TWI762683B - Uplink and downlink grants for narrowband operations - Google Patents

Uplink and downlink grants for narrowband operations Download PDF

Info

Publication number
TWI762683B
TWI762683B TW107125667A TW107125667A TWI762683B TW I762683 B TWI762683 B TW I762683B TW 107125667 A TW107125667 A TW 107125667A TW 107125667 A TW107125667 A TW 107125667A TW I762683 B TWI762683 B TW I762683B
Authority
TW
Taiwan
Prior art keywords
grants
grant
interleaved
data channel
harq
Prior art date
Application number
TW107125667A
Other languages
Chinese (zh)
Other versions
TW201921871A (en
Inventor
韋超
卡皮 巴塔德
許浩
艾柏多 瑞可亞瓦利諾
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW201921871A publication Critical patent/TW201921871A/en
Application granted granted Critical
Publication of TWI762683B publication Critical patent/TWI762683B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Abstract

Aspects of the present disclosure provide techniques and apparatus for wireless communication. In one aspect, a method is provided which may be performed by a wireless device such as a user equipment (UE), which can be an Internet-of-things (IoT) device. The method generally includes monitoring a control channel in a narrowband of a system bandwidth for an uplink (UL) or a downlink (DL) grant, receiving interlaced UL and DL grants, sending or receiving information in response to the received interlaced UL and DL grants.

Description

用於窄頻操作的上行鏈路和下行鏈路授權Uplink and downlink grants for narrowband operation

本專利申請案主張轉讓給本受讓人的於2017年7月31日提出申請的國際專利申請號PCT/CN2017/095169的優先權。This patent application claims priority to International Patent Application No. PCT/CN2017/095169, filed on July 31, 2017, assigned to the present assignee.

本案內容的某些態樣大體係關於無線通訊,並且更特定言之,係關於用於窄頻操作的上行鏈路(UL)和下行鏈路(DL)授權。Certain aspects of the subject matter of this case relate generally to wireless communications, and more particularly, to uplink (UL) and downlink (DL) grants for narrowband operation.

無線通訊系統被廣泛部署以提供各種通訊內容,例如語音、資料等。該等系統可以是能夠藉由共享可用系統資源(例如,頻寬和發射功率)來支援與多個使用者的通訊的多工存取系統。此種多工存取技術的實例包括分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分頻多工存取(FDMA)系統、第三代合作夥伴計畫(3GPP)長期進化(LTE)/高級LTE(LTE-A)系統和正交分頻多工存取(OFDMA)系統。Wireless communication systems are widely deployed to provide various communication contents, such as voice, data, and the like. Such systems may be multiple access systems capable of supporting communication with multiple users by sharing available system resources (eg, bandwidth and transmit power). Examples of such multiplexing access techniques include Code Division Multiplexing Access (CDMA) systems, Time Division Multiplexing Access (TDMA) systems, Frequency Division Multiplexing Access (FDMA) systems, 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE)/LTE-Advanced (LTE-A) systems and Orthogonal Frequency Division Multiple Access (OFDMA) systems.

通常,無線多工存取通訊系統可以同時支援多個無線終端的通訊。每個終端經由前向和反向鏈路上的傳輸與一或多個基地台(BS)通訊。前向鏈路(或下行鏈路)指的是從BS到終端的通訊鏈路,而反向鏈路(或上行鏈路)指的是從終端到BS的通訊鏈路。該通訊鏈路可以經由單輸入單輸出、多輸入單輸出或多輸入多輸出(MIMO)系統建立。Generally, a wireless multiple access communication system can simultaneously support the communication of a plurality of wireless terminals. Each terminal communicates with one or more base stations (BSs) via transmissions on forward and reverse links. The forward link (or downlink) refers to the communication link from the BS to the terminal, and the reverse link (or uplink) refers to the communication link from the terminal to the BS. The communication link may be established via a single-in-single-out, multiple-in-single-out, or multiple-in-multiple-out (MIMO) system.

無線通訊網路可以包括可支援多個無線設備的通訊的多個BS。無線設備可以包括使用者設備(UE)。機器類型通訊(MTC)可以指涉及通訊的至少一端上的至少一個遠端設備的通訊,並且可以包括涉及不一定需要人互動的一或多個實體的資料通訊形式。例如,MTC UE可以包括能夠經由公共陸地行動網路(PLMN)與MTC伺服器及/或其他MTC設備進行MTC通訊的UE。無線設備可以包括物聯網路(IoT)設備(例如,窄頻IoT(NB-IoT)設備)。IoT可以指實體物件、設備或「事物」的網路。IoT設備可以嵌入有例如電子設備、軟體或感測器,並且可以具有網路連接,此使得該等設備能夠收集和交換資料。A wireless communication network may include a plurality of BSs that can support communication of a plurality of wireless devices. Wireless devices may include user equipment (UE). Machine Type Communication (MTC) may refer to communication involving at least one remote device on at least one end of the communication, and may include forms of data communication involving one or more entities that do not necessarily require human interaction. For example, MTC UEs may include UEs capable of MTC communication with MTC servers and/or other MTC devices via a public land mobile network (PLMN). Wireless devices may include Internet of Things (IoT) devices (eg, narrowband IoT (NB-IoT) devices). IoT can refer to a network of physical objects, devices or "things". IoT devices can be embedded with, for example, electronics, software, or sensors, and can have network connectivity that enables the devices to collect and exchange data.

一些下一代、NR或5G網路可以包括多個基地台,每個基地台同時支援多個通訊設備(例如UE)的通訊。在LTE或LTE-A網路中,一或多個BS的集合可以定義eNodeB(eNB)。在其他實例中(例如,在下一代或5G網路中),無線多工存取通訊系統可以包括與多個中央單元(例如,CU、中央節點(CN)、存取節點控制器(ANC)等)通訊的多個分散式單元(例如邊緣單元(EU)、邊緣節點(EN)、無線電頭端(RH)、智能無線電頭端(SRH)、傳輸接收點(TRP)等),其中與CU通訊的一或多個分散式單元(DU)的集合可以定義存取節點(例如,AN、新無線電基地台(NR BS)、NR NB、網路節點、gNB、5G BS、存取點(AP)等)。BS或DU可以在下行鏈路通道(例如,用於來自BS或到UE的傳輸)和上行鏈路通道(例如,用於從UE到BS或DU的傳輸)上與UE集合通訊。Some next-generation, NR, or 5G networks may include multiple base stations, each supporting communication for multiple communication devices (eg, UEs) simultaneously. In an LTE or LTE-A network, a set of one or more BSs may define an eNodeB (eNB). In other examples (eg, in next-generation or 5G networks), a wireless multiple access communication system may include communication with multiple central units (eg, CU, central node (CN), access node controller (ANC) etc.) multiple distributed units of communication (e.g. Edge Unit (EU), Edge Node (EN), Radio Head (RH), Smart Radio Head (SRH), Transmit Receive Point (TRP), etc.), which communicate with the CU A collection of one or more Distributed Units (DUs) of communication may define an access node (eg, AN, New Radio Base Station (NR BS), NR NB, Network Node, gNB, 5G BS, Access Point (AP) )Wait). A BS or DU may communicate with a set of UEs on downlink channels (eg, for transmission from the BS or to the UE) and uplink channels (eg, for transmission from the UE to the BS or DU).

已經在各種電信標準中採用該等多工存取技術,以提供使得不同的無線設備能夠在城市、國家、地區甚至全球級別上進行通訊的共用協定。NR(例如,5G無線電存取)是新興電信標準的一個實例。NR是3GPP頒佈的LTE行動服務標準的一組增強。NR經設計以藉由提高頻譜效率、降低成本、改善服務、利用新頻譜,並在下行鏈路(DL)和上行鏈路(UL)上使用具有循環字首(CP)的OFDMA與其他開放標準更好地整合,來更好地支援行動寬頻網際網路存取,並支援波束成形、MIMO天線技術和載波聚合。These multiplexing access techniques have been employed in various telecommunications standards to provide a common protocol that enables different wireless devices to communicate on a city, national, regional, or even global level. NR (eg, 5G Radio Access) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile service standard promulgated by 3GPP. NR is designed to improve services by increasing spectral efficiency, reducing costs, utilizing new spectrum, and using OFDMA with Cyclic Prefix (CP) and other open standards on the downlink (DL) and uplink (UL) Better integration to better support mobile broadband Internet access and support for beamforming, MIMO antenna technology and carrier aggregation.

然而,隨著對行動寬頻存取的需求不斷增加,存在對LTE、MTC、IoT和NR(新無線電)技術進一步改進的需求。較佳地,該等改進應當適用於其他多工存取技術和使用該等技術的電信標準。However, with the increasing demand for mobile broadband access, there is a need for further improvements in LTE, MTC, IoT and NR (New Radio) technologies. Preferably, such improvements should apply to other multiplexing access technologies and telecommunication standards using these technologies.

本案內容的系統、方法和設備各自具有幾個態樣,其中沒有一個態樣單獨對其期望的屬性負責。在不限制由所附申請專利範圍表達的本案內容的範疇的情況下,現在將簡要地論述一些特徵。在考慮了本論述之後,並且特別是在閱讀了題為「具體實施方式」的部分之後,將會理解本案內容的特徵如何提供包括無線網路中的存取點和站之間的改進通訊的優點。The systems, methods and apparatus of the subject matter each have several aspects, none of which is solely responsible for its desired properties. Without limiting the scope of the subject matter as expressed by the appended claims, some features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled "Detailed Description of the Preferred Embodiments," it will be appreciated how the features of the subject matter provide improved communication between access points and stations, including in wireless networks. advantage.

本案內容的某些態樣整體上涉及用於窄頻操作的上行鏈路和下行鏈路操作。Certain aspects of the subject matter of this case relate generally to uplink and downlink operation for narrowband operation.

本案內容的某些態樣提供了一種由諸如使用者設備(UE)的無線設備執行的方法。該方法大致包括:針對上行鏈路(UL)或下行鏈路(DL)授權而監視系統頻寬的窄頻中的控制通道;接收交錯的UL和DL授權;及回應於所接收的交錯的UL和DL授權來發送或接收資訊。Certain aspects of the subject matter provide a method performed by a wireless device, such as a user equipment (UE). The method generally includes: monitoring a control channel in a narrow band of system bandwidth for uplink (UL) or downlink (DL) grants; receiving interleaved UL and DL grants; and responding to the received interleaved UL and DL authorization to send or receive information.

本案內容的某些態樣提供了一種由諸如UE的無線設備執行的方法。該方法大致包括:針對上行鏈路(UL)或下行鏈路(DL)授權而監視系統頻寬的窄頻中的控制通道;接收兩個連續的UL或DL授權,其中連續的UL或DL授權具有相同的HARQ過程標識(ID);及至少部分地基於以下至少一者來選擇該授權中要使用的一個授權:滿足能量度量閾值的授權,首先接收的授權,或者第二個接收的授權,或者選擇使用兩個授權,其中該授權被視為混合自動重傳請求(HARQ)重傳。Certain aspects of the subject matter provide a method performed by a wireless device, such as a UE. The method generally includes: monitoring a control channel in a narrow frequency band of the system bandwidth for uplink (UL) or downlink (DL) grants; receiving two consecutive UL or DL grants, wherein the consecutive UL or DL grants have the same HARQ process identification (ID); and select one of the grants to use based, at least in part, on at least one of the following: the grant that meets the energy metric threshold, the grant received first, or the grant received second, Or choose to use two grants, where the grant is considered a Hybrid Automatic Repeat Request (HARQ) retransmission.

本案內容的某些態樣提供了一種由諸如UE的無線設備執行的方法。該方法大致包括:針對上行鏈路(UL)或下行鏈路(DL)授權而監視系統頻寬的窄頻中的控制通道;接收兩個連續的UL或DL授權;回應於所接收的兩個連續的UL和DL授權來發送或接收資訊;及回應於發送或接收資訊來辨識衝突,該衝突包括以下至少一者:第一DL資料通道與第二DL資料通道之間的衝突,第二DL資料通道與用於第一DL資料通道的第一HARQ確認(HARQ-ACK)訊號傳遞之間的衝突,用於第一DL資料通道的第一HARQ-ACK訊號傳遞與用於第二DL資料通道的第二HARQ-ACK訊號傳遞之間的衝突,或者第一UL資料通道與第二UL資料通道之間的衝突。Certain aspects of the subject matter provide a method performed by a wireless device, such as a UE. The method generally includes: monitoring a control channel in a narrow frequency band of the system bandwidth for uplink (UL) or downlink (DL) grants; receiving two consecutive UL or DL grants; responding to the received two Consecutive UL and DL grants to send or receive information; and identifying a conflict in response to sending or receiving the information, the conflict comprising at least one of: a conflict between the first DL data channel and the second DL data channel, the second DL data channel Conflict between the data channel and the first HARQ acknowledgment (HARQ-ACK) signaling for the first DL data channel and the first HARQ-ACK signaling for the first DL data channel and the second DL data channel The collision between the second HARQ-ACK signaling, or the collision between the first UL data channel and the second UL data channel.

本案內容的某些態樣提供了一種由諸如基地台(BS)的無線設備執行的方法。該方法大致包括:在系統頻寬的窄頻中的控制通道上傳送交錯的上行鏈路(UL)和下行鏈路(DL)授權;及回應於所傳送的交錯的UL和DL授權而發送或接收資訊。Certain aspects of the subject matter provide a method performed by a wireless device such as a base station (BS). The method generally includes: transmitting interleaved uplink (UL) and downlink (DL) grants on a control channel in a narrow frequency band of the system bandwidth; and sending or responsive to the transmitted interleaved UL and DL grants Receive information.

本案內容的某些態樣提供了一種由諸如基地台(BS)的無線設備執行的方法。該方法大致包括:在系統頻寬的窄頻中的控制通道上向使用者設備(UE)傳送兩個連續的上行鏈路(UL)或下行鏈路(DL)授權,該連續的UL或DL授權具有相同的HARQ過程標識(ID),其中:要使用的授權由該UE至少部分地基於以下至少一者來選擇:滿足能量度量閾值的授權,首先接收的授權,或者第二個接收的授權,或者由該UE選擇兩個授權來使用,其中該授權被視為混合自動重傳請求(HARQ)重傳。Certain aspects of the subject matter provide a method performed by a wireless device such as a base station (BS). The method generally includes transmitting two consecutive uplink (UL) or downlink (DL) grants to a user equipment (UE) on a control channel in a narrow frequency band of the system bandwidth, the consecutive UL or DL grants The grants have the same HARQ process identification (ID), where: the grant to use is selected by the UE based, at least in part, on at least one of: the grant that meets the energy metric threshold, the grant received first, or the grant received second , or two grants selected by the UE to use, where the grants are considered as Hybrid Automatic Repeat Request (HARQ) retransmissions.

本案內容的某些態樣提供了一種由諸如基地台(BS)的無線設備執行的方法。該方法大致包括:在系統頻寬的窄頻中的控制通道上向使用者設備(UE)傳送兩個連續的UL或DL授權;回應於所傳送的兩個連續的UL和DL授權而發送或接收資訊,其中回應於發送或接收資訊,來辨識包括以下至少一者的衝突:第一DL資料通道與第二DL資料通道之間的衝突,第二DL資料通道與用於第一DL資料通道的第一HARQ確認(HARQ-ACK)訊號傳遞之間的衝突,用於第一DL資料通道的第一HARQ-ACK訊號傳遞與用於第二DL資料通道的第二HARQ-ACK訊號傳遞之間的衝突,或者第一UL資料通道與第二UL資料通道之間的衝突。Certain aspects of the subject matter provide a method performed by a wireless device such as a base station (BS). The method generally comprises: transmitting two consecutive UL or DL grants to a user equipment (UE) on a control channel in a narrow frequency band of the system bandwidth; sending or responsive to the two consecutive UL and DL grants being transmitted; receiving information, wherein in response to sending or receiving the information, identifying a conflict including at least one of: a conflict between a first DL data channel and a second DL data channel, a conflict between the second DL data channel and the first DL data channel for the first DL data channel collision between the first HARQ acknowledgment (HARQ-ACK) signaling for the first DL data channel and the second HARQ-ACK signaling for the second DL data channel , or between the first UL data channel and the second UL data channel.

提供了許多其他態樣,包括方法、裝置、系統、電腦程式產品、電腦可讀取媒體和處理系統。為了實現前述和相關目的,一或多個態樣包括在下文中充分描述並且在申請專利範圍中特別指出的特徵。以下描述和附圖詳細闡述了一或多個態樣的某些說明性特徵。然而,該等特徵僅指示可以採用各個態樣的原理的各種方式中的一些,並且該描述意欲包括所有該等態樣及其等同變換。Numerous other aspects are provided, including methods, apparatus, systems, computer program products, computer readable media, and processing systems. To carry out the foregoing and related objects, the one or more aspects include the features hereinafter fully described and particularly pointed out in the scope of the claims. The following description and drawings set forth certain illustrative features of one or more aspects in detail. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.

本案內容的各態樣提供了用於窄頻操作的上行鏈路和下行鏈路操作的技術。本文描述的技術可以用於各種無線通訊網路,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA和其他網路。術語「網路」和「系統」經常可互換地使用。CDMA網路可以實施諸如通用陸地無線電存取(UTRA)、cdma2000等的無線電技術。UTRA包括寬頻CDMA(WCDMA)、分時同步CDMA(TD-SCDMA)和CDMA的其他變體。cdma2000涵蓋IS-2000、IS-95和IS-856標準。TDMA網路可以實施諸如行動通訊全球系統(GSM)的無線電技術。OFDMA網路可以實施諸如進化UTRA(E-UTRA)、超行動寬頻(UMB)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM®等的無線電技術。UTRA和E-UTRA是通用行動電信系統(UMTS)的一部分。在分頻雙工(FDD)和分時雙工(TDD)中的3GPP長期進化(LTE)和高級LTE(LTE-A)是使用E-UTRA的UMTS的新版本,其在下行鏈路上使用OFDMA並且在上行鏈路上使用SC-FDMA。在名為「第三代合作夥伴計畫」(3GPP)的組織的文件中描述了UTRA、E-UTRA、UMTS、LTE、LTE-A和GSM。在名為「第三代合作夥伴計畫2」(3GPP2)的組織的文件中描述了cdma2000和UMB。NR(例如,5G無線電存取)是新興電信標準的實例。NR是3GPP發佈的LTE行動服務標準的一組增強。本文描述的技術可以用於上面提到的無線網路和無線電技術以及其他無線網路和無線電技術。為了清楚起見,下文針對LTE/高級LTE描述了該等技術的某些態樣,並且在下文的大部分描述中使用了LTE/高級LTE(LTE-A)術語。LTE和LTE-A通常稱為LTE。Aspects of the present disclosure provide techniques for uplink and downlink operation for narrowband operation. The techniques described herein may be used in various wireless communication networks, such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and others. The terms "network" and "system" are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA), cdma2000, and the like. UTRA includes Wideband CDMA (WCDMA), Time Division Synchronous CDMA (TD-SCDMA) and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. TDMA networks may implement radio technologies such as Global System for Mobile Communications (GSM). OFDMA networks may implement radio technologies such as Evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM®, and others. UTRA and E-UTRA are part of the Universal Mobile Telecommunications System (UMTS). 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) in Frequency Division Duplex (FDD) and Time Division Duplex (TDD) are new releases of UMTS that use E-UTRA, which uses OFDMA on the downlink And use SC-FDMA on the uplink. UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named "3rd Generation Partnership Project" (3GPP). cdma2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2). NR (eg, 5G Radio Access) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile service standard published by 3GPP. The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, certain aspects of the techniques are described below for LTE/LTE-Advanced, and LTE/LTE-Advanced (LTE-A) terminology is used in much of the description below. LTE and LTE-A are commonly referred to as LTE.

