TWI738337B - Method for detecting smoothness of dialysis tube and its wearing device - Google Patents

Method for detecting smoothness of dialysis tube and its wearing device Download PDF

Info

Publication number
TWI738337B
TWI738337B TW109115903A TW109115903A TWI738337B TW I738337 B TWI738337 B TW I738337B TW 109115903 A TW109115903 A TW 109115903A TW 109115903 A TW109115903 A TW 109115903A TW I738337 B TWI738337 B TW I738337B
Authority
TW
Taiwan
Prior art keywords
historical
volume pulse
smoothness
data
pulse wave
Prior art date
Application number
TW109115903A
Other languages
Chinese (zh)
Other versions
TW202142171A (en
Inventor
李仁貴
陳建全
Original Assignee
國立臺北科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺北科技大學 filed Critical 國立臺北科技大學
Priority to TW109115903A priority Critical patent/TWI738337B/en
Application granted granted Critical
Publication of TWI738337B publication Critical patent/TWI738337B/en
Publication of TW202142171A publication Critical patent/TW202142171A/en

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Abstract

一種檢測透析廔管順暢度的方法,利用一穿戴裝置進行檢測。於實施血液透析時,利用該穿戴裝置的一微循環影像擷取模組取得一透析者指尖甲襞循環處的一微循環影像後,令該微循環影像擷取模組提供該微循環影像予一運算處理器,該運算處理器基於該微循環影像取得一光體積脈波及一血液灌流量,同時間該運算處理器自一記憶媒介讀取一歷史資料,取得至少一歷史光體積脈波及至少一歷史血液灌流量,基於該光體積脈波、該血液灌流量、該歷史光體積脈波及該歷史血液灌流量進行運算,產生一廔管順暢度資料。本發明不以習用方式判斷廔管順暢度,可更為準確地判斷廔管當前狀態。A method for detecting the smoothness of a dialysis tube uses a wearable device for detection. When performing hemodialysis, a microcirculation image capturing module of the wearable device is used to obtain a microcirculation image of the nail fold circulation of a dialyzer's fingertip, and then the microcirculation image capturing module is made to provide the microcirculation image To an arithmetic processor, the arithmetic processor obtains a light volume pulse wave and a blood perfusion flow based on the microcirculation image, and at the same time the arithmetic processor reads a historical data from a memory medium to obtain at least one historical light volume pulse wave and At least one historical hemoperfusion flow rate is calculated based on the optical volume pulse wave, the hemoperfusion flow rate, the historical optical volume pulse wave, and the historical hemoperfusion flow rate to generate a tube smoothness data. The present invention does not judge the smoothness of the tube in a conventional manner, and can more accurately determine the current state of the tube.

Description

檢測透析廔管順暢度的方法及其穿戴裝置Method for detecting smoothness of dialysis tube and its wearing device

本發明涉及一種檢測透析廔管順暢度的方法及其穿戴裝置,尤指一種基於光體積脈波與血液灌流量檢測透析廔管順暢度的方法及其穿戴裝置。 The invention relates to a method for detecting the smoothness of a dialysis tube and a wearing device thereof, in particular to a method for detecting the smoothness of a dialysis tube based on light volume pulse wave and blood perfusion flow, and a wearing device thereof.

當前慢性腎臟病患多以血液透析方式治療慢性腎衰竭,在長期洗腎療程下,病患建立廔管以令動脈與靜脈血管吻合,藉此進行血液透析治療。但在血液透析療程中,透析廔管易產生阻塞,一旦透析廔管開始產生阻塞情況,病患就無法進行透析治療,進而有喪命的可能。 At present, patients with chronic kidney disease often use hemodialysis to treat chronic renal failure. After a long-term dialysis course, the patient establishes a tube to make the arteries and veins anastomose to perform hemodialysis treatment. However, during the course of hemodialysis, the dialysis tubing is prone to blockage. Once the dialysis tubing begins to be blocked, the patient cannot undergo dialysis treatment and may die.

又,現行透析病患普遍以觸診或聽診方式確認廔管狀態,其中以聽音方式照護廔管的相關技術就如TW 201600068A、TW I243048、TW I633870等專利所揭。前開專利雖揭露其檢測裝置為便攜式裝置而可便於透析患者居家檢測與照護,然而習往直接聽取廔管血流音,或者是令所輸出的訊號來模擬廔管血流音等方式,其聽音結果或是輸出的訊號易受血管脈動聲音影響,進而產生失準。此外,習用裝置一旦未確實於聽音過程移除環境噪音,也同樣容易造成誤判。 In addition, current dialysis patients generally use palpation or auscultation to confirm the status of the tube. Among them, the related technology of caring for the tube by listening mode is disclosed in TW 201600068A, TW I243048, TW I633870 and other patents. Although the previous patent discloses that the detection device is a portable device that can facilitate the home inspection and care of dialysis patients, it is used to directly listen to the blood flow sound of the tube, or make the output signal to simulate the blood flow sound of the tube. The sound result or the output signal is easily affected by the pulsating sound of blood vessels, which may cause misalignment. In addition, once the conventional device does not remove the ambient noise during the listening process, it is also easy to cause misjudgment.

另外,現行雖可透過使用超音波技術的血流測速儀器,或是利用電荷耦合顯示器感測血紅素對不同波長的光的吸收度等方式來檢測血管血液流速,惟前述方式須仰賴經過專門訓練的醫療人員或是技術員操作,且前開技術使用儀器成本昂貴,使得前述醫療設備亦難對病患施以長期廔管狹窄監測,更不利於病患自行進行居家照護。 In addition, although the current blood flow velocity measurement instrument using ultrasonic technology, or the use of a charge-coupled display to sense the absorption of hemoglobin to different wavelengths of light, etc., can be used to detect the blood velocity of the blood vessel, the aforementioned methods must rely on specialized training. The operation of medical personnel or technicians, and the high cost of using equipment for front-opening technology, makes it difficult for the aforementioned medical equipment to monitor patients for long-term constriction, and it is even more difficult for patients to carry out home care by themselves.

本發明的主要目的,在於解決習用技術不足無法準確評估透析廔管順暢度的問題。 The main purpose of the present invention is to solve the problem that the conventional technology cannot accurately assess the smoothness of the dialysis tube.

