776199B
Authority
TW
Taiwan
Prior art keywords
parameters
parameter
output
solution
value
Prior art date
Application number
TW109126293A
Other languages
Chinese (zh)
Other versions
TW202207055A (en
Inventor
黃昭明
陳信助
楊松霈
王永山
林政安
陳鏡仁
Original Assignee
崑山科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 崑山科技大學 filed Critical 崑山科技大學
Priority to TW109126293A priority Critical patent/TWI776199B/en
Publication of TW202207055A publication Critical patent/TW202207055A/en
Application granted granted Critical
Publication of TWI776199B publication Critical patent/TWI776199B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Photovoltaic Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

The invention provides parameter estimation method for solar cell double-diode model, which eliminates parameters with insignificant effect through sensitivity matrix, determines the effect of each parameter on the overall output measurement by principal component analysis, establishes an orthogonal eigenvalue between input variables to remove the dependency between parameters through applying Gram-Schmidt orthogonalization, completes the selection of parameters affecting the output, the Whale Optimization Algorithm is used to estimate the relevant parameters to obtain the best parameter solution. In the process of estimating the Whale Optimization Algorithm, a double-diode-based PV (solar cell) estimation model must be built in a Matlab/Simulink environment, and the parameter values must be corrected according to the input and output data obtained from the actual measurement, which enables the Whale Optimization Algorithm to generate the best parameter solution and stores it in the PV estimation model. Accordingly, by inputting the real-time illuminance and temperature into the PV estimation model, the corresponding and accurate power generation forecast value can be generated.

Description

太陽能電池雙二極體模型參數估測方法 Parameter Estimation Method of Solar Cell Double Diode Model

本發明係有關於一種太陽能電池雙二極體模型參數估測方法,尤其是指一種用於得到最佳估測參數解,以準確估測太陽能電池發電功率的參數估測方法。 The present invention relates to a method for estimating parameters of a solar cell bidiode model, in particular to a method for estimating parameters for obtaining an optimal estimated parameter solution to accurately estimate the power generated by a solar cell.

太陽能雖然具有取之不盡、用之不竭,且無需運輸,不會排放對環境不良影響的物質,是一種清潔的能源,而可以作為人類永久性的能源之優點;但是太陽能的發電量受氣候、晝夜的影響很大,無法恒定。而無法恒定這件事,嚴重影響電力品質與電力系統的穩定度,進而阻礙社會、乃至整個國家的經濟發展。 Although solar energy has the advantages of being inexhaustible, inexhaustible, and does not require transportation and does not emit substances that adversely affect the environment, it is a clean energy source and can be used as a permanent energy source for human beings. The influence of climate, day and night is great and cannot be constant. The fact that it cannot be constant will seriously affect the power quality and the stability of the power system, thereby hindering the economic development of society and even the entire country.

因此,隨著智慧電網的快速發展,太陽能發電系統的電量估測益發扮演重要角色,透過精確的發電效率估測,不但可提供智慧電網電能管理系統進行有效率的負載排程規劃,還能減少智慧 電網上太陽能發電的不確定性,進而改善系統穩定度、維持電力品質,甚至提高太陽能發電系統的可調度性。 Therefore, with the rapid development of the smart grid, the power estimation of the solar power generation system plays an increasingly important role. Through accurate power generation efficiency estimation, it can not only provide the smart grid power management system for efficient load scheduling, but also reduce wisdom The uncertainty of solar power generation on the grid, thereby improving system stability, maintaining power quality, and even improving the dispatchability of solar power generation systems.

太陽能發電系統電量估測的物理模型概分為單二極體模型與雙二極體模型,在模式精確與簡化的折衷考量下,單二極體模型為多數人所採用。但由於單二極體模型忽略二極體在空乏區的複合損失,導致在低照度下易產生較大的估測誤差。與單二極體模型不同的是,雙二極體模型中的飽和電流是由兩個二極體所貢獻,此模型在低照度下能產生精確的預測,但因雙二極體模型相較單二極體模型增加一個二極體,加上太陽能電池發電模型的參數可能因太陽能電池的老化或氣候的改變而產生偏移,因此必須適時且即時的進行參數的估測與校正,方能準確估測PV發電模型的發電效率,使得採用雙二極體的PV發電模型在進行發電效率估測上更加複雜。 The physical models of solar power generation system electricity estimation are roughly divided into single-diode model and double-diode model. Under the compromise of model accuracy and simplification, single-diode model is adopted by most people. However, since the single-diode model ignores the recombination loss of the diode in the depletion region, it is easy to produce a large estimation error under low illumination. Unlike the single-diode model, the saturation current in the dual-diode model is contributed by two diodes. This model produces accurate predictions at low light levels, but the One diode is added to the single-diode model, and the parameters of the solar cell power generation model may be offset due to the aging of the solar cell or the change of the climate. Therefore, the parameters must be estimated and corrected in a timely and real-time manner. Accurately estimating the power generation efficiency of the PV power generation model makes it more complicated to estimate the power generation efficiency of the PV power generation model using dual diodes.

本發明之主要目的,係提供一種太陽能電池雙二極體模型參數估測方法,係將雙二極體模型待估測的7個參數轉化為不同操作點下的17個參數,再透過太陽能電池發電模型的建立、參數選取及參數估測最佳化等流程,提供更精細與更精確的發電效率估測,供智慧電網電能管理系統進行有效之電能管理。 The main purpose of the present invention is to provide a method for estimating parameters of a bi-diode model of a solar cell, which converts the 7 parameters to be estimated in the bi-diode model into 17 parameters under different operating points, and then transmits them through the solar cell. The establishment of the power generation model, the selection of parameters, and the optimization of parameter estimation and other processes provide more refined and accurate power generation efficiency estimates for the smart grid power management system to carry out effective power management.