注意,儘管本文可以使用通常與3G及/或4G無線技術相關聯的術語來描述各態樣,但是本案內容的各態樣可以應用於基於其他代的通訊系統,例如5G及更高版本。 示例性無線通訊網路Note that while the aspects may be described herein using terms generally associated with 3G and/or 4G wireless technologies, aspects of the subject matter may be applied to other generations of communication systems, such as 5G and beyond. Exemplary Wireless Communication Network

圖1圖示示例性無線通訊網路100,其中可以實踐本案內容的各態樣。例如,本文提供的技術可以用於無線通訊網路100中的窄帶操作的UL和DL授權,無線通訊網路100可以是窄頻物聯網路(NB-IoT)及/或增強型/進化型機器類型通訊(eMTC)網路。無線通訊網路100可以包括基地台(BS)110和使用者設備(UE)120。在各態樣,BS 110可以決定寬頻區域的用於與UE 120通訊的至少一個窄頻區域。UE 120可以是低成本設備,例如NB-IoT設備或eMTC UE,UE 120可以決定窄頻區域並接收、發送、監視或解碼窄頻區域上的資訊以與BS 110通訊。1 illustrates an exemplary wireless communication network 100 in which aspects of the subject matter may be practiced. For example, the techniques provided herein may be used for UL and DL grants for narrowband operation in wireless communication network 100, which may be Narrowband Internet of Things (NB-IoT) and/or Enhanced/Evolved Machine Type Communications (eMTC) network. The wireless communication network 100 may include a base station (BS) 110 and a user equipment (UE) 120 . In various aspects, BS 110 may determine at least one narrow frequency region of the wide frequency region for communicating with UE 120 . The UE 120 may be a low cost device, such as an NB-IoT device or an eMTC UE, the UE 120 may determine the narrow frequency region and receive, send, monitor or decode information on the narrow frequency region to communicate with the BS 110.

無線通訊網路100可以是長期進化(LTE)網路或一些其他無線網路,例如新無線電(NR)或5G網路。無線通訊網路100可以包括多個BS 110和其他網路實體。BS是與UE通訊的實體,並且亦可以稱為NR BS、節點B(NB)、進化型/增強型NB(eNB)、5G NB、gNB、存取點(AP)、傳輸接收點(TRP)等。每個BS可以為特定地理區域提供通訊覆蓋。在3GPP中,術語「細胞」可以指BS的覆蓋區域及/或服務於該覆蓋區域的BS子系統,此取決於使用該術語的上下文。The wireless communication network 100 may be a Long Term Evolution (LTE) network or some other wireless network, such as a New Radio (NR) or 5G network. Wireless communication network 100 may include multiple BSs 110 and other network entities. The BS is the entity that communicates with the UE, and may also be called NR BS, Node B (NB), Evolved/Enhanced NB (eNB), 5G NB, gNB, Access Point (AP), Transmission Receive Point (TRP) Wait. Each BS can provide communication coverage for a specific geographic area. In 3GPP, the term "cell" may refer to a coverage area of a BS and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.

BS可以為巨集細胞、微微細胞、毫微微細胞及/或其他類型的細胞提供通訊覆蓋。巨集細胞可以覆蓋相對大的地理區域(例如,半徑幾公里),並且可以允許具有服務簽約的UE的不受限存取。微微細胞可以覆蓋小的地理區域,並且可以允許具有服務簽約的UE的不受限存取。毫微微細胞可以覆蓋小的地理區域(例如,家庭),並且可以允許與毫微微細胞具有關聯的UE(例如,封閉用戶群組(CSG)中的UE)的受限存取。用於巨集細胞的BS可以被稱為巨集BS。用於微微細胞的BS可以被稱為微微BS。用於毫微微細胞的BS可以被稱為毫微微BS或家庭BS。在圖1所示的實例中,BS 110a可以是用於巨集細胞102a的巨集BS,BS 110b可以是用於微微細胞102b的微微BS,以及BS 110c可以是用於毫微微細胞102c的毫微微BS。BS可以支援一或多個(例如三個)細胞。術語「基地台」和「細胞」在本文中可互換使用。The BS can provide communication coverage for macrocells, picocells, femtocells, and/or other types of cells. Macro cells can cover a relatively large geographic area (eg, several kilometers in radius) and can allow unrestricted access by UEs with service subscriptions. A picocell can cover a small geographic area and can allow unrestricted access by UEs with service subscriptions. A femtocell may cover a small geographic area (eg, a home) and may allow limited access by UEs associated with the femtocell (eg, UEs in a Closed Subscriber Group (CSG)). BS for macro cells may be referred to as macro BS. A BS for pico cells may be referred to as a pico BS. A BS for femto cells may be referred to as a femto BS or a home BS. In the example shown in Figure 1, BS 110a may be a macro BS for macro cells 102a, BS 110b may be a pico BS for pico cells 102b, and BS 110c may be a femto BS for femto cells 102c Pico BS. A BS can support one or more (eg, three) cells. The terms "base station" and "cell" are used interchangeably herein.

無線通訊網路100亦可以包括中繼站。中繼站是從上游站(例如,BS 110或UE 120)接收資料傳輸並將資料傳輸發送到下游站(例如,UE 120或BS 110)的實體。中繼站亦可以是中繼用於其他UE的傳輸的UE。在圖1所示的實例中,中繼站110d可以與巨集BS 110a和UE 120d通訊,以便實現BS 110a和UE 120d之間的通訊。中繼站亦可以稱為中繼BS、中繼等。The wireless communication network 100 may also include relay stations. A relay station is an entity that receives data transmissions from upstream stations (eg, BS 110 or UE 120) and sends data transmissions to downstream stations (eg, UE 120 or BS 110). A relay station may also be a UE that relays transmissions for other UEs. In the example shown in FIG. 1, relay station 110d may communicate with macro BS 110a and UE 120d to enable communication between BS 110a and UE 120d. The relay station may also be referred to as a relay BS, a relay, or the like.

無線通訊網路100可以是包括不同類型的BS(例如,巨集BS、微微BS、毫微微BS、中繼BS等)的異質網路。該等不同類型的BS可以具有不同的發射功率級、不同的覆蓋區域,以及對無線通訊網路100中的干擾的不同影響。例如,巨集BS可以具有高發射功率級(例如5至40瓦),而微微BS、毫微微BS和中繼BS可以具有較低的發射功率級(例如0.1至2瓦)。The wireless communication network 100 may be a heterogeneous network including different types of BSs (eg, macro BSs, pico BSs, femto BSs, relay BSs, etc.). These different types of BSs may have different transmit power levels, different coverage areas, and different effects on interference in the wireless communication network 100 . For example, macro BSs may have high transmit power levels (eg, 5 to 40 watts), while pico BSs, femto BSs, and relay BSs may have lower transmit power levels (eg, 0.1 to 2 watts).

網路控制器130可以耦合到一組BS並為該等BS提供協調和控制。網路控制器130可以經由回載與BS進行通訊。BS亦可以例如經由無線或有線回載直接或間接地彼此通訊。The network controller 130 may be coupled to a set of BSs and provide coordination and control for the BSs. The network controller 130 may communicate with the BS via backhaul. The BSs may also communicate with each other directly or indirectly, eg, via wireless or wired backhaul.

UE 120(例如,UE 120a、UE 120b、UE 120c)可以分散在整個無線通訊網路100中,並且每個UE可以是靜止的或行動的。UE亦可以被稱為存取終端、終端、行動站、用戶單元、站、客戶駐地設備(CPE)等。UE可以是蜂巢式電話(例如智慧型電話)、個人數位助理(PDA)、無線數據機、無線通訊設備、手持設備、膝上型電腦、無線電話、無線區域迴路(WLL)站、平板電腦、相機、無人機、機器人/機器人設備、小筆電、智慧型電腦、超極本、醫療設備、醫療裝置、保健設備、生物感測器/設備、諸如智慧手錶、智慧衣服、智慧眼鏡、虛擬實境眼鏡、智能手環及/或智慧首飾(例如智慧戒指、智慧手鐲等)的可穿戴設備、娛樂設備(例如,音樂設備、視訊設備、遊戲設備、衛星無線電設備等)、工業製造設備、導航/定位設備(例如,基於例如GPS(全球定位系統)、北斗、GLONASS、伽利略、基於地面的設備等的GNSS(全球導航衛星系統)設備),或被配置為經由無線或有線媒體進行通訊的任何其他合適的設備。一些UE可以實施為IoT(物聯網)UE。IoT UE包括例如機器人/機器人設備、無人機、遠端設備、感測器、儀錶、監視器、相機、位置標籤等,其可以與BS、另一設備(例如,遠端設備)或一些其他實體通訊。IoT UE可以包括MTC/eMTC UE、NB-IoT UE以及其他類型的UE。無線節點可以經由有線或無線通訊鏈路提供例如用於或者到網路(例如,諸如網際網路或蜂巢網路的廣域網路)的連接。The UEs 120 (eg, UE 120a, UE 120b, UE 120c) may be dispersed throughout the wireless communication network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, terminal, mobile station, subscriber unit, station, customer premises equipment (CPE), or the like. The UE may be a cellular telephone (eg, a smart phone), a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a wireless telephone, a wireless local loop (WLL) station, a tablet computer, Cameras, drones, robots/robotic devices, small laptops, smart computers, ultrabooks, medical devices, medical devices, healthcare devices, biosensors/devices, such as smart watches, smart clothes, smart glasses, virtual reality wearable devices such as environmental glasses, smart bracelets and/or smart jewelry (such as smart rings, smart bracelets, etc.), entertainment devices (such as music equipment, video equipment, gaming equipment, satellite radio equipment, etc.), industrial manufacturing equipment, navigation / Positioning devices (eg, GNSS (Global Navigation Satellite System) devices based on eg GPS (Global Positioning System), BeiDou, GLONASS, Galileo, ground-based devices, etc.), or any device configured to communicate via wireless or wired media other suitable equipment. Some UEs may be implemented as IoT (Internet of Things) UEs. IoT UEs include, for example, robots/robotic devices, drones, remote devices, sensors, meters, monitors, cameras, location tags, etc., which may communicate with a BS, another device (eg, a remote device), or some other entity communication. IoT UEs may include MTC/eMTC UEs, NB-IoT UEs, and other types of UEs. A wireless node may provide a connection, eg, for or to a network (eg, a wide area network such as the Internet or a cellular network) via a wired or wireless communication link.

無線通訊網路100中的一或多個UE 120(例如,LTE網路)可以是窄頻頻寬UE。如本文所使用的,具有有限通訊資源(例如較小的頻寬)的設備可以通稱為窄頻UE。類似地,諸如傳統及/或高級UE(例如,在LTE中)的傳統設備可以通稱為寬頻UE。通常,寬頻UE能夠在比窄頻UE更大量的頻寬上操作。One or more UEs 120 in the wireless communication network 100 (eg, an LTE network) may be narrowband UEs. As used herein, a device with limited communication resources (eg, small bandwidth) may be commonly referred to as a narrowband UE. Similarly, legacy devices such as legacy and/or advanced UEs (eg, in LTE) may be collectively referred to as broadband UEs. In general, wideband UEs are capable of operating on a larger amount of bandwidth than narrowband UEs.

在圖1中,具有雙箭頭的實線指示UE與服務BS(其是指定為在下行鏈路及/或上行鏈路上服務於該UE的BS)之間的期望的傳輸。具有雙箭頭的虛線指示UE與BS之間的潛在干擾傳輸。In Figure 1, a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is the BS designated to serve the UE on the downlink and/or uplink. A dashed line with double arrows indicates potentially interfering transmissions between the UE and the BS.

通常,可以在給定的地理區域中部署任何數量的無線網路。每個無線網路可以支援特定的無線電存取技術(RAT)並且可以在一或多個頻率上操作。RAT亦可以被稱為無線電技術、空中介面等。頻率亦可以被稱為載波、頻率通道等。每個頻率可以支援給定地理區域中的單個RAT,以便避免不同RAT的無線網路之間的干擾。在某些情況下,可以部署NR或5G RAT網路。Generally, any number of wireless networks can be deployed in a given geographic area. Each wireless network can support a specific radio access technology (RAT) and can operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, or the like. Frequency may also be referred to as carrier, frequency channel, etc. Each frequency can support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks can be deployed.

在一些實例中,可以排程對空中介面的存取,其中排程實體(例如,BS 110)為其服務區域或細胞內的一些或全部設備和裝置之間的通訊分配資源。排程實體可以負責排程、指派、重新配置和釋放一或多個下屬實體的資源。對於被排程的通訊,下屬實體利用排程實體分配的資源。BS 110不是唯一可以起到排程實體作用的實體。在一些實例中,UE 120可以起到排程實體的作用,為一或多個下屬實體(例如,一或多個其他UE 120)排程資源。在該實例中,UE起到排程實體的作用,而其他UE利用該UE排程的資源進行無線通訊。UE可以起到同級間(P2P)網路中及/或網狀網路中的排程實體的作用。在網狀網路實例中,除了與排程實體通訊之外,UE亦可以可選地彼此直接通訊。In some examples, access to the air interface may be scheduled, where a scheduling entity (eg, BS 110 ) allocates resources for communication between some or all of the devices and devices within its service area or cell. A scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources of one or more subordinate entities. For scheduled communications, subordinate entities utilize resources allocated by the scheduling entity. BS 110 is not the only entity that can function as a scheduling entity. In some instances, UE 120 may function as a scheduling entity, scheduling resources for one or more subordinate entities (eg, one or more other UEs 120). In this example, the UE acts as a scheduling entity, while other UEs utilize the resources scheduled by the UE for wireless communication. The UE may function as a scheduling entity in a peer-to-peer (P2P) network and/or in a mesh network. In the mesh network example, in addition to communicating with the scheduling entity, the UEs may also optionally communicate directly with each other.

因此,在具有對時間-頻率資源的被排程存取並具有蜂巢配置、P2P配置和網狀配置的無線通訊網路中,排程實體和一或多個下屬實體可以利用被排程的資源進行通訊。Thus, in a wireless communication network having scheduled access to time-frequency resources and having cellular, P2P, and mesh configurations, the scheduling entity and one or more subordinate entities can utilize the scheduled resources for communication.

圖2圖示BS 110和UE 120的設計的方塊圖,BS 110和UE 120可以是圖1中的BS 110中的一個和UE 120中的一個。BS 110可以配備有 T個天線234a到234t,並且UE 120可以配備有 R個天線252a到252r,其中通常 T≧1且 R≧1。 2 illustrates a block diagram of the design of BS 110 and UE 120, which may be one of BS 110 and one of UE 120 in FIG. 1 . BS 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where typically T ≧1 and R ≧1.

在BS 110處,發射處理器220可以從資料來源212接收用於一或多個UE的資料,基於從UE接收的通道品質指示符(CQI)為每個UE選擇一或多個調制和編碼方案(MCS),基於為UE選擇的一個(或多個)MCS處理(例如,編碼和調制)用於每個UE的資料,並提供用於所有UE的資料符號。發射處理器220亦可以處理系統資訊(例如,用於靜態資源劃分資訊(SRPI)等)和控制資訊(例如,CQI請求、授權、上層訊號傳遞等),並提供管理負擔符號和控制符號。處理器220亦可以產生參考信號(例如,細胞特定參考信號(CRS))的參考符號以及同步信號(例如,主要同步信號(PSS)和輔同步信號(SSS))。若適用,則發射(TX)多輸入多輸出(MIMO)處理器230可以對資料符號、控制符號、管理負擔符號及/或參考符號執行空間處理(例如,預編碼),並且可以將 T個輸出符號串流提供到 T個調制器(MOD)232a到232t。每個調制器232可以處理相應的輸出符號串流(例如,用於OFDM等)以獲得輸出取樣串流。每個調制器232可以進一步處理(例如,轉換為類比、放大、濾波和升頻轉換)輸出取樣串流以獲得下行鏈路信號。可以分別經由T個天線234a到234t傳送來自調制器232a到232t的 T個下行鏈路信號。 At BS 110, transmit processor 220 may receive data from data source 212 for one or more UEs, select one or more modulation and coding schemes for each UE based on channel quality indicators (CQIs) received from the UEs (MCS), which processes (eg, coding and modulation) the data for each UE based on the MCS(s) selected for the UE and provides data symbols for all UEs. Transmit processor 220 may also process system information (eg, for static resource partitioning information (SRPI), etc.) and control information (eg, CQI requests, grants, upper layer signaling, etc.), and provide management burden symbols and control symbols. The processor 220 may also generate reference symbols for reference signals (eg, cell-specific reference signals (CRS)) and synchronization signals (eg, primary synchronization signals (PSS) and secondary synchronization signals (SSS)). If applicable, transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (eg, precoding) on data symbols, control symbols, management burden symbols, and/or reference symbols, and may output T The stream of symbols is provided to T modulators (MODs) 232a through 232t. Each modulator 232 may process a corresponding stream of output symbols (eg, for OFDM, etc.) to obtain a stream of output samples. Each modulator 232 may further process (eg, convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.

在UE 120處,天線252a到252r可以從基地台110及/或其他BS接收下行鏈路信號,並且可以分別向解調器(DEMOD)254a到254r提供所接收的信號。每個解調器254可以調節(例如,濾波、放大、降頻轉換和數位化)其接收信號以獲得輸入取樣。每個解調器254可以進一步處理輸入取樣(例如,用於OFDM等)以獲得接收符號。MIMO偵測器256可以從所有R個解調器254a到254r獲得接收符號,若適用,則對接收符號執行MIMO偵測,並提供偵測的符號。接收處理器258可以處理(例如,解調和解碼)偵測的符號,將用於UE 120的解碼的資料提供給資料槽260,並將解碼的控制資訊和系統資訊提供給控制器/處理器280。通道處理器可以決定參考信號接收功率(RSRP)、接收信號強度指示符(RSSI)、參考信號接收品質(RSRQ)、CQI等。At UE 120, antennas 252a through 252r may receive downlink signals from base station 110 and/or other BSs, and may provide the received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (eg, filter, amplify, downconvert, and digitize) its received signal to obtain input samples. Each demodulator 254 may further process the input samples (eg, for OFDM, etc.) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. Receive processor 258 may process (eg, demodulate and decode) the detected symbols, provide decoded data for UE 120 to data slot 260 , and provide decoded control information and system information to controller/processor 280 . The channel processor may determine Reference Signal Received Power (RSRP), Received Signal Strength Indicator (RSSI), Reference Signal Received Quality (RSRQ), CQI, and the like.

在上行鏈路上,在UE 120處,發射處理器264可以接收和處理來自資料來源262的資料和來自控制器/處理器280的控制資訊(例如,用於包括RSRP、RSSI、RSRQ、CQI等的報告)。處理器264亦可以為一或多個參考信號產生參考符號。若適用,則來自發射處理器264的符號可以由TX MIMO處理器266進行預編碼,由調制器254a到254r進一步處理(例如,用於SC-FDM、OFDM等),並被傳送到BS 110。在BS 110處,來自UE 120和其他UE的上行鏈路信號可以由天線234接收,由解調器232處理,由MIMO偵測器236偵測(若適用),並且由接收處理器238進一步處理以獲得由UE 120發送的解碼的資料和控制資訊。處理器238可以將解碼的資料提供給資料槽239,並且將解碼的控制資訊提供給控制器/處理器240。BS 110可以包括通訊單元244並且經由通訊單元244與網路控制器130通訊。網路控制器130可以包括通訊單元294、控制器/處理器290和記憶體292。On the uplink, at UE 120, transmit processor 264 may receive and process data from data source 262 and control information from controller/processor 280 (eg, for data transmission including RSRP, RSSI, RSRQ, CQI, etc. Report). Processor 264 may also generate reference symbols for one or more reference signals. Symbols from transmit processor 264 may be precoded by TX MIMO processor 266, further processed by modulators 254a through 254r (eg, for SC-FDM, OFDM, etc.), and transmitted to BS 110, if applicable. At BS 110, uplink signals from UE 120 and other UEs may be received by antenna 234, processed by demodulator 232, detected by MIMO detector 236 (if applicable), and further processed by receive processor 238 To obtain decoded data and control information sent by UE 120 . Processor 238 may provide decoded data to data slot 239 and provide decoded control information to controller/processor 240 . The BS 110 may include a communication unit 244 and communicate with the network controller 130 via the communication unit 244 . The network controller 130 may include a communication unit 294 , a controller/processor 290 and a memory 292 .