為達上述目的,本發明提供本發明提供一種檢測透析廔管順暢度的方法,包含步驟:步驟一:於廔管導通以實施血液透析時,利用一微循環影像擷取模組取得一透析者指尖甲襞循環處的一微循環影像;以及步驟二:令該微循環影像擷取模組將該微循環影像提供一運算處理器,該運算處理器基於該微循環影像取得一光體積脈波以及一血液灌流量,同時間該運算處理器自一記憶媒介讀取一歷史資料,取得至少一歷史光體積脈波及至少一歷史血液灌流量,基於該光體積脈波、該血液灌流量、該歷史光體積脈波以及該歷史血液灌流量進行運算,產生一廔管順暢度資料。 In order to achieve the above objective, the present invention provides a method for detecting the smoothness of a dialysis tube, including steps: Step 1: When the tube is turned on for hemodialysis, a microcirculation image capture module is used to obtain a dialyzer A microcirculation image at the fingertip nailfold loop; and step 2: making the microcirculation image capture module provide the microcirculation image to an arithmetic processor, and the arithmetic processor obtains a light volume pulse based on the microcirculation image At the same time, the arithmetic processor reads historical data from a memory medium to obtain at least one historical light volume pulse wave and at least one historical blood perfusion volume, based on the light volume pulse wave, the blood perfusion volume, The historical light volume pulse wave and the historical blood perfusion flow are calculated to generate a tube smoothness data.

一實施例中,該步驟一更包含一子步驟:利用一心電擷取模組對該透析者施予量測,取得一心電資料;該步驟二則更包含一子步驟:令該運算處理器基於該光體積脈波的一血管收縮特徵點以及該透析時心電資料上的一心臟收縮特徵點取得一血壓資料,並自該歷史資料提取一歷史血壓資料,基於該血壓資料與該歷史血壓資料產生一透析廔管血壓資料,該運算處理器將該透析廔管血壓資料納入該廔管順暢度資料的運算中。 In one embodiment, the first step further includes a sub-step: using an ECG capture module to measure the dialyzer to obtain an ECG data; the second step further includes a sub-step: making the arithmetic processor Obtain a blood pressure data based on a vasoconstriction feature point of the light volume pulse wave and a systolic feature point on the ECG data during dialysis, and extract a historical blood pressure data from the historical data, based on the blood pressure data and the historical blood pressure The data generates a dialysis tube blood pressure data, and the computing processor incorporates the dialysis tube blood pressure data into the calculation of the tube smoothness data.

一實施例中,該歷史資料包含有一由複數該歷史光體積脈波產生的光體積脈波歷史記錄及一由複數該歷史血液灌流量產生的血液灌流量歷史記錄,該運算處理器是基於該光體積脈波、該血液灌流量、該光體 積脈波歷史記錄以及該血液灌流量歷史記錄進行運算,產生該廔管順暢度資料。 In one embodiment, the historical data includes a light volume pulse wave history record generated by a plurality of the historical light volume pulse waves and a blood perfusion volume history record generated by a plurality of the historical blood volume pulse waves, and the arithmetic processor is based on the Light volume pulse wave, blood perfusion volume, light body The accumulated pulse wave history record and the blood perfusion flow history record are calculated to generate the smoothness data of the tube.

一實施例中,用以產生該血液灌流量歷史記錄的複數該歷史血液灌流量是於該廔管順暢度符合血液透析標準時所記錄,用以產生該光體積脈波歷史記錄的複數該歷史光體積脈波是於該廔管順暢度符合血液透析標準時所記錄。 In one embodiment, the plurality of historical hemoperfusion flows used to generate the historical record of the hemoperfusion is recorded when the smoothness of the tube meets the hemodialysis standard, and the plurality of historical light used to generate the historical record of the light volume pulse wave The volume pulse is recorded when the smoothness of the tube meets the hemodialysis standard.

一實施例中,每一該歷史血液灌流量與其中一該歷史光體積脈波關聯,且是由一歷史微循環影像產生。 In one embodiment, each historical blood perfusion volume is associated with one of the historical light volume pulse waves, and is generated from a historical microcirculation image.

除前述之外,本發明亦提供一種用以檢測透析廔管順暢度的穿戴裝置,包含一本體,一微循環影像擷取模組,一記憶媒介以及一運算處理器,該本體成形有一提供一透析者指尖放置的空間,該微循環影像擷取模組設於該本體並具有一面對該空間的影像擷取端,該微循環影像擷取模組擷取該透析者指尖甲襞循環處的一微循環影像,該記憶媒介設於該本體並存有至少一關聯該透析者的歷史資料,該運算處理器設於該本體內,並資訊連接該微循環影像擷取模組、該記憶媒介以及一可對該透析者施予量測以取得一心電資料的心電擷取模組,該運算處理器接收該微循環影像並經運算取得一光體積脈波及一血液灌流量,同時讀取該歷史資料以取得至少一歷史光體積脈波、至少一由一歷史微循環影像產生並與該歷史光體積脈波關聯的歷史血液灌流量、一由複數該歷史光體積脈波產生的光體積脈波歷史記錄及一由複數該歷史血液灌流量產生的血液灌流量歷史記錄,該運算處理器基於該光體積脈波、該血液灌流量、該歷史光體積脈波、該歷史血液灌流量、該光體積脈波歷史記錄及該血液灌流量歷史記錄進行運算,產生一廔管順暢度資料,該血液灌流量歷 史記錄的複數該歷史血液灌流量及該光體積脈波歷史記錄的複數該歷史光體積脈波是於該廔管順暢度符合血液透析標準時所記錄,同時該運算處理器基於該光體積脈波的一血管收縮特徵點以及該心電資料的一心臟收縮特徵點取得一血壓資料,令該運算處理器可自該歷史資料提取一歷史血壓資料,該運算處理氣基於該血壓資料以及該歷史血壓資料產生一納入該廔管順暢度運算中的透析廔管血壓資料。 In addition to the foregoing, the present invention also provides a wearable device for detecting the smoothness of a dialysis tube, which includes a body, a microcirculation image capture module, a memory medium, and an arithmetic processor. The space where the dialyzer’s fingertips are placed, the microcirculation image capturing module is arranged on the body and has an image capturing end facing the space, and the microcirculation image capturing module captures the nailfolds of the dialyzer’s fingertips A microcirculation image at the loop, the memory medium is set in the main body and at least one historical data associated with the dialyzer is stored, the arithmetic processor is set in the main body, and information is connected to the microcirculation image capturing module, the A memory medium and an ECG acquisition module that can measure the dialysis patient to obtain an ECG data. The arithmetic processor receives the microcirculation image and obtains a light volume pulse wave and a blood perfusion flow after calculation. Read the historical data to obtain at least one historical light volume pulse wave, at least one historical blood perfusion volume generated from a historical microcirculation image and associated with the historical light volume pulse wave, and one generated by a plurality of the historical light volume pulse waves The optical volume pulse wave history record and a hemoperfusion volume history record generated by a plurality of the historical hemoperfusion volume. The flow rate, the light volume pulse wave history record and the blood perfusion flow history record are calculated to generate a tube smoothness data, and the blood perfusion flow history The plural of the historical hemoperfusion volume and the plural of the optical volume pulse history record. The historical optical volume pulse is recorded when the smoothness of the tube meets the hemodialysis standard, and the arithmetic processor is based on the optical volume pulse. A vasoconstriction feature point of the ECG data and a systole feature point of the ECG data to obtain a blood pressure data, so that the arithmetic processor can extract a historical blood pressure data from the historical data, and the arithmetic processing gas is based on the blood pressure data and the historical blood pressure The data generates a dialysis tube blood pressure data included in the tube smoothness calculation.

