TWI726775B - Memory apparatus and method of input and output buffer control thereof - Google Patents

Memory apparatus and method of input and output buffer control thereof Download PDF

Info

Publication number
TWI726775B
TWI726775B TW109124875A TW109124875A TWI726775B TW I726775 B TWI726775 B TW I726775B TW 109124875 A TW109124875 A TW 109124875A TW 109124875 A TW109124875 A TW 109124875A TW I726775 B TWI726775 B TW I726775B
Authority
TW
Taiwan
Prior art keywords
circuit
coupled
input
voltage
control signal
Prior art date
Application number
TW109124875A
Other languages
Chinese (zh)
Other versions
TW202205272A (en
Inventor
藤岡伸也
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW109124875A priority Critical patent/TWI726775B/en
Application granted granted Critical
Publication of TWI726775B publication Critical patent/TWI726775B/en
Publication of TW202205272A publication Critical patent/TW202205272A/en

Links

Images

Landscapes

  • Dram (AREA)
  • Static Random-Access Memory (AREA)

Abstract

A memory apparatus includes a pseudo static random access memory and a controller. The pseudo static random access memory includes an input and output circuit having a fast mode circuit and a slow mode circuit. The controller adjusts a power supply voltage and a clock frequency according to the operation mode of the memory apparatus, and generates a register setting code based on an adjusted power supply voltage and an adjusted clock frequency. The pseudo static random access memory enables one of the fast mode circuit and the slow mode circuit according to the register setting code, and disables the other of the normal mode circuit and the fast mode circuit.

Description

一種記憶體裝置及其輸入輸出緩衝控制方法Memory device and its input and output buffer control method

本發明是有關於一種半導體電路,且特別是有關於一種記憶體裝置及其輸入輸出緩衝控制方法。 The present invention relates to a semiconductor circuit, and more particularly to a memory device and its input and output buffer control method.

近年來,低腳位數記憶體(low pin count memory,LPC memory)已廣泛運用於物聯網(Internet of Things,IOT)與可穿戴裝置。然而,由於需要操作在較高的時脈頻率下,低腳位數記憶體的輸入輸出電路(IO circuit)需要消耗大量電流。此外,習知技術中存取時間與時脈頻率無關,且電流驅動力控制未取決於操作模式和時脈頻率,導致電池壽命縮短。 In recent years, low pin count memory (LPC memory) has been widely used in Internet of Things (IOT) and wearable devices. However, due to the need to operate at a higher clock frequency, the input-output circuit (IO circuit) of the low-pin-number memory needs to consume a large amount of current. In addition, in the prior art, the access time has nothing to do with the clock frequency, and the current driving force control does not depend on the operation mode and the clock frequency, resulting in shortened battery life.

有鑑於此,本發明提供一種記憶體裝置及其輸入輸出緩衝控制方法,用以依據電源電壓與時脈頻率產生暫存器設定碼,並依據暫存器設定碼致能輸入輸出電路中的高速模式電路或慢速模式電路,以動態調整輸入輸出電路的存取時間,從而提供節電控制,並延長電池壽命。 In view of this, the present invention provides a memory device and its input/output buffer control method, which is used to generate a register setting code according to the power supply voltage and clock frequency, and to enable high speed in the input/output circuit according to the register setting code. Mode circuit or slow mode circuit to dynamically adjust the access time of the input and output circuits to provide power saving control and extend battery life.

本發明的實施例提供一種記憶體裝置。記憶體裝置包括 虛擬靜態隨機存取記憶體與控制器。虛擬靜態隨機存取記憶體包括具有高速模式電路與慢速模式電路的輸入輸出電路。控制器耦接虛擬靜態隨機存取記憶體,控制器依據記憶體裝置的操作模式而調整電源電壓與時脈頻率,並基於經調整電源電壓與經調整時脈頻率而產生暫存器設定碼。其中虛擬靜態隨機存取記憶體依據暫存器設定碼而致能高速模式電路以及慢速模式電路中的一者,並禁能高速模式電路以及慢速模式電路中的另一者。 The embodiment of the present invention provides a memory device. The memory device includes Virtual static random access memory and controller. The virtual static random access memory includes an input and output circuit with a high-speed mode circuit and a slow-mode circuit. The controller is coupled to the virtual static random access memory. The controller adjusts the power supply voltage and the clock frequency according to the operation mode of the memory device, and generates a register setting code based on the adjusted power supply voltage and the adjusted clock frequency. The virtual static random access memory enables one of the high-speed mode circuit and the slow mode circuit according to the register setting code, and disables the other of the high-speed mode circuit and the slow mode circuit.

本發明的實施例提供一種輸入輸出緩衝控制方法,適用於記憶體裝置,記憶體裝置包括虛擬靜態隨機存取記憶體與控制器。虛擬靜態隨機存取記憶體包括具有高速模式電路與慢速模式電路的輸入輸出電路。輸入輸出緩衝控制方法包括依據所述記憶體裝置的操作模式而調整電源電壓與時脈頻率。基於經調整電源電壓與經調整時脈頻率而產生暫存器設定碼。依據暫存器設定碼而致能高速模式電路以及慢速模式電路中的一者,並禁能高速模式電路以及慢速模式電路中的另一者。 The embodiment of the present invention provides an input and output buffer control method, which is suitable for a memory device, and the memory device includes a virtual static random access memory and a controller. The virtual static random access memory includes an input and output circuit with a high-speed mode circuit and a slow-mode circuit. The input and output buffer control method includes adjusting the power supply voltage and the clock frequency according to the operation mode of the memory device. The register setting code is generated based on the adjusted power supply voltage and the adjusted clock frequency. According to the register setting code, one of the high-speed mode circuit and the slow mode circuit is enabled, and the other of the high-speed mode circuit and the slow mode circuit is disabled.

基於上述,在本發明的實施例中,所述記憶體裝置及其輸入輸出緩衝控制方法用以依據操作模式調整電源電壓與時脈頻率,藉由經調整的電源電壓與時脈頻率產生暫存器設定碼,並依據暫存器設定碼致能輸入輸出電路中的高速模式電路或慢速模式電路,以動態調整輸入輸出電路的存取時間,從而提供節電控制,並延長電池壽命。 Based on the above, in an embodiment of the present invention, the memory device and its input/output buffer control method are used to adjust the power supply voltage and clock frequency according to the operation mode, and generate temporary storage by the adjusted power supply voltage and clock frequency And enable the high-speed mode circuit or the slow mode circuit in the input/output circuit according to the register setting code to dynamically adjust the access time of the input/output circuit, thereby providing power saving control and extending battery life.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

10:記憶體裝置 10: Memory device

110:虛擬靜態隨機存取記憶體 110: Virtual Static Random Access Memory

120:控制器 120: Controller

130:輸入輸出電路 130: Input and output circuit

140:高速模式電路 140: High-speed mode circuit

150:慢速模式電路 150: Slow mode circuit

160:輸入接收器 160: input receiver

170:微處理器 170: Microprocessor

180:電源管理電路 180: power management circuit

190:電源電路 190: Power supply circuit

210:命令解碼器 210: Command decoder

220:記憶體陣列 220: memory array

230:位址閂鎖與解碼電路 230: Address latch and decoding circuit

240:資料路徑 240: data path

250_1、250_N:陣列 250_1, 250_N: array

260_1、260_N-1:感測放大器 260_1, 260_N-1: sense amplifier

270:X解碼器 270: X decoder

280:Y解碼器/第二感測放大器 280: Y decoder/second sense amplifier

500、510、520:晶片外驅動器 500, 510, 520: off-chip drivers

530、550:晶片外驅動器控制電路 530, 550: off-chip driver control circuit

540、560:輸出級 540, 560: output stage

NOT1、NOT2、NOT3:反相器 NOT1, NOT2, NOT3: inverter

DA:差動放大器 DA: Differential amplifier

RS:串聯電阻 RS: series resistance

NAND1:反及閘 NAND1: reverse and gate

AS:位址空間位元 AS: address space bit

CK、CK#:差動時脈訊號 CK, CK#: differential clock signal

CR[15]:操作模式 CR[15]: Operation mode

CR[7:4]:延遲計數 CR[7:4]: Delay count

CS#:晶片選擇訊號 CS#: Chip selection signal

CTLPWR:電源管理控制信號 CTLPWR: power management control signal

CTLVDDQ:電源控制訊號 CTLVDDQ: power control signal

CTLRX:輸入控制訊號 CTLRX: Input control signal

CTLRXB:反相輸入控制訊號 CTLRXB: Inverting input control signal

CTLTX:傳輸控制訊號 CTLTX: Transmission control signal

DQ:資料總線 DQ: data bus

DATA_IN:輸入資料 DATA_IN: input data

DATA_OUT:輸出資料 DATA_OUT: output data

RWDS:讀寫資料選通訊號 RWDS: select communication number for reading and writing data

GND:接地電壓 GND: Ground voltage

N1、N2、N3:節點電壓 N1, N2, N3: node voltage

VDDQ:電源電壓 VDDQ: power supply voltage

VIN:輸入訊號 VIN: Input signal

VN:高速模式電壓 VN: High-speed mode voltage

VOUT:輸出訊號 VOUT: output signal

VREF:參考電壓 VREF: Reference voltage

VS:慢速模式電壓 VS: Slow mode voltage

MP1、MP2、MP3、MP4、MP5、MN1、MN2、MN3、MN4、MN5:電晶體 MP1, MP2, MP3, MP4, MP5, MN1, MN2, MN3, MN4, MN5: Transistor

SW1、SW2、SW3、SW4、SW5:開關 SW1, SW2, SW3, SW4, SW5: switch

S310、311、S312、S313、S314、S315、S320、321、S322、S323、S324、S325、S610、S620、S630、S640、S710、S720、S730:步驟 S310, 311, S312, S313, S314, S315, S320, 321, S322, S323, S324, S325, S610, S620, S630, S640, S710, S720, S730: steps

圖1是本發明一實施例的記憶體裝置的示意圖。 FIG. 1 is a schematic diagram of a memory device according to an embodiment of the invention.

