TWI771923B - Method and apparatus for radar modulations - Google Patents

Method and apparatus for radar modulations Download PDF

Info

Publication number
TWI771923B
TWI771923B TW110106302A TW110106302A TWI771923B TW I771923 B TWI771923 B TW I771923B TW 110106302 A TW110106302 A TW 110106302A TW 110106302 A TW110106302 A TW 110106302A TW I771923 B TWI771923 B TW I771923B
Authority
TW
Taiwan
Prior art keywords
wireless communication
radar
signal
chipset
radar sensing
Prior art date
Application number
TW110106302A
Other languages
Chinese (zh)
Other versions
TW202137740A (en
Inventor
寄楣 連
顧昌展
艾利克 M 歐森
Original Assignee
美商谷歌有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商谷歌有限責任公司 filed Critical 美商谷歌有限責任公司
Publication of TW202137740A publication Critical patent/TW202137740A/en
Application granted granted Critical
Publication of TWI771923B publication Critical patent/TWI771923B/en

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

Techniques and apparatuses are described that enable radar modulations for radar sensing using a wireless communication chipset. A controller initializes or controls modulations performed by the wireless communication chipset. In this way, the controller can enable the wireless communication chipset to perform modulations for wireless communication or radar sensing. In some cases, the controller can further select a wireless communication channel for setting a frequency and a bandwidth of a radar signal, thereby avoiding interference between multiple radar signals or between the radar signal and a communication signal. In other cases, the controller can cause the wireless communication chipset to modulate a signal containing communication data using a radar modulation. This enables another device that receives the signal to perform wireless communication or radar sensing. By utilizing these techniques, the wireless communication chipset can be used for wireless communication or radar sensing.

Description

用於雷達調變之方法及設備 Method and apparatus for radar modulation

雷達係可偵測且追蹤物件、對表面進行地圖繪製且辨識目標之有用裝置。在許多情況中,一雷達可取代體積大且昂貴的感測器(諸如一攝影機),且在存在不同環境條件(諸如低照明及霧)或具有移動或重疊目標之情況下提供改良之效能。 Radar is a useful device for detecting and tracking objects, mapping surfaces, and identifying targets. In many cases, a radar can replace bulky and expensive sensors (such as a camera) and provide improved performance in the presence of different environmental conditions (such as low lighting and fog) or with moving or overlapping targets.

雖然使用雷達感測可係有利的,但存在與將雷達感測器併入商業裝置中相關聯之許多挑戰。舉例而言,較小消費者裝置對雷達感測器之一大小設置限制,其可限制效能。此外,習知雷達使用客製化設計之雷達特定硬體以產生雷達特定信號。此硬體可係昂貴的且若併入則需要消費者裝置中的額外空間。因此,歸因於額外成本及空間限制,消費者裝置不太可能併入雷達感測器。 While the use of radar sensing can be advantageous, there are a number of challenges associated with incorporating radar sensors into commercial devices. For example, smaller consumer devices place a limit on the size of one of the radar sensors, which can limit performance. In addition, conventional radars use custom-designed radar-specific hardware to generate radar-specific signals. This hardware can be expensive and requires additional space in consumer devices if incorporated. Therefore, consumer devices are unlikely to incorporate radar sensors due to additional cost and space constraints.

本發明描述實現使用一無線通信晶片組之雷達感測之雷達調變之技術及設備。一控制器初始化或控制藉由該無線通信晶片組執行之調變。以此方式,該控制器可使該無線通信晶片組能夠執行用於無線通信或雷達感測之調變。在一些情況中,該控制器可進一步選擇用於設定一雷達信號之 一頻率及一頻寬之一無線通信頻道,藉此避免多個雷達信號之間或該雷達信號與一通信信號之間之干擾。在其他情況中,該控制器可引起該無線通信晶片組將通信資料調變至該雷達信號上。此使接收該信號之另一裝置能夠執行無線通信或雷達感測。藉由利用此等技術,該無線通信晶片組可用於無線通信或雷達感測。 This disclosure describes techniques and apparatus for implementing radar modulation for radar sensing using a wireless communication chipset. A controller initiates or controls modulation performed by the wireless communication chipset. In this way, the controller may enable the wireless communication chipset to perform modulation for wireless communication or radar sensing. In some cases, the controller may further choose to set a radar signal A wireless communication channel of a frequency and a bandwidth, thereby avoiding interference between a plurality of radar signals or between the radar signal and a communication signal. In other cases, the controller may cause the wireless communication chipset to modulate communication data onto the radar signal. This enables another device receiving the signal to perform wireless communication or radar sensing. By utilizing these technologies, the wireless communication chipset can be used for wireless communication or radar sensing.

下文描述之態樣包含一無線通信晶片組、一處理器及包括回應於藉由該處理器執行而實施一控制器之電腦可執行指令之一電腦可讀儲存媒體。該無線通信晶片組包含一同相及正交調變器。該無線通信晶片組經組態以經由該同相及正交調變器基於一調變類型而調變一信號。該控制器經組態以選擇該調變類型以實現反射該信號之一目標之偵測。 Aspects described below include a wireless communication chipset, a processor, and a computer-readable storage medium including computer-executable instructions responsive to execution by the processor to implement a controller. The wireless communication chip set includes in-phase and quadrature modulators. The wireless communication chipset is configured to modulate a signal based on a modulation type via the in-phase and quadrature modulators. The controller is configured to select the modulation type to enable detection of a target reflecting the signal.

下文描述之態樣亦包含一種選擇一第一調變類型以使一目標之一位置能夠被判定之方法。該方法包含選擇一第二調變類型以使通信資料能夠被無線地傳達。該方法亦包含經由一無線通信晶片組基於該第一調變類型調變一信號以產生一雷達信號。另外,該方法包含經由該無線通信晶片組基於該第二調變類型調變另一信號以產生一通信信號。該方法進一步包含控制該雷達信號及該通信信號之發射來實現經由該無線通信晶片組之雷達感測及無線通信。 The aspects described below also include a method of selecting a first modulation type to enable a position of a target to be determined. The method includes selecting a second modulation type to enable communication data to be communicated wirelessly. The method also includes modulating, via a wireless communication chipset, a signal based on the first modulation type to generate a radar signal. Additionally, the method includes modulating, via the wireless communication chipset, another signal based on the second modulation type to generate a communication signal. The method further includes controlling the transmission of the radar signal and the communication signal to enable radar sensing and wireless communication via the wireless communication chipset.

下文描述之態樣亦包含一種系統,其具有用於控制一無線通信晶片組以產生用於雷達感測之一雷達信號之構件及用於選擇藉由該無線通信晶片組執行之一調變類型以支援雷達感測或無線通信之構件。 The aspects described below also include a system having means for controlling a wireless communication chipset to generate a radar signal for radar sensing and for selecting a modulation type to be performed by the wireless communication chipset A component to support radar sensing or wireless communication.

100:環境 100: Environment

102:運算裝置 102: Computing device

102-1:桌上型電腦 102-1: Desktop Computers

102-2:平板電腦 102-2: Tablet PC

102-3:膝上型電腦 102-3: Laptops

102-4:電視 102-4: Television

102-5:運算手錶 102-5: Computing watch

102-6:運算眼鏡 102-6: Computing Glasses

102-7:遊戲系統 102-7: Game System

102-8:微波爐 102-8: Microwave oven

102-9:車輛 102-9: Vehicles

104:無線通信晶片組 104: Wireless Communication Chipset

104-1:第一無線通信晶片組 104-1: The first wireless communication chipset

104-2:第二無線通信晶片組 104-2: Second Wireless Communication Chipset

104-3:第三無線通信晶片組 104-3: The third wireless communication chipset

106:基地台 106: Base Station

108:無線通信鏈路/無線鏈路 108: Wireless Communication Links/Wireless Links

108-1:無線鏈路 108-1: Wireless Link

108-2:無線鏈路 108-2: Wireless Link

108-3:無線鏈路 108-3: Wireless Link

110-1:遮蔽手勢辨識應用程式 110-1: Masking Gesture Recognition Application

110-2:手勢辨識應用程式 110-2: Gesture Recognition Application

110-3:醫學診斷應用程式 110-3: Medical Diagnostic Applications

110-4:地圖繪製應用程式 110-4: Mapping Applications

200:環境 200: Environment

202:智慧型電話 202: Smartphone

204:智慧型冰箱 204: Smart Refrigerator

206-1:雷達場 206-1: Radar Field

206-2:雷達場 206-2: Radar Field

206-3:雷達場 206-3: Radar Field

302:網路介面 302: Network Interface

304:電腦處理器 304: Computer processor

306:電腦可讀媒體 306: Computer-readable media

308:基於雷達之應用程式 308: Radar-based applications

310:控制器 310: Controller

402:通信介面 402: Communication interface

404:天線 404: Antenna

404-1至404-NM:天線 404-1 to 404-NM: Antenna

406:收發器 406: Transceiver

406-1至406-NM:收發器 406-1 to 406-NM: Transceivers

408:系統處理器 408: System Processor

410:系統媒體 410: System Media

416:全雙工操作 416: full duplex operation

418:數位波束成形器 418: Digital Beamformers

420:雷達調變器 420: Radar Modulator

502-1至502-NM:發射器 502-1 to 502-NM: Transmitter

504-1至504-NM:接收器 504-1 to 504-NM: Receivers

506-1至506-NM:開關 506-1 to 506-NM: Switch

508:雙工操作信號 508: Duplex operation signal

602-1:發射雷達信號 602-1: Transmit Radar Signal

602-2:反射雷達信號 602-2: Reflected Radar Signal

604:目標 604: Target

606:圖表 606: Charts

608:圖表 608: Charts

610-1至610-P:發射脈衝 610-1 to 610-P: Transmit Pulse

612-1:反射脈衝 612-1: Reflected Pulse

612-2:反射脈衝 612-2: Reflected Pulse

702-1至702-N:基頻帶資料 702-1 to 702-N: Baseband Information

704-1至704-N:複合權重 704-1 to 704-N: Composite Weights

706:加總 706:Total

708:空間回應 708: Space Response

802:天線陣列 802: Antenna Array

802-1:發射天線陣列 802-1: Transmitting Antenna Array

802-2:接收天線陣列 802-2: Receive Antenna Array

902:I/Q調變器 902: I/Q Modulator

904:I/Q解調變器 904: I/Q demodulator

906:調變操作信號 906: Modulation operation signal

1000-1至1000-N:信號 1000-1 to 1000-N: Signal

1100:方法 1100: Method

1102:步驟 1102: Steps

1104:步驟 1104: Steps

1106:步驟 1106: Steps

1108:步驟 1108: Steps

1110:步驟 1110: Steps

1200:方法 1200: Method

1202:步驟 1202: Steps

1204:步驟 1204: Steps

1206:步驟 1206: Steps

1208:步驟 1208: Steps

1210:步驟 1210: Steps

1300:方法 1300: Method

1302:步驟 1302: Steps

1304:步驟 1304: Steps

1306:步驟 1306: Steps

1308:步驟 1308: Steps

1310:步驟 1310: Steps

1400:運算系統 1400: Computing Systems

1402:通信裝置 1402: Communication Devices

1404:裝置資料 1404: Device Information

1406:資料輸入 1406: Data input

1408:通信介面 1408: Communication interface

1410:處理器 1410: Processor

1412:處理及控制電路 1412: Processing and Control Circuits

1414:電腦可讀媒體 1414: Computer-readable media

1416:大容量儲存媒體裝置/儲存媒體 1416: Mass Storage Media Device/Storage Media

1418:裝置應用程式 1418: Device Application

1420:作業系統 1420: Operating System

參考以下圖式描述實現使用一無線通信晶片組之雷達感測之雷達調變之設備及技術。貫穿圖式使用相同數字來提及相同特徵及組件: 圖1繪示其中描述使用一無線通信晶片組之雷達感測之一例示性環境。 Devices and techniques for implementing radar modulation for radar sensing using a wireless communication chipset are described with reference to the following figures. The same numbers are used throughout the drawings to refer to the same features and components: FIG. 1 shows an exemplary environment in which radar sensing using a wireless communication chipset is described.

圖2繪示其中多個通信裝置執行無線通信及雷達感測之一例示性環境。 2 illustrates an exemplary environment in which multiple communication devices perform wireless communication and radar sensing.

圖3繪示一例示性運算裝置。 FIG. 3 shows an exemplary computing device.

圖4繪示一例示性無線通信晶片組。 FIG. 4 illustrates an exemplary wireless communication chipset.

圖5繪示用於全雙工操作之一例示性通信裝置。 5 shows an exemplary communication device for full duplex operation.

圖6-1繪示用於連續波雷達之一無線通信晶片組之全雙工操作。 Figure 6-1 illustrates full-duplex operation of a wireless communication chipset for CW radar.

圖6-2繪示用於脈衝多普勒雷達之一無線通信晶片組之全雙工操作。 Figure 6-2 illustrates full duplex operation of a wireless communication chipset for a pulsed Doppler radar.

圖7繪示用於數位波束成形之一例示性數位波束成形器及無線通信晶片組。 7 illustrates an exemplary digital beamformer and wireless communication chipset for digital beamforming.

圖8-1繪示用於數位波束成形之一例示性無線通信晶片組。 8-1 illustrates an exemplary wireless communication chipset for digital beamforming.