一實施例中,該微循環影像擷取模組不具有透鏡,該微循環影像擷取模組包含一影像感知件以及一設於該影像感知件上的光學薄膜。 In one embodiment, the microcirculation image capturing module does not have a lens, and the microcirculation image capturing module includes an image sensing element and an optical film provided on the image sensing element.

一實施例中,該穿戴裝置包含一設於該本體並資訊連接該運算處理器的提示模組,該提示模組基於該廔管順暢度資料進行提示。 In one embodiment, the wearable device includes a prompt module arranged on the main body and connected to the computing processor, and the prompt module provides prompts based on the tube smoothness data.

一實施例中,該穿戴裝置包含一與該運算處理器資訊連接以將資訊轉傳予一終端裝置的通訊模組,該通訊模組以有線或無線方式與該終端裝置資訊連接。 In one embodiment, the wearable device includes a communication module connected to the computing processor to transmit the information to a terminal device, and the communication module is connected to the terminal device in a wired or wireless manner.

一實施例中,該提示模組為一顯示器,一警示燈組或一警示揚聲模組。 In one embodiment, the prompt module is a display, a warning light group or a warning loudspeaker module.

一實施例中,該記憶媒介為一雲端伺服器或一記憶體。 In one embodiment, the storage medium is a cloud server or a memory.

依前述發明內容所揭,相較於習用技術,本發明具有以下特點:本發明是以該微循環影像擷取模組取得該微循環影像,同時令該運算處理器基於該微循環影像所取得的血液灌流量來判斷廔管狀態,本發明未採用習往直接或是模擬聽取廔管血流音的方式來判斷廔管狀態,而可更為準確判斷廔管順暢度。 According to the foregoing disclosure, compared with the conventional technology, the present invention has the following characteristics: the present invention uses the microcirculation image capturing module to obtain the microcirculation image, and at the same time enables the arithmetic processor to obtain the microcirculation image based on the microcirculation image. The present invention does not use the conventional method of directly or simulating listening to the blood flow sound of the tube to determine the tube state, and can more accurately determine the smoothness of the tube.

10:方法 10: Method

11:步驟一 11: step one

111:子步驟 111: substep

12:步驟二 12: Step two

121:子步驟 121: substep

20:透析者 20: Dialysis

21:指尖甲襞循環處 21: Fingertip nailfold loop

22:真皮乳頭層 22: Dermal papilla layer

23:真皮乳頭層微血管 23: Capillaries in the papillary dermis

30:微循環影像 30: Microcirculation image

31:廔管 31: Tumblr

311:動脈 311: Artery

312:靜脈 312: Veins

32:光體積脈波 32: Light Volume Pulse

321:血管收縮特徵點 321: Vascular Contraction Feature Points

322:血管收縮時間點 322: Time point of vasoconstriction

323:時間差值 323: time difference

33:歷史光體積脈波 33: Historical Light Volume Pulse

50:終端裝置 50: terminal device

51:顯示螢幕 51: display screen

52:心電擷取模組 52: ECG capture module

521:心電資料 521: ECG data

522:心臟收縮特徵點 522: Heart Contraction Feature Point

523:心臟收縮時間點 523: Heart Contraction Time Point

60:穿戴裝置 60: Wearable device

61:本體 61: body

611:空間 611: Space

62:微循環影像擷取模組 62: Microcirculation image capture module

621:影像感知件 621: Image Perception Device

622:光學薄膜 622: Optical Film

63:記憶體 63: memory

631:歷史資料 631: historical data

632:光體積脈波歷史記錄 632: Light Volume Pulse History Record

633:血液灌流量歷史記錄 633: Blood flow history record

64:運算處理器 64: arithmetic processor

641:廔管順暢度資料 641: pipe smoothness data

65:通訊模組 65: Communication module

66:提示模組 66: Prompt Module

A、B、C:部分微血管影像 A, B, C: partial microvascular imaging

圖1,本發明一實施例的單元示意圖(一)。 Fig. 1 is a schematic diagram of a unit of an embodiment of the present invention (1).

圖2,本發明一實施例穿戴裝置的示意圖(一)。 Fig. 2 is a schematic diagram (1) of a wearable device according to an embodiment of the present invention.

圖3,本發明一實施例指尖甲襞循環處的示意圖。 Fig. 3 is a schematic diagram of a fingertip nailfold loop in an embodiment of the present invention.

圖4,本發明一實施例指尖甲襞循環處的真皮乳頭層微血管示意圖。 Figure 4 is a schematic diagram of the microvessels in the dermal papillary layer at the fingertip nailfold circulation in an embodiment of the present invention.

圖5,本發明一實施例微循環影像擷取模組的結構示意圖。 FIG. 5 is a schematic diagram of the structure of a microcirculation image capturing module according to an embodiment of the present invention.

圖6,本發明一實施例的單元示意圖(二)。 Fig. 6 is a schematic diagram of a unit of an embodiment of the present invention (2).

圖7,本發明一實施例穿戴裝置的示意圖(二)。 Fig. 7 is a schematic diagram (2) of a wearable device according to an embodiment of the present invention.

圖8,本發明一實施例的單元示意圖(三)。 Fig. 8 is a schematic diagram of a unit of an embodiment of the present invention (3).

圖9,本發明一實施例的廔管示意圖(一)。 Fig. 9 is a schematic diagram (1) of a tube according to an embodiment of the present invention.

圖10,本發明一實施例的廔管示意圖(二)。 Fig. 10 is a schematic diagram (2) of a tube according to an embodiment of the present invention.

圖11,本發明一實施例的步驟示意圖(一)。 Fig. 11 is a schematic diagram (1) of the steps of an embodiment of the present invention.

圖12,本發明一實施例的微循環影像示意圖(一)。 Fig. 12 is a schematic diagram (1) of a microcirculation image according to an embodiment of the present invention.

圖13,本發明一實施例對應圖12的光體積變化脈波示意圖。 FIG. 13 is a schematic diagram of the light volume change pulse wave corresponding to FIG. 12 according to an embodiment of the present invention.

圖14,本發明一實施例的微循環影像示意圖(二)。 Fig. 14 is a schematic diagram (2) of a microcirculation image according to an embodiment of the present invention.

圖15,本發明一實施例對應圖14的微血管血液流速。 FIG. 15 shows an embodiment of the present invention corresponding to the capillary blood flow rate of FIG. 14.

圖16,本發明一實施例的歷史光體積變化脈波示意圖。 Fig. 16 is a schematic diagram of a pulse wave of historical light volume change according to an embodiment of the present invention.

