TWI719430B - Integrated chip and method of forming the same - Google Patents

Integrated chip and method of forming the same Download PDF

Info

Publication number
TWI719430B
TWI719430B TW108109662A TW108109662A TWI719430B TW I719430 B TWI719430 B TW I719430B TW 108109662 A TW108109662 A TW 108109662A TW 108109662 A TW108109662 A TW 108109662A TW I719430 B TWI719430 B TW I719430B
Authority
TW
Taiwan
Prior art keywords
layer
field plate
etch stop
stop layer
dielectric
Prior art date
Application number
TW108109662A
Other languages
Chinese (zh)
Other versions
TW201941428A (en
Inventor
盧卉庭
王培倫
鐘于彰
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/927,281 external-priority patent/US10636904B2/en
Priority claimed from US16/174,626 external-priority patent/US10756208B2/en
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW201941428A publication Critical patent/TW201941428A/en
Application granted granted Critical
Publication of TWI719430B publication Critical patent/TWI719430B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The present disclosure relates to an integrated chip. In some embodiments, the integrated chip has a gate structure disposed over a substrate between source and drain regions and a dielectric layer laterally extending from over the gate structure to between the gate structure and the drain region. A composite etch stop layer having a plurality of different dielectric materials is stacked over the dielectric layer. A contact etch stop layer directly contacts an upper surface and sidewalls of the composite etch stop layer. A field plate is laterally surrounded by a first inter-level dielectric (ILD) layer and vertically extends from a top of the first ILD layer, through the contact etch stop layer, and into the composite etch stop layer.

Description

積體晶片及其形成方法Integrated wafer and its forming method

本發明的實施例是有關於積體晶片及其形成方法。 The embodiment of the present invention relates to an integrated wafer and a method of forming the same.

現代積體晶片包括形成於半導體基底(例如,矽)上的數百萬或數十億個半導體元件。積體晶片(Integrated chips;IC)可視IC的應用而使用許多不同類型的電晶體元件。近年來,行動(cellular)及射頻(radio frequency;RF)元件的市場逐漸擴大使得高壓電晶體元件的使用有顯著增加。舉例而言,高壓電晶體元件由於其處理高崩潰電壓(breakdown voltage,BV)(例如,大於約50伏)及高頻率的能力而通常用於RF發射/接收鏈中的功率放大器中。 Modern integrated wafers include millions or billions of semiconductor elements formed on a semiconductor substrate (e.g., silicon). Integrated chips (IC) can use many different types of transistor components depending on the application of the IC. In recent years, the market for cellular and radio frequency (RF) components has gradually expanded, resulting in a significant increase in the use of high-voltage transistor components. For example, high-voltage transistor elements are commonly used in power amplifiers in the RF transmit/receive chain due to their ability to handle high breakdown voltage (BV) (for example, greater than about 50 volts) and high frequencies.

本發明實施例的一種積體晶片,包括閘極結構、介電層、複合蝕刻終止層、接觸蝕刻終止層以及場板。閘極結構安置於源極區與汲極區之間的基底上方。介電層自所述閘極結構上方橫向地延伸至所述閘極結構與所述汲極區之間。複合蝕刻終止層包括堆疊於所述介電層上方的多個不同的介電材料。接觸蝕刻終止層 直接地接觸所述複合蝕刻終止層的上部表面及多個側壁。場板被第一層間介電層橫向地包圍,且自所述第一層間介電層的頂部垂直地延伸、延伸穿過所述接觸蝕刻終止層且延伸至所述複合蝕刻終止層中。 An integrated wafer according to an embodiment of the present invention includes a gate structure, a dielectric layer, a composite etching stop layer, a contact etching stop layer, and a field plate. The gate structure is arranged above the substrate between the source region and the drain region. The dielectric layer extends laterally from above the gate structure to between the gate structure and the drain region. The composite etch stop layer includes a plurality of different dielectric materials stacked on the dielectric layer. Contact etch stop layer Directly contact the upper surface of the composite etch stop layer and a plurality of sidewalls. The field plate is laterally surrounded by the first interlayer dielectric layer, and extends vertically from the top of the first interlayer dielectric layer, extends through the contact etch stop layer, and extends into the composite etch stop layer .

本發明實施例的一種積體晶片,包括閘極結構、光阻保護氧化物、複合蝕刻終止層、多個導電接點以及場板。閘極結構安置於基底上方。光阻保護氧化物自所述閘極結構上方橫向地延伸至超過閘極結構的最外側壁。複合蝕刻終止層包括所述光阻保護氧化物上方的第一介電材料以及與所述第一介電材料的上部表面接觸的第二介電材料。多個導電接點被所述基底上方的第一層間介電層橫向地包圍。場板自所述第一層間介電層的頂部延伸至所述複合蝕刻終止層且包括與所述多個導電接點相同的材料,其中所述複合蝕刻終止層橫向地接觸所述場板的多個側壁,且所述複合蝕刻終止層使所述場板與所述光阻保護氧化物垂直地分隔開。 An integrated wafer according to an embodiment of the present invention includes a gate structure, a photoresist protective oxide, a composite etching stop layer, a plurality of conductive contacts, and a field plate. The gate structure is arranged above the substrate. The photoresist protective oxide extends laterally from above the gate structure to beyond the outermost sidewall of the gate structure. The composite etch stop layer includes a first dielectric material above the photoresist protective oxide and a second dielectric material in contact with the upper surface of the first dielectric material. A plurality of conductive contacts are laterally surrounded by the first interlayer dielectric layer above the substrate. A field plate extends from the top of the first interlayer dielectric layer to the composite etch stop layer and includes the same material as the plurality of conductive contacts, wherein the composite etch stop layer laterally contacts the field plate And the composite etch stop layer separates the field plate and the photoresist protection oxide vertically.

本發明實施例的一種形成積體晶片的方法,包括:在基底內的源極區與汲極區之間的所述基底上方形成閘極結構;在所述閘極結構上方且在所述閘極結構與所述汲極區之間形成介電層;在所述介電層上方形成複合蝕刻終止層,其中所述複合蝕刻終止層包括多個堆疊的介電材料;在所述複合蝕刻終止層上方形成第一層間介電層;選擇性地蝕刻所述第一層間介電層,以同時定義延伸至所述基底的多個接觸開口以及延伸至所述複合蝕刻終止層的場板開口;以及用一或多個導電材料填充所述多個接觸開口及所述場板開口。 A method of forming an integrated wafer according to an embodiment of the present invention includes: forming a gate structure above the substrate between the source region and the drain region in the substrate; A dielectric layer is formed between the pole structure and the drain region; a composite etch stop layer is formed above the dielectric layer, wherein the composite etch stop layer includes a plurality of stacked dielectric materials; and the composite etch stops A first interlayer dielectric layer is formed above the layer; the first interlayer dielectric layer is selectively etched to simultaneously define a plurality of contact openings extending to the substrate and a field plate extending to the composite etch stop layer Openings; and filling the plurality of contact openings and the field plate openings with one or more conductive materials.

100、800、2000、2200、2300、2400:高壓電晶體元件 100, 800, 2000, 2200, 2300, 2400: high voltage transistor components

102、802、2102:基底 102, 802, 2102: base

104、804:源極區 104, 804: source region

105:箭頭 105: Arrow

106:汲極區 106: Drain Region

108:閘極電極 108: gate electrode

110:閘極介電層 110: gate dielectric layer

112:通道區 112: Passage area

114、204、702、2104:漂移區 114, 204, 702, 2104: drift zone

116、210:閘極結構 116, 210: Gate structure

118、1504:第一層間介電層 118, 1504: first interlayer dielectric layer

120、814:接點 120, 814: Contact

120a:第一接點 120a: first contact

120b:第二接點 120b: second contact

120c:第三接點 120c: third contact

122、214、408、902:場板 122, 214, 408, 902: field board

124、402、404:介電層 124, 402, 404: Dielectric layer

126:第二介電層 126: second dielectric layer

128:第一後段製程金屬線 128: The first post-process metal wire

200、300、400、500、600、700a、700b、700c、1000:高壓LDMOS元件 200, 300, 400, 500, 600, 700a, 700b, 700c, 1000: high voltage LDMOS components

202、808、2106:主體區 202, 808, 2106: main area

206:額外STI區 206: Additional STI area

208、810:接觸區 208, 810: contact area

212:側壁間隔件 212: Sidewall spacer

302:隔離區 302: Quarantine

402:矽化物阻擋層 402: Silicide barrier

404:場板蝕刻終止層 404: Field plate etching stop layer

406、1502:接觸蝕刻終止層 406, 1502: contact etching stop layer

410、1702:第一金屬材料 410, 1702: the first metal material

412、1802:第二金屬材料 412, 1802: second metal material

414:內襯層 414: inner lining

416:第二層間介電層 416: second interlayer dielectric layer

418、504、604:第一金屬線層 418, 504, 604: the first metal wire layer

420:平坦表面 420: Flat surface

502、602、904:第二ILD層 502, 602, 904: the second ILD layer

506、606:導電路徑 506, 606: conductive path

704:深阱 704: Deep Well

706:相對摻雜下伏埋入層 706: Relatively doped underlying buried layer

708:基體區 708: matrix area

710:埋入層 710: buried layer

712:阱區 712: well region

802b:背側 802b: dorsal

802f:前側表面 802f: Front side surface

806:磊晶層 806: epitaxial layer

812:導電材料 812: conductive material

816:上覆金屬線層 816: Overlay metal wire layer

818:電路徑 818: Electrical Path

900、1200、1300、1400、1500、1600、1700、1800、1900、2100、2500、2600、2700、2800、2900、3000、3100、3200:橫截面圖 900, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2100, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200: cross-sectional view

906、2120:俯視圖 906, 2120: top view

1002:自對準漂移區 1002: self-aligned drift zone

1002s:側壁 1002s: sidewall

1100、3300:方法 1100, 3300: method

1102、1104、1106、1108、1110、1112、1114、1116、1118、1120、3302、3304、3306、3308、3310、3312、3314、3316、3318:動作 1102, 1104, 1106, 1108, 1110, 1112, 1114, 1116, 1118, 1120, 3302, 3304, 3306, 3308, 3310, 3312, 3314, 3316, 3318: Action

1202、1604、2702:罩幕層 1202, 1604, 2702: mask layer

1204:高能量摻雜劑 1204: high energy dopant

1602:第一蝕刻劑 1602: the first etchant

1606:接觸開口 1606: contact opening

1608:場板開口 1608: Field Board Opening

1704、3102:線 1704, 3102: Line

2002:光阻保護氧化物 2002: Photoresist protective oxide

2004:複合蝕刻終止層 2004: Composite etch stop layer

2006、2302、2402:第一介電材料 2006, 2302, 2402: the first dielectric material

2008、2304、2404:第二介電材料 2008, 2304, 2404: second dielectric material

2108:橫向距離 2108: Horizontal distance

2110:深度 2110: depth

2112、t 1 th 1 :第一厚度 2112, t 1 , th 1 : first thickness

2114:寬度 2114: width

2122:長度 2122: length

2116、d3、004:距離 2116, d 3, 004: distance

2118:矽化物層 2118: Silicide layer

2306、2406:第三介電材料 2306, 2406: third dielectric material

2408:第四介電材料 2408: Fourth Dielectric Material

3002:蝕刻劑 3002: Etchant

t 2 th 2 :第二厚度 t 2 , th 2 : second thickness

th 3 :第三厚度 th 3 : third thickness

th 4 :第四厚度 th 4 : fourth thickness

th 5 :厚度 th 5 : thickness

s:間距 s : Spacing

當結合附圖閱讀時,自以下詳細描述最佳地理解本揭露內容的態樣。應注意,根據業界中的標準慣例,各種特徵未按比例繪製。實際上,可出於論述清楚起見,任意地增加或減小各種特徵的尺寸。 When read in conjunction with the accompanying drawings, the aspect of the disclosure can be best understood from the following detailed description. It should be noted that according to standard practices in the industry, various features are not drawn to scale. In fact, the size of various features can be arbitrarily increased or decreased for clarity of discussion.

圖1繪示具有場板的所揭露之高壓電晶體元件的一些實施例的橫截面圖。 FIG. 1 shows a cross-sectional view of some embodiments of the disclosed high-voltage transistor element with field plates.

圖2至圖4繪示具有場板的所揭露之高壓橫向擴散金屬氧化物半導體場效電晶體(laterally diffused MOSFET;LDMOS)元件的一些其他實施例的橫截面圖。 2 to 4 show cross-sectional views of some other embodiments of the disclosed laterally diffused MOSFET (LDMOS) device with field plates.

圖5至圖6繪示藉由金屬互連佈線來達成的用於高壓LDMOS元件的場板偏壓組態(biasing configuration)的一些實施例的橫截面圖。 5 to 6 show cross-sectional views of some embodiments of field plate biasing configurations for high-voltage LDMOS devices achieved by metal interconnect wiring.

圖7A至圖7C繪示呈不同切換隔離配置的高壓LDMOS元件的一些實施例的橫截面圖。 7A to 7C show cross-sectional views of some embodiments of high-voltage LDMOS devices in different switching isolation configurations.

圖8繪示具有場板的源極朝下高壓電晶體元件的橫截面圖。 FIG. 8 shows a cross-sectional view of a high-voltage transistor element with a field plate facing downward.

圖9A至圖9B繪示在金屬線層上具有場板的所揭露之高壓LDMOS的一些實施例。 9A to 9B show some embodiments of the disclosed high-voltage LDMOS with field plates on the metal line layer.

圖10繪示具有自對準漂移區的高壓LDMOS元件的一些實施例。 FIG. 10 shows some embodiments of high-voltage LDMOS devices with self-aligned drift regions.

圖11繪示形成具有場板的高壓電晶體元件的方法的一些實施例的流程圖。 FIG. 11 shows a flowchart of some embodiments of a method of forming a high-voltage transistor element with a field plate.

圖12至圖19繪示形成具有場板的高壓電晶體元件的方法的 一些實施例的橫截面圖。 Figures 12 to 19 illustrate a method of forming a high-voltage transistor element with a field plate Cross-sectional views of some embodiments.

圖20至圖24繪示具有定義場板的複合蝕刻終止層的所揭露之高壓電晶體元件的一些實施例。 20-24 show some embodiments of the disclosed high-voltage transistor device with a composite etch stop layer defining a field plate.

圖25至圖32繪示形成具有定義場板的複合蝕刻終止層的高壓電晶體元件的方法的一些實施例的橫截面圖。 25 to 32 show cross-sectional views of some embodiments of a method of forming a high-voltage transistor element with a composite etch stop layer defining a field plate.

圖33繪示形成具有定義場板的複合蝕刻終止層的高壓電晶體元件的方法的一些實施例的流程圖。 FIG. 33 shows a flowchart of some embodiments of a method of forming a high-voltage transistor element with a composite etch stop layer defining a field plate.

以下揭露內容提供用於實施所提供主題之不同特徵的許多不同實施例或實例。以下描述組件及配置的具體實例以簡化本揭露內容。當然,這些組件及配置僅為實例且不意欲為限制性的。舉例而言,在以下描述中,第一特徵在第二特徵上方或上的形成可包含第一特徵及第二特徵直接接觸地形成的實施例,且亦可包含額外特徵可在第一特徵與第二特徵之間形成使得第一特徵與第二特徵可不直接接觸的實施例。另外,本揭露內容可在各種實例中重複圖式元件符號及/或字母。此重複是出於簡化及清楚之目的,且自身並不規定所論述的各種實施例及/或配置之間的關係。 The following disclosure provides many different embodiments or examples for implementing different features of the provided subject matter. Specific examples of components and configurations are described below to simplify the disclosure. Of course, these components and configurations are only examples and are not intended to be limiting. For example, in the following description, the formation of the first feature on or on the second feature may include an embodiment in which the first feature and the second feature are formed in direct contact, and may also include additional features that may be formed between the first feature and the second feature. An embodiment is formed between the second features such that the first feature and the second feature may not directly contact each other. In addition, the content of the present disclosure may repeat graphical element symbols and/or letters in various examples. This repetition is for the purpose of simplification and clarity, and does not itself specify the relationship between the various embodiments and/or configurations discussed.

此外,為易於描述,可在本文中使用空間相對術語,諸如「在...之下」、「在...下方」、「低於」、「在...上方」、「高於」以及類似者,以描述如圖式中所繪示的一個元件或特徵與另一(一些)元件或特徵的關係。除圖式中所描繪的定向以外,空間相對術語意欲涵蓋元件在使用或操作中的不同定向。設備可以其他方式定向(旋轉90度或處於其他定向),且本文中所使用的空間相對描 述詞可同樣相應地進行解釋。 In addition, for ease of description, spatially relative terms can be used in this article, such as "below", "below", "below", "above", "above" And the like, to describe the relationship between one element or feature and another (some) elements or features as shown in the drawings. In addition to the orientations depicted in the drawings, spatially relative terms are intended to cover different orientations of elements in use or operation. The device can be oriented in other ways (rotated by 90 degrees or in other orientations), and the space used in this article is relatively descriptive. The predicate can also be interpreted accordingly.

高壓電晶體元件通常被建構為具有場板(field plate)。場板為導電元件,所述導電元件放置於通道區上方以藉由操控閘極電極所產生的電場(例如,減小峰值電場)來增強高壓電晶體元件的性能。藉由操控閘極電極所產生的電場,高壓電晶體元件可實現較高崩潰電壓。舉例而言,橫向擴散金屬氧化物半導體(laterally diffused metal oxide semiconductor;LDMOS)電晶體元件通常包括場板,所述場板自通道區延伸至相鄰的漂移區(drift region),所述相鄰的漂移區安置於通道區與汲極區之間。 The high-voltage crystal element is usually constructed with a field plate. The field plate is a conductive element that is placed above the channel region to enhance the performance of the high-voltage transistor element by manipulating the electric field generated by the gate electrode (for example, reducing the peak electric field). By manipulating the electric field generated by the gate electrode, the high-voltage transistor element can achieve a higher breakdown voltage. For example, a laterally diffused metal oxide semiconductor (LDMOS) transistor element usually includes a field plate that extends from the channel region to an adjacent drift region (drift region), and the adjacent The drift region is placed between the channel region and the drain region.

可以多種不同方式形成場板。舉例而言,可藉由使導電閘極材料(例如,多晶矽)自閘極電極朝向漂移區延伸來形成場板。然而,在此類配置中,場板與閘極偏壓(gate bias)同步(synchronize),其加重閘極-汲極電容(gate-to-drain capacitance)(Cgd)負擔且加大元件的切換損失。或者,導電閘極材料可經圖案化以形成分離的場板。此類配置減小閘極-汲極電容(Cgd),但場板的位置通常受設計規則(design rule)所限制。在又一替代方案中,可使用非閘極材料來形成場板。然而,此類解決方案使用額外處理步驟,將增加所得積體晶片的製造成本。 The field plates can be formed in many different ways. For example, the field plate can be formed by extending a conductive gate material (eg, polysilicon) from the gate electrode toward the drift region. However, in this type of configuration, the field plate is synchronized with the gate bias, which increases the burden on the gate-to-drain capacitance (Cgd) and increases the switching of the device loss. Alternatively, the conductive gate material can be patterned to form separate field plates. This type of configuration reduces the gate-drain capacitance (Cgd), but the location of the field plate is usually restricted by design rules. In yet another alternative, non-gate materials can be used to form the field plates. However, such solutions use additional processing steps, which will increase the manufacturing cost of the resulting integrated wafers.