本發明之目的,係由以下技術實現: 一種太陽能電池雙二極體模型參數估測方法,其步驟包括:步驟1:將在不同照度及溫度下會產生變化的複數參數,於一穩態運轉點上以靈敏度矩陣將所述複數參數中對輸出影響微小者予以剔除,剩餘的所述參數以主成份分析方法決定每一個剩餘的所述參數相對於整體輸出量測的效應,再應用Gram-Schmidt正交轉換建立剩餘的所述參數間的正交特徵以剔除剩餘的所述參數間的相依關係,進而選出影響輸出之參數;步驟2:係將步驟1選出的所述影響輸出的參數在Matlab/Simulink環境中建立以雙二極體為基礎的PV估測模型,並應用鯨魚最佳化演算法進行該些所述影響輸出的參數的估測,以得到最佳參數解;其中,所述鯨魚最佳化演算法包含:步驟2-1:將步驟1選出的所述影響輸出的參數做為初始參數,並隨機給予每一所述初始參數一初始參數解位置向量,同時設定疊代次數;步驟2-2:係將實際量測的輸入值及輸出值資料送入所述PV估測模型中計算得到估測值,再將所述估測值與所述實際量測的輸入值及輸出值整合,進而計算得到每一所述初始參數解位置向量的適應值;步驟2-3:係根據係根據泡泡網攻擊法中的包圍獵物法在縮小包圍最佳可行解的機制過程中,先假設目前最佳可行解為所述 初始參數解的最佳位置,利用螺旋方程式之螺旋路徑朝向所述初始參數解的最佳位置的方向前進,並依據所述最佳位置更新所述初始參數解的位置;步驟2-4:利用搜尋獵物法探索並隨機挑選參數解,這些搜尋中的所述參數解依據隨機位置更新其位置,進而朝全域最佳解方向移動;步驟2-5:係將更新位置後之所述參數解送入PV估測模型中計算得到功率估測值,再將所述功率估測值與實際量測的輸入值及輸出值整合,進而計算得到每一個更新位置後參數解位置向量的適應值,並更新最佳位置解;步驟2-6:檢查是否符合設定的所述疊代次數,倘未符合,回到步驟2-3;倘符合,則所述更新最佳位置解即為最佳參數解,輸出所述最佳參數解並結束。 The object of the present invention is realized by the following technologies: A method for estimating parameters of a dual-diode model of a solar cell, the steps of which include: Step 1: Converting complex parameters that will change under different illumination and temperature to a sensitivity matrix at a steady-state operating point into the complex parameters Those with little effect on the output are eliminated, and the remaining parameters are determined by principal component analysis to determine the effect of each remaining parameter relative to the overall output measurement, and then the Gram-Schmidt orthogonal transformation is used to establish the remaining parameters. In order to eliminate the remaining dependencies between the parameters, and then select the parameters that affect the output; Step 2: The parameters that affect the output selected in Step 1 are established in the Matlab/Simulink environment as a double-diode Based on the PV estimation model, the whale optimization algorithm is applied to estimate the parameters that affect the output, so as to obtain the best parameter solution; wherein, the whale optimization algorithm includes: Step 2 -1: Take the parameter that affects the output selected in step 1 as the initial parameter, and randomly give each initial parameter an initial parameter solution position vector, and set the number of iterations at the same time; step 2-2: use the actual The measured input value and output value data are sent into the PV estimation model to calculate the estimated value, and then the estimated value is integrated with the actual measured input value and output value, and then each calculated value is obtained. The fitness value of the initial parameter solution position vector; Step 2-3: According to the encircling prey method in the bubble net attack method, in the process of reducing the mechanism of encircling the best feasible solution, first assume that the current best feasible solution is said For the best position of the initial parametric solution, use the spiral path of the helical equation to move towards the direction of the best position of the initial parametric solution, and update the position of the initial parametric solution according to the best position; Step 2-4: use The method of searching for prey explores and randomly selects parametric solutions, and the parametric solutions in these searches update their positions according to random positions, and then move towards the direction of the best solution in the whole domain; Steps 2-5: Decode the parameters after updating the positions Enter the PV estimation model to calculate the estimated power value, then integrate the estimated power value with the actual measured input value and output value, and then calculate the adaptive value of the parameter solution position vector after each updated position, and Update the best position solution; Step 2-6: Check whether the set number of iterations is met, if not, go back to step 2-3; if so, the updated best position solution is the best parameter solution , output the optimal parameter solution and end.

如上所述之太陽能電池雙二極體模型參數估測方法,其中,步驟1所述在不同照度及溫度下會產生變化的參數包含有:I L,ref I sc,ref V oc,ref I mp,ref V mp,ref G ref T ref n I1,refn I2,ref R s,ref R sh,ref I o1,ref I o2,ref 、α

Figure 109126293-A0305-02-0007-62
Figure 109126293-A0305-02-0007-63
、β及E g,ref 。 In the method for estimating parameters of a solar cell dual-diode model as described above, the parameters that may vary under different illumination and temperature in step 1 include: IL,ref , I sc,ref , V oc,ref , I mp,ref , V mp,ref , G ref , T ref , n I 1,ref , n I 2 ,ref , R s,ref , R sh,ref , I o 1 ,ref , I o 2 ,ref , α
Figure 109126293-A0305-02-0007-62
,
Figure 109126293-A0305-02-0007-63
, β and E g,ref .

如上所述之太陽能電池雙二極體模型參數估測方法,其中,在步驟1對輸出影響微小的參數的判斷,係考慮在參數j上有一項 擾動,即

Figure 109126293-A0305-02-0008-2
,該擾動將導致第i個輸出產生變化,即
Figure 109126293-A0305-02-0008-3
,則靈敏度係數可近似如下:
Figure 109126293-A0305-02-0008-4
上式可建構出每一個參數相對於每一個輸出的靈敏度矩陣,對輸出影響微小的參數可藉此進行第一步的剔除。 In the above-mentioned method for estimating the parameters of the solar cell dual-diode model, in step 1, the judgment of the parameters that have little influence on the output is to consider that there is a disturbance on the parameter j , that is,
Figure 109126293-A0305-02-0008-2
, the disturbance will cause the ith output to change, that is
Figure 109126293-A0305-02-0008-3
, the sensitivity coefficient can be approximated as follows:
Figure 109126293-A0305-02-0008-4
The above formula can construct the sensitivity matrix of each parameter relative to each output, and parameters that have little influence on the output can be eliminated in the first step.

如上所述之太陽能電池雙二極體模型參數估測方法,其中,在步驟1所述之主成份分析方法,係令主成份為共變異數矩陣

Figure 109126293-A0305-02-0008-6
的特徵向量(eigenvector),其中第一個主成份為X矩陣中具有最大特徵值(eigenvalue)所對應的特徵向量,此即整體變化的最大方向,其餘主成份則依序排列其對於整體變化的貢獻度,因此,第j個參數的整體效應表示如下:
Figure 109126293-A0305-02-0008-7
其中
Figure 109126293-A0305-02-0008-8
為第j個參數相對於整體變數的效應,其值愈大愈佳,α i 為第i個輸出的特徵值,C ij 為第j個參數相對於第i個輸出的主成份元素(或貢獻度),m為輸出的個數。 The above-mentioned method for estimating parameters of a solar cell dual-diode model, wherein, in the principal component analysis method described in step 1, the principal component is a covariance matrix
Figure 109126293-A0305-02-0008-6
The eigenvector of , where the first principal component is the eigenvector corresponding to the largest eigenvalue (eigenvalue) in the X matrix, which is the maximum direction of the overall change, and the remaining principal components are arranged in order with respect to the overall change. Contribution, therefore, the overall effect of the jth parameter is expressed as:
Figure 109126293-A0305-02-0008-7
in
Figure 109126293-A0305-02-0008-8
is the effect of the jth parameter relative to the overall variable, the larger the value, the better, α i is the eigenvalue of the ith output, C ij is the principal component element (or contribution of the jth parameter relative to the ith output) degrees), m is the number of outputs.