圖17,本發明一實施例的步驟示意圖(二)。 Figure 17 is a schematic diagram (2) of the steps of an embodiment of the present invention.

圖18,本發明一實施例的單元示意圖(四)。 Fig. 18 is a schematic diagram of a unit of an embodiment of the present invention (4).

圖19,本發明一實施例的心電資料與光體積變化脈波的示意圖。 Fig. 19 is a schematic diagram of electrocardiogram data and light volume change pulse wave according to an embodiment of the present invention.

本發明詳細說明及技術內容,茲配合圖式說明如下:請參閱圖1至圖5,以及圖11,本發明提供一種檢測透析廔管順暢度的方法10及其穿戴裝置60,本發明被應用於非侵入式透析廔管的檢驗中。為具體說明本案技術,於此先行說明本發明該穿戴裝置60,該穿戴裝置60用以執行本發明該方法10,該穿戴裝置60包含一本體61, 一設於該本體61的微循環影像擷取模組62,一記憶體63以及一運算處理器64。其中,該本體61成形有一提供一透析者20指尖放置的空間611,該微循環影像擷取模組62具有一面對該空間611的影像擷取端,該微循環影像擷取模組62針對該透析者20指尖甲襞循環處21的一真皮乳頭層22的一真皮乳頭層微血管23擷取一微循環影像30,就如圖12。於一實施例中,該微循環影像擷取模組62包含一影像感知件621、一設於該影像感知件621上的光學薄膜622以及一面對該空間611設置的光源產生件(圖中未示),具體來說,該光源產生件對該透析者20指尖投以一紅外光,部分地該紅外光被該透析者20指尖所反射,並經該光學薄膜622投射至該影像感知件621上,該影像感知件621基於所接收的反射光疊加與運算,藉此以重建出該微循環影像30,並可自由地調整該微循環影像30的圖像焦距。值得注意的是,於本實施例中所使用的該微循環影像擷取模組62不具有透鏡,而可減少該穿戴裝置60的體積。 The detailed description and technical content of the present invention are described as follows in conjunction with the drawings: Please refer to Figures 1 to 5, and Figure 11. The present invention provides a method 10 for detecting the smoothness of a dialysis tube and a wearable device 60 thereof. The present invention is applied In the inspection of non-invasive dialysis tubing. In order to specifically explain the technology of the present invention, the wearable device 60 of the present invention is described here first. The wearable device 60 is used to implement the method 10 of the present invention. The wearable device 60 includes a body 61, A microcirculation image capturing module 62, a memory 63, and an arithmetic processor 64 are provided in the main body 61. Wherein, the main body 61 is formed with a space 611 for the fingertips of the dialyzer 20 to be placed, the microcirculation image capturing module 62 has an image capturing end facing the space 611, and the microcirculation image capturing module 62 A microcirculation image 30 is captured for a dermal papillary layer 22 of a dermal papillary layer 22 at the fingertip nailfold circulation 21 of the dialyzer 20, as shown in FIG. 12. In one embodiment, the microcirculation image capturing module 62 includes an image sensing element 621, an optical film 622 arranged on the image sensing element 621, and a light source generating element (in the figure) arranged facing the space 611 (Not shown), specifically, the light source generating element projects an infrared light on the fingertip of the dialyzer 20, part of the infrared light is reflected by the fingertip of the dialyzer 20, and is projected to the image through the optical film 622 On the sensing element 621, the image sensing element 621 is superimposed and calculated based on the received reflected light to reconstruct the microcirculation image 30, and the image focal length of the microcirculation image 30 can be adjusted freely. It is worth noting that the microcirculation image capturing module 62 used in this embodiment does not have a lens, and the volume of the wearable device 60 can be reduced.

進一步地,併請參閱圖1、圖6至圖11,本發明該記憶體63主要用以儲存與該透析者20相關的資料,並供該運算處理器64提取所需的相關資料。又,根據前述可知,本發明所使用的該記憶體63屬一記憶媒介,該記憶媒介供該穿戴裝置60暫存記錄。基於相同的技術構想,本發明所使用的該記憶媒介亦可根據實施需求而為一雲端伺服器(圖中未示),該雲端伺服器非直接設置於該穿戴裝置60上,而可以無線方式與該穿戴裝置60資訊連接,令該運算處理器64可由該雲端伺服器提取所需資料。再者,該運算處理器64資訊連接該記憶媒介與該微循環影像擷取模組62,該運算處理器64接收該微循環影像擷取模組62所傳遞的該微循環影像30,同時自該記憶媒介提取該透析者20相關資料進行運算。 一實施例中,該運算處理器64亦可將當前計算出的該資料傳遞予該記憶媒介,令該記憶媒介儲存當前資料以成為該運算處理器64下次運算時的一歷史資料631。另一方面,一實施例中,該穿戴裝置60更包含一與該運算處理器64資訊連接的通訊模組65,該通訊模組65用以資料傳遞予一終端裝置50,其中,該通訊模組65所轉傳的資訊並不限於該運算處理器64所計算出的資料,而可根據設定對該終端裝置50傳輸該微循環影像擷取模組62所錄製的該微循環影像30。又,該終端裝置50於接收該通訊模組65當前所轉傳的資料後,該終端裝置50可比對當前資料與關聯該透析者20的該歷史資料631的變異程度,一旦變異程度過大時,該終端裝置50可對該透析者20進行示警。進一步地,本文中該終端裝置50可為一具有一顯示螢幕51的電子設備或是醫療設備,其中該電子設備可為智慧型手機或是電腦裝置,該醫療設備可為醫護人員於照護或診療該透析者20所使用的醫療器材。另外,該通訊模組65可以有線或是無線方式與該智慧型手機或該電腦裝置資訊連接。承上,於一實施例中,該穿戴裝置60更具有一連接該運算處理器64的提示模組66,該提示模組66設於該本體61上,該提示模組66可基於該運算處理器64計算後結果進行提示,舉例來說,該提示模組66可為一顯示器以顯示該運算處理器64計算後的結果。另外,該提示模組66亦可為一警示揚聲模組或是一警示燈組,該提示模組66可於該運算處理器64計算出該廔管31順暢度小於標準值時,以蜂鳴或是閃以警示燈號等提示手段告知檢知結果。又該提示模組66亦可於該廔管31順暢度大於或等於標準值時,閃以代表正常狀態的警示燈。 Further, referring to FIG. 1 and FIG. 6 to FIG. 11, the memory 63 of the present invention is mainly used to store data related to the dialyzer 20 and is used by the arithmetic processor 64 to retrieve required related data. In addition, according to the foregoing, the memory 63 used in the present invention is a memory medium, and the memory medium is used for the wearable device 60 to temporarily store and record. Based on the same technical conception, the memory medium used in the present invention can also be a cloud server (not shown in the figure) according to implementation requirements. The cloud server is not directly installed on the wearable device 60 but can be wirelessly The information connection with the wearable device 60 enables the computing processor 64 to retrieve the required data from the cloud server. Furthermore, the arithmetic processor 64 information connects the memory medium and the microcirculation image capturing module 62, and the arithmetic processor 64 receives the microcirculation image 30 transmitted by the microcirculation image capturing module 62, and simultaneously The memory medium extracts relevant data of the dialyzer 20 for calculation. In one embodiment, the arithmetic processor 64 may also transfer the currently calculated data to the memory medium, so that the memory medium stores the current data to become a historical data 631 for the next operation of the arithmetic processor 64. On the other hand, in one embodiment, the wearable device 60 further includes a communication module 65 connected to the arithmetic processor 64. The communication module 65 is used to transmit data to a terminal device 50, wherein the communication module The information transmitted by the group 65 is not limited to the data calculated by the arithmetic processor 64, but can transmit the microcirculation image 30 recorded by the microcirculation image capturing module 62 to the terminal device 50 according to the setting. In addition, after the terminal device 50 receives the data currently transmitted by the communication module 65, the terminal device 50 can compare the current data with the historical data 631 associated with the dialyzer 20. Once the degree of variation is too large, The terminal device 50 can warn the dialyzer 20. Further, the terminal device 50 herein can be an electronic device or a medical device with a display screen 51, wherein the electronic device can be a smart phone or a computer device, and the medical device can be used by medical staff in nursing care or diagnosis and treatment. Medical equipment used by the dialyzer 20. In addition, the communication module 65 can be connected to the smart phone or the computer device in a wired or wireless manner. In addition, in one embodiment, the wearable device 60 further has a prompt module 66 connected to the computing processor 64. The prompt module 66 is provided on the main body 61. The prompt module 66 can process based on the computing The calculation result of the processor 64 is prompted. For example, the prompt module 66 may be a display to display the calculation result of the arithmetic processor 64. In addition, the prompting module 66 can also be a warning loudspeaker module or a warning light group. The prompting module 66 can use the beeper when the arithmetic processor 64 calculates that the smoothness of the tube 31 is less than the standard value. Beep or flash to inform the detection result by means of warning lights and other prompts. In addition, the prompt module 66 can also flash a warning light representing a normal state when the smoothness of the tube 31 is greater than or equal to the standard value.