相應地,本揭露內容是關於一種具有由非閘極材料製成的場板的高壓電晶體元件,所述場板與後段製程(back-end-of-the-line;BEOL)的金屬層為同時形成,以實現低成本的製造方法。在一些實施例中,高壓電晶體元件具有閘極電極,所述閘極電極安置於源極區與汲極區之間的基底上方,所述源極區與所述汲極區位於基底內。介電層自閘極電極上方橫向地延伸 至配置於閘極電極與汲極區之間的漂移區。場板位於第一層間介電(inter-level dielectric;ILD)層內,所述第一層間介電層上覆於基底。場板自閘極電極上方橫向地延伸至漂移區上方,且自介電層垂直地延伸至第一ILD層的頂部表面。具有與場板相同的材料的多個金屬接點自第一ILD層的底部表面垂直地延伸至第一ILD層的頂部表面。 Correspondingly, the present disclosure relates to a high-voltage transistor element having a field plate made of non-gate material, the field plate and the back-end-of-the-line (BEOL) metal layer To form at the same time, in order to achieve a low-cost manufacturing method. In some embodiments, the high-voltage transistor element has a gate electrode disposed above the substrate between the source region and the drain region, and the source region and the drain region are located in the substrate . The dielectric layer extends laterally from above the gate electrode To the drift region arranged between the gate electrode and the drain region. The field plate is located in a first inter-level dielectric (ILD) layer, and the first inter-level dielectric layer covers the substrate. The field plate extends laterally from above the gate electrode to above the drift region, and extends vertically from the dielectric layer to the top surface of the first ILD layer. A plurality of metal contacts having the same material as the field plate extend vertically from the bottom surface of the first ILD layer to the top surface of the first ILD layer.

圖1繪示具有場板122的所揭露之高壓電晶體元件100的一些實施例的橫截面圖。 FIG. 1 shows a cross-sectional view of some embodiments of the disclosed high-voltage transistor device 100 having a field plate 122.

高壓電晶體元件100包括安置於半導體基底102內的源極區104以及汲極區106。半導體基底102具有第一摻雜類型,而源極區104以及汲極區106具有摻雜濃度比半導體基底102更高的第二摻雜類型。在一些實施例中,第一摻雜類型可為n型摻雜,且第二摻雜類型可為p型摻雜。 The high-voltage crystal element 100 includes a source region 104 and a drain region 106 disposed in a semiconductor substrate 102. The semiconductor substrate 102 has a first doping type, and the source region 104 and the drain region 106 have a second doping type with a higher doping concentration than the semiconductor substrate 102. In some embodiments, the first doping type may be n-type doping, and the second doping type may be p-type doping.

閘極結構116在橫向地配置於源極區104與汲極區106之間的位置處安置於半導體基底102上方。閘極結構116包括閘極電極108,所述閘極電極108藉由閘極介電層110與半導體基底102分隔開。在接收偏壓後,閘極電極108用以產生電場,所述電場控制通道區112內的電荷載流子的移動,所述通道區112橫向地安置於源極區104與汲極區106之間。舉例而言,在操作期間,可相對於源極區104選擇性地施加閘極-源極電壓(VGS)於閘極電極108,從而形成通道區112中的導電通道。在施加閘極-源極電壓以形成導電通道時,施加汲極-源極電壓(VDS)以使源極區104與汲極區106之間的電荷載流子移動(例如,箭頭105所示)。 The gate structure 116 is disposed above the semiconductor substrate 102 at a position laterally disposed between the source region 104 and the drain region 106. The gate structure 116 includes a gate electrode 108 separated from the semiconductor substrate 102 by a gate dielectric layer 110. After receiving the bias voltage, the gate electrode 108 is used to generate an electric field, which controls the movement of charge carriers in the channel region 112, which is arranged laterally between the source region 104 and the drain region 106 between. For example, during operation, a gate-source voltage (VGS) can be selectively applied to the gate electrode 108 relative to the source region 104 to form a conductive channel in the channel region 112. When a gate-source voltage is applied to form a conductive channel, a drain-source voltage (VDS) is applied to move the charge carriers between the source region 104 and the drain region 106 (for example, as shown by arrow 105 ).

通道區112自源極區104橫向地延伸至相鄰的漂移區114 (亦即,汲極延伸區)。漂移區114包括摻雜濃度相對低的第二摻雜類型,其提供高工作電壓下的較高阻抗。閘極結構116安置於通道區112上方。在一些實施例中,閘極結構116可自通道區112上方延伸至上覆於漂移區114的一部分的位置。 The channel region 112 extends laterally from the source region 104 to the adjacent drift region 114 (That is, the drain extension area). The drift region 114 includes a second doping type with a relatively low doping concentration, which provides a higher impedance under a high operating voltage. The gate structure 116 is disposed above the channel region 112. In some embodiments, the gate structure 116 may extend from above the channel region 112 to a position overlying a portion of the drift region 114.

第一層間介電(ILD)層118安置於半導體基底102上方。一或多個導電金屬結構安置於第一ILD層118內。在一些實施例中,一或多個導電金屬結構包括多個接點120,所述接點用以提供源極區104、汲極區106或閘極電極108與安置於第二ILD層126內的第一後段製程(BEOL)的金屬線層128之間的垂直連接,所述第二ILD層126上覆於第一ILD層118。 The first interlayer dielectric (ILD) layer 118 is disposed on the semiconductor substrate 102. One or more conductive metal structures are disposed in the first ILD layer 118. In some embodiments, the one or more conductive metal structures include a plurality of contacts 120 for providing source regions 104, drain regions 106 or gate electrodes 108 and disposed in the second ILD layer 126 The second ILD layer 126 is overlaid on the first ILD layer 118 for the vertical connection between the metal line layers 128 of the first back end of line (BEOL).

一或多個導電金屬結構可更包括場板122,所述場板在上覆於閘極電極108及漂移區114的部分的位置處安置於第一ILD層118內。場板122包括與多個接點120相同的導電材料。場板122可安置於介電層124上方,所述介電層經配置以使場板122與漂移區114及閘極電極108分隔開。在一些實施例中,介電層124在一或多個方向上橫向地延伸超過場板122。 The one or more conductive metal structures may further include a field plate 122 disposed in the first ILD layer 118 at a position overlying the gate electrode 108 and the drift region 114. The field plate 122 includes the same conductive material as the plurality of contacts 120. The field plate 122 may be disposed above the dielectric layer 124, which is configured to separate the field plate 122 from the drift region 114 and the gate electrode 108. In some embodiments, the dielectric layer 124 extends laterally beyond the field plate 122 in one or more directions.

在操作期間,場板122經配置以作用於由閘極電極108所產生的電場。場板122可用以改變在漂移區114中由閘極電極108所產生的電場的分佈,其增強漂移區114的內部電場且增大漂移區114的漂移摻雜濃度,進而增強高壓電晶體元件100的崩潰電壓耐受力(breakdown voltage capability)。 During operation, the field plate 122 is configured to act on the electric field generated by the gate electrode 108. The field plate 122 can be used to change the distribution of the electric field generated by the gate electrode 108 in the drift region 114, which enhances the internal electric field of the drift region 114 and increases the drift doping concentration of the drift region 114, thereby enhancing the high-voltage transistor element 100 breakdown voltage capability (breakdown voltage capability).

圖2繪示包括具有場板214的高壓橫向擴散MOSFET(LDMOS)元件200的所揭露之高壓電晶體元件的一些其他實施例的橫截面圖。 FIG. 2 shows a cross-sectional view of some other embodiments of the disclosed high-voltage transistor device including a high-voltage laterally diffused MOSFET (LDMOS) device 200 with a field plate 214.

LDMOS元件200包括安置於半導體基底102內的源極區104以及汲極區106。半導體基底102具有第一摻雜類型,而源極區104以及汲極區106包括具有不同於第一摻雜類型的第二摻雜類型的高度摻雜區域。在一些實施例中,第一摻雜類型可為p型,且第二摻雜類型可為n型。在一些實施例中,源極區104以及汲極區106可具有介於約1019cm-3與約1020cm-3之間的範圍內的摻雜濃度。 The LDMOS device 200 includes a source region 104 and a drain region 106 disposed in the semiconductor substrate 102. The semiconductor substrate 102 has a first doping type, and the source region 104 and the drain region 106 include highly doped regions having a second doping type different from the first doping type. In some embodiments, the first doping type may be p-type, and the second doping type may be n-type. In some embodiments, the source region 104 and the drain region 106 may have a doping concentration in a range between about 1019 cm −3 and about 1020 cm −3.

具有第一摻雜類型(例如,p+摻雜)的接觸區208(例如,「p-分接頭(p-tap)」或「n-分接頭(n-tap)」)橫向地鄰接(abut)於源極區104。接觸區208提供與半導體基底102的歐姆連接。在一些實施例中,接觸區208可具有介於約1018cm-3與約1020cm-3之間的範圍內的p型摻雜濃度。接觸區208及源極區104安置於主體區(body region)202內。主體區202具有摻雜濃度高於半導體基底102的摻雜濃度的第一摻雜類型。舉例而言,半導體基底102可具有介於約1014cm-3與約1016cm-3之間的範圍內的摻雜濃度,而主體區202可具有介於約1016cm-3與約1018cm-3之間的範圍內的摻雜濃度。 The contact region 208 (for example, "p-tap" or "n-tap") having the first doping type (for example, p+ doping) is laterally abutted (abut)于源区104。 At the source region 104. The contact area 208 provides an ohmic connection with the semiconductor substrate 102. In some embodiments, the contact area between the p-type 208 may have a range of between about -3 and about 10 18 cm -3 doping concentration of 1020cm -3. The contact region 208 and the source region 104 are disposed in the body region 202. The body region 202 has a first doping type with a higher doping concentration than the semiconductor substrate 102. For example, the semiconductor substrate 102 may have a doping concentration in a range between about 1014 cm -3 and about 1016 cm -3 , and the body region 202 may have a doping concentration between about 1016 cm -3 and about 1018 cm -3 Doping concentration within the range.

汲極區106安置於漂移區204內,所述漂移區在橫向地鄰接主體區202的位置處配置於半導體基底102內。漂移區204包括摻雜濃度相對低的第二摻雜類型,其在LDMOS元件200在高壓下操作時提供較高阻抗。在一些實施例中,漂移區204可具有介於約1015cm-3與約1017cm-3之間的範圍內的摻雜濃度。 The drain region 106 is disposed in the drift region 204, and the drift region is disposed in the semiconductor substrate 102 at a position laterally adjacent to the body region 202. The drift region 204 includes a second doping type with a relatively low doping concentration, which provides a higher impedance when the LDMOS device 200 is operated at a high voltage. In some embodiments, the drift region 204 may have a doping concentration in a range between about 1015 cm -3 and about 1017 cm -3.

閘極結構210在橫向地配置於源極區104與汲極區106之間的位置處安置於半導體基底102上方。在一些實施例中,閘 極結構210可自主體區202上方橫向地延伸至上覆於漂移區204的一部分的位置。閘極結構210包括閘極電極108,所述閘極電極108藉由閘極介電層110與半導體基底102分隔開。在一些實施例中,閘極介電層110可包括二氧化矽(silicon dioxide;SiO2)或高介電常數(high-k)的閘極介電材料,且閘極電極108可包括多晶矽(polysilicon)或金屬閘極材料(例如,鋁(aluminum))。在一些實施例中,閘極結構210亦可包括安置於閘極電極108的相對側面上的側壁間隔件212。在各種實施例中,側壁間隔件212可包括氮化物類的側壁間隔件(例如,包括SiN)或氧化物類的側壁間隔件(例如,SiO2、SiOC等)。 The gate structure 210 is disposed above the semiconductor substrate 102 at a position laterally disposed between the source region 104 and the drain region 106. In some embodiments, the gate structure 210 may extend laterally from above the body region 202 to a position overlying a portion of the drift region 204. The gate structure 210 includes a gate electrode 108 separated from the semiconductor substrate 102 by a gate dielectric layer 110. In some embodiments, the gate dielectric layer 110 may include silicon dioxide (SiO 2 ) or a high-k gate dielectric material, and the gate electrode 108 may include polysilicon ( polysilicon) or metal gate material (for example, aluminum). In some embodiments, the gate structure 210 may also include sidewall spacers 212 disposed on opposite sides of the gate electrode 108. In various embodiments, the sidewall spacers 212 may include nitride-based sidewall spacers (for example, including SiN) or oxide-based sidewall spacers (for example, SiO 2 , SiOC, etc.).

一或多個介電層124安置於閘極電極108及漂移區204上方。在一些實施例中,一或多個介電層124自閘極電極108的一部分上方持續地延伸至漂移區204的一部分上方。在一些實施例中,一或多個介電層124可共形地安置於漂移區204、閘極電極108以及側壁間隔件212上。 One or more dielectric layers 124 are disposed above the gate electrode 108 and the drift region 204. In some embodiments, the one or more dielectric layers 124 continuously extend from above a portion of the gate electrode 108 to above a portion of the drift region 204. In some embodiments, one or more dielectric layers 124 may be conformally disposed on the drift region 204, the gate electrode 108, and the sidewall spacers 212.

場板214安置於一或多個介電層124上方且橫向地被第一ILD層118包圍。場板214自閘極電極108上方延伸至漂移區204上方。場板214的大小可依據LDMOS元件200的大小及特徵而變化。在一些實施例中,場板214可具有介於約50奈米與約1微米之間的大小。在其他實施例中,場板214可更大或更小。在一些實施例中,第一ILD層118可包括介電常數相對低(例如,小於或等於約3.9)的介電材料,其提供多個接點120及/或場板122之間的電隔離。在一些實施例中,第一ILD層118可包括超低介電常數的(ultra-low k)介電材料或低介電常數的(low-k) 介電材料(例如,SiCO)。 The field plate 214 is disposed above the one or more dielectric layers 124 and is laterally surrounded by the first ILD layer 118. The field plate 214 extends from above the gate electrode 108 to above the drift region 204. The size of the field plate 214 can vary according to the size and characteristics of the LDMOS device 200. In some embodiments, the field plate 214 may have a size between about 50 nanometers and about 1 micrometer. In other embodiments, the field plate 214 may be larger or smaller. In some embodiments, the first ILD layer 118 may include a dielectric material with a relatively low dielectric constant (for example, less than or equal to about 3.9), which provides electrical isolation between the plurality of contacts 120 and/or the field plates 122 . In some embodiments, the first ILD layer 118 may include ultra-low-k dielectric materials or low-k dielectric materials. Dielectric material (for example, SiCO).

場板214自介電層124垂直地延伸至第一ILD層118的頂部表面。在一些實施例中,場板214可垂直地延伸至一高度,所述高度大於或等於接點120及第一ILD層118的頂部表面的高度。場板122具有鄰接一或多個介電層124的非平坦表面。非平坦表面使得場板122在閘極電極108上方的區域中具有第一厚度t 1 ,且在上覆於漂移區204的區域中具有大於第一厚度t 1 的第二厚度t 2 The field plate 214 extends vertically from the dielectric layer 124 to the top surface of the first ILD layer 118. In some embodiments, the field plate 214 can extend vertically to a height greater than or equal to the height of the contact 120 and the top surface of the first ILD layer 118. The field plate 122 has an uneven surface adjacent to one or more dielectric layers 124. The uneven surface makes the field plate 122 have a first thickness t 1 in the area above the gate electrode 108 and a second thickness t 2 greater than the first thickness t 1 in the area overlying the drift region 204.

多個接點120亦由第一ILD層118包圍。多個接點120可包括耦合至接觸區208的第一接點120a、耦合至汲極區106的第二接點120b以及耦合至閘極電極108的第三接點120c。在一些實施例中,第一接點120a可包括對接接點(butted contact)(未繪示),其接觸接觸區208及源極區104兩者。在一些實施例中,多個接點120及場板122可包括相同金屬材料。舉例而言,多個接點120及場板122可包括鎢(tungsten;W)、氮化鉭(tantalum、nitride;TaN)、鈦(titanium;Ti)、氮化鈦(titanium-nitride;TiN)、鋁銅(aluminum copper;AlCu)、銅(copper;Cu)及/或其他類似導電材料。 The plurality of contacts 120 are also surrounded by the first ILD layer 118. The plurality of contacts 120 may include a first contact 120 a coupled to the contact region 208, a second contact 120 b coupled to the drain region 106, and a third contact 120 c coupled to the gate electrode 108. In some embodiments, the first contact 120 a may include a butted contact (not shown), which contacts both the contact region 208 and the source region 104. In some embodiments, the plurality of contacts 120 and the field plate 122 may include the same metal material. For example, the multiple contacts 120 and the field plates 122 may include tungsten (W), tantalum nitride (TaN), titanium (Ti), titanium-nitride (TiN) , Aluminum copper (AlCu), copper (Cu) and/or other similar conductive materials.

圖3繪示具有場板214的所揭露之高壓LDMOS元件300的一些其他實施例的橫截面圖。 FIG. 3 shows a cross-sectional view of some other embodiments of the disclosed high-voltage LDMOS device 300 with a field plate 214.

LDMOS元件300包括隔離區302,所述隔離區在橫向地配置於閘極結構210與汲極區106之間的位置處安置於漂移區204內。隔離區302改進閘極結構210與汲極區106之間的隔離,從而在LDMOS元件300在大工作電壓下操作時防止閘極結構210 與漂移區204之間的介電質崩潰(dielectric breakdown)。舉例而言,隔離區302可引入至LDMOS元件的漂移區204(其設計成在第一崩潰電壓下操作)中以增大LDMOS元件300的崩潰電壓而不需大幅度地改變LDMOS元件的製造製程。在一些實施例中,隔離區302可包括淺溝渠隔離(shallow trench isolation;STI)。在其他實施例中,隔離區302可包括場氧化物(field oxide)。 The LDMOS device 300 includes an isolation region 302 disposed in the drift region 204 at a position laterally disposed between the gate structure 210 and the drain region 106. The isolation region 302 improves the isolation between the gate structure 210 and the drain region 106, thereby preventing the gate structure 210 when the LDMOS element 300 is operated at a large operating voltage. The dielectric breakdown with the drift region 204 is broken down. For example, the isolation region 302 can be introduced into the drift region 204 of the LDMOS device (which is designed to operate at the first breakdown voltage) to increase the breakdown voltage of the LDMOS device 300 without drastically changing the manufacturing process of the LDMOS device. . In some embodiments, the isolation region 302 may include shallow trench isolation (STI). In other embodiments, the isolation region 302 may include field oxide.

圖4繪示具有場板408的所揭露之高壓LDMOS元件400的一些其他實施例的橫截面圖。 FIG. 4 shows a cross-sectional view of some other embodiments of the disclosed high-voltage LDMOS device 400 having a field plate 408.