圖8-2繪示用於數位波束成形之另一例示性無線通信晶片組。 8-2 illustrate another exemplary wireless communication chipset for digital beamforming.

圖9繪示用於雷達調變之一例示性雷達調變器及無線通信晶片組。 9 shows an exemplary radar modulator and wireless communication chipset for radar modulation.

圖10繪示執行無線通信及雷達感測之一例示性通信裝置。 10 shows an exemplary communication device that performs wireless communication and radar sensing.

圖11繪示用於使用無線通信晶片組執行用於雷達感測之全雙工操作之一例示性方法。 11 illustrates an exemplary method for performing full-duplex operation for radar sensing using a wireless communication chipset.

圖12繪示用於使用無線通信晶片組執行用於雷達感測之數位波束成形之一例示性方法。 12 shows an exemplary method for performing digital beamforming for radar sensing using a wireless communication chipset.

圖13繪示用於使用無線通信晶片組執行用於雷達感測之雷達調變之一例示性方法。 13 shows an exemplary method for performing radar modulation for radar sensing using a wireless communication chipset.

圖14繪示體現用於雷達感測之一無線通信晶片組或其中可實施實現用於雷達感測之一無線通信晶片組之使用之技術之一例示性運算系統。 14 illustrates an exemplary computing system embodying a wireless communication chipset for radar sensing or in which techniques for enabling the use of a wireless communication chipset for radar sensing may be implemented.

相關申請案之交叉參考Cross-references to related applications

本申請案主張2017年5月31日申請之美國臨時申請案第62/512,961號之權利,該申請案之全文藉此以引用的方式併入本文中。 This application claims the benefit of US Provisional Application No. 62/512,961, filed May 31, 2017, which is hereby incorporated by reference in its entirety.

概述 Overview

雖然許多運算裝置可不具有雷達感測器,但此等運算裝置可獲益於雷達感測。舉例而言,雷達感測可經由手勢辨識增強使用者介面、經由近接偵測增強功率節約技術等。 While many computing devices may not have radar sensors, such computing devices may benefit from radar sensing. For example, radar sensing can enhance user interfaces through gesture recognition, power saving techniques through proximity detection, and the like.

然而,一運算裝置可包含一無線通信晶片組,該無線通信晶片組可使一使用者能夠與朋友交談、下載資訊、分享圖像、遠端控制家用裝置、接收全球定位資訊或收聽無線電台。雖然用於發射及接收無線通信信號,但無線通信晶片組包含作為一雷達感測器之許多類似組件,諸如一天線、一收發器及一處理器。此外,用於無線通信之頻率可類似於用於雷達感測之彼等頻率(例如,S頻帶、C頻帶、X頻帶、毫米波頻率等)。 However, a computing device may include a wireless communication chipset that enables a user to chat with friends, download information, share images, remotely control home devices, receive global positioning information, or listen to radio stations. Although used to transmit and receive wireless communication signals, the wireless communication chipset includes many similar components as a radar sensor, such as an antenna, a transceiver, and a processor. Furthermore, the frequencies used for wireless communication may be similar to those used for radar sensing (eg, S-band, C-band, X-band, millimeter-wave frequencies, etc.).

然而,無線通信晶片組通常經設計用於無線通信而非雷達感測。舉例而言,無線通信晶片組可經設置以使用分時雙工技術來在發射與接收通信信號之間切換,其可能未促進偵測用於雷達感測之近距離目標。另外,無線通信晶片組可經設置以利用一單一發射或接收鏈,其可能未促進判定用於雷達感測之目標之角度位置。此外,無線通信晶片組可經設置以利用通信調變,其可能未促進判定用於雷達感測之目標之距離及多普勒。 However, wireless communication chipsets are typically designed for wireless communication rather than radar sensing. For example, wireless communication chipsets may be configured to use time-division duplexing techniques to switch between transmitting and receiving communication signals, which may not facilitate detection of close-range targets for radar sensing. Additionally, wireless communication chipsets may be configured to utilize a single transmit or receive chain, which may not facilitate determining the angular position of targets for radar sensing. In addition, wireless communication chipsets may be configured to utilize communication modulation, which may not facilitate determining distance and Doppler of targets for radar sensing.

因而,本文件描述用於使用無線通信晶片組來實施雷達感測技術之技術及裝置。技術利用一控制器,該控制器使無線通信晶片組除了無線通信信號之外或代替無線通信信號能夠發射且接收雷達信號。特定言之,控 制器可引起無線通信晶片組執行全雙工操作、支援數位波束成形或產生雷達調變。 Thus, this document describes techniques and apparatus for implementing radar sensing techniques using wireless communication chipsets. The technology utilizes a controller that enables the wireless communication chipset to transmit and receive radar signals in addition to or instead of wireless communication signals. In particular, control The controller can cause wireless communication chipsets to perform full-duplex operation, support digital beamforming, or generate radar modulation.

全雙工操作使發射及接收能夠在一相同時間部分內發生,藉此實現連續波雷達或脈衝多普勒雷達技術之使用。數位波束成形實現客製化波束導引及塑形用於判定目標之一角度位置。使用數位波束成形技術,可由無線通信晶片組發射或接收各種雷達場。雷達調變使一雷達信號能夠由無線通信晶片組發射且接收,藉此支援用於雷達感測之頻率調變(FM)測距或多普勒感測技術。 Full-duplex operation enables transmission and reception to occur within the same portion of time, thereby enabling the use of continuous wave radar or pulsed Doppler radar technology. Digital beamforming enables customized beam steering and shaping to determine an angular position of the target. Using digital beamforming technology, various radar fields can be transmitted or received by wireless communication chipsets. Radar modulation enables a radar signal to be transmitted and received by a wireless communication chipset, thereby supporting frequency modulation (FM) ranging or Doppler sensing techniques for radar sensing.

使用此等技術,無線通信晶片組可用於基於雷達之應用程式,該等應用程式偵測一使用者之一存在、追蹤使用者之手勢用於無觸碰控制、為自主駕駛提供防撞等。取決於運算裝置之一目的,無線通信晶片組可重新規劃用於雷達感測或提供無線通信及雷達感測兩者。因此,包含無線通信晶片組之運算裝置可在不使用一雷達感測器或雷達特定硬體的情況下利用且獲益於雷達感測。此外,可針對具有不同組態之各種不同無線通信晶片組定製或最佳化一些技術。使雷達感測負擔得起且可用於許多運算裝置可進一步使多個運算裝置能夠實施主動、被動或雙態雷達技術。此文件現轉向例示性環境,在其之後描述例示性設備、例示性方法及一例示性運算系統。 Using these technologies, wireless communication chipsets can be used in radar-based applications that detect the presence of a user, track user gestures for touchless control, provide collision avoidance for autonomous driving, and more. Depending on one of the purposes of the computing device, the wireless communication chipset can be repurposed for radar sensing or to provide both wireless communication and radar sensing. Thus, computing devices including wireless communication chipsets can utilize and benefit from radar sensing without the use of a radar sensor or radar specific hardware. Furthermore, some techniques may be customized or optimized for various different wireless communication chipsets with different configurations. Making radar sensing affordable and available to many computing devices may further enable multiple computing devices to implement active, passive, or two-state radar technology. The document now turns to an exemplary environment, after which exemplary apparatuses, exemplary methods, and an exemplary computing system are described.

例示性環境 exemplary environment

圖1係其中可體現使用使用一無線通信晶片組之雷達感測之技術及包含使用一無線通信晶片組之雷達感測之一設備之一例示性環境100之一圖解。環境100包含一運算裝置102,該運算裝置102包含一無線通信晶片組104以透過一無線通信鏈路108(無線鏈路108)與一基地台106通信。在此 實例中,運算裝置102被實施為一智慧型電話。然而,運算裝置102可被實施為任何適合運算或電子裝置,如關於圖2及圖3進一步詳細描述。 1 is an illustration of an exemplary environment 100 in which techniques for using radar sensing using a wireless communication chipset and an apparatus including radar sensing using a wireless communication chipset may be embodied. The environment 100 includes a computing device 102 that includes a wireless communication chipset 104 to communicate with a base station 106 through a wireless communication link 108 (wireless link 108). here In an example, the computing device 102 is implemented as a smart phone. However, computing device 102 may be implemented as any suitable computing or electronic device, as described in further detail with respect to FIGS. 2 and 3 .

基地台106經由無線鏈路108與運算裝置102通信,該無線鏈路108可被實施為任何適合類型之無線鏈路。雖然被描繪為一蜂巢式網路之一塔,但基地台106可表示或被實施為另一裝置,諸如一衛星、有線電視頭端、地面電視廣播塔、存取點、對等裝置、網狀網路節點、物聯網(IoT)裝置等等。因此,運算裝置102可經由無線鏈路108與基地台106或另一裝置通信。 Base station 106 communicates with computing device 102 via wireless link 108, which may be implemented as any suitable type of wireless link. Although depicted as a tower of a cellular network, base station 106 may represent or be implemented as another device, such as a satellite, cable headend, terrestrial television broadcast tower, access point, peer-to-peer device, network network nodes, Internet of Things (IoT) devices, and more. Accordingly, computing device 102 may communicate with base station 106 or another device via wireless link 108 .

無線鏈路108可包含自基地台106傳達至運算裝置102之資料或控制資訊之一下行鏈路或自運算裝置102傳達至基地台106之其他資料或控制資訊之一上行鏈路。無線鏈路108可使用任何適合通信協定或標準實施,包含用於以下項之通信協定或標準:蜂巢式網路(例如,第三代合作夥伴計畫長期演進(3GPP LTE)或第五代(5G))、IEEE 802.11(例如,802.11n/ac/ad/g/a/b)、Wi-Fi、WiGigTM、WiMAXTM、BluetoothTM、多輸入多輸出(MIMO)網路等等。 Wireless link 108 may include a downlink for data or control information communicated from base station 106 to computing device 102 or an uplink for other data or control information communicated from computing device 102 to base station 106 . Wireless link 108 may be implemented using any suitable communication protocol or standard, including those used for cellular networks (eg, 3rd Generation Partnership Project Long Term Evolution (3GPP LTE) or 5th Generation ( 5G)), IEEE 802.11 (eg, 802.11n/ac/ad/g/a/b), Wi-Fi, WiGig , WiMAX , Bluetooth , multiple-input multiple-output (MIMO) networks, and the like.

代替具有一雷達感測器,運算裝置102利用無線通信晶片組104用於雷達感測。如圖1中展示,例示性雷達感測應用程式包含一遮蔽手勢辨識應用程式110-1,該遮蔽手勢辨識應用程式110-1使運算裝置102能夠在一錢包中攜帶以偵測在錢包外做出之手勢。另一手勢辨識應用程式110-2使運算裝置102(展示為一穿戴式智慧型手錶)能夠提供一雷達場(展示為一虛線立方體),一使用者可在該雷達場中做出手勢以與運算裝置102互動。一例示性醫學診斷應用程式110-3使運算裝置102能夠量測一使用者之生理特性或評估異常身體運動,諸如一面部抽搐。此等量測可幫助診斷各種病狀 (例如,一中風或巴金森氏病之症狀)。一例示性地圖繪製應用程式110-4使運算裝置102能夠產生一周圍環境之一三維地圖用於情境感知。使用無線通信晶片組104,運算裝置102可實施主動或被動雷達感測技術,如關於圖2進一步詳細描述。 Instead of having a radar sensor, the computing device 102 utilizes the wireless communication chipset 104 for radar sensing. As shown in FIG. 1, exemplary radar sensing applications include an occlusion gesture recognition application 110-1 that enables computing device 102 to be carried in a purse to detect actions performed outside the purse out gesture. Another gesture recognition application 110-2 enables computing device 102 (shown as a wearable smart watch) to provide a radar field (shown as a dashed cube) in which a user can gesture to communicate with The computing device 102 interacts. An exemplary medical diagnostic application 110-3 enables computing device 102 to measure a user's physiology or to assess abnormal body movements, such as a facial twitch. These measurements can help diagnose a variety of conditions (eg, a stroke or symptoms of Parkinson's disease). An exemplary mapping application 110-4 enables computing device 102 to generate a three-dimensional map of a surrounding environment for contextual awareness. Using the wireless communication chipset 104 , the computing device 102 may implement active or passive radar sensing techniques, as described in further detail with respect to FIG. 2 .

圖2繪示其中多個通信裝置102執行無線通信及雷達感測之一例示性環境200。環境200中之運算裝置102包含圖1之運算裝置102、一智慧型電話202及一智慧型冰箱204,其等各包含一無線通信晶片組104。使用無線通信晶片組104,運算裝置102及智慧型電話202分別經由無線鏈路108-1及無線鏈路108-2與基地台106通信。同樣地,智慧型冰箱204經由無線鏈路108-3與運算裝置102通信。 FIG. 2 depicts an exemplary environment 200 in which multiple communication devices 102 perform wireless communication and radar sensing. Computing devices 102 in environment 200 include computing device 102 of FIG. 1 , a smart phone 202 , and a smart refrigerator 204 , each of which includes a wireless communication chipset 104 . Using the wireless communication chipset 104, the computing device 102 and the smart phone 202 communicate with the base station 106 via the wireless link 108-1 and the wireless link 108-2, respectively. Likewise, smart refrigerator 204 communicates with computing device 102 via wireless link 108-3.