如上所述之太陽能電池雙二極體模型參數估測方法,其中,在步驟1剔除參數與參數間的相依關係中,假定X i =[X i (1),X i (2),…, X i (N)] T 為第i個樣本的特徵向量,N為樣本數,則特徵矩陣定義如下:

Figure 109126293-A0305-02-0009-9
特徵矩陣X可分解為:X=QR,其中R為一上三角矩陣(upper triangular matrix),Q為一正交矩陣(orthogonal matrix),即
Figure 109126293-A0305-02-0009-10
Figure 109126293-A0305-02-0009-11
其中q i 為正交空間新的特徵向量,在使用Gram-Schmidt進行正交分解(orthogonal decomposition)過程中,下列程序用來建構正交矩陣:q 1=x 1
Figure 109126293-A0305-02-0009-12
其中,
Figure 109126293-A0305-02-0010-13
將上述X=QR公式中的X空間映射至空間QQ=R -1 X,以建構出所述正交矩陣。 The above-mentioned method for estimating parameters of a solar cell dual-diode model, wherein, in step 1 to eliminate the dependence between parameters and parameters, it is assumed that X i =[ X i (1), X i (2),..., X i ( N )] T is the feature vector of the ith sample, and N is the number of samples, then the feature matrix is defined as follows:
Figure 109126293-A0305-02-0009-9
The characteristic matrix X can be decomposed into: X = QR , where R is an upper triangular matrix, and Q is an orthogonal matrix, that is,
Figure 109126293-A0305-02-0009-10
Figure 109126293-A0305-02-0009-11
where q i is the new eigenvector of the orthogonal space. In the orthogonal decomposition process using Gram-Schmidt, the following procedure is used to construct the orthogonal matrix: q 1 = x 1 ,
Figure 109126293-A0305-02-0009-12
in,
Figure 109126293-A0305-02-0010-13
The X space in the above formula of X = QR is mapped to the space Q : Q = R -1 X to construct the orthogonal matrix.

如上所述之太陽能電池雙二極體模型參數估測方法,其中,在步驟2-1每一個初始參數解的位置向量隨機產生,如下所示:x i,j (0)=x i,min +rand×(x i,max -x i,min ),i=1,2,...,S,j=1,2,...,P;其中X i,j (0)為第j個參數解第i個參數(變數),X i,min X i,max 為參數上下限,參數上下限範圍由使用者經驗予以設定,rand為介於0與1之間的均勻隨機數,S為參數數目,P為參數解數目,第j個參數解的位置向量可表示如下:

Figure 109126293-A0305-02-0010-59
(t)=[經所述步驟1後所有被選取的參數](t為疊代次數)。 In the method for estimating parameters of the solar cell dual diode model as described above, the position vector of each initial parameter solution is randomly generated in step 2-1, as shown below: x i,j (0)= x i,min + rand ×( x i,max - x i,min ), i =1,2,..., S , j =1,2,..., P ; where X i,j (0) is the jth The i -th parameter (variable) is solved by a parameter. X i,min and X i,max are the upper and lower limits of the parameters. The upper and lower limits of the parameters are set by user experience. rand is a uniform random number between 0 and 1. S is the number of parameters, P is the number of parameter solutions, and the position vector of the jth parameter solution can be expressed as follows:
Figure 109126293-A0305-02-0010-59
( t )=[all selected parameters after step 1] (t is the number of iterations).

如上所述之太陽能電池雙二極體模型參數估測方法,其中,在步驟2-2所述輸入資料為照度、溫度。 In the above-mentioned method for estimating parameters of a dual-diode model of a solar cell, the input data in step 2-2 are illuminance and temperature.

如上所述之太陽能電池雙二極體模型參數估測方法,其中,在步驟2-2所述輸出資料為電壓、電流、功率。 In the above-mentioned method for estimating parameters of a dual-diode model of a solar cell, the output data in step 2-2 are voltage, current, and power.

如上所述之太陽能電池雙二極體模型參數估測方法,其中,計算每一初始參數解位置向量的適應值如下所示:

Figure 109126293-A0305-02-0010-14
其中P j,est 為PV發電模型估測值,P j,mea 為實際量測值。 In the above-mentioned method for estimating the parameters of the dual-diode model of a solar cell, the fitness value of each initial parameter solution position vector is calculated as follows:
Figure 109126293-A0305-02-0010-14
Among them, P j,est is the estimated value of the PV power generation model, and P j,mea is the actual measured value.

第一圖:本發明之雙二極體模型的物理模型 Figure 1: Physical model of the dual-diode model of the present invention

第二圖:本發明之太陽能電池雙二極體模型參數估測方法的流程圖 The second figure: the flow chart of the method for estimating the parameters of the solar cell bidiode model of the present invention

第三圖:本發明之鯨魚最佳化演算法的流程圖 Figure 3: Flow chart of the whale optimization algorithm of the present invention

第四圖:為晴天天氣型態實際量測值及在參數最佳化前後估測結果 Figure 4: Actual measured values of sunny weather patterns and estimated results before and after parameter optimization

第五圖:為雨天天氣型態實際量測值及在參數最佳化前後估測結果 Figure 5: The actual measured value of the rainy weather pattern and the estimated results before and after parameter optimization

第六圖:為陰天天氣型態實際量測值及在參數最佳化前後估測結果 Figure 6: The actual measured values of cloudy weather patterns and the estimated results before and after parameter optimization

第七圖:為晴時多雲天氣型態實際量測值及在參數最佳化前後估測結果 Figure 7: The actual measured values of cloudy weather patterns in sunny days and the estimated results before and after parameter optimization

第八圖:於晴天天氣型態實際量測值及以雙二極體模型與單二級體模型的參估測比較 Figure 8: The actual measured value of the weather pattern on a sunny day and the parameter estimation comparison between the double-diode model and the single-diode model

第九圖:於陰天天氣型態實際量測值及以雙二極體模型與單二級體模型的參估測比較 Figure 9: The actual measured values in cloudy weather patterns and the parameter estimation comparison between the double-diode model and the single-diode model

第十圖:於陰天天氣型態實際量測值及以雙二極體模型與單二級體模型的參估測比較 Figure 10: The actual measured values in cloudy weather patterns and the parameter estimation comparison between the dual-diode model and the single-diode model

第十一圖:於晴時多雲天氣型態實際量測值及以雙二極體模型與單二級體模型的參估測比較 Figure 11: Actual measured values of cloudy weather patterns in clear weather and comparison of parameter estimates between the dual-diode model and the single-diode model

為令本發明所運用之技術內容、發明目的及其達成之功效有更完整且清楚的揭露,茲於下詳細說明之,並請一併參閱所揭之圖式及圖號:請參看第一~三圖。 In order to have a more complete and clear disclosure of the technical content, the purpose of the invention and the effect achieved by the present invention, it is explained in detail below, and please refer to the disclosed drawings and drawing numbers: please refer to the first ~Three pictures.

本發明之太陽能電池雙二極體模型參數估測方法,係以如第一圖所示之雙二極體模型電路為本發明之太陽能電池的物理模型,該估測方法步驟包括: The method for estimating parameters of a solar cell dual-diode model of the present invention uses the bi-diode model circuit shown in the first figure as the physical model of the solar cell of the present invention. The steps of the estimation method include:

步驟1:首先將在不同照度及溫度下會產生變化的參數,於一穩態運轉點上以靈敏度矩陣剔除對輸出影響微小的參數,接著以主成份分析方法決定被剔除後剩下的每一個參數相對於整體輸出量測的效應,再應用Gram-Schmidt正交轉換建立剩餘的所述參數間的正交特徵,以剔除剩餘的參數彼此之間的相依關係,進而選出影響輸出之參數;其中,在不同照度及溫度下會產生變化的參數包含有:I L,ref (光電流)、I sc,ref (短路電流)、V oc,ref (開路電壓)、I mp,ref (最大功率點電流)、V mp,ref (最大功率點電壓)、G ref (照度)、T ref (模組溫度)、 n I1,ref(第一個二極體理想因子)、n I2,ref (第二個二極體理想因子)、R s,ref (串聯電阻)、R sh,ref (並聯電阻)、I o1,ref (第一個二極體飽和電流)、I o2,ref (第二個二極體飽和電流)、