LDMOS元件400包括配置於場板408與閘極結構210及/或漂移區204之間的多個介電層402至介電層404。多個介電層402至介電層404經配置以使場板408與閘極結構210及/或漂移區204電性隔離。在實施例中,多個介電層402至介電層404可包括兩種或大於兩種不同的介電材料。在一些實施例中,多個介電層402至介電層404可包括在典型CMOS製造製程期間使用的一或多個介電層,從而限制用於使場板408與閘極結構210及/或漂移區204電性隔離的額外製造步驟。 The LDMOS device 400 includes a plurality of dielectric layers 402 to 404 disposed between the field plate 408 and the gate structure 210 and/or the drift region 204. The plurality of dielectric layers 402 to 404 are configured to electrically isolate the field plate 408 from the gate structure 210 and/or the drift region 204. In an embodiment, the plurality of dielectric layers 402 to 404 may include two or more different dielectric materials. In some embodiments, the plurality of dielectric layers 402 to 404 may include one or more dielectric layers used during a typical CMOS manufacturing process, thereby limiting the use of the field plate 408 and the gate structure 210 and/ Or an additional manufacturing step for electrically isolating the drift region 204.

舉例而言,多個介電層402至介電層404可包括矽化物阻擋層402。在一些實施例中,矽化物阻擋層402可包括用以防止矽化物形成的光阻保護氧化物(resist-protection oxide;RPO)層。矽化物阻擋層402可配置於閘極電極108及漂移區204的部分上方。在一些實施例中,矽化物阻擋層402可自閘極電極108上方持續地延伸至漂移區204上方。 For example, the plurality of dielectric layers 402 to 404 may include a silicide barrier layer 402. In some embodiments, the silicide blocking layer 402 may include a resist-protection oxide (RPO) layer to prevent the formation of silicide. The silicide barrier layer 402 may be disposed above the gate electrode 108 and the drift region 204. In some embodiments, the silicide barrier layer 402 may continuously extend from above the gate electrode 108 to above the drift region 204.

在一些實施例中,多個介電層402至介電層404可更包括場板蝕刻終止層(etch stop layer;ESL)404。場板ESL 404可 安置於矽化物阻擋層402上方,且用以控制用於場板408的開口的蝕刻。場板ESL 404可說明接點120與場板408之間的蝕刻深度的差異及/或蝕刻速率的差異(例如,由於蝕刻負載效應(etch loading effect))的原因。在一些實施例中,例如,場板ESL 404可包括氮化矽(silicon nitride;SiN)層。 In some embodiments, the plurality of dielectric layers 402 to 404 may further include a field plate etch stop layer (ESL) 404. Field board ESL 404 available It is disposed above the silicide barrier layer 402 and used to control the etching of the opening for the field plate 408. The field plate ESL 404 may account for the difference in etching depth and/or the difference in etching rate between the contact 120 and the field plate 408 (for example, due to an etch loading effect). In some embodiments, for example, the field plate ESL 404 may include a silicon nitride (SiN) layer.

在某些替代實施例中(未繪示),多個介電層402至介電層404可另外或替代地包括閘極介電層。在此類實施例中,閘極介電層可經配置橫向地鄰近於上覆於漂移區204的位置處的閘極結構210。在一些實施例中,介電層氧化物可包括二氧化矽(例如,SiO2)或高介電常數的閘極介電材料。在又其他實施例中,多個介電層402至介電層404可另外或替代地包括ILD層(例如,第一ILD層118)。 In some alternative embodiments (not shown), the plurality of dielectric layers 402 to 404 may additionally or alternatively include gate dielectric layers. In such an embodiment, the gate dielectric layer may be configured to be laterally adjacent to the gate structure 210 overlying the drift region 204 at the location. In some embodiments, the dielectric layer oxide may include silicon dioxide (for example, SiO 2 ) or a high-k gate dielectric material. In still other embodiments, the plurality of dielectric layers 402 to 404 may additionally or alternatively include an ILD layer (for example, the first ILD layer 118).

接觸蝕刻終止層(contact etch stop layer;CESL)406安置於半導體基底102及場板ESL 404上方。在一些實施例中,CESL 406在多個接點120與場板408之間的位置處的半導體基底102上方延伸,使得CESL 406鄰接於多個接點120及場板408的多個側壁。CESL 406上覆於閘極結構210。在一些實施例中,CESL 406亦可上覆於多個介電層402至介電層404。在其他實施例中,多個介電層402至介電層404中的一或多者(例如,場板ESL 404)可上覆於CESL 406。在一些實施例中,CESL 406可包括氮化物層。舉例而言,CESL 406可包括氮化矽(SiN)。 A contact etch stop layer (CESL) 406 is disposed on the semiconductor substrate 102 and the field plate ESL 404. In some embodiments, the CESL 406 extends above the semiconductor substrate 102 at positions between the plurality of contacts 120 and the field plate 408 such that the CESL 406 is adjacent to the plurality of contacts 120 and the plurality of sidewalls of the field plate 408. The CESL 406 is overlying the gate structure 210. In some embodiments, the CESL 406 can also be overlying the plurality of dielectric layers 402 to 404. In other embodiments, one or more of the plurality of dielectric layers 402 to 404 (for example, the field plate ESL 404) may be overlaid on the CESL 406. In some embodiments, CESL 406 may include a nitride layer. For example, CESL 406 may include silicon nitride (SiN).

場板408安置於第一ILD層118內且鄰接CESL 406及多個介電層402至介電層404中的一或多者。在一些實施例中,場板408延伸穿過CESL 406以鄰接多個介電層402至介電層404中 的一或多者。在此類實施例中,多個介電層402至介電層404中的一或多者使場板408與閘極結構210及漂移區204分離。 The field plate 408 is disposed in the first ILD layer 118 and adjacent to one or more of the CESL 406 and the plurality of dielectric layers 402 to 404. In some embodiments, the field plate 408 extends through the CESL 406 to abut the dielectric layers 402 into the dielectric layer 404 One or more of. In such embodiments, one or more of the plurality of dielectric layers 402 to 404 separates the field plate 408 from the gate structure 210 and the drift region 204.

在一些實施例中,場板408可包括第一金屬材料410及第二金屬材料412。第一金屬材料410可包括沿場板408的外邊緣安置的膠層(glue layer),而第二金屬材料412嵌入場板408的內部區中的第一金屬材料410內(亦即,第二金屬材料412藉由第一金屬材料410與CESL 406分隔開)。在一些實施例中,內襯層414可安置於第一ILD層118與第一金屬材料410之間。 In some embodiments, the field plate 408 may include a first metal material 410 and a second metal material 412. The first metal material 410 may include a glue layer disposed along the outer edge of the field plate 408, and the second metal material 412 is embedded in the first metal material 410 in the inner region of the field plate 408 (that is, the second The metal material 412 is separated from the CESL 406 by the first metal material 410). In some embodiments, the liner layer 414 may be disposed between the first ILD layer 118 and the first metal material 410.

在一些實施例中,沿場板408的外邊緣安置的第一金屬材料410具有沿著實質上平坦表面420(亦即,藉由平坦化製程形成的平坦表面)配置的頂部表面。平坦表面420可與多個接點120的頂部表面對準。在一些實施例中,第一金屬材料410包括與多個接點120相同的材料,且第二金屬材料412包括與上覆於多個接點120的第一金屬線層418相同的材料。舉例而言,在一些實施例中,第一金屬材料410可包括鎢(W)、鈦(Ti)、氮化鉭(TaN)或氮化鈦(TiN)。在一些實施例中,第二金屬材料412可包括銅(Cu)或鋁銅(AlCu)。 In some embodiments, the first metal material 410 disposed along the outer edge of the field plate 408 has a top surface disposed along a substantially flat surface 420 (ie, a flat surface formed by a planarization process). The flat surface 420 may be aligned with the top surface of the plurality of contacts 120. In some embodiments, the first metal material 410 includes the same material as the plurality of contacts 120, and the second metal material 412 includes the same material as the first metal wire layer 418 overlying the plurality of contacts 120. For example, in some embodiments, the first metal material 410 may include tungsten (W), titanium (Ti), tantalum nitride (TaN), or titanium nitride (TiN). In some embodiments, the second metal material 412 may include copper (Cu) or aluminum copper (AlCu).

應瞭解,由於所揭露之場板與後段製程(BEOL)金屬化物層整合,因此所揭露之場板允許各種場板偏壓組態(biasing configuration)以易於實現不同的設計考慮因素。舉例而言,可藉由改變金屬佈線層而不是藉由改變所揭露之高壓元件的設計來改變場板偏壓。此外,應瞭解,藉助於BEOL金屬互連佈線來對高壓電晶體元件產生偏壓可允許使用單一製造製程流程將多種場板偏壓組態整合在相同晶片上。 It should be understood that since the disclosed field plate is integrated with the back end of line (BEOL) metallization layer, the disclosed field plate allows various field plate biasing configurations to easily implement different design considerations. For example, the field plate bias can be changed by changing the metal wiring layer instead of changing the design of the disclosed high-voltage device. In addition, it should be understood that the use of BEOL metal interconnect wiring to bias the high-voltage transistor element allows the use of a single manufacturing process flow to integrate multiple field plate bias configurations on the same chip.

圖5至圖6繪示藉由BEOL金屬互連佈線來達成的用於高壓電晶體元件的場板偏壓組態的一些實施例的橫截面圖。儘管圖5至圖6繪示場板214與接觸區208或閘極電極108之間藉助於第一金屬線層(例如,第一金屬線層504或第一金屬線層604)的連接,但BEOL金屬互連佈線不限於此。確切而言,應瞭解,場板214可藉由BEOL金屬互連層的任意組合(例如,第一金屬線層、第一金屬通孔層、第二金屬線層等)來連接至源極區、閘極電極、汲極區或塊狀接點。 5 to 6 show cross-sectional views of some embodiments of field plate bias configurations for high-voltage transistor devices achieved by BEOL metal interconnect wiring. Although FIGS. 5 to 6 illustrate the connection between the field plate 214 and the contact region 208 or the gate electrode 108 via the first metal line layer (for example, the first metal line layer 504 or the first metal line layer 604), The BEOL metal interconnection wiring is not limited to this. Specifically, it should be understood that the field plate 214 can be connected to the source region by any combination of BEOL metal interconnect layers (for example, the first metal line layer, the first metal via layer, the second metal line layer, etc.) , Gate electrode, drain area or bulk contact.

圖5繪示高壓LDMOS元件500的橫截面圖,其中場板214沿導電路徑506而電性耦合至接觸區208。場板214連接至安置於第二ILD層502內的第一金屬線層504。第一金屬線層504耦合至鄰接接觸區208的接點120a。藉由使場板214電性耦合至接觸區208,場板214藉由源電壓而受到偏壓。藉由源電壓對場板214產生偏壓以提供具有低導通狀態阻抗(on-state resistance,Rds(on))及低動態功率耗散(dynamic power dissipation)(例如,相對於BV的低Rds(on)*Qgd)的高壓LDMOS元件500。低動態功率耗散在高頻切換應用期間提供良好性能。 FIG. 5 shows a cross-sectional view of the high-voltage LDMOS device 500 in which the field plate 214 is electrically coupled to the contact area 208 along the conductive path 506. The field plate 214 is connected to the first metal line layer 504 disposed in the second ILD layer 502. The first metal line layer 504 is coupled to the contact 120 a adjacent to the contact area 208. By electrically coupling the field plate 214 to the contact area 208, the field plate 214 is biased by the source voltage. The field plate 214 is biased by the source voltage to provide low on-state resistance (Rds(on)) and low dynamic power dissipation (for example, low Rds(on) relative to BV). on) *Qgd) high-voltage LDMOS element 500. Low dynamic power dissipation provides good performance during high frequency switching applications.

圖6繪示高壓LDMOS元件600的橫截面圖,其中場板214沿導電路徑606電性耦合至閘極電極108。場板214連接至安置於第二ILD層602內的第一金屬線層604。第一金屬線層604連接至鄰接閘極電極108的接點120b。藉由使場板214電性耦合至閘極電極108,場板214藉由閘極電壓而受到偏壓。藉由閘極電壓對場板214產生偏壓可提供具有相對於崩潰電壓的低Rds(on)的高壓LDMOS元件600。 FIG. 6 shows a cross-sectional view of the high-voltage LDMOS device 600 in which the field plate 214 is electrically coupled to the gate electrode 108 along the conductive path 606. The field plate 214 is connected to the first metal line layer 604 disposed in the second ILD layer 602. The first metal wire layer 604 is connected to the contact 120 b adjacent to the gate electrode 108. By electrically coupling the field plate 214 to the gate electrode 108, the field plate 214 is biased by the gate voltage. By biasing the field plate 214 by the gate voltage, a high-voltage LDMOS device 600 with a low Rds(on) relative to the breakdown voltage can be provided.

多種場板偏壓組態可允許所揭露之場板形成多功能高壓電晶體元件,所述多功能高壓電晶體元件可用於不同的應用。舉例而言,具有閘極偏壓場板(gate bias field plate)的高壓電晶體元件的導通狀態阻抗Rds(on)低於具有源極偏壓場板(source bias field plate)的高壓電晶體元件的Rds(on)。然而,具有源極偏壓場板的高壓電晶體元件的Rds(on)*Qgd低於具有閘極源極偏壓場板的高壓電晶體元件的Rds(on)*Qgd。因此,具有閘極偏壓場板(例如,高壓LDMOS元件500)的高壓電晶體元件可用於低頻切換應用(例如,低於10兆赫),而具有源極偏壓場板(例如,高壓LDMOS元件600)的高壓電晶體元件可用於高頻切換應用(例如,高於10兆赫)。 Multiple field plate bias configurations can allow the disclosed field plate to form a multi-functional high-voltage transistor element, which can be used in different applications. For example, the on-state impedance Rds(on) of a high-voltage transistor element with a gate bias field plate is lower than that of a high-voltage transistor with a source bias field plate. Rds(on) of the crystal element. However, the Rds(on)*Qgd of the high-voltage transistor element with the source bias field plate is lower than the Rds(on)*Qgd of the high-voltage transistor element with the gate source bias field plate. Therefore, high-voltage transistor elements with gate bias field plates (e.g., high-voltage LDMOS element 500) can be used for low-frequency switching applications (e.g., below 10 MHz), and source bias field plates (e.g., high-voltage LDMOS The high-voltage transistor element of element 600) can be used for high-frequency switching applications (for example, higher than 10 MHz).

圖7A至圖7C繪示呈不同切換隔離組態(switching isolation configuration)的高壓LDMOS元件700a至高壓LDMOS元件700c的一些實施例的橫截面圖。 7A to 7C show cross-sectional views of some embodiments of the high-voltage LDMOS device 700a to the high-voltage LDMOS device 700c in different switching isolation configurations.

如圖7A所示,高壓LDMOS元件700a經配置為低側開關(low-side switch)(例如,連接至反相器中的接地的開關)。在此類配置中,高壓LDMOS元件700a具有浮動的源極區104,使得源極區104上的電壓可在切換週期期間改變。 As shown in FIG. 7A, the high-voltage LDMOS element 700a is configured as a low-side switch (for example, a switch connected to the ground in the inverter). In such a configuration, the high-voltage LDMOS element 700a has a floating source region 104 so that the voltage on the source region 104 can be changed during the switching period.

如圖7B所示,高壓LDMOS元件700b經配置為高側開關(high-side switch)(例如,連接至反相器中的VDD的開關)。在此類配置中,高壓LDMOS元件700b具有連接至源電壓的源極區104。高壓LDMOS元件700b具有漂移區702,所述漂移區在主體區202之下延伸而可藉由防止電荷載流子自接觸區208行進至半導體基底102(例如,藉助於擊穿(punch through))來防止 源電壓升高至超過基底電壓。 As shown in FIG. 7B, the high-voltage LDMOS element 700b is configured as a high-side switch (for example, a switch connected to VDD in the inverter). In such a configuration, the high-voltage LDMOS element 700b has a source region 104 connected to a source voltage. The high-voltage LDMOS device 700b has a drift region 702 that extends below the body region 202 to prevent charge carriers from traveling from the contact region 208 to the semiconductor substrate 102 (for example, by punch through) To prevent The source voltage rises above the base voltage.

如圖7C所示,高壓LDMOS元件700c完全與基底隔離以允許獨立偏壓。高壓電晶體元件700c包括深阱704及經配置以提供垂直隔離的相反摻雜型下伏埋入層706。在一些實施例中,深阱704可具有第一摻雜類型(例如,與主體區202相同的摻雜類型),且埋入層706可具有第二摻雜類型。 As shown in FIG. 7C, the high-voltage LDMOS device 700c is completely isolated from the substrate to allow independent bias. The high piezoelectric crystal element 700c includes a deep well 704 and an oppositely doped underlying buried layer 706 configured to provide vertical isolation. In some embodiments, the deep well 704 may have a first doping type (for example, the same doping type as the body region 202), and the buried layer 706 may have a second doping type.

高壓LDMOS元件700c更包括一或多個額外STI區206,所述額外STI區使汲極區與基體區(bulk region)708及具有第二摻雜類型的埋入層710橫向地分隔開。基體區708上覆於深阱704,且埋入層710上覆於阱區712,所述阱區712具有第二摻雜類型且鄰接埋入層706。多個接點120用以為基體區708及埋入層710提供偏壓,從而形成深阱704及埋入層706與阱區712之間的接面隔離。接面隔離允許完全隔離的高壓LDMOS元件700c可在高於偏壓的範圍內操作。 The high-voltage LDMOS device 700c further includes one or more additional STI regions 206, which laterally separate the drain region from the bulk region 708 and the buried layer 710 having the second doping type. The base region 708 is overlying the deep well 704, and the buried layer 710 is overlying the well region 712, which has the second doping type and is adjacent to the buried layer 706. The multiple contacts 120 are used to provide a bias voltage for the base region 708 and the buried layer 710 to form the deep well 704 and the junction isolation between the buried layer 706 and the well region 712. The junction isolation allows the fully isolated high-voltage LDMOS element 700c to operate in a range above the bias voltage.

圖8繪示具有場板214的源極朝下(source downward)高壓電晶體元件800的橫截面圖。 FIG. 8 shows a cross-sectional view of a high-voltage transistor device 800 with a source downward (source downward) field plate 214.

高壓電晶體元件800包括基底802,所述基底具有高摻雜濃度的第一摻雜類型(例如,p+摻雜類型)。源極區804沿基底802的背側802b安置。在各種實施例中,源極區804可包括高摻雜區或金屬層。具有第一導電性類型的磊晶層806安置於基底802的前側表面802f上方。磊晶層806的摻雜劑濃度小於基底802的摻雜劑濃度。源極接觸區810、汲極區106、主體區808以及漂移區204安置於磊晶層806的頂部表面內。 The high piezoelectric crystal element 800 includes a substrate 802 having a first doping type (for example, a p+ doping type) with a high doping concentration. The source region 804 is disposed along the backside 802b of the substrate 802. In various embodiments, the source region 804 may include a highly doped region or a metal layer. The epitaxial layer 806 having the first conductivity type is disposed on the front surface 802f of the substrate 802. The dopant concentration of the epitaxial layer 806 is less than the dopant concentration of the substrate 802. The source contact region 810, the drain region 106, the body region 808, and the drift region 204 are disposed in the top surface of the epitaxial layer 806.