接著說明本發明該方法10的實施步驟,併請參閱圖8至圖11。本發明該廔管31為一用以連接一動脈311與一靜脈312的血管,該廔管31可為人工血管(如圖9所示)或是自體廔管31(如圖10所示)。在一步驟一11以廔管31導通並實施血液透析時,利用該微循環影像擷取模組62取得該透析者20的該微循環影像30,於後進入一步驟二12。於該步驟二12中,令該微循環影像擷取模組62提供該微循環影像30予該運算處理器64,該運算處理器64基於該微循環影像30進行影像處理以取得一光體積脈波32以及一血液灌流量。詳細地說,請參圖3、圖4、圖12至圖16,該透析者20該指尖甲襞循環處21的該真皮乳頭層微血管23受脈動動脈的瞬時血壓變化,而令其血管內血液容積變化有所不同,因此該運算處理器64所接收的該微循環影像30會基於血液容積變化而於不同瞬間像素亮度會有所不同。該運算處理器64可基於該微循環影像30內的像素亮度以及時間變化取得該光體積脈波32,以本文舉例來說,圖13中的該光體積脈波32可基於圖12中的該微循環影像30圈起處的該真皮乳頭層微血管23計算而得。又,該運算處理器64亦基於該微循環影像30及該光體積脈波32計算出該真皮乳頭層微血管23的該血液灌流量。舉例來說,該運算處理器64可基於該真皮乳頭層微血管23中的紅血球移動速度推算出每單位時間單位體積內該血液灌流量。其中,紅血球流速的量測方式眾多,以下僅以其中一種量測方式舉例說明之,該運算處理器64可於該真皮乳頭層微血管23中定義分別出一起始點以及一量測點,於後藉由至少一紅血球由該起始點位移至該量測點所經的時間分析出該紅血球流速。以本文圖14來說,本發明該運算處理器64以A、B及C部分的微血管影像30進行運算,藉此以獲得圖15中分別針 對A、B以及C部分的微血管血液流速。接著,該運算處理器64再基於A、B以及C部分的微血管血液流速取得一紅血球流速平均值,以計算出該血液灌流量。 Next, the implementation steps of the method 10 of the present invention will be described, and please refer to FIGS. 8 to 11. The tube 31 of the present invention is a blood vessel used to connect an artery 311 and a vein 312. The tube 31 can be an artificial blood vessel (as shown in FIG. 9) or an autologous tube 31 (as shown in FIG. 10). . In a step 11, when the tube 31 is turned on and hemodialysis is performed, the microcirculation image capturing module 62 is used to obtain the microcirculation image 30 of the dialyzer 20, and then the step 212 is entered. In the step two 12, the microcirculation image capturing module 62 is made to provide the microcirculation image 30 to the arithmetic processor 64, and the arithmetic processor 64 performs image processing based on the microcirculation image 30 to obtain a light volume pulse Wave 32 and a hemoperfusion flow. In detail, please refer to Figure 3, Figure 4, Figure 12 to Figure 16, the dialyzer 20, the fingertip nailfold circulation 21, the dermal papillary layer microvessel 23 is affected by the transient blood pressure change of the pulsating artery, so that the blood vessel The blood volume changes are different, so the microcirculation image 30 received by the arithmetic processor 64 will have different pixel brightness at different moments based on the blood volume changes. The arithmetic processor 64 can obtain the light volume pulse wave 32 based on the pixel brightness and time changes in the microcirculation image 30. For example, the light volume pulse wave 32 in FIG. 13 may be based on the light volume pulse wave 32 in FIG. The microvessels 23 in the papillary dermis layer surrounded by the microcirculation image 30 are calculated. In addition, the arithmetic processor 64 also calculates the blood perfusion volume of the dermal papillary microvessel 23 based on the microcirculation image 30 and the light volume pulse wave 32. For example, the arithmetic processor 64 may calculate the blood perfusion volume per unit time and unit volume based on the moving speed of the red blood cells in the dermal papillary microvessel 23. Among them, there are many measurement methods of red blood cell flow rate. The following is only one of the measurement methods as an example. The arithmetic processor 64 can define a starting point and a measurement point in the dermal papillary microvessels 23, respectively. The flow rate of the red blood cell is analyzed by the time taken for at least one red blood cell to move from the starting point to the measuring point. Taking FIG. 14 of this text as an example, the computing processor 64 of the present invention uses the microvessel images 30 of parts A, B, and C to perform calculations to obtain the respective needles in FIG. 15 The blood flow rate of the capillaries in parts A, B, and C. Next, the arithmetic processor 64 obtains an average value of the red blood cell flow rate based on the microvascular blood flow rates of parts A, B, and C to calculate the blood perfusion flow rate.

另一方面,該運算處理器64自該記憶媒介讀取與該透析者20相關的該歷史資料631,該歷史資料631可為該透析者20基於未透析時或是前次血液透析時的至少一歷史光體積脈波33,以及至少一與該歷史光體積脈波33關聯的歷史血液灌流量。又,當該透析者20進行血液透析療程時,該透析者20部分的血液將被導引入該廔管31內,而餘下部分的血液則流入該指尖甲襞循環處21,此時,該透析者20於指尖甲襞循環處21的血液灌流量及該廔管31處的血液灌流量,與該透析者20上臂的血液灌流量相符。承此,該運算處理器64基於該光體積脈波32、該血液灌流量、該歷史血液灌流量以及該歷史光體積脈波33進行運算,進而計算出一廔管順暢度資料641。舉例來說,該運算處理器64可藉由比對該光體積脈波32與該歷史光體積脈波33的變異程度,同時判斷該血液灌流量與該歷史血液灌流量的差異程度,以產生該廔管順暢度資料641,評估出該廔管31當前狀態。除此之外,於一實施例中,該運算處理器64亦可自該記憶媒介中提取該透析者20的該歷史微循環影像,並基於該歷史微循環影像取得該至少一歷史光體積脈波33與該至少一歷史血液灌流量。於後該運算處理器64再基於該光體積脈波32、該血液灌流量、該至少一歷史血液灌流量以及該至少一歷史光體積脈波33進行運算,產生該廔管順暢度資料641。 On the other hand, the arithmetic processor 64 reads the historical data 631 related to the dialyzer 20 from the memory medium. The historical data 631 may be based on the dialyzer 20 at least during the non-dialysis period or the previous hemodialysis period. A historical light volume pulse wave 33, and at least one historical blood perfusion volume associated with the historical light volume pulse wave 33. In addition, when the dialyzer 20 undergoes a hemodialysis treatment, part of the blood of the dialyzer 20 will be introduced into the tube 31, and the remaining part of the blood will flow into the fingertip nailfold circulation 21. At this time, The hemoperfusion volume of the dialyzer 20 at the fingertip nailfold circulation 21 and the hemoperfusion volume of the tube 31 are consistent with the hemoperfusion volume of the upper arm of the dialyzer 20. Accordingly, the calculation processor 64 performs calculations based on the light volume pulse wave 32, the blood perfusion flow rate, the historical blood volume flow rate, and the historical light volume pulse wave 33 to calculate a tube smoothness data 641. For example, the arithmetic processor 64 may compare the degree of variation between the light volume pulse wave 32 and the historical light volume pulse wave 33, and at the same time determine the degree of difference between the blood perfusion volume and the historical blood volume pulse wave, to generate the The pipe smoothness data 641 is used to evaluate the current state of the pipe 31. In addition, in one embodiment, the arithmetic processor 64 may also extract the historical microcirculation image of the dialyzer 20 from the memory medium, and obtain the at least one historical light volume pulse based on the historical microcirculation image Wave 33 and the at least one historical blood perfusion volume. Then, the computing processor 64 performs calculations based on the light volume pulse wave 32, the hemoperfusion flow rate, the at least one historical hemoperfusion flow rate, and the at least one historical light volume pulse wave 33 to generate the tube smoothness data 641.

承上,本發明是以影像式PPG技術,基於該微循環影像30產生出該光體積脈波32以及該血液灌流量。透過本發明而得以利用所取得的該血液灌流量來判斷該廔管31狀態,相較於習用訊號式PPG技術,該方法10無須以計算光反射量方式檢測光電容積脈波訊號,可更為準確地 藉由該微循環影像30及該血液灌流量計算出該廔管順暢度資料641。同時,本發明亦未採用習往直接或是模擬聽取廔管31血流音的方式來判斷廔管31狀態,而可大幅減少判斷失準的情況產生。 In summary, the present invention uses image-based PPG technology to generate the light volume pulse wave 32 and the blood perfusion volume based on the microcirculation image 30. Through the present invention, the obtained blood perfusion flow can be used to determine the state of the tube 31. Compared with the conventional signal-based PPG technology, the method 10 does not need to calculate the light reflection amount to detect the photoplethysmographic signal, which can be more accurately The tube smoothness data 641 is calculated based on the microcirculation image 30 and the blood perfusion flow. At the same time, the present invention does not use the conventional method of directly or simulating the way of listening to the blood flow sound of the tube 31 to determine the state of the tube 31, which can greatly reduce the occurrence of misjudgment.

承上,一實施例中,本發明該運算處理器64計算出該光體積脈波32與該血液灌流量後,該記憶媒介可記憶該光體積脈波32與該血液灌流量,令該光體積脈波32與該血液灌流量成為該歷史資料631,供該透析者20下次實施血液透析時作為該運算處理器64判斷該廔管31的計算參數之一。 To continue, in one embodiment, after the arithmetic processor 64 of the present invention calculates the optical volume pulse wave 32 and the blood perfusion volume, the memory medium can memorize the optical volume pulse wave 32 and the blood perfusion volume, so that the light volume pulse wave 32 and the blood perfusion volume can be stored. The volume pulse wave 32 and the blood perfusion flow become the historical data 631 for the dialyzer 20 to use as one of the calculation parameters for the arithmetic processor 64 to determine the tube 31 when the dialyzer 20 performs hemodialysis next time.

承上,一實施例中,該歷史資料631包含一由複數該歷史光體積脈波33產生的光體積脈波歷史記錄632,及一由複數該歷史血液灌流量產生的血液灌流量歷史記錄633,該運算處理器64是基於該光體積脈波32、該血液灌流量、該光體積脈波歷史記錄632以及該血液灌流量歷史記錄633進行運算。更進一步地,複數該歷史光體積脈波33是於該廔管順暢度資料641符合血液透析標準時所記錄,且複數該歷史血液灌流量同樣是在該廔管順暢度資料641符合血液透析標準時所記錄。換句話說,當該運算處理器64計算出該廔管順暢度資料641偏離標準時,當次的該光體積脈波32將會被去除而不會納入並成為複數該光體積脈波歷史記錄632的其中之一,同樣地,當次的該血液灌流量亦會被去除而不會成為複數該血液灌流量歷史記錄633的其中之一。 Further, in one embodiment, the historical data 631 includes a light volume pulse wave history record 632 generated by a plurality of the historical light volume pulse waves 33, and a blood perfusion volume history record 633 generated by a plurality of the historical blood volume pulse waves. The calculation processor 64 performs calculations based on the light volume pulse wave 32, the blood perfusion volume, the light volume pulse wave history record 632, and the blood perfusion volume history record 633. Furthermore, the plurality of historical light volume pulse waves 33 are recorded when the tube smoothness data 641 meets hemodialysis standards, and the plurality of historical hemoperfusion flows are also recorded when the tube smoothness data 641 meets hemodialysis standards. record. In other words, when the arithmetic processor 64 calculates that the tube smoothness data 641 deviates from the standard, the current light volume pulse wave 32 will be removed instead of being included in the multiple light volume pulse wave history 632 Similarly, the current hemoperfusion volume will also be removed and will not become one of the multiple hemoperfusion volume history records 633.

另一方面,請參閱圖17至圖19,一實施例中,本發明該步驟一11更包含一子步驟111:利用一心電擷取模組52對該透析者20施予量測,取得一心電資料521;該步驟二12更包含一子步驟121:令該運算處理器64基於該光體積脈波32的一血管收縮特徵點321與透析時該心 電資料521上的一心臟收縮特徵點522取得一血壓資料。以圖19舉例來說,該血管收縮特徵點321具有一對應所屬該光體積脈波32之時間橫軸的血管收縮時間點322,該心臟收縮特徵點522具有一對應所屬該心電資料521時間橫軸的心臟收縮時間點523,該運算處理器64記於該血管收縮時間點322與該心臟收縮時間點523的一時間差值323取得該血壓資料,同時該運算處理器64基自該歷史資料631提取一歷史血壓資料。又,由於該歷史血壓資料可表示該透析者20未透析時血液未經該廔管31被導出,而完全流入該指尖甲襞循環處21的血壓數值,該血壓資料則表示該透析者20本次透析時僅部分血液流入該指尖甲襞循環處21的血壓數值,因此該運算處理器64可基於該歷史血壓資料與該血壓資料計算,計算出本次透析時與該廔管31狀態對應的該廔管31的該血壓資料。同時,該運算處理器64將該廔管31的該血壓資料納入該廔管順暢度資料641的運算中,以更為準確地判斷出該廔管31當前狀態。 On the other hand, please refer to FIGS. 17 to 19. In one embodiment, the step 11 of the present invention further includes a sub-step 111: using an ECG capture module 52 to measure the dialyzer 20 to obtain a heart rate Electrical data 521; the step two 12 further includes a sub-step 121: the arithmetic processor 64 is based on a vasoconstriction feature point 321 of the light volume pulse wave 32 and the heart during dialysis A systolic feature point 522 on the electrical data 521 obtains blood pressure data. Taking FIG. 19 as an example, the vasoconstriction feature point 321 has a vasoconstriction time point 322 corresponding to the time horizontal axis of the light volume pulse wave 32, and the vasoconstriction feature point 522 has a time corresponding to the ECG data 521 The systolic time point 523 on the horizontal axis, the arithmetic processor 64 records a time difference 323 between the vasoconstriction time point 322 and the systolic time point 523 to obtain the blood pressure data, and the arithmetic processor 64 is based on the history The data 631 extracts a historical blood pressure data. In addition, since the historical blood pressure data can indicate the blood pressure value of the dialysis patient 20 when the blood is not taken out by the tube 31 and completely flows into the nail fold circulation 21 of the fingertip when the dialysis patient 20 is not dialysis, the blood pressure data indicates the dialysis patient 20 During this dialysis, only part of the blood flows into the blood pressure value of the fingertip nailfold circulation 21. Therefore, the arithmetic processor 64 can calculate based on the historical blood pressure data and the blood pressure data to calculate the status of the tube 31 during the current dialysis. Corresponding to the blood pressure data of the tube 31. At the same time, the arithmetic processor 64 incorporates the blood pressure data of the tube 31 into the calculation of the tube smoothness data 641 to determine the current state of the tube 31 more accurately.

綜上所述者,僅為本發明的一較佳實施例而已,當不能以此限定本發明實施的範圍,即凡依本發明申請專利範圍所作的均等變化與修飾,皆應仍屬本發明的專利涵蓋範圍。 In summary, it is only a preferred embodiment of the present invention. When the scope of implementation of the present invention cannot be limited by this, that is, all equal changes and modifications made in accordance with the scope of the patent application of the present invention should still belong to the present invention. The scope of patent coverage.

10:方法 10: Method

11:步驟一 11: step one

12:步驟二 12: Step two

Claims (6)

一種用以檢測透析廔管順暢度的穿戴裝置,包含:一本體,成形有一提供一透析者指尖放置的空間;一微循環影像擷取模組,設於該本體並具有一面對該空間的影像擷取端,該微循環影像擷取模組擷取該透析者指尖甲襞循環處的一微循環影像;一記憶媒介,設於該本體並存有至少一關聯該透析者的歷史資料;以及一運算處理器,設於該本體內,並資訊連接該微循環影像擷取模組、該記憶媒介以及一可對該透析者施予量測以取得一心電資料的心電擷取模組,該運算處理器接收該微循環影像並經運算取得一光體積脈波及一血液灌流量,同時讀取該歷史資料以取得至少一歷史光體積脈波、至少一由一歷史微循環影像產生並與該歷史光體積脈波關聯的歷史血液灌流量、一由複數該歷史光體積脈波產生的光體積脈波歷史記錄及一由複數該歷史血液灌流量產生的血液灌流量歷史記錄,該運算處理器基於該光體積脈波、該血液灌流量、該歷史光體積脈波、該歷史血液灌流量、該光體積脈波歷史記錄及該血液灌流量歷史記錄進行運算,產生一廔管順暢度資料,該血液灌流量歷史記錄的複數該歷史血液灌流量及該光體積脈波歷史記錄的複數該歷史光體積脈波是於該廔管順暢度符合血液透析標準時所記錄,同時該運算處理器基於該光體積脈波的一血管收縮特徵點以及該心電資料的一心臟收縮特徵點取得一血壓資料,令該運算處理器可自該歷史資料提取一歷史血壓資料,該運算處理氣基於該血壓資料以及該歷史血壓資料產生一納入該廔管順暢度運算中的透析廔管血壓資料。 A wearable device for detecting the smoothness of a dialysis tube, comprising: a body formed with a space for placing the fingertips of a dialyzer; and a microcirculation image capturing module arranged on the body and having a space facing the space The image capturing end of the microcirculation image capturing module captures a microcirculation image of the nailfold loop of the dialyzer’s fingertip; a memory medium is set in the body and stores at least one historical data associated with the dialyzer ; And an arithmetic processor, set in the body, and information connected to the microcirculation image capture module, the memory medium, and an ECG capture module that can measure the dialyzer to obtain an ECG data Group, the arithmetic processor receives the microcirculation image and obtains a light volume pulse wave and a blood perfusion volume through calculation, and at the same time reads the historical data to obtain at least one historical light volume pulse wave, at least one generated from a historical microcirculation image And the historical hemoperfusion volume associated with the historical light volume pulse wave, a light volume pulse history record generated by a plurality of the historical light volume pulse waves, and a hemoperfusion volume history record generated by a plurality of the historical blood volume pulse waves, the The calculation processor performs calculations based on the light volume pulse wave, the blood perfusion flow rate, the historical light volume pulse wave, the historical blood volume flow rate, the light volume pulse wave history record, and the blood perfusion flow volume history record to generate a smooth tube Data, the plural number of the historical record of the hemoperfusion flow rate, the plural number of the historical hemoperfusion flow rate and the plural number of the history record of the light volume pulse. The device obtains blood pressure data based on a vasoconstriction feature point of the light volume pulse wave and a cardiac contraction feature point of the electrocardiogram data, so that the arithmetic processor can extract a historical blood pressure data from the historical data, and the arithmetic processing gas is based on The blood pressure data and the historical blood pressure data generate a dialysis tube blood pressure data included in the tube smoothness calculation. 如請求項1所述用以檢測透析廔管順暢度的穿戴裝置,其中,該微循環影像擷取模組不具有透鏡,該微循環影像擷取模 組包含一影像感知件以及一設於該影像感知件上的光學薄膜。 The wearable device for detecting the smoothness of the dialysis tube as described in claim 1, wherein the microcirculation image capturing module does not have a lens, and the microcirculation image capturing module The group includes an image sensing element and an optical film arranged on the image sensing element. 如請求項1或2所述用以檢測透析廔管順暢度的穿戴裝置,其中,該穿戴裝置包含一設於該本體並資訊連接該運算處理器的提示模組,該提示模組基於該廔管順暢度資料進行提示。 The wearable device for detecting the smoothness of the dialysis tube as described in claim 1 or 2, wherein the wearable device includes a prompt module arranged on the body and connected to the computing processor, and the prompt module is based on the Manage smoothness data to prompt. 如請求項3所述用以檢測透析廔管順暢度的穿戴裝置,其中,該穿戴裝置包含一與該運算處理器資訊連接以將資訊轉傳予一終端裝置的通訊模組,該通訊模組以有線或無線方式與該終端裝置資訊連接。 The wearable device for detecting the smoothness of the dialysis tube as described in claim 3, wherein the wearable device includes a communication module connected with the computing processor to transmit the information to a terminal device, the communication module Connect with the terminal device information in a wired or wireless manner. 如請求項3所述用以檢測透析廔管順暢度的穿戴裝置,其中,該提示模組為一顯示器,一警示燈組或一警示揚聲模組。 The wearable device for detecting the smoothness of the dialysis tube as described in claim 3, wherein the prompt module is a display, a warning light group or a warning loudspeaker module. 如請求項3所述用以檢測透析廔管順暢度的穿戴裝置,其中,該記憶媒介為一雲端伺服器或一記憶體。 The wearable device for detecting the smoothness of the dialysis tube as described in claim 3, wherein the storage medium is a cloud server or a memory.
TW109115903A 2020-05-13 2020-05-13 Method for detecting smoothness of dialysis tube and its wearing device TWI738337B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109115903A TWI738337B (en) 2020-05-13 2020-05-13 Method for detecting smoothness of dialysis tube and its wearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109115903A TWI738337B (en) 2020-05-13 2020-05-13 Method for detecting smoothness of dialysis tube and its wearing device

Publications (2)

Publication Number Publication Date
TWI738337B true TWI738337B (en) 2021-09-01
TW202142171A TW202142171A (en) 2021-11-16

Family

ID=78777845

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109115903A TWI738337B (en) 2020-05-13 2020-05-13 Method for detecting smoothness of dialysis tube and its wearing device

Country Status (1)

Country Link
TW (1) TWI738337B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200534830A (en) * 2004-04-21 2005-11-01 Yuh-Jiuan Lin Monitoring fistula device
WO2011080191A1 (en) * 2009-12-28 2011-07-07 Gambro Lundia Ab Monitoring blood pressure
WO2015032948A1 (en) * 2013-09-09 2015-03-12 Gambro Lundia Ab Separation of interference pulses from physiological pulses in a pressure signal
EP2519279B1 (en) * 2009-12-28 2015-04-22 Gambro Lundia AB Device and method for monitoring a fluid flow rate in a cardiovascular system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200534830A (en) * 2004-04-21 2005-11-01 Yuh-Jiuan Lin Monitoring fistula device
WO2011080191A1 (en) * 2009-12-28 2011-07-07 Gambro Lundia Ab Monitoring blood pressure
EP2519279B1 (en) * 2009-12-28 2015-04-22 Gambro Lundia AB Device and method for monitoring a fluid flow rate in a cardiovascular system
WO2015032948A1 (en) * 2013-09-09 2015-03-12 Gambro Lundia Ab Separation of interference pulses from physiological pulses in a pressure signal

Also Published As

Publication number Publication date
TW202142171A (en) 2021-11-16

Similar Documents

Publication Publication Date Title
Ding et al. Continuous blood pressure measurement from invasive to unobtrusive: Celebration of 200th birth anniversary of Carl Ludwig
US20190150763A1 (en) Obtaining cardiovascular parameters using arterioles related transient time
US6355000B1 (en) Superior-and-inferior-limb blood-pressure index measuring apparatus
CN104323764A (en) Human body artery blood pressure measuring method based on smart phone
CN106725396B (en) Non-invasive beat-to-beat blood pressure measuring device and method based on double pulse waves
US10694959B2 (en) Image based blood pressure monitoring method
Myint et al. Blood pressure measurement from photo-plethysmography to pulse transit time
JPWO2007132865A1 (en) Vascular aging detection system
WO2019100585A1 (en) Fundus camera-based monitoring system and method for prevention and treatment of potential diseases based on traditional chinese medicine
US20020091328A1 (en) Pulse-wave-propagation-velocity-relating-information obtaining apparatus and blood- pressure-index measuring apparatus
CN115770027A (en) Blood pressure detection method and device based on artificial intelligence
JP6831382B2 (en) A method for evaluating the reliability of blood pressure measurement and a device for implementing it
JP4417250B2 (en) Pulse wave detection system
TWI738337B (en) Method for detecting smoothness of dialysis tube and its wearing device
US20150157217A1 (en) Analysis System for Cardiac Information and Analyzing Method Thereof
JP2001245856A (en) Measuring device of elasticity of blood vessel
CN109009036A (en) A kind of method and system of the blood pressure detecting based on smart phone
Alpert et al. Automated blood pressure measurement during ergometer exercise in children
US20200138372A1 (en) System and method for recognition of myocardial stunning
JP6866399B2 (en) High resolution hemoperfusion imaging using camera and pulse oximeter
JP2021176056A (en) Medical system and medical information processing device
TWI773259B (en) System and method adopting contactless physiological signal measusing technique to accomplish remote tcm pulse diagnosis
US20240065675A1 (en) Automatic doppler derived blood pressure
CN117137465B (en) Blood flow dynamic parameter measurement method and related equipment thereof
JPH084579B2 (en) Hemodynamic analyzer