圖2是本發明一實施例的虛擬靜態隨機存取記憶體的電路方塊圖。 FIG. 2 is a circuit block diagram of a virtual static random access memory according to an embodiment of the invention.

圖3A是本發明一實施例的命令位址位元的判斷流程圖。 FIG. 3A is a flowchart of determining a command address bit according to an embodiment of the present invention.

圖3B是本發明一實施例的命令位址位元的判斷流程圖。 FIG. 3B is a flow chart of judging command address bits according to an embodiment of the present invention.

圖4是本發明一實施例的位址閂鎖解碼電路的電路方塊圖。 4 is a circuit block diagram of an address latch decoding circuit according to an embodiment of the present invention.

圖5是本發明一實施例的頁面存取序列的時序圖。 FIG. 5 is a timing diagram of a page access sequence according to an embodiment of the invention.

圖6是本發明一實施例的連續讀寫方法的流程圖。 Fig. 6 is a flowchart of a continuous reading and writing method according to an embodiment of the present invention.

圖7是本發明一實施例的輸入輸出緩衝控制方法的流程圖。 Fig. 7 is a flowchart of an input/output buffer control method according to an embodiment of the present invention.

參照圖1,記憶體裝置10可以包括虛擬靜態隨機存取記憶體110與控制器120。虛擬靜態隨機存取記憶體110包括輸入輸出電路130。輸入輸出電路130包括高速模式電路140與慢速模式電路150。控制器120耦接至虛擬靜態隨機存取記憶體110。 1, the memory device 10 may include a virtual static random access memory 110 and a controller 120. The virtual static random access memory 110 includes an input and output circuit 130. The input and output circuit 130 includes a high-speed mode circuit 140 and a slow-speed mode circuit 150. The controller 120 is coupled to the virtual static random access memory 110.

在不同的實施例中,記憶體裝置10可以是是八進位快閃記憶體(Octal Flash memory)、鐵電隨機存取記憶體(Ferroelectric Random Access Memory,FRAM)、電子抹除式可複寫唯讀記憶體(Electrically-Erasable Programmable Read-Only Memory,EEPROM)或其他記憶體。 In different embodiments, the memory device 10 may be an octal flash memory (Octal Flash memory), a ferroelectric random access memory (Ferroelectric Random Access Memory, FRAM), an electronic erasable rewritable read-only Memory (Electrically-Erasable Programmable Read-Only Memory, EEPROM) or other memory.

參照圖2,虛擬靜態隨機存取記憶體110包括輸入輸出電路130、命令解碼器210、記憶體陣列220。輸入輸出電路130耦 接至命令解碼器210,用以作為虛擬靜態隨機存取記憶體110內部電路與外部電路的輸入輸出介面。進一步說,輸入輸出電路130包括輸入接收器160,輸入接收器160包括高速模式電路140與慢速模式電路150。命令解碼器210耦接在輸入輸出電路130與記憶體陣列220之間,命令解碼器210用以解碼從控制器120所接收到的暫存器設定碼CR,並產生輸入控制訊號CTLRX與傳輸控制訊號CTLTX。記憶體陣列220由多個儲存單元組成,並且對由微處理器170指定的儲存單元執行資料寫入或讀取控制。在一實施例中,虛擬靜態隨機存取記憶體110可以由一個動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)作為核心以及由靜態隨機存取記憶體(Static Random Access Memory,SRAM)作為介面所組成。在一實施例中,虛擬靜態隨機存取記憶體110還可以包括其他裝置,例如是位址閂鎖與解碼電路(address latch and decode circuit)230與資料路徑(data path)240,但不限於此。在一實施例中,記憶體陣列220包括陣列250_1、感測放大器260_1...感測放大器260_N-1與陣列250_N、X解碼器270以及Y解碼器/第二感測放大器280。 2, the virtual static random access memory 110 includes an input/output circuit 130, a command decoder 210, and a memory array 220. Input and output circuit 130 It is connected to the command decoder 210 and is used as an input/output interface between the internal circuit of the virtual static random access memory 110 and the external circuit. Furthermore, the input/output circuit 130 includes an input receiver 160, and the input receiver 160 includes a high-speed mode circuit 140 and a slow-speed mode circuit 150. The command decoder 210 is coupled between the input/output circuit 130 and the memory array 220. The command decoder 210 is used to decode the register setting code CR received from the controller 120 and generate the input control signal CTLRX and transmission control Signal CTLTX. The memory array 220 is composed of a plurality of storage units, and performs data writing or reading control on the storage units designated by the microprocessor 170. In one embodiment, the virtual static random access memory 110 may have a dynamic random access memory (Dynamic Random Access Memory, DRAM) as the core and a static random access memory (Static Random Access Memory, SRAM) as the core The interface is composed. In an embodiment, the virtual static random access memory 110 may also include other devices, such as an address latch and decode circuit 230 and a data path 240, but it is not limited to this. . In an embodiment, the memory array 220 includes an array 250_1, a sense amplifier 260_1...sense amplifier 260_N-1 and an array 250_N, an X decoder 270, and a Y decoder/second sense amplifier 280.

參照圖2,控制器120包括微處理器170、電源管理電路180與電源電路190。 2, the controller 120 includes a microprocessor 170, a power management circuit 180 and a power circuit 190.

微處理器170耦接虛擬靜態隨機存取記憶體110,微處理器170提供差動時脈訊號CK、差動時脈訊號CK#與晶片選擇訊號CS#至虛擬靜態隨機存取記憶體110,虛擬靜態隨機存取記憶體110與微處理器170之間還具有雙向流通的資料總線DQ與讀寫資 料選通訊號RWDS。關於差動時脈訊號CK、差動時脈訊號CK#的時脈頻率調整,具體來說,微處理器170依據記憶體裝置10的操作模式而產生電源管理控制信號CTLPWR並調整時脈頻率,例如指向低功耗模式時由頻率400MHz調整為133MHz。且微處理器170依據時脈頻率的變化而產生相應的命令位址位元CA與暫存器設定碼CR。依照設計需求,微處理器170可以是中央處理單元(Central Processing Unit,CPU),或是其他可程式化之微處理器(Microprocessor)、數位信號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuit,ASIC)或其他類似元件或上述元件的組合。 The microprocessor 170 is coupled to the virtual static random access memory 110, and the microprocessor 170 provides a differential clock signal CK, a differential clock signal CK# and a chip selection signal CS# to the virtual static random access memory 110, The virtual static random access memory 110 and the microprocessor 170 also have a bidirectional data bus DQ and read and write data. Material selection communication number RWDS. Regarding the clock frequency adjustment of the differential clock signal CK and the differential clock signal CK#, specifically, the microprocessor 170 generates the power management control signal CTLPWR according to the operation mode of the memory device 10 and adjusts the clock frequency. For example, when pointing to low power consumption mode, the frequency is adjusted from 400MHz to 133MHz. And the microprocessor 170 generates the corresponding command address bit CA and register setting code CR according to the change of the clock frequency. According to the design requirements, the microprocessor 170 can be a central processing unit (Central Processing Unit, CPU), or other programmable microprocessor (Microprocessor), digital signal processor (Digital Signal Processor, DSP), programmable Controller, Application Specific Integrated Circuit (ASIC) or other similar components or a combination of the above components.

電源管理電路180耦接微處理器170,電源管理電路180依據電源管理控制訊號CTLPWR產生電源控制訊號CTLVDDQ。舉例來說,當微處理器170指示進入低功耗模式時,則微處理器170發送高邏輯準位的電源管理控制訊號CTLPWR至電源管理電路180。接著,電源管理電路180依據高邏輯準位的電源管理控制訊號CTLPWR而發送低邏輯準位的電源控制訊號CTLVDDQ至電源電路190。 The power management circuit 180 is coupled to the microprocessor 170, and the power management circuit 180 generates a power control signal CTLVDDQ according to the power management control signal CTLPWR. For example, when the microprocessor 170 instructs to enter the low power consumption mode, the microprocessor 170 sends a high logic level power management control signal CTLPWR to the power management circuit 180. Then, the power management circuit 180 sends the power control signal CTLVDDQ of the low logic level to the power circuit 190 according to the power management control signal CTLPWR of the high logic level.

電源電路190耦接虛擬靜態隨機存取記憶體110、微處理器170以及電源管理電路180。電源電路190依據電源控制訊號CTLVDDQ產生電源電壓VDDQ並提供至微處理器170與虛擬靜態隨機存取記憶體110。承上例,當電源電路190接收低邏輯準位的電源控制訊號CTLVDDQ時,電源電路190增加電源電壓VDDQ 並提供至微處理器170與虛擬靜態隨機存取記憶體110,例如將電源電壓VDDQ由1.2V升高為1.8V。 The power circuit 190 is coupled to the virtual static random access memory 110, the microprocessor 170 and the power management circuit 180. The power circuit 190 generates a power voltage VDDQ according to the power control signal CTLVDDQ and provides it to the microprocessor 170 and the virtual static random access memory 110. Following the above example, when the power supply circuit 190 receives the power control signal CTLVDDQ with a low logic level, the power supply circuit 190 increases the power supply voltage VDDQ It is provided to the microprocessor 170 and the virtual static random access memory 110, for example, to increase the power supply voltage VDDQ from 1.2V to 1.8V.

相反地,當微處理器170指示進入高速模式時,則微處理器170發送低邏輯準位的電源管理控制訊號CTLPWR至電源管理電路180。接著,電源管理電路180依據低邏輯準位的電源管理控制訊號CTLPWR而發送高邏輯準位的電源控制訊號CTLVDDQ至電源電路190。當電源電路190接收高邏輯準位的電源控制訊號CTLVDDQ時,電源電路190提高電源電壓VDDQ並提供至微處理器170與虛擬靜態隨機存取記憶體110,例如將電源電壓VDDQ由1.8V降低為1.2V。 Conversely, when the microprocessor 170 instructs to enter the high-speed mode, the microprocessor 170 sends a low logic level power management control signal CTLPWR to the power management circuit 180. Then, the power management circuit 180 sends the power control signal CTLVDDQ of the high logic level to the power circuit 190 according to the power management control signal CTLPWR of the low logic level. When the power supply circuit 190 receives the high logic level power control signal CTLVDDQ, the power supply circuit 190 increases the power supply voltage VDDQ and provides it to the microprocessor 170 and the virtual static random access memory 110, for example, reduces the power supply voltage VDDQ from 1.8V to 1.2V.

參照圖3A,於步驟S310中,記憶體裝置10開始存取。接著,於步驟S311中,虛擬靜態隨機存取記憶體110中的命令解碼器210依據命令位址位元CA中的位址空間位元AS判斷存取為記憶體存取(AS=0)或暫存器存取(AS=1),當為記憶體存取時(AS=0),進入步驟S312,當為暫存器存取時(AS=1),進入步驟S313。在步驟S312中,記憶體裝置10進行對記憶體陣列220進行陣列存取。在步驟S313中,記憶體裝置10對命令解碼器210進行暫存器存取,並對命令解碼器210所儲存暫存器設定碼CR中的操作模式CR[15]進行判斷。當模式設定CR[15]為0b時,進入步驟S314。當模式設定CR[15]為1b時,進入步驟S315。關於暫存器設定碼CR中模式設定CR[15]的詳細內容,請參考表一。 3A, in step S310, the memory device 10 starts to access. Then, in step S311, the command decoder 210 in the virtual static random access memory 110 determines that the access is memory access (AS=0) or according to the address space bit AS in the command address bit CA For register access (AS=1), when it is a memory access (AS=0), go to step S312, and when it is a register access (AS=1), go to step S313. In step S312, the memory device 10 performs array access to the memory array 220. In step S313, the memory device 10 accesses the register of the command decoder 210, and judges the operation mode CR[15] in the register setting code CR stored in the command decoder 210. When the mode setting CR[15] is 0b, go to step S314. When the mode setting CR[15] is 1b, go to step S315. For details of the mode setting CR[15] in the register setting code CR, please refer to Table 1.

【表一】

Figure 109124875-A0305-02-0009-1
【Table I】
Figure 109124875-A0305-02-0009-1

於步驟S314,表示判斷輸入輸出電路130將操作於慢速模式,命令解碼器210輸出低邏輯準位的輸入控制訊號CTLRX(即CTLRX=L)與低邏輯準位的傳輸控制訊號CTLTX(即CTLTX=L)。於步驟S315,表示判斷輸入輸出電路130將操作於高速模式,命令解碼器210輸出高邏輯準位的輸入控制訊號CTLRX(即CTLRX=H)與高邏輯準位的傳輸控制訊號CTLTX(即CTLTX=H)。 In step S314, it is judged that the input/output circuit 130 will operate in the slow mode, and the decoder 210 is instructed to output the low logic level input control signal CTLRX (ie CTLRX=L) and the low logic level transmission control signal CTLTX (ie CTLTX). =L). In step S315, it is judged that the input/output circuit 130 will operate in the high-speed mode, and the decoder 210 is instructed to output the high logic level input control signal CTLRX (ie CTLRX=H) and the high logic level transmission control signal CTLTX (ie CTLTX= H).

參照圖3B,於步驟S320中,記憶體裝置10開始存取。接著,於步驟S321中,虛擬靜態隨機存取記憶體110中的命令解 碼器210依據命令位址位元CA中的位址空間位元AS判斷存取為記憶體存取(AS=0)或暫存器存取(AS=1),當為記憶體存取時(AS=0),進入步驟S322,當為暫存器存取時(AS=1),進入步驟S323。在步驟S322中,記憶體裝置10進行對記憶體陣列220進行陣列存取。在步驟S323中,記憶體裝置10對命令解碼器210進行暫存器存取,並對命令解碼器210所儲存暫存器設定碼CR中的延遲計數CR[7:4]進行判斷。當延遲計數CR[7:4]為5、6、7、8個時脈時,進入步驟S324。當延遲計數CR[7:4]為12、14、16個時脈時,進入步驟S325。關於暫存器設定碼CR中延遲計數CR[7:4]的詳細內容,請參考表一。於步驟S324,表示判斷輸入輸出電路130將操作於慢速模式,命令解碼器210輸出低邏輯準位的輸入控制訊號CTLRX(即CTLRX=L)與低邏輯準位的傳輸控制訊號CTLTX(即CTLTX=L)。於步驟S325,表示判斷輸入輸出電路130將操作於高速模式,命令解碼器210輸出高邏輯準位的輸入控制訊號CTLRX(即CTLRX=H)與高邏輯準位的傳輸控制訊號CTLTX(即CTLTX=H)。 Referring to FIG. 3B, in step S320, the memory device 10 starts to access. Then, in step S321, the command in the virtual static random access memory 110 is decoded The encoder 210 determines whether the access is memory access (AS=0) or register access (AS=1) according to the address space bit AS in the command address bit CA. When it is a memory access (AS=0), go to step S322, when it is a register access (AS=1), go to step S323. In step S322, the memory device 10 performs array access to the memory array 220. In step S323, the memory device 10 performs register access to the command decoder 210, and judges the delay count CR[7:4] in the register setting code CR stored in the command decoder 210. When the delay count CR[7:4] is 5, 6, 7, 8 clocks, go to step S324. When the delay count CR[7:4] is 12, 14, 16 clocks, go to step S325. For the details of the delay count CR[7:4] in the register setting code CR, please refer to Table 1. In step S324, it is judged that the input/output circuit 130 will operate in the slow mode, and the decoder 210 is instructed to output the low logic level input control signal CTLRX (ie CTLRX=L) and the low logic level transmission control signal CTLTX (ie CTLTX). =L). In step S325, it is judged that the input/output circuit 130 will operate in the high-speed mode, and the decoder 210 is instructed to output the high logic level input control signal CTLRX (ie CTLRX=H) and the high logic level transmission control signal CTLTX (ie CTLTX= H).

參照圖2、圖3A、圖3B與表一,當微處理器170指示進入低功耗模式時,微處理器170將時脈頻率降低,例如由頻率400MHz調整為133MHz。接著微處理器170根據頻率的變化(如表一)產生命令位址位元CA與暫存器設定碼CR。其中命令位址位元CA至少包括位址空間位元AS,暫存器設定碼CR至少包括模式設定CR[15]與延遲計數CR[7:4]。虛擬靜態隨機存取記憶體110 接收命令位址位元CA,依據命令位址位元CA與暫存器設定碼CR來致能高速模式電路140或慢速模式電路150。 Referring to FIG. 2, FIG. 3A, FIG. 3B and Table 1, when the microprocessor 170 instructs to enter the low power consumption mode, the microprocessor 170 reduces the clock frequency, for example, adjusts the frequency from 400 MHz to 133 MHz. Then the microprocessor 170 generates the command address bit CA and the register setting code CR according to the change of the frequency (as shown in Table 1). The command address bit CA includes at least the address space bit AS, and the register setting code CR includes at least the mode setting CR[15] and the delay count CR[7:4]. Virtual static random access memory 110 The command address bit CA is received, and the high speed mode circuit 140 or the slow mode circuit 150 is enabled according to the command address bit CA and the register setting code CR.

因此,參照圖1、圖2、圖3A、圖3B與表一,控制器120可以依據記憶體裝置10的操作模式而調整電源電壓VDDQ與差動時脈訊號CK、差動時脈訊號CK#的時脈頻率,並產生與經調整的電源電壓VDDQ與經調整的時脈頻率相對應的暫存器設定碼CR。接著,虛擬靜態隨機存取記憶體110可以依據暫存器設定碼CR而致能高速模式電路140以及慢速模式電路150中的一者,並禁能高速模式電路140以及慢速模式電路150中的另一者。更進一步說,虛擬靜態隨機存取記憶體110是依據輸入控制訊號CTLRX而致能所述高速模式電路140以及慢速模式電路150中的一者,並禁能高速模式電路140以及慢速模式電路150中的另一者。 Therefore, referring to FIG. 1, FIG. 2, FIG. 3A, FIG. 3B, and Table 1, the controller 120 can adjust the power supply voltage VDDQ, the differential clock signal CK, and the differential clock signal CK# according to the operation mode of the memory device 10. And generate a register setting code CR corresponding to the adjusted power supply voltage VDDQ and the adjusted clock frequency. Then, the virtual static random access memory 110 can enable one of the high-speed mode circuit 140 and the slow mode circuit 150, and disable the high-speed mode circuit 140 and the slow mode circuit 150 according to the register setting code CR. The other one. Furthermore, the virtual static random access memory 110 enables one of the high-speed mode circuit 140 and the slow mode circuit 150, and disables the high-speed mode circuit 140 and the slow mode circuit according to the input control signal CTLRX The other of 150.

詳細而言,當虛擬靜態隨機存取記憶體110依據暫存器設定碼CR判斷所述輸入輸出電路130被設定為高速模式時(即CTLRX=H),致能高速模式電路140並禁能所述慢速模式電路150。當虛擬靜態隨機存取記憶體110依據暫存器設定碼CR判斷輸入輸出電路130被設定為慢速模式時(即CTLRX=L),致能慢速模式電路150並禁能高速模式電路140。 In detail, when the virtual static random access memory 110 determines that the input/output circuit 130 is set to the high-speed mode according to the register setting code CR (ie CTLRX=H), the high-speed mode circuit 140 is enabled and disabled The slow mode circuit 150 is described. When the virtual static random access memory 110 determines that the input/output circuit 130 is set to the slow mode according to the register setting code CR (ie, CTLRX=L), the slow mode circuit 150 is enabled and the high mode circuit 140 is disabled.

關於圖4,輸入接收器160包括反相器NOT1、高速模式電路140、慢速模式電路150以及反及閘NAND1。反相器NOT1接收並反相輸入控制訊號CTLRX以產生反相輸入控制訊號 CTLRXB。高速模式電路140耦接至反相器NOT1,高速模式電路140接收反相輸入控制訊號CTLRXB與輸入訊號VIN,以產生高速模式電壓VN。慢速模式電路150,耦接至反相器NOT1,配置為接收反相輸入控制訊號CTLRXB與輸入訊號VIN,以產生慢速模式電壓VS。反及閘NAND1耦接高速模式電路140與慢速模式電路150,反及閘NAND1對高速模式電壓VN以及慢速模式電壓VS進行反及運算以產生輸出訊號VOUT。當判斷輸入輸出電路130將操作於高速模式時,反相輸入控制訊號CTLRXB致能高速模式電路140並禁能慢速模式電路150。當判斷輸入輸出電路130將操作於慢速模式時,反相輸入控制訊號CTLRXB禁能高速模式電路140並致能慢速模式電路150。 With respect to FIG. 4, the input receiver 160 includes an inverter NOT1, a high-speed mode circuit 140, a slow mode circuit 150, and an inverter NAND1. The inverter NOT1 receives and inverts the input control signal CTLRX to generate the inverted input control signal CTLRXB. The high-speed mode circuit 140 is coupled to the inverter NOT1, and the high-speed mode circuit 140 receives the inverted input control signal CTLRXB and the input signal VIN to generate the high-speed mode voltage VN. The slow mode circuit 150, coupled to the inverter NOT1, is configured to receive the inverted input control signal CTLRXB and the input signal VIN to generate the slow mode voltage VS. The inverter NAND1 is coupled to the high-speed mode circuit 140 and the slow mode circuit 150, and the inverter NAND1 performs an inverse operation on the high-speed mode voltage VN and the slow mode voltage VS to generate the output signal VOUT. When it is determined that the input/output circuit 130 will operate in the high-speed mode, the inverted input control signal CTLRXB enables the high-speed mode circuit 140 and disables the slow-speed mode circuit 150. When it is judged that the input/output circuit 130 will operate in the slow mode, the inverting input control signal CTLRXB disables the high-speed mode circuit 140 and enables the slow mode circuit 150.

高速模式電路140包括反相器NOT2、開關SW1、差動放大器DA、串聯電阻RS、開關SW2與開關SW3。反相器NOT2耦接至反相器NOT1,反相器NOT2接收反相輸入控制訊號CTLRXB,以產生節點電壓N1。第一開關SW1的第一端耦接至電源電壓VDDQ,第一開關SW1的控制端耦接至節點電壓N1,第一開關SW1的第二端耦接至高速模式電壓VN。差動放大器DA包括電晶體NM1、電晶體NM2以及電流鏡負載,電流鏡負載包括電晶體PM1與電晶體PM2。電晶體NM1的第一端耦接至高速模式電壓VN,電晶體NM1的控制端耦接至輸入訊號VIN,電晶體NM1的第二端耦接至節點電壓N2。電晶體NM2的第一端耦接至節點電壓N3,電晶體NM2的控制端接收由串聯電阻RS經分壓產 生的參考電壓VREF,電晶體NM2的第二端耦接至節點電壓N2。電晶體PM1的第一端耦接至電源電壓VDDQ,電晶體PM1的控制端耦接至節點電壓N3,電晶體PM1的第二端耦接至高速模式電壓VN。電晶體PM2的第一端耦接至電源電壓VDDQ,電晶體PM2的控制端耦接至節點電壓N3,電晶體PM2的第二端耦接至節點電壓N3。串聯電阻RS包括第一電阻R1與第二電阻R2,串聯電組RS藉由第一電阻R1與第二電阻R2進行分壓操作以產生參考電壓VREF。串聯電阻RS的第一端耦接至電源電壓VDDQ,串聯電阻RS的第二端耦接至開關SW3,串聯電阻RS的分壓端耦接至電晶體NM2的控制端。第一電阻R1耦接在電源電壓VDDQ與參考電壓VREF之間,第二電阻R2耦接在參考電壓VREF與開關SW3之間。開關SW2的第一端耦接至差動放大器DA中的節點電壓N2,開關SW2的控制端耦接至節點電壓N1,開關SW2的第二端耦接至接地電壓GND。開關SW3的第一端耦接至第二電阻R2,開關SW3的控制端耦接至節點電壓N1,開關SW3的第二端耦接至接地電壓GND。 The high-speed mode circuit 140 includes an inverter NOT2, a switch SW1, a differential amplifier DA, a series resistor RS, a switch SW2, and a switch SW3. The inverter NOT2 is coupled to the inverter NOT1, and the inverter NOT2 receives the inverting input control signal CTLRXB to generate the node voltage N1. The first terminal of the first switch SW1 is coupled to the power supply voltage VDDQ, the control terminal of the first switch SW1 is coupled to the node voltage N1, and the second terminal of the first switch SW1 is coupled to the high-speed mode voltage VN. The differential amplifier DA includes a transistor NM1, a transistor NM2, and a current mirror load. The current mirror load includes a transistor PM1 and a transistor PM2. The first end of the transistor NM1 is coupled to the high-speed mode voltage VN, the control end of the transistor NM1 is coupled to the input signal VIN, and the second end of the transistor NM1 is coupled to the node voltage N2. The first end of the transistor NM2 is coupled to the node voltage N3, and the control end of the transistor NM2 receives the voltage divided by the series resistor RS. The second terminal of the transistor NM2 is coupled to the node voltage N2. The first terminal of the transistor PM1 is coupled to the power supply voltage VDDQ, the control terminal of the transistor PM1 is coupled to the node voltage N3, and the second terminal of the transistor PM1 is coupled to the high-speed mode voltage VN. The first end of the transistor PM2 is coupled to the power supply voltage VDDQ, the control end of the transistor PM2 is coupled to the node voltage N3, and the second end of the transistor PM2 is coupled to the node voltage N3. The series resistor RS includes a first resistor R1 and a second resistor R2. The series resistor RS uses the first resistor R1 and the second resistor R2 to perform a voltage division operation to generate the reference voltage VREF. The first end of the series resistor RS is coupled to the power supply voltage VDDQ, the second end of the series resistor RS is coupled to the switch SW3, and the voltage dividing end of the series resistor RS is coupled to the control end of the transistor NM2. The first resistor R1 is coupled between the power supply voltage VDDQ and the reference voltage VREF, and the second resistor R2 is coupled between the reference voltage VREF and the switch SW3. The first end of the switch SW2 is coupled to the node voltage N2 in the differential amplifier DA, the control end of the switch SW2 is coupled to the node voltage N1, and the second end of the switch SW2 is coupled to the ground voltage GND. The first end of the switch SW3 is coupled to the second resistor R2, the control end of the switch SW3 is coupled to the node voltage N1, and the second end of the switch SW3 is coupled to the ground voltage GND.

具體而言,當輸入控制訊號CTLRX為高邏輯準位(即CTLRX=H)時,由於反相輸入控制訊號CTLRXB為低邏輯準位(即CTLRXB=L),高速模式電路140中的節點電壓N1為高邏輯準位,從而開關SW1不導通,而開關SW2與開關SW3導通至接地電壓GND,因此串聯電阻RS得以對電源電壓VDDQ進行分壓而產生參考電壓VREF,且差動放大器DA藉由比較輸入訊號VIN與參 考電壓VREF以產生高速模式電壓VN。相對地,由於輸入控制訊號CTLRX為高邏輯準位(即CTLRX=H),反相輸入控制訊號CTLRXB為低邏輯準位(即CTLRXB=L),慢速模式電路150中的開關SW4不導通而開關SW5導通,使得慢速模式電壓VS固定為高邏輯準位。因此,在當輸入控制訊號CTLRX為高邏輯準位(即CTLRX=H)時,高速模式電路140接收輸入訊號VIN而產生高速模式電壓VN,反及閘NAND1對藉由輸入訊號VIN所產生的高速模式電壓VN與固定為高邏輯準位的慢速模式電壓VS進行反及(NAND)運算,而產生輸出訊號VOUT。 Specifically, when the input control signal CTLRX is at a high logic level (ie CTLRX=H), since the inverting input control signal CTLRXB is at a low logic level (ie CTLRXB=L), the node voltage N1 in the high-speed mode circuit 140 Is a high logic level, so that the switch SW1 is not turned on, and the switches SW2 and SW3 are turned on to the ground voltage GND, so the series resistor RS can divide the power supply voltage VDDQ to generate the reference voltage VREF, and the differential amplifier DA compares Input signal VIN and parameters The voltage VREF is tested to generate the high-speed mode voltage VN. In contrast, since the input control signal CTLRX is at a high logic level (ie CTLRX=H) and the inverting input control signal CTLRXB is at a low logic level (ie CTLRXB=L), the switch SW4 in the slow mode circuit 150 is not turned on. The switch SW5 is turned on, so that the slow mode voltage VS is fixed at the high logic level. Therefore, when the input control signal CTLRX is at a high logic level (ie, CTLRX=H), the high-speed mode circuit 140 receives the input signal VIN to generate the high-speed mode voltage VN, and NAND1 is coupled to the high-speed mode voltage generated by the input signal VIN. The mode voltage VN and the slow mode voltage VS fixed to a high logic level perform a NAND operation to generate an output signal VOUT.

慢速模式電路150包括反相器NOT3、開關SW4與開關SW5。反相器NOT3的第一端耦接至電源電壓VDDQ,反相器NOT3的輸入端耦接至輸入訊號VIN,反相器NOT3的輸出端耦接至所述慢速模式電壓VS。反相器NOT3由電晶體PM3與電晶體NM3組成。開關SW4的第一端耦接至所述反相器NOT3的第二端,開關SW4的控制端接收反相輸入控制訊號CTLRXB,開關SW4的第二端耦接至接地電壓GND。開關SW5的第一端耦接至電源電壓VDDQ,開關SW5的控制端接收反相輸入控制訊號CTLRXB,開關SW5的第二端耦接至慢速模式電壓VS。 The slow mode circuit 150 includes an inverter NOT3, a switch SW4, and a switch SW5. The first terminal of the inverter NOT3 is coupled to the power supply voltage VDDQ, the input terminal of the inverter NOT3 is coupled to the input signal VIN, and the output terminal of the inverter NOT3 is coupled to the slow mode voltage VS. The inverter NOT3 is composed of a transistor PM3 and a transistor NM3. The first terminal of the switch SW4 is coupled to the second terminal of the inverter NOT3, the control terminal of the switch SW4 receives the inverted input control signal CTLRXB, and the second terminal of the switch SW4 is coupled to the ground voltage GND. The first terminal of the switch SW5 is coupled to the power supply voltage VDDQ, the control terminal of the switch SW5 receives the inverted input control signal CTLRXB, and the second terminal of the switch SW5 is coupled to the slow mode voltage VS.

具體而言,當輸入控制訊號CTLRX為低邏輯準位(即CTLRX=L)時,由於反相輸入控制訊號CTLRXB為高邏輯準位(即CTLRXB=H),高速模式電路140中的節點電壓N1為低邏輯準位,從而開關SW1導通而使高速模式電壓VN固定為高邏輯準位,而 開關SW2與開關SW3不導通,串聯電阻RS無法對電源電壓VDDQ進行分壓而產生參考電壓VREF。相對地,由於輸入控制訊號CTLRX為低邏輯準位(即CTLRX=L),反相輸入控制訊號CTLRXB為高邏輯準位(即CTLRXB=H),慢速模式電路150中的開關SW4導通而開關SW5不導通,使得反相器NOT3對輸入訊號VIN進行反相而輸出慢速模式電壓VS。因此,在當輸入控制訊號CTLRX為低邏輯準位(即CTLRX=L)時,慢速模式電路150接收輸入訊號VIN而產生慢速模式電壓VS,反及閘NAND1對固定為高邏輯準位的高速模式電壓VN與藉由輸入訊號VIN產生的慢速模式電壓VS進行反及(NAND)運算,而產生輸出訊號VOUT。 Specifically, when the input control signal CTLRX is at a low logic level (ie CTLRX=L), since the inverting input control signal CTLRXB is at a high logic level (ie CTLRXB=H), the node voltage N1 in the high-speed mode circuit 140 Is a low logic level, so that the switch SW1 is turned on and the high-speed mode voltage VN is fixed to a high logic level, and The switch SW2 and the switch SW3 are not conductive, and the series resistor RS cannot divide the power supply voltage VDDQ to generate the reference voltage VREF. In contrast, since the input control signal CTLRX is at a low logic level (ie CTLRX=L), and the inverting input control signal CTLRXB is at a high logic level (ie CTLRXB=H), the switch SW4 in the slow mode circuit 150 is turned on to switch SW5 is not turned on, so that the inverter NOT3 inverts the input signal VIN and outputs the slow mode voltage VS. Therefore, when the input control signal CTLRX is at a low logic level (ie CTLRX=L), the slow mode circuit 150 receives the input signal VIN and generates a slow mode voltage VS, and the pair of NAND1 is fixed at a high logic level. The high-speed mode voltage VN and the slow-mode voltage VS generated by the input signal VIN perform a NAND operation to generate an output signal VOUT.

必須說明的是,在慢速模式(即CTLRX=L)中慢速模式電路150被致能,相較於高速模式(即CTLRX=H)中高速模式電路140被致能,慢速模式中慢速模式電路150中的輸入訊號VIN相較於高速模式中高速模式電路140多經過了一個反相器的延遲(即反相器NOT3)。必須說明的是,本實施例僅為示例,本發明不限制產生延遲的反相器個數。因此在慢速模式(即CTLRX=L)下,儘管輸入接收器160的輸入輸出反應相對較慢,但是消耗電流小於高速模式電路140中的消耗電流,從而可以延長電池壽命。 It must be noted that the slow mode circuit 150 is enabled in the slow mode (ie CTLRX=L), compared to the high-speed mode (ie CTLRX=H) when the high-speed mode circuit 140 is enabled, the slow mode is slow Compared with the high-speed mode circuit 140 in the high-speed mode, the input signal VIN in the high-speed mode circuit 150 has passed an inverter delay (that is, the inverter NOT3). It must be noted that this embodiment is only an example, and the present invention does not limit the number of inverters that generate a delay. Therefore, in the slow mode (ie, CTLRX=L), although the input and output response of the input receiver 160 is relatively slow, the current consumption is less than that in the high-speed mode circuit 140, so that the battery life can be prolonged.

參照圖5,記憶體裝置10更包括晶片外驅動器(Off-Chip Driver,OCD)500,晶片外驅動器500至少配置在輸入輸出電路130中,並且包括資料選通訊號DQS(未繪示)與資料總線DQ。晶片外驅動器500包括第一晶片外驅動器510、第二晶片外驅動器520, 晶片外驅動器500用以依據傳輸控制訊號CTLTX而對輸入資料DATA_IN進行緩衝,以產生輸出資料DATA_OUT。第一晶片外驅動器510接收輸入控制訊號CTLRX,第一晶片外驅動器510依據傳輸控制訊號CTLTX而被致能或禁能。第二晶片外驅動器520配置為常時操作,晶片外驅動器500用以依據傳輸控制訊號CTLTX,而動態調整由輸入資料DATA_IN緩衝至輸出資料DATA_OUT的電流驅動力,進而將調整電流驅動力後之輸出資料DATA_OUT提供至資料總線DQ。 5, the memory device 10 further includes an off-chip driver (Off-Chip Driver, OCD) 500, the off-chip driver 500 is at least configured in the input and output circuit 130, and includes the data selection communication number DQS (not shown) and data Bus DQ. The off-chip driver 500 includes a first off-chip driver 510 and a second off-chip driver 520, The off-chip driver 500 is used for buffering the input data DATA_IN according to the transmission control signal CTLTX to generate the output data DATA_OUT. The first off-chip driver 510 receives the input control signal CTLRX, and the first off-chip driver 510 is enabled or disabled according to the transmission control signal CTLTX. The second off-chip driver 520 is configured for constant operation. The off-chip driver 500 is used to dynamically adjust the current driving force buffered from the input data DATA_IN to the output data DATA_OUT according to the transmission control signal CTLTX, and then the output data after the current driving force is adjusted DATA_OUT is provided to the data bus DQ.

詳細來說,第一晶片外驅動器510包括晶片外驅動器控制電路530與輸出級540。晶片外驅動器控制電路530接收傳輸控制訊號CTLTX與輸入資料DATA_IN,晶片外驅動器控制電路530依據傳輸控制訊號CTLTX而被致能或禁能,用以調整提供至輸出級540的電壓。輸出級540包括電晶體PM4與電晶體NM4,用以依據晶片外驅動器控制電路530所提供的電壓產生輸出資料DATA_OUT。另一方面,第二晶片外驅動器520包括晶片外驅動器控制電路550與輸出級560。晶片外驅動器控制電路550接收輸入資料DATA_IN,用以調整提供至輸出級540的電壓。輸出級560包括電晶體PM5與電晶體NM5,用以依據晶片外驅動器控制電路550所提供的電壓產生輸出資料DATA_OUT。 In detail, the first off-chip driver 510 includes an off-chip driver control circuit 530 and an output stage 540. The off-chip driver control circuit 530 receives the transmission control signal CTLTX and the input data DATA_IN, and the off-chip driver control circuit 530 is enabled or disabled according to the transmission control signal CTLTX to adjust the voltage provided to the output stage 540. The output stage 540 includes a transistor PM4 and a transistor NM4 for generating output data DATA_OUT according to the voltage provided by the off-chip driver control circuit 530. On the other hand, the second off-chip driver 520 includes an off-chip driver control circuit 550 and an output stage 560. The off-chip driver control circuit 550 receives the input data DATA_IN for adjusting the voltage provided to the output stage 540. The output stage 560 includes a transistor PM5 and a transistor NM5 for generating output data DATA_OUT according to the voltage provided by the off-chip driver control circuit 550.

具體而言,當虛擬靜態隨機存取記憶體110依據暫存器設定碼CR判斷輸入輸出電路130被設定為高速模式時,依據傳輸控制訊號CTLTX致能第一晶片外驅動器510。當虛擬靜態隨機存 取記憶體110依據暫存器設定碼CR判斷輸入輸出電路130被設定為慢速模式時,依據傳輸控制訊號CTLTX禁能第一晶片外驅動器510。由於第二晶片外驅動器520被配至為為常時操作,因此在高速模式下第一晶片外驅動器510與第二晶片外驅動器520皆被致能,而在慢速模式下僅有第二晶片外驅動器520被致能。換句話說,晶片外驅動器500可藉由暫存器設定碼CR調整資料輸入輸出的電流驅動力,以根據高速模式或慢速模式提供最佳DQ總線區動能力。 Specifically, when the virtual static random access memory 110 determines that the input/output circuit 130 is set to the high-speed mode according to the register setting code CR, the first off-chip driver 510 is enabled according to the transmission control signal CTLTX. When virtual static random storage When the memory 110 determines that the input/output circuit 130 is set to the slow mode according to the register setting code CR, the first off-chip driver 510 is disabled according to the transmission control signal CTLTX. Since the second off-chip driver 520 is configured for constant operation, both the first off-chip driver 510 and the second off-chip driver 520 are enabled in the high-speed mode, and only the second off-chip driver 520 is enabled in the slow mode. The driver 520 is enabled. In other words, the off-chip driver 500 can adjust the current driving force of the data input and output through the register setting code CR, so as to provide the best DQ bus area dynamic ability according to the high-speed mode or the slow-speed mode.

參照圖2、圖6,讀寫資料選通訊號RWDS用以使微處理器170獲知虛擬靜態隨機存取記憶體110的操作模式的狀態轉變。由於更新電源電壓VDDQ需要過渡時間,在等待該過渡時間時虛擬靜態隨機存取記憶體110可以運用讀寫資料選通訊號RWDS告知微處理器170關於虛擬靜態隨機存取記憶體110的操作模式。具體來說,於步驟S610中,虛擬靜態隨機存取記憶體110開始存取。接著,於步驟S620,判斷電源電壓VDDQ是否已被調整。如果電源電壓VDDQ未被調整時,進入步驟S625。當電源電壓VDDQ已被調整時,進入步驟S630。於步驟S630,控制讀寫資料選通訊號RWDS的邏輯準位。當讀寫資料選通訊號RWDS為低邏輯準位(即RWDS=L)時,進入步驟S640。當讀寫資料選通訊號RWDS為高邏輯準位(即RWDS=H),則重新回到步驟S630,並且變為步驟S650,以通知微處理器170電源電壓VDDQ正在調整。於步驟S640中,告知微處理器170準備接收事務(transaction) 以進行陣列存取。於步驟S650,告知微處理器170目前操作模式正在調整中。 Referring to FIGS. 2 and 6, the communication number RWDS is selected for reading and writing data to enable the microprocessor 170 to learn the state transition of the operation mode of the virtual static random access memory 110. Since it takes a transition time to update the power supply voltage VDDQ, while waiting for the transition time, the virtual static random access memory 110 can use the read and write data to select the communication number RWDS to inform the microprocessor 170 about the operation mode of the virtual static random access memory 110. Specifically, in step S610, the virtual static random access memory 110 starts to access. Next, in step S620, it is determined whether the power supply voltage VDDQ has been adjusted. If the power supply voltage VDDQ has not been adjusted, go to step S625. When the power supply voltage VDDQ has been adjusted, step S630 is entered. In step S630, the logic level of the communication number RWDS is controlled to read and write data. When the communication number RWDS selected for reading and writing data is at a low logic level (ie, RWDS=L), step S640 is entered. When the communication number RWDS selected for reading and writing data is at a high logic level (ie, RWDS=H), step S630 returns to step S650 to notify the microprocessor 170 that the power supply voltage VDDQ is being adjusted. In step S640, inform the microprocessor 170 that it is ready to receive a transaction (transaction) For array access. In step S650, the microprocessor 170 is notified that the current operating mode is being adjusted.

參照圖7,於步驟S710中,控制器120依據所述記憶體裝置10的操作模式而調整電源電壓VDDQ與時脈頻率。接著,於步驟S720,控制器120基於經調整的電源電壓VDDQ與經調整的時脈頻率而產生暫存器設定碼CR。於步驟S730,虛擬靜態隨機存取記憶體110依據暫存器設定碼CR而致能高速模式電路140以及慢速模式電路150中的一者,並禁能高速模式電路140以及慢速模式電路150中的另一者。 Referring to FIG. 7, in step S710, the controller 120 adjusts the power supply voltage VDDQ and the clock frequency according to the operation mode of the memory device 10. Next, in step S720, the controller 120 generates a register setting code CR based on the adjusted power supply voltage VDDQ and the adjusted clock frequency. In step S730, the virtual static random access memory 110 enables one of the high-speed mode circuit 140 and the slow mode circuit 150 according to the register setting code CR, and disables the high-speed mode circuit 140 and the slow mode circuit 150 The other one.

綜上所述,在本發明的實施例中,所述記憶體裝置及其輸入輸出緩衝控制方法用以依據操作模式調整電源電壓與時脈頻率,藉由經調整的電源電壓與時脈頻率產生暫存器設定碼,依據暫存器設定碼致能輸入輸出電路中的高速模式電路或慢速模式電路,以動態調整輸入輸出電路的存取時間。並藉由暫存器設定碼調整晶片外驅動器資料的電流驅動力。另外,微處理器可以被通知電源電壓的狀態轉變。本發明藉由操作模式最佳化地控制輸入輸出電路,可實現更快的速度並延長電池壽命。 To sum up, in the embodiment of the present invention, the memory device and its input/output buffer control method are used to adjust the power supply voltage and clock frequency according to the operation mode, and the adjusted power supply voltage and clock frequency are used to generate The register setting code enables the high-speed mode circuit or the slow mode circuit in the input/output circuit according to the register setting code to dynamically adjust the access time of the input/output circuit. And adjust the current driving force of the off-chip driver data through the register setting code. In addition, the microprocessor can be notified of the state transition of the power supply voltage. The present invention optimizes the control of the input and output circuits through the operation mode, which can achieve faster speed and prolong battery life.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

10:記憶體裝置 10: Memory device

110:虛擬靜態隨機存取記憶體 110: Virtual Static Random Access Memory

120:控制器 120: Controller

130:輸入輸出電路 130: Input and output circuit

140:高速模式電路 140: High-speed mode circuit

150:慢速模式電路 150: Slow mode circuit

Claims (13)

一種記憶體裝置,包括:虛擬靜態隨機存取記憶體,包括具有高速模式電路與慢速模式電路的輸入輸出電路;以及控制器,耦接至所述虛擬靜態隨機存取記憶體,配置為依據所述記憶體裝置的操作模式而調整電源電壓與時脈頻率,並基於經調整電源電壓與經調整時脈頻率而產生暫存器設定碼,其中所述虛擬靜態隨機存取記憶體依據所述暫存器設定碼而致能所述高速模式電路以及所述慢速模式電路中的一者,並禁能所述高速模式電路以及所述慢速模式電路中的另一者。 A memory device includes: a virtual static random access memory, including an input and output circuit having a high-speed mode circuit and a slow mode circuit; and a controller, coupled to the virtual static random access memory, and configured according to The operating mode of the memory device adjusts the power supply voltage and the clock frequency, and generates a register setting code based on the adjusted power supply voltage and the adjusted clock frequency, wherein the virtual static random access memory is based on the The register setting code enables one of the high-speed mode circuit and the slow mode circuit, and disables the other of the high-speed mode circuit and the slow mode circuit. 如請求項1所述的記憶體裝置,其中當所述虛擬靜態隨機存取記憶體依據所述暫存器設定碼判斷所述輸入輸出電路被設定為高速模式時,致能所述高速模式電路並禁能所述慢速模式電路;以及當所述虛擬靜態隨機存取記憶體依據所述暫存器設定碼判斷所述輸入輸出電路被設定為慢速模式時,致能所述慢速模式電路並禁能所述高速模式電路。 The memory device according to claim 1, wherein when the virtual static random access memory determines that the input/output circuit is set to the high-speed mode according to the register setting code, the high-speed mode circuit is enabled And disable the slow mode circuit; and enable the slow mode when the virtual static random access memory determines that the input/output circuit is set to the slow mode according to the register setting code The circuit also disables the high-speed mode circuit. 如請求項1所述的記憶體裝置,其中所述暫存器設定碼包括模式設定或延遲計數。 The memory device according to claim 1, wherein the register setting code includes a mode setting or a delay count. 如請求項1所述的記憶體裝置,其中所述虛擬靜態隨機存取記憶體更包括命令解碼器,所述命令解碼器用以接收並解碼所述暫存器設定碼以產生輸入控制訊號與傳輸控制訊號。 The memory device according to claim 1, wherein the virtual static random access memory further includes a command decoder, and the command decoder is configured to receive and decode the register setting code to generate input control signals and transmit Control signal. 如請求項4所述的記憶體裝置,其中所述虛擬靜態隨機存取記憶體依據所述輸入控制訊號而致能所述高速模式電路以及所述慢速模式電路中的一者,並禁能所述高速模式電路以及所述慢速模式電路中的另一者。 The memory device according to claim 4, wherein the virtual static random access memory enables one of the high-speed mode circuit and the slow mode circuit according to the input control signal, and disables The other of the high speed mode circuit and the slow mode circuit. 如請求項1所述的記憶體裝置,其中所述控制器更包括:微處理器,耦接所述虛擬靜態隨機存取記憶體,所述微處理器依據所述記憶體裝置的所述操作模式而產生電源管理控制信號並調整所述時脈頻率,且所述微處理器依據所述時脈頻率的變化而產生所述暫存器設定碼,其中在所述微處理器與所述虛擬靜態隨機存取記憶體之間具有資料總線與讀寫資料選通訊號;電源管理電路,耦接所述微處理器,所述電源管理電路依據所述電源管理控制訊號產生電源控制訊號;以及電源電路,耦接所述虛擬靜態隨機存取記憶體、所述微處理器以及電源管理電路,所述電源電路依據所述電源控制訊號產生電源電壓並提供至所述微處理器與所述虛擬靜態隨機存取記憶體。 The memory device according to claim 1, wherein the controller further includes: a microprocessor coupled to the virtual static random access memory, the microprocessor according to the operation of the memory device Mode to generate a power management control signal and adjust the clock frequency, and the microprocessor generates the register setting code according to the change in the clock frequency, wherein the microprocessor and the virtual The static random access memory has a data bus and a communication number for reading and writing data; a power management circuit, coupled to the microprocessor, and the power management circuit generates a power control signal according to the power management control signal; and a power supply A circuit coupled to the virtual static random access memory, the microprocessor, and a power management circuit. The power circuit generates a power voltage according to the power control signal and supplies it to the microprocessor and the virtual static Random access memory. 如請求項4所述的記憶體裝置,其中所述輸入輸出電路更包括輸入接收器,所述輸入接收器包括第一反相器,配置為接收並反相所述輸入控制訊號以產生反相輸入控制訊號; 高速模式電路,耦接至所述第一反相器,配置為接收所述反相輸入控制訊號與輸入訊號,以產生高速模式電壓;慢速模式電路,耦接至所述第一反相器,配置為接收所述反相輸入控制訊號與所述輸入訊號,以產生慢速模式電壓;以及反及閘,耦接所述高速模式電路與所述慢速模式電路,被配置為接收所述高速模式電壓以及所述慢速模式電壓,並對所述高速模式電壓以及所述慢速模式電壓進行反及邏輯運算以產生所述輸出訊號。 The memory device according to claim 4, wherein the input/output circuit further includes an input receiver, and the input receiver includes a first inverter configured to receive and invert the input control signal to generate an inverted signal Input control signal; A high-speed mode circuit, coupled to the first inverter, configured to receive the inverting input control signal and an input signal to generate a high-speed mode voltage; a slow mode circuit, coupled to the first inverter , Configured to receive the inverting input control signal and the input signal to generate a slow mode voltage; and an inverter, coupled to the high speed mode circuit and the slow mode circuit, and configured to receive the A high-speed mode voltage and the slow mode voltage, and an inverse logic operation is performed on the high-speed mode voltage and the slow mode voltage to generate the output signal. 如請求項7所述的記憶體裝置,其中所述高速模式電路包括:第二反相器,耦接至所述第一反相器,配置為接收所述反相輸入控制訊號,以產生第一節點電壓;第一開關,所述第一開關的第一端耦接至電源電壓,所述第一開關的控制端耦接至所述第一節點電壓,所述第一開關的第二端耦接至所述高速模式電壓;差動放大器,具有電流鏡負載,配置為接收所述輸入訊號,以產生所述高速模式電壓;串聯電阻,所述串聯電阻的第一端耦接至所述電源電壓,所述串聯電組包括第一電阻與第二電阻,所述串聯電阻藉由分壓操作以產生參考電壓,所述第一電阻耦接在所述電源電壓與所述參考電壓之間, 第二開關,所述第二開關的第一端耦接至所述差動放大器,所述第二開關的控制端耦接至所述第一節點電壓,所述第二開關的第二端耦接至接地電壓;以及第三開關,所述第三開關的第一端耦接至所述第二電阻,所述第三開關的控制端耦接至所述第一節點電壓,所述第三開關的第二端耦接至所述接地電壓。 The memory device according to claim 7, wherein the high-speed mode circuit includes: a second inverter, coupled to the first inverter, configured to receive the inverting input control signal to generate a second inverter A node voltage; a first switch, the first terminal of the first switch is coupled to the power supply voltage, the control terminal of the first switch is coupled to the first node voltage, the second terminal of the first switch Coupled to the high-speed mode voltage; a differential amplifier having a current mirror load, configured to receive the input signal to generate the high-speed mode voltage; a series resistor, the first end of the series resistor is coupled to the A power supply voltage, the series electrical group includes a first resistor and a second resistor, the series resistor generates a reference voltage through a voltage dividing operation, and the first resistor is coupled between the power supply voltage and the reference voltage , A second switch, a first terminal of the second switch is coupled to the differential amplifier, a control terminal of the second switch is coupled to the first node voltage, and a second terminal of the second switch is coupled Connected to the ground voltage; and a third switch, the first end of the third switch is coupled to the second resistor, the control end of the third switch is coupled to the first node voltage, the third The second end of the switch is coupled to the ground voltage. 如請求項7所述的記憶體裝置,其中所述慢速模式電路包括:第三反相器,所述第三反相器的第一端耦接至所述電源電壓,所述第三反相器的輸入端耦接至輸入訊號,所述第三反相器的輸出端耦接至所述慢速模式電壓;第四開關,所述第四開關的第一端耦接至所述第三反相器的第二端,所述第四開關的控制端接收所述反相輸入控制訊號,所述第四開關的第二端耦接至所述接地電壓;以及第五開關,所述第五開關的第一端耦接至所述電源電壓,所述第五開關的控制端接收所述反相輸入控制訊號,所述第五開關的第二端耦接至所述慢速模式電壓。 The memory device according to claim 7, wherein the slow mode circuit includes a third inverter, a first terminal of the third inverter is coupled to the power supply voltage, and the third inverter The input terminal of the inverter is coupled to the input signal, the output terminal of the third inverter is coupled to the slow mode voltage; a fourth switch, the first terminal of the fourth switch is coupled to the first The second terminal of the three inverter, the control terminal of the fourth switch receives the inverting input control signal, the second terminal of the fourth switch is coupled to the ground voltage; and the fifth switch, the The first terminal of the fifth switch is coupled to the power supply voltage, the control terminal of the fifth switch receives the inverting input control signal, and the second terminal of the fifth switch is coupled to the slow mode voltage . 如請求項4所述的記憶體裝置,其中所述記憶體裝置更包括晶片外驅動器,所述晶片外驅動器包括:第一晶片外驅動器,接收所述輸入控制訊號,所述第一晶片外驅動器依據所述傳輸控制訊號而被致能或禁能;以及第二晶片外驅動器,配置為常時啟動, 其中所述晶片外驅動器用以依據所述傳輸控制訊號動態調整所述晶片外驅動器的電流驅動力。 The memory device according to claim 4, wherein the memory device further includes an off-chip driver, the off-chip driver includes: a first off-chip driver that receives the input control signal, the first off-chip driver Is enabled or disabled according to the transmission control signal; and the second off-chip driver is configured to be always activated, The off-chip driver is used for dynamically adjusting the current driving force of the off-chip driver according to the transmission control signal. 如請求項10所述的記憶體裝置,其中當所述虛擬靜態隨機存取記憶體依據所述暫存器設定碼判斷所述輸入輸出電路被設定為高速模式時,依據所述傳輸控制訊號致能所述第一晶片外驅動器;以及當所述虛擬靜態隨機存取記憶體依據所述暫存器設定碼判斷所述輸入輸出電路被設定為慢速模式時,依據所述傳輸控制訊號禁能所述第一晶片外驅動器。 The memory device according to claim 10, wherein when the virtual static random access memory determines that the input/output circuit is set to the high-speed mode according to the register setting code, it is triggered according to the transmission control signal Enabling the first off-chip driver; and when the virtual static random access memory determines that the input/output circuit is set to slow mode according to the register setting code, disable it according to the transmission control signal The first off-chip driver. 如請求項6所述的記憶體裝置,其中所述讀寫資料選通訊號用以使所述微處理器獲知所述虛擬靜態隨機存取記憶體的所述操作模式。 The memory device according to claim 6, wherein the read and write data selection communication number is used to enable the microprocessor to learn the operation mode of the virtual static random access memory. 一種輸入輸出緩衝控制方法,適用於記憶體裝置,所述記憶體裝置包括虛擬靜態隨機存取記憶體與控制器,所述虛擬靜態隨機存取記憶體包括具有高速模式電路與慢速模式電路的輸入輸出電路,所述輸入輸出緩衝控制方法包括:依據所述記憶體裝置的操作模式而調整電源電壓與時脈頻率;基於經調整電源電壓與經調整時脈頻率而產生暫存器設定碼;以及依據所述暫存器設定碼而致能所述高速模式電路以及所述慢速模式電路中的一者,並禁能所述高速模式電路以及所述慢速模 式電路中的另一者。 An input and output buffer control method, suitable for a memory device, the memory device includes a virtual static random access memory and a controller, the virtual static random access memory includes a high-speed mode circuit and a slow mode circuit The input and output circuit, the input and output buffer control method includes: adjusting the power supply voltage and clock frequency according to the operation mode of the memory device; generating a register setting code based on the adjusted power supply voltage and the adjusted clock frequency; And enable one of the high-speed mode circuit and the slow mode circuit according to the register setting code, and disable the high-speed mode circuit and the slow mode The other one in the circuit.
TW109124875A 2020-07-23 2020-07-23 Memory apparatus and method of input and output buffer control thereof TWI726775B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109124875A TWI726775B (en) 2020-07-23 2020-07-23 Memory apparatus and method of input and output buffer control thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109124875A TWI726775B (en) 2020-07-23 2020-07-23 Memory apparatus and method of input and output buffer control thereof

Publications (2)

Publication Number Publication Date
TWI726775B true TWI726775B (en) 2021-05-01
TW202205272A TW202205272A (en) 2022-02-01

Family

ID=77036529

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109124875A TWI726775B (en) 2020-07-23 2020-07-23 Memory apparatus and method of input and output buffer control thereof

Country Status (1)

Country Link
TW (1) TWI726775B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6934200B2 (en) * 2001-03-12 2005-08-23 Indian Institute Of Science Yield and speed enhancement of semiconductor integrated circuits using post fabrication transistor mismatch compensation circuitry
US20070121499A1 (en) * 2005-11-28 2007-05-31 Subhasis Pal Method of and system for physically distributed, logically shared, and data slice-synchronized shared memory switching
TWI454900B (en) * 2007-05-03 2014-10-01 Microchip Tech Inc Power optimization when using external clock sources
TW201737089A (en) * 2014-11-10 2017-10-16 慧榮科技股份有限公司 Data storage device and operating method
US10565048B2 (en) * 2017-12-01 2020-02-18 Arista Networks, Inc. Logic buffer for hitless single event upset handling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6934200B2 (en) * 2001-03-12 2005-08-23 Indian Institute Of Science Yield and speed enhancement of semiconductor integrated circuits using post fabrication transistor mismatch compensation circuitry
US20070121499A1 (en) * 2005-11-28 2007-05-31 Subhasis Pal Method of and system for physically distributed, logically shared, and data slice-synchronized shared memory switching
TWI454900B (en) * 2007-05-03 2014-10-01 Microchip Tech Inc Power optimization when using external clock sources
TW201737089A (en) * 2014-11-10 2017-10-16 慧榮科技股份有限公司 Data storage device and operating method
US10565048B2 (en) * 2017-12-01 2020-02-18 Arista Networks, Inc. Logic buffer for hitless single event upset handling

Also Published As

Publication number Publication date
TW202205272A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
US9411391B2 (en) Multistage low leakage address decoder using multiple power modes
US9368189B2 (en) Semiconductor device including output circuit constituted of plural unit buffer circuits in which impedance thereof are adjustable
US9886994B2 (en) Semiconductor device having CAL latency function
KR20160056056A (en) Semiconductor memory device and memory system including the same
KR101753251B1 (en) Static random access memory device including negative voltage level shifter
JP5130792B2 (en) Semiconductor integrated circuit and system
TWI490867B (en) Variation-tolerant word-line under-drive scheme for random access memory
TWI779098B (en) Memory device, system-on-chip device and method of operating memory device
KR20140076741A (en) Semiconductor memory devices and memory systems
KR20140076735A (en) Volatile memory devices and memory systems
JP5209083B2 (en) Semiconductor device
JPH0927192A (en) Semiconductor integrated circuit device
JP2015050691A (en) Semiconductor device
KR20130131454A (en) Method and system for dynamic power management of memories
US6897684B2 (en) Input buffer circuit and semiconductor memory device
JP2012133887A (en) Column selection signal control device and method for semiconductor memory
JP5224040B2 (en) Semiconductor integrated circuit device
JP5042448B2 (en) Semiconductor memory device, integrated circuit device, and memory system
TWI726775B (en) Memory apparatus and method of input and output buffer control thereof
JP6974549B1 (en) Memory device and its input / output buffer control method
JP2015232772A (en) Control method for system and system
US7400547B2 (en) Semiconductor integrated circuit with power-reducing standby state
CN112992199B (en) Memory device and memory system having input circuit
KR20230062500A (en) Memory apparatus and method of input and output buffer control thereof
JP2008176907A (en) Semiconductor memory device