Figure 109126293-A0305-02-0013-15
最大功率點下溫度係數)、
Figure 109126293-A0305-02-0013-16
短路電流下溫度係數)、β(開路電壓下溫度係數)及E g,ref (間隙能量)。 Step 1: First, the parameters that will change under different illuminance and temperature are eliminated by the sensitivity matrix at a steady-state operating point, and the parameters that have little influence on the output are then determined by the principal component analysis method. The effect of the parameters relative to the overall output measurement, and then applying the Gram-Schmidt orthogonal transformation to establish the orthogonal features between the remaining parameters, so as to eliminate the dependencies between the remaining parameters, and then select the parameters that affect the output; wherein , the parameters that will change under different illumination and temperature include: I L,ref (photocurrent), I sc,ref (short-circuit current), V oc,ref (open circuit voltage), I mp,ref (maximum power point current), V mp,ref (maximum power point voltage), G ref (illuminance), T ref (module temperature), n I 1,ref (first diode ideality factor), n I 2 ,ref ( second diode ideality factor), R s,ref (series resistance), R sh,ref (parallel resistance), I o 1 ,ref (first diode saturation current), I o 2 ,ref ( second diode saturation current),
Figure 109126293-A0305-02-0013-15
temperature coefficient at the maximum power point),
Figure 109126293-A0305-02-0013-16
temperature coefficient at short-circuit current), β (temperature coefficient at open circuit voltage) and E g,ref (gap energy).

在步驟1中進行對輸出影響微小的參數的判斷上,較佳為:係考慮在參數j上有一項擾動,即

Figure 109126293-A0305-02-0013-17
,該擾動將導致第i個輸出產生變化,即
Figure 109126293-A0305-02-0013-18
,則靈敏度係數可近似如下:
Figure 109126293-A0305-02-0013-19
上式可建構出每一個參數相對於每一個輸出的靈敏度矩陣,對輸出影響微小的參數可藉此進行第一步的剔除。 In step 1, in the judgment of the parameters that have little influence on the output, it is better to consider that there is a disturbance on the parameter j , that is,
Figure 109126293-A0305-02-0013-17
, the disturbance will cause the ith output to change, that is
Figure 109126293-A0305-02-0013-18
, the sensitivity coefficient can be approximated as follows:
Figure 109126293-A0305-02-0013-19
The above formula can construct the sensitivity matrix of each parameter relative to each output, and parameters that have little influence on the output can be eliminated in the first step.

其中,在步驟1進行主成份分析方法上,較佳為:係令主成份為共變異數矩陣

Figure 109126293-A0305-02-0013-20
的特徵向量(eigenvector),其中第一個主成份為X矩陣中具有最大特徵值(eigenvalue)所對應的特徵向量,此即整體變化的最大方向,其餘主成份則依序排列其對於整體變化的貢獻度,因此,第j個參數的整體效應可表示如下:
Figure 109126293-A0305-02-0013-21
其中
Figure 109126293-A0305-02-0014-22
為第j個參數相對於整體變數的效應,其值愈大愈佳,α i 為第i個輸出的特徵值,C ij 為第j個參數相對於第i個輸出的主成份元素(或貢獻度),m為輸出的個數。 Wherein, in the principal component analysis method in step 1, it is preferable to make the principal component a covariance matrix
Figure 109126293-A0305-02-0013-20
The eigenvector of , where the first principal component is the eigenvector corresponding to the largest eigenvalue (eigenvalue) in the X matrix, which is the maximum direction of the overall change, and the remaining principal components are arranged in order with respect to the overall change. contribution, so the overall effect of the jth parameter can be expressed as:
Figure 109126293-A0305-02-0013-21
in
Figure 109126293-A0305-02-0014-22
is the effect of the jth parameter relative to the overall variable, the larger the value, the better, α i is the eigenvalue of the ith output, C ij is the principal component element (or contribution of the jth parameter relative to the ith output) degrees), m is the number of outputs.

其中,在步驟1進行剔除剩餘之參數與參數間的相依關係中,假定X i =[X i (1),X i (2),…,X i (N)] T 為第i個樣本的特徵向量,N為樣本數,則特徵矩陣定義如下:

Figure 109126293-A0305-02-0014-23
特徵矩陣X可分解為:X=QR,其中R為一上三角矩陣(upper triangular matrix),Q為一正交矩陣(orthogonal matrix),即
Figure 109126293-A0305-02-0014-24
Figure 109126293-A0305-02-0014-25
其中q i 為正交空間新的特徵向量,在使用Gram-Schmidt進行正交分解(orthogonal decomposition)過程中,下列程序用來建構正交矩陣: q 1=x 1
Figure 109126293-A0305-02-0015-26
其中,
Figure 109126293-A0305-02-0015-27
將上述X=QR公式中的X空間映射至空間QQ=R -1 X,以建構出所述正交矩陣。 Among them, in the dependency relationship between the remaining parameters and the parameters in step 1, it is assumed that X i =[ X i (1), X i (2),..., X i ( N )] T is the i -th sample The eigenvector, N is the number of samples, the eigenmatrix is defined as follows:
Figure 109126293-A0305-02-0014-23
The characteristic matrix X can be decomposed into: X = QR , where R is an upper triangular matrix, and Q is an orthogonal matrix, that is,
Figure 109126293-A0305-02-0014-24
Figure 109126293-A0305-02-0014-25
where q i is the new eigenvector of the orthogonal space. In the orthogonal decomposition process using Gram-Schmidt, the following procedure is used to construct the orthogonal matrix: q 1 = x 1 ,
Figure 109126293-A0305-02-0015-26
in,
Figure 109126293-A0305-02-0015-27
The X space in the above formula of X = QR is mapped to the space Q : Q = R -1 X to construct the orthogonal matrix.

步驟2:係將步驟1所選出之影響輸出的參數,在Matlab/Simulink環境中建立以雙二極體為基礎的PV(太陽能電池)估測模型,並應用鯨魚最佳化演算法進行該些所述影響輸出的參數的估測,以產生最佳估測的參數解;其中,所述鯨魚最佳化演算法包含: Step 2: The parameters that affect the output selected in Step 1 are established in the Matlab/Simulink environment to establish a PV (solar cell) estimation model based on the bi-diode, and the whale optimization algorithm is applied to perform these parameters. The estimation of the parameters that affect the output to generate the best estimated parameter solution; wherein, the whale optimization algorithm comprises:

步驟2-1:首先,將經步驟1選出之影響輸出的參數(控制變數)做為初始參數,並給予初始參數解位置向量,同時設定疊代次數,每一初始參數解位置向量係隨機產生,如下式所示:x i,j (0)=x i,min +rand×(x i,max -x i,min );i=1,2,...,Sj=1,2,...,P;其中X i,j (0)為第i個初始參數(變數)的第j個初始參數解,X i,min X i,max 為參數的上、下限,rand為介於0與1之間的均勻隨機數,S為參數數目,P為參數解數目;第j個初始參數解的位置向量可表示如下:

Figure 109126293-A0305-02-0016-28
Step 2-1: First, take the parameters (control variables) that affect the output selected in step 1 as the initial parameters, and give the initial parameter solution position vector, and set the number of iterations at the same time, each initial parameter solution position vector is randomly generated. , as follows: x i,j (0)= x i,min + rand ×( x i,max - x i,min ); i =1,2,..., S ; j =1,2 ,..., P ; where X i,j (0) is the j -th initial parameter solution of the i -th initial parameter (variable), X i,min and X i,max are the upper and lower limits of the parameters, and rand is Uniform random number between 0 and 1, S is the number of parameters, P is the number of parameter solutions; the position vector of the jth initial parameter solution can be expressed as follows:
Figure 109126293-A0305-02-0016-28

其中,上式中參數數目S視選出的參數而定。 Among them, the number of parameters S in the above formula depends on the selected parameters.