除了經由無線鏈路108發射且接收通信信號之外,此等裝置之各者亦可執行雷達感測。使用無線通信晶片組104,運算裝置102、智慧型電話202及智慧型冰箱可藉由發射且接收其等自身雷達信號(分別藉由雷達場206-1、206-2及206-3展示)而操作為單態雷達。 In addition to transmitting and receiving communication signals over wireless link 108, each of these devices may also perform radar sensing. Using wireless communication chipset 104, computing device 102, smart phone 202, and smart refrigerator can communicate with each other by transmitting and receiving their own radar signals (shown by radar fields 206-1, 206-2, and 206-3, respectively). Operates as a single-state radar.

在其中存在一個以上運算裝置102之環境中(諸如環境200中),多個運算裝置102可一起工作以實施一雙態雷達、一多態雷達或一網路雷達。換言之,一或多個運算裝置102可發射雷達信號且一或多個其他運算裝置102可接收雷達信號。為了協作雷達感測,運算裝置102可使用原子鐘、全球定位系統(GPS)時間、蜂巢式同步、無線通信等在時間上同步。 In environments where more than one computing device 102 is present, such as in environment 200, multiple computing devices 102 can work together to implement a two-state radar, a multi-state radar, or a networked radar. In other words, one or more computing devices 102 may transmit radar signals and one or more other computing devices 102 may receive radar signals. For cooperative radar sensing, computing device 102 may be synchronized in time using atomic clocks, global positioning system (GPS) time, cellular synchronization, wireless communications, and the like.

在一些情況中,可根據各裝置之能力及位置在運算裝置102當中指派雷達感測操作。舉例而言,具有一最高發射功率或一較廣視野之一裝置(例如)可用於發射雷達信號。透過協作或非協作技術收集之雷達資料亦可跨全部運算裝置102共用,其可改良偵測之概率、目標定位準確度、目標 追蹤以及目標定向及形狀估計。由多個運算裝置102提供之雷達資料亦可用於減少假警報、執行三角測量或支援干涉測量。 In some cases, radar sensing operations may be assigned among computing devices 102 according to the capabilities and location of each device. For example, a device with a highest transmit power or a wider field of view, for example, can be used to transmit radar signals. Radar data collected through cooperative or non-cooperative techniques can also be shared across all computing devices 102, which can improve detection probability, target location accuracy, target Tracking and target orientation and shape estimation. Radar data provided by multiple computing devices 102 may also be used to reduce false alarms, perform triangulation, or support interferometry.

將多個運算裝置102用於雷達感測使一周圍環境之一大部分能夠被照明且使雷射資料能夠從不同角度被收集。亦可跨多個運算裝置102分配與雷達感測相關聯之時間或功率成本,藉此使具有有限資源之運算裝置102能夠執行雷達感測。 Using multiple computing devices 102 for radar sensing enables a large portion of a surrounding environment to be illuminated and enables laser data to be collected from different angles. The time or power cost associated with radar sensing may also be distributed across multiple computing devices 102, thereby enabling computing devices 102 with limited resources to perform radar sensing.

更詳細言之,考量圖3,其繪示無線通信晶片組104作為運算裝置102之部分。運算裝置102經繪示為具有各種非限制性例示性裝置,該等裝置包含一桌上型電腦102-1、一平板電腦102-2、一膝上型電腦102-3、一電視102-4、一運算手錶102-5、運算眼鏡102-6、一遊戲系統102-7、一微波爐102-8及一車輛102-9。亦可使用其他裝置,諸如無線路由器、無人機、觸控板、繪圖板、小筆電、電子閱讀器、家用自動化及控制系統及其他家用電器。應注意,運算裝置102可係穿戴式、非穿戴式但可攜行或相對固定的(例如,桌上型電腦及電器)。 In more detail, consider FIG. 3 , which shows wireless communication chipset 104 as part of computing device 102 . Computing device 102 is shown as having various non-limiting exemplary devices including a desktop computer 102-1, a tablet computer 102-2, a laptop computer 102-3, a television 102-4 , a computing watch 102-5, computing glasses 102-6, a game system 102-7, a microwave oven 102-8 and a vehicle 102-9. Other devices such as wireless routers, drones, touchpads, drawing tablets, small notebooks, e-readers, home automation and control systems, and other household appliances may also be used. It should be noted that the computing device 102 may be wearable, non-wearable but portable, or relatively stationary (eg, desktop computers and appliances).

運算裝置102可包含用於經由有線、無線或光學網路傳達資料之一網路介面302。舉例而言,網路介面302可經由一區域網路(LAN)、一無線區域網路(WLAN)、一個人區域網路(PAN)、一廣域網路(WAN)、一內部網路、網際網路、一對等式網路、點對點網路、一網狀網路及類似者傳達資料。運算裝置102亦可包含一顯示器(未展示)。 Computing device 102 may include a network interface 302 for communicating data over wired, wireless, or optical networks. For example, the network interface 302 can be via a local area network (LAN), a wireless local area network (WLAN), a personal area network (PAN), a wide area network (WAN), an intranet, the Internet , peer-to-peer networks, peer-to-peer networks, a mesh network, and the like communicate data. Computing device 102 may also include a display (not shown).

運算裝置102亦包含一或多個電腦處理器304及電腦可讀媒體306,該電腦可讀媒體306包含記憶體媒體及儲存媒體。電腦可讀媒體306經實施以儲存運算裝置102之指令、資料及其他資訊,且因此不包含暫時傳播信號或載波。體現為電腦可讀媒體306上之電腦可讀指令之應用程式及/或一 作業系統(未展示)可由電腦處理器304執行以提供本文中描述之一些功能性。電腦可讀媒體306包含一基於雷達之應用程式308及一控制器310。基於雷達之應用程式308使用由無線通信晶片組104提供之雷達資料以執行一雷達感測功能,諸如偵測一使用者之一存在、追蹤使用者之手勢用於免觸碰控制、偵測自動駕駛之障礙等。 Computing device 102 also includes one or more computer processors 304 and computer-readable media 306 including memory media and storage media. Computer-readable medium 306 is implemented to store instructions, data, and other information of computing device 102, and thus does not include transitory propagating signals or carrier waves. An application program and/or an An operating system (not shown) may be executed by computer processor 304 to provide some of the functionality described herein. Computer-readable medium 306 includes a radar-based application 308 and a controller 310 . The radar-based application 308 uses the radar data provided by the wireless communication chipset 104 to perform a radar sensing function, such as detecting the presence of a user, tracking the user's gestures for touchless control, detecting automatic Obstacles to driving, etc.

控制器310控制用於無線通信或雷達感測之無線通信晶片組104之操作。在圖3中,控制器310被展示為儲存於電腦可讀媒體306上且由電腦處理器304執行之一軟體模組。在一些實施方案中,控制器310包含被轉移至或儲存於無線通信晶片組104上且由無線通信晶片組104執行之軟體或韌體。在其他情況中,控制器310係整合於無線通信晶片組104內之一控制器。 The controller 310 controls the operation of the wireless communication chipset 104 for wireless communication or radar sensing. In FIG. 3 , controller 310 is shown as a software module stored on computer readable medium 306 and executed by computer processor 304 . In some implementations, the controller 310 includes software or firmware that is transferred to or stored on the wireless communication chipset 104 and executed by the wireless communication chipset 104 . In other cases, the controller 310 is integrated into a controller within the wireless communication chipset 104 .

控制器310起始、設定或操作無線通信晶片組104以提供用於雷達感測之特徵。此等特徵包含全雙工操作、數位波束成形或雷達調變。控制器310亦可基於優先級、基於雷達之應用程式308或用於雷達感測之一預定更新速率管理用於無線通信或雷達感測之無線通信晶片組104的時間分享。對於無線通信或雷達感測之請求可由控制器310自與運算裝置102相關聯之其他應用程式獲得。在一些情況中,控制器310可引起無線通信晶片組104同時提供無線通信及雷達感測兩者,如關於圖10進一步詳細描述。關於圖4進一步描述無線通信晶片組104。 The controller 310 initiates, sets or operates the wireless communication chipset 104 to provide features for radar sensing. These features include full duplex operation, digital beamforming or radar modulation. The controller 310 may also manage the time sharing of the wireless communication chipset 104 for wireless communication or radar sensing based on priority, the radar-based application 308, or a predetermined update rate for radar sensing. Requests for wireless communication or radar sensing may be obtained by controller 310 from other applications associated with computing device 102 . In some cases, the controller 310 may cause the wireless communication chipset 104 to simultaneously provide both wireless communication and radar sensing, as described in further detail with respect to FIG. 10 . The wireless communication chipset 104 is further described with respect to FIG. 4 .

圖4繪示包含一通信介面402之一例示性無線通信晶片組104。通信介面402將用於無線通信之通信資料或用於雷達感測之雷達資料提供至運算裝置102或一遠端裝置。然而,當無線通信晶片組104整合於運算裝置102內時,不需要使用通信介面402。雷達資料可包含原始同相或正交(I/Q)資 料、預處理距離多普勒圖等,其可由電腦處理器304經由基於雷達之應用程式308或控制器310進一步處理。 FIG. 4 shows an exemplary wireless communication chipset 104 including a communication interface 402 . The communication interface 402 provides communication data for wireless communication or radar data for radar sensing to the computing device 102 or a remote device. However, when the wireless communication chipset 104 is integrated into the computing device 102, the communication interface 402 does not need to be used. Radar data can contain raw in-phase or quadrature (I/Q) data data, preprocessed range Doppler maps, etc., which may be further processed by computer processor 304 via radar-based application 308 or controller 310.

無線通信晶片組104亦包含至少一個天線404及至少一個收發器406。天線404可與無線通信晶片組104分離或整合於無線通信晶片組104內。天線404可包含用於天線分集、發射波束成形或MIMO網路之多個天線404。在一些情況中,多個天線404被組織成一二維形狀(例如,平面陣列)。多個天線404之間之一間距可小於、大於或等於雷達信號之一中心波長之一半。使用天線404,控制器310可引起無線通信晶片組104形成經導引或未經導引、寬或窄或經塑形(例如,半球、立方體、扇形、圓錐、圓柱體)之波束。可使用數位波束成形技術來實現導引及塑形,如下文進一步詳細描述。 The wireless communication chipset 104 also includes at least one antenna 404 and at least one transceiver 406 . The antenna 404 may be separate from the wireless communication chipset 104 or integrated within the wireless communication chipset 104 . Antennas 404 may include multiple antennas 404 for antenna diversity, transmit beamforming, or a MIMO network. In some cases, the plurality of antennas 404 are organized into a two-dimensional shape (eg, a planar array). A spacing between the plurality of antennas 404 may be less than, greater than, or equal to one-half of a center wavelength of the radar signal. Using the antenna 404, the controller 310 can cause the wireless communication chipset 104 to form beams that are steered or unsteered, wide or narrow, or shaped (eg, hemispheres, cubes, sectors, cones, cylinders). Steering and shaping may be accomplished using digital beamforming techniques, as described in further detail below.

收發器406包含用於調節經由天線404發射或接收之信號之電路及邏輯,諸如濾波器、開關、放大器、混合器等。收發器406亦可包含用以執行同相及正交(I/Q)操作(諸如合成、編碼、調變、解碼、解調變等)之邏輯。基於由無線通信晶片組104支援之無線通信之類型,收發器406可發出且接收在一1GHz至400GHz範圍、一4GHz至100GHz範圍及較窄頻帶(諸如,57GHz至63GHz)中之微波輻射。 Transceiver 406 includes circuitry and logic for conditioning signals transmitted or received via antenna 404, such as filters, switches, amplifiers, mixers, and the like. Transceiver 406 may also include logic to perform in-phase and quadrature (I/Q) operations such as synthesis, encoding, modulation, decoding, demodulation, and the like. Based on the type of wireless communication supported by wireless communication chipset 104, transceiver 406 can transmit and receive microwave radiation in a range of 1 GHz to 400 GHz, a range of 4 GHz to 100 GHz, and narrower frequency bands such as 57 GHz to 63 GHz.

無線通信晶片組104亦包含一或多個系統處理器408及系統媒體410(例如,一或多個電腦可讀儲存媒體)。系統處理器408亦可包含用以執行高速率取樣程序之基頻帶電路,該等高速率取樣程序可包含類比轉數位轉換、數位轉類比轉換、快速傅立葉(Fourier)變換(FFT)、增益校正、偏斜校正、頻率轉化等。一般言之,系統處理器408可將通信資料提供至收發器406用於發射。系統處理器408亦可處理來自收發器406之基頻帶信號以 產生資料,該資料可經由通信介面402提供至運算裝置102用於無線通信或雷達感測。在一些情況中,控制器310之部分可在系統媒體410中獲得且由系統處理器408執行。 The wireless communication chipset 104 also includes one or more system processors 408 and system media 410 (eg, one or more computer-readable storage media). The system processor 408 may also include baseband circuitry for performing high-rate sampling procedures, which may include analog-to-digital conversion, digital-to-analog conversion, fast Fourier transform (FFT), gain correction, Skew correction, frequency conversion, etc. In general, system processor 408 may provide communication data to transceiver 406 for transmission. System processor 408 may also process baseband signals from transceiver 406 to Data is generated, which can be provided to the computing device 102 via the communication interface 402 for wireless communication or radar sensing. In some cases, portions of controller 310 may be available in system media 410 and executed by system processor 408 .

控制器310使無線通信晶片組104能夠提供用於雷達感測之額外特徵。特定言之,控制器310可引起一第一無線通信晶片組104-1提供全雙工操作416,引起一第二無線通信晶片組104-2經由數位波束成形器418支援數位波束成形,或引起一第三無線通信晶片組104-3實施雷達調變器420。 The controller 310 enables the wireless communication chipset 104 to provide additional features for radar sensing. In particular, controller 310 may cause a first wireless communication chipset 104-1 to provide full-duplex operation 416, cause a second wireless communication chipset 104-2 to support digital beamforming via digital beamformer 418, or cause A third wireless communication chipset 104-3 implements the radar modulator 420.

全雙工操作416可藉由控制器310控制無線通信晶片組104中之不同收發器406與不同天線404之間之連接而實現,如圖5中展示。全雙工操作416之一些實施方案使無線通信晶片組104能夠用於連續波雷達,如圖6-1中展示。全雙工操作416之其他實施方案實現脈衝多普勒雷達之發射及接收之快速交錯,如圖6-2中展示。全雙工操作416使無線通信晶片組104能夠用於偵測近距離目標及用於量測目標之距離及距離變化率。 Full-duplex operation 416 may be achieved by controller 310 controlling connections between different transceivers 406 and different antennas 404 in wireless communication chipset 104, as shown in FIG. 5 . Some implementations of full-duplex operation 416 enable wireless communication chipset 104 for continuous wave radar, as shown in Figure 6-1. Other implementations of full-duplex operation 416 achieve fast interleaving of transmit and receive pulsed Doppler radar, as shown in Figure 6-2. The full duplex operation 416 enables the wireless communication chipset 104 to be used to detect close range objects and to measure the range and range rate of the objects.

可藉由控制器310引起無線通信晶片組104將來自多個接收鏈(例如,多個收發器406及多個天線404)之基頻帶資料提供至數位波束成形器418而實現數位波束成形,如圖7、圖8-1及圖8-2中展示。在一些實施方案中,數位波束成形器418由運算裝置102經由電腦處理器304及電腦可讀媒體306實施。若無線通信晶片組104包含執行一快速傅立葉變換(FFT)之電路及邏輯,則數位波束成形器418可替代地由系統處理器408及系統媒體410實施。此外,數位波束成形器418藉由數位地執行相移及振幅削減(amplitude tapering)操作而提供諸如類比移相器之額外硬體組件之一替代。 Digital beamforming may be accomplished by controller 310 causing wireless communication chipset 104 to provide baseband data from multiple receive chains (eg, multiple transceivers 406 and multiple antennas 404 ) to digital beamformer 418, such as Shown in Figure 7, Figure 8-1 and Figure 8-2. In some implementations, the digital beamformer 418 is implemented by the computing device 102 via the computer processor 304 and the computer-readable medium 306 . Digital beamformer 418 may alternatively be implemented by system processor 408 and system medium 410 if wireless communication chipset 104 includes circuitry and logic to perform a Fast Fourier Transform (FFT). Additionally, digital beamformer 418 provides an alternative to additional hardware components such as analog phase shifters by performing phase shifting and amplitude tapering operations digitally.

數位波束成形提供許多優點。舉例而言,應用數位波束成形技術用 於接收使較少天線404能夠用於發射雷達信號(例如,減小對用於雷達感測之發射波束成形之依賴)。亦藉由使多個波束能夠在接收期間數位地形成而非隨著時間發射多個窄筆形波束而有效地利用可用時序資源。另外,數位波束成形器418使各種型樣能夠產生,其提供跨不同無線通信晶片組104支援天線404之不同配置之靈活性。 Digital beamforming offers many advantages. For example, applying digital beamforming techniques to For reception enables fewer antennas 404 to be used to transmit radar signals (eg, reducing reliance on transmit beamforming for radar sensing). The available timing resources are also efficiently utilized by enabling multiple beams to be digitally formed during reception rather than transmitting multiple narrow pencil beams over time. In addition, the digital beamformer 418 enables the creation of various patterns that provide flexibility in supporting different configurations of the antennas 404 across different wireless communication chipsets 104 .

可藉由控制器310引起無線通信晶片組104作為雷達調變器420操作一同相及正交(I/Q)調變器及解調變器而實現雷達調變,如圖9中展示。舉例而言,I/Q調變器可由控制器310程式化以數位地產生使一目標之一距離及多普勒能夠被判定之雷達特定調變。此等雷達調變亦可減小與其他雷達信號或通信信號之干擾。在一些情況中,雷達調變器420可實現並行無線通信及雷達感測,如圖10中展示。 Radar modulation may be achieved by controller 310 causing wireless communication chipset 104 to operate in-phase and quadrature (I/Q) modulators and demodulators as radar modulator 420 , as shown in FIG. 9 . For example, I/Q modulators may be programmed by controller 310 to digitally generate radar specific modulations that enable a range and Doppler of a target to be determined. These radar modulations also reduce interference with other radar or communication signals. In some cases, radar modulator 420 may enable parallel wireless communication and radar sensing, as shown in FIG. 10 .

雖然單獨展示,但可將全雙工操作416、數位波束成形器418及雷達調變器420之不同組合一起實施用於使用無線通信晶片組104之雷達感測。關於圖5至圖10進一步描述此等特徵。 Although shown separately, different combinations of full-duplex operation 416 , digital beamformer 418 , and radar modulator 420 may be implemented together for radar sensing using wireless communication chipset 104 . These features are further described with respect to FIGS. 5-10 .

全雙工操作 full duplex operation

圖5繪示用於全雙工操作之一例示性通信裝置102。無線通信晶片組104包含多個收發器406-1、406-2、...、406-N,其中「N」表示一正整數。各收發器406包含分別由發射器502-1、502-2、...、502-N及接收器504-1、504-2、...、504-N表示之一發射及接收鏈。無線通信晶片組104亦包含開關506-1、506-2、...、及506-N以及天線404-1、404-2、...、404-N。開關506及天線404可在無線通信晶片組104內部或外部。在圖5中,天線404、開關506及收發器406之數目被展示為相同,然而,不同數量亦係可能的。在一些情況中,收發器406可耦合至一個以上天線404或 天線404可耦合至一個以上收發器406。 FIG. 5 shows an exemplary communication device 102 for full-duplex operation. The wireless communication chipset 104 includes a plurality of transceivers 406-1, 406-2, . . . , 406-N, where "N" represents a positive integer. Each transceiver 406 includes a transmit and receive chain represented by transmitters 502-1, 502-2, ..., 502-N and receivers 504-1, 504-2, ..., 504-N, respectively. The wireless communication chipset 104 also includes switches 506-1, 506-2, . . . , and 506-N and antennas 404-1, 404-2, . . . , 404-N. Switch 506 and antenna 404 may be internal or external to wireless communication chipset 104 . In FIG. 5, the numbers of antennas 404, switches 506, and transceivers 406 are shown to be the same, however, different numbers are possible. In some cases, transceiver 406 may be coupled to more than one antenna 404 or Antenna 404 may be coupled to more than one transceiver 406 .

在所描繪實施方案中,各開關506將一對應發射器502或接收器504耦合至一對應天線404。在無線通信之一些情境中,無線通信晶片組104可使用分時雙工(TDD)來在不同時間發射或接收。因此,開關506在任何給定時間將發射器502或接收器504耦合至天線404。 In the depicted implementation, each switch 506 couples a corresponding transmitter 502 or receiver 504 to a corresponding antenna 404 . In some contexts of wireless communication, the wireless communication chipset 104 may use time division duplexing (TDD) to transmit or receive at different times. Thus, switch 506 couples transmitter 502 or receiver 504 to antenna 404 at any given time.

然而,針對雷達感測,使無線通信晶片組104能夠提供收發器406之全雙工操作416,藉此實現近距離雷達感測係有利的。全雙工操作416可藉由控制器310經由一雙工操作信號508設定開關506之一狀態而達成。以此方式,控制器310可使無線通信晶片組104能夠執行連續波雷達或脈衝多普勒雷達,如關於圖6-1及6-2進一步詳細描述。開關506之使用進一步使無線通信晶片組104能夠容易地在用於雷達感測之全雙工操作或用於無線通信之半雙工操作之間切換。 However, for radar sensing, it would be advantageous to enable the wireless communication chipset 104 to provide full-duplex operation 416 of the transceiver 406, thereby enabling short-range radar sensing. Full duplex operation 416 may be achieved by controller 310 setting a state of switch 506 via a duplex operation signal 508 . In this manner, controller 310 may enable wireless communication chipset 104 to perform continuous wave radar or pulsed Doppler radar, as described in further detail with respect to FIGS. 6-1 and 6-2. The use of switch 506 further enables wireless communication chipset 104 to easily switch between full-duplex operation for radar sensing or half-duplex operation for wireless communication.

圖6-1繪示用於連續波雷達操作之無線通信晶片組104之全雙工操作416。在所描繪實施方案中,控制器310引起發射器502之一部分及接收器504之一部分同時連接至各自天線404。舉例而言,雙工操作信號508引起開關506-1將發射器502-1連接至天線404-1且引起開關506-2將接收器504-2連接至天線404-2。以此方式,發射器502-1經由天線404-1發射一雷達信號602,同時接收器504-2經由天線404-2接收由一目標604反射之雷達信號602之一部分。 6-1 illustrates full-duplex operation 416 of the wireless communication chipset 104 for continuous wave radar operation. In the depicted implementation, controller 310 causes a portion of transmitter 502 and a portion of receiver 504 to connect to respective antennas 404 simultaneously. For example, duplex operation signal 508 causes switch 506-1 to connect transmitter 502-1 to antenna 404-1 and switch 506-2 to connect receiver 504-2 to antenna 404-2. In this manner, transmitter 502-1 transmits a radar signal 602 via antenna 404-1, while receiver 504-2 receives a portion of radar signal 602 reflected by a target 604 via antenna 404-2.

在一些情況中,雷達信號602可包含一頻率調變信號,如圖表606中展示。圖表606繪製一發射雷達信號602-1及一反射雷達信號602-2隨著時間之一頻率。圖表606繪示全雙工操作416,藉此發射器502-1在一部分時間期間產生發射雷達信號602-1,在該部分時間內,接收器504-2接收反射 雷達信號602-2。藉由量測發射雷達信號602-1與反射雷達信號602-2之間隨著時間之一頻率偏移,可由基於雷達之應用程式308判定目標604之一距離及距離變化率。 In some cases, radar signal 602 may include a frequency modulated signal, as shown in graph 606 . Graph 606 plots frequency of a transmitted radar signal 602-1 and a reflected radar signal 602-2 over time. Diagram 606 depicts full-duplex operation 416 whereby transmitter 502-1 generates transmit radar signal 602-1 during a portion of the time during which receiver 504-2 receives reflections Radar signal 602-2. By measuring a frequency offset over time between the transmitted radar signal 602-1 and the reflected radar signal 602-2, a range and range rate of change of the target 604 can be determined by the radar-based application 308.

針對共用發射鏈及接收鏈兩者之組件之收發器406(例如,可在任何給定時間執行發射或接收之一收發器406),可使用至少兩個收發器406實現連續波雷達之全雙工操作416,藉此來自收發器406之各者之一發射鏈或一接收鏈分別連接至天線404。替代地,針對包含單獨發射鏈及接收鏈之收發器406(例如,可同時執行發射及接收之一收發器406),可藉由將收發器406之發射器502及接收器504分別連接至天線404而實現連續波雷達之全雙工操作416(如圖8-2中展示)。 For transceivers 406 that share components of both the transmit and receive chains (eg, one transceiver 406 that can perform transmit or receive at any given time), at least two transceivers 406 can be used to achieve full duplex for continuous wave radar Operation 416 is performed whereby either a transmit chain or a receive chain from each of the transceivers 406 is connected to the antenna 404, respectively. Alternatively, for a transceiver 406 that includes separate transmit and receive chains (eg, a transceiver 406 that can perform both transmit and receive), the transmitter 502 and the receiver 504 of the transceiver 406 may be connected to antennas by separate 404 to achieve full-duplex operation 416 of the continuous wave radar (as shown in Figure 8-2).

圖6-2繪示用於脈衝多普勒雷達操作之無線通信晶片組104之全雙工操作416。在所描繪實施方案中,控制器310實現發射器502與接收器504之間之快速切換。使用雙工操作信號508,控制器310可進一步協調跨多個開關506之切換。針對脈衝多普勒雷達,控制器310使發射及接收操作交錯,使得發射雷達信號602-1之脈衝可由發射器502-1及502-2發射,且反射雷達信號602-2之脈衝可由接收器504-1及504-2接收。作為一優點,脈衝多普勒雷達操作使具有一單一收發器406或一單一天線404之一無線通信晶片組104能夠執行雷達感測。相較於圖6-1中描述之連續波雷達技術,亦可使用脈衝多普勒雷達藉由實現天線404用於發射及接收兩者之雙重用途而增加靈敏度。 6-2 illustrates full-duplex operation 416 of the wireless communication chipset 104 for pulsed Doppler radar operation. In the depicted implementation, controller 310 enables fast switching between transmitter 502 and receiver 504 . Using the duplex operating signal 508 , the controller 310 can further coordinate switching across the plurality of switches 506 . For pulsed Doppler radar, controller 310 interleaves transmit and receive operations so that pulses of transmit radar signal 602-1 may be transmitted by transmitters 502-1 and 502-2, and pulses of reflected radar signal 602-2 may be transmitted by receivers 504-1 and 504-2 receive. As an advantage, pulsed Doppler radar operation enables a wireless communication chipset 104 with a single transceiver 406 or a single antenna 404 to perform radar sensing. Compared to the continuous wave radar technique described in Figure 6-1, pulsed Doppler radar can also be used to increase sensitivity by implementing the dual purpose of antenna 404 for both transmit and receive.

一圖表608繪製發射雷達信號602-1及反射雷達信號602-2隨著時間之一頻率。如展示,發射雷達信號602-1包含多個發射脈衝610-1、610-2、...、610-P,其中「P」表示一正整數。各發射脈衝610之間之一時間 被稱為一脈衝間週期(IPP)。在各發射脈衝610期間,控制器310引起發射器502連接至天線404。在各發射脈衝610期間,控制器310引起接收器504被連接用於接收反射脈衝612(諸如反射脈衝612-1及612-2)。雖然圖表608繪示未在一相同時間發射且接收個別脈衝,但快速切換使雷達信號602之部分能夠跨一相同時間段被發射或接收,因此實施全雙工操作416之一版本。 A graph 608 plots a frequency of the transmitted radar signal 602-1 and the reflected radar signal 602-2 over time. As shown, transmit radar signal 602-1 includes a plurality of transmit pulses 610-1, 610-2, ..., 610-P, where "P" represents a positive integer. A time between each transmit pulse 610 It is called an inter-pulse period (IPP). During each transmit pulse 610 , the controller 310 causes the transmitter 502 to connect to the antenna 404 . During each transmit pulse 610, controller 310 causes receiver 504 to be connected for receiving reflected pulses 612 (such as reflected pulses 612-1 and 612-2). Although graph 608 shows that individual pulses are not transmitted and received at the same time, fast switching enables portions of radar signal 602 to be transmitted or received over the same time period, thus implementing a version of full-duplex operation 416.

雖然在圖6-1及圖6-2中明確展示兩個收發器406、兩個天線404及兩個開關506,但用於連續波雷達或脈衝多普勒雷達之技術可應用至任何數目個收發器406、天線404及開關506。針對使用循環器而非開關506之無線通信晶片組104,亦可執行連續波及脈衝多普勒雷達操作兩者。 Although two transceivers 406, two antennas 404, and two switches 506 are explicitly shown in Figures 6-1 and 6-2, the techniques used for continuous wave radar or pulsed Doppler radar may be applied to any number of Transceiver 406 , antenna 404 and switch 506 . Both continuous wave and pulsed Doppler radar operations can also be performed for the wireless communication chipset 104 using circulators instead of switches 506 .

數位波束成形 digital beamforming

圖7繪示用於數位波束成形之一例示性數位波束成形器418及無線通信晶片組104。使用數位波束成形技術,可發射或接收各種雷達場,包含廣場、窄場、塑形場(半球、立方體、扇形、圓錐、圓柱體)、導引場、未導引場、近距離場、遠距離場等。雖然下文關於接收雷達信號602論述數位波束成形,但亦可實施數位波束成形用於發射雷達信號602。在所描繪組態中,接收器504-1至504-N分別處理經由天線404-1至404-N接收之反射雷達信號602-2以產生基頻帶資料702-1至702-N。一般言之,來自天線404之回應由個別接收鏈單獨處理。基頻帶資料702可包含跨一時間段及針對與雷達信號602相關聯之不同波數收集之數位I/Q資料。 FIG. 7 shows an exemplary digital beamformer 418 and wireless communication chipset 104 for digital beamforming. Using digital beamforming technology, various radar fields can be transmitted or received, including square, narrow field, shaped field (hemisphere, cube, sector, cone, cylinder), guided field, unguided field, near field, far field distance field, etc. Although digital beamforming is discussed below with respect to receiving radar signals 602 , digital beamforming may also be implemented for transmitting radar signals 602 . In the depicted configuration, receivers 504-1 through 504-N process reflected radar signals 602-2 received via antennas 404-1 through 404-N, respectively, to generate baseband data 702-1 through 702-N. In general, the responses from the antennas 404 are processed separately by the individual receive chains. Baseband data 702 may include digital I/Q data collected over a period of time and for different wavenumbers associated with radar signal 602 .

數位波束成形器418(例如,若與無線通信晶片組104分開實施數位波束成形器418,則經由通信介面402)自無線通信晶片組104獲得基頻帶資料702且將基頻帶資料702乘以複合權重704-1至704-N。數位波束成形 器418執行一加總706以組合來自各接收鏈之結果以形成一空間回應708。可將空間回應708提供至基於雷達之應用程式308用於判定目標604之一角度位置。一般言之,空間回應708包含關於一組角度、距離及時間之振幅及相位資訊。 The digital beamformer 418 (eg, via the communication interface 402 if the digital beamformer 418 is implemented separately from the wireless communication chipset 104 ) obtains the baseband data 702 from the wireless communication chipset 104 and multiplies the baseband data 702 by the composite weight 704-1 to 704-N. digital beamforming The processor 418 performs a summation 706 to combine the results from the receive chains to form a spatial response 708 . Spatial response 708 may be provided to radar-based application 308 for use in determining an angular position of target 604 . In general, the spatial response 708 includes amplitude and phase information about a set of angles, distances, and time.

在一些實施方案中,控制器310可設定或提供複合權重704以控制用於產生空間回應708之天線型樣之形狀。複合權重704可係基於預定值且可使數千個波束能夠同時形成。複合權重704亦可藉由控制器310即時動態調整以減小來自干擾發射機或雜訊源之干擾(例如,藉由在干擾之一方向上導引零強度之天線型樣)。控制器310亦可組態無線通信晶片組104以改良數位波束成形,如關於圖8-1及圖8-2進一步詳細描述。 In some implementations, the controller 310 can set or provide the composite weights 704 to control the shape of the antenna pattern used to generate the spatial response 708 . The composite weights 704 may be based on predetermined values and may enable thousands of beams to be formed simultaneously. The composite weights 704 can also be dynamically adjusted in real time by the controller 310 to reduce interference from jammers or noise sources (eg, by directing an antenna pattern of zero strength in one direction of the interference). The controller 310 may also configure the wireless communication chipset 104 to improve digital beamforming, as described in further detail with respect to FIGS. 8-1 and 8-2.

圖8-1繪示用於數位波束成形之無線通信晶片組104之一例示性組態。無線通信晶片組104包含具有多個天線404之一天線陣列802。在所描繪組態中,天線陣列802係具有天線404之一二維配置(例如,一三角形、矩形、圓形或六邊形配置)之一平面陣列,其使與反射雷達信號602-2之到達角相關聯之一二維向量能夠被判定(例如,實現目標604之一方位角及仰角兩者的判定)。天線陣列802可包含沿著角度空間之一個維度(例如,一方位角或水平維度)定位之兩個天線404及相對於兩個天線404之一者沿著天線空間之另一維度(例如,一仰角或垂直維度)定位之另一天線404。天線陣列802之其他實施方案可包含一線性陣列(例如,一維配置)使得可判定目標604之方位角抑或仰角之任一者。一般言之,一二維天線陣列實現兩個平面(例如,方位角及仰角)中之波束導引及相較於具有相同數目個天線及天線間距之一維天線陣列之更高指向性。 8-1 shows an exemplary configuration of a wireless communication chipset 104 for digital beamforming. The wireless communication chipset 104 includes an antenna array 802 having a plurality of antennas 404 . In the depicted configuration, the antenna array 802 is a planar array having a two-dimensional configuration (eg, a triangular, rectangular, circular, or hexagonal configuration) of the antennas 404 that aligns with the reflected radar signal 602-2. A two-dimensional vector associated with the angle of arrival can be determined (eg, enabling determination of both azimuth and elevation of the target 604). Antenna array 802 may include two antennas 404 positioned along one dimension of angular space (eg, an azimuthal or horizontal dimension) and along another dimension of antenna space (eg, a Another antenna 404 positioned in elevation or vertical dimension). Other implementations of antenna array 802 may include a linear array (eg, a one-dimensional configuration) such that either the azimuth or elevation of target 604 can be determined. In general, a two-dimensional antenna array achieves beam steering in two planes (eg, azimuth and elevation) and higher directivity than a one-dimensional antenna array with the same number of antennas and antenna spacing.

在所描繪組態中,天線陣列802經展示為具有一NxM矩形配置,其中 N及M係大於1之正整數且可彼此相等或可不彼此相等。例示性配置包含一2x2陣列、一2x3陣列、一4x4陣列等。針對數位波束成形,控制器310可實施用於全雙工操作416之技術以使收發器406-1至406-NM之一部分能夠使用天線陣列802中之天線404-1至404-NM之一部分接收反射雷達信號602-2用於數位波束成形。 In the depicted configuration, antenna array 802 is shown as having an NxM rectangular configuration, where N and M are positive integers greater than 1 and may or may not be equal to each other. Exemplary configurations include a 2x2 array, a 2x3 array, a 4x4 array, and the like. For digital beamforming, controller 310 may implement techniques for full-duplex operation 416 to enable a portion of transceivers 406-1 through 406-NM to receive using a portion of antennas 404-1 through 404-NM in antenna array 802 The reflected radar signal 602-2 is used for digital beamforming.

在一些實施方案中,控制器310可選擇使用天線404之哪個用於數位波束成形。此可藉由控制將天線陣列802中之天線404之哪個連接至接收器504(例如,經由用於全雙工操作416之上述技術)而達成。此使控制器310能夠經由無線通信晶片組104藉由選擇實現減效相互耦合之效應、增強指向性等之一預定間距之天線404而促進雷達感測。為了控制角模糊度,控制器310亦可基於雷達信號602之一中心波長選擇天線404來實現一有效天線間距。例示性天線間距可近似包含雷達信號602之一中心波長、中心波長之一半或中心波長之三分之一。此外,控制器310可藉由選擇在天線陣列802內相等間隔之天線404而減小數位波束成形之一複雜性。在一些實施方案中,可選擇天線404使得形成用於發射及接收之一二維陣列,如圖8-2中展示。 In some implementations, the controller 310 may select which of the antennas 404 to use for digital beamforming. This may be accomplished by controlling which of the antennas 404 in the antenna array 802 is connected to the receiver 504 (eg, via the techniques described above for full-duplex operation 416). This enables the controller 310 to facilitate radar sensing via the wireless communication chipset 104 by selecting antennas 404 that achieve a predetermined spacing that reduces the effects of mutual coupling, enhances directivity, and the like. To control the angular ambiguity, the controller 310 may also select the antenna 404 based on a center wavelength of the radar signal 602 to achieve an effective antenna spacing. Exemplary antenna spacings may include approximately one center wavelength, one half of the center wavelength, or one third of the center wavelength of the radar signal 602 . Additionally, controller 310 may reduce one of the complexities of digital beamforming by selecting antennas 404 that are equally spaced within antenna array 802. In some implementations, the antenna 404 may be selected such that a two-dimensional array is formed for transmission and reception, as shown in Figures 8-2.

圖8-2繪示用於數位波束成形之另一例示性無線通信晶片組104。無線通信晶片組104包含八個天線404-1至404-8及四個收發器406-1至406-4。天線404-1至404-4形成一發射天線陣列802-1且天線404-5至404-8形成一接收天線陣列802-2。在所描繪組態中,發射器502-1至502-4分別耦合至發射天線陣列802-1中之天線404-1至404-4且接收器504-1至504-4分別耦合至接收天線陣列802-2中之天線404-5至404-8。以此方式,可針對雷達信號602之發射及接收兩者實現數位波束成形。在其他實施方案中,發 射天線陣列802-1可具有與接收天線陣列802-2相同或不同之一天線配置、天線404之數目或天線間距。 8-2 illustrate another exemplary wireless communication chipset 104 for digital beamforming. The wireless communication chipset 104 includes eight antennas 404-1 to 404-8 and four transceivers 406-1 to 406-4. Antennas 404-1 to 404-4 form a transmit antenna array 802-1 and antennas 404-5 to 404-8 form a receive antenna array 802-2. In the depicted configuration, transmitters 502-1 to 502-4 are coupled to antennas 404-1 to 404-4 in transmit antenna array 802-1, respectively, and receivers 504-1 to 504-4 are coupled to receive antennas, respectively Antennas 404-5 to 404-8 in array 802-2. In this manner, digital beamforming may be implemented for both transmission and reception of radar signals 602 . In other embodiments, the The transmit antenna array 802-1 may have the same or a different antenna configuration, the number of antennas 404, or the antenna spacing than the receive antenna array 802-2.

雷達調變 radar modulation

圖9繪示用於雷達調變之一例示性雷達調變器420及無線通信晶片組104。在所描繪組態中,無線通信晶片組104之收發器406包含一I/Q調變器902及一I/Q解調變器904。針對無線通信,I/Q調變器902及I/Q解調變器904可分別用於將通信資料調變至一載波信號上或解調變載波信號以提取通信資料。例示性調變包含振幅、頻率或相位調變。作為另一實例,可藉由I/Q調變器902及I/Q解調變器904執行正交分頻多工(OFDM)。 FIG. 9 shows an exemplary radar modulator 420 and wireless communication chipset 104 for radar modulation. In the depicted configuration, transceiver 406 of wireless communication chipset 104 includes an I/Q modulator 902 and an I/Q demodulator 904 . For wireless communication, the I/Q modulator 902 and the I/Q demodulator 904 can be used to modulate the communication data onto a carrier signal or demodulate the carrier signal to extract the communication data, respectively. Exemplary modulations include amplitude, frequency or phase modulation. As another example, Orthogonal Frequency Division Multiplexing (OFDM) may be performed by I/Q modulator 902 and I/Q demodulator 904 .

針對雷達感測,控制器310可產生一調變操作信號906以引起I/Q調變器902及I/Q解調變器904作為雷達調變器420操作且利用一預定雷達調變類型。例示性雷達調變包含頻率調變(例如,線性頻率調變(LFM)、鋸齒頻率調變或三角頻率調變)、步進頻率調變、相移鍵控(PSK)、偽雜訊調變、擴展頻譜調變等。作為一實例,控制器310可引起I/Q調變器902產生一掃頻訊號且引起I/Q解調變器904解調變頻率調變連續波(FMCW)雷達之掃頻訊號。 For radar sensing, controller 310 may generate a modulation operating signal 906 to cause I/Q modulator 902 and I/Q demodulator 904 to operate as radar modulator 420 and utilize a predetermined radar modulation type. Exemplary radar modulations include frequency modulation (eg, linear frequency modulation (LFM), sawtooth frequency modulation, or triangular frequency modulation), step frequency modulation, phase shift keying (PSK), pseudo-noise modulation , spread spectrum modulation, etc. As an example, controller 310 may cause I/Q modulator 902 to generate a sweep signal and cause I/Q demodulator 904 to demodulate the sweep signal of a frequency modulated continuous wave (FMCW) radar.

控制器310亦可使用調變操作信號906進一步指定用於發射且接收雷達信號602之一無線通信頻道,其實現雷達信號602之一頻率及一頻寬。在一些態樣中,可結合不同無線通信頻率頻道以增大雷達信號之一頻寬。利用一較大頻寬增強經由無線通信晶片組104之雷達感測之距離解析度(例如,增大距離準確度且使多個目標能夠在距離中解析)。I/Q調變器902及I/Q解調變器904亦可用於支援同時執行多個雷達感測操作或同時執行無線通信及雷達感測兩者,如關於圖10進一步詳細描述。 The controller 310 may also use the modulated operating signal 906 to further designate a wireless communication channel for transmitting and receiving the radar signal 602 , which achieves a frequency and a bandwidth of the radar signal 602 . In some aspects, different wireless communication frequency channels may be combined to increase a bandwidth of the radar signal. Utilizing a larger bandwidth enhances the range resolution of radar sensing via the wireless communication chipset 104 (eg, increases range accuracy and enables multiple targets to be resolved in range). I/Q modulator 902 and I/Q demodulator 904 may also be used to support concurrently performing multiple radar sensing operations or performing both wireless communication and radar sensing simultaneously, as described in further detail with respect to FIG. 10 .

圖10繪示使用控制器310及無線通信晶片組104執行無線通信及雷達感測之運算裝置102。在此實例中,無線通信晶片組104支援MIMO及OFDM。基於調變操作信號906,無線通信晶片組104經由由發射器502-1、502-2、...、502-N表示之單獨發射鏈產生信號1000-1、1000-2、...、1000-N。信號1000-1、1000-2及1000-N分別經調變用於雷達感測、無線通信以及雷達感測及無線通信兩者。可藉由使用雷達調變調變含有通信資料之一信號而達成信號1000-N。以此方式,接收信號1000-N之其他運算裝置102可處理用於無線通信或用於雷達感測之信號1000-N(例如,使用雙態、多態或網路雷達之技術,如圖3中描述)。 FIG. 10 illustrates the computing device 102 using the controller 310 and the wireless communication chipset 104 to perform wireless communication and radar sensing. In this example, the wireless communication chipset 104 supports MIMO and OFDM. Based on the modulated operating signal 906, the wireless communication chipset 104 generates signals 1000-1, 1000-2, . 1000-N. Signals 1000-1, 1000-2, and 1000-N are modulated for radar sensing, wireless communication, and both radar sensing and wireless communication, respectively. Signal 1000-N may be achieved by modulating a signal containing communication data using radar modulation. In this manner, other computing devices 102 receiving the signal 1000-N may process the signal 1000-N for wireless communication or for radar sensing (eg, using two-state, poly-state, or network radar techniques, as shown in FIG. 3 ). described in).

為了避免多個信號1000之間之干擾,控制器310可引起I/Q調變器902使信號1000彼此正交。在其他態樣中,可使用不相交無線通信頻道發射信號1000-1、1000-2及1000-3。亦可將不同無線通信頻道用於不同雷達調變,使不同雷達信號602能夠被同時發射。若時序、天線或收發器資源在無線通信晶片組104中受限制,則控制器310可基於優先級、一預定更新速率或來自另一應用程式之一請求對無線通信及雷達感測排程以在不同時間發生。 To avoid interference between the multiple signals 1000, the controller 310 can cause the I/Q modulator 902 to make the signals 1000 quadrature with each other. In other aspects, signals 1000-1, 1000-2, and 1000-3 may be transmitted using disjoint wireless communication channels. Different wireless communication channels can also be used for different radar modulations so that different radar signals 602 can be transmitted simultaneously. If timing, antenna, or transceiver resources are limited in the wireless communication chipset 104, the controller 310 may schedule the wireless communication and radar sensing based on priority, a predetermined update rate, or a request from another application to occur at different times.

例示性方法 Exemplary method

圖11至圖13描繪用於使用無線通信晶片組104之雷達感測之例示性方法1100、1200及1300。方法1100、1200及1300被展示為所執行之操作(或動作)組,但不一定限於本文中展示操作之順序或組合。此外,可重複、組合、重新組織或連結一或多個操作之任何者以提供一系列廣泛的額外及/或替代方法。在以下論述之部分中,可參考圖1及圖2之環境100及200以及圖3至圖10中詳述之實體,僅舉例而言對其進行參考。技術不限 於藉由在一個裝置上操作之一個實體或多個實體執行。 FIGS. 11-13 depict exemplary methods 1100 , 1200 , and 1300 for radar sensing using the wireless communication chipset 104 . Methods 1100, 1200, and 1300 are shown as sets of operations (or actions) performed, but are not necessarily limited to the order or combination of operations shown herein. Furthermore, any of one or more operations may be repeated, combined, reorganized, or linked to provide a wide variety of additional and/or alternative approaches. In portions of the following discussion, reference may be made to the environments 100 and 200 of FIGS. 1 and 2 and the entities detailed in FIGS. 3-10, by way of example only. Unlimited technology is performed by an entity or entities operating on a device.

圖11繪示用於使用一無線通信晶片組執行用於雷達感測之全雙工操作之一例示性方法。在1102處,引起一無線通信晶片組之一發射器連接至一第一天線。舉例而言,控制器310可引起無線通信晶片組104將發射器502連接至一天線陣列802中之天線404之至少一者。 11 illustrates an exemplary method for performing full-duplex operation for radar sensing using a wireless communication chipset. At 1102, a transmitter of a wireless communication chipset is caused to connect to a first antenna. For example, the controller 310 may cause the wireless communication chipset 104 to connect the transmitter 502 to at least one of the antennas 404 in an antenna array 802 .

在1104處,引起無線通信晶片組之一接收器連接至一第二天線。舉例而言,控制器310可引起無線通信晶片組104將接收器504連接至天線陣列802中之至少一個其他天線404。發射器502及接收器504可與無線通信晶片組104中之一相同收發器406或不同收發器406相關聯。 At 1104, a receiver of the wireless communication chipset is caused to connect to a second antenna. For example, controller 310 may cause wireless communication chipset 104 to connect receiver 504 to at least one other antenna 404 in antenna array 802 . Transmitter 502 and receiver 504 may be associated with the same transceiver 406 or different transceivers 406 in one of the wireless communication chipsets 104 .

在1106處,經由發射器及第一天線發射一信號。舉例而言,發射器502-1及天線404-1可發射雷達信號602。在一些情況中,雷達信號602可係如圖6-1中展示之一連續波雷達信號或如圖6-2中展示之一脈衝雷達信號。 At 1106, a signal is transmitted via the transmitter and the first antenna. For example, transmitter 502-1 and antenna 404-1 may transmit radar signal 602. In some cases, radar signal 602 may be a continuous wave radar signal as shown in Figure 6-1 or a pulsed radar signal as shown in Figure 6-2.

在1108處,經由接收器及第二天線接收由一目標反射之信號。信號之接收在發射器發射信號之時間之至少一部分期間發生。舉例而言,雷達信號602可由目標604反射且經由接收器504-2及第二天線404-2接收。在一些實施方案中,接收器504-1可搭配第一天線404-1使用。針對連續波雷達,可同時發射雷達信號602之部分同時接收信號之其他部分。針對脈衝多普勒雷達,可在發射之其他脈衝之間接收雷達信號602之不同脈衝。 At 1108, a signal reflected by a target is received via a receiver and a second antenna. The reception of the signal occurs during at least a portion of the time when the transmitter transmits the signal. For example, radar signal 602 may be reflected by target 604 and received via receiver 504-2 and second antenna 404-2. In some implementations, the receiver 504-1 may be used with the first antenna 404-1. For continuous wave radar, portions of the radar signal 602 may be simultaneously transmitted while other portions of the signal are received. For pulsed Doppler radar, different pulses of radar signal 602 may be received between other pulses transmitted.

在1110處,處理經接收之信號以判定目標之一位置。舉例而言,系統處理器408或電腦處理器304可處理雷達信號602以判定目標604之一距離或一角度位置。 At 1110, the received signal is processed to determine a location of a target. For example, the system processor 408 or the computer processor 304 may process the radar signal 602 to determine a distance or an angular position of the target 604 .

圖12繪示用於使用一無線通信晶片組執行用於雷達感測之數位波束 成形之一例示性方法。在1202處,經由一無線通信晶片組之多個接收鏈接收由一目標反射之一雷達信號。舉例而言,可經由無線通信晶片組104之接收器504-1至504-N之至少一部分及天線404-1至404-N之至少一部分接收反射雷達信號602-2,如圖7中展示。一般言之,各接收鏈與一收發器406及一或多個天線404相關聯。在一些情況中,控制器310可透過雙工操作信號508初始化或設置無線通信晶片組104用於接收反射雷達信號602-2。控制器310亦可進一步選擇使用哪些接收鏈來接收反射雷達信號602-2,其可進一步最佳化無線通信晶片組104用於數位波束成形。 FIG. 12 illustrates the implementation of digital beam for radar sensing using a wireless communication chipset An exemplary method of shaping. At 1202, a radar signal reflected by a target is received via receive chains of a wireless communication chipset. For example, reflected radar signal 602-2 may be received via at least a portion of receivers 504-1 through 504-N and at least a portion of antennas 404-1 through 404-N of wireless communication chipset 104, as shown in FIG. In general, each receive chain is associated with a transceiver 406 and one or more antennas 404 . In some cases, the controller 310 may initialize or configure the wireless communication chipset 104 via the duplex operation signal 508 for receiving the reflected radar signal 602-2. The controller 310 can also further select which receive chains are used to receive the reflected radar signal 602-2, which can further optimize the wireless communication chipset 104 for digital beamforming.

在1204處,經由無線通信晶片組產生與多個接收鏈之各者相關聯之基頻帶資料。舉例而言,藉由無線通信晶片組104產生基頻帶資料702-1至702-N。基頻帶資料702-1至702-N可包含由接收器504-1至504-N產生之數位I/Q資料。 At 1204, baseband data associated with each of the plurality of receive chains is generated via the wireless communication chipset. For example, the baseband data 702 - 1 to 702 -N are generated by the wireless communication chipset 104 . Baseband data 702-1 through 702-N may include digital I/Q data generated by receivers 504-1 through 504-N.

在1206處,將基頻帶資料提供至一數位波束成形器。舉例而言,可在無線通信晶片組104或運算裝置102內實施數位波束成形器418。在一些實施方案中,可經由通信介面402將基頻帶資料702傳達至數位波束成形器418。 At 1206, the baseband data is provided to a digital beamformer. For example, the digital beamformer 418 may be implemented within the wireless communication chipset 104 or the computing device 102 . In some implementations, the baseband data 702 may be communicated to the digital beamformer 418 via the communication interface 402 .

在1208處,經由數位波束成形器藉由基於基頻帶資料產生一空間回應而執行數位波束成形。舉例而言,數位波束成形器418可根據複合權重按比例調整基頻帶資料702且組合來自各接收鏈之資料以產生空間回應708。一般言之,空間回應708表示針對不同角度之振幅及相位資訊。 At 1208, digital beamforming is performed via a digital beamformer by generating a spatial response based on the baseband data. For example, the digital beamformer 418 may scale the baseband data 702 according to the composite weights and combine the data from each receive chain to generate the spatial response 708 . In general, the spatial response 708 represents amplitude and phase information for different angles.

在1210處,基於空間回應判定目標之一角度位置。可經由基於雷達之應用程式308基於空間回應708判定角度位置。在一些情況中,角度位置可包含目標604之一方位角及一仰角兩者。 At 1210, an angular position of an object is determined based on the spatial response. The angular position can be determined based on the spatial response 708 via the radar-based application 308 . In some cases, the angular position may include both an azimuth and an elevation of the target 604 .

圖13繪示用於使用一無線通信晶片組執行用於雷達感測之雷達調變之一例示性方法。在1302處,選擇一第一調變類型以使一目標之一位置能夠被判定。舉例而言,第一調變類型可包含一雷達調變,諸如一線性頻率調變、一步進頻率調變、相移鍵控等。 13 illustrates an exemplary method for performing radar modulation for radar sensing using a wireless communication chipset. At 1302, a first modulation type is selected to enable a position of a target to be determined. For example, the first modulation type may include a radar modulation, such as a linear frequency modulation, a step frequency modulation, phase shift keying, or the like.

在1304處,選擇一第二調變類型以使通信資料能夠被無線地傳達。通信調變類型可包含正交分頻多工。 At 1304, a second modulation type is selected to enable communication data to be communicated wirelessly. Communication modulation types may include quadrature frequency division multiplexing.

在1306處,經由一無線通信晶片組基於第一調變類型調變一信號以產生一雷達信號。舉例而言,無線通信晶片組104可包含I/Q調變器902。控制器310可經由調變操作信號906引起I/Q調變器902使用雷達調變來產生雷達信號602、信號1000-1或信號1000-N。 At 1306, a signal is modulated based on the first modulation type via a wireless communication chipset to generate a radar signal. For example, the wireless communication chipset 104 may include the I/Q modulator 902 . Controller 310 may cause I/Q modulator 902 to generate radar signal 602, signal 1000-1 or signal 1000-N using radar modulation via modulation operating signal 906.

在1308處,經由無線通信晶片組基於第二調變類型調變另一信號以產生一通信信號。舉例而言,控制器130可經由調變操作信號906引起I/Q調變器902使用通信調變來產生信號1000-2或信號1000-N。 At 1308, another signal is modulated based on the second modulation type via the wireless communication chipset to generate a communication signal. For example, controller 130 may cause I/Q modulator 902 to use communication modulation to generate signal 1000-2 or signal 1000-N via modulation operation signal 906.

在1310處,控制雷達信號及通信信號之發射來實現經由無線通信晶片組之雷達感測及無線通信。舉例而言,若無線通信晶片組104具有有限資源(例如,有限數目個收發器406及天線404),則控制器310可引起無線通信晶片組104在不同時間發射雷達信號1000-1及通信信號1000-2。替代地,諸如在無線通信晶片組104支援MIMO之情況中,控制器310可引起無線通信晶片組104同時發射雷達信號1000-1及通信信號1000-2。在一些情況中,雷達信號1000-1及通信信號1000-2之發射可係基於各自優先級、雷達感測之一預定更新速率或與無線通信晶片組104相關聯之一應用程式(諸如基於雷達之應用程式308)之每一請求。 At 1310, the transmission of radar signals and communication signals is controlled to enable radar sensing and wireless communication via the wireless communication chipset. For example, if the wireless communication chipset 104 has limited resources (eg, a limited number of transceivers 406 and antennas 404), the controller 310 may cause the wireless communication chipset 104 to transmit the radar signal 1000-1 and the communication signal at different times 1000-2. Alternatively, such as in the case where the wireless communication chipset 104 supports MIMO, the controller 310 may cause the wireless communication chipset 104 to transmit the radar signal 1000-1 and the communication signal 1000-2 simultaneously. In some cases, the transmission of radar signal 1000-1 and communication signal 1000-2 may be based on respective priorities, a predetermined update rate for radar sensing, or an application associated with wireless communication chipset 104 (such as radar-based application 308) for each request.

例示性運算系統 Exemplary Computing System

圖14繪示可實施為如參考先前圖1至圖10描述之任何類型之用戶端、伺服器及/或運算裝置以使用一無線通信晶片組104(無線通信晶片組104)實施雷達感測之例示性運算系統1400之各種組件。 FIG. 14 illustrates a method that may be implemented as any type of client, server, and/or computing device as previously described with reference to FIGS. 1-10 to implement radar sensing using a wireless communication chipset 104 (wireless communication chipset 104 ). Various components of exemplary computing system 1400.

運算系統1400包含實現裝置資料1404(例如,經接收資料、正在被接收之資料、經排程用於廣播之資料、資料之資料封包)之有線及/或無線通信之通信裝置1402。裝置資料1404或其他裝置內容可包含裝置之組態設定、儲存於裝置上之媒體內容及/或與裝置之一使用者相關聯之資訊。儲存於運算系統1400上之媒體內容可包含任何類型之音訊、視訊及/或影像資料。運算系統1400包含一或多個資料輸入1406,可經由該一或多個資料輸入1406接收任何類型之資料、媒體內容及/或輸入,諸如人類發音、基頻帶資料702、空間回應708、其他類型之雷達資料(例如,數位基頻帶資料或距離多普勒圖)、使用者可選擇輸入(顯式或隱式)、訊息、音樂、電視媒體內容、經記錄視訊內容及自任何內容及/或資料源接收之任何其他類型之音訊、視訊及/或影像資料。 Computing system 1400 includes communication devices 1402 that enable wired and/or wireless communication of device data 1404 (eg, data received, data being received, data scheduled for broadcast, data packets of data). Device data 1404 or other device content may include configuration settings for the device, media content stored on the device, and/or information associated with a user of the device. The media content stored on the computing system 1400 may include any type of audio, video and/or image data. The computing system 1400 includes one or more data inputs 1406 via which any type of data, media content and/or input may be received, such as human speech, baseband data 702, spatial responses 708, other types radar data (eg, digital baseband data or range Doppler maps), user-selectable inputs (explicit or implicit), messages, music, television media content, recorded video content and from any content and/or Any other type of audio, video and/or image data received by the data source.

運算系統1400亦包含通信介面1408,該等通信介面1408可實施為一串列及/或平行介面、一無線介面、任何類型之網路介面、一數據機之任何一或多者,且實施為任何其他類型之通信介面。通信介面1408提供運算系統1400與一通信網路之間之一連接及/或通信鏈路,其他電子、運算及通信裝置藉由該通信網路與運算系統1400傳達資料。 Computing system 1400 also includes communication interfaces 1408, which may be implemented as any one or more of a serial and/or parallel interface, a wireless interface, a network interface of any type, a modem, and implemented as Any other type of communication interface. Communication interface 1408 provides a connection and/or communication link between computing system 1400 and a communication network through which other electronic, computing and communication devices communicate data with computing system 1400.

運算系統1400包含一或多個處理器1410(例如,微處理器、控制器及類似者之任何者),該一或多個處理器1410處理各種電腦可執行指令以控制運算系統1400之操作且實現使用無線通信晶片組104之雷達感測之技術或其中可體現使用無線通信晶片組104之雷達感測之技術。替代地或另 外,可使用硬體、韌體或結合處理及控制電路(大體上識別為1412)實施之固定邏輯電路之任一者或組合實施運算系統1400。雖然未展示,但運算系統1400可包含耦合裝置內之各種組件之一系統匯流排或資料傳送系統。一系統匯流排可包含不同匯流排結構之任一者或組合,諸如一記憶體匯流排或記憶體控制器、一周邊匯流排、一通用串列匯流排及/或利用各種匯流排架構之任何者之一處理器或區域匯流排。 Computing system 1400 includes one or more processors 1410 (eg, any of microprocessors, controllers, and the like) that process various computer-executable instructions to control the operation of computing system 1400 and Techniques for radar sensing using the wireless communication chipset 104 are implemented or may be embodied in techniques for radar sensing using the wireless communication chipset 104 . alternatively or otherwise Furthermore, computing system 1400 may be implemented using any one or a combination of hardware, firmware, or fixed logic circuits implemented in conjunction with processing and control circuits (identified generally as 1412). Although not shown, the computing system 1400 may include a system bus or a data transfer system that couples the various components within the device. A system bus can include any one or a combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a general purpose serial bus, and/or any of the various bus architectures utilized Either a processor or a regional bus.

運算系統1400亦包含一電腦可讀媒體1414,諸如實現永久性及/或非暫時性資料儲存(即,與僅僅信號發射相比)之一或多個記憶體裝置,其等之實例包含隨機存取記憶體(RAM)、非揮發性記憶體(例如,一唯讀記憶體(ROM)、快閃記憶體、EPROM、EEPROM等之任何一或多者)及一磁碟儲存裝置。一磁碟儲存裝置可被實施為任何類型之磁性或光學儲存裝置,諸如一硬碟機、一可記錄及/或可重寫光碟(CD)、任何類型之數位多功能光碟(DVD)及類似者。運算系統1400亦可包含一大容量儲存媒體裝置(儲存媒體)1416。 The computing system 1400 also includes a computer-readable medium 1414, such as one or more memory devices that implement permanent and/or non-transitory data storage (ie, as compared to mere signaling), examples of which include random access memory. Access memory (RAM), non-volatile memory (eg, any one or more of a read only memory (ROM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A magnetic disk storage device can be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewritable compact disc (CD), any type of digital versatile disc (DVD) and the like By. The computing system 1400 may also include a mass storage media device (storage medium) 1416 .

電腦可讀媒體1414提供用以儲存裝置資料1404以及各種裝置應用程式1418及與運算系統1400之操作態樣相關之任何其他類型之資訊及/或資料之資料儲存機構。舉例而言,一作業系統1420可維持為結合電腦可讀媒體1414之一電腦應用程式且在處理器1410上執行。裝置應用程式1418可包含一裝置管理器,諸如任何形式之一控制應用程式、軟體應用程式、信號處理及控制模組、一特定裝置原生之程式碼、一特定裝置之一硬體抽象層等。 Computer readable medium 1414 provides a data storage mechanism for storing device data 1404 as well as various device applications 1418 and any other types of information and/or data related to the operational aspect of computing system 1400 . For example, an operating system 1420 may be maintained as a computer application in conjunction with computer-readable medium 1414 and executed on processor 1410 . Device applications 1418 may include a device manager, such as any form of control application, software application, signal processing and control modules, code native to a specific device, a hardware abstraction layer for a specific device, and the like.

裝置應用程式1418亦包含用以使用無線通信晶片組104實施雷達感測之任何系統組件、引擎或管理器。在此實例中,裝置應用程式1418包含 基於雷達之應用程式308、控制器310及數位波束成形器418。 Device application 1418 also includes any system components, engines, or managers used to implement radar sensing using wireless communication chipset 104 . In this example, device application 1418 includes Radar based application 308 , controller 310 and digital beamformer 418 .

結論 in conclusion

雖然已以特定於特徵及/或方法之語言描述使用使用一無線通信晶片組之雷達感測之技術及包含使用一無線通信晶片組之雷達感測之設備,但應理解,隨附發明申請專利範圍之標的不一定限於所描述之特定特徵或方法。實情係,特定特徵及方法被揭示為使用無線通信晶片組之雷達感測之例示性實施方案。 While techniques for using radar sensing using a wireless communication chipset and devices including radar sensing using a wireless communication chipset have been described in language specific to features and/or methods, it should be understood that the accompanying patent application The subject matter of scope is not necessarily limited to the specific features or methods described. Rather, certain features and methods are disclosed as exemplary implementations of radar sensing using wireless communication chipsets.

100:環境 100: Environment

102:運算裝置 102: Computing device

104:無線通信晶片組 104: Wireless Communication Chipset

106:基地台 106: Base Station

108:無線通信鏈路/無線鏈路 108: Wireless Communication Links/Wireless Links

110-1:遮蔽手勢辨識應用程式 110-1: Masking Gesture Recognition Application

110-2:手勢辨識應用程式 110-2: Gesture Recognition Application

110-3:醫學診斷應用程式 110-3: Medical Diagnostic Applications

110-4:地圖繪製應用程式 110-4: Mapping Applications

Claims (20)

一種用於雷達調變之方法,該方法由一裝置之一硬體晶片組執行,該方法包括:經由該硬體晶片組之一收發器,藉由基於一雷達調變類型調變一第一信號而產生一雷達信號;經由該硬體晶片組之一天線發射(transmit)該雷達信號以使該雷達信號能夠被使用於雷達感測;經由該收發器,藉由基於一通信調變類型調變一第二信號而產生一無線通信信號;經由該天線發射該無線通信信號以能夠與另一裝置無線通信;經由該收發器,藉由基於該雷達調變類型調變一第三信號且將通信資料調變於該第三信號上而產生一無線通信及雷達感測信號;及經由該天線發射該無線通信及雷達感測信號,以使該無線通信及雷達感測信號能夠被使用於藉由該另一裝置之無線通信或雷達感測。 A method for radar modulation, the method being performed by a hardware chipset of a device, the method comprising: modulating, via a transceiver of the hardware chipset, by modulating a first signal to generate a radar signal; transmit the radar signal through an antenna of the hardware chip set so that the radar signal can be used for radar sensing; through the transceiver, by modulating based on a communication modulation type transforming a second signal to generate a wireless communication signal; transmitting the wireless communication signal through the antenna to enable wireless communication with another device; through the transceiver, by modulating a third signal based on the radar modulation type and converting The communication data is modulated on the third signal to generate a wireless communication and radar sensing signal; and the wireless communication and radar sensing signal is transmitted through the antenna, so that the wireless communication and radar sensing signal can be used for borrowing Sensing by wireless communication or radar of the other device. 如請求項1之方法,其中該雷達調變類型包含一線性頻率調變(linear-frequency modulation)。 The method of claim 1, wherein the radar modulation type comprises a linear-frequency modulation. 如請求項1之方法,其進一步包括選擇一無線通信頻道以設定該無線通信及雷達感測信號之一頻率及一頻寬。 The method of claim 1, further comprising selecting a wireless communication channel to set a frequency and a bandwidth of the wireless communication and radar sensing signals. 如請求項3之方法,其進一步包括使用該無線通信頻道及另一無線通 信頻道執行頻道結合(channel bonding),以使該無線通信及雷達感測信號之該頻寬能夠涵蓋(encompass)該無線通信頻道中之頻率之至少一部分及該另一無線通信頻道中之頻率之至少另一部分。 The method of claim 3, further comprising using the wireless communication channel with another wireless communication The signal channel performs channel bonding so that the bandwidth of the wireless communication and radar sensing signals can encompass at least a portion of the frequencies in the wireless communication channel and the frequencies in the other wireless communication channel at least another part. 如請求項1之方法,其進一步包括同步化包含該硬體晶片組之該裝置及包含另一硬體晶片組之該另一裝置,以使該裝置及該另一裝置能夠使用該無線通信及雷達感測信號而操作為一雙態雷達(bistatic radar)。 The method of claim 1, further comprising synchronizing the device including the hardware chipset and the another device including another hardware chipset to enable the device and the other device to use the wireless communication and The radar senses the signal and operates as a bistatic radar. 如請求項5之方法,其進一步包括:經由該硬體晶片組接收藉由該另一裝置發射之另一無線通信及雷達感測信號,該另一無線通信及雷達感測信號包含其他通信資料且由該目標反射;經由該硬體晶片組自該另一無線通信及雷達感測信號提取(extract)該通信資料;及執行數位波束成形(digital beamforming)以基於經接收之該另一無線通信及雷達感測信號判定該目標之一角度位置。 The method of claim 5, further comprising: receiving, via the hardware chipset, another wireless communication and radar sensing signal transmitted by the other device, the another wireless communication and radar sensing signal including other communication data and reflected by the target; extract the communication data from the other wireless communication and radar sensing signals via the hardware chipset; and perform digital beamforming based on the received another wireless communication and the radar sensing signal to determine an angular position of the target. 如請求項1之方法,其進一步包括依據一全雙工(full-duplex)操作而操作該硬體晶片組,以使該硬體晶片組能夠在發射該無線通信及雷達感測信號之時間之至少一部分期間接收該無線通信及雷達感測信號之一反射版本(reflected version)。 The method of claim 1, further comprising operating the hardware chipset in accordance with a full-duplex operation to enable the hardware chipset to transmit the wireless communication and radar sensing signals at the time of transmission A reflected version of the wireless communication and radar sensing signal is received during at least a portion of the period. 如請求項1之方法,其中: 該雷達信號及該無線通信信號之該發射包括同時發射該雷達信號之一部分及該無線通信信號之一部分;及該通信調變類型及該雷達調變類型彼此正交以緩解(mitigate)該雷達信號與該通信信號之間之干擾。 As in the method of claim 1, wherein: The transmission of the radar signal and the wireless communication signal includes simultaneously transmitting a portion of the radar signal and a portion of the wireless communication signal; and the communication modulation type and the radar modulation type are orthogonal to each other to mitigate the radar signal interference with the communication signal. 如請求項1之方法,其中該雷達調變類型之該選擇及該通信調變類型之該選擇引起該雷達信號及該通信信號利用不相交(disjoint)無線通信頻道。 The method of claim 1, wherein the selection of the radar modulation type and the selection of the communication modulation type cause the radar signal and the communication signal to utilize disjoint wireless communication channels. 如請求項1之方法,其中該雷達信號及該無線通信信號之該發射包括在不同時間發射該雷達信號及該無線通信信號。 The method of claim 1, wherein the transmitting of the radar signal and the wireless communication signal comprises transmitting the radar signal and the wireless communication signal at different times. 一種用於雷達調變之設備,該設備包括一硬體晶片組,其經組態以:藉由基於一雷達調變類型調變一第一信號而產生一雷達信號;發射該雷達信號以使該雷達信號能夠被使用於雷達感測;藉由基於一通信調變類型調變一第二信號而產生一無線通信信號;藉由基於該雷達調變類型調變一第三信號且將通信資料調變於該第三信號上而產生一無線通信及雷達感測信號;發射該無線通信及雷達感測信號,以使該無線通信及雷達感測信號能夠被使用於藉由另一設備之無線通信或雷達感測。 An apparatus for radar modulation includes a hardware chip set configured to: generate a radar signal by modulating a first signal based on a radar modulation type; transmit the radar signal to enable The radar signal can be used for radar sensing; by modulating a second signal based on a communication modulation type to generate a wireless communication signal; by modulating a third signal based on the radar modulation type and converting the communication data modulating the third signal to generate a wireless communication and radar sensing signal; transmitting the wireless communication and radar sensing signal so that the wireless communication and radar sensing signal can be used for wireless communication by another device communication or radar sensing. 如請求項11之設備,其中該設備包括一蜂巢式電話。 The apparatus of claim 11, wherein the apparatus comprises a cellular telephone. 如請求項11之設備,其中該雷達調變類型包含一線性頻率調變(linear-frequency modulation)。 The apparatus of claim 11, wherein the radar modulation type comprises a linear-frequency modulation. 如請求項11之設備,其中該硬體晶片組經組態以選擇一無線通信頻道以設定該無線通信及雷達感測信號之一頻率及一頻寬。 The apparatus of claim 11, wherein the hardware chipset is configured to select a wireless communication channel to set a frequency and a bandwidth of the wireless communication and radar sensing signals. 如請求項14之設備,其中該硬體晶片組經組態以使用該無線通信頻道及另一無線通信頻道執行頻道結合(channel bonding),以使該無線通信及雷達感測信號之該頻寬能夠涵蓋(encompass)該無線通信頻道中之頻率之至少一部分及該另一無線通信頻道中之頻率之至少另一部分。 The apparatus of claim 14, wherein the hardware chipset is configured to perform channel bonding using the wireless communication channel and another wireless communication channel to enable the wireless communication and radar sensing signal bandwidth Capable of encompassing at least a portion of the frequencies in the wireless communication channel and at least another portion of the frequencies in the other wireless communication channel. 如請求項11之設備,其中該硬體晶片組經組態以同步化另一設備之另一硬體晶片組,以使該硬體晶片組及該另一硬體晶片組能夠使用該無線通信及雷達感測信號而操作為一雙態雷達(bistatic radar)。 The device of claim 11, wherein the hardware chipset is configured to synchronize another hardware chipset of another device to enable the hardware chipset and the other hardware chipset to use the wireless communication and radar sensing signals to operate as a bistatic radar. 如請求項16之設備,其中該硬體晶片組經組態以:接收藉由該另一硬體晶片組發射之另一無線通信及雷達感測信號,該另一無線通信及雷達感測信號包含其他通信資料且由一物件反射;自該另一無線通信及雷達感測信號提取(extract)該通信資料;及執行數位波束成形(digital beamforming)以基於經接收之該另一無線通信及雷達感測信號判定該物件之一角度位置。 The apparatus of claim 16, wherein the hardware chipset is configured to: receive another wireless communication and radar sensing signal transmitted by the other hardware chipset, the other wireless communication and radar sensing signal contains other communication data and is reflected by an object; extracts the communication data from the other wireless communication and radar sensing signal; and performs digital beamforming based on the received other wireless communication and radar The sensing signal determines an angular position of the object. 如請求項11之設備,其中該硬體晶片組經組態以執行一全雙工(full-duplex)操作而在發射該無線通信及雷達感測信號之時間之至少一部分期間接收該無線通信及雷達感測信號之一反射版本(reflected version)。 The apparatus of claim 11, wherein the hardware chipset is configured to perform a full-duplex operation to receive the wireless communication during at least a portion of the time when the wireless communication and radar sensing signals are transmitted and A reflected version of the radar sensing signal. 如請求項11之設備,其中該硬體晶片組包括一收發器及一天線;及該硬體晶片組係經組態以使用該收發器及該天線在不同時間產生及發射該雷達信號、該無線通信信號、及該無線通信及雷達感測信號。 The apparatus of claim 11, wherein the hardware chipset includes a transceiver and an antenna; and the hardware chipset is configured to generate and transmit the radar signal at different times using the transceiver and the antenna, the A wireless communication signal, and the wireless communication and radar sensing signal. 如請求項11之設備,其中該硬體晶片組包括多個收發器及多個天線;及該硬體晶片組係經組態以使用該多個收發器及該多個天線在一相同時間間隔之期間產生及發射該雷達信號、該無線通信信號、及該無線通信及雷達感測信號。 The apparatus of claim 11, wherein the hardware chipset includes a plurality of transceivers and a plurality of antennas; and the hardware chipset is configured to use the plurality of transceivers and the plurality of antennas at the same time interval The radar signal, the wireless communication signal, and the wireless communication and radar sensing signal are generated and transmitted during the period.
TW110106302A 2017-05-31 2018-03-09 Method and apparatus for radar modulations TWI771923B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762512961P 2017-05-31 2017-05-31
US62/512,961 2017-05-31

Publications (2)

Publication Number Publication Date
TW202137740A TW202137740A (en) 2021-10-01
TWI771923B true TWI771923B (en) 2022-07-21

Family

ID=65803322

Family Applications (2)

Application Number Title Priority Date Filing Date
TW107107979A TWI721258B (en) 2017-05-31 2018-03-09 Radar modulations for radar sensing using a wireless communication chipset
TW110106302A TWI771923B (en) 2017-05-31 2018-03-09 Method and apparatus for radar modulations

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW107107979A TWI721258B (en) 2017-05-31 2018-03-09 Radar modulations for radar sensing using a wireless communication chipset

Country Status (1)

Country Link
TW (2) TWI721258B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI723574B (en) * 2019-10-09 2021-04-01 國立中山大學 Hand gesture recognition system and hand gesture recognition method
TWI745037B (en) * 2020-08-20 2021-11-01 國立清華大學 A cross-media internet of things system and method thereof
CN114265016B (en) * 2021-12-28 2023-04-14 河北德冠隆电子科技有限公司 Multi-angle adjustment wide area radar sensor system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140361920A1 (en) * 2013-06-10 2014-12-11 Honeywell International Inc. Cooperative intrusion detection
US20150219753A1 (en) * 2014-02-05 2015-08-06 Freescale Semiconductor, Inc. Circuitry for and method of generating a frequency modulated radar transmitter signal, a radar transceiver circuit and a radar system
US20160170014A1 (en) * 2013-11-11 2016-06-16 Electronics And Telecommunications Research Institute Apparatus and method for wireless identification
US20160174842A1 (en) * 2014-12-17 2016-06-23 Elwha Llc Epidermal electronics systems having radio frequency antennas systems and methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843351A (en) * 1987-08-28 1989-06-27 Hewlett-Packard Company Vector modulation signal generator
US7092690B2 (en) * 2002-03-13 2006-08-15 Gregory Zancewicz Genetic algorithm-based adaptive antenna array processing method and system
US6633254B1 (en) * 2002-08-15 2003-10-14 Bae Systems Information And Electronics Systems Integration Inc. Self-modulating remote moving target detector
JP2007232498A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Obstacle detecting system
US8169358B1 (en) * 2007-06-25 2012-05-01 Bbn Technologies Coherent multi-band radar and communications transceiver
CN101354438B (en) * 2008-08-28 2011-12-28 阮树成 Millimeter-wave time-division linear frequency modulation multiple-target detection colliding-proof radar for car
US8519885B2 (en) * 2011-09-21 2013-08-27 Mobile Joose, Inc. Combination hand-held phone and radar system
JP6255248B2 (en) * 2014-01-14 2017-12-27 パナソニック株式会社 Multi-sector radar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140361920A1 (en) * 2013-06-10 2014-12-11 Honeywell International Inc. Cooperative intrusion detection
US20160170014A1 (en) * 2013-11-11 2016-06-16 Electronics And Telecommunications Research Institute Apparatus and method for wireless identification
US20150219753A1 (en) * 2014-02-05 2015-08-06 Freescale Semiconductor, Inc. Circuitry for and method of generating a frequency modulated radar transmitter signal, a radar transceiver circuit and a radar system
US20160174842A1 (en) * 2014-12-17 2016-06-23 Elwha Llc Epidermal electronics systems having radio frequency antennas systems and methods

Also Published As

Publication number Publication date
TWI721258B (en) 2021-03-11
TW201904244A (en) 2019-01-16
TW202137740A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
JP7274544B2 (en) Full-duplex operation for radar sensing using wireless communication chipset
CN110192119B (en) Radar modulation for radar sensing using wireless communication chipsets
CN110462432B (en) Digital beamforming for radar sensing using wireless communication chip sets
TWI771923B (en) Method and apparatus for radar modulations
TWI681204B (en) Communication apparatus and method for performing digital beamforming and related computer-readable storage media
TWI681644B (en) Full-duplex operation for radar sensing using a wireless communication chipset