導電材料812自磊晶層806的頂部表面延伸至基底802。 導電材料812可包括高摻雜深阱區。導電材料812允許進行與基底802的背側的源極連接,進而減小金屬佈線複雜度且實現各種封裝相容性。在一些實施例中,藉助於電路徑818,可藉由源電壓使場板214產生偏壓,所述電路徑818延伸穿過與導電材料812鄰接的接點814以及耦合至場板214的上覆金屬線層816。 The conductive material 812 extends from the top surface of the epitaxial layer 806 to the substrate 802. The conductive material 812 may include a highly doped deep well region. The conductive material 812 allows the source connection to the backside of the substrate 802 to be made, thereby reducing the complexity of metal wiring and realizing various package compatibility. In some embodiments, the field plate 214 can be biased by a source voltage by means of an electrical path 818 that extends through the contact 814 adjacent to the conductive material 812 and is coupled to the field plate 214 Cladding metal wire layer 816.

圖9A至圖9B繪示在金屬線層中具有場板902的所揭露之高壓LDMOS元件的一些實施例。儘管圖9A至圖9B將場板繪示為位於第一金屬線層上,但應瞭解,所揭露之場板不限於第一金屬線層,而可實施於BEOL金屬化物堆疊的替代層上。 9A to 9B show some embodiments of the disclosed high-voltage LDMOS device having a field plate 902 in the metal line layer. Although FIGS. 9A to 9B show the field plate as being located on the first metal line layer, it should be understood that the disclosed field plate is not limited to the first metal line layer, but can be implemented on an alternative layer of the BEOL metallization stack.

如圖9A的橫截面圖900中所示,場板902安置於上覆於第一ILD層118的第二ILD層904內的第一金屬線層中。在一些實施例中,場板902具有實質上平坦的頂部及底部表面,從而為場板902提供平坦拓樸(topology)。場板902藉助於第一ILD層118與閘極結構210及漂移區204垂直地分離。場板902上覆於閘極電極108及漂移區204的部分,且與源極區104及汲極區106橫向地分離。舉例而言,場板902可藉由距離d與汲極區106橫向地分離。在一些實施例中,場板902可自閘極電極108上方橫向地延伸至漂移區204上方。 As shown in the cross-sectional view 900 of FIG. 9A, the field plate 902 is disposed in the first metal line layer in the second ILD layer 904 overlying the first ILD layer 118. In some embodiments, the field plate 902 has substantially flat top and bottom surfaces, thereby providing the field plate 902 with a flat topology. The field plate 902 is vertically separated from the gate structure 210 and the drift region 204 by means of the first ILD layer 118. The field plate 902 covers the gate electrode 108 and the drift region 204 and is laterally separated from the source region 104 and the drain region 106. For example, the field plate 902 can be separated laterally from the drain region 106 by a distance d. In some embodiments, the field plate 902 may extend laterally from above the gate electrode 108 to above the drift region 204.

如圖9B的俯視圖906中所示,場板902包括上覆於閘極電極108及漂移區204的部分的金屬結構。金屬結構並不藉助於接點120連接至下伏元件或連接至第一金屬線層上的另一金屬結構。確切而言,金屬結構將連接至上覆通孔(未繪示),所述通孔經配置以使場板連接至上覆金屬線層,所述上覆金屬線層使得場板902產生偏壓。 As shown in the top view 906 of FIG. 9B, the field plate 902 includes a metal structure overlying portions of the gate electrode 108 and the drift region 204. The metal structure is not connected to the underlying element or to another metal structure on the first metal line layer by means of the contact 120. Specifically, the metal structure will be connected to an overlying via (not shown) configured to connect the field plate to the overlying metal line layer, and the overlying metal line layer will bias the field plate 902.

圖10繪示具有自對準漂移區1002的所揭露之高壓LDMOS元件1000的一些實施例。 FIG. 10 shows some embodiments of the disclosed high-voltage LDMOS device 1000 having a self-aligned drift region 1002.

自對準漂移區1002具有側壁1002s,所述側壁與閘極電極108及閘極介電層110的側壁實質上對準。在某些替代實施例中,自對準漂移區1002可被形成為具有與側壁間隔件212的邊緣實質上對準的側壁1002s。藉由使自對準漂移區1002與閘極電極108及閘極介電層110的側壁對準,自對準漂移區1002藉由間距s與主體區202橫向地分離,進而使閘極-汲極交疊最小化且達到低閘極-汲極電荷(Qgd)及良好高頻性能。上覆於自對準漂移區1002的場板214可進一步減小閘極-汲極電荷(Qgd)。 The self-aligned drift region 1002 has sidewalls 1002s that are substantially aligned with the sidewalls of the gate electrode 108 and the gate dielectric layer 110. In certain alternative embodiments, the self-aligned drift region 1002 may be formed to have sidewalls 1002s that are substantially aligned with the edges of the sidewall spacers 212. By aligning the self-aligned drift region 1002 with the sidewalls of the gate electrode 108 and the gate dielectric layer 110, the self-aligned drift region 1002 is laterally separated from the body region 202 by the spacing s, thereby making the gate-drain The pole overlap is minimized and low gate-drain charge (Qgd) and good high frequency performance are achieved. The field plate 214 overlying the self-aligned drift region 1002 can further reduce the gate-drain charge (Qgd).

圖11繪示形成具有場板的高壓電晶體元件的方法1100的一些實施例的流程圖。方法可使用已在標準CMOS製造製程期間使用的製程步驟來形成場板,且因此可提供低成本、多功能的場板。 FIG. 11 shows a flowchart of some embodiments of a method 1100 of forming a high-voltage transistor element with a field plate. The method can use process steps that have been used during the standard CMOS manufacturing process to form the field plate, and thus can provide a low-cost, multi-functional field plate.

儘管在本文中將所揭露之方法(例如方法1100及方法3300)說明及描述為一系列動作或事件,但應瞭解,不應以限制性意義解釋此類動作或事件的所說明次序。舉例而言,除本文中所說明及/或所描述的動作或事件之外,一些動作可與其他動作或事件以不同次序及/或同時出現。另外,可能需要並非所有的所說明動作來實施本文中所描述的一或多個態樣或實施例。此外,本文中所描繪的動作中的一或多者可以一或多個單獨動作及/或階段進行。 Although the disclosed methods (such as method 1100 and method 3300) are illustrated and described herein as a series of actions or events, it should be understood that the illustrated sequence of such actions or events should not be interpreted in a restrictive sense. For example, in addition to the actions or events illustrated and/or described herein, some actions may occur in a different order and/or simultaneously with other actions or events. In addition, not all of the illustrated actions may be required to implement one or more aspects or embodiments described herein. In addition, one or more of the actions described herein may be performed in one or more separate actions and/or stages.

在1102處,基底設有由通道區分離的源極區及汲極區。在一些實施例中,基底可更包括漂移區,所述漂移區在鄰近通道 區的位置處的源極區與汲極區之間漂移區。 At 1102, the substrate is provided with a source region and a drain region separated by a channel region. In some embodiments, the substrate may further include a drift region, which is located adjacent to the channel A drift region between the source region and the drain region at the location of the region.

在1104處,閘極結構在源極區與汲極區之間的位置處的基底上方形成。閘極結構可包括閘極介電層及上覆的閘極電極。 At 1104, a gate structure is formed over the substrate at a position between the source region and the drain region. The gate structure may include a gate dielectric layer and an overlying gate electrode.

在1106處,可使用自對準製程形成漂移區,在一些實施例中,所述自對準製程根據閘極結構選擇性地對半導體基底進行佈值以形成漂移區。 At 1106, a self-aligned process can be used to form the drift region. In some embodiments, the self-aligned process selectively lays out the semiconductor substrate according to the gate structure to form the drift region.

在1108處,一或多個介電層選擇性地形成於閘極電極及漂移區的一部分上方。 At 1108, one or more dielectric layers are selectively formed over the gate electrode and a portion of the drift region.

在1110處,接觸蝕刻終止層(CESL)及第一層間介電(ILD)層形成於基底上方。 At 1110, a contact etch stop layer (CESL) and a first interlayer dielectric (ILD) layer are formed over the substrate.

在1112處,選擇性地蝕刻第一ILD層以定義多個接觸開口及場板開口。 At 1112, the first ILD layer is selectively etched to define a plurality of contact openings and field plate openings.

在1114處,用第一金屬材料填充多個接觸開口及場板開口。 At 1114, the plurality of contact openings and field plate openings are filled with the first metal material.

在1116處,可執行平坦化製程以移除上覆第一ILD層的多餘的第一金屬材料。 At 1116, a planarization process may be performed to remove excess first metal material overlying the first ILD layer.

在1118處,沈積對應於第一金屬線層的第二金屬材料。在一些實施例中,第二金屬材料可進一步填充場板開口。在此類實施例中,第二金屬材料嵌入場板開口內的第一金屬材料內。 At 1118, a second metal material corresponding to the first metal line layer is deposited. In some embodiments, the second metal material may further fill the field plate opening. In such embodiments, the second metal material is embedded in the first metal material in the opening of the field plate.

在1120處,第二層間介電(ILD)層形成於第一ILD層上方及第一金屬線層結構上方。 At 1120, a second interlayer dielectric (ILD) layer is formed over the first ILD layer and over the first metal line layer structure.

圖12至圖19繪示形成具有場板的MOSFET元件的方法的一些實施例的橫截面圖。儘管參考方法1100描述圖12至圖19,但應瞭解,圖12至圖19中揭露的結構不限於此類方法,但反而 可獨自作為獨立於所述方法的結構。 12-19 show cross-sectional views of some embodiments of methods of forming MOSFET devices with field plates. Although FIGS. 12 to 19 are described with reference to the method 1100, it should be understood that the structures disclosed in FIGS. 12 to 19 are not limited to such methods, but instead Can be used alone as a structure independent of the method.

圖12繪示與動作1102相對應的橫截面圖1200的一些實施例。 FIG. 12 shows some embodiments of a cross-sectional view 1200 corresponding to action 1102.

如橫截面圖1200中所示,提供半導體基底102。半導體基底102可本質地摻雜(intrinsically doped)為具有第一摻雜類型。在各種實施例中,半導體基底102可包括任何類型的半導體主體(例如,矽、SOI),其包含但不限於半導體晶片或晶圓或晶圓上的一或多個晶粒,以及任何其他類型的半導體及/或形成於其上及/或以其他方式與其相關聯的磊晶層。 As shown in the cross-sectional view 1200, a semiconductor substrate 102 is provided. The semiconductor substrate 102 may be intrinsically doped to have the first doping type. In various embodiments, the semiconductor substrate 102 may include any type of semiconductor body (for example, silicon, SOI), which includes but is not limited to a semiconductor chip or a wafer or one or more dies on the wafer, and any other type The semiconductor and/or the epitaxial layer formed thereon and/or otherwise associated with it.

可使用各種植入步驟選擇性地對半導體基底102進行佈值以形成多個植入區(例如,阱區、接觸區等)。舉例而言,可選擇性地對半導體基底102進行佈值以形成主體區202、漂移區204、源極區104、汲極區106以及接觸區208。可藉由選擇性地遮蔽半導體基底102(例如,使用光阻罩幕)且接著將高能量摻雜劑1204(例如,p型摻雜劑物種,諸如硼;或n型摻雜劑,諸如磷)引入至半導體基底102的暴露區域中來形成多個植入區。舉例而言,如橫截面圖1200中所展示,選擇性地圖案化罩幕層1202以暴露半導體基底102的部分,高能量摻雜劑1204隨後經植入至所述部分中以形成源極區104及汲極區106。 Various implantation steps can be used to selectively pattern the semiconductor substrate 102 to form a plurality of implant regions (for example, well regions, contact regions, etc.). For example, the semiconductor substrate 102 can be selectively patterned to form the body region 202, the drift region 204, the source region 104, the drain region 106, and the contact region 208. The semiconductor substrate 102 can be selectively shielded (for example, using a photoresist mask) and then high-energy dopants 1204 (for example, p-type dopant species such as boron; or n-type dopants such as phosphorous ) Is introduced into the exposed area of the semiconductor substrate 102 to form a plurality of implanted regions. For example, as shown in the cross-sectional view 1200, the mask layer 1202 is selectively patterned to expose a portion of the semiconductor substrate 102, and a high-energy dopant 1204 is then implanted into the portion to form a source region 104 and the drain region 106.

應瞭解,橫截面圖1200中所示之植入區為可能的植入區的一個實例,且半導體基底102可包括植入區的其他配置,諸如圖1至圖10中所繪示的那些植入區中的任一者。 It should be understood that the implanted region shown in the cross-sectional view 1200 is an example of a possible implanted region, and the semiconductor substrate 102 may include other configurations of implanted regions, such as those shown in FIGS. 1 to 10 Any one of the incoming zones.

圖13繪示與動作1104相對應的橫截面圖1300的一些實施例。 FIG. 13 shows some embodiments of a cross-sectional view 1300 corresponding to action 1104.

如橫截面圖1300中所展示,閘極結構210在源極區104與汲極區106之間的位置處形成於半導體基底102上方。可藉由在半導體基底102上方形成閘極介電層110且藉由在閘極介電層110上方形成閘極電極材料108來形成閘極結構210。在一些實施例中,可藉由氣相沈積技術來沈積閘極介電層110及閘極電極材料108。可隨後圖案化及蝕刻(例如,根據光阻罩幕)閘極介電層110及閘極電極材料108以定義閘極結構210。在一些實施例中,可藉由將氮化物或氧化物類材料沈積至半導體基底102上且選擇性地蝕刻所述氮化物或氧化物類材料以形成側壁間隔件212來在閘極電極108的相對側面上形成側壁間隔件212。 As shown in the cross-sectional view 1300, the gate structure 210 is formed above the semiconductor substrate 102 at a position between the source region 104 and the drain region 106. The gate structure 210 may be formed by forming a gate dielectric layer 110 on the semiconductor substrate 102 and by forming a gate electrode material 108 on the gate dielectric layer 110. In some embodiments, the gate dielectric layer 110 and the gate electrode material 108 may be deposited by vapor deposition technology. The gate dielectric layer 110 and the gate electrode material 108 may be subsequently patterned and etched (eg, according to a photoresist mask) to define the gate structure 210. In some embodiments, a nitride or oxide-based material may be deposited on the semiconductor substrate 102 and the nitride or oxide-based material may be selectively etched to form the sidewall spacers 212 to form the sidewall spacers 212 on the gate electrode 108. Side wall spacers 212 are formed on the opposite side.

圖14繪示與動作1108相對應的橫截面圖1400的一些實施例。 FIG. 14 shows some embodiments of a cross-sectional view 1400 corresponding to action 1108.

如橫截面圖1400中所展示,一或多個介電層124選擇性地形成於閘極電極108及漂移區204上方。在一些實施例中,一或多個介電層124可藉由氣相沈積技術來沈積,且隨後經圖案化及蝕刻(例如,根據光阻罩幕)。在一些實施例中,一或多個介電層124可經蝕刻以暴露閘極電極108的一部分且與汲極區106橫向地間隔開。 As shown in the cross-sectional view 1400, one or more dielectric layers 124 are selectively formed over the gate electrode 108 and the drift region 204. In some embodiments, one or more dielectric layers 124 may be deposited by vapor deposition techniques, and then patterned and etched (for example, according to a photoresist mask). In some embodiments, one or more dielectric layers 124 may be etched to expose a portion of the gate electrode 108 and spaced laterally from the drain region 106.

在一些實施例中,一或多個介電層124可包括矽化物阻擋層,諸如光阻保護氧化物(RPO)層。在其他實施例中,一或多個介電層124可進一步及/或替代地包括場板蝕刻終止層(ESL)。在一些實施例中,場板ESL可為藉由氣相沈積技術形成的氮化矽(SiN)層。在又其他實施例中,一或多個介電層124可進一步及/或替代地包括閘極介電層或層間介電(ILD)層。 In some embodiments, the one or more dielectric layers 124 may include a silicide barrier layer, such as a photoresist protective oxide (RPO) layer. In other embodiments, the one or more dielectric layers 124 may further and/or alternatively include a field plate etch stop layer (ESL). In some embodiments, the field plate ESL may be a silicon nitride (SiN) layer formed by vapor deposition technology. In still other embodiments, the one or more dielectric layers 124 may further and/or alternatively include a gate dielectric layer or an interlayer dielectric (ILD) layer.

圖15繪示與動作1110相對應的橫截面圖1500的一些實施例。 FIG. 15 shows some embodiments of a cross-sectional view 1500 corresponding to action 1110.

如橫截面圖1500中所展示,接觸蝕刻終止層(CESL)1502形成於半導體基底102上方。在一些實施例中,可藉由氣相沈積製程形成CESL 1502。第一層間介電(ILD)層1504隨後形成於CESL 1502上方。在一些實施例中,第一ILD層1504可包括超低介電常數的介電材料或低介電常數的介電材料(例如,SiCO)。在一些實施例中,亦可藉由氣相沈積製程形成第一ILD層1504。在其他實施例中,可藉由旋塗製程形成第一ILD層1504。應瞭解,如本文中所使用之術語層間介電(ILD)層亦可參照金屬間介電(inter-metal dielectric;IMD)層。 As shown in the cross-sectional view 1500, a contact etch stop layer (CESL) 1502 is formed over the semiconductor substrate 102. In some embodiments, CESL 1502 can be formed by a vapor deposition process. A first interlayer dielectric (ILD) layer 1504 is subsequently formed over CESL 1502. In some embodiments, the first ILD layer 1504 may include an ultra-low dielectric constant dielectric material or a low dielectric constant dielectric material (for example, SiCO). In some embodiments, the first ILD layer 1504 can also be formed by a vapor deposition process. In other embodiments, the first ILD layer 1504 may be formed by a spin coating process. It should be understood that the term inter-layer dielectric (ILD) layer as used herein may also refer to inter-metal dielectric (IMD) layer.

圖16繪示與動作1112相對應的橫截面圖1600的一些實施例。 FIG. 16 shows some embodiments of a cross-sectional view 1600 corresponding to action 1112.

如橫截面圖1600中所展示,第一ILD層1504選擇性地暴露於第一蝕刻劑1602,所述第一蝕刻劑用以形成接觸開口1606及場板開口1608。在一些實施例中,接觸開口1606可小於場板開口1608。在一些實施例中,第一ILD層1504根據罩幕層1604(例如,光阻層或硬罩幕層)來選擇性地暴露於第一蝕刻劑1602。在一些實施例中,第一蝕刻劑1602可在一或多個介電層124內的第一ILD層1504與場板ESL之間具有大的蝕刻選擇性。在一些實施例中,第一蝕刻劑1602可包括乾式蝕刻劑。在一些實施例中,乾式蝕刻劑可具有蝕刻化學物質,所述蝕刻化學物質包括氧(oxygen;O2)、氮(nitrogen;N2)、氫(hydrogen;H2)、氬(argon;Ar)及/或氟物種(例如,CF4、CHF3、C4F8等)中的一或多者。 在其他實施例中,第一蝕刻劑1602可包括濕蝕刻劑,所述濕蝕刻劑包括緩衝氫氟酸(buffered hydroflouric acid;BHF)。 As shown in the cross-sectional view 1600, the first ILD layer 1504 is selectively exposed to the first etchant 1602, which is used to form the contact opening 1606 and the field plate opening 1608. In some embodiments, the contact opening 1606 may be smaller than the field plate opening 1608. In some embodiments, the first ILD layer 1504 is selectively exposed to the first etchant 1602 according to the mask layer 1604 (for example, a photoresist layer or a hard mask layer). In some embodiments, the first etchant 1602 may have a large etching selectivity between the first ILD layer 1504 in the one or more dielectric layers 124 and the field plate ESL. In some embodiments, the first etchant 1602 may include a dry etchant. In some embodiments, the dry etchant may have an etching chemical substance including oxygen (oxygen; O 2 ), nitrogen (nitrogen; N 2 ), hydrogen (hydrogen; H 2 ), argon (argon; Ar). ) And/or one or more of fluorine species (for example, CF 4 , CHF 3 , C 4 F 8, etc.). In other embodiments, the first etchant 1602 may include a wet etchant including buffered hydroflouric acid (BHF).