步驟2-2:係將實際量測的輸入值(例如照度、溫度)及輸出值(例如電壓、電流、功率)資料送入PV估測模型中計算得到估測值,再將該估測值與實際量測值整合,進而計算得到每一初始參數解位置向量的適應值;其中,計算每一初始參數解位置向量的適應值的公式如下所示:

Figure 109126293-A0305-02-0016-29
其中P j,est 為PV發電模型估測值,P j,mea 為實際量測值,計算後,所得到的適應值fit(j)愈小愈好。 Step 2-2: The actual measured input value (such as illuminance, temperature) and output value (such as voltage, current, power) data are sent into the PV estimation model to calculate the estimated value, and then the estimated value Integrate with the actual measurement value, and then calculate the fitness value of each initial parameter solution position vector; wherein, the formula for calculating the fitness value of each initial parameter solution position vector is as follows:
Figure 109126293-A0305-02-0016-29
Among them, P j,est is the estimated value of the PV power generation model, and P j,mea is the actual measured value. After calculation, the smaller the fitness value fit ( j ), the better.

步驟2-3:利用泡泡網攻擊法更新初始參數解位置,所述泡泡網攻擊法包含縮小包圍獵物機制及螺旋式更新位置;係根據包圍獵物法在縮小包圍最佳可行解的機制過程中,先假設目前最佳可行解為目標獵物(即初始參數解的最佳位置),利用螺旋方程式之螺旋路徑朝向此初始參數解的最佳位置的方向前進,並依據最佳位置更新初始參數解位置。 Step 2-3: Use the bubble net attack method to update the initial parameter solution position. The bubble net attack method includes the mechanism of shrinking and encircling the prey and updating the position in a spiral manner; it is the mechanism process of shrinking and encircling the best feasible solution according to the method of encircling the prey. , first assume that the current best feasible solution is the target prey (that is, the best position of the initial parameter solution), use the spiral path of the spiral equation to move towards the direction of the best position of the initial parameter solution, and update the initial parameters according to the best position solution location.

步驟2-4:利用搜尋獵物法探索並隨機挑選一些參數解,這些搜尋中的參數解依據隨機位置更新其位置,進而朝全域最佳解方向移動。 Step 2-4: Use the prey search method to explore and randomly select some parametric solutions. The parametric solutions in these searches update their positions according to the random positions, and then move towards the best solution in the whole domain.

步驟2-5:係將更新後之最佳參數解送入PV估測模型中計算得到功率估測值,再將該功率估測值與實際量測的輸入值及輸出值整合,進而計算得到每一個更新位置後參數解位置向量的適應值,並更新最佳位置解。 Step 2-5: Send the updated optimal parameter solution into the PV estimation model to calculate the estimated power value, and then integrate the estimated power value with the actual measured input value and output value, and then calculate to obtain The fitness value of the parameter solution position vector after each updated position, and the optimal position solution is updated.

步驟2-6:判斷是否符合設定的所述疊代次數,倘未符合,回到步驟2-3;倘符合,則表示找到最佳參數解,符合結束條件,並且輸出該最佳參數解。 Step 2-6: Determine whether the set number of iterations is met, if not, go back to step 2-3; if so, it means that the best parameter solution is found, the end condition is met, and the best parameter solution is output.

經過上述步驟輸出最佳參數解之後,只要將即時照度及溫度資料輸入至PV估測模型中,便能產生相對應且準確的發電功率預測值。 After the optimal parameter solution is output through the above steps, as long as the real-time illuminance and temperature data are input into the PV estimation model, a corresponding and accurate predicted value of the generated power can be generated.

<實施例> <Example>

本發明所提出的方法應用於一500kWp的太陽能發電系統。資料每分鐘取樣一次,一小時內所取得的資料經平均後做為該小時的PV發電量。因日照關係,夏月資料取得從早上06:00至晚上19:00共14點,非夏月從早上06:00至晚上17:00共12點。資料收集期間為2018年1月至2018年12月。為評估預測的準確性,本發明採用平均相對誤差(Mean Relative Error,MRE),如下所示:

Figure 109126293-A0305-02-0017-30
其中P fore 為估測值,P true 為實際值,P cap 為PV發電容量,N為訓練資料數。 The method proposed by the present invention is applied to a 500kWp solar power generation system. The data is sampled once every minute, and the data obtained within one hour are averaged as the PV power generation for that hour. Due to the relationship of sunshine, the summer moon data is obtained from 06:00 in the morning to 19:00 in the evening at 14:00, and in the non-summer month from 06:00 in the morning to 17:00 in the evening at 12:00. The data collection period was from January 2018 to December 2018. In order to evaluate the accuracy of prediction, the present invention adopts the mean relative error (Mean Relative Error, MRE ), as follows:
Figure 109126293-A0305-02-0017-30
Among them, P fore is the estimated value, P true is the actual value, P cap is the PV power generation capacity, and N is the number of training data.

其中,以第一圖所示做為本發明之太陽能電池雙二極體模型,其在不同照度及溫度下會產生變化的參數包含有:I L,ref (光電流)、I sc,ref (短路電流)、V oc,ref (開路電壓)、I mp,ref (最大功率點電流)、V mp,ref (最大功率點電壓)、G ref (照度)、T ref (模組溫度)、n I1,ref(第一個二極體理想因子)、n I2,ref (第二個二極體理想因子)、R s,ref (串聯電阻)、R sh,ref (並聯電阻)、I o1,ref (第一個二極體飽和電流)、I o2,ref (第二個二極體飽和電流)、α Imp (最大功率點下溫度係數)、α Isc (短路電流下溫度係數)、β(開路電壓下溫度係數)及E g,ref (間隙能量)。表1為上述17個相關參數及其可能的變化範圍。 Among them, the first figure is used as the solar cell double-diode model of the present invention, and its parameters that will change under different illumination and temperature include: I L,ref (photocurrent), I sc,ref ( short circuit current), V oc,ref (open circuit voltage), I mp,ref (maximum power point current), V mp,ref (maximum power point voltage), G ref (illuminance), T ref (module temperature), n I 1,ref (first diode ideality factor), n I 2 ,ref (second diode ideality factor), R s,ref (series resistance), R sh,ref (parallel resistance), I o 1 ,ref (first diode saturation current), I o 2 ,ref (second diode saturation current), α Imp (temperature coefficient at maximum power point), α Isc (temperature coefficient at short-circuit current) ), β (temperature coefficient at open circuit voltage) and E g,ref (gap energy). Table 1 shows the above 17 related parameters and their possible variation ranges.

