TWI715701B - Aerial display system and floating pixel unit thereof - Google Patents

Aerial display system and floating pixel unit thereof Download PDF

Info

Publication number
TWI715701B
TWI715701B TW105143761A TW105143761A TWI715701B TW I715701 B TWI715701 B TW I715701B TW 105143761 A TW105143761 A TW 105143761A TW 105143761 A TW105143761 A TW 105143761A TW I715701 B TWI715701 B TW I715701B
Authority
TW
Taiwan
Prior art keywords
driving
light
plane
pixel
pixel unit
Prior art date
Application number
TW105143761A
Other languages
Chinese (zh)
Other versions
TW201824858A (en
Inventor
閆立中
Original Assignee
閆立中
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 閆立中 filed Critical 閆立中
Priority to TW105143761A priority Critical patent/TWI715701B/en
Publication of TW201824858A publication Critical patent/TW201824858A/en
Application granted granted Critical
Publication of TWI715701B publication Critical patent/TWI715701B/en

Links

Images

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

An aerial display system and a floating pixel unit thereof are provided. The aerial display system includes a plurality of pixel units. The pixel units are preset to be disposed on a plane in an array, in which each of the pixel units includes an imaging section and a driving section. The imaging section and the driving section are coupled to each other along a first direction, in which the first direction is parallel to a normal line direction of the plane, and the driving section is disposed toward the plane. The driving section of each of the pixel units generates a driving force according to a corresponding pixel data, so as to force the corresponding imaging section that moving along the first direction, and thus an image is established in the air.

Description

空中成像系統及漂浮像素單元 Aerial imaging system and floating pixel unit

本發明是有關於一種成像系統及其像素單元,且特別是有關於一種空中成像系統及漂浮像素單元。 The present invention relates to an imaging system and its pixel unit, and particularly relates to an aerial imaging system and a floating pixel unit.

人們可利用多種感知方式來觀察這個世界,而眼睛承載著人類90%以上的資訊獲取能力,借助視覺能獲得的信息量遠遠超過了聽覺、觸覺、嗅覺及味覺等其他方式所能獲得的信息量。現實中的物體都是立體的、三維的,人眼的視覺系統能夠很好的適應現實中的三維世界,準確的把圖像資訊傳遞給人們。但是由於技術的原因,目前的絕大多數顯示裝置只能顯示二維的圖像,雖然也能給人們展示大千世界的多彩多姿,但遠不能提供與真實世界相比的視覺資訊。隨著科學技術的發展和人們生活水準的提高,人們對於顯示裝置的要求已經不僅僅侷限於簡單的傳遞二維平面資訊,而是希望它可以提供更加真實、富有立體感,更接近人眼實際感受的三維立體圖像資訊,由此三維立體顯示技術應運 而生。 People can use a variety of perception methods to observe the world, and the eyes carry more than 90% of human information acquisition ability, the amount of information that can be obtained with vision far exceeds the information that can be obtained by other methods such as hearing, touch, smell and taste. the amount. Objects in reality are three-dimensional and three-dimensional. The visual system of the human eye can adapt to the three-dimensional world in reality and accurately convey image information to people. However, due to technical reasons, most current display devices can only display two-dimensional images. Although they can also show people the colorful world of the world, they are far from providing visual information compared with the real world. With the development of science and technology and the improvement of people's living standards, people's requirements for display devices are not limited to simply transmitting two-dimensional information, but hope that it can provide more realism, richness in three dimensions, and closer to the reality of the human eye. Feel the three-dimensional image information, and the three-dimensional display technology should come into being Born.

在現有的三維立體顯示技術中,主要是以視差式立體顯示技術為主。所謂的視差式立體顯示技術是透過時間多工或空間多工的方式讓觀賞者的左右眼分別看到不同的影像,而觀賞者兩隻眼睛所看到的影像會在大腦中融合,進而令觀賞者感知出一個具有層次景深的影像。然而,現有的立體顯示技術會受限於應體與觀賞者觀看的角度,無法同時提供裸眼觀看、周視和圖像懸浮可觸摸的特點。 Among the existing three-dimensional display technologies, parallax-type three-dimensional display technologies are mainly used. The so-called parallax stereoscopic display technology allows the viewer’s left and right eyes to see different images through time multiplexing or spatial multiplexing, and the images seen by the viewer’s two eyes will be fused in the brain, thus making The viewer perceives an image with hierarchical depth of field. However, the existing stereoscopic display technology is limited by the viewing angles of the subject and the viewer, and cannot provide the features of naked eye viewing, peripheral viewing, and image floating touchability at the same time.

本發明提供一種空中成像系統及漂浮像素單元,其可帶來不同於傳統成像系統的畫面觀賞體驗。 The invention provides an aerial imaging system and a floating pixel unit, which can bring a picture viewing experience different from the traditional imaging system.

本發明的空中成像系統包括多個像素單元。所述像素單元預設以陣列排列配置於平面上,其中各像素單元包括成像部與驅動部,成像部與驅動部沿第一方向相互耦接,第一方向與該平面的法線方向相互平行,並且驅動部位於朝向平面的一側。各像素單元的驅動部依據對應的像素資料產生驅動力,藉以推動對應的成像部沿第一方向移動,進而在空中建立影像。 The aerial imaging system of the present invention includes a plurality of pixel units. The pixel units are preset to be arranged in an array on a plane, wherein each pixel unit includes an imaging part and a driving part, the imaging part and the driving part are coupled to each other along a first direction, the first direction and the normal direction of the plane are parallel to each other , And the driving part is located on the side facing the plane. The driving part of each pixel unit generates driving force according to the corresponding pixel data, so as to push the corresponding imaging part to move in the first direction, thereby creating an image in the air.

本發明的漂浮像素單元,適於反應於磁場能量而沿正交於地面的第一方向漂浮在空中。所述漂浮像素單元包括發光元件、發光控制電路、電源轉換電路以及超導體元件。發光控制電路耦接發光元件,用以依據工作電源提供發光控制信號給發光元 件,使發光元件反應於接收到的發光控制信號而發光。電源轉換電路耦接發光控制電路,產生供給發光控制電路使用的工作電源。超導體元件配置於接近地面的一側,用以反應於磁場能量而在第一方向上形成磁抗力,進而使像素單元漂浮於空中並且沿第一方向移動。 The floating pixel unit of the present invention is suitable for floating in the air along a first direction orthogonal to the ground in response to magnetic field energy. The floating pixel unit includes a light emitting element, a light emitting control circuit, a power conversion circuit, and a superconductor element. The light-emitting control circuit is coupled to the light-emitting element to provide a light-emitting control signal to the light-emitting element according to the working power supply The device makes the light-emitting element emit light in response to the received light-emitting control signal. The power conversion circuit is coupled to the light-emitting control circuit to generate working power for the light-emitting control circuit. The superconductor element is arranged on the side close to the ground to react to the magnetic field energy to form a magnetic reluctance in the first direction, so that the pixel unit floats in the air and moves in the first direction.

基於上述,本發明實施例提出一種空中成像系統及漂浮像素單元,其藉由設置可在平面法線方向上建立驅動力的像素單元,進而在空中顯示出具有實體的立體影像。不同於一般投影式或視差式等非實體的立體顯示方法,本實施例的漂浮像素單元所建立出的立體影像是具有實體的,可供使用者從空間中的不同角度觀看,並且從不同角度看會有不同視覺呈現,進而提高觀賞者的觀賞體驗。 Based on the foregoing, the embodiments of the present invention provide an aerial imaging system and a floating pixel unit, which can display a solid three-dimensional image in the air by arranging a pixel unit that can establish a driving force in a plane normal direction. Different from non-physical stereoscopic display methods such as general projection or parallax, the stereoscopic image created by the floating pixel unit of this embodiment is physical, which can be viewed by users from different angles in space and from different angles. There will be different visual presentations to enhance the viewer's viewing experience.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

100:空中成像系統 100: Aerial imaging system

110、110_1~110_9、210、210_1、210_2、310、410:像素單元 110, 110_1~110_9, 210, 210_1, 210_2, 310, 410: pixel unit

112、212、312、412:成像部 112, 212, 312, 412: imaging section

114、214、314、414:驅動部 114, 214, 314, 414: drive unit

220、220_1、220_2:電磁單元 220, 220_1, 220_2: electromagnetic unit

230:時序驅動電路 230: timing drive circuit

240:資料轉換電路 240: data conversion circuit

D1:第一方向 D1: First direction

DTA:像素資料 DTA: pixel data

d1、d2、d3:間隔高度 d1, d2, d3: interval height

E_DTA:驅動電壓 E_DTA: drive voltage

GS:平面 GS: plane

NL:法線方向 NL: Normal direction

RP:區域 RP: area

EU:發光元件 EU: Light-emitting element

ED:發光控制電路 ED: Lighting control circuit

F1、F2:驅動力 F1, F2: driving force

FD:懸浮驅動電路 FD: floating drive circuit

MFU:機械飛行元件 MFU: Mechanical Flight Element

PCM:動力構件 PCM: Power component

PCV:電源轉換電路 PCV: power conversion circuit

PT:承載平台 PT: Carrier platform

PU:電源電路 PU: power circuit

SDM:聲波驅動模組 SDM: Sonic driver module

SPC:超導體元件 SPC: Superconductor element

SW1、SW2:駐波信號 SW1, SW2: standing wave signal

SWG1、SWG2:聲波產生元件 SWG1, SWG2: Sound wave generating components

WC:旋翼構件 WC: Rotor component

WCM:無線充電模組 WCM: wireless charging module

圖1A為本發明一實施例的空中成像系統的系統架構示意圖。 FIG. 1A is a schematic diagram of the system architecture of an aerial imaging system according to an embodiment of the present invention.

圖1B為本發明一實施例的空中成像系統的俯視圖。 FIG. 1B is a top view of an aerial imaging system according to an embodiment of the invention.

圖1C為本發明一實施例的空中成像系統的側視圖。 Fig. 1C is a side view of an aerial imaging system according to an embodiment of the present invention.

圖2A為本發明第一實施例的像素單元的架構示意圖。 2A is a schematic diagram of the structure of the pixel unit according to the first embodiment of the present invention.

圖2B為本發明第一實施例的像素單元的實體結構配置示意 圖。 2B is a schematic diagram of the physical structure configuration of the pixel unit of the first embodiment of the present invention Figure.

圖2C為應用本發明第一實施例的像素單元的空中成像系統的系統架構示意圖。 2C is a schematic diagram of the system architecture of the aerial imaging system using the pixel unit of the first embodiment of the present invention.

圖3A為本發明第二實施例的像素單元的架構示意圖。 3A is a schematic structural diagram of a pixel unit according to a second embodiment of the present invention.

圖3B為本發明第二實施例的像素單元的實體結構配置示意圖。 3B is a schematic diagram of the physical structure configuration of the pixel unit according to the second embodiment of the present invention.

圖4A為本發明第三實施例的像素單元的架構示意圖。 4A is a schematic structural diagram of a pixel unit according to a third embodiment of the invention.

圖4B為本發明第三實施例的像素單元的實體結構配置示意圖。 4B is a schematic diagram of the physical structure configuration of the pixel unit according to the third embodiment of the present invention.

為了使本揭露之內容可以被更容易明瞭,以下特舉實施例做為本揭露確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。 In order to make the content of this disclosure more comprehensible, the following embodiments are specifically cited as examples on which this disclosure can indeed be implemented. In addition, wherever possible, elements/components/steps with the same reference numbers in the drawings and embodiments represent the same or similar components.

圖1A為本發明一實施例的空中成像系統的系統架構示意圖。圖1B為本發明一實施例的空中成像系統的俯視圖。請同時參照圖1A與圖1B,空中成像系統100包括多個像素單元110(如像素單元110_1~110_9)。所述像素單元110預設以陣列排列配置於平面GS上(例如地面或桌面等)。各像素單元110包括成像部112以及驅動部114。成像部112與驅動部114沿第一方向D1相互耦接,其中第一方向D1會與平面GS的法線方向NL相互平行, 並且驅動部114會位於朝向平面GS的一側。於此,若所述平面GS為地面,則所述第一方向D1即可例如為空間中的z軸方向(以空間中的X-Y平面為地面),但本發明不以此為限。 FIG. 1A is a schematic diagram of the system architecture of an aerial imaging system according to an embodiment of the present invention. FIG. 1B is a top view of an aerial imaging system according to an embodiment of the invention. 1A and 1B at the same time, the aerial imaging system 100 includes a plurality of pixel units 110 (such as pixel units 110_1 to 110_9). The pixel units 110 are preset to be arranged in an array on the plane GS (for example, the ground or the desktop, etc.). Each pixel unit 110 includes an imaging unit 112 and a driving unit 114. The imaging part 112 and the driving part 114 are coupled to each other along a first direction D1, wherein the first direction D1 is parallel to the normal direction NL of the plane GS, And the driving part 114 will be located on the side facing the plane GS. Here, if the plane GS is the ground, the first direction D1 can be, for example, the z-axis direction in space (the X-Y plane in the space is the ground), but the invention is not limited to this.

在本實施例中,各像素單元110的驅動部114會依據接收到的像素資料產生驅動力,藉以推動對應的成像部112沿第一方向D1移動,進而在空中建立影像。更具體地說,在各像素單元110中,至少成像部112會漂浮/懸浮在平面GS上,亦即成像部112與平面GS之間至少有一個間隔高度,並且不受到實體物件支撐。所述間隔高度即是根據驅動部114所產生的驅動力來決定,驅動力越強,即會使像素單元110與平面GS之間的間隔高度越高,即距離平面GS越遠;反之,若驅動力越弱,即會使像素單元110與平面GS之間的間隔高度越小,即距離平面GS越近。 In this embodiment, the driving portion 114 of each pixel unit 110 generates a driving force according to the received pixel data, so as to push the corresponding imaging portion 112 to move in the first direction D1, thereby creating an image in the air. More specifically, in each pixel unit 110, at least the imaging part 112 floats/floats on the plane GS, that is, there is at least a gap height between the imaging part 112 and the plane GS, and is not supported by physical objects. The interval height is determined according to the driving force generated by the driving part 114. The stronger the driving force, the higher the interval height between the pixel unit 110 and the plane GS, that is, the farther away from the plane GS; The weaker the driving force, the smaller the distance between the pixel unit 110 and the plane GS, that is, the closer the distance from the plane GS is.

在所述漂浮控制像素單元110的應用下,透過給予適合的像素資料即可令各像素單元110反應於像素資料而漂浮於不同的高度上,而使像素單元110整體可以組成一個實體的立體影像。在此所述的實體的立體影像是相對於一般投影式或視差式立體影像而言,本實施例的漂浮像素單元110所建立出的立體影像是具有實體的,可供使用者從空間中的不同角度觀看(從不同角度看會有不同視覺呈現),並且可被實際觸摸到;而一般投影式或視差式等非實體的立體影像則是僅能從特定角度觀看,並且是由光線所構成,無法被實際觸摸到。 In the application of the floating control pixel unit 110, by giving suitable pixel data, each pixel unit 110 can float at different heights in response to the pixel data, so that the entire pixel unit 110 can form a physical three-dimensional image. . The physical three-dimensional image described here is relative to the general projection type or parallax type three-dimensional image. The three-dimensional image created by the floating pixel unit 110 of this embodiment is physical and can be used by the user from space. Viewed from different angles (different visual presentations from different angles), and can be actually touched; while non-physical stereoscopic images such as general projection or parallax can only be viewed from a specific angle and are composed of light , Cannot be actually touched.

於此應注意的是,本實施例的驅動部114與成像部112 的實體結構根據其所應用的驅動方式,而可能會設置在一起或分離設置。換言之,本發明並不限定驅動部114會隨著成像部112在第一方向D1上漂浮。驅動部114可以是固定在平面GS上的實體構件,或是隨著成像部112沿第一方向D1漂浮/懸浮的實體構件,本發明不以此為限。 It should be noted that the driving part 114 and the imaging part 112 of this embodiment The physical structure of the device may be set together or separately according to the driving mode it is applied to. In other words, the present invention does not limit the driving portion 114 to float along the imaging portion 112 in the first direction D1. The driving portion 114 may be a solid member fixed on the plane GS, or a solid member that floats/floats along the first direction D1 along with the imaging portion 112, and the present invention is not limited thereto.

更具體地說,以圖1A所示的像素單元110_1與110_2為例來說明,在本實施例中,當像素單元110_1與110_2尚未被驅動時,兩者都會被擺放在平面GS上,意即像素單元110_1與110_2此時與平面GS的間隔高度為0。當像素單元110_1與110_2的驅動部接收到像素資料時,像素單元110_1反應於接收到的像素資料產生了驅動力F1,並且像素單元110_2反應於接收到的像素資料產生了驅動力F2。其中,驅動力F1與F2為超距力/非接觸力,並且施加在平面GS上,進而使像素單元110_1反應於作用在平面GS上的驅動力F1而產生間隔高度d1,並且像素單元110_2反應於作用在平面GS上的驅動力F2而產生間隔高度d2。藉所述驅動方式,各像素單元110可以根據 More specifically, taking the pixel units 110_1 and 110_2 shown in FIG. 1A as an example, in this embodiment, when the pixel units 110_1 and 110_2 are not driven, both will be placed on the plane GS, meaning That is, the distance between the pixel units 110_1 and 110_2 and the plane GS at this time is zero. When the driving parts of the pixel units 110_1 and 110_2 receive pixel data, the pixel unit 110_1 generates a driving force F1 in response to the received pixel data, and the pixel unit 110_2 generates a driving force F2 in response to the received pixel data. Among them, the driving forces F1 and F2 are over-distance forces/non-contact forces, and are applied on the plane GS, so that the pixel unit 110_1 reacts to the driving force F1 acting on the plane GS to generate a gap height d1, and the pixel unit 110_2 reacts The gap height d2 is generated by the driving force F2 acting on the plane GS. With the driving method, each pixel unit 110 can be

在本實施例中,所述成像部112可以是由一發光體(例如發光二極體)或是一非發光體所構成,本發明不以此為限。若成像部112為發光體所構成,則像素單元110除了可呈現出懸浮高度梯度變化之外,還可以搭配發光體的亮度變化來進一步呈現立體的顯示影像。 In this embodiment, the imaging part 112 may be formed of a luminous body (such as a light-emitting diode) or a non-luminous body, and the invention is not limited thereto. If the imaging part 112 is composed of a light-emitting body, the pixel unit 110 can not only exhibit a floating height gradient change, but also can cooperate with the brightness change of the light-emitting body to further present a three-dimensional display image.

為了更進一步說明本發明實施例的空中顯示系統100的 成像方式,底下以圖1B所示的區域RP內的3x3像素單元110_1~110_9作為範例,進一步說明像素單元110_1~110_9作為一個整體時的畫面顯示流程,如圖1C所示。其中,圖1C為本發明一實施例的空中成像系統的側視圖。 In order to further explain the aerial display system 100 of the embodiment of the present invention For the imaging method, the 3×3 pixel units 110_1 to 110_9 in the area RP shown in FIG. 1B are taken as an example to further illustrate the screen display process when the pixel units 110_1 to 110_9 are taken as a whole, as shown in FIG. 1C. 1C is a side view of an aerial imaging system according to an embodiment of the invention.

請參照圖1C,在本實施例中,像素單元110_1~110_9所接收到的像素資料例如會對應到數字“4”。此時,像素單元110_1與110_3會接收到同樣的像素資料,並且產生相同或近似的驅動力而懸浮於距平面GS間隔高度d1的位置。像素單元110_4~110_6會接收到同樣的像素資料,並且產生相同或近似的驅動力而懸浮於距平面GS間隔高度d2的位置,其中間隔高度d2小於間隔高度d1。像素單元110_9會根據接收到的像素資料產生一驅動力,並且據以懸浮於距平面GS間隔高度d3的位置,其中間隔高度d3小於間隔高度d2。另外,像素單元110_2、110_5、110_7未被驅動而仍位於平面GS上(即,間隔高度為0)。基此,像素單元110_1、110_3~110_6及110_9即會組成一個懸浮於空中的數字“4”。 Please refer to FIG. 1C. In this embodiment, the pixel data received by the pixel units 110_1 to 110_9 corresponds to the number "4", for example. At this time, the pixel units 110_1 and 110_3 will receive the same pixel data and generate the same or similar driving force to float at a position with a height d1 from the plane GS. The pixel units 110_4 to 110_6 will receive the same pixel data, and generate the same or similar driving force to float at the position of the interval height d2 from the plane GS, where the interval height d2 is smaller than the interval height d1. The pixel unit 110_9 generates a driving force according to the received pixel data, and accordingly floats at the position of the interval height d3 from the plane GS, wherein the interval height d3 is smaller than the interval height d2. In addition, the pixel units 110_2, 110_5, and 110_7 are not driven and are still located on the plane GS (that is, the interval height is 0). Based on this, the pixel units 110_1, 110_3~110_6 and 110_9 will form a number "4" floating in the air.

在本實施例中,所述驅動力可以例如磁浮力、空氣浮力及聲波浮力等可利用電路或機械元件產生並實施量化控制的超距力。底下以圖2至圖4來舉例說明在不同實施例的驅動力的形成方式及對應的驅動部114配置。 In this embodiment, the driving force may be, for example, magnetic buoyancy, air buoyancy, and acoustic buoyancy, etc., which can be generated and quantitatively controlled by electric circuits or mechanical elements. Below, FIGS. 2 to 4 are used to illustrate the formation of the driving force in different embodiments and the corresponding configuration of the driving portion 114.

圖2A為本發明第一實施例的像素單元的架構示意圖。圖2B為本發明第一實施例的像素單元的實體結構配置示意圖。請先參照圖2A,在本實施例中,像素單元210包括成像部212與驅動 部214,其中成像部212包括發光元件EU以及發光控制電路ED,並且驅動部214包括電源轉換電路PCV以及超導體元件SPC。 2A is a schematic diagram of the structure of the pixel unit according to the first embodiment of the present invention. 2B is a schematic diagram of the physical structure configuration of the pixel unit according to the first embodiment of the present invention. Please refer to FIG. 2A first. In this embodiment, the pixel unit 210 includes an imaging unit 212 and a driver Section 214, wherein the imaging section 212 includes a light emitting element EU and a light emission control circuit ED, and the driving section 214 includes a power conversion circuit PCV and a superconductor element SPC.

在成像部212中,發光元件EU可例如為發光二極體(LED)。發光控制電路ED耦接發光元件EU,用以提供發光控制信號給發光元件EU,使發光元件EU可反應於接收到的發光控制信號而發光。於此,所述發光控制電路ED可例如是PWM控制電路等可控亮度的發光控制手段。 In the imaging section 212, the light emitting element EU may be, for example, a light emitting diode (LED). The light emitting control circuit ED is coupled to the light emitting element EU to provide a light emitting control signal to the light emitting element EU, so that the light emitting element EU can emit light in response to the received light emitting control signal. Here, the light emission control circuit ED may be, for example, a light emission control means with controllable brightness such as a PWM control circuit.

在驅動部214中,電源轉換電路PCV耦接發光控制電路ED,用以產生供給發光控制電路ED使用的工作電源,其中電源轉換電路PCV可以例如為降壓轉換器(bulk converter)、升壓轉換器(boost converter)或降-升壓轉換器(bulk-boost converter),本發明不對此加以限制。其中,平面GS上會設置產生磁場的構件,而所述磁場的磁場能量會與像素資料有對應關係(此部分後續實施例會進一步詳述),因此超導體元件SPC可反應於關聯於像素資料的磁場能量而在平面GS的法線方向上形成磁抗力,進而使像素單元210漂浮於空中並且沿平面GS的法線方向移動。 In the driving part 214, the power conversion circuit PCV is coupled to the light-emitting control circuit ED to generate operating power for the light-emitting control circuit ED. The power conversion circuit PCV may be, for example, a buck converter (bulk converter) or a boost converter. A boost converter or a bulk-boost converter is not limited by the present invention. Among them, the plane GS will be provided with a component that generates a magnetic field, and the magnetic field energy of the magnetic field will have a corresponding relationship with the pixel data (this part will be further detailed in subsequent embodiments), so the superconductor element SPC can respond to the magnetic field associated with the pixel data The energy forms a reluctance force in the normal direction of the plane GS, which in turn causes the pixel unit 210 to float in the air and move along the normal direction of the plane GS.

請同時參照圖2A與圖2B,在結構配置上,超導體元件SPC、電源轉換電路PCV、發光控制電路ED以及發光元件EU可以依序沿著遠離平面GS的方向堆疊配置。換言之,超導體元件SPC會被配置於朝向平面GS的一側。 2A and 2B at the same time, in terms of structural configuration, the superconductor element SPC, the power conversion circuit PCV, the light emitting control circuit ED, and the light emitting element EU can be stacked in a direction away from the plane GS in sequence. In other words, the superconductor element SPC will be arranged on the side facing the plane GS.

在一範例實施例中,電源轉換電路PCV的輸入電源可由配置在超導體元件上的電池(未繪示)提供。在另一範例實施例 中,像素單元210可更包括一個無線充電模組WCM。所述無線充電模組WCM可例如為配置於超導體元件SPC上的線圈,其可在像素單元210沿第一方向D1移動時,反應於磁場變化產生電能。在此應用下,電源轉換電路PCV則是根據無線充電模組WCM所產生的電能進行電源轉換,藉以產生供給發光控制電路ED使用的工作電源。 In an exemplary embodiment, the input power of the power conversion circuit PCV may be provided by a battery (not shown) disposed on the superconductor element. In another exemplary embodiment In this case, the pixel unit 210 may further include a wireless charging module WCM. The wireless charging module WCM can be, for example, a coil disposed on the superconductor element SPC, which can generate electric energy in response to changes in the magnetic field when the pixel unit 210 moves along the first direction D1. In this application, the power conversion circuit PCV performs power conversion according to the electric energy generated by the wireless charging module WCM, so as to generate working power for the light-emitting control circuit ED.

詳細而言,超導體元件SPC可例如為化學材料超導體(例如鉛和水銀)、合金材料超導體(例如鈮鈦合金和鈮鍺合金)、氧化物超導體(例如釔鋇銅氧化物)以及有機超導體(例如富勒烯和碳納米管)其中之一。其中,超導體元件SPC在超導態時會排斥所有的磁通量,使磁力線無法穿透超導體元件SPC,從而令超導體元件SPC產生抵抗磁場的磁抗力(即麥斯納效應)。 In detail, the superconductor element SPC can be, for example, chemical material superconductors (such as lead and mercury), alloy material superconductors (such as niobium-titanium alloy and niobium-germanium alloy), oxide superconductors (such as yttrium barium copper oxide), and organic superconductors (such as Fullerenes and carbon nanotubes) one of them. Among them, the superconductor element SPC will repel all the magnetic flux in the superconducting state, so that the lines of magnetic force cannot penetrate the superconductor element SPC, so that the superconductor element SPC generates magnetic resistance (ie, the Meissner effect) against the magnetic field.

進一步搭配圖2C來說明應用像素單元210的空中成像系統的具體運作。其中,圖2C為應用本發明第一實施例的像素單元的空中成像系統的系統架構示意圖。 The specific operation of the aerial imaging system using the pixel unit 210 is further illustrated in conjunction with FIG. 2C. 2C is a schematic diagram of the system architecture of the aerial imaging system using the pixel unit of the first embodiment of the present invention.

請參照圖2A至圖2C,本實施例的三維成像系統可更包括懸浮驅動電路FD,其係對應像素單元210配置於平面GS上,並且可用以將影像資料DTA轉換為電磁能量。具體而言,懸浮驅動電路FD包括多個電磁單元220、時序驅動電路230以及資料轉換電路240。電磁單元220以陣列排列並且與像素單元210對應配置於像素單元210與平面GS之間。舉例來說,電磁單元220_1與像素單元210_1相對應配置,並且電磁單元220_2與像素單元 210_2相對應配置。亦即,在像素單元210_1與210_2未被驅動的狀態下,會分別位於電磁單元220_1與220_2上,其他像素單元210與電磁單元220的配置可以此類推。其中,電磁單元220可例如為可根據電信號產生對應磁場的電磁鐵,但本發明不以此為限。 2A to 2C, the three-dimensional imaging system of this embodiment may further include a floating driving circuit FD, which is configured on the plane GS corresponding to the pixel unit 210 and can be used to convert the image data DTA into electromagnetic energy. Specifically, the floating driving circuit FD includes a plurality of electromagnetic units 220, a timing driving circuit 230, and a data conversion circuit 240. The electromagnetic unit 220 is arranged in an array and is disposed between the pixel unit 210 and the plane GS corresponding to the pixel unit 210. For example, the electromagnetic unit 220_1 is configured corresponding to the pixel unit 210_1, and the electromagnetic unit 220_2 is 210_2 corresponds to the configuration. That is, when the pixel units 210_1 and 210_2 are not driven, they are located on the electromagnetic units 220_1 and 220_2, respectively, and the configuration of the other pixel units 210 and the electromagnetic unit 220 can be deduced by analogy. Wherein, the electromagnetic unit 220 may be, for example, an electromagnet that can generate a corresponding magnetic field according to an electric signal, but the present invention is not limited to this.

時序驅動電路230耦接電磁單元220,並且用以序列地致能電磁單元220。資料轉換電路240耦接電磁單元220。資料轉換電路240用以將像素資料DTA轉換為多個驅動電壓E_DTA,並且協同於電磁單元220的致能時序將驅動電壓E_DTA依序提供給對應的電磁單元220。其中,電磁單元220會反應於接收到的驅動電壓E_DTA而產生對應的電磁能量。 The timing driving circuit 230 is coupled to the electromagnetic unit 220 and used to sequentially activate the electromagnetic unit 220. The data conversion circuit 240 is coupled to the electromagnetic unit 220. The data conversion circuit 240 is used to convert the pixel data DTA into a plurality of driving voltages E_DTA, and cooperate with the activation timing of the electromagnetic unit 220 to sequentially provide the driving voltage E_DTA to the corresponding electromagnetic unit 220. Wherein, the electromagnetic unit 220 generates corresponding electromagnetic energy in response to the received driving voltage E_DTA.

詳細而言,以圖2C來看,時序驅動電路230可依序致能第一列至第四列的電磁單元220,在第四列電磁單元220致能後再重新回到致能第一列電磁單元220,並且如此往復循環。當電磁單元220被致能時,其可反應於接收到的驅動電壓E_DTA而產生對應的磁場能量,進而令對應的像素單元210產生對應的磁抗力。相反地,未被致能的電磁單元220即便接收到驅動電壓E_DTA也不會因此建立磁場。藉由所述序列致能電磁單元220的方式,即可令像素單元210可以逐列地產生對應的磁抗力,進而建立起空中影像。 In detail, referring to FIG. 2C, the timing driving circuit 230 can sequentially activate the electromagnetic units 220 in the first row to the fourth row, and then return to the first row after the electromagnetic units 220 in the fourth row are activated. The electromagnetic unit 220 reciprocates in this way. When the electromagnetic unit 220 is enabled, it can generate corresponding magnetic field energy in response to the received driving voltage E_DTA, thereby causing the corresponding pixel unit 210 to generate a corresponding magnetic reluctance. Conversely, even if the electromagnetic unit 220 that is not enabled receives the driving voltage E_DTA, it will not create a magnetic field. By means of the sequence activation of the electromagnetic unit 220, the pixel unit 210 can generate the corresponding magnetic reluctance force column by column, thereby establishing an aerial image.

圖3A為本發明第二實施例的像素單元的架構示意圖。請參照圖3A,像素單元310包括成像部312與驅動部314,其中成像部312包括發光元件EU以及發光控制電路ED,並且驅動部314 包括電源電路PU以及機械飛行元件MFU。 3A is a schematic structural diagram of a pixel unit according to a second embodiment of the present invention. 3A, the pixel unit 310 includes an imaging part 312 and a driving part 314, wherein the imaging part 312 includes a light emitting element EU and a light emission control circuit ED, and the driving part 314 Including the power circuit PU and the mechanical flight component MFU.

關於發光元件EU與發光控制電路ED的部分與前述實施例相同,於此不再重複贅述。在本實施例中,驅動部314的電源電路PU是用來供電給發光控制電路ED與機械飛行元件MFU使用,其可例如為電池。機械飛行元件MFU用以藉旋轉、振翅或噴射機構產生空氣動力而使所屬的像素單元310沿平面的法線方向移動。所述旋轉、振翅或PCM噴射機構可例如為螺旋槳、機械鳥翼或噴射推進裝置等,本發明不以此為限。另外,所述機械飛行元件MFU可例如為無人機(UAV)。 The parts of the light-emitting element EU and the light-emitting control circuit ED are the same as those in the previous embodiment, and will not be repeated here. In this embodiment, the power circuit PU of the driving unit 314 is used to supply power to the light-emitting control circuit ED and the mechanical flying element MFU, which may be, for example, a battery. The mechanical flying element MFU is used to generate aerodynamic force through rotation, flapping, or jetting mechanism to move the pixel unit 310 to which it belongs in the normal direction of the plane. The rotation, wing flapping or PCM jet mechanism may be, for example, a propeller, a mechanical bird wing or a jet propulsion device, etc., and the present invention is not limited thereto. In addition, the mechanical flying element MFU may be, for example, an unmanned aerial vehicle (UAV).

圖3B為本發明第二實施例的像素單元的實體結構配置示意圖。請同時參照圖3A與圖3B,本實施例的機械飛行元件MFU包括承載平台PT、旋翼構件WC以及動力構件PCM。承載平台PT是用以承載成像部312,在具體應用中,發光元件EU可例如貼附於承載平台PT上。動力構件PCM可例如為馬達,其可用以驅動旋翼構件WC,使旋翼構件WC旋轉而沿第一方向D1產生氣流,藉以產生空氣浮力以令旋翼構件WC連攜帶動承載平台PT浮置於空中。其中,透過程式化動力構件PCM的驅動能力(例如調整馬達轉速),即可令承載平台PT帶動成像部312漂浮於平面GS上的預設位置,進而實現空中成像。 3B is a schematic diagram of the physical structure configuration of the pixel unit according to the second embodiment of the present invention. Referring to FIG. 3A and FIG. 3B at the same time, the mechanical flight element MFU of this embodiment includes a bearing platform PT, a rotor component WC, and a power component PCM. The carrying platform PT is used to carry the imaging part 312. In a specific application, the light-emitting element EU may be attached to the carrying platform PT, for example. The power component PCM can be, for example, a motor, which can be used to drive the rotor component WC to rotate the rotor component WC to generate an airflow in the first direction D1, thereby generating air buoyancy so that the rotor component WC can float in the air with the movable carrier platform PT. Wherein, through the driving capability of the programmed power component PCM (for example, adjusting the motor speed), the carrier platform PT can drive the imaging part 312 to float to a preset position on the plane GS, thereby realizing aerial imaging.

圖4A為本發明第三實施例的像素單元的架構示意圖。請參照圖4A,像素單元410包括成像部412與驅動部414,其中成像部412包括發光元件EU以及發光控制電路ED,並且驅動部414 包括電源電路PU以及聲波驅動模組SDM。 4A is a schematic structural diagram of a pixel unit according to a third embodiment of the invention. 4A, the pixel unit 410 includes an imaging part 412 and a driving part 414, wherein the imaging part 412 includes a light emitting element EU and a light emission control circuit ED, and the driving part 414 Including the power circuit PU and the sound wave drive module SDM.

關於發光元件EU、發光控制電路ED及電源電路PU的部分與前述實施例相同,於此不再重複贅述。聲波驅動模組SDM用以在第一方向D1上建立一聲波場。其中,由於聲波場中的駐波點沒有淨能量轉移,使發光元件EU重力的影響會受到從聲波的壓力而抵銷掉,因此聲波驅動模組SDM可透過調整所述聲波場的駐波點進而使所屬的像素單元410在第一方向D1上移動。 The parts of the light-emitting element EU, the light-emitting control circuit ED, and the power supply circuit PU are the same as those in the previous embodiment, and will not be repeated here. The acoustic wave driving module SDM is used to establish a acoustic wave field in the first direction D1. Among them, since the standing wave point in the acoustic wave field has no net energy transfer, the effect of the gravity of the light-emitting element EU will be offset by the pressure of the acoustic wave, so the acoustic wave drive module SDM can adjust the standing wave point of the acoustic wave field In turn, the pixel unit 410 to which it belongs is moved in the first direction D1.

圖4B為本發明第三實施例的像素單元的實體結構配置示意圖。請同時參照圖4A與圖4B,本實施例的聲波驅動模組SDM包括兩聲波產生元件SWG1與SWG2。所述兩聲波產生元件SWG1與SWG2係沿第一方向D1對稱設置在對應的像素單元410的成像部412的兩側。其中,聲波產生元件SWG1與SWG2會分別產生具有相同頻率的駐波信號SW1與SW2,進而在聲波產生元件SWG1與SWG2之間的特定節點上形成駐波點。基此,藉由調整聲波產生元件SWG1與SWG2的輸出波長即可調整成像部412的懸浮位置。 4B is a schematic diagram of the physical structure configuration of the pixel unit according to the third embodiment of the present invention. Referring to FIGS. 4A and 4B at the same time, the acoustic wave driving module SDM of this embodiment includes two acoustic wave generating elements SWG1 and SWG2. The two sound wave generating elements SWG1 and SWG2 are symmetrically arranged on both sides of the imaging section 412 of the corresponding pixel unit 410 along the first direction D1. Among them, the sound wave generating elements SWG1 and SWG2 respectively generate standing wave signals SW1 and SW2 having the same frequency, and then a standing wave point is formed at a specific node between the sound wave generating elements SWG1 and SWG2. Based on this, the floating position of the imaging part 412 can be adjusted by adjusting the output wavelengths of the sound wave generating elements SWG1 and SWG2.

綜上所述,本發明實施例提出一種空中成像系統及漂浮像素單元,其藉由設置可在平面法線方向上建立驅動力的像素單元,進而在空中顯示出具有實體的立體影像。不同於一般投影式或視差式等非實體的立體顯示方法,本實施例的漂浮像素單元所建立出的立體影像是具有實體的,可供使用者從空間中的不同角度觀看,並且從不同角度看會有不同視覺呈現,進而提高觀賞者 的觀賞體驗。 In summary, the embodiments of the present invention provide an aerial imaging system and a floating pixel unit, which can display a solid three-dimensional image in the air by arranging a pixel unit that can establish a driving force in a plane normal direction. Different from non-physical stereoscopic display methods such as general projection or parallax, the stereoscopic image created by the floating pixel unit of this embodiment is physical, which can be viewed by users from different angles in space and from different angles. There will be different visual presentations to improve the viewer The viewing experience.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

100:空中成像系統 100: Aerial imaging system

110、110_1、110_2:像素單元 110, 110_1, 110_2: pixel unit

112:成像部 112: Imaging Department

114:驅動部 114: Drive

D1:第一方向 D1: First direction

d1、d2:間隔高度 d1, d2: interval height

F1、F2:驅動力 F1, F2: driving force

GS:平面 GS: plane

NL:法線方向 NL: Normal direction

Claims (4)

一種空中成像系統,包括:多個像素單元,預設以陣列排列配置於一平面上,其中各該像素單元包括一成像部與一驅動部,該成像部與該驅動部沿一第一方向相互耦接,該第一方向與該平面的一法線方向相互平行,並且該驅動部位於朝向該平面的一側;以及一懸浮驅動電路,對應該些像素單元配置於該平面上,用以將該些像素資料分別轉換為對應的電磁能量,其中,各該像素單元的驅動部依據一對應的像素資料產生一驅動力,藉以推動對應的成像部沿該第一方向移動,進而在空中建立影像,其中各該驅動部包括:一超導體元件,用以反應於關聯該像素資料的一磁場能量,而在該第一方向上形成一磁抗力,進而使所屬的像素單元漂浮於該平面上並且沿該第一方向移動,其中該懸浮驅動電路包括:多個電磁單元,以陣列排列並且與該些像素單元對應配置於該些像素單元與該平面之間;一時序驅動電路,耦接該些電磁單元,用以序列地致能該些電磁單元;以及 一資料轉換電路,耦接該些電磁單元,用以將該些像素資料轉換為多個驅動電壓,並且協同於該些電磁單元的致能時序將該些驅動電壓依序提供給對應的電磁單元,其中,該些電磁單元反應于接收到的驅動電壓而產生對應的電磁能量。 An aerial imaging system includes: a plurality of pixel units arranged in an array on a plane by default, wherein each pixel unit includes an imaging part and a driving part, and the imaging part and the driving part are mutually in a first direction. Coupled, the first direction and a normal direction of the plane are parallel to each other, and the driving part is located on the side facing the plane; and a floating driving circuit corresponding to the pixel units arranged on the plane for placing The pixel data are respectively converted into corresponding electromagnetic energy, wherein the driving part of each pixel unit generates a driving force according to a corresponding pixel data, thereby pushing the corresponding imaging part to move in the first direction, thereby creating an image in the air , Wherein each of the driving parts includes: a superconductor element for responding to a magnetic field energy associated with the pixel data, and forming a magnetic reluctance in the first direction, thereby causing the pixel unit to float on the plane and along the In the first direction movement, the levitation driving circuit includes: a plurality of electromagnetic units arranged in an array and corresponding to the pixel units disposed between the pixel units and the plane; a timing driving circuit coupled to the electromagnetic units Units for sequentially enabling the electromagnetic units; and A data conversion circuit coupled to the electromagnetic units for converting the pixel data into a plurality of driving voltages, and in coordination with the activation timing of the electromagnetic units to sequentially provide the driving voltages to the corresponding electromagnetic units , Wherein the electromagnetic units generate corresponding electromagnetic energy in response to the received driving voltage. 如申請專利範圍第1項所述的空中成像系統,其中該超導體元件為化學材料超導體、合金材料超導體、氧化物超導體以及有機超導體其中之一。 The aerial imaging system as described in item 1 of the scope of patent application, wherein the superconductor element is one of a chemical material superconductor, an alloy material superconductor, an oxide superconductor, and an organic superconductor. 如申請專利範圍第1項所述的空中成像系統,其中各該成像部包括:一發光元件;以及一發光控制電路,耦接該發光元件,用以提供一發光控制信號給該發光元件,使該發光元件反應於接收到的發光控制信號而發光。 As described in the first item of the scope of patent application, each of the imaging units includes: a light-emitting element; and a light-emitting control circuit, coupled to the light-emitting element, for providing a light-emitting control signal to the light-emitting element, so that The light-emitting element emits light in response to the received light-emitting control signal. 如申請專利範圍第3項所述的空中成像系統,其中各該驅動部更包括;一無線充電模組,配置於該超導體元件上,用以在沿該第一方向移動時反應于磁場變化產生電能;以及一電源轉換電路,耦接該無線充電模組,用以根據該無線充電模組所產生的電能進行電源轉換,藉以產生供給該發光控制電路使用的一工作電源。 The aerial imaging system described in item 3 of the scope of patent application, wherein each of the driving parts further includes; a wireless charging module is configured on the superconductor element to react to changes in the magnetic field when moving along the first direction Power; and a power conversion circuit coupled to the wireless charging module for power conversion according to the power generated by the wireless charging module, so as to generate a working power supply for the light-emitting control circuit.
TW105143761A 2016-12-29 2016-12-29 Aerial display system and floating pixel unit thereof TWI715701B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105143761A TWI715701B (en) 2016-12-29 2016-12-29 Aerial display system and floating pixel unit thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105143761A TWI715701B (en) 2016-12-29 2016-12-29 Aerial display system and floating pixel unit thereof

Publications (2)

Publication Number Publication Date
TW201824858A TW201824858A (en) 2018-07-01
TWI715701B true TWI715701B (en) 2021-01-11

Family

ID=63640166

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105143761A TWI715701B (en) 2016-12-29 2016-12-29 Aerial display system and floating pixel unit thereof

Country Status (1)

Country Link
TW (1) TWI715701B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11448897B2 (en) 2019-07-02 2022-09-20 Industrial Technology Research Institute Three-dimensional imaging system and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2045525U (en) * 1989-04-27 1989-10-04 中国科学技术大学研究生院 Demonstrator for superconductor magnetic suspension
US5036944A (en) * 1986-03-24 1991-08-06 Intersonics Incorporated Method and apparatus for acoustic levitation
CN2749004Y (en) * 2004-12-06 2005-12-28 西南交通大学 Superconductive magnetic suspension tellurion
CN101612994A (en) * 2009-07-24 2009-12-30 北京工业大学 A kind of magnetic suspension rotary wing type flying disk
US20120083945A1 (en) * 2010-08-26 2012-04-05 John Robert Oakley Helicopter with multi-rotors and wireless capability
US8286910B2 (en) * 2006-01-10 2012-10-16 Kamal Alavi Unmanned aircraft for telecommunicative or scientific purposes
US8487836B1 (en) * 2009-09-11 2013-07-16 Thomas A. Bodine Multi-dimensional image rendering device
CN205847131U (en) * 2016-05-13 2016-12-28 野兽国股份有限公司 Magnetic suspension device with wireless power supply

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5036944A (en) * 1986-03-24 1991-08-06 Intersonics Incorporated Method and apparatus for acoustic levitation
CN2045525U (en) * 1989-04-27 1989-10-04 中国科学技术大学研究生院 Demonstrator for superconductor magnetic suspension
CN2749004Y (en) * 2004-12-06 2005-12-28 西南交通大学 Superconductive magnetic suspension tellurion
US8286910B2 (en) * 2006-01-10 2012-10-16 Kamal Alavi Unmanned aircraft for telecommunicative or scientific purposes
CN101612994A (en) * 2009-07-24 2009-12-30 北京工业大学 A kind of magnetic suspension rotary wing type flying disk
US8487836B1 (en) * 2009-09-11 2013-07-16 Thomas A. Bodine Multi-dimensional image rendering device
US20120083945A1 (en) * 2010-08-26 2012-04-05 John Robert Oakley Helicopter with multi-rotors and wireless capability
CN205847131U (en) * 2016-05-13 2016-12-28 野兽国股份有限公司 Magnetic suspension device with wireless power supply

Also Published As

Publication number Publication date
TW201824858A (en) 2018-07-01

Similar Documents

Publication Publication Date Title
US9779550B2 (en) Augmented reality system
US9726887B2 (en) Imaging structure color conversion
Yamada et al. iSphere: self-luminous spherical drone display
US20130208003A1 (en) Imaging structure emitter configurations
US20130207964A1 (en) Imaging structure with embedded light sources
TW201250288A (en) Electroactive polymer actuator lenticular system
Holland et al. Beyond swarm intelligence: the ultraswarm
US20170214909A1 (en) Method and Apparatus for Displaying a Still or Moving Scene in Three Dimensions
JP4057344B2 (en) Information presentation device and information presentation system
TWI715701B (en) Aerial display system and floating pixel unit thereof
CN109548396A (en) The flood tide transfer system and method for micro-led chip
US11448897B2 (en) Three-dimensional imaging system and method
TW201822172A (en) Panoramic vision system
TWI827625B (en) Mems-driven optical package with micro-led array
US11561581B2 (en) Virtual display apparatus, and methods of manufacturing and controlling the same
CN109243315A (en) LED display and its control method and electronic equipment
WO2016143255A1 (en) Flying body and aerial video display system
Melhuish et al. Gradient ascent with a group of minimalist real robots: Implementing secondary swarming
CN102368377A (en) Lattice display screen pixel multiplication apparatus and lattice display screen system
TWI295932B (en) Eye module and facial expression module and display method thereof
CN201015008Y (en) Focusing mechanism
WO2020211699A1 (en) Micro-led, transfer method thereof, and micro-led substrate
JP2008176250A (en) Sky display system
Khoudja et al. Vital: a vibrotactile interface with thermal feedback
CN209232323U (en) LED display and electronic equipment