圖17繪示與動作1114至動作1116相對應的橫截面圖1700的一些實施例。 FIG. 17 shows some embodiments of the cross-sectional view 1700 corresponding to actions 1114 to 1116.

如橫截面圖1700中所展示,用第一金屬材料1702填充接觸開口1606及場板開口1608。在一些實施例中,可藉助於氣相沈積技術(例如,CVD、PVD、PE-CVD等)沈積第一金屬材料1702。在一些實施例中,可藉由在鍍覆製程(例如,電鍍或無電極鍍覆製程)之前藉助於物理氣相沈積來沈積晶種層以形成第一金屬材料1702。可隨後執行平坦化製程(例如,化學機械平坦化)以移除多餘的第一金屬材料1702且以形成沿線1704的平坦表面。 As shown in the cross-sectional view 1700, the contact opening 1606 and the field plate opening 1608 are filled with a first metal material 1702. In some embodiments, the first metal material 1702 may be deposited by means of vapor deposition techniques (eg, CVD, PVD, PE-CVD, etc.). In some embodiments, the first metal material 1702 may be formed by depositing a seed layer by means of physical vapor deposition before a plating process (for example, an electroplating or an electroless plating process). A planarization process (for example, chemical mechanical planarization) may be subsequently performed to remove the excess first metal material 1702 and to form a flat surface along the line 1704.

在一些實施例中,第一金屬材料1702可包括鎢(W)、鈦(Ti)、氮化鈦(TiN)或氮化鉭(TaN)。在一些實施例中,擴散障壁層及/或內襯層可在沈積第一金屬材料1702之前被沈積至接觸開口1606及場板開口1608中。 In some embodiments, the first metal material 1702 may include tungsten (W), titanium (Ti), titanium nitride (TiN), or tantalum nitride (TaN). In some embodiments, the diffusion barrier layer and/or the liner layer may be deposited into the contact opening 1606 and the field plate opening 1608 before depositing the first metal material 1702.

圖18繪示與動作1118相對應的橫截面圖1800的一些實施例。 FIG. 18 shows some embodiments of a cross-sectional view 1800 corresponding to action 1118.

如橫截面圖1800中所展示,沈積第二金屬材料1802。第二金屬材料1802形成於場板開口中的剩餘開口內及第一ILD層118上方。在一些實施例中,可藉助於氣相沈積技術(例如,CVD、PVD、PE-CVD等)沈積第二金屬材料1802。在一些實施例中,可藉由在鍍覆製程之前藉助於物理氣相沈積來沈積晶種層以形成第二金屬材料1802。在一些實施例中,第二金屬材料1802可包括銅(Cu)或鋁銅(AlCu)合金。 As shown in the cross-sectional view 1800, a second metallic material 1802 is deposited. The second metal material 1802 is formed in the remaining openings in the field plate openings and above the first ILD layer 118. In some embodiments, the second metal material 1802 may be deposited by means of vapor deposition techniques (eg, CVD, PVD, PE-CVD, etc.). In some embodiments, the second metal material 1802 can be formed by depositing a seed layer by means of physical vapor deposition before the plating process. In some embodiments, the second metal material 1802 may include copper (Cu) or aluminum copper (AlCu) alloy.

在形成後,可選擇性地圖案化第二金屬材料1802以定義上覆於第一ILD層118的第一金屬線層418的一或多個金屬結構。在一些實施例中,可藉由在第二金屬材料1802上方形成經圖案化罩幕層(例如,光阻層或硬罩幕層)(未繪示)且隨後對由經圖案化罩幕層暴露的區域中的第二金屬材料1802進行蝕刻來選擇性地圖案化第二金屬材料1802。 After formation, the second metal material 1802 can be selectively patterned to define one or more metal structures overlying the first metal line layer 418 of the first ILD layer 118. In some embodiments, a patterned mask layer (for example, a photoresist layer or a hard mask layer) (not shown) may be formed over the second metal material 1802 and then aligned with the patterned mask layer The second metal material 1802 in the exposed area is etched to selectively pattern the second metal material 1802.

圖19繪示與動作1120相對應的橫截面圖1900的一些實施例。 FIG. 19 shows some embodiments of a cross-sectional view 1900 corresponding to action 1120.

如橫截面圖1900中所展示,第二ILD層416形成於第一ILD層118及第一金屬線層418的一或多個金屬結構上方。在各種實施例中,可藉由在第一ILD層118及第一金屬線層418的一或多個金屬結構上方沈積第二ILD材料來形成第二ILD層416。在形成第二ILD層416後,執行平坦化製程(例如,CMP)以移除多餘的第二ILD層416且以暴露第一金屬線層418的一或多個金屬結構的頂部表面。在各種實施例中,第二ILD層416可包括藉由氣相沈積處理器或旋塗製程所形成的超低介電常數的介電材料或低介電常數的介電材料(例如,SiCO)。 As shown in the cross-sectional view 1900, the second ILD layer 416 is formed over the one or more metal structures of the first ILD layer 118 and the first metal line layer 418. In various embodiments, the second ILD layer 416 may be formed by depositing a second ILD material over one or more metal structures of the first ILD layer 118 and the first metal line layer 418. After the second ILD layer 416 is formed, a planarization process (for example, CMP) is performed to remove the excess second ILD layer 416 and expose the top surface of one or more metal structures of the first metal line layer 418. In various embodiments, the second ILD layer 416 may include an ultra-low dielectric constant dielectric material or a low dielectric constant dielectric material (for example, SiCO) formed by a vapor deposition processor or a spin coating process. .

應瞭解,多個接點(例如,接點120)及場板(例如,場板122)的高度差異可導致所揭露之電晶體元件的製造期間的困難。舉例而言,由於場板(例如,場板122)形成於介電層124(例如,光阻保護氧化物)上方,因此場板(例如,場板122)具有比多個接點(例如,接點120)更小的高度。然而,使用相同蝕刻製程來形成場板(例如,場板122)及多個接點(例如,接點120)。高度差異可導致場板開口(例如,圖16的場板開口1608)的過度 蝕刻(over-etching)或接觸開口(例如,圖16的接觸開口1606)的蝕刻不完全(under-etching),所述過度蝕刻導致場板(例如,場板122)與電晶體元件的導電通道之間的短接,所述蝕刻不完全導致多個接點(例如,接點120)與源極區(例如,源極區104)、汲極區(例如,汲極區106)及/或閘極區(例如,閘極區116)之間的不良連接。 It should be understood that the height difference of the plurality of contacts (for example, the contact 120) and the field plate (for example, the field plate 122) may cause difficulties during the manufacturing of the disclosed transistor device. For example, since the field plate (e.g., field plate 122) is formed over the dielectric layer 124 (e.g., photoresist protective oxide), the field plate (e.g., field plate 122) has more contacts (e.g., The contact 120) is smaller in height. However, the same etching process is used to form a field plate (for example, the field plate 122) and a plurality of contacts (for example, the contact 120). The height difference can cause excessive field plate openings (for example, field plate opening 1608 of FIG. 16) Over-etching or under-etching of contact openings (for example, contact opening 1606 of FIG. 16), the over-etching leads to conductive paths between the field plate (for example, the field plate 122) and the transistor element The incomplete etching results in multiple contacts (for example, contact 120) and source regions (for example, source region 104), drain regions (for example, drain region 106), and/or Poor connection between gate regions (eg, gate region 116).

為防止場板開口的過度蝕刻或接觸開口的蝕刻不完全,在一些實施例中,複合蝕刻終止層可用於控制場板開口的蝕刻深度。藉由控制場板開口的蝕刻深度,複合蝕刻終止層允許多個接點(例如,接點120)及場板(例如,場板122)兩者準確地形成為具有不同高度。 To prevent over-etching of the field plate openings or incomplete etching of the contact openings, in some embodiments, a composite etch stop layer can be used to control the etching depth of the field plate openings. By controlling the etching depth of the field plate opening, the composite etch stop layer allows the multiple contacts (for example, the contact 120) and the field plate (for example, the field plate 122) to be accurately formed to have different heights.

圖20繪示具有定義場板的複合蝕刻終止層的所揭露之高壓電晶體元件2000的一些實施例的橫截面圖。 FIG. 20 shows a cross-sectional view of some embodiments of the disclosed high voltage transistor device 2000 with a composite etch stop layer defining a field plate.

高壓電晶體元件2000包括安置於半導體基底102上方的閘極結構116。閘極結構116包括閘極介電層110及上覆的閘極電極108。在一些實施例中,閘極結構116可具有介於約1000埃與約2000埃之間的範圍內的第一厚度th 1 。源極區104及汲極區106安置於閘極結構116的相對側面上的半導體基底102內。 The high-voltage crystal element 2000 includes a gate structure 116 disposed on the semiconductor substrate 102. The gate structure 116 includes a gate dielectric layer 110 and an overlying gate electrode 108. In some embodiments, the gate structure 116 may have a first thickness th 1 in a range between about 1000 angstroms and about 2000 angstroms. The source region 104 and the drain region 106 are disposed in the semiconductor substrate 102 on opposite sides of the gate structure 116.

光阻保護氧化物(RPO)2002配置於閘極結構116上方。RPO 2002自閘極結構116正上方延伸至橫向地超過閘極結構116的最外側壁。在一些實施例中,RPO 2002可自閘極結構116的上部表面垂直地延伸至半導體基底102的上部表面,且自閘極結構116正上方橫向地延伸至閘極結構116與汲極區106之間。在一些實施例中,RPO 2002可包括二氧化矽、氮化矽或類似者。在一些 實施例中,RPO 2002可具有介於約100埃與約1000埃之間的範圍內的第二厚度th 2 The photoresist protective oxide (RPO) 2002 is disposed above the gate structure 116. The RPO 2002 extends from directly above the gate structure 116 to laterally beyond the outermost sidewall of the gate structure 116. In some embodiments, the RPO 2002 may extend vertically from the upper surface of the gate structure 116 to the upper surface of the semiconductor substrate 102, and extend laterally from directly above the gate structure 116 to between the gate structure 116 and the drain region 106 between. In some embodiments, RPO 2002 may include silicon dioxide, silicon nitride, or the like. In some embodiments, the RPO 2002 may have a second thickness th 2 in a range between about 100 angstroms and about 1000 angstroms.

複合蝕刻終止層2004配置於RPO 2002上方。在一些實施例中,複合蝕刻終止層2004直接地接觸RPO 2002的一或多個上部表面。第一層間介電(ILD)層118及場板122配置於複合蝕刻終止層2004上方。第一ILD層118包圍場板122及多個接點120,所述接點耦合至源極區104、汲極區106以及閘極結構116。在一些實施例中,場板122及多個接點120可包括包圍導電核心的擴散障壁(未展示),所述導電核心包含一或多個金屬。 The composite etch stop layer 2004 is disposed above the RPO 2002. In some embodiments, the composite etch stop layer 2004 directly contacts one or more upper surfaces of the RPO 2002. The first interlayer dielectric (ILD) layer 118 and the field plate 122 are disposed above the composite etch stop layer 2004. The first ILD layer 118 surrounds the field plate 122 and a plurality of contacts 120 that are coupled to the source region 104, the drain region 106 and the gate structure 116. In some embodiments, the field plate 122 and the plurality of contacts 120 may include diffusion barriers (not shown) surrounding a conductive core that includes one or more metals.

複合蝕刻終止層2004包括堆疊於RPO 2002上方的多個不同的介電材料2006至介電材料2008。在一些實施例中,多個不同的介電材料2006至介電材料2008可具有最外側壁,所述最外側壁實質上沿垂直於半導體基底102的上部表面的線對準。在一些實施例中,多個不同的介電材料2006至介電材料2008可具有與RPO 2002的最外側壁大體上對準的最外側壁。在此類實施例中,RPO 2002具有第一寬度,所述第一寬度實質上等於複合蝕刻終止層2004的第二寬度。多個不同的介電材料2006至介電材料2008具有不同蝕刻特性,所述蝕刻特性為多個的不同介電材料2006至介電材料2008的相應者提供對蝕刻劑的不同蝕刻選擇性。不同蝕刻選擇性可允許複合蝕刻終止層2004減緩場板開口(亦即,定義場板122的開口)的蝕刻,且因此緊密控制場板的高度以及允許多個接點120與場板122之間的高度差異(例如,允許多個接點120具有比場板122更高的高度)。 The composite etch stop layer 2004 includes a plurality of different dielectric materials 2006 to 2008 stacked on the RPO 2002. In some embodiments, the plurality of different dielectric materials 2006 to 2008 may have outermost sidewalls that are substantially aligned along a line perpendicular to the upper surface of the semiconductor substrate 102. In some embodiments, the plurality of different dielectric materials 2006 to 2008 may have the outermost sidewall that is substantially aligned with the outermost sidewall of the RPO 2002. In such embodiments, the RPO 2002 has a first width that is substantially equal to the second width of the composite etch stop layer 2004. The plurality of different dielectric materials 2006 to 2008 have different etching characteristics, and the etching characteristics provide different etching selectivities to the etchant for corresponding ones of the plurality of different dielectric materials 2006 to 2008. Different etch selectivities can allow the composite etch stop layer 2004 to slow down the etching of the field plate opening (ie, the opening that defines the field plate 122), and thus tightly control the height of the field plate and allow multiple contacts 120 and the field plate 122 (For example, allowing multiple contacts 120 to have a higher height than the field plate 122).

舉例而言,在一些實施例中,場板122的底部沿介面與 複合蝕刻終止層2004接觸,所述介面垂直地高於多個接點120(例如,耦合至源極區104及汲極區106的接點)中的一或多者的底部表面。在此類實施例中,在高壓電晶體元件2000的製造期間,複合蝕刻終止層2004減小用於形成場板開口(亦即,定義場板122的開口)的蝕刻劑的蝕刻速率。蝕刻速率的減小使得場板122具有底部表面,所述底部表面高於多個接點120中的一或多者的底部表面。 For example, in some embodiments, the bottom of the field plate 122 along the interface and The composite etch stop layer 2004 contacts the interface vertically higher than the bottom surface of one or more of the plurality of contacts 120 (eg, contacts coupled to the source region 104 and the drain region 106). In such embodiments, during the manufacture of the high-voltage transistor element 2000, the composite etch stop layer 2004 reduces the etching rate of the etchant used to form the field plate openings (ie, the openings that define the field plate 122). The reduction in the etching rate causes the field plate 122 to have a bottom surface that is higher than the bottom surface of one or more of the plurality of contacts 120.

在一些實施例中,複合蝕刻終止層2004可包括與RPO 2002的上部表面直接接觸的第一介電材料2006及與第一介電材料2006的上部表面直接接觸的第二介電材料2008。在一些實施例中,第一介電材料2006可具有第三厚度th 3 ,且第二介電材料2008可具有第四厚度th 4 。在一些實施例中,RPO 2002及複合蝕刻終止層2004可分別具有在最外側壁之間的實質上持續的厚度。若第三厚度th 3 及第四厚度th 4 過小(例如,小於以下闡述的最小值),則複合蝕刻終止層2004不能有效地終止形成場板開口的蝕刻。若第三厚度th 3 及第四厚度th 4 過大(例如,大於以下闡述的最大值),則場板122對高壓電晶體元件2000的效應降低,進而不利地影響元件性能。 In some embodiments, the composite etch stop layer 2004 may include a first dielectric material 2006 in direct contact with the upper surface of the RPO 2002 and a second dielectric material 2008 in direct contact with the upper surface of the first dielectric material 2006. In some embodiments, the first dielectric material 2006 may have a third thickness th 3 , and the second dielectric material 2008 may have a fourth thickness th 4 . In some embodiments, the RPO 2002 and the composite etch stop layer 2004 may each have a substantially continuous thickness between the outermost sidewalls. If the third thickness th 3 and the fourth thickness th 4 are too small (for example, less than the minimum value described below), the composite etch stop layer 2004 cannot effectively terminate the etching to form the field plate opening. If the third thickness th 3 and the fourth thickness th 4 are too large (for example, greater than the maximum value described below), the effect of the field plate 122 on the high-voltage transistor device 2000 is reduced, thereby adversely affecting the device performance.

在一些實施例中,第一介電材料2006可包括或可為氮化矽(SixNy),且第二介電材料2008可包括或可為二氧化矽(SiO2)。在此類實施例中,第一厚度th 1 可介於約50埃與約400埃之間的第一範圍內,且第二厚度th 2 可介於約150埃與約700埃之間的第二範圍內。在其他實施例中,第一介電材料2006可包括或可為二氧化矽(SiO2),且第二介電材料2008可包括或可為氮化矽(SiNx) 或氮氧化矽(SiOxNy)。在此類實施例中,第一厚度th 1 可介於約600埃與約900埃之間的第一範圍內。在一些實施例中,第二厚度th 2 可介於約100埃與約500埃之間的第二範圍內。 In some embodiments, the first dielectric material 2006 may include or may be silicon nitride (Si x N y ), and the second dielectric material 2008 may include or may be silicon dioxide (SiO 2 ). In such embodiments, the first thickness th 1 may be within a first range between about 50 angstroms and about 400 angstroms, and the second thickness th 2 may be between about 150 angstroms and about 700 angstroms. 2. Within the scope. In other embodiments, the first dielectric material 2006 may include or may be silicon dioxide (SiO 2 ), and the second dielectric material 2008 may include or may be silicon nitride (SiN x ) or silicon oxynitride (SiO 2) x N y ). In such embodiments, the first thickness th 1 may be in a first range between about 600 angstroms and about 900 angstroms. In some embodiments, the second thickness th 2 may be in a second range between about 100 angstroms and about 500 angstroms.

圖21A至圖21B繪示具有定義場板的複合蝕刻終止層的所揭露之高壓電晶體元件的一些其他實施例。 21A to 21B show some other embodiments of the disclosed high voltage transistor device with a composite etch stop layer defining a field plate.

如圖21A的橫截面圖2100中所示,高壓電晶體元件包括半導體基底102,所述半導體基底具有安置於基底2102上方的漂移區2104內的主體區2106。源極區104配置於主體區2106內,且汲極區106配置於漂移區2104內。在一些實施例中,源極區104、汲極區106以及漂移區2104可具有第一摻雜類型(例如,n型),而主體區2106及基底2102具有與第一摻雜類型相對的第二摻雜類型(例如,p型)。在一些實施例中,源極區104及汲極區106可包括摻雜濃度高於漂移區2104的高摻雜區域(亦即,n+區)。 As shown in the cross-sectional view 2100 of FIG. 21A, the high-voltage transistor element includes a semiconductor substrate 102 having a body region 2106 disposed in a drift region 2104 above the substrate 2102. The source region 104 is disposed in the body region 2106, and the drain region 106 is disposed in the drift region 2104. In some embodiments, the source region 104, the drain region 106, and the drift region 2104 may have a first doping type (for example, n-type), and the body region 2106 and the substrate 2102 have a second doping type opposite to the first doping type. Two-doped type (for example, p-type). In some embodiments, the source region 104 and the drain region 106 may include highly doped regions (ie, n+ regions) with a higher doping concentration than the drift region 2104.

閘極結構116配置於源極區104與汲極區106之間的半導體基底102上方。RPO 2002配置於閘極結構116上方,且橫向地延伸超過閘極結構116的最外側壁。複合蝕刻終止層2004配置於RPO 2002與場板122之間。在一些實施例中,RPO 2002可以一或多個橫向距離2108圍住場板122(亦即,延伸超過場板122的最外側壁),所述橫向距離介於約0微米與約2微米之間的範圍內。 The gate structure 116 is disposed above the semiconductor substrate 102 between the source region 104 and the drain region 106. The RPO 2002 is disposed above the gate structure 116 and extends laterally beyond the outermost sidewall of the gate structure 116. The composite etch stop layer 2004 is disposed between the RPO 2002 and the field plate 122. In some embodiments, the RPO 2002 may enclose the field plate 122 (ie, extend beyond the outermost sidewall of the field plate 122) at one or more lateral distances 2108, the lateral distance being between about 0 microns and about 2 microns. Within the range of time.

在一些實施例中,場板122可向複合蝕刻終止層2004中延伸非零的深度2110。在此類實施例中,場板122接觸複合蝕刻終止層2004的側壁。在各種實施例中,場板122亦可接觸複合蝕刻終止層2004的水平延伸表面或RPO 2002的水平延伸表面。在 一些實施例中,非零的深度2110可介於約400埃與約700埃之間的範圍內。由於場板122延伸至複合蝕刻終止層2004中,因此複合蝕刻終止層2004在場板122正下方具有第一厚度2112且在場板122外部具有大於第一厚度2112的第二厚度。在一些實施例中,第一厚度2112介於約0埃與約10000埃之間的範圍內。在一些其他實施例中,第一厚度2112介於約600埃與約300埃之間的範圍內。 In some embodiments, the field plate 122 may extend a non-zero depth 2110 into the composite etch stop layer 2004. In such embodiments, the field plate 122 contacts the sidewalls of the composite etch stop layer 2004. In various embodiments, the field plate 122 may also contact the horizontally extending surface of the composite etch stop layer 2004 or the horizontally extending surface of the RPO 2002. in In some embodiments, the non-zero depth 2110 may be in a range between about 400 angstroms and about 700 angstroms. Since the field plate 122 extends into the composite etch stop layer 2004, the composite etch stop layer 2004 has a first thickness 2112 directly below the field plate 122 and a second thickness greater than the first thickness 2112 outside the field plate 122. In some embodiments, the first thickness 2112 is in a range between about 0 angstroms and about 10000 angstroms. In some other embodiments, the first thickness 2112 is in a range between about 600 angstroms and about 300 angstroms.

如圖21B的俯視圖2120(沿圖21A的橫截面線A-A')中所展示,場板122具有在第一方向上延伸一定距離的寬度2114,所述距離的範圍內介於約150奈米與約2000奈米之間。場板122亦具有在第二方向(垂直於第一方向)上延伸的小於約1000微米的距離的長度2122。 As shown in the top view 2120 of FIG. 21B (along the cross-sectional line AA' of FIG. 21A), the field plate 122 has a width 2114 that extends a certain distance in the first direction, and the distance is in the range of about 150 nanometers. Between meters and about 2000 nanometers. The field plate 122 also has a length 2122 that extends in the second direction (perpendicular to the first direction) at a distance of less than about 1000 microns.

再次參看圖21A的橫截面圖2100,在一些實施例中,場板122可藉由距離2116與閘極結構116橫向地分離。舉例而言,場板122可藉由介於約0奈米與約500奈米之間的範圍內的距離2116與閘極結構116橫向地分離。在其他實施例中(未展示),場板122可與閘極結構116橫向地交疊(亦即,延伸至正上方)。舉例而言,場板122可與閘極結構116橫向地交疊介於約0奈米與約200奈米之間的範圍內的距離。 Referring again to the cross-sectional view 2100 of FIG. 21A, in some embodiments, the field plate 122 may be separated laterally from the gate structure 116 by a distance 2116. For example, the field plate 122 may be separated laterally from the gate structure 116 by a distance 2116 in a range between about 0 nanometers and about 500 nanometers. In other embodiments (not shown), the field plate 122 may overlap the gate structure 116 laterally (that is, extend directly above). For example, the field plate 122 may laterally overlap the gate structure 116 by a distance in a range between about 0 nanometers and about 200 nanometers.

在一些實施例中,矽化物層2118配置於源極區104、汲極區106以及閘極結構116不由RPO 2002覆蓋的部分上方。在各種實施例中,矽化物層2118可包括化合物,所述化合物具有矽及金屬,諸如鎳(nickel)、鉑(platinum)、鈦、鎢、鎂(magnesium)或類似者。在一些實施例中,矽化物層2118具有介於約150埃與 約400埃之間的範圍內的厚度。 In some embodiments, the silicide layer 2118 is disposed on the source region 104, the drain region 106, and the portion of the gate structure 116 not covered by the RPO 2002. In various embodiments, the silicide layer 2118 may include a compound having silicon and a metal, such as nickel, platinum, titanium, tungsten, magnesium, or the like. In some embodiments, the silicide layer 2118 has a thickness between about 150 angstroms and The thickness ranges between about 400 angstroms.

圖22繪示具有定義場板的複合蝕刻終止層的所揭露之高壓電晶體元件2200的一些其他實施例的橫截面圖。 FIG. 22 shows a cross-sectional view of some other embodiments of the disclosed high-voltage transistor device 2200 with a composite etch stop layer defining a field plate.

高壓電晶體元件2200包括配置於半導體基底102上方的閘極電極108。RPO 2002及複合蝕刻終止層2004位於閘極電極108及半導體基底102上方。接觸蝕刻終止層(CESL)406安置於複合蝕刻終止層2004上方。在一些實施例中,複合蝕刻終止層2004的底部表面可直接地接觸RPO 2002,且複合蝕刻終止層2004的頂部表面可直接地接觸CESL 406。CESL 406橫向地延伸超過複合蝕刻終止層2004的最外側壁,且接觸半導體基底102。在一些實施例中,CESL 406可具有介於約100埃與約1000埃之間的範圍內的厚度th 5 。在一些實施例中,CESL 406可包括氮化矽、碳化矽或類似者。 The high-voltage crystal element 2200 includes a gate electrode 108 disposed above the semiconductor substrate 102. The RPO 2002 and the composite etch stop layer 2004 are located above the gate electrode 108 and the semiconductor substrate 102. A contact etch stop layer (CESL) 406 is disposed above the composite etch stop layer 2004. In some embodiments, the bottom surface of the composite etch stop layer 2004 may directly contact the RPO 2002, and the top surface of the composite etch stop layer 2004 may directly contact the CESL 406. The CESL 406 extends laterally beyond the outermost sidewall of the composite etch stop layer 2004 and contacts the semiconductor substrate 102. In some embodiments, CESL 406 may have a thickness th 5 in a range between about 100 angstroms and about 1000 angstroms. In some embodiments, CESL 406 may include silicon nitride, silicon carbide, or the like.

場板408安置於CESL 406上方的第一ILD層118內。在一些實施例中,場板408可包括第一金屬材料410及第二金屬材料412。複合蝕刻終止層2004橫向地配置於場板408與閘極結構116之間,且垂直地配置於場板122與半導體基底102之間。RPO 2002及複合蝕刻終止層2004具有與CESL 406接觸的側壁。複合蝕刻終止層2004進一步具有與CESL 406接觸的水平延伸表面(例如,上部表面)。 The field plate 408 is disposed in the first ILD layer 118 above the CESL 406. In some embodiments, the field plate 408 may include a first metal material 410 and a second metal material 412. The composite etch stop layer 2004 is disposed laterally between the field plate 408 and the gate structure 116, and vertically disposed between the field plate 122 and the semiconductor substrate 102. The RPO 2002 and the composite etch stop layer 2004 have sidewalls in contact with the CESL 406. The composite etch stop layer 2004 further has a horizontally extending surface (for example, an upper surface) in contact with the CESL 406.

在一些實施例中,場板122可延伸至複合蝕刻終止層2004內的多個不同介電材料2006至介電材料2008中的一或多者中。舉例而言,在一些實施例中,複合蝕刻終止層2004可包括第一介電材料2006及與第一介電材料2006的上部表面接觸的第二 介電材料2008。場板122可延伸穿過第二介電材料2008(例如,氧化矽),且具有與第一介電材料2006(例如,氮化矽)接觸的底部表面。在此類實施例中,第二介電材料2008可使場板122的最底點與RPO 2002垂直地分離。在其他實施例中,場板122可進一步延伸穿過第一介電材料2006,且具有與RPO 2002接觸的底部表面及/或側壁。在一些實施例中,場板122可垂直地延伸穿過第二介電材料2008,且亦藉由第二介電材料2008與閘極結構116橫向地分離。 In some embodiments, the field plate 122 may extend into one or more of a plurality of different dielectric materials 2006 to 2008 in the composite etch stop layer 2004. For example, in some embodiments, the composite etch stop layer 2004 may include a first dielectric material 2006 and a second dielectric material 2006 in contact with the upper surface of the first dielectric material 2006. Dielectric Materials 2008. The field plate 122 may extend through the second dielectric material 2008 (for example, silicon oxide) and have a bottom surface in contact with the first dielectric material 2006 (for example, silicon nitride). In such an embodiment, the second dielectric material 2008 can vertically separate the bottommost point of the field plate 122 from the RPO 2002. In other embodiments, the field plate 122 may further extend through the first dielectric material 2006 and have a bottom surface and/or sidewalls in contact with the RPO 2002. In some embodiments, the field plate 122 may extend vertically through the second dielectric material 2008, and is also laterally separated from the gate structure 116 by the second dielectric material 2008.

儘管所揭露之複合蝕刻終止層2004在圖20至圖22中繪示為具有堆疊於RPO 2002上方的兩種不同介電材料2006至介電材料2008,但應瞭解,所揭露之複合蝕刻終止層2004不限於此類配置。確切而言,在各種實施例中,複合蝕刻終止層2004可包含介電材料的其他層。圖23至圖24繪示所揭露之複合蝕刻終止層2004的替代實施例的一些非限制性實例。 Although the disclosed composite etch stop layer 2004 is shown in FIGS. 20-22 as having two different dielectric materials 2006 to 2008 stacked on the RPO 2002, it should be understood that the disclosed composite etch stop layer 2004 is not limited to this type of configuration. Specifically, in various embodiments, the composite etch stop layer 2004 may include other layers of dielectric materials. Figures 23-24 show some non-limiting examples of alternative embodiments of the disclosed composite etch stop layer 2004.

圖23繪示具有定義場板的複合蝕刻終止層的所揭露之高壓電晶體元件2300的一些其他實施例的橫截面圖。 FIG. 23 shows a cross-sectional view of some other embodiments of the disclosed high voltage transistor device 2300 with a composite etch stop layer defining a field plate.

高壓電晶體元件2300包括配置於RPO 2002上方的複合蝕刻終止層2004。複合蝕刻終止層2004包括第一介電材料2302、與第一介電材料2302的上部表面接觸的第二介電材料2304以及與第二介電材料2304的上部表面接觸的第三介電材料2306。在一些實施例中,第一介電材料2302可包括或可為二氧化矽(SiO2),第二介電材料2304可包括或可為氮化矽(SixNy)或氮氧化矽(SiOxNy),且第三介電材料2306可包括或可為二氧化矽(SiO2)。 The high-voltage crystal element 2300 includes a composite etch stop layer 2004 disposed above the RPO 2002. The composite etch stop layer 2004 includes a first dielectric material 2302, a second dielectric material 2304 in contact with the upper surface of the first dielectric material 2302, and a third dielectric material 2306 in contact with the upper surface of the second dielectric material 2304 . In some embodiments, the first dielectric material 2302 may include or may be silicon dioxide (SiO 2 ), and the second dielectric material 2304 may include or may be silicon nitride (Si x N y ) or silicon oxynitride ( SiO x N y ), and the third dielectric material 2306 may include or may be silicon dioxide (SiO 2 ).

在一些實施例中,第一介電材料2302可具有第一厚度, 第二介電材料2304可具有第二厚度,且第三介電材料2306可具有第三厚度。在一些實施例中,第一厚度可介於約300埃與約900埃之間的第一範圍內,第二厚度可介於約50埃與約200埃之間的第二範圍內,且第三厚度可介於約200埃與約600埃之間的第三範圍內。 In some embodiments, the first dielectric material 2302 may have a first thickness, The second dielectric material 2304 may have a second thickness, and the third dielectric material 2306 may have a third thickness. In some embodiments, the first thickness may be in a first range between about 300 angstroms and about 900 angstroms, the second thickness may be in a second range between about 50 angstroms and about 200 angstroms, and the first thickness The third thickness may be in a third range between about 200 angstroms and about 600 angstroms.

圖24繪示具有定義場板的複合蝕刻終止層的所揭露之高壓電晶體元件2400的一些其他實施例的橫截面圖。 FIG. 24 shows a cross-sectional view of some other embodiments of the disclosed high-voltage transistor element 2400 with a composite etch stop layer defining a field plate.

高壓電晶體元件2400包括配置於RPO 2002上方的複合蝕刻終止層2004。複合蝕刻終止層2004包括第一介電材料2402、與第一介電材料2402的上部表面接觸的第二介電材料2404、與第二介電材料2404的上部表面接觸的第三介電材料2406以及與第三介電材料2406的上部表面接觸的第四介電材料2408。在一些實施例中,第一介電材料2402可包括或可為二氧化矽(SiO2),第二介電材料2404可包括或可為氮化矽(SixNy)或氮氧化矽(SiOxNy),第三介電材料2406可包括或可為二氧化矽(SiO2),且第四介電材料2408可包括或可為氮化矽(SixNy)或氮氧化矽(SiOxNy)。 The high-voltage crystal element 2400 includes a composite etch stop layer 2004 disposed above the RPO 2002. The composite etch stop layer 2004 includes a first dielectric material 2402, a second dielectric material 2404 in contact with the upper surface of the first dielectric material 2402, and a third dielectric material 2406 in contact with the upper surface of the second dielectric material 2404 And the fourth dielectric material 2408 in contact with the upper surface of the third dielectric material 2406. In some embodiments, the first dielectric material 2402 may include or may be silicon dioxide (SiO 2 ), and the second dielectric material 2404 may include or may be silicon nitride (Si x N y ) or silicon oxynitride ( SiO x N y ), the third dielectric material 2406 may include or may be silicon dioxide (SiO 2 ), and the fourth dielectric material 2408 may include or may be silicon nitride (Si x N y ) or silicon oxynitride (SiO x N y ).

在一些實施例中,第一介電材料2402可具有第一厚度,第二介電材料2404可具有第二厚度,第三介電材料2406可具有第三厚度,且第四介電材料2408可具有第四厚度。在一些實施例中,第一厚度可介於約300埃與約900埃之間的第一範圍內,第二厚度可介於約50埃與約200埃之間的第二範圍內,第三厚度可介於約200埃與約600埃之間的第三範圍內,且第四厚度可介於約50埃與約200埃之間的第四範圍內。 In some embodiments, the first dielectric material 2402 may have a first thickness, the second dielectric material 2404 may have a second thickness, the third dielectric material 2406 may have a third thickness, and the fourth dielectric material 2408 may Has a fourth thickness. In some embodiments, the first thickness may be in a first range between about 300 angstroms and about 900 angstroms, the second thickness may be in a second range between about 50 angstroms and about 200 angstroms, and the third The thickness may be in a third range between about 200 angstroms and about 600 angstroms, and the fourth thickness may be in a fourth range between about 50 angstroms and about 200 angstroms.

圖25至圖32繪示形成具有定義場板的複合蝕刻終止層的高壓電晶體元件的方法的一些實施例的橫截面圖。儘管圖25至圖32中所示的橫截面圖2500至橫截面圖3200是參考一個方法而描述,但應瞭解,展示於圖25至圖32中之結構不限於所述方法,而是可以獨立於所述方法。 25 to 32 show cross-sectional views of some embodiments of a method of forming a high-voltage transistor element with a composite etch stop layer defining a field plate. Although the cross-sectional view 2500 to the cross-sectional view 3200 shown in FIGS. 25 to 32 are described with reference to one method, it should be understood that the structure shown in FIGS. 25 to 32 is not limited to the method, but may be independent于说方法。 In the method.

如圖25的橫截面圖2500中所示,選擇性地對半導體基底102進行佈值以形成多個植入區(例如,阱區、接觸區等)。在一些實施例中,可選擇性地對半導體基底102進行佈值以形成主體區2106、漂移區2104、源極區104以及汲極區106。在其他實施例中,可選擇性地對半導體基底102進行佈值以形成不同植入區(例如,圖1至圖10中所繪示的那些植入區中的任一者)。在一些實施例中,可藉由選擇性地遮蔽半導體基底102(例如,使用光阻罩幕)且接著將高能量摻雜劑(例如,p型摻雜劑物種,諸如硼;或n型摻雜劑,諸如磷)引入至半導體基底102的暴露區域中來形成多個植入區。 As shown in the cross-sectional view 2500 of FIG. 25, the semiconductor substrate 102 is selectively patterned to form a plurality of implant regions (eg, well regions, contact regions, etc.). In some embodiments, the semiconductor substrate 102 may be selectively patterned to form the body region 2106, the drift region 2104, the source region 104, and the drain region 106. In other embodiments, the semiconductor substrate 102 may be selectively patterned to form different implanted regions (for example, any of the implanted regions shown in FIGS. 1 to 10). In some embodiments, the semiconductor substrate 102 can be selectively shielded (for example, using a photoresist mask) and then high-energy dopants (for example, p-type dopant species such as boron; or n-type dopants) A dopant, such as phosphorous, is introduced into the exposed area of the semiconductor substrate 102 to form a plurality of implanted regions.

閘極結構116形成於源極區104與汲極區106之間的半導體基底102上方。可藉由在半導體基底102上方沈積閘極介電層110且藉由在閘極介電層110上方沈積閘極電極材料108來形成閘極結構116。閘極介電層110及閘極電極材料108可隨後經圖案化(例如,根據光阻罩幕及/或硬式罩幕來蝕刻)以定義出閘極結構116。 The gate structure 116 is formed on the semiconductor substrate 102 between the source region 104 and the drain region 106. The gate structure 116 can be formed by depositing a gate dielectric layer 110 on the semiconductor substrate 102 and by depositing a gate electrode material 108 on the gate dielectric layer 110. The gate dielectric layer 110 and the gate electrode material 108 may then be patterned (eg, etched according to a photoresist mask and/or a hard mask) to define the gate structure 116.

如圖26的橫截面圖2600中所示,光阻保護氧化物(RPO)2002形成於閘極結構116上方。RPO 2002自閘極結構116正上方橫向地延伸至超過閘極結構116的最外側壁。RPO 2002經配置以 阻斷矽化物在下伏層上的形成。在一些實施例中,可藉由氣相沈積技術(例如,CVD)沈積RPO 2002。在一些實施例中,RPO 2002可包括二氧化矽(SiO2)、氮化矽或類似者。 As shown in the cross-sectional view 2600 of FIG. 26, a photoresist protective oxide (RPO) 2002 is formed over the gate structure 116. The RPO 2002 extends laterally from directly above the gate structure 116 to exceed the outermost sidewall of the gate structure 116. RPO 2002 is configured to block the formation of silicide on the underlying layer. In some embodiments, RPO 2002 may be deposited by vapor deposition technology (eg, CVD). In some embodiments, RPO 2002 may include silicon dioxide (SiO 2 ), silicon nitride, or the like.

如圖27的橫截面圖2700中所示,包括多個不同的介電材料2006至介電材料2008的複合蝕刻終止層2004選擇性地形成於RPO 2002上方。在一些實施例中,可藉由氣相沈積技術依序沈積多個不同的介電材料2006至介電材料2008。在一些實施例中,複合蝕刻終止層2004可包括堆疊層,所述堆疊層包含氮化矽(SixNy)層、氮氧化矽(SiOxNy)層以及二氧化矽(SiO2)層中的兩者或多於兩者。 As shown in the cross-sectional view 2700 of FIG. 27, a composite etch stop layer 2004 including a plurality of different dielectric materials 2006 to 2008 is selectively formed over the RPO 2002. In some embodiments, a plurality of different dielectric materials 2006 to 2008 may be sequentially deposited by vapor deposition technology. In some embodiments, the composite etch stop layer 2004 may include a stacked layer including a silicon nitride (Si x N y ) layer, a silicon oxynitride (SiO x N y ) layer, and a silicon dioxide (SiO 2 ) layer. Two or more than two of the layers.

在一些實施例中,可使用相同罩幕層2702(例如,光阻層)及蝕刻製程來圖案化多個不同的介電材料2006至介電材料2008以及RPO 2002。使用相同罩幕層2702圖案化多個不同的介電材料2006至介電材料2008以及RPO 2002可減少形成複合蝕刻終止層2004的成本。在此類實施例中,多個不同的介電材料2006至介電材料2008以及RPO 2002可具有實質上對準的側壁。 In some embodiments, the same mask layer 2702 (for example, a photoresist layer) and an etching process can be used to pattern a plurality of different dielectric materials 2006 to 2008 and RPO 2002. Using the same mask layer 2702 to pattern a plurality of different dielectric materials 2006 to 2008 and RPO 2002 can reduce the cost of forming the composite etch stop layer 2004. In such embodiments, the plurality of different dielectric materials 2006 to 2008 and RPO 2002 may have substantially aligned sidewalls.

如圖28的橫截面圖2800中所示,接觸蝕刻終止層(CESL)406形成於半導體基底102及複合蝕刻終止層2004上方。在一些實施例中,可藉由氣相沈積製程形成CESL 406。CESL可包括氮化物層(例如,Si3N4)、碳化物層(SiC)或類似者。 As shown in the cross-sectional view 2800 of FIG. 28, a contact etch stop layer (CESL) 406 is formed over the semiconductor substrate 102 and the composite etch stop layer 2004. In some embodiments, the CESL 406 may be formed by a vapor deposition process. The CESL may include a nitride layer (for example, Si 3 N 4 ), a carbide layer (SiC), or the like.

如圖29的橫截面圖2900中所示,第一層間介電(ILD)層118形成於CESL 406上方。在一些實施例中,第一ILD層118可包括氧化物(例如,SiO2)、超低介電常數的介電材料、低介電常數的介電材料(例如,SiCO)或類似者。在一些實施例中,可 藉由氣相沈積製程形成第一ILD層118。 As shown in the cross-sectional view 2900 of FIG. 29, a first interlayer dielectric (ILD) layer 118 is formed over the CESL 406. In some embodiments, the first ILD layer 118 may include an oxide (for example, SiO 2 ), an ultra-low dielectric constant dielectric material, a low dielectric constant dielectric material (for example, SiCO), or the like. In some embodiments, the first ILD layer 118 may be formed by a vapor deposition process.

如圖30的橫截面圖3000中所示,第一ILD層118選擇性地暴露於蝕刻劑3002(例如,根據罩幕層3003)以形成第一ILD層118內的多個接觸開口1606及場板開口1608。接觸開口1606及場板開口1608具有非零的距離3004的蝕刻深度差異。在一些實施例中,非零的距離3004可介於約400埃與約2000埃之間的範圍內,在一些實施例中,場板開口1608延伸至複合蝕刻終止層2004中,使得複合蝕刻終止層2004的側壁定義場板開口1608。在各種實施例中,複合蝕刻終止層2004或RPO 2002可定義場板開口1608的底部。 As shown in the cross-sectional view 3000 of FIG. 30, the first ILD layer 118 is selectively exposed to an etchant 3002 (for example, according to the mask layer 3003) to form a plurality of contact openings 1606 and fields in the first ILD layer 118板开1608。 Board opening 1608. The contact opening 1606 and the field plate opening 1608 have a non-zero distance 3004 in the etching depth difference. In some embodiments, the non-zero distance 3004 may be in the range between about 400 angstroms and about 2000 angstroms. In some embodiments, the field plate opening 1608 extends into the composite etch stop layer 2004 so that the composite etch stops The sidewalls of layer 2004 define field plate openings 1608. In various embodiments, the composite etch stop layer 2004 or RPO 2002 may define the bottom of the field plate opening 1608.

在一些實施例中,蝕刻劑3002可使複合蝕刻終止層2004的厚度減小介於約400埃與約700埃之間的範圍內的量。在一些實施例中,位於場板開口1608正下方的複合蝕刻終止層2004的厚度介於約0埃與約1,000埃之間的範圍內。在一些其他實施例中,位於場板開口1608正下方的複合蝕刻終止層2004的厚度介於約300埃與約900埃之間的範圍內。 In some embodiments, the etchant 3002 can reduce the thickness of the composite etch stop layer 2004 by an amount in a range between about 400 angstroms and about 700 angstroms. In some embodiments, the thickness of the composite etch stop layer 2004 directly below the field plate opening 1608 is in a range between about 0 angstroms and about 1,000 angstroms. In some other embodiments, the thickness of the composite etch stop layer 2004 directly below the field plate opening 1608 is in a range between about 300 angstroms and about 900 angstroms.

選擇用於形成接觸開口1608及場板開口1608的蝕刻劑3002以蝕刻穿過CESL 406的材料。然而,由於複合蝕刻終止層2004由多個不同材料形成,因此複合蝕刻終止層2004能夠在較高程度上抵抗蝕刻劑3002的蝕刻。複合蝕刻終止層2004進而允許接觸開口1606延伸至半導體基底102,而防止場板開口1608延伸至半導體基底102。複合蝕刻終止層2004亦允許在一基底上、相同批次(lot)的多個基底之間及/或不同批次的多個基底上方的不同位置處的蝕刻深度的高度均勻度。舉例而言,複合蝕刻終止層 2004允許不同基底上的場板開口1608的蝕刻深度在約2%或小於2%的偏差內。此蝕刻深度均勻度允許改良的元件均勻度及性能,其超越不具有複合蝕刻終止層2004的元件。 The etchant 3002 used to form the contact opening 1608 and the field plate opening 1608 is selected to etch through the material of the CESL 406. However, since the composite etch stop layer 2004 is formed of a plurality of different materials, the composite etch stop layer 2004 can resist etching by the etchant 3002 to a higher degree. The composite etch stop layer 2004 in turn allows the contact opening 1606 to extend to the semiconductor substrate 102 while preventing the field plate opening 1608 from extending to the semiconductor substrate 102. The composite etch stop layer 2004 also allows high uniformity of the etching depth at different positions on a substrate, between multiple substrates of the same lot, and/or above multiple substrates of different batches. For example, the composite etch stop layer 2004 allows the etch depth of field plate openings 1608 on different substrates to be within a deviation of about 2% or less. This uniformity of etch depth allows for improved device uniformity and performance beyond devices that do not have a composite etch stop layer 2004.

如圖31的橫截面圖3100中所示,用一或多個導電材料填充多個接觸開口1606及場板開口1608。在一些實施例中,可藉助於氣相沈積技術(例如,CVD、PVD、PE-CVD等)及/或鍍覆製程(例如,電鍍或無電極鍍覆製程)沈積一或多個導電材料。可隨後執行平坦化製程(例如,化學機械平坦化)以移除多餘的一或多個導電材料且形成沿線3102的平坦表面。在一些實施例中,一或多個導電材料可包括鎢(W)、鈦(Ti)、氮化鈦(TiN)及/或氮化鉭(TaN)。在一些實施例中,擴散障壁層及/或內襯層可在沈積一或多個導電材料之前被沈積至多個接觸開口1606及場板開口1608中。 As shown in the cross-sectional view 3100 of FIG. 31, a plurality of contact openings 1606 and field plate openings 1608 are filled with one or more conductive materials. In some embodiments, one or more conductive materials may be deposited by means of vapor deposition techniques (eg, CVD, PVD, PE-CVD, etc.) and/or plating processes (eg, electroplating or electroless plating processes). A planarization process (for example, chemical mechanical planarization) may be subsequently performed to remove the excess conductive material or materials and form a flat surface along the line 3102. In some embodiments, the one or more conductive materials may include tungsten (W), titanium (Ti), titanium nitride (TiN), and/or tantalum nitride (TaN). In some embodiments, the diffusion barrier layer and/or the liner layer may be deposited into the plurality of contact openings 1606 and the field plate openings 1608 before depositing one or more conductive materials.

如圖32的橫截面圖3200中所展示,第二ILD層126形成於第一ILD層118上方,且第一後段製程(BEOL)金屬線層128形成於第二ILD層126內。在各種實施例中,可藉由在第一ILD層118上方沈積第二ILD材料來形成第二ILD層126。第二ILD層126隨後經蝕刻以形成在第二ILD層126內延伸的溝渠。用導電材料填充溝渠,且執行平坦化製程(例如,CMP)以自第二ILD層126上方移除多餘的導電材料。 As shown in the cross-sectional view 3200 of FIG. 32, the second ILD layer 126 is formed above the first ILD layer 118, and the first back end of line (BEOL) metal line layer 128 is formed in the second ILD layer 126. In various embodiments, the second ILD layer 126 may be formed by depositing a second ILD material over the first ILD layer 118. The second ILD layer 126 is then etched to form trenches extending in the second ILD layer 126. The trench is filled with conductive material, and a planarization process (for example, CMP) is performed to remove excess conductive material from above the second ILD layer 126.

圖33繪示形成具有定義場板的複合蝕刻終止層的高壓電晶體元件的方法3300的一些實施例的流程圖。 FIG. 33 shows a flowchart of some embodiments of a method 3300 for forming a high-voltage transistor element having a composite etch stop layer defining a field plate.

在3302處,閘極結構形成於基底上方。圖25繪示與動作3302相對應的一些實施例的橫截面圖2500。 At 3302, the gate structure is formed over the substrate. FIG. 25 shows a cross-sectional view 2500 of some embodiments corresponding to action 3302.

在3304處,源極區及汲極區形成於閘極結構的相對側面上的基底內。在一些其他實施例中,一或多個額外摻雜區(例如,主體區、漂移區等)亦可形成於基底內。圖25繪示與動作3304的一些實施例相對應的橫截面圖2500。 At 3304, the source and drain regions are formed in the substrate on opposite sides of the gate structure. In some other embodiments, one or more additional doped regions (eg, body region, drift region, etc.) may also be formed in the substrate. FIG. 25 shows a cross-sectional view 2500 corresponding to some embodiments of action 3304.

在3306處,光阻保護氧化物(RPO)形成於閘極結構上方且橫向地形成於閘極結構與汲極區之間。圖26繪示與動作3306相對應的一些實施例的橫截面圖2600。 At 3306, a photoresist protective oxide (RPO) is formed above the gate structure and laterally between the gate structure and the drain region. FIG. 26 shows a cross-sectional view 2600 of some embodiments corresponding to action 3306.

在3308處,複合蝕刻終止層形成於RPO上方。圖27繪示與動作3308相對應的一些實施例的橫截面圖2700。 At 3308, a composite etch stop layer is formed over the RPO. FIG. 27 shows a cross-sectional view 2700 of some embodiments corresponding to action 3308.

在3310處,接觸蝕刻終止層(CESL)形成於複合蝕刻終止層上。圖28繪示與動作3310相對應的一些實施例的橫截面圖2800。 At 3310, a contact etch stop layer (CESL) is formed on the composite etch stop layer. FIG. 28 shows a cross-sectional view 2800 of some embodiments corresponding to action 3310.

在3312處,第一層間介電(ILD)層形成於CESL上方。圖29繪示與動作3312相對應的一些實施例的橫截面圖2900。 At 3312, a first interlayer dielectric (ILD) layer is formed over CESL. FIG. 29 shows a cross-sectional view 2900 of some embodiments corresponding to action 3312.

在3314處,選擇性地蝕刻第一ILD層以定義多個接觸開口及場板開口。多個接觸開口及場板開口具有不同深度。圖30繪示與動作3314相對應的一些實施例的橫截面圖3000。 At 3314, the first ILD layer is selectively etched to define a plurality of contact openings and field plate openings. The multiple contact openings and the field plate openings have different depths. FIG. 30 shows a cross-sectional view 3000 of some embodiments corresponding to action 3314.

在3316處,用一或多個導電材料填充多個接觸開口及場板開口。圖31繪示與動作3316相對應的一些實施例的橫截面圖3100。 At 3316, multiple contact openings and field plate openings are filled with one or more conductive materials. FIG. 31 shows a cross-sectional view 3100 of some embodiments corresponding to action 3316.

在3318處,導電內連線形成於第一ILD層上方的第二ILD層內。圖32繪示與動作3318相對應的一些實施例的橫截面圖3200。 At 3318, conductive interconnects are formed in the second ILD layer above the first ILD layer. FIG. 32 shows a cross-sectional view 3200 of some embodiments corresponding to action 3318.

因此,本揭露內容是關於一種具有場板的高壓電晶體元 件,所述場板與形成導電接點為同時形成。所述元件具有用於實現場板與導電接點的高度差異的複合蝕刻終止層。 Therefore, the content of this disclosure is about a high-voltage transistor element with a field plate. The field plate and the formation of the conductive contact are formed at the same time. The element has a composite etch stop layer for realizing the height difference between the field plate and the conductive contact.

在一些實施例中,本揭露內容是關於一種積體晶片。積體晶片包含:閘極結構,安置於源極區與汲極區之間的基底上方;介電層,自閘極結構上方橫向地延伸至閘極結構與汲極區之間;複合蝕刻終止層,具有堆疊於介電層上方的多個不同的介電材料;接觸蝕刻終止層,直接地接觸複合蝕刻終止層的上部表面及多個側壁;以及場板,被第一ILD層橫向地包圍,且自第一ILD層的頂部垂直地延伸、延伸穿過接觸蝕刻終止層且延伸至複合蝕刻終止層中。在一些實施例中,複合蝕刻終止層具有第一介電材料以及與第一介電材料的上部表面接觸的第二介電材料。在一些實施例中,場板垂直地延伸穿過第二介電材料,且場板藉由第二介電材料與閘極結構橫向地分隔開。在一些實施例中,第一介電材料包含氮化矽,且第二介電材料包含二氧化矽。在一些實施例中,第一介電材料包含二氧化矽,且第二介電材料包含氮化矽或氮氧化矽。在一些實施例中,場板垂直地延伸穿過第二介電材料,且場板藉由第一介電材料與閘極結構垂直地分隔開。在一些實施例中,複合蝕刻終止層在場板正下方具有第一厚度,且在場板外部具有第二厚度。在一些實施例中,複合蝕刻終止層橫向地接觸場板的多個側壁。在一些實施例中,場板的底部藉由複合蝕刻終止層與介電層垂直地分隔開。在一些實施例中,介電層包含光阻保護氧化物,所述光阻保護氧化物具有與閘極結構接觸的下部表面以及與複合蝕刻終止層接觸的上部表面。 In some embodiments, the disclosure relates to an integrated wafer. The integrated chip includes: a gate structure, which is arranged above the substrate between the source region and the drain region; a dielectric layer, which extends laterally from above the gate structure to between the gate structure and the drain region; and the composite etching is terminated A layer having a plurality of different dielectric materials stacked above the dielectric layer; contacting the etch stop layer, directly contacting the upper surface of the composite etch stop layer and a plurality of sidewalls; and a field plate, which is laterally surrounded by the first ILD layer , And extend vertically from the top of the first ILD layer, extend through the contact etch stop layer, and extend into the composite etch stop layer. In some embodiments, the composite etch stop layer has a first dielectric material and a second dielectric material in contact with the upper surface of the first dielectric material. In some embodiments, the field plate extends vertically through the second dielectric material, and the field plate is laterally separated from the gate structure by the second dielectric material. In some embodiments, the first dielectric material includes silicon nitride, and the second dielectric material includes silicon dioxide. In some embodiments, the first dielectric material includes silicon dioxide, and the second dielectric material includes silicon nitride or silicon oxynitride. In some embodiments, the field plate extends vertically through the second dielectric material, and the field plate is vertically separated from the gate structure by the first dielectric material. In some embodiments, the composite etch stop layer has a first thickness directly below the field plate and has a second thickness outside the field plate. In some embodiments, the composite etch stop layer laterally contacts the multiple sidewalls of the field plate. In some embodiments, the bottom of the field plate is vertically separated from the dielectric layer by a composite etch stop layer. In some embodiments, the dielectric layer includes a photoresist protective oxide having a lower surface in contact with the gate structure and an upper surface in contact with the composite etch stop layer.

在其他實施例中,本揭露內容是關於一種積體晶片。積 體晶片包含:閘極結構,安置於基底上方;光阻保護氧化物,自閘極結構上方橫向地延伸至超過閘極結構的最外側壁;複合蝕刻終止層,具有光阻保護氧化物上方的第一介電材料以及與第一介電材料的上部表面接觸的第二介電材料;多個導電接點,被基底上方的第一層間介電(ILD)層橫向地包圍;以及場板,自第一ILD層的頂部延伸至複合蝕刻終止層且包含與多個導電接點相同的材料,所述複合蝕刻終止層橫向地接觸場板的多個側壁,且所述複合蝕刻終止層使場板的底部與光阻保護氧化物垂直地分隔開。在一些實施例中,場板垂直地延伸穿過第二介電材料,且所述場板藉由第二介電材料與閘極結構橫向地分隔開。在一些實施例中,第一介電材料為氧化物,且第二介電材料為氮化物。在一些實施例中,複合蝕刻終止層更包括與第二介電材料的上部表面接觸的第三介電材料,第一介電材料以及第三介電材料為相同材料。在一些實施例中,積體晶片更包含與複合蝕刻終止層的上部表面及多個側壁直接接觸的接觸蝕刻終止層,所述場板延伸穿過接觸蝕刻終止層。在一些實施例中,光阻保護氧化物具有第一寬度,所述第一寬度實質上等於複合蝕刻終止層的第二寬度。 In other embodiments, the disclosure relates to an integrated chip. product The bulk wafer includes: a gate structure, which is arranged above the substrate; a photoresist protective oxide, which extends laterally from above the gate structure to beyond the outermost sidewall of the gate structure; a composite etch stop layer, which has a photoresist protective oxide above the A first dielectric material and a second dielectric material in contact with the upper surface of the first dielectric material; a plurality of conductive contacts, which are laterally surrounded by a first interlayer dielectric (ILD) layer above the substrate; and a field plate , Extending from the top of the first ILD layer to the composite etch stop layer and containing the same material as the plurality of conductive contacts, the composite etch stop layer laterally contacts the multiple sidewalls of the field plate, and the composite etch stop layer makes The bottom of the field plate is vertically separated from the photoresist protective oxide. In some embodiments, the field plate extends vertically through the second dielectric material, and the field plate is laterally separated from the gate structure by the second dielectric material. In some embodiments, the first dielectric material is an oxide, and the second dielectric material is a nitride. In some embodiments, the composite etch stop layer further includes a third dielectric material in contact with the upper surface of the second dielectric material, and the first dielectric material and the third dielectric material are the same material. In some embodiments, the integrated wafer further includes a contact etch stop layer in direct contact with the upper surface of the composite etch stop layer and the plurality of sidewalls, and the field plate extends through the contact etch stop layer. In some embodiments, the photoresist protective oxide has a first width, and the first width is substantially equal to the second width of the composite etch stop layer.

在又其他實施例中,本揭露內容是關於一種形成積體晶片的方法。方法包含:在基底內的源極區與汲極區之間的基底上方形成閘極結構;在閘極結構上方且在閘極結構與汲極區之間形成介電層;在介電層上方形成複合蝕刻終止層,所述複合蝕刻終止層包含多個堆疊介電材料;在複合蝕刻終止層上方形成第一層間介電(ILD)層;選擇性地蝕刻第一ILD層,以同時定義延伸至基底的多個接觸開口以及延伸至複合蝕刻終止層的場板開口;以 及用一或多個導電材料填充多個接觸開口及場板開口。在一些實施例中,複合蝕刻終止層包含第一介電材料以及與第一介電材料的上部表面接觸的第二介電材料。在一些實施例中,場板開口垂直地延伸穿過第二介電材料,且所述場板開口藉由第二介電材料與閘極結構橫向地分隔開。在一些實施例中,方法更包含:在複合蝕刻終止層上方形成罩幕層;以及根據罩幕層來蝕刻複合蝕刻終止層及介電層。 In still other embodiments, the present disclosure relates to a method of forming an integrated wafer. The method includes: forming a gate structure above the substrate between the source region and the drain region in the substrate; forming a dielectric layer above the gate structure and between the gate structure and the drain region; above the dielectric layer A composite etch stop layer is formed, the composite etch stop layer includes a plurality of stacked dielectric materials; a first interlayer dielectric (ILD) layer is formed above the composite etch stop layer; the first ILD layer is selectively etched to simultaneously define Multiple contact openings extending to the substrate and field plate openings extending to the composite etch stop layer; And filling a plurality of contact openings and field plate openings with one or more conductive materials. In some embodiments, the composite etch stop layer includes a first dielectric material and a second dielectric material in contact with the upper surface of the first dielectric material. In some embodiments, the field plate opening extends vertically through the second dielectric material, and the field plate opening is laterally separated from the gate structure by the second dielectric material. In some embodiments, the method further includes: forming a mask layer on the composite etch stop layer; and etching the composite etch stop layer and the dielectric layer according to the mask layer.

前文概述若干實施例的特徵以使得本領域的技術人員可更佳地理解本揭露內容的態樣。本領域的技術人員應理解,其可易於使用本揭露內容作為設計或修改用於實現本文中所引入之實施例的相同目的及/或達成相同優點的其他製程及結構的基礎。本領域的技術人員亦應認識到,這些等效構造並不脫離本揭露內容的精神及範疇,且本領域的技術人員可在不脫離本揭露內容的精神及範疇的情況下在本文中作出各種改變、替代及更改。 The foregoing summarizes the features of several embodiments so that those skilled in the art can better understand the aspect of the present disclosure. Those skilled in the art should understand that they can easily use the present disclosure as a basis for designing or modifying other manufacturing processes and structures for achieving the same purpose and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that these equivalent structures do not depart from the spirit and scope of the present disclosure, and those skilled in the art can make various changes in this article without departing from the spirit and scope of the present disclosure. Changes, substitutions and changes.

102‧‧‧基底 102‧‧‧Base

104‧‧‧源極區 104‧‧‧Source area

106‧‧‧汲極區 106‧‧‧Dip pole area

108‧‧‧閘極電極 108‧‧‧Gate electrode

110‧‧‧閘極介電層 110‧‧‧Gate Dielectric Layer

118‧‧‧第一層間介電層 118‧‧‧The first interlayer dielectric layer

120‧‧‧接點 120‧‧‧Contact

202‧‧‧主體區 202‧‧‧Main area

204‧‧‧漂移區 204‧‧‧Drift Zone

206‧‧‧額外STI區 206‧‧‧Additional STI area

208‧‧‧接觸區 208‧‧‧Contact area

212‧‧‧側壁間隔件 212‧‧‧Side wall spacer

406‧‧‧接觸蝕刻終止層 406‧‧‧Contact etching stop layer

408‧‧‧場板 408‧‧‧field board

410‧‧‧第一金屬材料 410‧‧‧The first metal material

412‧‧‧第二金屬材料 412‧‧‧Second Metal Material

414‧‧‧內襯層 414‧‧‧Inner lining

416‧‧‧第二層間介電層 416‧‧‧Second Interlayer Dielectric Layer

418‧‧‧第一金屬線層 418‧‧‧The first metal wire layer

2002‧‧‧光阻保護氧化物 2002‧‧‧Photoresist protective oxide

2004‧‧‧複合蝕刻終止層 2004‧‧‧Composite etching stop layer

2006:第一介電材料 2006: The first dielectric material

2008:第二介電材料 2008: The second dielectric material

2200:高壓電晶體元件 2200: high voltage transistor components

th 5 :厚度 th 5 : thickness

Claims (11)

一種積體晶片,包括:閘極結構,安置於源極區與汲極區之間的基底上方;介電層,自所述閘極結構上方橫向地延伸至所述閘極結構與所述汲極區之間;複合蝕刻終止層,包括堆疊於所述介電層上方的多個不同的介電材料;接觸蝕刻終止層,直接地接觸所述複合蝕刻終止層的上部表面及多個側壁;以及場板,被第一層間介電層橫向地包圍,且自所述第一層間介電層的頂部垂直地延伸、延伸穿過所述接觸蝕刻終止層且延伸至所述複合蝕刻終止層中,其中所述複合蝕刻終止層使所述場板與所述介電層完全地分隔開。 An integrated chip, comprising: a gate structure arranged above a substrate between a source region and a drain region; and a dielectric layer extending laterally from above the gate structure to the gate structure and the drain Between the polar regions; a composite etch stop layer, including a plurality of different dielectric materials stacked above the dielectric layer; contact the etch stop layer, directly contact the upper surface of the composite etch stop layer and a plurality of sidewalls; And a field plate, which is laterally surrounded by a first interlayer dielectric layer, and extends vertically from the top of the first interlayer dielectric layer, extends through the contact etch stop layer, and extends to the composite etch stop In the layer, wherein the composite etch stop layer completely separates the field plate from the dielectric layer. 如申請專利範圍第1項所述的積體晶片,其中所述複合蝕刻終止層包括第一介電材料以及與所述第一介電材料的上部表面接觸的第二介電材料。 The integrated wafer according to claim 1, wherein the composite etch stop layer includes a first dielectric material and a second dielectric material in contact with the upper surface of the first dielectric material. 如申請專利範圍第2項所述的積體晶片,其中所述場板垂直地延伸穿過所述第二介電材料,且所述場板藉由所述第二介電材料與所述閘極結構橫向地分隔開或者藉由所述第一介電材料與所述閘極結構垂直地分隔開。 The integrated chip according to claim 2, wherein the field plate extends vertically through the second dielectric material, and the field plate is connected to the gate through the second dielectric material. The pole structures are separated laterally or vertically separated from the gate structure by the first dielectric material. 如申請專利範圍第1項所述的積體晶片,其中所述複合蝕刻終止層在所述場板正下方具有第一厚度且在所述場板外部具有第二厚度。 The integrated wafer according to claim 1, wherein the composite etch stop layer has a first thickness directly below the field plate and has a second thickness outside the field plate. 如申請專利範圍第1項所述的積體晶片,其中所述複合 蝕刻終止層橫向地接觸所述場板的多個側壁。 The integrated wafer described in item 1 of the scope of patent application, wherein the composite The etch stop layer laterally contacts the sidewalls of the field plate. 如申請專利範圍第1項所述的積體晶片,其中所述場板的底部藉由所述複合蝕刻終止層與所述介電層垂直地分隔開。 The integrated wafer according to claim 1, wherein the bottom of the field plate is vertically separated from the dielectric layer by the composite etch stop layer. 如申請專利範圍第1項所述的積體晶片,其中所述介電層包括光阻保護氧化物,所述光阻保護氧化物具有與所述閘極結構接觸的下部表面以及與所述複合蝕刻終止層接觸的上部表面。 The integrated wafer according to the first item of the scope of patent application, wherein the dielectric layer includes a photoresist protective oxide, the photoresist protective oxide has a lower surface in contact with the gate structure and the composite wafer The upper surface contacted by the etch stop layer. 一種積體晶片,包括:閘極結構,安置於基底上方;光阻保護氧化物,自所述閘極結構上方橫向地延伸至超過閘極結構的最外側壁;複合蝕刻終止層,包括所述光阻保護氧化物上方的第一介電材料以及與所述第一介電材料的上部表面接觸的第二介電材料;多個導電接點,被所述基底上方的第一層間介電層橫向地包圍;以及場板,自所述第一層間介電層的頂部延伸至所述複合蝕刻終止層且包括與所述多個導電接點相同的材料,其中所述複合蝕刻終止層橫向地接觸所述場板的多個側壁,且所述複合蝕刻終止層完全地使所述場板與所述光阻保護氧化物垂直地分隔開。 An integrated wafer comprising: a gate structure arranged above a substrate; a photoresist protective oxide extending laterally from above the gate structure to exceed the outermost sidewall of the gate structure; a composite etching stop layer, including the The photoresist protects the first dielectric material above the oxide and the second dielectric material in contact with the upper surface of the first dielectric material; a plurality of conductive contacts are dielectric by the first interlayer above the substrate And a field plate that extends from the top of the first interlayer dielectric layer to the composite etch stop layer and includes the same material as the plurality of conductive contacts, wherein the composite etch stop layer The multiple sidewalls of the field plate are laterally contacted, and the composite etch stop layer completely separates the field plate from the photoresist protection oxide vertically. 如申請專利範圍第8項所述的積體晶片,其中所述複合蝕刻終止層更包括:第三介電材料,接觸所述第二介電材料的上部表面,其中所述第一介電材料以及所述第三介電材料為相同材料。 The integrated wafer according to the 8th patent application, wherein the composite etch stop layer further comprises: a third dielectric material contacting the upper surface of the second dielectric material, wherein the first dielectric material And the third dielectric material is the same material. 一種形成積體晶片的方法,包括:在基底內的源極區與汲極區之間的所述基底上方形成閘極結 構;在所述閘極結構上方且在所述閘極結構與所述汲極區之間形成介電層;在所述介電層上方形成複合蝕刻終止層,其中所述複合蝕刻終止層包括多個堆疊的介電材料;在所述複合蝕刻終止層上方形成第一層間介電層;選擇性地蝕刻所述第一層間介電層,以同時定義延伸至所述基底的多個接觸開口以及延伸至所述複合蝕刻終止層的場板開口;以及用一或多個導電材料填充所述多個接觸開口及所述場板開口,以形成多個導電接點及場板,其中所述場板自所述第一層間介電層的頂部垂直地延伸至所述複合蝕刻終止層中,且所述場板藉由所述複合蝕刻終止層而與所述介電層完全地分隔開。 A method for forming an integrated wafer includes: forming a gate junction on the substrate between the source region and the drain region in the substrate A dielectric layer is formed above the gate structure and between the gate structure and the drain region; a composite etch stop layer is formed above the dielectric layer, wherein the composite etch stop layer includes A plurality of stacked dielectric materials; forming a first interlayer dielectric layer above the composite etch stop layer; selectively etching the first interlayer dielectric layer to simultaneously define a plurality of layers extending to the substrate Contact openings and field plate openings extending to the composite etch stop layer; and filling the plurality of contact openings and the field plate openings with one or more conductive materials to form a plurality of conductive contacts and field plates, wherein The field plate extends vertically from the top of the first interlayer dielectric layer into the composite etch stop layer, and the field plate is completely connected to the dielectric layer by the composite etch stop layer. Separate. 如申請專利範圍第10項所述的形成積體晶片的方法,更包括:在所述複合蝕刻終止層上方形成罩幕層;以及根據所述罩幕層來蝕刻所述複合蝕刻終止層及所述介電層。 The method for forming an integrated wafer as described in item 10 of the scope of patent application further includes: forming a mask layer above the composite etch stop layer; and etching the composite etch stop layer and the composite etch stop layer according to the mask layer. The dielectric layer.
TW108109662A 2018-03-21 2019-03-21 Integrated chip and method of forming the same TWI719430B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/927,281 US10636904B2 (en) 2014-11-25 2018-03-21 Methodology and structure for field plate design
US15/927,281 2018-03-21
US16/174,626 US10756208B2 (en) 2014-11-25 2018-10-30 Integrated chip and method of forming the same
US16/174,626 2018-10-30

Publications (2)

Publication Number Publication Date
TW201941428A TW201941428A (en) 2019-10-16
TWI719430B true TWI719430B (en) 2021-02-21

Family

ID=69023172

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108109662A TWI719430B (en) 2018-03-21 2019-03-21 Integrated chip and method of forming the same

Country Status (2)

Country Link
CN (1) CN111129123B (en)
TW (1) TWI719430B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11411086B2 (en) 2020-03-17 2022-08-09 Taiwan Semiconductor Manufacturing Company, Ltd. Field plate and isolation structure for high voltage device
CN112204749A (en) * 2020-07-16 2021-01-08 英诺赛科(珠海)科技有限公司 Semiconductor device structure and method of manufacturing the same
US20220037518A1 (en) * 2020-07-31 2022-02-03 Taiwan Semiconductor Manufacturing Co., Ltd. Gallium Nitride-Based Device with Step-Wise Field Plate and Method Making the Same
TWI762253B (en) * 2021-03-25 2022-04-21 力晶積成電子製造股份有限公司 Semiconductor device
CN115148689A (en) * 2021-03-30 2022-10-04 华邦电子股份有限公司 Semiconductor device and method of forming the same
CN115513060A (en) * 2022-11-03 2022-12-23 杭州晶丰明源半导体有限公司 LDMOS device and manufacturing method thereof
CN116504840B (en) * 2023-06-25 2023-09-22 粤芯半导体技术股份有限公司 Laterally diffused metal oxide semiconductor device and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150179782A1 (en) * 2013-12-20 2015-06-25 Kabushiki Kaisha Toshiba Field effect transistor
US20160149007A1 (en) * 2014-11-25 2016-05-26 Taiwan Semiconductor Manufacturing Co., Ltd. Methodology and structure for field plate design
TW201743445A (en) * 2016-06-01 2017-12-16 台灣積體電路製造股份有限公司 High voltage transistor device and method of producing the same
US9871132B1 (en) * 2016-08-15 2018-01-16 Globalfoundries Singapore Pte. Ltd. Extended drain metal-oxide-semiconductor transistor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828824B2 (en) * 2011-03-29 2014-09-09 International Business Machines Corporation III-V field effect transistory (FET) and III-V semiconductor on insulator (IIIVOI) FET, integrated circuit (IC) chip and method of manufacture
JP5834520B2 (en) * 2011-06-15 2015-12-24 富士通セミコンダクター株式会社 Semiconductor device manufacturing method and semiconductor device
US9024324B2 (en) * 2012-09-05 2015-05-05 Freescale Semiconductor, Inc. GaN dual field plate device with single field plate metal
US8962402B1 (en) * 2013-08-14 2015-02-24 International Business Machines Corporation Lateral diffusion metal oxide semiconductor (LDMOS) device with tapered drift electrode
US9312354B2 (en) * 2014-02-21 2016-04-12 Taiwan Semiconductor Manufacturing Company, Ltd. Contact etch stop layers of a field effect transistor
US9231067B2 (en) * 2014-02-26 2016-01-05 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and fabricating method thereof
US9887129B2 (en) * 2014-09-04 2018-02-06 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure with contact plug
US10043886B2 (en) * 2016-08-03 2018-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Metal gate formation through etch back process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150179782A1 (en) * 2013-12-20 2015-06-25 Kabushiki Kaisha Toshiba Field effect transistor
US20160149007A1 (en) * 2014-11-25 2016-05-26 Taiwan Semiconductor Manufacturing Co., Ltd. Methodology and structure for field plate design
TW201743445A (en) * 2016-06-01 2017-12-16 台灣積體電路製造股份有限公司 High voltage transistor device and method of producing the same
US9871132B1 (en) * 2016-08-15 2018-01-16 Globalfoundries Singapore Pte. Ltd. Extended drain metal-oxide-semiconductor transistor

Also Published As

Publication number Publication date
CN111129123A (en) 2020-05-08
CN111129123B (en) 2023-12-19
TW201941428A (en) 2019-10-16

Similar Documents

Publication Publication Date Title
US10964810B2 (en) Methodology and structure for field plate design
TWI719430B (en) Integrated chip and method of forming the same
US11271104B2 (en) Composite etch stop layer for contact field plate etching
US11164970B2 (en) Contact field plate
US9356122B2 (en) Through silicon via processing method for lateral double-diffused MOSFETs
TWI748271B (en) Integrated chip and method of forming the same
TW201743445A (en) High voltage transistor device and method of producing the same
US10680100B2 (en) Field structure and methodology
US10636883B2 (en) Semiconductor device including a gate trench and a source trench
CN112786689A (en) Integrated chip and method for forming high-voltage transistor device
CN110767749A (en) Semiconductor structure and forming method thereof
CN107910269A (en) Power semiconductor and its manufacture method
KR102404493B1 (en) High voltage device with gate extensions
TW202405891A (en) Semiconductor device and method for forming the same
US11908891B2 (en) High voltage device with gate extensions
CN207781613U (en) Power semiconductor
CN207781614U (en) Power semiconductor
CN207781611U (en) Power semiconductor
TWI823639B (en) Semiconductor device and methods for forming the same
US20230010333A1 (en) Integrated chip with good thermal dissipation performance
US20240178315A1 (en) Semiconductor device and methods for forming the same
CN207781612U (en) Power semiconductor
TW202326868A (en) Semiconductor device and manufacturing method thereof