將上述17個在不同照度及溫度下會產生變化的參數於一穩態運轉點上,以靈敏度矩陣剔除對輸出影響微小的參數,其中在此階段剔除的參數為α Isc 與β;接著以主成份分析方法決定剔除對輸出影響微小參數後剩餘的參數相對於整體輸出量測的效應,最後再應用Gram-Schmidt正交轉換技術建立剩餘的參數間的正交特徵,以剔除剩餘的參數彼此之間的相依關係,以選出能影響輸出的14個參數,其中,到此步驟未被選取的參數共有α Imp Isc ,β,其他被選出影響輸出的14個參數如表1所示,最後選取的14個參數為:I L,ref ,I sc,ref ,V oc,ref ,I mp,ref ,V mp,ref ,G ref ,T ref ,n I1,ref,n I2,ref ,R s,ref ,R sh,ref ,I o1,ref ,I o2,ref ,E g,ref )。基於這些選取的14個參數,在Matlab/Simulink環境中建立太陽能電池發電估測模型。即將選出的14個參數做為初始參數,並隨機給予初始參數解位置向量,同時設定疊代次數;接著將實際量測的照度、溫度輸入值及電壓、電流、功率輸出值送入PV估測模型中計算得到估測值,再將該估測值與實際量測值整合,進而計算得到每一初始參數解位置向量的適 應值;接著,根據包圍獵物法更新初始參數解位置,並且將更新後之最佳參數解送入PV估測模型中計算得到功率估測值,再將該功率估測值與實際量測的輸入值及輸出值整合,進而計算得到每一個更新位置後參數解位置向量的適應值,並更新最佳位置解,運算過程中,若符合設定的疊代次數,則表示找到最佳參數解,若不符合,則再回到根據包圍獵物法更新初始參數解位置的步驟繼續執行,直到符合設定的疊代次數。當找到最佳參數解後,只要將即時照度及溫度資料輸入至PV估測模型中,便能產生相對應且準確的發電功率預測值。 The above 17 parameters that will change under different illumination and temperature are placed at a steady-state operating point, and the parameters that have little influence on the output are eliminated by the sensitivity matrix. The parameters eliminated at this stage are α Isc and β; The component analysis method determines the effect of the remaining parameters on the overall output measurement after eliminating the small parameters that affect the output. Finally, the Gram-Schmidt orthogonal transformation technique is used to establish the orthogonal features between the remaining parameters to eliminate the remaining parameters. 14 parameters that can affect the output are selected. Among them, the parameters that have not been selected in this step are α Imp , α Isc , β, and the other 14 parameters that are selected to affect the output are shown in Table 1. Finally, The selected 14 parameters are: I L,ref , I sc,ref , V oc,ref , I mp,ref , V mp,ref , G ref , T ref , n I 1,ref , n I 2 ,ref , R s,ref , R sh,ref , I o 1 ,ref , I o 2 ,ref , E g,ref ). Based on these 14 selected parameters, a solar cell power generation estimation model is established in the Matlab/Simulink environment. The 14 parameters to be selected are used as the initial parameters, and the initial parameters are given randomly to solve the position vector, and the number of iterations is set at the same time; then the actual measured illuminance, temperature input value and voltage, current, power output value are sent to PV estimation The estimated value is calculated in the model, and then the estimated value is integrated with the actual measurement value, and then the fitness value of each initial parameter solution position vector is calculated; then, the initial parameter solution position is updated according to the encircling prey method, and the updated After that, the optimal parameter solution is sent into the PV estimation model to calculate the estimated power value, and then the estimated power value is integrated with the actual measured input value and output value, and then the position of the parameter solution after each update position is calculated. The fitness value of the vector, and update the optimal position solution. During the operation, if it meets the set number of iterations, it means that the best parameter solution is found. Steps continue until the set number of iterations is met. When the optimal parameter solution is found, as long as the real-time illuminance and temperature data are input into the PV estimation model, the corresponding and accurate predicted power generation value can be generated.

為探討不同天氣情況下的估測結果,本發明以晴天、雨天、陰天及晴時多雲等四個不同天氣型態進行研究,第四~七圖分別為晴天、雨天、陰天及晴時多雲等四個不同天氣型態在參數最佳化前後估測結果,由這些曲線趨勢可觀察參數經最佳化後,其對於發電量的估測明顯改善,其最佳化前後的估測誤差大小可由表2得知。第八~十一圖為分別於晴天、雨天、陰天及晴時多雲等四個不同天氣型態以雙二極體模型與單二級體模型的參估測比較(其中單二級體模型透過參數選取過程,原13個參數選取9個參數進行參數最佳化),由這些曲線趨勢可觀察雙二極體模型有較佳的估測結果,表3比較兩種模型在各個時段的估測性能,雙二極體模型在早上及下午較低照度時段具有較佳的估測結果,在中午較高照度時段兩種模式則互有領先,整體平均誤差則顯示雙二極體模型具有較佳的估測結果。 In order to explore the estimation results under different weather conditions, the present invention conducts research on four different weather patterns, such as sunny days, rainy days, cloudy days, and cloudy days when clear. The estimation results of four different weather patterns such as cloudy before and after parameter optimization. From these curve trends, it can be observed that after the parameters are optimized, the estimation of power generation is significantly improved, and the estimation error before and after optimization The size can be known from Table 2. Figures 8 to 11 show the parameter estimation comparison between the double-diode model and the single-second body model for four different weather patterns, including sunny days, rainy days, cloudy days, and cloudy days, respectively (where the single-second body model is used). Through the parameter selection process, 9 parameters were selected from the original 13 parameters for parameter optimization). From these curve trends, it can be observed that the dual-diode model has better estimation results. Table 3 compares the estimation results of the two models in each time period. The two-diode model has better estimation results in the low illumination period in the morning and afternoon, and the two models lead each other in the high-illumination period at noon. The overall average error shows that the dual-diode model has better estimation results. good estimates.

<表1>

Figure 109126293-A0305-02-0020-64
<Table 1>
Figure 109126293-A0305-02-0020-64

Figure 109126293-A0305-02-0020-32
Figure 109126293-A0305-02-0020-32

Figure 109126293-A0305-02-0020-33
Figure 109126293-A0305-02-0020-33
Figure 109126293-A0305-02-0021-34
Figure 109126293-A0305-02-0021-34

以上所舉者僅係本發明之部份實施例,並非用以限制本發明,致依本發明之創意精神及特徵,稍加變化修飾而成者,亦應包括在本專利範圍之內。 The above-mentioned examples are only some embodiments of the present invention, and are not intended to limit the present invention. According to the creative spirit and characteristics of the present invention, those made with slight changes and modifications should also be included in the scope of this patent.

綜上所述,本發明實施例確能達到所預期之使用功效,又其所揭露之具體技術手段,不僅未曾見諸於同類產品中,亦未曾公開於申請前,誠已完全符合專利法之規定與要求,爰依法提出發明專利之申請,懇請惠予審查,並賜准專利,則實感德便。 To sum up, the embodiment of the present invention can indeed achieve the expected use effect, and the specific technical means disclosed by it have not only not been seen in similar products, but also have not been disclosed before the application, which fully complies with the patent law. According to the regulations and requirements, it is really grateful to file an application for an invention patent in accordance with the law, and ask for the review and approval of the patent.