控制器/處理器240和280可以分別指導在BS 110和UE 120處的操作以執行本文提供的技術。例如,BS 110處的處理器240及/或其他處理器和模組及UE 120處的處理器280及/或其他處理器和模組可以分別執行或指導BS 110和UE 120處的操作。例如,UE 120處的控制器/處理器280及/或其他控制器/處理器和模組可以執行或指導圖15中所示的操作1500、圖16中所示的操作1600和圖17中所示的操作1700。記憶體242和282可以分別儲存用於BS 110和UE 120的資料和程式碼。排程器246可以排程UE在下行鏈路及/或上行鏈路上進行資料傳輸。Controllers/processors 240 and 280 may direct operations at BS 110 and UE 120, respectively, to perform the techniques provided herein. For example, processor 240 and/or other processors and modules at BS 110 and processor 280 and/or other processors and modules at UE 120 may perform or direct operations at BS 110 and UE 120, respectively. For example, controller/processor 280 and/or other controllers/processors and modules at UE 120 may perform or direct operations 1500 shown in FIG. 15 , operations 1600 shown in FIG. Operation 1700 is shown. Memories 242 and 282 may store data and code for BS 110 and UE 120, respectively. The scheduler 246 may schedule the UE for data transmission on the downlink and/or uplink.

圖3圖示用於無線通訊系統(例如,諸如無線通訊網路100)中的分頻雙工(FDD)的示例性訊框結構300。可以將下行鏈路和上行鏈路中的每一個的傳輸等時線劃分為無線電訊框的單元。每個無線電訊框可以具有預定的持續時間(例如,10毫秒(ms)),並且可以被劃分為索引為0到9的10個子訊框。每個子訊框可以包括兩個時槽。因此,每個無線電訊框可以包括索引為0到19的20個時槽。每個時槽可以包括L個符號週期,例如,用於普通循環字首的七個符號週期(如圖3所示)或者用於擴展循環字首的六個符號週期。可以為每個子訊框中的2L符號週期指派0到2L-1的索引。FIG. 3 illustrates an exemplary frame structure 300 for frequency division duplexing (FDD) in a wireless communication system such as, for example, wireless communication network 100 . The transmission isochrons for each of the downlink and uplink can be divided into units of radio frames. Each wireless frame may have a predetermined duration (eg, 10 milliseconds (ms)) and may be divided into 10 subframes indexed from 0 to 9. Each subframe may include two time slots. Thus, each radio frame may include 20 time slots with indices 0-19. Each slot may include L symbol periods, eg, seven symbol periods for a normal cyclic prefix (as shown in Figure 3) or six symbol periods for an extended cyclic prefix. The 2L symbol period in each subframe may be assigned an index of 0 to 2L-1.

在某些無線通訊系統(例如,LTE)中,BS(例如,諸如BS 110)可以在BS支援的每個細胞的系統頻寬的中心,在下行鏈路上傳送PSS和SSS。PSS和SSS可以分別在具有普通循環字首的每個無線電訊框的子訊框0和5中的符號週期6和5中傳送,如圖3所示。UE(例如,諸如UE 120)可以使用PSS和SSS進行細胞搜尋和獲取。BS可以針對BS支援的每個細胞在系統頻寬上傳送CRS。CRS可以在每個子訊框的某些符號週期中傳送,並且可以由UE用來執行通道估計、通道品質量測及/或其他功能。BS亦可以在某些無線電訊框的時槽1中的符號週期0到3中傳送實體廣播通道(PBCH)。PBCH可以攜帶一些系統資訊。BS可以在某些子訊框中在實體下行鏈路共享通道(PDSCH)上傳送諸如系統資訊區塊(SIB)的其他系統資訊。BS可以在子訊框的前 B個符號週期中在實體下行鏈路控制通道(PDCCH)上傳送控制資訊/資料,其中 B可以針對每個子訊框進行配置。BS可以在每個子訊框的剩餘符號週期中在PDSCH上傳送訊務資料及/或其他資料。 In some wireless communication systems (eg, LTE), a BS (eg, such as BS 110) may transmit PSS and SSS on the downlink at the center of the system bandwidth of each cell supported by the BS. PSS and SSS may be transmitted in symbol periods 6 and 5, respectively, in subframes 0 and 5 of each radio frame with a common cyclic prefix, as shown in FIG. 3 . A UE (eg, such as UE 120) may use PSS and SSS for cell search and acquisition. The BS may transmit CRS on the system bandwidth for each cell supported by the BS. The CRS may be transmitted in certain symbol periods of each subframe and may be used by the UE to perform channel estimation, channel quality measurement, and/or other functions. The BS may also transmit a physical broadcast channel (PBCH) in symbol periods 0 to 3 in time slot 1 of certain radio frames. PBCH can carry some system information. The BS may transmit other system information such as System Information Blocks (SIBs) on the Physical Downlink Shared Channel (PDSCH) in certain subframes. The BS may transmit control information/data on the Physical Downlink Control Channel (PDCCH) in the first B symbol periods of the subframe, where B may be configured for each subframe. The BS may transmit traffic data and/or other data on the PDSCH during the remaining symbol periods of each subframe.

在某些系統(例如,諸如NR或5G系統)中,BS可以在子訊框的該等位置或不同位置中傳送該等或其他信號。In some systems (eg, such as NR or 5G systems), the BS may transmit these or other signals in these or different locations of the subframe.

圖4圖示具有普通循環字首的兩個示例性子訊框格式410和420。可以將可用時間頻率資源劃分為資源區塊(RB)。每個RB可以覆蓋一個時槽中的12個次載波,並且可以包括多個資源元素(RE)。每個RE可以覆蓋一個符號週期中的一個次載波,並且可以用於發送一個調制符號,調制符號可以是實數或複數值。FIG. 4 illustrates two exemplary subframe formats 410 and 420 with a common cyclic prefix. The available time-frequency resources may be divided into resource blocks (RBs). Each RB may cover 12 subcarriers in one slot and may include multiple resource elements (REs). Each RE can cover one subcarrier in one symbol period and can be used to transmit one modulation symbol, which can be real or complex valued.

子訊框格式410可以用於兩個天線。可以在符號週期0、4、7和11中從天線0和1傳送CRS。參考信號是由發射器和接收器先驗已知的信號,並且亦可以被稱為引導頻。CRS是特定於細胞的參考信號,例如,基於細胞標識(ID)而產生。在圖4中,對於具有標籤Ra的給定RE,可以從天線a在該RE上傳送調制符號,並且可以不從其他天線在該RE上傳送調制符號。子訊框格式420可以與四個天線一起使用。CRS可以在符號週期0、4、7和11中從天線0和1傳送,並且在符號週期1和8中從天線2和3傳送。對於子訊框格式410和420,CRS可以在均勻間隔的次載波上傳送,該均勻間隔的次載波可以根據細胞ID決定。CRS可以在相同或不同的次載波上傳送,此取決於CRS的細胞ID。對於子訊框格式410和420,沒有用於CRS的RE可用於傳送資料(例如,訊務資料、控制資料及/或其他資料)。The subframe format 410 can be used for both antennas. CRS may be transmitted from antennas 0 and 1 in symbol periods 0, 4, 7 and 11. The reference signal is a signal known a priori by the transmitter and receiver, and may also be referred to as a pilot. A CRS is a cell-specific reference signal, eg, generated based on a cell identification (ID). In Figure 4, for a given RE with label Ra, modulation symbols may be transmitted on that RE from antenna a, and modulation symbols may not be transmitted on that RE from other antennas. The subframe format 420 can be used with four antennas. CRS may be transmitted from antennas 0 and 1 in symbol periods 0, 4, 7 and 11, and from antennas 2 and 3 in symbol periods 1 and 8. For subframe formats 410 and 420, the CRS may be transmitted on evenly spaced subcarriers, which may be determined based on the cell ID. The CRS can be transmitted on the same or different secondary carriers, depending on the cell ID of the CRS. For subframe formats 410 and 420, there are no REs for CRS available to transmit data (eg, traffic data, control data, and/or other data).

在公開可獲得的題為「Evolved Universal Terrestrial Radio Access(E-UTRA);Physical Channels and Modulation」的3GPP TS 36.211中描述了LTE中的PSS、SSS、CRS和PBCH。PSS, SSS, CRS and PBCH in LTE are described in publicly available 3GPP TS 36.211 entitled "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation".

對於LTE中的FDD,交錯結構可以用於下行鏈路和上行鏈路中的每一個。例如,可以定義索引為0到 Q-1的 Q個交錯,其中 Q可以等於4、6、8、10或某個其他值。每個交錯可以包括由 Q個訊框間隔開的子訊框。特定言之,交錯 q可以包括子訊框q、 q+Q、 q+2Q等,其中 q∈{0,...,Q-1}。 For FDD in LTE, an interleaving structure can be used for each of the downlink and uplink. For example, Q interlaces may be defined indexed from 0 to Q -1, where Q may be equal to 4, 6, 8, 10, or some other value. Each interlace may include subframes separated by Q frames. In particular, an interlace q may include subframes q, q +Q, q +2Q, etc., where q ∈ {0,...,Q-1}.

無線網路可以支援用於下行鏈路和上行鏈路上的資料傳輸的混合自動重傳請求(HARQ)。對於HARQ,發射器(例如,BS)可以發送封包的一或多個傳輸,直到接收器(例如,UE)正確地解碼該封包或者遇到某個其他終止條件。對於同步HARQ,可以在單個交錯的子訊框中發送封包的所有傳輸。對於非同步HARQ,可以在任何子訊框中發送封包的每個傳輸。The wireless network may support Hybrid Automatic Repeat Request (HARQ) for data transmission on the downlink and uplink. For HARQ, a transmitter (eg, a BS) may send one or more transmissions of a packet until a receiver (eg, a UE) decodes the packet correctly or encounters some other termination condition. For synchronous HARQ, all transmissions of a packet may be sent in a single interleaved subframe. For asynchronous HARQ, each transmission of a packet may be sent in any subframe.

UE可以位於多個BS的覆蓋區域內。可以選擇該等BS中的一個BS來為UE服務。可以基於諸如接收信號強度、接收信號品質、路徑損耗等各種標準來選擇服務BS。可以藉由信號與雜訊干擾比(SINR)或RSRQ或某個其他度量來量化接收信號品質。UE可以在有顯著干擾的情形中操作,其中UE可以觀測到來自一或多個干擾BS的高干擾。The UE may be located within the coverage area of multiple BSs. One of the BSs may be selected to serve the UE. The serving BS may be selected based on various criteria such as received signal strength, received signal quality, path loss, and the like. Received signal quality may be quantified by Signal to Noise and Interference Ratio (SINR) or RSRQ or some other metric. The UE may operate in a situation with significant interference, where the UE may observe high interference from one or more interfering BSs.

無線通訊網路可以以不同部署模式支援用於窄頻操作(例如,NB-IoT)的180kHz部署。在一個實例中,窄頻操作可以在帶內部署,例如,使用更寬系統頻寬內的RB。在一種情況下,窄頻操作可以使用現有網路(例如,LTE網路)的較寬系統頻寬內的一個RB。在此種情況下,RB的180kHz頻寬可能必須與寬頻RB對準。在一個實例中,窄頻操作可以部署在載波保護頻帶(例如,LTE)內的未使用的RB中。在該部署中,保護頻帶內的180kHz RB可以與寬頻LTE的15kHz音調網格對準,例如,以便使用相同的快速傅裡葉變換(FFT)及/或減少傳統LTE通訊的帶內干擾。 示例性窄頻通訊 Wireless communication networks can support 180kHz deployments for narrowband operation (eg, NB-IoT) in different deployment modes. In one example, narrowband operation may be deployed in-band, eg, using RBs within a wider system bandwidth. In one case, narrowband operation may use one RB within the wider system bandwidth of an existing network (eg, an LTE network). In this case, the 180kHz bandwidth of the RB may have to be aligned with the wideband RB. In one example, narrowband operation may be deployed in unused RBs within a carrier guard band (eg, LTE). In this deployment, the 180 kHz RBs in the guard band can be aligned with the 15 kHz tone grid of wideband LTE, eg, to use the same Fast Fourier Transform (FFT) and/or reduce in-band interference of legacy LTE communications. Exemplary narrowband communication

傳統LTE設計(例如,用於傳統「非MTC」設備)關注於頻譜效率、普遍覆蓋和增強的服務品質(QoS)支援的改進。當前的LTE系統下行鏈路(DL)和上行鏈路(UL)鏈路預算被設計用於覆蓋高端設備,例如最先進的智慧型電話和平板電腦,其可以支援相對大的DL和UL鏈路預算。Legacy LTE designs (eg, for legacy "non-MTC" devices) focus on improvements in spectral efficiency, universal coverage, and enhanced Quality of Service (QoS) support. Current LTE system downlink (DL) and uplink (UL) link budgets are designed to cover high-end devices, such as state-of-the-art smartphones and tablets, which can support relatively large DL and UL links Budget.

然而,如前述,與無線通訊網路中的其他(寬頻)設備相比,無線通訊網路(例如,無線通訊網路100)中的一或多個UE可以是具有有限通訊資源的設備,例如窄頻UE。對於窄頻UE,可以放寬各種要求,因為可能僅需要交換有限量的資訊。例如,可以減小最大頻寬(相對於寬頻UE),可以使用單個接收射頻(RF)鏈,可以降低峰值速率(例如,對於傳輸塊大小最大為100位元),可以減少發射功率,可以使用秩1傳輸,並且可以執行半雙工操作。However, as previously mentioned, one or more UEs in a wireless communication network (eg, wireless communication network 100 ) may be devices with limited communication resources, such as narrowband UEs, compared to other (broadband) devices in the wireless communication network . For narrowband UEs, various requirements may be relaxed, as only a limited amount of information may need to be exchanged. For example, the maximum bandwidth (relative to a wideband UE) can be reduced, a single receive radio frequency (RF) chain can be used, the peak rate can be reduced (eg, for transport block sizes up to 100 bits), the transmit power can be reduced, the use of Rank 1 transmission and can perform half-duplex operation.

在一些情況下,若執行半雙工操作,則MTC UE可以具有從傳送轉換到接收(或從接收轉換到傳送)的放寬的切換時間。例如,切換時間可以從一般UE的20μs放寬到MTC UE的1ms。版本12 MTC UE仍然可以以與一般UE相同的方式監視下行鏈路(DL)控制通道,例如,監視前幾個符號中的寬頻控制通道(例如,PDCCH)以及佔用相對窄頻但是跨越子訊框長度的窄頻控制通道(例如,增強型PDCCH或ePDCCH)。In some cases, if performing half-duplex operation, the MTC UE may have a relaxed switching time from transmit to receive (or from receive to transmit). For example, the handover time can be relaxed from 20 μs for general UEs to 1 ms for MTC UEs. Rel-12 MTC UEs can still monitor downlink (DL) control channels in the same way as normal UEs, e.g. monitoring wideband control channels (eg PDCCH) in the first few symbols and occupying relatively narrowband but spanning subframes A narrowband control channel of length (eg, enhanced PDCCH or ePDCCH).

某些標準(例如,LTE版本13)可以引入對各種額外MTC增強的支援,本文被稱為增強型MTC(或eMTC)。例如,eMTC可以為MTC UE提供高達15dB的覆蓋增強。Certain standards (eg, LTE Release 13) may introduce support for various additional MTC enhancements, referred to herein as Enhanced MTC (or eMTC). For example, eMTC can provide up to 15dB coverage enhancement for MTC UEs.

如圖5的子訊框結構500中所示,eMTC UE可以在更寬的系統頻寬(例如,1.4/3/5/10/15/20MHz)中操作的同時支援窄頻操作。在圖5所示的實例中,一般的傳統控制區域510可以跨越前幾個符號的系統頻寬,而可以保留系統頻寬的窄頻區域530(跨越資料區域520的窄部分)用於MTC實體下行鏈路控制通道(本文稱為M-PDCCH)和MTC實體下行鏈路共享通道(本文稱為M-PDSCH)。在一些情況下,監視窄頻區域的MTC UE可以在1.4MHz或6個資源區塊(RB)下操作。As shown in the subframe structure 500 of FIG. 5, eMTC UEs may support narrowband operation while operating in a wider system bandwidth (eg, 1.4/3/5/10/15/20MHz). In the example shown in Figure 5, a general legacy control region 510 may span the system bandwidth for the first few symbols, while a narrow frequency region 530 of the system bandwidth (spanning a narrow portion of the data region 520) may be reserved for MTC entities The downlink control channel (referred to herein as M-PDCCH) and the MTC entity downlink shared channel (referred to herein as M-PDSCH). In some cases, MTC UEs monitoring narrow frequency regions may operate at 1.4 MHz or 6 resource blocks (RBs).

然而,如前述,eMTC UE能夠在頻寬大於6個RB的細胞中操作。在該較大頻寬內,每個eMTC UE在遵守6實體資源區塊(PRB)約束的同時仍然可以操作(例如,監視/接收/傳送)。在一些情況下,不同的eMTC UE可以由不同的窄頻區域(例如,每個跨越6-PRB塊)服務。由於系統頻寬可以跨越1.4到20MHz,或者從6到100個RB,因此在更大的頻寬內可以存在多個窄頻區域。eMTC UE亦可以在多個窄頻區域之間切換或跳變以便減少干擾。 示例性窄頻物聯網路 However, as mentioned earlier, eMTC UEs are capable of operating in cells with bandwidths greater than 6 RBs. Within this larger bandwidth, each eMTC UE can still operate (eg, monitor/receive/transmit) while adhering to the 6 Physical Resource Block (PRB) constraint. In some cases, different eMTC UEs may be served by different narrowband regions (eg, each spanning 6-PRB blocks). Since the system bandwidth can span from 1.4 to 20 MHz, or from 6 to 100 RBs, there can be multiple narrow frequency regions within the larger bandwidth. eMTC UEs can also switch or hop between multiple narrowband regions to reduce interference. Exemplary Narrowband IoT Network

物聯網路(IoT)可以指實體物件、設備或「事物」的網路。IoT設備可以嵌入有例如電子設備、軟體或感測器,並且可以具有網路連接,此使得該等設備能夠收集和交換資料。可以跨現有網路基礎設施遠端感測和控制IoT設備,為實體世界和基於電腦的系統之間的更直接整合創造機會,從而提高效率、準確性和經濟效益。包括用感測器和致動器增強的IoT設備的系統可以稱為資訊實體(cyber-physical)系統。資訊實體系統可以包括諸如智慧型網路、智慧家居、智慧運輸及/或智慧城市之類的技術。每個「事物」(例如,IoT設備)可以經由其嵌入的計算系統被唯一地辨識,並且能夠在現有基礎設施(例如網際網路基礎設施)內交互動操作。The Internet of Things (IoT) can refer to a network of physical objects, devices or "things". IoT devices can be embedded with, for example, electronics, software, or sensors, and can have network connectivity that enables the devices to collect and exchange data. IoT devices can be remotely sensed and controlled across existing network infrastructure, creating opportunities for more direct integration between the physical world and computer-based systems, resulting in improved efficiency, accuracy, and economics. A system comprising IoT devices augmented with sensors and actuators can be referred to as a cyber-physical system. Information entity systems may include technologies such as smart networks, smart homes, smart transportation, and/or smart cities. Each "thing" (eg, IoT device) can be uniquely identified via its embedded computing system and can interoperate within existing infrastructure (eg, Internet infrastructure).

NB-IoT可以指專門為IoT設計的窄頻無線電技術。NB-IoT可以專注於室內覆蓋、低成本、長電池壽命和大量設備。為了降低UE的複雜性,NB-IoT可以允許利用一個PRB(例如,180kHz+20kHz保護頻帶)進行窄頻部署。NB-IoT部署可以利用某些系統(例如,LTE)和硬體的更高層部件以允許減少碎片以及與例如NB-LTE/NB-IoT及/或eMTC的交叉相容性。NB-IoT can refer to narrowband radio technology specifically designed for IoT. NB-IoT can focus on indoor coverage, low cost, long battery life and a large number of devices. To reduce UE complexity, NB-IoT can allow narrow-band deployment with one PRB (eg, 180kHz+20kHz guard band). NB-IoT deployments may utilize certain systems (eg, LTE) and higher layer components of hardware to allow for reduced fragmentation and cross-compatibility with eg NB-LTE/NB-IoT and/or eMTC.

圖6圖示根據本案內容某些態樣的NB-IoT的示例性部署600。三種NB-IoT部署配置包括帶內、保護頻帶和獨立。對於帶內部署配置,NB-IoT可以與部署在相同頻帶中的傳統系統(例如,GSM、WCDMA及/或LTE系統)共存。例如,寬頻LTE通道可以部署在1.4MHz至20MHz之間的各種頻寬中。如圖6所示,該頻寬內的專用RB 602可供NB-IoT使用及/或可以將RB 1204動態分配用於NB-IoT。如圖6所示,在帶內部署中,寬頻通道(例如,LTE)的一個RB或200kHz可以用於NB-IoT。6 illustrates an exemplary deployment 600 of NB-IoT in accordance with certain aspects of the present disclosure. Three NB-IoT deployment configurations include in-band, guard-band, and standalone. For in-band deployment configurations, NB-IoT can coexist with legacy systems (eg, GSM, WCDMA, and/or LTE systems) deployed in the same frequency band. For example, wideband LTE channels can be deployed in various bandwidths between 1.4MHz and 20MHz. As shown in Figure 6, dedicated RBs 602 within this bandwidth are available for NB-IoT use and/or RBs 1204 can be dynamically allocated for NB-IoT. As shown in Figure 6, in an in-band deployment, one RB or 200 kHz of a wideband channel (eg, LTE) can be used for NB-IoT.

某些系統(例如,LTE)可以包括載波之間的無線電頻譜的未使用部分,以防止相鄰載波之間的干擾。在一些部署中,NB-IoT可以部署在寬頻通道的保護頻帶606中。Some systems (eg, LTE) may include unused portions of the radio spectrum between carriers to prevent interference between adjacent carriers. In some deployments, NB-IoT can be deployed in the guard band 606 of the broadband channel.

在其他部署中,NB-IoT可以獨立部署(未圖示)。例如,在獨立部署中,可以利用一個200MHz載波來承載NB-IoT訊務,並且可以重用GSM頻譜。In other deployments, NB-IoT can be deployed independently (not shown). For example, in a stand-alone deployment, one 200MHz carrier can be utilized to carry NB-IoT traffic and the GSM spectrum can be reused.

NB-IoT的部署可以包括同步信號,諸如用於頻率和時序同步的PSS以及用於攜帶系統資訊的SSS。對於NB-IoT操作,與傳統系統(例如,LTE)中的現有PSS/SSS訊框邊界相比,可以擴展PSS/SSS時序邊界,例如,從10ms到40ms。基於時序邊界,UE能夠接收PBCH傳輸,該PBCH傳輸可以在無線電訊框的子訊框0中傳送。 示例性 NR/5G RAN 架構 The deployment of NB-IoT may include synchronization signals such as PSS for frequency and timing synchronization and SSS for carrying system information. For NB-IoT operation, the PSS/SSS timing boundaries can be extended, eg, from 10ms to 40ms, compared to existing PSS/SSS frame boundaries in legacy systems (eg, LTE). Based on the timing boundaries, the UE is able to receive PBCH transmissions, which may be transmitted in subframe 0 of the radio frame. Exemplary NR/5G RAN Architecture

新無線電(NR)可以指被配置為根據新的空中介面(例如,除了基於正交分頻多工存取(OFDMA)的空中介面之外)或固定傳輸層(例如,除網際協定(IP)之外)操作的無線電技術。NR可以在上行鏈路和下行鏈路上利用具有CP的OFDM,並且包括使用TDD支援半雙工操作。NR可以包括針對寬頻寬(例如,超過80MHz)的增強型行動寬頻(eMBB)服務,針對高載波頻率(例如60GHz)的毫米波(mmW),針對非與舊版相容MTC技術的大規模MTC(mMTC),及/或針對超可靠低延遲通訊(URLLC)服務的關鍵任務。New Radio (NR) may refer to a new air interface (eg, in addition to an Orthogonal Frequency Division Multiple Access (OFDMA) based air interface) or a fixed transport layer (eg, in addition to Internet Protocol (IP) outside) operating radio technology. NR can utilize OFDM with CP on the uplink and downlink, and includes the use of TDD to support half-duplex operation. NR may include enhanced mobile broadband (eMBB) services for wide bandwidth (eg, over 80MHz), millimeter wave (mmW) for high carrier frequencies (eg, 60GHz), massive MTC for non-legacy compatible MTC technologies (mMTC), and/or mission critical for Ultra Reliable Low Latency Communications (URLLC) services.

可以支援100MHz的單分量載波(CC)頻寬。NR RB可跨越具有75 kHz次載波頻寬的12個次載波,持續時間為0.1 ms。每個無線電訊框可以由50個子訊框組成,長度為10ms。因此,每個子訊框可以具有0.2ms的長度。每個子訊框可以指示用於資料傳輸的鏈路方向(例如,DL或UL),並且可以動態地切換每個子訊框的鏈路方向。每個子訊框可以包括DL/UL資料以及DL/UL控制資料。如下相關於圖9和圖10更詳細地描述用於NR的UL和DL子訊框。A single component carrier (CC) bandwidth of 100MHz can be supported. NR RBs can span 12 sub-carriers with 75 kHz sub-carrier bandwidth and have a duration of 0.1 ms. Each wireless frame may consist of 50 subframes with a length of 10ms. Therefore, each subframe may have a length of 0.2ms. Each subframe may indicate a link direction (eg, DL or UL) for data transmission, and the link direction of each subframe may be dynamically switched. Each subframe may include DL/UL data and DL/UL control data. UL and DL subframes for NR are described in more detail below in relation to Figures 9 and 10.

可以支援波束成形並且可以動態地配置波束方向。亦可以支援具有預編碼的MIMO傳輸。DL中的MIMO配置可以支援多達8個發射天線,並具有多達8個串流的多層DL傳輸,並且每個UE多達2個串流。可以支援每個UE具有多達2個串流的多層傳輸。可以以多達8個服務細胞支援多個細胞的聚合。或者,NR可以支援除基於OFDM的介面之外的不同的空中介面。NR網路可以包括諸如中央單元(CU)或分散式單元(DU)的實體。Beamforming can be supported and beam directions can be dynamically configured. MIMO transmission with precoding can also be supported. The MIMO configuration in DL can support up to 8 transmit antennas and multi-layer DL transmission with up to 8 streams and up to 2 streams per UE. Multi-layer transmission with up to 2 streams per UE can be supported. Aggregation of multiple cells can be supported with up to 8 serving cells. Alternatively, NR may support a different air interface than the OFDM-based interface. An NR network may include entities such as a central unit (CU) or a distributed unit (DU).

NR RAN可以包括CU和DU。NR BS(例如,NB、eNB、gNB、5G NB、TRP、AP等)可以對應於一或多個BS。NR細胞可以配置為存取細胞(ACell)或僅資料細胞(DCell)。例如,RAN(例如,CU或DU)可以配置細胞。DCell可以是用於載波聚合或雙連接,但不用於初始存取、細胞選擇/重選或交遞的細胞。在一些情況下,DCell可以不傳送同步信號-在一些情況下,DCell可以傳送同步信號。NR RAN may include CUs and DUs. NR BSs (eg, NBs, eNBs, gNBs, 5G NBs, TRPs, APs, etc.) may correspond to one or more BSs. NR cells can be configured as access cells (ACell) or data-only cells (DCell). For example, a RAN (eg, CU or DU) can configure cells. A DCell may be a cell used for carrier aggregation or dual connectivity, but not for initial access, cell selection/reselection or handover. In some cases, the DCell may not transmit synchronization signals - in some cases, the DCell may transmit synchronization signals.

圖7圖示根據本案內容各態樣的分散式RAN的示例邏輯架構700。5G存取節點706可以包括存取節點控制器(ANC)702。ANC 702可以是分散式RAN的CU。到下一代核心網路(NG-CN)704的回載介面可以在ANC 702處終止。到相鄰下一代存取節點(NG-AN)710的回載介面可以在ANC 702處終止。ANC 702可以包括一或多個TRP 708。如前述,TRP可以與「細胞」、BS、NR BS、NB、eNB、5G NB、gNB、AP等互換使用。7 illustrates an example logical architecture 700 of a distributed RAN in accordance with aspects of the present disclosure. A 5G access node 706 may include an access node controller (ANC) 702 . ANC 702 may be a CU of a distributed RAN. The loadback interface to the Next Generation Core Network (NG-CN) 704 may terminate at the ANC 702 . The backhaul interface to the adjacent next generation access node (NG-AN) 710 may terminate at the ANC 702 . ANC 702 may include one or more TRPs 708 . As previously mentioned, TRP can be used interchangeably with "cell", BS, NR BS, NB, eNB, 5G NB, gNB, AP, etc.

TRP 708可以包括DU。TRP 708可以連接到一個ANC(例如ANC 702)或多於一個ANC(未圖示)。例如,對於RAN共享、無線電即服務(RaaS)以及特定於服務AND部署,TRP 708可以連接到多於一個ANC。TRP 708可以包括一或多個天線埠。TRP 708可以被配置為單獨地(例如,動態選擇)或聯合地(例如,聯合傳輸)向UE提供訊務。TRP 708 may include DUs. TRP 708 may be connected to one ANC (eg, ANC 702) or more than one ANC (not shown). For example, for RAN sharing, radio as a service (RaaS), and service-specific AND deployments, the TRP 708 may be connected to more than one ANC. TRP 708 may include one or more antenna ports. TRP 708 may be configured to provide traffic to UEs individually (eg, dynamically selected) or jointly (eg, joint transmission).

邏輯架構700可以被用於說明前傳定義。該架構可以被定義為支援不同部署類型上的前傳解決方案。例如,邏輯架構700可以基於發射網路能力(例如,頻寬、潛時及/或信號干擾)。邏輯架構700可以與LTE共享特徵及/或部件。根據各態樣,NG-AN 710可以支援與NR的雙重連接。NG-AN 710可以共享LTE和NR的共用前傳。邏輯架構700可以賦能TRP 708之間的協調。例如,協調可以預設在TRP內及/或經由ANC 702跨TRP預設。在一些情況下,可以不需要/存在TRP間介面。The logical architecture 700 may be used to illustrate the fronthaul definition. The architecture can be defined to support fronthaul solutions on different deployment types. For example, the logical architecture 700 may be based on transmit network capabilities (eg, bandwidth, latency, and/or signal interference). Logical architecture 700 may share features and/or components with LTE. According to various aspects, NG-AN 710 can support dual connection with NR. NG-AN 710 can share common fronthaul for LTE and NR. Logical architecture 700 may enable coordination among TRPs 708 . For example, coordination may be preset within TRPs and/or across TRPs via ANC 702 . In some cases, an inter-TRP interface may not be required/existent.

在邏輯架構700內可以存在拆分邏輯功能的動態配置。封包資料收斂協定(PDCP)、無線電鏈路控制(RLC)和媒體存取控制(MAC)協定可以被適用地放置在ANC 702或TRP 708處。There may be dynamic configuration of split logic functions within logic architecture 700 . Packet Data Convergence Protocol (PDCP), Radio Link Control (RLC) and Medium Access Control (MAC) protocols may be placed at ANC 702 or TRP 708 as appropriate.

圖8圖示根據本案內容各態樣的分散式RAN的示例性實體架構800。集中式核心網路單元(C-CU)802可以容納核心網路功能。C-CU 802可以集中部署。可以卸載C-CU 802功能(例如,到高級無線服務(AWS)),以努力處理峰值容量。8 illustrates an exemplary physical architecture 800 of a distributed RAN in accordance with aspects of the present disclosure. A centralized core network unit (C-CU) 802 may house core network functions. C-CU 802 can be deployed centrally. C-CU 802 functions can be offloaded (eg, to Advanced Wireless Services (AWS)) in an effort to handle peak capacity.

集中式RAN單元(C-RU)804可以容納一或多個ANC功能。可任選地,C-RU 804可以在本端容納核心網路功能。C-RU 804可以具有分散式部署。C-RU 804可以更接近網路邊緣。A centralized RAN unit (C-RU) 804 may house one or more ANC functions. Optionally, the C-RU 804 may house core network functions locally. The C-RU 804 may have a distributed deployment. The C-RU 804 can move closer to the edge of the network.

DU 806可以容納一或多個TRP。DU 806可以位於網路的邊緣,具有射頻(RF)功能。DU 806 can accommodate one or more TRPs. The DU 806 can be located at the edge of the network, with radio frequency (RF) capabilities.

圖9是圖示以DL為中心的子訊框900的實例的圖。以DL為中心的子訊框900可以包括控制部分902。控制部分902可以存在於以DL為中心的子訊框900的初始或開始部分中。控制部分902可以包括與以DL為中心的子訊框900的各個部分相對應的各種排程資訊及/或控制資訊。在一些配置中,控制部分902可以是實體DL控制通道(PDCCH),如圖9所示。以DL為中心的子訊框900亦可以包括DL資料部分904。DL資料部分904有時可以被稱為以DL為中心的子訊框900的有效負荷。DL資料部分904可以包括用於從排程實體(例如,UE或BS)向下屬實體(例如,UE)傳送DL資料的通訊資源。在一些配置中,DL資料部分904可以是實體DL共享通道(PDSCH)。FIG. 9 is a diagram illustrating an example of a DL-centered subframe 900 . The DL-centered subframe 900 may include a control portion 902 . The control portion 902 may exist in the initial or beginning portion of the DL-centered subframe 900 . The control portion 902 may include various scheduling information and/or control information corresponding to various portions of the DL-centric subframe 900 . In some configurations, the control portion 902 may be a physical DL control channel (PDCCH), as shown in FIG. 9 . The DL-centric subframe 900 may also include a DL data portion 904 . The DL data portion 904 may sometimes be referred to as the payload of the DL-centric subframe 900 . DL data portion 904 may include communication resources for communicating DL data from a scheduling entity (eg, UE or BS) to subordinate entities (eg, UE). In some configurations, the DL profile portion 904 may be a physical DL shared channel (PDSCH).

以DL為中心的子訊框900亦可以包括共用UL部分906。共用UL部分906有時可以被稱為UL短脈衝、共用UL短脈衝及/或各種其他合適的術語。共用UL部分906可以包括與以DL為中心的子訊框900的各個其他部分相對應的回饋資訊。例如,共用UL部分906可以包括對應於控制部分902的回饋資訊。回饋資訊的非限制性實例可以包括確認(ACK)信號、否定確認(NACK)信號、HARQ指示符及/或各種其他合適類型的資訊。共用UL部分906可以包括額外的或替代的資訊,例如與隨機存取通道(RACH)程序、排程請求(SR)有關的資訊以及各種其他合適類型的資訊。如圖9所示,DL資料部分904的末端可以與共用UL部分906的開始在時間上分開。該時間間隔有時可以被稱為間隙、保護時段、保護間隔及/或各種其他合適的術語。該間隔為從DL通訊(例如,由下屬實體進行的接收操作)切換到UL通訊(例如,由下屬實體進行的傳輸)提供時間。本領域的一般技藝人士將理解,以上僅僅是以DL為中心的子訊框的一個實例,可以存在具有類似特徵的可替換結構,而不一定偏離本文描述的態樣。The DL-centric subframe 900 may also include a common UL portion 906 . Common UL portion 906 may sometimes be referred to as a UL burst, a shared UL burst, and/or various other suitable terms. Common UL portion 906 may include feedback information corresponding to various other portions of DL-centered subframe 900 . For example, common UL portion 906 may include feedback information corresponding to control portion 902 . Non-limiting examples of feedback information may include acknowledgement (ACK) signals, negative acknowledgement (NACK) signals, HARQ indicators, and/or various other suitable types of information. Common UL portion 906 may include additional or alternative information, such as information related to random access channel (RACH) procedures, scheduling requests (SRs), and various other suitable types of information. As shown in FIG. 9 , the end of the DL profile portion 904 may be separated in time from the beginning of the common UL portion 906 . This time interval may sometimes be referred to as a gap, a guard period, a guard interval, and/or various other suitable terms. This interval provides time for switching from DL communication (eg, receive operations by subordinate entities) to UL communication (eg, transmissions by subordinate entities). Those of ordinary skill in the art will appreciate that the above is only one example of a DL-centric subframe, and that there may be alternative structures with similar features without necessarily departing from the aspects described herein.

圖10是圖示以UL為中心的子訊框1000的實例的圖。以UL為中心的子訊框1000可以包括控制部分1002。控制部分1002可以存在於以UL為中心的子訊框1000的初始或開始部分中。圖10中的控制部分1002可以類似於上面參照圖9描述的控制部分902。以UL為中心的子訊框1000亦可以包括UL資料部分1004。UL資料部分1004有時可以被稱為以UL為中心的子訊框1000的有效負荷。UL資料部分可以指用於從下屬實體(例如,UE)向排程實體(例如,UE或BS)傳送UL資料的通訊資源。在一些配置中,控制部分1002可以是PDCCH。在一些配置中,資料部分可以是實體上行鏈路共享通道(PUSCH)。FIG. 10 is a diagram illustrating an example of a UL-centered subframe 1000 . The UL-centric subframe 1000 may include a control portion 1002 . The control portion 1002 may exist in the initial or beginning portion of the UL-centered subframe 1000. The control portion 1002 in FIG. 10 may be similar to the control portion 902 described above with reference to FIG. 9 . The UL-centric subframe 1000 may also include a UL data portion 1004 . The UL data portion 1004 may sometimes be referred to as the payload of the UL-centric subframe 1000 . The UL data portion may refer to communication resources used to transmit UL data from a subordinate entity (eg, UE) to a scheduling entity (eg, UE or BS). In some configurations, control portion 1002 may be a PDCCH. In some configurations, the data portion may be a Physical Uplink Shared Channel (PUSCH).

如圖10所示,控制部分1002的末端可以與UL資料部分1004的開始在時間上分開。該時間間隔有時可以被稱為間隙、保護時段、保護間隔及/或各種其他合適的術語。該間隔為從DL通訊(例如,由排程實體進行的接收操作)切換到UL通訊(例如,由排程實體進行的傳輸)提供時間。以UL為中心的子訊框1000亦可以包括共用UL部分1006。圖10中的共用UL部分1006可以類似於上面參照圖9描述的共用UL部分906。共用UL部分1006可以另外或可替代地包括與CQI、探測參考信號(SRS)有關的資訊以及各種其他合適類型的資訊。本領域的一般技藝人士將理解,以上僅僅是以UL為中心的子訊框的一個實例,可以存在具有類似特徵的可替代結構,而不一定偏離本文描述的態樣。As shown in FIG. 10 , the end of the control portion 1002 may be separated in time from the beginning of the UL profile portion 1004 . This time interval may sometimes be referred to as a gap, a guard period, a guard interval, and/or various other suitable terms. The interval provides time for switching from DL communication (eg, a receive operation by the scheduling entity) to UL communication (eg, a transmission by the scheduling entity). The UL-centric subframe 1000 may also include a common UL portion 1006 . Common UL portion 1006 in FIG. 10 may be similar to common UL portion 906 described above with reference to FIG. 9 . Common UL portion 1006 may additionally or alternatively include information related to CQI, sounding reference signals (SRS), and various other suitable types of information. Those of ordinary skill in the art will appreciate that the above is only one example of a UL-centric subframe, and that alternative structures with similar features may exist without necessarily departing from the aspects described herein.

在一些情況下,兩個或更多個下屬實體(例如,UE)可以使用側鏈路信號來彼此通訊。此種側鏈路通訊的實際應用可以包括公共安全、鄰近服務、UE到網路中繼、車輛到車輛(V2V)通訊、萬物互聯(IoE)通訊、IoT通訊、關鍵任務網格及/或各種其他合適的應用。通常,側鏈路信號可以是指在不經由排程實體(例如,UE或BS)中繼該通訊的情況下(即使該排程實體可以用於排程及/或控制目的)從一個下屬實體(例如,UE1)向另一個下屬實體(例如,UE2)傳送的信號。在一些實例中,可以使用經授權頻譜來傳送側鏈路信號(與通常使用未授權頻譜的無線區域網路不同)。In some cases, two or more subordinate entities (eg, UEs) may use sidelink signals to communicate with each other. Practical applications for such side-link communications may include public safety, proximity services, UE-to-network relays, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical grids, and/or various other suitable applications. In general, a sidelink signal may refer to relaying the communication from a subordinate entity without relaying the communication via the scheduling entity (eg, UE or BS) even though the scheduling entity may be used for scheduling and/or control purposes A signal transmitted by (eg, UE1) to another subordinate entity (eg, UE2). In some instances, licensed spectrum may be used to transmit sidelink signals (unlike wireless local area networks, which typically use unlicensed spectrum).

UE可以在各種無線電資源配置中操作,包括與使用專用資源集合(例如,RRC專用狀態等)傳送引導頻相關聯的配置或者與使用共用資源集合(例如,RRC共用狀態等)傳送引導頻相關聯的配置。當在RRC專用狀態下操作時,UE可以選擇用於向網路傳送引導頻信號的專用資源集合。當在RRC共用狀態下操作時,UE可以選擇用於向網路傳送引導頻信號的共用資源集合。在任一情況下,由UE傳送的引導頻信號可以由一或多個網路存取設備(諸如AN或DU)或其部分接收。每個接收網路存取設備可以被配置為接收和量測在共用資源集合上傳送的引導頻信號,並且亦接收和量測在分配給UE(對於該UE,該網路存取設備是該UE的網路存取設備監視組的成員)的專用資源集合上傳送的引導頻信號。一或多個接收網路存取設備或接收網路存取設備向其傳送引導頻信號的量測的CU可以使用該量測來辨識用於UE的服務細胞或者發起對一或多個UE的服務細胞的改變。 用於窄頻的示例性上行鏈路和下行鏈路授權The UE may operate in various radio resource configurations, including those associated with transmitting pilots using a dedicated set of resources (eg, RRC dedicated state, etc.) or associated with transmitting pilots using a common set of resources (eg, RRC shared state, etc.) Configuration. When operating in the RRC dedicated state, the UE may select a dedicated set of resources for transmitting pilot signals to the network. When operating in the RRC shared state, the UE may select a set of shared resources for transmitting pilot signals to the network. In either case, the pilot signal transmitted by the UE may be received by one or more network access devices (such as AN or DU) or portions thereof. Each receiving network access device may be configured to receive and measure the pilot signal transmitted on the set of common resources, and also receive and measure the pilot signal that is allocated to the UE (for the UE, the network access device is the The network access equipment of the UE monitors the pilot signal transmitted on the dedicated resource set of the members of the group). One or more CUs that receive the measurement of the network access device or to which the network access device transmits the pilot signal may use the measurement to identify the serving cell for the UE or to initiate a call to the one or more UEs. Changes in service cells. Exemplary uplink and downlink grants for narrowband

如前述,某些系統(例如,版本13或更高版本的eMTC系統)可以支援窄頻操作。例如,窄頻操作可以包括支援6RB頻帶上的通訊和用於多達例如15dB覆蓋增強的半雙工操作(例如,進行傳送和接收但不能同時進行兩者的能力)。該等系統可以保留系統頻寬的一部分以用於控制,該控制可以是MTC實體下行鏈路控制通道(MPDCCH)。MPDCCH可以在窄頻中傳送,可以使用至少一個子訊框,並且可以依賴於解調參考信號(DMRS)解調來解碼控制通道。可以藉由執行信號的重複/附隨來增加覆蓋範圍。As previously mentioned, certain systems (eg, eMTC systems of Release 13 or later) may support narrowband operation. For example, narrowband operation may include support for communication on the 6RB frequency band and half-duplex operation (eg, the ability to transmit and receive but not both simultaneously) for up to, eg, 15dB coverage enhancement. Such systems may reserve a portion of the system bandwidth for control, which may be the MTC Physical Downlink Control Channel (MPDCCH). The MPDCCH may be transmitted in narrowband, may use at least one subframe, and may rely on demodulation reference signal (DMRS) demodulation to decode the control channel. Coverage can be increased by performing repetition/accompaniment of the signal.

某些系統(例如,版本13或更高版本的NB-IoT系統)可以支援窄頻物聯網操作(NB-IOT)。NB-IoT可以使用180 kHz頻寬。NB-IoT可以提供獨立、帶內或保護頻帶部署方案。獨立部署可以使用新頻寬,而保護頻帶部署可以使用通常在現有網路(例如長期進化(LTE))的保護頻帶中保留的頻寬來完成。另一態樣,帶內部署可以使用現有LTE網路的LTE載波中的相同資源區塊。NB-IoT可能會提供增大的覆蓋範圍。NB-IoT可以定義適合1RB的新窄頻控制通道(例如,窄頻PDCCH(NPDCCH))、資料和參考信號。為清楚起見,下文針對NB-IoT說明該等技術的某些態樣,並且在下文的大部分說明中使用了NB-IoT術語。Certain systems (eg, NB-IoT systems of version 13 or later) can support Narrowband Internet of Things Operation (NB-IOT). NB-IoT can use 180 kHz bandwidth. NB-IoT can provide standalone, in-band or guard-band deployment scenarios. Standalone deployments can use the new bandwidth, while guard band deployments can be done using bandwidth typically reserved in guard bands of existing networks such as Long Term Evolution (LTE). Alternatively, the in-band deployment may use the same resource blocks in the LTE carrier of the existing LTE network. NB-IoT may provide increased coverage. NB-IoT can define new narrowband control channels (eg, narrowband PDCCH (NPDCCH)), data and reference signals suitable for 1RB. For clarity, certain aspects of these technologies are described below for NB-IoT, and NB-IoT terminology is used in much of the description below.

當前,在諸如NB-IoT的某些系統中,僅支援半雙工(HD)FDD(分頻雙工)操作。UE不能同時監視UL和DL,並且不需要支援並行UL和DL傳輸。定義時序限制的規則,使得用於UL授權的NPDCCH與相關聯的NPUSCH(窄頻PUSCH)傳輸之間的間隙至少為8ms(例如,準確延遲由UL授權中的欄位決定),並且用於DL授權的NPDCCH與相關聯的NPDSCH(窄頻PDSCH)之間的間隙至少為5ms(例如,準確延遲由DL授權中的欄位決定)。NPUSCH和NPDSCH是共享通道或資料通道的實例。根據上下文,「通道」可以指傳送或接收訊號傳遞/資料/資訊的通道,或者指在通道上傳送或接收的訊號傳遞/資料/資訊。在Rel-13中,NB-IoT中僅支援單個HARQ過程。在接收到用於DL授權或UL授權的一個NPDCCH之後,UE停止監視NPDCCH,直到資料傳輸完成。在Rel-14中,對於NB-IoT,可以具有用於兩個HARQ過程的背對背的兩個DL授權或背對背的兩個UL授權,例如,在接收到一個DL或UL授權之後,可能需要UE繼續監視包含候選的任何NPDCCH搜尋空間,在第一個NPDSCH或NPUSCH開始之前至少2 ms( x 1≧2ms)結束。 Currently, in some systems such as NB-IoT, only half-duplex (HD) FDD (Frequency Division Duplex) operation is supported. The UE cannot monitor UL and DL at the same time, and does not need to support concurrent UL and DL transmission. Rules defining timing constraints such that the gap between the NPDCCH used for UL grants and the associated NPUSCH (Narrowband PUSCH) transmission is at least 8ms (eg exact delay is determined by a field in the UL grant), and used for DL The gap between the granted NPDCCH and the associated NPDSCH (narrowband PDSCH) is at least 5ms (eg the exact delay is determined by a field in the DL grant). NPUSCH and NPDSCH are examples of shared channels or data channels. Depending on the context, a "channel" may refer to a channel through which signaling/data/information is transmitted or received, or signaling/data/information transmitted or received on a channel. In Rel-13, only a single HARQ process is supported in NB-IoT. After receiving one NPDCCH for a DL grant or UL grant, the UE stops monitoring the NPDCCH until the data transmission is completed. In Rel-14, for NB-IoT, there may be two DL grants back-to-back or two UL grants back-to-back for two HARQ processes, eg, after receiving one DL or UL grant, the UE may be required to continue Monitor any NPDCCH search space that contains candidates, ending at least 2 ms ( x 1 ≧ 2 ms) before the start of the first NPDSCH or NPUSCH.

圖11圖示版本13 HARQ過程時序的實例和版本 14 HARQ過程時序的實例。如針對版本13所示,用於DL授權的NPDCCH與相關聯的NPDSCH之間的時間間隙是5ms或更長。在接收到NPDCCH之後,UE停止對NPDCCH的監視,並且在5ms或更長時間之後,UE開始在NPDSCH上接收下行鏈路傳輸(例如,資料傳輸,例如重複資料傳輸以改善覆蓋)。在接收到資料傳輸之後,UE在12ms或更長時間之後傳送ACK資訊。對於上行鏈路實例,UE接收用於UL授權的NPDCCH,停止對NPDCCH的監視,並且在8ms或更長時間之後在相關聯的NPUSCH上在上行鏈路上進行傳送(例如,資料傳輸)。如針對版本14所示,UE在接收到第一NPDCCH(NPDCCH1)之後需要繼續監視第二NPDCCH(NPDCCH2)。UE監視第二NPDCCH直到與第一NPDCCH相關聯的NPDSCH(NPDSCH1)傳輸開始之前的2ms或更多。如針對版本14所示,該兩個背對背的NPDCCH既可以皆用於DL授權,亦可以皆用於UL授權。亦即,UE接收兩個連續的UL授權或兩個連續的DL授權。接收連續的UL授權包括在一個UL授權之後接收一個UL授權作為下一個授權,並且接收連續的DL授權包括在一個DL授權之後接收一個DL授權作為下一個授權。11 illustrates an example of Rel-13 HARQ process timing and an example of Rel-14 HARQ process timing. As shown for Release 13, the time gap between the NPDCCH for the DL grant and the associated NPDSCH is 5ms or longer. After receiving the NPDCCH, the UE stops monitoring the NPDCCH, and after 5 ms or more, the UE starts receiving downlink transmissions (eg, data transmissions, eg, repeating data transmissions to improve coverage) on the NPDSCH. After receiving the data transmission, the UE transmits ACK information after 12 ms or more. For the uplink example, the UE receives the NPDCCH for the UL grant, stops monitoring the NPDCCH, and transmits (eg, data transmission) on the uplink on the associated NPUSCH after 8 ms or more. As shown for Release 14, the UE needs to continue monitoring the second NPDCCH (NPDCCH2) after receiving the first NPDCCH (NPDCCH1). The UE monitors the second NPDCCH until 2 ms or more before the start of the NPDSCH (NPDSCH1) transmission associated with the first NPDCCH. As shown for Rel-14, the two back-to-back NPDCCHs can both be used for DL grants or both for UL grants. That is, the UE receives two consecutive UL grants or two consecutive DL grants. Receiving successive UL grants includes receiving one UL grant as the next grant after one UL grant, and receiving successive DL grants includes receiving one DL grant as the next grant after one DL grant.

與HD-FDD不同,對於TDD,DL和UL子訊框可以在NPUSCH/NPDSCH傳輸期間交錯。為了支援NB-IoT TDD DL和UL傳輸,UE可以接收用於DL封包的一些DL子訊框(例如,與用於DL授權的NPDCCH相關聯),接著是用於UL封包的UL傳輸(例如,與用於UL授權的NPDCCH相關聯)隨後是相同DL封包的重複,隨後再是相同UL封包的一些重複,依此類推。Unlike HD-FDD, for TDD, DL and UL subframes can be interleaved during NPUSCH/NPDSCH transmission. To support NB-IoT TDD DL and UL transmissions, the UE may receive some DL subframes for DL packets (eg, associated with NPDCCH for DL grants), followed by UL transmissions for UL packets (eg, associated with NPDCCH for UL grants) followed by repetitions of the same DL packets, followed by some repetitions of the same UL packets, and so on.

根據Rel-14規範,對於NB-IoT,UE可以僅接收背對背的兩個DL授權或者背對背的兩個UL授權,並且不支援UE接收交錯的UL和DL授權。對於Rel-15,可以論述將NB-IoT擴展到TDD模式。對於TDD,並行上行鏈路和下行鏈路傳輸表示,例如,UE接收DL封包的DL傳輸,隨後是UL封包的UL傳輸,隨後是相同DL封包的重複,隨後是相同UL封包的重複。為了支援此種交錯DL/UL傳輸,DL/UL授權亦需要交錯,並且當前標準規範不支援此特徵。接收交錯的UL和DL授權包括:在一個UL授權之後接收一個DL授權作為下一個授權,或者在一個DL授權之後接收一個UL授權作為下一個授權。需要交錯UL和DL授權以支援交錯UL和DL傳輸,尤其是對於TDD。交錯UL和DL授權對於FDD亦可能是有益的,例如,為了提高UL/DL傳輸效率(例如,對於一些當前基於TDM的應用,對於UL資料傳輸,可能需要首先完成DL資料傳輸)。According to the Rel-14 specification, for NB-IoT, the UE may only receive two DL grants back-to-back or two UL grants back-to-back, and UEs are not supported to receive interleaved UL and DL grants. For Rel-15, the extension of NB-IoT to TDD mode can be discussed. For TDD, parallel uplink and downlink transmission means, for example, that the UE receives a DL transmission of a DL packet, followed by an UL transmission of a UL packet, followed by a repetition of the same DL packet, followed by a repetition of the same UL packet. In order to support such interleaved DL/UL transmission, DL/UL grants also need to be interleaved, and the current standard specification does not support this feature. Receiving interleaved UL and DL grants includes receiving a DL grant as the next grant after a UL grant, or receiving a UL grant as the next grant after a DL grant. Interleaved UL and DL grants are required to support interleaved UL and DL transmission, especially for TDD. Interleaving UL and DL grants may also be beneficial for FDD, eg, to improve UL/DL transmission efficiency (eg, for some current TDM-based applications, DL data transmission may need to be done first for UL data transmission).

可以支援交錯的UL和DL授權,使得UE可以在相應的NPUSCH或NPDSCH傳輸開始之前接收兩個授權,一個用於UL,一個用於DL。NPDCCH和NPDSCH/NPUSCH之間的時序限制規則可以保持不變。例如,第二NPDCCH與NPDSCH或NPUSCH的開始之間的間隙可以≧2ms。另外,對於HD-FDD,不需要UE在NPDSCH開始到HARQ-ACK之間監視NPDCCH(例如,針對第三授權)。此簡化了UE實施方式並節省了UE功率,因為否則UE除了接收資料之外同時亦需要接收DL控制資訊。在一個態樣中,對交錯的UL和DL授權的順序沒有限制,例如,第一授權可以是UL或DL授權。Interleaved UL and DL grants may be supported such that the UE may receive two grants, one for UL and one for DL, before the corresponding NPUSCH or NPDSCH transmission begins. Timing restriction rules between NPDCCH and NPDSCH/NPUSCH may remain unchanged. For example, the gap between the second NPDCCH and the start of the NPDSCH or NPUSCH may be ≧2ms. Additionally, for HD-FDD, the UE is not required to monitor the NPDCCH (eg, for the third grant) between the start of the NPDSCH and the HARQ-ACK. This simplifies UE implementation and saves UE power, since otherwise the UE needs to receive DL control information in addition to data. In one aspect, there is no restriction on the order of the interleaved UL and DL grants, eg, the first grant may be a UL or a DL grant.

圖12圖示根據本案內容某些態樣的示例性交錯授權(DL後是UL)。在一個實例中,第一授權是UL授權,第二授權是DL授權。從授權到相關聯的資料傳輸的時間延遲可以與上面描述的相同(例如,在UL授權和相關聯的NPUSCH傳輸之間為8ms或更多,在DL授權和相關聯的NPDSCH傳輸之間為5ms或更多)。在該實例中,UL資料傳輸(例如,在NPUSCH上)發生在DL資料傳輸(例如,在NPDSCH上)和與DL資料傳輸相關聯的HARQ-ACK之間。在第二實例中,資料傳輸的順序不同。此處,UL資料傳輸(例如,在NPUSCH上)在DL資料傳輸(例如,在NPDSCH上)之前發生。在第三實例中,UL資料傳輸(例如,在NPUSCH上)在與DL資料傳輸(例如,在NPDSCH上)相關聯的HARQ-ACK之後發生。因此,資料傳輸的順序由例如NPDCCH與相關聯的資料傳輸之間的延遲決定(例如,由NPDCCH中的欄位決定)。12 illustrates an exemplary interleaved grant (DL followed by UL) in accordance with certain aspects of the present disclosure. In one example, the first grant is a UL grant and the second grant is a DL grant. The time delay from grant to associated data transmission can be the same as described above (eg, 8ms or more between UL grant and associated NPUSCH transmission, 5ms between DL grant and associated NPDSCH transmission Or more). In this example, UL data transmission (eg, on NPUSCH) occurs between DL data transmission (eg, on NPDSCH) and the HARQ-ACK associated with the DL data transmission. In the second example, the order of data transmission is different. Here, UL data transmission (eg, on NPUSCH) occurs before DL data transmission (eg, on NPDSCH). In a third example, UL data transmission (eg, on NPUSCH) occurs after HARQ-ACK associated with DL data transmission (eg, on NPDSCH). Thus, the order of data transmission is determined, for example, by the delay between the NPDCCH and the associated data transmission (eg, by a field in the NPDCCH).

圖13圖示根據本案內容某些態樣的示例性交錯授權(UL後是DL)。圖13圖示與圖12類似的概念。13 illustrates an exemplary interleaved grant (UL followed by DL) in accordance with certain aspects of the present disclosure. FIG. 13 illustrates a similar concept as FIG. 12 .

對於TDD模式中的NB-IoT,可以支援NPUSCH和NPDCCH交錯,例如,UE可以在進行NPUSCH傳輸時繼續監視NPDCCH搜尋空間。由於TDD UL-DL配置,在UL傳輸之間可能存在一些DL子訊框(SF),並且UE可以在DL SF期間從UL傳輸(例如,NPUSCH傳輸)切換到監視NPDCCH搜尋空間。在一態樣,若根據TDD UL-DL配置將子訊框指示為DL,則需要UE繼續監視搜尋空間,除非該DL子訊框用於NPDSCH。在交錯DL和UL資料傳輸的情況下,若需要保護子訊框以從UL切換到DL或從DL切換到UL,則可以將與該保護子訊框相關聯的DL或UL通訊(例如,被排程為在該保護子訊框期間發生的通訊)推遲到下一個可用的SF。在交錯DL和UL資料傳輸的情況下,若需要幾個OFDM符號來從UL切換到DL或從DL切換到UL,則例如可以對子訊框中的相關聯的DL或UL通訊進行删餘。例如,當從UL切換到DL時,則可以對第二子訊框(DL)中的前兩個符號删餘,並且當從DL切換到UL時,則可以對第一子訊框(DL)中的最後一個符號和第二子訊框(UL)中的第一個符號删餘。For NB-IoT in TDD mode, NPUSCH and NPDCCH interleaving can be supported, for example, the UE can continue to monitor the NPDCCH search space during NPUSCH transmission. Due to the TDD UL-DL configuration, there may be some DL subframes (SFs) between UL transmissions, and the UE may switch from UL transmissions (eg, NPUSCH transmissions) to monitoring the NPDCCH search space during DL SFs. In one aspect, if a subframe is indicated as DL according to the TDD UL-DL configuration, the UE is required to continue monitoring the search space unless the DL subframe is used for NPDSCH. In the case of interleaved DL and UL data transmission, if a protection subframe is required for switching from UL to DL or from DL to UL, the DL or UL communication associated with the protection subframe (eg, by Communications scheduled to occur during this protected subframe) are deferred until the next available SF. In the case of interleaved DL and UL data transmission, if several OFDM symbols are required to switch from UL to DL or from DL to UL, the associated DL or UL traffic in subframes can be punctured, for example. For example, when switching from UL to DL, the first two symbols in the second subframe (DL) may be punctured, and when switching from DL to UL, the first subframe (DL) may be punctured The last symbol in and the first symbol in the second subframe (UL) are punctured.

圖14圖示根據本案內容某些態樣的示例性交錯NPDCCH和NPUSCH。在該實例中,圖示TDD UL-DL配置1。首先,UE接收用於UL授權的NPDCCH(NPDCCH1)。基於UL授權,可以在NPUSCH上發送上行鏈路資料傳輸的一組重複(例如,用於增強的覆蓋)。如圖所示,重複次數是8(例如,8個子訊框)。由於TDD訊框結構,在NPUSCH上的上行鏈路資料的重複之間可以存在一些DL子訊框。通常,UE不利用NPUSCH傳輸之間的該等DL子訊框,因為其不是有效率的。在本案內容的一個態樣,該等DL SF可以用於監視NPDCCH。在該實例中,保護子訊框用於從UL切換到DL,使得第一DL子訊框可以用作保護子訊框(在圖14中由「G」表示),並且第二、相鄰DL子訊框可以用於NPDCCH(例如,NPDCCH2)。若使用幾個OFDM符號來從UL切換到DL,則不需要保護子訊框,並且可以在UL子訊框之後立即在DL子訊框中傳送第二NPDCCH(NPDCCH2)。14 illustrates exemplary interleaving of NPDCCH and NPUSCH in accordance with certain aspects of the present disclosure. In this example, TDD UL-DL configuration 1 is illustrated. First, the UE receives the NPDCCH (NPDCCH1) for UL grant. Based on the UL grant, a set of repetitions of uplink data transmissions may be sent on the NPUSCH (eg, for enhanced coverage). As shown, the number of repetitions is 8 (eg, 8 subframes). Due to the TDD frame structure, there may be some DL subframes between repetitions of uplink data on the NPUSCH. Typically, UEs do not utilize these DL subframes between NPUSCH transmissions because it is not efficient. In one aspect of the context, the DL SFs may be used to monitor the NPDCCH. In this example, the guard subframe is used for switching from UL to DL, so that the first DL subframe can be used as a guard subframe (indicated by "G" in Figure 14), and the second, adjacent DL Subframes may be used for NPDCCH (eg, NPDCCH2). If several OFDM symbols are used to switch from UL to DL, no protection subframe is required, and the second NPDCCH (NPDCCH2) can be transmitted in the DL subframe immediately after the UL subframe.

在有或沒有兩個HARQ過程支援的情況下,皆可以支援交錯的UL/DL授權。若利用兩個HARQ過程支援交錯UL和DL授權,則可以接收多達4個NPDCCH,例如,兩個用於DL授權,兩個用於UL授權。在背對背的DL授權或UL授權的情況下,兩個授權可以具有相同或不同的HARQ ID。相同的HARQ ID可以表示重複傳輸(例如,第一NPDCCH的重傳)。對於不同的HARQ ID,兩個HARQ ID可以以任何順序出現,或者第一授權可以總是具有HARQ ID 0,第二授權具有HARQ ID 1(例如,固定順序)。若UE偵測到具有相同HARQ ID的兩個授權(例如,與相同資料相關聯的兩個NPDCCH),則UE可以丟棄其中一個;例如,A)丟棄能量最低的彼個;B)總是丟棄第一個或第二個;或者C)兩者的組合,例如,若兩者能量皆高於某個閾值,則總是丟棄第一個。在另一態樣,UE尊重兩個授權,將其視為HARQ重傳。UE對交錯UL和DL授權的支援可以是獨立的,或獨立於其對兩個HARQ過程的支援(例如,UE可以支援交錯UL和DL授權,或兩個HARQ過程,或兩者)。對交錯UL和DL授權的支援可以由UE以獨立於對兩個HARQ過程的支援的方式來指示。例如,UE可以使用能力訊號傳遞指示支援交錯UL和DL授權,並且當其附接到網路時獨立地指示支援兩個HARQ過程(例如,使用不同的能力訊號傳遞)。Interleaved UL/DL grants can be supported with or without the support of two HARQ processes. If interleaved UL and DL grants are supported with two HARQ processes, up to 4 NPDCCHs may be received, eg, two for DL grants and two for UL grants. In the case of back-to-back DL grants or UL grants, the two grants may have the same or different HARQ IDs. The same HARQ ID may indicate repeated transmissions (eg, retransmissions of the first NPDCCH). For different HARQ IDs, the two HARQ IDs may appear in any order, or the first grant may always have HARQ ID 0 and the second grant HARQ ID 1 (eg, fixed order). If the UE detects two grants with the same HARQ ID (eg, two NPDCCHs associated with the same data), the UE may drop one of them; eg, A) drop the one with the lowest energy; B) always drop The first or the second; or C) a combination of both, e.g. if both energies are above a certain threshold, the first is always discarded. In another aspect, the UE respects both grants as HARQ retransmissions. A UE's support of interleaved UL and DL grants may be independent, or independent of its support of two HARQ processes (eg, a UE may support interleaved UL and DL grants, or two HARQ processes, or both). Support for interleaved UL and DL grants may be indicated by the UE in a manner independent of the support for the two HARQ processes. For example, a UE may indicate support for interleaved UL and DL grants using capability signaling, and independently indicate support for both HARQ processes (eg, using different capability signaling) when it is attached to the network.

作為本案內容的一個態樣,下文圖示兩個HARQ過程的示例性等時線。As an aspect of the content of this case, exemplary isochrones for two HARQ processes are illustrated below.

等時線1:NPDCCH1 NPDCCH2 NPDSCHA ACKA NPDSCHB ACKBIsochrone 1: NPDCCH1 NPDCCH2 NPDSCA ACKA NPDSCHB ACKB

等時線2:NPDCCH1 NPDCCH2 NPDSCHA NPDSCHB ACKA ACKBIsochrone 2: NPDCCH1 NPDCCH2 NPDSCHA NPDSCHB ACKA ACKB

在一態樣,僅允許該等等時線中的一個(例如,固定時序)。在另一態樣,允許兩個等時線。對於NPDCCH到NPDSCH的映射,在一態樣,NPDSCH A可以總是映射到NPDCCH 1並且NPDSCH B可以總是映射到NPDCCH2,並且可以將其他映射視為錯誤情況並且UE可以丟棄其中一個授權。在另一態樣,允許兩個映射(例如,NPDSCHA到NPDCCH1或NPDCCH 2)。In one aspect, only one of the isochrones is allowed (eg, fixed timing). In another aspect, two isochrones are allowed. For NPDCCH to NPDSCH mapping, in one aspect, NPDSCH A may always be mapped to NPDCCH 1 and NPDSCH B may always be mapped to NPDCCH 2, and the other mappings may be treated as error conditions and the UE may drop one of the grants. In another aspect, two mappings are allowed (eg, NPDSCHA to NPDCCH1 or NPDCCH2).

因而,期望用於窄頻操作中的上行鏈路和下行鏈路授權的技術。因此,本文提供的技術可以用於窄頻操作(例如,NB-IoT)中的上行鏈路和下行鏈路授權。Thus, techniques for uplink and downlink grants in narrowband operation are desired. Therefore, the techniques provided herein can be used for uplink and downlink grants in narrowband operation (eg, NB-IoT).

圖15是圖示根據本文中所描述的各態樣的用於接收交錯的UL和DL授權的示例性操作1500的流程圖。操作1500可以例如由UE(例如,UE 120)執行,該UE可以是低成本的IoT設備,例如NB-IoT設備。操作1500可以在1502處開始,在1502處,針對上行鏈路(UL)或下行鏈路(DL)授權而監視系統頻寬的窄頻中的控制通道。在1504處,UE接收交錯的UL和DL授權。在1506處,UE回應於所接收的交錯的UL和DL授權來發送或接收資訊。在一態樣,UE可以監視控制通道搜尋空間,並且在UL授權之後以及回應於UL授權而在上行鏈路資料通道上開始發送資訊之後,接收DL授權作為下一個授權。在一態樣,上行鏈路資料通道可以在與控制通道搜尋空間不同的載波上。在一態樣,上行鏈路資料通道可以是上行鏈路共享通道。例如,上行鏈路共享通道可以是窄頻實體上行鏈路共享通道(NPUSCH)。15 is a flowchart illustrating example operations 1500 for receiving interleaved UL and DL grants in accordance with aspects described herein. Operations 1500 may be performed, for example, by a UE (eg, UE 120), which may be a low-cost IoT device, such as an NB-IoT device. Operations 1500 may begin at 1502 by monitoring a control channel in a narrow frequency band of the system bandwidth for uplink (UL) or downlink (DL) grants. At 1504, the UE receives interleaved UL and DL grants. At 1506, the UE sends or receives information in response to the received interleaved UL and DL grants. In one aspect, the UE may monitor the control channel search space and receive a DL grant as the next grant after the UL grant and after starting to send information on the uplink data channel in response to the UL grant. In one aspect, the uplink data channel may be on a different carrier than the control channel search space. In one aspect, the uplink data channel may be an uplink shared channel. For example, the uplink shared channel may be a narrowband entity uplink shared channel (NPUSCH).

圖16是圖示根據本文中所描述的各態樣的當接收具有相同HARQ ID的背對背的UL授權或DL授權時UE行為的示例性操作1600的流程圖。操作1600可以例如由UE(例如,UE 120)執行,該UE可以是低成本的IoT設備,例如NB-IoT設備。操作1600可以在1602處開始,在1602處,針對上行鏈路(UL)或下行鏈路(DL)授權而監視系統頻寬的窄頻中的控制通道。在1604處,UE接收兩個連續的UL或DL授權,其中該連續的UL或DL授權具有相同的HARQ過程標識(ID)。在1606處,UE至少部分地基於以下至少一者來選擇該授權中要使用的一個授權:滿足能量度量閾值的授權;首先接收的授權;或者第二個接收的授權。在1608處,UE可以替代地選擇使用兩個授權,其中將該授權視為混合HARQ重傳。 示例性 UL / DL 衝突處理 16 is a flowchart illustrating example operations 1600 of UE behavior when receiving back-to-back UL grants or DL grants with the same HARQ ID in accordance with aspects described herein. Operations 1600 may be performed, for example, by a UE (eg, UE 120), which may be a low-cost IoT device, such as an NB-IoT device. Operations 1600 may begin at 1602 by monitoring a control channel in a narrow frequency band of the system bandwidth for uplink (UL) or downlink (DL) grants. At 1604, the UE receives two consecutive UL or DL grants, wherein the consecutive UL or DL grants have the same HARQ process identification (ID). At 1606, the UE selects one of the grants to use based, at least in part, on at least one of: the grant that meets the energy metric threshold; the grant received first; or the grant received second. At 1608, the UE may alternatively choose to use two grants, where the grant is considered a hybrid HARQ retransmission. Exemplary UL and / or DL collision handling

在配置了兩個HARQ過程的情況下,可能的是,eNB可以排程UE以至於存在跨通道的衝突,例如經由不正確的排程。例如,當在同一資源(例如,子訊框)上同時傳送或接收兩個或更多個資訊集合時,可以發生衝突。例如, UE可能具有兩個背對背的NPDSCH,該兩個NPDSCH的ACK衝突或使第二NPDSCH與第一NPDSCH的ACK衝突等。對於背對背的NPUSCH,可能存在類似類型的衝突。若實施交錯的UL和DL授權,則亦可能存在NPUSCH與NPDSCH的衝突,NPUSCH與ACK的衝突等。本文中圖示在此種衝突的情況下的示例性UE行為,並且可以適用於TDD及/或FDD。 用於背對背的 DL 授權或 UL 授權的衝突處理 With two HARQ processes configured, it is possible that the eNB may schedule the UE such that there is a cross-channel conflict, eg via incorrect scheduling. For example, collisions can occur when two or more sets of information are transmitted or received simultaneously on the same resource (eg, subframe). For example, the UE may have two back-to-back NPDSCHs whose ACKs collide or collide the ACKs of the second NPDSCH with the ACKs of the first NPDSCH, etc. Similar types of collisions may exist for back-to-back NPUSCHs. If interleaved UL and DL grants are implemented, there may also be collisions between NPUSCH and NPDSCH, collisions between NPUSCH and ACK, and so on. Exemplary UE behavior in the case of such a conflict is illustrated herein, and may be applicable to TDD and/or FDD. Conflict handling for back-to-back DL grants or UL grants

圖17是圖示根據本文描述的各態樣的當接收背對背的UL授權或DL授權時與衝突相關的UE行為的示例性操作1700的流程圖。操作1700可以例如由UE(例如,UE 120)執行,該UE可以是低成本的IoT設備,例如NB-IoT設備。操作1700可以在1702處開始,在1702處,針對上行鏈路(UL)或下行鏈路(DL)授權而監視系統頻寬的窄頻中的控制通道。在1704處,UE接收兩個連續的UL或DL授權。在1706處,UE回應於所接收的兩個連續的UL和DL授權來發送或接收資訊。在1708處,回應於發送或接收資訊,UE辨識衝突,該衝突包括以下至少一者:第一DL資料通道與第二DL資料通道之間的衝突,第二DL資料通道與用於第一DL資料通道的第一HARQ確認(HARQ-ACK)訊號傳遞之間的衝突,用於第一DL資料通道的第一HARQ-ACK訊號傳遞與用於第二DL資料通道的第二HARQ-ACK訊號傳遞之間的衝突,或者第一UL資料通道與第二UL資料通道之間的衝突。17 is a flow diagram illustrating example operations 1700 of UE behavior related to collisions when receiving back-to-back UL grants or DL grants in accordance with aspects described herein. Operations 1700 may be performed, for example, by a UE (eg, UE 120), which may be a low-cost IoT device, such as an NB-IoT device. Operations 1700 may begin at 1702 by monitoring a control channel in a narrow frequency band of the system bandwidth for uplink (UL) or downlink (DL) grants. At 1704, the UE receives two consecutive UL or DL grants. At 1706, the UE sends or receives information in response to the two consecutive UL and DL grants received. At 1708, in response to sending or receiving the information, the UE identifies a conflict, the conflict including at least one of: a conflict between the first DL data channel and the second DL data channel, the second DL data channel and a conflict between the first DL data channel and the first DL data channel Conflict between the first HARQ-ACK signaling for the data channel, the first HARQ-ACK signaling for the first DL data channel and the second HARQ-ACK signaling for the second DL data channel collision between the first UL data channel and the second UL data channel.

在NPDSCH與NPDSCH衝突的情況下,在一態樣,即使存在衝突,亦可以將兩個NPDSCH視為有效的NPDSCH,並且可以嘗試使用1)兩個NPDSCH中的非衝突子訊框進行解碼(例如,UE解碼兩者)或使用2)僅用於NPDSCH之一的衝突SF進行解碼(例如,UE僅解碼兩者中的一個、第一個、第二個,或者基於相關聯的控制通道能量度量)。在另一態樣,可以僅監視NPDSCH中的一個-例如,第一NPDSCH或第二NPDSCH,或者基於相應的NPDCCH能量度量(例如,相關聯的控制通道能量偵測)。第一NPDSCH可以指首先開始或者其NPDCCH首先開始的NPDSCH,並且第二NPDSCH可以指第二個開始或其NPDCCH第二個開始的NPDSCH。In the case of NPDSCH colliding with NPDSCH, in one aspect, even if there is a collision, the two NPDSCHs can be considered as valid NPDSCHs, and an attempt can be made to use 1) the non-colliding subframes in the two NPDSCHs for decoding (e.g. , the UE decodes both) or 2) decodes using a collided SF for only one of the NPDSCHs (eg, the UE decodes only one, the first, the second of the two, or based on the associated control channel energy metric ). In another aspect, only one of the NPDSCHs - eg, the first NPDSCH or the second NPDSCH, may be monitored, or based on corresponding NPDCCH energy metrics (eg, associated control channel energy detection). The first NPDSCH may refer to the NPDSCH which starts first or whose NPDCCH starts first, and the second NPDSCH may refer to the NPDSCH whose NPDCCH starts second.

在NPDSCH與ACK衝突的情況下(例如,用於第一NPDSCH的ACK與第二NPDSCH衝突),在一個態樣中,將其視為不正確的授權並丟棄NPDSCH和相應的ACK中的一者(類似於NPDSCH與NPDSCH衝突)。在另一個態樣中,可以丟棄ACK。(全部地或部分地,例如,在衝突子訊框上)。在另一態樣,可以丟棄NPDSCH(全部地或部分地,例如,在衝突子訊框上)。衝突SF可以包括包含ACK/NPDSCH的SF以及用於從UL切換到DL的保護SF等。In the case of NPDSCH colliding with ACK (eg, ACK for first NPDSCH colliding with second NPDSCH), in one aspect, it is treated as an incorrect grant and one of NPDSCH and corresponding ACK is discarded (similar to NPDSCH conflict with NPDSCH). In another aspect, the ACK may be discarded. (in whole or in part, eg, on conflicting subframes). In another aspect, the NPDSCH may be dropped (in whole or in part, eg, on colliding subframes). The colliding SFs may include SFs including ACK/NPDSCH and protection SFs for switching from UL to DL, and the like.

在ACK與ACK衝突的情況下,在一態樣,將其視為不正確的授權並丟棄NPDSCH(類似於NPDSCH對NPDSCH衝突)或ACK中的一者。在另一態樣中,僅發送第一或第二ACK。在另一態樣中,完全發送第一ACK,並且將第二ACK删餘,或者反之亦然。若只有一個NPDSCH成功解碼,則可以發送與該NPDSCH對應的ACK,並且對於失敗的NPDSCH,可以將與失敗的NPDSCH對應的ACK傳輸删餘。In the case of an ACK and ACK collision, in one aspect, it is treated as an incorrect grant and either the NPDSCH (similar to NPDSCH-to-NPDSCH collision) or the ACK is dropped. In another aspect, only the first or second ACK is sent. In another aspect, the first ACK is sent entirely and the second ACK is punctured, or vice versa. If only one NPDSCH is successfully decoded, the ACK corresponding to the NPDSCH may be sent, and for the failed NPDSCH, the ACK transmission corresponding to the failed NPDSCH may be punctured.

在NPUSCH與NPUSCH衝突的情況下,在一個態樣中,可以丟棄NPUSCH中的一個。在另一態樣中,可以將NPUSCH中的一個删餘,並且可以完全傳送另一個NPUSCH。例如,被丟棄或删餘的NPUSCH可以總是第一個、總是第二個,或者基於NPDCCH能量度量。 交錯的 UL DL 授權的衝突處理 In the case of NPUSCH collision with NPUSCH, in one aspect, one of the NPUSCHs may be dropped. In another aspect, one of the NPUSCHs may be punctured and the other NPUSCH may be transmitted entirely. For example, the dropped or punctured NPUSCH may always be the first, always the second, or based on the NPDCCH energy metric. Conflict handling of interleaved UL and DL grants

在NPUSCH與NPDSCH衝突的情況下,在一個態樣中,將其視為不正確的授權並丟棄NPUSCH或NPDSCH(例如,第一個或第二個,或者基於NPDCCH能量度量等)。在另一態樣中,將其視為有效授權,但經由將一個通道優先於另一個通道,在衝突SF中僅保留其中一個。例如,可以丟棄或删餘NPUSCH或NPDSCH中的一個。例如,被丟棄或删餘的通道可以是總是第一個、總是第二個,或者基於NPDCCH能量度量。In the case of NPUSCH and NPDSCH collision, in one aspect, it is treated as an incorrect grant and the NPUSCH or NPDSCH (eg, first or second, or based on NPDCCH energy metric, etc.) is discarded. In another aspect, it is considered a valid grant, but only one of the channels is retained in the conflicting SF by prioritizing one channel over the other. For example, one of NPUSCH or NPDSCH may be dropped or punctured. For example, the dropped or punctured channel may be always first, always second, or based on the NPDCCH energy metric.

在NPUSCH與HARQ-ACK衝突的情況下,在一態樣,藉由將一個通道優先於另一個通道(例如,HARQ-ACK優先於NPUSCH),在衝突SF中僅保留其中一個。在另一態樣,可以在NPUSCH上多工HARQ-ACK(例如,HARQ-ACK用於在衝突SF中調制NPUSCH的DMRS)。In the case where NPUSCH and HARQ-ACK collide, in one aspect, by prioritizing one channel over the other (eg, HARQ-ACK over NPUSCH), only one of them is reserved in the colliding SF. In another aspect, the HARQ-ACK may be multiplexed on the NPUSCH (eg, the HARQ-ACK is used to modulate the DMRS of the NPUSCH in the colliding SF).

如本文所用,術語「辨識」包括各種各樣的操作。例如,「辨識」可以包括計算、運算、處理、匯出、調查、檢視(例如在表、資料庫或其他資料結構中檢視)、查明等。此外,「辨識」可以包括接收(例如,接收資訊)、存取(例如,存取記憶體中的資料)等。此外,「辨識」可以包括求解、選擇、選取、建立等。As used herein, the term "identify" includes a wide variety of operations. For example, "recognizing" may include calculating, operating, processing, exporting, investigating, viewing (eg, viewing in a table, database, or other data structure), ascertaining, and the like. Additionally, "identifying" may include receiving (eg, receiving information), accessing (eg, accessing data in memory), and the like. Additionally, "identifying" may include solving, selecting, selecting, establishing, and the like.

此外,術語「或」意欲表示包含性的「或」而不是排他性的「或」。亦即,除非另有指明或根據上下文明確指明,例如,「X使用A或B」的用語意欲表示任何自然的包含性排列。亦即,例如用語「X使用A或B」由以下任何情況滿足:X使用A;X使用B;或X同時使用A和B。如本文所用,對單數形式的要素的引用並不意味著「一個且僅有一個」,除非特別如此表述,而是「一或多個」。例如,除非另有指明或者根據上下文明確指示單數形式,否則本案和所附申請專利範圍中使用的冠詞「一」和「一個」一般應解釋為表示「一或多個」。除非另有特別說明,否則術語「一些」是指一或多個。提及項目列表中的「至少一個」的用語是指該等項目的任何組合,包括單個成員。作為實例,「a、b或c中的至少一個」意欲覆蓋:a、b、c、a-b、a-c、b-c和a-b-c以及與多個相同元素的任何組合(例如,a-a、a-a-a、a-a-b、a-a-c、a-b-b、a-c-c、b-b、b-b-b、b-b-c、c-c和c-c-c或者a、b和c的任何其他排序)。如本文使用的,包括在申請專利範圍中,術語「及/或」在兩個或更多個項目的列表中使用時表示所列項目中的任何一個可以單獨使用或者可以使用所列項目中的兩個或更多個的任何組合。例如,若組合物被描述為含有組分A、B及/或C,則該組合物可以包含單獨的A;單獨的B;單獨的C;A和B組合;A和C組合;B和C組合;或A、B和C組合。Furthermore, the term "or" is intended to mean an inclusive "or" rather than an exclusive "or." That is, unless specified otherwise or clear from context, for example, the phrase "X employs A or B" is intended to mean any of the natural inclusive permutations. That is, for example, the phrase "X uses A or B" is satisfied by any of the following: X uses A; X uses B; or X uses both A and B. As used herein, a reference to an element in the singular does not mean "one and only one" unless expressly stated otherwise, but rather "one or more." For example, the articles "a" and "an" as used in this and the appended claims should generally be construed to mean "one or more" unless otherwise specified or the context clearly dictates a singular form. Unless specifically stated otherwise, the term "some" refers to one or more. References to "at least one" of a list of items refer to any combination of such items, including individual members. As an example, "at least one of a, b, or c" is intended to cover: a, b, c, a-b, a-c, b-c, and a-b-c and any combination with a plurality of the same elements (eg, a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c and c-c-c or any other ordering of a, b and c). As used herein, including within the scope of the claims, the term "and/or" when used in a list of two or more items means that any one of the listed items can be used alone or with only one of the listed items. Any combination of two or more. For example, if a composition is described as containing components A, B, and/or C, the composition may contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C combination; or A, B and C combination.

在一些情況下,設備可以具有用於傳送訊框以進行傳輸或接收的介面,而不是實際傳送訊框。例如,處理器可以經由匯流排介面將訊框輸出到RF前端以進行傳輸。類似地,設備可以具有用於獲得從另一設備接收的訊框的介面,而不是實際接收訊框。例如,處理器可以經由匯流排介面從RF前端獲得(或接收)傳輸的訊框。In some cases, a device may have an interface for transmitting frames for transmission or reception, rather than actually transmitting the frames. For example, the processor may output the frame to the RF front end for transmission via the bus interface. Similarly, a device may have an interface for obtaining a frame received from another device, rather than actually receiving the frame. For example, the processor may obtain (or receive) the transmitted frame from the RF front end via the bus interface.

本文揭示的方法包括用於實現該方法的一或多個步驟或操作。方法步驟及/或操作可以彼此互換而不脫離請求項的範疇。亦即,除非指定了步驟或操作的特定順序,否則在不脫離請求項的範疇的情況下,可以修改特定步驟及/或操作的順序及/或使用。The methods disclosed herein include one or more steps or operations for implementing the method. The method steps and/or operations may be interchanged with each other without departing from the scope of the claims. That is, unless a specific order of steps or operations is specified, the order and/or use of specific steps and/or operations may be modified without departing from the scope of the claims.

上述方法的各種操作可以由能夠執行相應功能的任何合適的構件來執行。該構件可以包括各種硬體及/或軟體部件及/或模組,包括但不限於電路、特殊應用積體電路(ASIC)或處理器。一般而言,在圖中圖示的操作的情況下,該等操作可以由任何合適的對應的手段功能部件來執行。The various operations of the above-described methods may be performed by any suitable means capable of performing the corresponding functions. The components may include various hardware and/or software components and/or modules, including but not limited to circuits, application specific integrated circuits (ASICs) or processors. In general, where the operations are illustrated in the figures, the operations may be performed by any suitable corresponding means function components.

例如,用於監視的構件、用於辨識的構件、用於選擇的構件、用於決定的構件、用於執行的構件、用於傳送的構件、用於接收的構件、用於發送的構件、用於以訊號傳遞通知的構件、用於請求的構件及/或用於匯出的構件可以包括圖2中所示的使用者設備120及/或基地台110的一或多個處理器、發射器、接收器、天線及/或其他元件。For example, means for monitoring, means for identifying, means for selecting, means for deciding, means for executing, means for transmitting, means for receiving, means for sending, The means for signaling the notification, the means for requesting, and/or the means for exporting may include one or more processors of the user equipment 120 and/or base station 110 shown in FIG. receivers, antennas and/or other components.

本領域技藝人士將理解,可以使用多種不同的技術和方法的任意一種來表示資訊和信號。例如,在以上全部說明中提及的資料、指令、命令、資訊、信號、位元、符號和碼片可以用電壓、電流、電磁波、磁場或磁性粒子、光場或光學粒子或者其組合來表示。Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, the data, instructions, commands, information, signals, bits, symbols and chips referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic or magnetic particles, light fields or optical particles, or combinations thereof .

本領域技藝人士將進一步理解,結合本文揭示內容描述的各種示例性的邏輯區塊、模組、電路和演算法步驟均可以實施成硬體、軟體或其組合。為了清楚地表示硬體和軟體之間的此種可互換性,上面在其功能態樣對各種示例性的部件、方塊、模組、電路和步驟進行了整體描述。至於此種功能是實施成硬體亦是實現成軟體,則取決於特定的應用和對整個系統所施加的設計約束條件。本領域技藝人士可以針對每個特定應用,以變通的方式實施所描述的功能,但是,不應將此種是奇偶時候決策解釋為背離本案內容的範疇。Those skilled in the art will further understand that the various exemplary logic blocks, modules, circuits, and algorithm steps described in connection with the present disclosure may be implemented in hardware, software, or combinations thereof. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends on the specific application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, however, such an odd-even-time decision should not be construed as a departure from the scope of the present disclosure.

結合本文揭示內容說明的各種示例性邏輯區塊、模組和電路可以用被設計為執行本文所述功能的通用處理器、數位訊號處理器(DSP)、特殊應用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)或其他可程式設計邏輯設備、個別閘門或電晶體邏輯、個別硬體部件或其任何組合來實施或執行。一或多個上述設備或處理器可以執行軟體。軟體應被廣義地解釋為表示指令、指令集、代碼、程式碼片段、程式碼、程式、副程式、軟體模組、應用程式、軟體應用程式、套裝軟體、常式、子常式、物件、可執行程式、執行執行緒、程序、功能等等,無論被稱為軟體、韌體、中介軟體、微代碼、硬體描述語言或其他的。通用處理器可以是微處理器,但是在可替換方案中,處理器可以是任何一般的處理器、控制器、微控制器或狀態機。處理器亦可以實施為計算設備的組合,例如DSP和微處理器的組合、複數個微處理器、一或多個微處理器結合DSP核心或任何其他此種配置。The various exemplary logic blocks, modules, and circuits described in connection with the present disclosure may be used with general-purpose processors, digital signal processors (DSPs), application-specific integrated circuits (ASICs), field A programmable gate array (FPGA) or other programmable logic device, individual gate or transistor logic, individual hardware components, or any combination thereof is implemented or performed. One or more of the aforementioned devices or processors may execute software. Software shall be construed broadly to mean an instruction, instruction set, code, code fragment, code, program, subroutine, software module, application, software application, package, routine, subroutine, object, Executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any general processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in combination with a DSP core, or any other such configuration.

結合本文的揭示內容所描述的方法或演算法的步驟可直接體現為硬體、由處理器執行的軟體模組或其組合。軟體模組可以位於RAM記憶體、快閃記憶體、ROM記憶體、EPROM記憶體、EEPROM記憶體、相變記憶體、暫存器、硬碟、可移除磁碟、CD-ROM或者本領域公知的任何其他形式的儲存媒體中。一種示例性儲存媒體可耦合至處理器,使得處理器能夠從該儲存媒體讀取資訊且可向該儲存媒體寫入資訊。或者,儲存媒體可以整合到處理器中。處理器和儲存媒體可以位於ASIC中。ASIC可以位於使用者終端中。或者,處理器和儲存媒體可作為個別部件位於使用者終端中。The steps of a method or algorithm described in connection with the disclosure herein may be embodied directly in hardware, as a software module executed by a processor, or as a combination thereof. Software modules can be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, phase change memory, scratchpad, hard disk, removable disk, CD-ROM, or the like in any other form of storage medium known. An exemplary storage medium can be coupled to the processor such the processor can read information from, and write information to, the storage medium. Alternatively, the storage medium may be integrated into the processor. The processor and storage medium may reside in an ASIC. The ASIC may be located in the user terminal. Alternatively, the processor and storage medium may be located in the user terminal as separate components.

在一或多個示例性設計中,所描述的功能可以用硬體、軟體或其組合來實施。若以軟體實施,則該等功能可以作為電腦可讀取媒體上的一或多個指令或代碼來儲存或傳送。電腦可讀取媒體包括電腦儲存媒體和通訊媒體,包括有助於將電腦程式從一個地方傳送到另一個地方的任何媒體。儲存媒體可以是可由通用或專用電腦存取的任何可用媒體。示例性而非限制性地,此種電腦可讀取媒體可以包括RAM、ROM、EEPROM、CD/DVD或其他光碟儲存器、磁碟儲存器或其他磁性儲存設備或能夠用於以指令或資料結構的形式攜帶或儲存所需程式碼構件並且能夠被通用或專用電腦或者通用或專用處理器存取的任何其他媒體。此外,任何連接被適當地稱為電腦可讀取媒體。例如,若使用同軸電纜、光纖電纜、雙絞線、數位用戶線(DSL)或諸如紅外、無線電和微波的無線技術從網站、伺服器或其他遠端源傳送軟體,則同軸電纜、光纖電纜、雙絞線、DSL或諸如紅外、無線電和微波的無線技術包括在媒體的定義中。如本文所使用的磁碟和光碟包括壓縮光碟(CD)、雷射光碟、光碟、數位多功能光碟(DVD)、軟碟和藍光光碟,其中磁碟通常磁性地再現資料,而光碟用雷射光學地再現資料。上述的組合亦包括在電腦可讀取媒體的範疇內。In one or more exemplary designs, the functions described may be implemented in hardware, software, or a combination thereof. If implemented in software, the functions may be stored or transmitted as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media, including any medium that facilitates transfer of a computer program from one place to another. A storage medium can be any available medium that can be accessed by a general purpose or special purpose computer. By way of example and not limitation, such computer-readable media may include RAM, ROM, EEPROM, CD/DVD or other optical disk storage, magnetic disk storage or other magnetic storage devices or can be used to store instructions or data structures. Any other medium that carries or stores the required code components in the form of a general purpose or special purpose computer or general purpose or special purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave are used to deliver software from a website, server, or other remote source, coaxial cable, fiber optic cable, Twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of media. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disc, and blu-ray disc, where a disc usually reproduces data magnetically, and a disc uses a laser Optically reproduce the material. Combinations of the above are also included within the category of computer-readable media.

提供對本案內容的在前說明以使本領域技藝人士能夠實行或使用本案內容。對本案內容的各種修改對於本領域技藝人士將是顯而易見的,並且在不脫離本案內容的範疇的情況下,本文定義的一般原理可以應用於其他變型。因此,本案內容並不意欲限於本文所述的實例和設計,而是應被賦予與本文揭示的原理和新穎特徵一致的最寬範疇。The preceding description of the subject matter is provided to enable any person skilled in the art to make or use the subject matter. Various modifications to the teachings will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the teachings. Thus, the present disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

100 無線通訊網路 102a 巨集細胞 102b 微微細胞 102c 毫微微細胞 110a BS/巨集BS 110b BS 110c BS 110d 中繼站 110 BS 120 使用者設備(UE) 120a UE 120b UE 120c UE 120d UE 130 網路控制器 212 資料來源 220 處理器 230 發射(TX)多輸入多輸出(MIMO)處理器 232a 調制器(MOD) 232t 調制器(MOD) 234a 天線 234t 天線 236 MIMO偵測器 238 接收處理器 239 資料槽 240 控制器/處理器 242 記憶體 244 通訊單元 246 排程器 252a 天線 252r 天線 254a 解調器(DEMOD) 254r 解調器(DEMOD) 256 MIMO偵測器 258 接收處理器 260 資料槽 262 資料來源 264 處理器 266 TX MIMO處理器 280 控制器/處理器 282 記憶體 290 控制器/處理器 292 記憶體 294 通訊單元 300 訊框結構 410 子訊框格式 420 子訊框格式 500 子訊框結構 510 傳統控制區域 520 資料區域 530 窄頻區域 600 部署 602 專用RB 606 保護頻帶 700 邏輯架構 702 存取節點控制器(ANC) 704 下一代核心網路(NG-CN) 706 5G存取節點 708 TRP 710 相鄰下一代存取節點(NG-AN) 800 實體架構 802 集中式核心網路單元(C-CU) 804 集中式RAN單元(C-RU) 806 DU 900 以DL為中心的子訊框 902 控制部分 904 DL資料部分 906 共用UL部分 1000 以UL為中心的子訊框 1002 控制部分 1004 UL資料部分 1006 共用UL部分 1500 操作 1502 步驟 1504 步驟 1506 步驟 1600 操作 1602 步驟 1604 步驟 1606 步驟 1608 步驟 1700 操作 1702 步驟 1704 步驟 1706 步驟 1708 步驟100 Wireless Communication Network 102a Macro Cell 102b Pico Cell 102c Femto Cell 110a BS/Macro BS 110b BS 110c BS 110d Relay Station 110 BS 120 User Equipment (UE) 120a UE 120b UE 120c UE 120d UE 130 Network Controller 212 Data Source 220 Processor 230 Transmit (TX) Multiple Input Multiple Output (MIMO) Processor 232a Modulator (MOD) 232t Modulator (MOD) 234a Antenna 234t Antenna 236 MIMO Detector 238 Receive Processor 239 Data Slot 240 Controller /processor 242 memory 244 communication unit 246 scheduler 252a antenna 252r antenna 254a demodulator (DEMOD) 254r demodulator (DEMOD) 256 MIMO detector 258 receiver processor 260 data slot 262 data source 264 processor 266 TX MIMO Processor 280 Controller/Processor 282 Memory 290 Controller/Processor 292 Memory 294 Communication Unit 300 Frame Structure 410 Subframe Format 420 Subframe Format 500 Subframe Structure 510 Legacy Control Region 520 Data Area 530 Narrowband Area 600 Deployment 602 Dedicated RB 606 Guard Band 700 Logical Architecture 702 Access Node Controller (ANC) 704 Next Generation Core Network (NG-CN) 706 5G Access Node 708 TRP 710 Adjacent Next Generation Access Node (NG-AN) 800 Physical Architecture 802 Centralized Core Network Unit (C-CU) 804 Centralized RAN Unit (C-RU) 806 DU 900 DL-Centric Subframe 902 Control Section 904 DL Data Section 906 Common UL Part 1000 UL Centered Subframe 1002 Control Part 1004 UL Data Part 1006 Common UL Part 1500 Operation 1502 Step 1504 Step 1506 Step 1600 Operation 1602 Step 1604 Step 1606 Step 1608 Step 1700 Operation 1702 Step 1704 Step 1706 Step 1708 step

因此,能夠詳細理解本案內容的上述特徵的方式,可以藉由參考其中的一些在附圖中圖示的各態樣來獲得上面簡要概述的更特定的描述。然而,要注意的是,附圖僅圖示本案內容的某些典型態樣,因此不應被認為是對其範疇的限制,因為該描述可以允許其他等效的態樣。Thus, the manner in which the above-described features of the subject matter can be understood in detail, a more specific description briefly summarized above can be obtained by reference to some of the various aspects illustrated in the accompanying drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of the subject matter and are therefore not to be considered limiting of its scope, for the description may admit to other equivalent aspects.

圖1是概念性地圖示根據本案內容某些態樣的無線通訊網路的實例的方塊圖。1 is a block diagram conceptually illustrating an example of a wireless communication network in accordance with certain aspects of the subject matter.

圖2圖示概念性地圖示根據本案內容某些態樣的與無線通訊網路中的使用者設備(UE)通訊的基地台(BS)的實例的方塊圖。2 illustrates a block diagram conceptually illustrating an example of a base station (BS) communicating with a user equipment (UE) in a wireless communication network in accordance with certain aspects of the subject matter.

圖3是概念性地圖示根據本案內容某些態樣的無線通訊網路中的訊框結構的實例的方塊圖。3 is a block diagram conceptually illustrating an example of a frame structure in a wireless communication network in accordance with certain aspects of the present disclosure.

圖4是概念性地圖示根據本案內容某些態樣的具有普通循環字首的兩個示例性子訊框格式的方塊圖。4 is a block diagram conceptually illustrating two exemplary subframe formats with common cyclic prefixes in accordance with certain aspects of the present disclosure.

圖5圖示根據本案內容某些態樣的用於增強型/進化型機器類型通訊(eMTC)的示例性子訊框配置。5 illustrates an exemplary subframe configuration for enhanced/evolved machine type communication (eMTC) according to certain aspects of the present disclosure.

圖6圖示根據本案內容某些態樣的窄頻物聯網路(NB-IoT)的示例性部署。6 illustrates an exemplary deployment of a narrowband Internet of Things (NB-IoT) circuit in accordance with certain aspects of the subject matter.

圖7圖示根據本案內容某些態樣的分散式無線電存取網路(RAN)的示例性邏輯架構。7 illustrates an exemplary logical architecture of a decentralized radio access network (RAN) in accordance with certain aspects of the subject matter.

圖8圖示根據本案內容某些態樣的分散式RAN的示例性實體架構。8 illustrates an exemplary physical architecture of a distributed RAN in accordance with certain aspects of the present disclosure.

圖9是圖示根據本案內容某些態樣的以下行鏈路(DL)為中心的子訊框的實例的圖。9 is a diagram illustrating an example of a downlink (DL) centered subframe in accordance with certain aspects of the subject matter.

圖10是圖示根據本案內容某些態樣的以上行鏈路(UL)為中心的子訊框的實例的圖。10 is a diagram illustrating an example of an uplink (UL) centered subframe in accordance with certain aspects of the subject matter.

圖11圖示根據本案內容某些態樣的版本13 HARQ過程時序的實例和版本14 HARQ過程時序的實例。11 illustrates an example of Rel-13 HARQ process timing and an example of Rel-14 HARQ process timing in accordance with certain aspects of the present disclosure.

圖12圖示根據本案內容某些態樣的示例性交錯授權(DL後是UL)。12 illustrates an exemplary interleaved grant (DL followed by UL) in accordance with certain aspects of the present disclosure.

圖13圖示根據本案內容某些態樣的示例性交錯授權(UL後是DL)。13 illustrates an exemplary interleaved grant (UL followed by DL) in accordance with certain aspects of the present disclosure.

圖14圖示根據本案內容某些態樣的示例性交錯NPDCCH和NPUSCH。14 illustrates exemplary interleaving of NPDCCH and NPUSCH in accordance with certain aspects of the present disclosure.

圖15是圖示根據本發明某些態樣的用於在系統頻寬的窄頻中接收交錯的上行鏈路和下行鏈路授權的示例性操作的流程圖。15 is a flowchart illustrating exemplary operations for receiving interleaved uplink and downlink grants in a narrow frequency band of the system bandwidth in accordance with certain aspects of the present disclosure.

圖16是圖示根據本案內容某些態樣的當接收具有相同HARQ ID的背對背UL授權或DL授權時UE行為的示例性操作的流程圖。16 is a flowchart illustrating exemplary operations of UE behavior when receiving back-to-back UL grants or DL grants with the same HARQ ID, in accordance with certain aspects of the present disclosure.

圖17是圖示根據本案內容某些態樣的當接收背對背UL授權或DL授權時與衝突相關的UE行為的示例性操作的流程圖。17 is a flowchart illustrating example operations of UE behavior related to collisions when receiving back-to-back UL grants or DL grants in accordance with certain aspects of the present disclosure.

為了便於理解,在可能的情況下使用相同的元件符號來指示圖中共有的相同元件。可以預計到在一態樣揭示的元素可以有利地用於其他態樣而無需特別敘述。To facilitate understanding, the same reference numerals have been used where possible to refer to the same elements that are common to the figures. It is contemplated that elements disclosed in one aspect may be used to advantage in other aspects without specific recitation.

國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic storage information (please note in the order of storage institution, date and number) None

國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Foreign deposit information (please note in the order of deposit country, institution, date and number) None

1500 操作 1502 步驟 1504 步驟 1506 步驟1500 Operation 1502 Step 1504 Step 1506 Step

Claims (30)

一種用於由一使用者設備(UE)進行無線通訊的方法,包括以下步驟:針對一上行鏈路(UL)授權或一下行鏈路(DL)授權而監視一系統頻寬的一窄頻中的一控制通道;接收交錯的UL和DL授權;及回應於該等所接收的交錯的UL和DL授權來發送或接收資訊。 A method for wireless communication by a user equipment (UE), comprising the steps of: monitoring a narrow band of a system bandwidth for an uplink (UL) grant or a downlink (DL) grant receive interleaved UL and DL grants; and send or receive information in response to the received interleaved UL and DL grants. 如請求項1所述之方法,其中接收該等交錯的UL和DL授權包括以下至少一者:在一UL授權之後接收一DL授權作為下一個授權,或者在一DL授權之後接收一UL授權作為下一個授權。 The method of claim 1, wherein receiving the interleaved UL and DL grants comprises at least one of: receiving a DL grant as a next grant after a UL grant, or receiving a UL grant as a next grant after a DL grant next authorization. 如請求項1所述之方法,其中該等交錯的UL和DL授權是在回應於該等交錯的UL和DL授權的該發送或接收資訊的開始之前接收的。 The method of claim 1, wherein the interleaved UL and DL grants are received prior to the start of the transmit or receive information in response to the interleaved UL and DL grants. 如請求項1所述之方法,其中該UE監視控制通道搜尋空間,並且在該UL授權之後並在回應於該UL授權的在一上行鏈路資料通道上該發送資訊的開始之後,接收一DL授權作為下一個授權。 The method of claim 1, wherein the UE monitors the control channel search space and receives a DL after the UL grant and after the start of the transmit information on an uplink data channel in response to the UL grant Authorization as the next authorization. 如請求項4所述之方法,其中該上行鏈路資料通道在與該控制通道搜尋空間不同的一載波上。 The method of claim 4, wherein the uplink data channel is on a different carrier than the control channel search space. 如請求項4所述之方法,其中在該UE在其 中在該UL資料通道上發送資訊的一子訊框之後並在用於DL通訊的一子訊框之前的一子訊框用作一保護子訊框。 The method of claim 4, wherein the UE is in its A subframe after a subframe in which information is sent on the UL data channel and before a subframe used for DL communication is used as a guard subframe. 如請求項6所述之方法,其中將與該保護子訊框相關聯的一通訊推遲到下一個可用子訊框。 The method of claim 6, wherein a communication associated with the protected subframe is deferred to the next available subframe. 如請求項1所述之方法,其中該等交錯的UL和DL授權中的每一個授權支援一或多個混合自動重傳請求(HARQ)過程。 The method of claim 1, wherein each of the interleaved UL and DL grants supports one or more Hybrid Automatic Repeat Request (HARQ) procedures. 如請求項8所述之方法,其中該等交錯的UL和DL授權中的每一個授權支援兩個HARQ過程。 The method of claim 8, wherein each of the interleaved UL and DL grants supports two HARQ processes. 如請求項8所述之方法,其中該UE經由能力訊號傳遞指示對以下至少一者的支援:針對每個UL或DL授權的兩個HARQ過程,或UL和DL授權的交錯。 The method of claim 8, wherein the UE indicates support for at least one of: two HARQ processes for each UL or DL grant, or interleaving of UL and DL grants via capability signaling. 如請求項1所述之方法,亦包括以下步驟:回應於該回應於該等所接收的交錯的UL和DL授權來發送或接收資訊,辨識一衝突,該衝突包括以下至少一者:UL資料通道和DL資料通道之間的一衝突,或UL資料通道與一混合ARQ確認(HARQ-ACK)訊號傳遞之間的一衝突。 The method of claim 1, further comprising the step of: transmitting or receiving information in response to the received interleaved UL and DL grants, identifying a conflict, the conflict comprising at least one of: UL data A collision between the channel and the DL data channel, or a collision between the UL data channel and a hybrid ARQ acknowledgment (HARQ-ACK) signaling. 如請求項11所述之方法,其中該HARQ-ACK訊號傳遞包括確認或否定確認(NACK),並且其中該HARQ-ACK訊號傳遞是針對該DL資料通道的。 The method of claim 11, wherein the HARQ-ACK signaling includes an acknowledgement or a negative acknowledgement (NACK), and wherein the HARQ-ACK signaling is for the DL data channel. 如請求項11所述之方法,其中該衝突包括該UL資料通道和該DL資料通道之間的該衝突,該方法亦包括以下至少一個步驟:決定使用該UL資料通道和該DL資料通道中的一者,或對於在該UL資料通道和該DL資料通道之間衝突的子訊框,決定使用該UL資料通道和該DL資料通道中的一者的該等子訊框。 The method of claim 11, wherein the conflict includes the conflict between the UL data channel and the DL data channel, the method further comprising at least one step of determining to use the UL data channel and the DL data channel One, or for subframes that collide between the UL data channel and the DL data channel, decide to use the subframes of one of the UL data channel and the DL data channel. 如請求項13所述之方法,其中該決定使用的步驟是至少部分地基於一能量度量閾值的。 The method of claim 13, wherein the step of determining use is based, at least in part, on an energy metric threshold. 如請求項12所述之方法,其中該衝突包括該UL資料通道與該HARQ-ACK訊號傳遞之間的該衝突,該方法亦包括以下至少一個步驟:對於在該UL資料通道和該HARQ-ACK訊號傳遞之間衝突的子訊框,決定傳送該HARQ-ACK訊號傳遞,或者將該HARQ-ACK訊號傳遞與該UL資料通道多工。 The method of claim 12, wherein the conflict includes the conflict between the UL data channel and the HARQ-ACK signaling, the method further comprising at least one of the steps of: for the UL data channel and the HARQ-ACK Conflicting sub-frames between signaling determine whether to transmit the HARQ-ACK signaling, or to multiplex the HARQ-ACK signaling with the UL data channel. 如請求項15所述之方法,其中該將該 HARQ-ACK訊號傳遞與該UL資料通道多工的步驟包括以下步驟:對於在該UL資料通道和該HARQ-ACK訊號傳遞之間衝突的子訊框,用該HARQ-ACK訊號傳遞調制該UL資料通道的解調參考信號(DMRS)。 The method of claim 15, wherein the The step of multiplexing HARQ-ACK signaling with the UL data channel includes the step of modulating the UL data with the HARQ-ACK signaling for subframes that collide between the UL data channel and the HARQ-ACK signaling The demodulation reference signal (DMRS) of the channel. 如請求項1所述之方法,其中該UE被配置用於窄頻物聯網路(NB-IoT)。 The method of claim 1, wherein the UE is configured for narrowband Internet of Things (NB-IoT). 如請求項1所述之方法,其中該UE被配置用於分時雙工(TDD)操作。 The method of claim 1, wherein the UE is configured for time division duplex (TDD) operation. 如請求項1所述之方法,其中該UE被配置用於分頻雙工(FDD)操作。 The method of claim 1, wherein the UE is configured for frequency division duplex (FDD) operation. 如請求項1所述之方法,其中該控制通道包括一窄頻實體下行鏈路控制通道(NPDCCH)。 The method of claim 1, wherein the control channel comprises a narrowband physical downlink control channel (NPDCCH). 如請求項1所述之方法,其中該發送資訊的步驟包括以下步驟:回應於該所接收的UL授權,在一上行鏈路資料通道中發送資訊;並且其中該接收資訊包括回應於該DL授權在一下行鏈路資料通道中接收資訊。 The method of claim 1, wherein the step of sending information comprises the steps of: sending information in an uplink data channel in response to the received UL grant; and wherein the receiving information comprises responding to the DL grant Information is received in the downlink data channel. 如請求項1所述之方法,其中該上行鏈路資料通道包括一窄頻實體上行鏈路共享通道(NPUSCH),並且其中該下行鏈路資料通道包括一窄頻實體下行鏈路共享通道(NPDSCH)。 The method of claim 1, wherein the uplink data channel comprises a narrowband physical uplink shared channel (NPUSCH), and wherein the downlink data channel comprises a narrowband physical downlink shared channel (NPDSCH) ). 如請求項11所述之方法,其中該DL資料通道包括一窄頻實體下行鏈路共享通道(NPDSCH),該HARQ-ACK包括一混合自動重傳請求(HARQ)確認或否定確認,並且該UL資料通道包括一窄頻實體上行鏈路共享通道(NPUSCH)。 The method of claim 11, wherein the DL data channel comprises a narrowband physical downlink shared channel (NPDSCH), the HARQ-ACK comprises a hybrid automatic repeat request (HARQ) acknowledgment or negative acknowledgment, and the UL The data channel includes a narrowband physical uplink shared channel (NPUSCH). 一種由一基地台(BS)進行無線通訊的方法,包括以下步驟:在一系統頻寬的一窄頻中的一控制通道上向一使用者設備(UE)傳送交錯的上行鏈路(UL)和下行鏈路(DL)授權;及回應於該等所傳送的交錯的UL和DL授權而從該UE接收資訊或向該UE發送資訊。 A method of wireless communication by a base station (BS), comprising the steps of: transmitting an interleaved uplink (UL) to a user equipment (UE) on a control channel in a narrow frequency band of a system bandwidth and downlink (DL) grants; and receiving information from or sending information to the UE in response to the transmitted interleaved UL and DL grants. 一種用於由使用者設備(UE)進行無線通訊的裝置,包括:用於針對一上行鏈路(UL)授權或一下行鏈路(DL)授權而監視一系統頻寬的一窄頻中的一控制通道的構件;用於接收交錯的UL和DL授權的構件;及用於回應於該等所接收的交錯的UL和DL授權來發送或接收資訊的構件。 An apparatus for wireless communication by a user equipment (UE), comprising: for monitoring a system bandwidth in a narrow band for an uplink (UL) grant or a downlink (DL) grant means for a control channel; means for receiving interleaved UL and DL grants; and means for sending or receiving information in response to the received interleaved UL and DL grants. 一種由一基地台(BS)進行無線通訊的裝置,包括: 用於在一系統頻寬的一窄頻中的一控制通道上向一使用者設備(UE)傳送交錯的上行鏈路(UL)和下行鏈路(DL)授權的構件;及用於回應於該等所傳送的交錯的UL和DL授權而從該UE接收資訊或向該UE發送資訊的構件。 A device for wireless communication by a base station (BS), comprising: means for transmitting interleaved uplink (UL) and downlink (DL) grants to a user equipment (UE) on a control channel in a narrow band of a system bandwidth; and for responding to a A component of the transmitted interleaved UL and DL grants to receive information from or send information to the UE. 一種用於由一使用者設備(UE)進行無線通訊的裝置,包括:一或多個處理器,被配置為:針對一上行鏈路(UL)授權或一下行鏈路(DL)授權而監視一系統頻寬的一窄頻中的一控制通道;接收交錯的UL和DL授權;及回應於該等所接收的交錯的UL和DL授權來發送或接收資訊;及一記憶體,耦合到該一或多個處理器。 An apparatus for wireless communication by a user equipment (UE), comprising: one or more processors configured to monitor for an uplink (UL) grant or a downlink (DL) grant a control channel in a narrow band of system bandwidth; receiving interleaved UL and DL grants; and sending or receiving information in response to the received interleaved UL and DL grants; and a memory coupled to the one or more processors. 一種由一基地台(BS)進行無線通訊的裝置,包括:一或多個處理器,被配置為:在一系統頻寬的一窄頻中的一控制通道上向一使用者設備(UE)傳送交錯的上行鏈路(UL)和下行鏈路(DL)授權;及回應於該等所傳送的交錯的UL和DL授權而從該UE接收資訊或向該UE發送資訊;及 一記憶體,耦合到該一或多個處理器。 An apparatus for wireless communication by a base station (BS), comprising: one or more processors configured to: communicate to a user equipment (UE) on a control channel in a narrow frequency band of a system bandwidth transmit interleaved uplink (UL) and downlink (DL) grants; and receive information from or send information to the UE in response to the transmitted interleaved UL and DL grants; and A memory coupled to the one or more processors. 一種電腦可讀取媒體,其上儲存有可執行代碼,用於由一使用者設備(UE)進行無線通訊,該可執行代碼包括:用於針對一上行鏈路(UL)授權或一下行鏈路(DL)授權而監視一系統頻寬的一窄頻中的一控制通道的代碼;用於接收交錯的UL和DL授權的代碼;及用於回應於該等所接收的交錯的UL和DL授權來發送或接收資訊的代碼。 A computer-readable medium having executable code stored thereon for wireless communication by a user equipment (UE), the executable code comprising: for an uplink (UL) grant or a downlink code for monitoring a control channel in a narrow band of a system bandwidth; code for receiving interleaved UL and DL grants; and code for responding to the received interleaved UL and DL A code authorizing to send or receive information. 一種電腦可讀取媒體,其上儲存有可執行代碼,用於由一基地台(BS)進行無線通訊,該可執行代碼包括:用於在一系統頻寬的一窄頻中的一控制通道上向一使用者設備(UE)傳送交錯的上行鏈路(UL)和下行鏈路(DL)授權的代碼;及用於回應於該等所傳送的交錯的UL和DL授權而從該UE接收資訊或向該UE發送資訊的代碼。 A computer-readable medium on which executable codes are stored for wireless communication by a base station (BS), the executable codes comprising: a control channel for a narrow frequency of a system bandwidth code for transmitting interleaved uplink (UL) and downlink (DL) grants to a user equipment (UE); and for receiving from the UE in response to the transmitted interleaved UL and DL grants information or a code to send information to this UE.
TW107125667A 2017-07-31 2018-07-25 Uplink and downlink grants for narrowband operations TWI762683B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
??PCT/CN2017/095169 2017-07-31
WOPCT/CN2017/095169 2017-07-31
PCT/CN2017/095169 WO2019023849A1 (en) 2017-07-31 2017-07-31 Uplink and downlink grants for narrowband operations

Publications (2)

Publication Number Publication Date
TW201921871A TW201921871A (en) 2019-06-01
TWI762683B true TWI762683B (en) 2022-05-01

Family

ID=65233203

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107125667A TWI762683B (en) 2017-07-31 2018-07-25 Uplink and downlink grants for narrowband operations

Country Status (8)

Country Link
EP (1) EP3662625A4 (en)
JP (1) JP2020529164A (en)
KR (1) KR20200035034A (en)
CN (1) CN110892690B (en)
BR (1) BR112020001788A2 (en)
CA (1) CA3068759A1 (en)
TW (1) TWI762683B (en)
WO (2) WO2019023849A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11558762B2 (en) * 2019-04-03 2023-01-17 Mediatek Inc. Techniques of controlling operation of M-DCI based M-TRP reception
CN112311515B (en) * 2019-08-01 2022-03-29 北京华为数字技术有限公司 Feedback information transmission method and device
CN115348610B (en) * 2022-10-18 2023-03-24 成都市以太节点科技有限公司 Millimeter wave multilink self-adaptive communication method, electronic equipment and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201725879A (en) * 2015-11-04 2017-07-16 內數位專利控股公司 Methods and procedures for narrowband LTE operation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013049768A1 (en) * 2011-09-30 2013-04-04 Interdigital Patent Holdings, Inc. Device communication using a reduced channel bandwidth
US9113463B2 (en) * 2011-11-04 2015-08-18 Qualcomm Incorporated Resource management for enhanced PDCCH
WO2013116127A1 (en) * 2012-01-30 2013-08-08 Zte (Usa) Inc. Method and system for physical downlink control channel multiplexing
CN103378932B (en) * 2012-04-26 2016-08-10 华为技术有限公司 Data transmission method, subscriber equipment and base station
US9743363B2 (en) * 2014-06-24 2017-08-22 Qualcomm Incorporated CCA clearance in unlicensed spectrum
CN104333873A (en) * 2014-11-28 2015-02-04 东莞宇龙通信科技有限公司 Channel detection method and system, as well as equipment and terminal having functions of base station
CN107852310B (en) * 2015-07-20 2020-10-02 Lg 电子株式会社 Downlink control information receiving method, downlink control information sending method, user equipment and base station
US10454646B2 (en) * 2015-11-14 2019-10-22 Qualcomm Incorporated Sounding reference signal transmissions in enhanced machine type communication

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201725879A (en) * 2015-11-04 2017-07-16 內數位專利控股公司 Methods and procedures for narrowband LTE operation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Huawei, HiSilicon, " Remaining details for 2 HARQ processes", 3GPP TSG RAN WG1 Meeting #88; R1-1701754, 2017/02/06. *
MediaTek Inc., " Remaining issues for Rel-14 NB-IoT 2 HARQ processes", 3GPP TSG RAN WG1 Meeting #88; R1-1702750, 2017/02/07.; *

Also Published As

Publication number Publication date
WO2019024737A1 (en) 2019-02-07
KR20200035034A (en) 2020-04-01
JP2020529164A (en) 2020-10-01
TW201921871A (en) 2019-06-01
CA3068759A1 (en) 2019-02-07
EP3662625A1 (en) 2020-06-10
BR112020001788A2 (en) 2020-07-21
EP3662625A4 (en) 2021-03-03
WO2019023849A1 (en) 2019-02-07
CN110892690B (en) 2023-02-17
CN110892690A (en) 2020-03-17

Similar Documents

Publication Publication Date Title
AU2017217846B2 (en) Multi-PRB operation for narrowband systems
EP3466127B1 (en) Multicast and/or broadcast for enhanced machine type communications and/or narrowband internet-of-things
JP7033080B2 (en) Uplink transmission gap in eMTC
EP3469755B1 (en) Reference signal presence and bandwidth determination in narrowband systems
CN110800368B (en) Enhanced machine type communication fast idle transition after connection release
WO2017156369A1 (en) Power savings for downlink channel monitoring in narrowband systems
TW202021303A (en) Random access procedure and broadcast prioritization for machine type communications (mtc)
TWI762683B (en) Uplink and downlink grants for narrowband operations
WO2019169576A1 (en) Coverage enhancement (ce) level and transmit power determination techniques for user equipment (ue) in extended coverage
US11375515B2 (en) Enhanced non-linear interference cancellation (NLIC) operation
WO2018223303A1 (en) Random access channel enhancements for narrowband systems