Claims (6)

一種太陽能電池雙二極體模型參數估測方法,其步驟包括:步驟1:將在不同照度及溫度下會產生變化的複數參數中,於一穩態運轉點上以靈敏度矩陣將所述複數參數中對輸出影響微小者予以剔除,剩餘的所述參數以主成份分析方法決定每一個剩餘的所述參數相對於整體輸出量測的效應,再應用Gram-Schmidt正交轉換建立剩餘的所述參數間的正交特徵,以剔除剩餘的所述參數間的相依關係,進而選出影響輸出的參數;步驟2:係將步驟1選出的所述影響輸出的參數在Matlab/Simulink環境中建立以雙二極體為基礎的PV估測模型,並應用鯨魚最佳化演算法進行該些所述影響輸出的參數的估測,以得到最佳參數解;其中,所述鯨魚最佳化演算法包含:步驟2-1:將步驟1選出的所述影響輸出的參數做為初始參數,並隨機給予每一所述初始參數一初始參數解位置向量,同時設定疊代次數;步驟2-2:係將實際量測的輸入值及輸出值送入所述PV估測模型中計算得到估測值,再將所述估測值與所述實際量測的輸入值及輸出值整合,進而計算得到每一所述初始參數解位置向量的適應值;步驟2-3:係根據泡泡網攻擊法中的包圍獵物法在縮小包圍最佳可行解的機制過程中,先假設目前最佳可行解為所述初始參數解 的最佳位置,利用螺旋方程式之螺旋路徑朝向所述初始參數解的最佳位置的方向前進,並依據所述最佳位置更新所述初始參數解的位置;步驟2-4:利用搜尋獵物法探索並隨機挑選參數解,這些搜尋中的所述參數解依據隨機位置更新其位置,進而朝全域最佳解方向移動;步驟2-5:係將更新位置後之所述參數解送入PV估測模型中計算得到功率估測值,再將所述功率估測值與實際量測的輸入值及輸出值整合,進而計算得到每一個更新位置後的參數解位置向量的適應值,並更新最佳位置解;步驟2-6:檢查是否符合設定的所述疊代次數,倘未符合,回到步驟2-3;倘符合,則所述更新最佳位置解即為最佳參數解,輸出所述最佳參數解並結束。 A method for estimating parameters of a dual-diode model of a solar cell, the steps of which include: Step 1: Among the complex parameters that will change under different illumination and temperature, use a sensitivity matrix to calculate the complex parameters at a steady-state operating point. Among them, those with little effect on the output are eliminated, and the remaining parameters are determined by principal component analysis to determine the effect of each remaining parameter relative to the overall output measurement, and then the Gram-Schmidt orthogonal transformation is applied to establish the remaining parameters. In order to eliminate the remaining dependencies between the parameters, and then select the parameters that affect the output; Step 2: The parameters that affect the output selected in step 1 are established in the Matlab/Simulink environment as double two A polar body-based PV estimation model, and the whale optimization algorithm is applied to estimate the parameters that affect the output, so as to obtain the best parameter solution; wherein, the whale optimization algorithm includes: Step 2-1: Take the parameter that affects the output selected in Step 1 as the initial parameter, and randomly give each initial parameter an initial parameter solution position vector, and set the number of iterations at the same time; Step 2-2: System The actual measured input value and output value are sent into the PV estimation model to calculate the estimated value, and then the estimated value is integrated with the actual measured input value and output value, and then each calculated value is obtained. 1. The adaptation value of the position vector of the initial parameter solution; Step 2-3: According to the method of encircling the prey in the bubble net attack method, in the process of reducing the mechanism of encircling the best feasible solution, first assume that the current best feasible solution is the the initial parameter solution The best position of the initial parameter solution is used to move towards the direction of the best position of the initial parameter solution using the spiral path of the spiral equation, and the position of the initial parameter solution is updated according to the best position; Step 2-4: Use the prey search method Exploring and randomly selecting parametric solutions, the parametric solutions in these searches update their positions according to random positions, and then move towards the best solution in the whole domain; Step 2-5: The parametric solutions after updating the positions are sent to PV estimation Calculate the estimated power value in the measurement model, then integrate the estimated power value with the actual measured input value and output value, and then calculate the fitness value of the parameter solution position vector after each updated position, and update the most Step 2-6: Check whether it meets the set number of iterations, if not, go back to step 2-3; if it matches, the updated best position solution is the best parameter solution, and output The optimal parameter solution and end. 如請求項1所述之太陽能電池雙二極體模型參數估測方法,其中,在步驟1所述之主成份分析方法,係令主成份為共變異數矩陣
Figure 109126293-A0305-02-0023-35
的特徵向量(eigenvector),其中第一個主成份為X矩陣中具有最大特徵值(eigenvalue)所對應的特徵向量,此即整體變化的最大方向,其餘主成份則依序排列其對於整體變化的貢獻度,因此,第j個參數的整體效應表示如下:
Figure 109126293-A0305-02-0024-36
其中
Figure 109126293-A0305-02-0024-37
為第j個參數相對於整體變數的效應,α i 為第i個輸出的特徵值,C ij 為第j個參數相對於第i個輸出的主成份元素(或貢獻度),m為輸出的個數。
The method for estimating parameters of a solar cell bidiode model according to claim 1, wherein, in the principal component analysis method described in step 1, the principal component is a covariance matrix
Figure 109126293-A0305-02-0023-35
The eigenvector of , where the first principal component is the eigenvector corresponding to the largest eigenvalue (eigenvalue) in the X matrix, which is the maximum direction of the overall change, and the remaining principal components are arranged in order with respect to the overall change. Contribution, therefore, the overall effect of the jth parameter is expressed as:
Figure 109126293-A0305-02-0024-36
in
Figure 109126293-A0305-02-0024-37
is the effect of the jth parameter relative to the overall variable, α i is the eigenvalue of the ith output, C ij is the principal component element (or contribution) of the jth parameter relative to the ith output, m is the output number.
如請求項2所述之太陽能電池雙二極體模型參數估測方法,其中,在步驟1剔除參數與參數間的相依關係中,X i =[X i (1),X i (2),…,X i (N)] T 為第i個樣本的特徵向量,N為樣本數,則特徵矩陣定義如下:
Figure 109126293-A0305-02-0024-38
特徵矩陣X可分解為:X=QR;其中R為一上三角矩陣(upper triangular matrix),Q為一正交矩陣(orthogonal matrix),即
Figure 109126293-A0305-02-0024-39
Figure 109126293-A0305-02-0024-40
其中q i 為正交空間新的特徵向量,在使用Gram-Schmidt進行正交分解(orthogonal decomposition)過程中,下列程序用來建構正交矩陣:q 1=x 1
Figure 109126293-A0305-02-0025-41
其中,
Figure 109126293-A0305-02-0025-42
;將上述X=QR公式中的X空間映射至空間QQ=R -1 X,以建構出所述正交矩陣。
The method for estimating parameters of a solar cell bidiode model according to claim 2, wherein, in step 1 to eliminate the dependencies between parameters, X i =[ X i (1), X i (2), …, X i ( N )] T is the eigenvector of the ith sample, and N is the number of samples, then the eigenmatrix is defined as follows:
Figure 109126293-A0305-02-0024-38
The characteristic matrix X can be decomposed into: X = QR ; where R is an upper triangular matrix, and Q is an orthogonal matrix, that is,
Figure 109126293-A0305-02-0024-39
Figure 109126293-A0305-02-0024-40
where q i is the new eigenvector of the orthogonal space. In the orthogonal decomposition process using Gram-Schmidt, the following procedure is used to construct the orthogonal matrix: q 1 = x 1 ;
Figure 109126293-A0305-02-0025-41
in,
Figure 109126293-A0305-02-0025-42
; Map the X space in the above formula of X = QR to the space Q : Q = R -1 X , to construct the orthogonal matrix.
如請求項5所述之太陽能電池雙二極體模型參數估測方法,其中,在步驟2-1每一個初始參數解的位置向量隨機產生,如下所示:x i,j (0)=x i,min +rand×(x i,max -x i,min ),i=1,2,...,S,j=1,2,...,P;其中,X i,j (0)為第j個參數解第i個參數(變數),X i,min X i,max 為參數上下限,參數上下限範圍由使用者依經驗設定,rand為介於0與1之間的均勻隨機數,S為參數數目,P為參數解數目,第j個參數解的位置向量可表示如下:
Figure 109126293-A0305-02-0025-58
(t)=[經所述步驟1後所有被選取的參數](t為疊代次數)。
The method for estimating parameters of a solar cell bidiode model according to claim 5, wherein in step 2-1, the position vector of each initial parameter solution is randomly generated, as shown below: x i,j (0)= x i,min + rand ×( x i,max - x i,min ), i =1,2,..., S,j =1,2,..., P ; where X i,j (0 ) is the jth parameter to solve the ith parameter (variable), X i,min and X i,max are the upper and lower limits of the parameters, the upper and lower limits of the parameters are set by the user according to experience, rand is between 0 and 1 Uniform random number, S is the number of parameters, P is the number of parameter solutions, and the position vector of the jth parameter solution can be expressed as follows:
Figure 109126293-A0305-02-0025-58
( t )=[all selected parameters after step 1] (t is the number of iterations).
如請求項6所述之太陽能電池雙二極體模型參數估測方法,其中,在步驟2-2所述輸入值為照度、溫度,所述輸出值為電壓、電流、功率。 The method for estimating parameters of a solar cell bidiode model according to claim 6, wherein in step 2-2, the input values are illuminance and temperature, and the output values are voltage, current, and power. 如請求項5所述之太陽能電池雙二極體模型參數估測方法,其中,計算每一初始參數解位置向量的適應值如下所示:
Figure 109126293-A0305-02-0026-43
其中P j,est 為PV發電模型估測值,P j,mea 為實際量測值。
The method for estimating parameters of a solar cell bidiode model according to claim 5, wherein the calculation of the fitness value of each initial parameter solution position vector is as follows:
Figure 109126293-A0305-02-0026-43
Among them, P j,est is the estimated value of the PV power generation model, and P j,mea is the actual measured value.
TW109126293A 2020-08-04 2020-08-04 Parameter estimation method for solar cell double-diode model TWI776199B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109126293A TWI776199B (en) 2020-08-04 2020-08-04 Parameter estimation method for solar cell double-diode model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109126293A TWI776199B (en) 2020-08-04 2020-08-04 Parameter estimation method for solar cell double-diode model

Publications (2)

Publication Number Publication Date
TW202207055A TW202207055A (en) 2022-02-16
TWI776199B true TWI776199B (en) 2022-09-01

Family

ID=81323521

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109126293A TWI776199B (en) 2020-08-04 2020-08-04 Parameter estimation method for solar cell double-diode model

Country Status (1)

Country Link
TW (1) TWI776199B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009111908A1 (en) * 2008-03-14 2009-09-17 Chen Jen-Shyan Solar cell device with high heat dissipation efficiency
US8600572B2 (en) * 2010-05-27 2013-12-03 International Business Machines Corporation Smarter-grid: method to forecast electric energy production and utilization subject to uncertain environmental variables
US9461535B2 (en) * 2013-12-30 2016-10-04 King Fahd University Of Petroleum And Minerals Photovoltaic systems with maximum power point tracking controller
WO2016201579A1 (en) * 2015-06-18 2016-12-22 Aurora Solar Technologies (Canada) Inc. Solar cell emitter characterization using non-contact dopant concentration and minority carrier lifetime measurement
TWI669589B (en) * 2018-08-29 2019-08-21 崑山科技大學 Maximum power tracking method for solar cell and system thereof suitable for real-time online environment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009111908A1 (en) * 2008-03-14 2009-09-17 Chen Jen-Shyan Solar cell device with high heat dissipation efficiency
US8600572B2 (en) * 2010-05-27 2013-12-03 International Business Machines Corporation Smarter-grid: method to forecast electric energy production and utilization subject to uncertain environmental variables
US9461535B2 (en) * 2013-12-30 2016-10-04 King Fahd University Of Petroleum And Minerals Photovoltaic systems with maximum power point tracking controller
WO2016201579A1 (en) * 2015-06-18 2016-12-22 Aurora Solar Technologies (Canada) Inc. Solar cell emitter characterization using non-contact dopant concentration and minority carrier lifetime measurement
TWI669589B (en) * 2018-08-29 2019-08-21 崑山科技大學 Maximum power tracking method for solar cell and system thereof suitable for real-time online environment
TW202009628A (en) * 2018-08-29 2020-03-01 崑山科技大學 Maximum power tracking method for solar cell and system thereof suitable for real-time online environment

Also Published As

Publication number Publication date
TW202207055A (en) 2022-02-16

Similar Documents

Publication Publication Date Title
Chellaswamy et al. Parameter extraction of solar cell models based on adaptive differential evolution algorithm
CN111008728B (en) Prediction method for short-term output of distributed photovoltaic power generation system
Li et al. A novel beta parameter based fuzzy-logic controller for photovoltaic MPPT application
Hachana et al. Comparison of different metaheuristic algorithms for parameter identification of photovoltaic cell/module
Tang et al. Entropy method combined with extreme learning machine method for the short-term photovoltaic power generation forecasting
EP3506132A1 (en) Simulation of photovoltaic systems
CN113128793A (en) Photovoltaic power combination prediction method and system based on multi-source data fusion
CN105590032B (en) Photovoltaic module MPPT method based on parameter identification
Dong et al. A general radial basis function neural network assisted hybrid modeling method for photovoltaic cell operating temperature prediction
CN107103154A (en) A kind of photovoltaic module model parameter identification method
Kumar et al. Parameter estimation of three-diode solar photovoltaic model using an Improved-African Vultures optimization algorithm with Newton–Raphson method
CN109961173A (en) A kind of intelligent Forecasting for distributed generation resource generated output
Lingyun et al. Solar cells parameter extraction using a hybrid genetic algorithm
Lidaighbi et al. A new hybrid method to estimate the single-diode model parameters of solar photovoltaic panel
CN115185334A (en) Photovoltaic MPPT method based on GRU neural network
Huang et al. Research of soil moisture content forecast model based on genetic algorithm BP neural network
Choulli et al. Hybrid optimization based on the analytical approach and the particle swarm optimization algorithm (Ana-PSO) for the extraction of single and double diode models parameters
Udoka et al. The differences between single diode model and double diode models of a solar photovoltaic cells: systematic review
El Marghichi et al. A solar PV model parameters estimation based on an improved manta foraging algorithm with dynamic fitness distance balance
TWI776199B (en) Parameter estimation method for solar cell double-diode model
CN105913161A (en) Method of acquiring maximum power point of photovoltaic system based on multi-objective optimization
CN109447843B (en) Photovoltaic output prediction method and device
Ahmed et al. Non-iterative MPPT Method: A Comparative Study
CN115587544A (en) Parameter identification method of photovoltaic model based on improved Harris eagle optimization algorithm
CN109726849A (en) A kind of building microgrid load forecasting method of colored pollination algorithm optimization neural network

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent