TWI700961B - Light source apparatus - Google Patents

Light source apparatus Download PDF

Info

Publication number
TWI700961B
TWI700961B TW108143650A TW108143650A TWI700961B TW I700961 B TWI700961 B TW I700961B TW 108143650 A TW108143650 A TW 108143650A TW 108143650 A TW108143650 A TW 108143650A TW I700961 B TWI700961 B TW I700961B
Authority
TW
Taiwan
Prior art keywords
light
sub
color temperature
ray
correlated color
Prior art date
Application number
TW108143650A
Other languages
Chinese (zh)
Other versions
TW202015490A (en
Inventor
陳宗德
謝佳芬
劉彤筠
溫士逸
盧建均
蔡欣芸
Original Assignee
財團法人工業技術研究院
和欣光通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/632,393 external-priority patent/US10039169B2/en
Application filed by 財團法人工業技術研究院, 和欣光通科技股份有限公司 filed Critical 財團法人工業技術研究院
Publication of TW202015490A publication Critical patent/TW202015490A/en
Application granted granted Critical
Publication of TWI700961B publication Critical patent/TWI700961B/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)
  • Details Of Measuring Devices (AREA)

Abstract

A light source apparatus including a light-emitting module and a control unit is provided. The light-emitting module is configured to provide a light. The control unit makes the light emitted from the light-emitting module switched among a plurality of kinds of first light. Correlated color temperatures of the plurality of kinds of first light are different from each other, and circadian action factors of the plurality of kinds of first light are substantially the same as each other. A display apparatus is also provided.

Description

光源裝置Light source device

本揭露是有關於一種光源裝置及顯示裝置,且特別是有關於一種可提供不同生理刺激光線的光源裝置及顯示裝置。The present disclosure relates to a light source device and a display device, and particularly relates to a light source device and a display device that can provide different physiological stimulus light.

隨著愛迪生(Thomas Alva Edison)發明電燈泡,電力所產生的光源不僅點亮了黑夜,亦點亮了人類的文明,藉著這種人工光源,人類得以利用夜晚的時間,因而更進一步地帶動了科技與教育的發展。而在光源對生理刺激的影響研究上,Yasukouchi研究發現夜間高色溫的光源比低色溫的光源較抑制褪黑激素的分泌。其次從2001年以來,Branard的研究對人眼與生理影響(biological effect)的關係,更進一步指出說明光源與褪黑激素的分泌以及生理影響的關係,並如圖1繪示出光源與生理刺激對應曲線(2001 Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor)。而進一步可以說明光源不同波長(400nm-550nm)將不同影響生理刺激(circadian stimulus,CS),判斷光源對人體的生理刺激影響程度,因此,若於夜間或白天使用光源時,需要藉由適合光源的頻譜組成,提供適切的人工照明光源。With the invention of the electric light bulb by Thomas Alva Edison, the light source generated by electricity not only lights up the night, but also lights up human civilization. With this artificial light source, mankind can use the night time, thus further driving The development of technology and education. In the research on the influence of light sources on physiological stimuli, Yasukouchi's research found that light sources with high color temperature at night inhibit the secretion of melatonin more than light sources with low color temperature. Secondly, since 2001, Branard's research on the relationship between the human eye and the biological effect further pointed out the relationship between the light source and the secretion of melatonin and the physiological effect, and the light source and the physiological stimulus are shown in Figure 1. Corresponding curve (2001 Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor). It can be further explained that different wavelengths of the light source (400nm-550nm) will affect physiological stimulus (circadian stimulus, CS) differently, and determine the degree of the influence of the light source on the physiological stimulus of the human body. Therefore, if the light source is used at night or during the day, it is necessary to use a suitable light source The composition of the spectrum provides a suitable source of artificial lighting.

本揭露之一實施例提供一種光源裝置,包括一發光模組以及一控制單元。發光模組用以提供一光線。控制單元使發光模組所發出的光線在一第一光線與一第二光線間切換,其中第一光線的光譜相異於第二光線的光譜,且第二光線與第一光線的色溫彼此實質上相同。An embodiment of the disclosure provides a light source device including a light emitting module and a control unit. The light-emitting module is used to provide a light. The control unit switches the light emitted by the light-emitting module between a first light and a second light, wherein the spectrum of the first light is different from the spectrum of the second light, and the color temperatures of the second light and the first light are substantially each other Same as above.

本揭露之一實施例提供一種光源裝置,包括一發光模組以及一控制單元。發光模組用以提供一光線。控制單元使發光模組所發出的光線在多種第一光線間切換,此多種第一光線的相關色溫(correlated color temperature, CCT)彼此相異,且此多種第一光線的生理刺激值彼此實質上相同。An embodiment of the disclosure provides a light source device including a light emitting module and a control unit. The light-emitting module is used to provide a light. The control unit switches the light emitted by the light-emitting module between multiple first lights. The correlated color temperatures (CCT) of the multiple first lights are different from each other, and the physiological stimulus values of the multiple first lights are substantially different from each other. the same.

本揭露之一實施例提供一種光源裝置,包括一發光模組以及一控制單元。發光模組用以提供一光線。控制單元用以改變一第一子光線與一第二子光線的比例以形成光線,因此光線的晝夜節律作用因子(circadian action factor, CAF)與相關色溫沿著相異於太陽光的晝夜節律作用因子相對於相關色溫之軌跡的光線的晝夜節律作用因子相對於相關色溫之軌跡而變化,其中第一子光線與第二子光線之一的晝夜節律作用因子相對於相關色溫的座標落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的下方,且第一子光線與第二子光線之另一的晝夜節律作用因子相對於相關色溫的座標落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的上方。An embodiment of the disclosure provides a light source device including a light emitting module and a control unit. The light-emitting module is used to provide a light. The control unit is used to change the ratio of a first sub-ray to a second sub-ray to form a light, so the circadian action factor (CAF) of the light and the correlated color temperature act along a circadian rhythm different from sunlight The factor is relative to the trajectory of the correlated color temperature. The circadian action factor of the light rays changes relative to the trajectory of the correlated color temperature. The circadian action factor of one of the first sub-ray and the second sub-ray has coordinates relative to the correlated color temperature in the sunlight The circadian action factor of is below the trajectory of the correlated color temperature, and the coordinates of the circadian action factor of the first sub-ray and the second sub-ray relative to the correlated color temperature are relative to the circadian action factor of sunlight. Above the locus of color temperature.

本揭露之一實施例提供一種光源裝置,包括一發光模組以及一控制單元。發光模組用以提供一光線。控制單元用以使光線在一第一光線與一第二光線間切換,因此改變光線的藍光危害與生理刺激值的至少其中之一,其中第一光線的光譜中的藍光主波峰的波長大於第二光線的光譜中的藍光主波峰的波長。An embodiment of the disclosure provides a light source device including a light emitting module and a control unit. The light-emitting module is used to provide a light. The control unit is used to switch the light between a first light and a second light, thereby changing at least one of the blue light hazard and the physiological stimulus value of the light, wherein the wavelength of the main blue peak in the spectrum of the first light is greater than that of the first light The wavelength of the main blue peak in the light spectrum.

本揭露之一實施例提供一種光源裝置,包括一發光模組以及一控制單元。發光模組用以提供一光線,該光線包括一紅色子光線、一綠色子光線以及一藍色子光線。控制單元用以改變紅色子光線、綠色子光線以及藍色子光線的比例以形成不同的白光,藍色子光線的光譜中的主波峰的波長落在460奈米至480奈米的範圍內。An embodiment of the disclosure provides a light source device including a light emitting module and a control unit. The light-emitting module is used for providing a light, and the light includes a red sub-ray, a green sub-ray and a blue sub-ray. The control unit is used to change the proportions of the red sub-ray, the green sub-ray, and the blue sub-ray to form different white lights. The wavelength of the main peak in the spectrum of the blue sub-ray falls within the range of 460 nanometers to 480 nanometers.

本揭露之一實施例提供一種光源裝置,包括一發光模組以及一控制單元。發光模組用以提供一光線,該光線包括一紅色子光線、一綠色子光線以及一藍色子光線。控制單元用以改變紅色子光線、綠色子光線以及藍色子光線的比例以形成不同的白光,藍色子光線的光譜中的主波峰的波長落在440奈米至450奈米的範圍內。An embodiment of the disclosure provides a light source device including a light emitting module and a control unit. The light-emitting module is used for providing a light, and the light includes a red sub-ray, a green sub-ray and a blue sub-ray. The control unit is used to change the ratio of the red sub-ray, the green sub-ray and the blue sub-ray to form different white lights. The wavelength of the main peak in the spectrum of the blue sub-ray falls within the range of 440 nm to 450 nm.

本揭露之一實施例提供一種光源裝置,包括一發光模組以及一控制單元。發光模組用以提供一光線。控制單元用以改變一第一子光線與一第二子光線的比例以形成光線,因此改變光線的相關色溫與藍光危害。在相同的相關色溫下,光線的藍光危害是可改變的,且第一子光線的相關色溫低於第二子光線的相關色溫。An embodiment of the disclosure provides a light source device including a light emitting module and a control unit. The light-emitting module is used to provide a light. The control unit is used to change the ratio of a first sub-ray to a second sub-ray to form a light, thereby changing the relative color temperature of the light and the blue light hazard. Under the same correlated color temperature, the blue hazard of light can be changed, and the correlated color temperature of the first sub-light is lower than that of the second sub-light.

本揭露之一實施例提供一種光源裝置,包括一第一光源、一第二光源以及一控制單元。第一光源用以產生具有一第一光譜分佈的一第一光線,其中第一光線在一色度圖(chromaticity diagram)上具有一第一色座標。第二光源用以產生具有一第二光譜分佈的一第二光線,其中第二光線在色度圖上具有一第二色座標。第二光譜分佈不同於第一光譜分佈。控制單元用以驅動第一光源與第二光源,其中光源裝置以第一色座標與第二色座標實質上相符的方式設計。An embodiment of the present disclosure provides a light source device including a first light source, a second light source, and a control unit. The first light source is used for generating a first light having a first spectral distribution, wherein the first light has a first color coordinate on a chromaticity diagram. The second light source is used for generating a second light having a second spectral distribution, wherein the second light has a second color coordinate on the chromaticity diagram. The second spectral distribution is different from the first spectral distribution. The control unit is used for driving the first light source and the second light source, wherein the light source device is designed in such a way that the first color coordinates and the second color coordinates substantially match.

本揭露之一實施例提供一種光源裝置,包括一第一光源、一第二光源以及一控制單元。控制單元用以控制第一光源與第二光源,第一光源用以提供具有相關色溫介於2500 K與3000 K之間且演色性指數大於90的一第一光線,第二光源用以提供一第二光線,且第一光線的演色性指數大於第二光線的演色性指數。An embodiment of the present disclosure provides a light source device including a first light source, a second light source, and a control unit. The control unit is used to control the first light source and the second light source. The first light source is used to provide a first light with a correlated color temperature between 2500 K and 3000 K and a color rendering index greater than 90. The second light source is used to provide a The second light, and the color rendering index of the first light is greater than the color rendering index of the second light.

本揭露之一實施例提供一種光源裝置,包括一第一發光二極體光源以及一第二發光二極體光源。第一發光二極體光源與第二發光二極體光源經配置以被操作在用於發出一第一光線的一第一操作模式以及經配置以被操作在用於發出一第二光線的一第二操作模式,第一光線與第二光線落在一目標相關色溫的一相同的麥克亞當橢圓內,且第一光線的生理刺激值比第二光線的生理刺激值多出第二光線的生理刺激值的5%以上,第一發光二極體光源與第二發光二極體光源的至少其中之一包括至少一個發光二極體,其經配置以激發至少一個螢光材料發光。An embodiment of the disclosure provides a light source device including a first light emitting diode light source and a second light emitting diode light source. The first light-emitting diode light source and the second light-emitting diode light source are configured to be operated in a first operation mode for emitting a first light and configured to be operated in a first operation mode for emitting a second light. In the second operation mode, the first light and the second light fall within the same MacAdam ellipse of a target correlated color temperature, and the physiological stimulus value of the first light is greater than the physiological stimulus value of the second light than that of the second light. At least one of the first light emitting diode light source and the second light emitting diode light source includes at least one light emitting diode configured to excite at least one fluorescent material to emit light.

本揭露之一實施例提供一種光源裝置,包括一顯示器以及用以照亮顯示器的一背光元件。背光元件包括一第一發光二極體光源以及一第二發光二極體光源。其中第一發光二極體光源與第二發光二極體光源經配置以被操作在用於發出一第一光線的一第一操作模式以及經配置以被操作在用於發出一第二光線的一第二操作模式,第一光線與第二光線落在一目標相關色溫的一相同的麥克亞當橢圓內,且第一光線的生理刺激值比第二光線的生理刺激值多出第二光線的生理刺激值的5%以上。An embodiment of the disclosure provides a light source device including a display and a backlight element for illuminating the display. The backlight element includes a first light emitting diode light source and a second light emitting diode light source. Wherein the first light-emitting diode light source and the second light-emitting diode light source are configured to be operated in a first operation mode for emitting a first light and are configured to be operated in a second light source. In a second operation mode, the first light and the second light fall within a same MacAdam ellipse of a target correlated color temperature, and the physiological stimulus value of the first light is greater than the physiological stimulus value of the second light than that of the second light More than 5% of physiological stimulation value.

本揭露之一實施例提供一種光源裝置,包括一第一光源。第一光源用以提供一第一光線。第一光線的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)落在以(2700±100 K, 0.197)、(2700±100 K, 0.696)、(4500±200 K, 0.474)、(4500±200 K, 1.348)、(6500±300 K, 0.759)與(6500±300 K, 1.604)的六個晝夜節律作用因子相對於相關色溫的座標為頂點所形成的一第一區域內。An embodiment of the present disclosure provides a light source device including a first light source. The first light source is used for providing a first light. The coordinate (CCT, CAF) of the first light's circadian rhythm action factor relative to the correlated color temperature (CCT, CAF) is (2700±100 K, 0.197), (2700±100 K, 0.696), (4500±200 K, 0.474), ( The coordinates of the six circadian action factors of 4500±200 K, 1.348), (6500±300 K, 0.759) and (6500±300 K, 1.604) relative to the correlated color temperature are in a first area formed by the apex.

本揭露之一實施例提供一種光源裝置,包括一第一光源,用以提供一第一光線。第一光線的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)落在一區域內,此區域具有一上邊界、一下邊界及在上邊界與下邊界之間的晝夜節律作用因子相對於相關色溫的座標,其中晝夜節律作用因子相對於相關色溫的座標(2700±100 K, 0.696)、(4500±200 K, 1.348)與(6500±300 K, 1.604)位於上邊界上,晝夜節律作用因子相對於相關色溫的座標(2700±100 K, 0.197)、(4500±200 K, 0.474)與(6500±300 K, 0.759)位於下邊界上。An embodiment of the present disclosure provides a light source device including a first light source for providing a first light. The circadian action factor of the first ray of light falls within an area with respect to the coordinate (CCT, CAF) of the correlated color temperature. This area has an upper boundary, a lower boundary, and the circadian action factor between the upper and lower boundaries is relative to The coordinates of the correlated color temperature, in which the circadian rhythm effect factor is located on the upper boundary relative to the coordinates of the correlated color temperature (2700±100 K, 0.696), (4500±200 K, 1.348) and (6500±300 K, 1.604). The circadian rhythm acts The coordinates of the factor relative to the correlated color temperature (2700±100 K, 0.197), (4500±200 K, 0.474) and (6500±300 K, 0.759) are located on the lower boundary.

為讓本揭露之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present disclosure more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

圖2A是本揭露之一實施例中的光源裝置的示意圖,圖2B是依照圖2A實施例中的光源裝置的一種變化,圖2C是依照圖2B實施例中的光源裝置所發出之光線的相對光強度與光波長的光譜示意圖,請參照圖2A至圖2C,在本實施例中,光源裝置100包括一發光模組110以及一控制單元120。發光模組110提供一光線B。在本實施例中,光線B所代表的意義為發光模組110所發出的光,可具有發散角度,而非限定於特定的傳遞方向。控制單元120用以切換發光模組110所發出的光線B為一第一光線L1或一第二光線L2。其中,第二光線L2的生理刺激值(circadian stimulus/ photometry, CS/P) 小於第一光線L1的生理刺激值,且第二光線L2與第一光線L1的色溫實質上相同。藉此,光源裝置100可在不易讓使用者察覺到光色溫變化的情形下,依照實際使用環境、時間及目的以選擇提供具有高生理刺激的第一光線L1或是低生理刺激的第二光線L2,以維持使用者自然的生理週期並同時提供足夠的光源。2A is a schematic diagram of the light source device in an embodiment of the present disclosure, FIG. 2B is a variation of the light source device in the embodiment according to FIG. 2A, and FIG. 2C is the relative light emitted by the light source device in the embodiment in FIG. 2B For schematic diagrams of light intensity and light wavelength spectrum, please refer to FIGS. 2A to 2C. In this embodiment, the light source device 100 includes a light emitting module 110 and a control unit 120. The light-emitting module 110 provides a light B. In this embodiment, the meaning represented by the light B is that the light emitted by the light-emitting module 110 may have a divergence angle, rather than being limited to a specific transmission direction. The control unit 120 is used for switching the light B emitted by the light-emitting module 110 to a first light L1 or a second light L2. Wherein, the physiological stimulus value (circadian stimulus/photometry, CS/P) of the second light L2 is less than the physiological stimulus value of the first light L1, and the color temperature of the second light L2 and the first light L1 are substantially the same. Thereby, the light source device 100 can choose to provide the first light L1 with high physiological stimulation or the second light with low physiological stimulation according to the actual use environment, time and purpose under the condition that the user is not easy to perceive the change of the light color temperature. L2, to maintain the user's natural menstrual cycle and at the same time provide enough light.

詳細而言,在本實施例中,生理刺激值(CS/P)的定義如下式所示:

Figure 02_image001
其中,CS(λ)代表人類的生理函數,P(λ)代表人類的明視覺函數,P 代表混光完成後的光譜,而CS代表混光完成後光譜的生理刺激值,P代表混光完成後光譜的強度值。其中,有關於明視覺函數P(λ)是依照國際照明委員會(Commission internationale de l'éclairage,CIE)的定義。並且人類的生理函數CS(λ)可參照Professor Brainard所提出的Action spectrum(1997),如圖1所示,Mark Rea所提出的人體非視覺生理函數(2005)以及German pre-standard DIN V所提出的生理函數,並且本揭露之光源裝置100可適用於各種生理函數。並且,圖3是美國國家標準協會(American national standard institute,ANSI)所定義的同色溫的色座標型態的示意圖,請參照圖3,在本實施例中,同色溫的定義是依照美國國家標準協會的定義。換言之,依照此一標準設計之同色溫的光源,對人眼而言的顏色差異不易察覺。其中,圖3示意圖中所繪示的美國國家標準協會定義的色座標型態的詳細座標值請參照表1如下: 表1
Figure 108143650-A0304-0001
其中,表1的數據範圍可換算為圖3中的公差四邊形色溫範圍S1至S8。舉例而言,落在公差四邊形色溫範圍S1內的色溫座標值對而人眼而言很接近,依此類推。更詳細而言,表1中的公差四邊形可進一步換算為色溫值範圍如下表2: 表2
Figure 108143650-A0304-0002
其中,表2的數據範圍可換算為圖3中的橢圓色溫範圍e1至e8,進一步而言,這些橢圓色溫範圍e1至e8亦即麥克亞當(David MacAdam)橢圓。舉例而言,落在橢圓色溫範圍e1內的各色溫座標值對而人眼而言很接近,依此類推。值得注意的是,表1與表2中的座標數據為舉例說明本實施例中之實質上色溫相同,實際之座標數據請參照美國國家標準協會的最新定義,本揭露不以此為限。在另一實施例中,色溫實質上相同代表在同一橢圓色溫範圍內。藉此,光源裝置100可在不易讓使用者察覺到光色色溫變化的情形下,依照實際使用環境、時間及目的以選擇提供不同生理刺激值的光源,以維持使用者生理週期並同時提供足夠的光源。In detail, in this embodiment, the definition of physiological stimulus value (CS/P) is shown in the following formula:
Figure 02_image001
Among them, CS(λ) represents the physiological function of humans, P(λ) represents the photopic function of humans, P represents the spectrum after the light mixing is completed, and CS represents the physiological stimulus value of the spectrum after the light mixing is completed, and P represents the light mixing The intensity value of the spectrum after completion. Among them, the photopic function P(λ) is in accordance with the definition of the International Commission on Illumination (Commission internationale de l'éclairage, CIE). And the human physiological function CS(λ) can refer to the Action spectrum (1997) proposed by Professor Brainard, as shown in Figure 1, the human non-visual physiological function proposed by Mark Rea (2005) and the German pre-standard DIN V The light source device 100 of the present disclosure can be applied to various physiological functions. And, FIG. 3 is a schematic diagram of the color coordinate pattern of the same color temperature defined by the American National Standards Institute (ANSI). Please refer to FIG. 3. In this embodiment, the definition of the same color temperature is in accordance with the American National Standard The definition of the association. In other words, a light source with the same color temperature designed according to this standard is not easy to detect the color difference to the human eye. Among them, the detailed coordinate values of the color coordinate types defined by the American National Standards Institute as shown in the schematic diagram in Figure 3, please refer to Table 1 as follows: Table 1
Figure 108143650-A0304-0001
Among them, the data range of Table 1 can be converted into the tolerance quadrilateral color temperature range S1 to S8 in FIG. 3. For example, the color temperature coordinate values that fall within the tolerance quadrilateral color temperature range S1 are very close to the human eye, and so on. In more detail, the tolerance quadrilateral in Table 1 can be further converted into the color temperature range as shown in Table 2: Table 2
Figure 108143650-A0304-0002
Among them, the data range of Table 2 can be converted to the elliptical color temperature range e1 to e8 in FIG. 3, and further, these elliptical color temperature ranges e1 to e8 are also called David MacAdam ellipses. For example, the color temperature coordinate values falling within the elliptical color temperature range e1 are very close to the human eye, and so on. It is worth noting that the coordinate data in Table 1 and Table 2 is an example to illustrate that the color temperature in this embodiment is substantially the same. For actual coordinate data, please refer to the latest definition of the American National Standards Institute. This disclosure is not limited to this. In another embodiment, substantially the same color temperature represents within the same elliptical color temperature range. In this way, the light source device 100 can select light sources with different physiological stimulus values according to the actual use environment, time and purpose under the condition that it is not easy for the user to perceive the change of the light color temperature, so as to maintain the user's physiological cycle and provide sufficient Light source.

詳細而言,請參照圖2A,控制單元120可使發光模組110於多個發光模式間切換,這些發光模式包含一第一生理刺激模式與一第二生理刺激模式,發光模組110包括多個發光單元D,這些發光單元D可包括電致發光元件、光致發光元件或其組合。其中發光單元D包括至少一第一發光單元D1、至少一第二發光單元D2與至少一第三發光單元D3,第一發光單元D1提供一第一子光線W1,第二發光單元D2提供一第二子光線W2,且第三發光單元D3提供一第三子光線W3。其中,第一子光線W1的至少一波峰值範圍可大於420nm且小於480nm,第二子光線W2的至少一波峰值範圍可大於480nm且小於540nm,第三子光線W3的至少一波峰值範圍可大於540nm。In detail, referring to FIG. 2A, the control unit 120 can switch the light-emitting module 110 between multiple light-emitting modes. The light-emitting modes include a first physiological stimulation mode and a second physiological stimulation mode. The light-emitting module 110 includes multiple There are two light-emitting units D, and these light-emitting units D may include electroluminescence elements, photoluminescence elements or a combination thereof. The light emitting unit D includes at least one first light emitting unit D1, at least one second light emitting unit D2, and at least one third light emitting unit D3. The first light emitting unit D1 provides a first sub-light W1, and the second light emitting unit D2 provides a There are two sub-rays W2, and the third light-emitting unit D3 provides a third sub-ray W3. Wherein, at least one peak range of the first sub-light W1 can be greater than 420 nm and less than 480 nm, at least one peak range of the second sub-light W2 can be greater than 480 nm and less than 540 nm, and at least one peak range of the third sub-light W3 can be Greater than 540nm.

當控制單元120使發光模組110切換至第一生理刺激模式時,控制單元120使這些發光單元D的第一部分P1提供第一光線L1,其中第一光線L1可包括第一子光線W1與第二子光線W2,且當控制單元120使發光模組110切換至第二生理刺激模式時,控制單元120使這些發光單元D的第二部分P2提供第二光線L2,其中第二光線L2可包括第一子光線W1與第三子光線W3,且第一光線L1與第二光線L2的色溫實質上相同,因此可在不影響使用者色溫感覺的情況下改變生理刺激值以符合不同的需求。When the control unit 120 switches the light-emitting module 110 to the first physiological stimulation mode, the control unit 120 causes the first part P1 of the light-emitting units D to provide the first light L1, where the first light L1 may include the first sub-light W1 and the first sub-light W1. Two sub-lights W2, and when the control unit 120 switches the light-emitting module 110 to the second physiological stimulation mode, the control unit 120 causes the second part P2 of the light-emitting units D to provide the second light L2, where the second light L2 may include The first sub-light W1 and the third sub-light W3, and the color temperature of the first light L1 and the second light L2 are substantially the same. Therefore, the physiological stimulus value can be changed to meet different needs without affecting the user's color temperature perception.

此外,圖2B中的光源裝置100’與圖2A所繪示的光源裝置100相似,其中圖2B中,各發光單元對應提供光線波峰值範圍如圖2A實施例說明範圍,然而不同之處在於,圖2B中的光源裝置100’的第一部分P1’可更包括第三發光單元D3。In addition, the light source device 100' in FIG. 2B is similar to the light source device 100 depicted in FIG. 2A. In FIG. 2B, each light-emitting unit provides a light peak range corresponding to the range illustrated in the embodiment of FIG. 2A, but the difference lies in: The first part P1' of the light source device 100' in FIG. 2B may further include a third light emitting unit D3.

其中,在第一生理刺激模式下,第一部分P1’所提供的第一光線L1’可包括第一子光線W1、第二子光線W2與第三子光線W3。而在第二生理刺激模式下,第二部份P2’所提供的第二光線L2’可包括第一子光線W1與第三子光線W3。Wherein, in the first physiological stimulation mode, the first light L1' provided by the first part P1' may include a first sub-light W1, a second sub-light W2, and a third sub-light W3. In the second physiological stimulation mode, the second light L2' provided by the second part P2' may include the first sub-light W1 and the third sub-light W3.

其中,圖2B完成混光後之頻譜如圖2C所示,由於第二子光線W2的生理刺激值大於第三子光線W3的生理刺激值,因此第一光線L1’雖與第二光線L2’為相同的色溫3000K,由於其混光光譜不同,因此生理刺激值不同,第一光線L1’其光譜如圖2C中的混光光譜曲線SH1,生理刺激值CS/P經計算後約為0.43,而第二光線L2’ 其混光光譜如圖2C中的光譜曲線SL1,其生理刺激值CS/P經計算後約為0.27,亦即上式計算出的CS/P,其中第一光線L1’的生理刺激值經計算後約為第二光線L2’的生理刺激值的159%。藉此,可使得第二光線L2’與第一光線L1’的生理刺激值有更顯著的差異。而可達到上述之目的,本揭露不以此為限。Wherein, the spectrum of FIG. 2B after the light mixing is as shown in FIG. 2C, since the physiological stimulus value of the second sub-light W2 is greater than the physiological stimulus value of the third sub-light W3, the first light L1' and the second light L2' For the same color temperature of 3000K, the physiological stimulus values are different due to different light mixing spectra. The spectrum of the first light L1' is shown in the mixed light spectrum curve SH1 in Fig. 2C. The physiological stimulus value CS/P is about 0.43 after calculation. The mixed light spectrum of the second light L2' is shown in the spectral curve SL1 in Figure 2C, and its physiological stimulus value CS/P is calculated to be approximately 0.27, which is the CS/P calculated by the above formula, where the first light L1' The physiological stimulus value of is calculated to be about 159% of the physiological stimulus value of the second light L2'. In this way, the physiological stimulation value of the second light L2' and the first light L1' can be more significantly different. However, the above objective can be achieved, and this disclosure is not limited to this.

進一步而言,控制單元120可使發光模組110’所發出的光線B可於一天中的多個不同時段依需求而切換至第一生理刺激模式(即提供第一光線L1’)或第二生理刺激模式(即提供第二光線L2’)。詳細而言,圖2D繪示出圖2B實施例中的光源裝置在不同時段具有不同照明模式的時序圖,請參照圖2B與圖2D,舉例而言,光源裝置100’可應用於飯店照明,可在工作時間(如圖2D中所繪示的9:00至18:00)提供色溫為3000K且具有較高生理刺激值的第一光線L1’,以提高服務人員的警覺性與工作精神,同時亦可讓房客具有視覺上的溫暖舒適感。而在晚間(如圖2D中所繪示的18:00至22:00),光源裝置100’中的發光模組110’可被切換至色溫同樣為3000K但具有較低生理刺激值的第二光線L2’,即可在不影響照明色溫的情況下減少對晚班的服務人員以及房客的生理刺激,以避免影響褪黑激素分泌而影響服務人員以及房客的健康。值得注意的是,圖2D中的時序僅用於舉例說明本實施例,在其它實施例中可依照實施需求而有所變化,本揭露不以此為限。Furthermore, the control unit 120 can enable the light B emitted by the light-emitting module 110' to be switched to the first physiological stimulation mode (that is, to provide the first light L1') or the second physiological stimulation mode according to demand at multiple different times of the day. Physiological stimulation mode (that is, providing second light L2'). In detail, FIG. 2D illustrates a timing diagram of the light source device in the embodiment of FIG. 2B having different lighting modes at different time periods. Please refer to FIG. 2B and FIG. 2D. For example, the light source device 100' can be applied to restaurant lighting. During working hours (9:00 to 18:00 as shown in Figure 2D), the first light L1' with a color temperature of 3000K and a higher physiological stimulus value can be provided to improve the alertness and work spirit of the service staff. At the same time, guests can have a visual sense of warmth and comfort. In the evening (18:00 to 22:00 as shown in Figure 2D), the light-emitting module 110' in the light source device 100' can be switched to the second with a color temperature of 3000K but a lower physiological stimulation value. The light L2' can reduce the physiological stimulation of night shift service staff and guests without affecting the color temperature of the lighting, so as to avoid affecting the secretion of melatonin and affecting the health of service staff and guests. It is worth noting that the time sequence in FIG. 2D is only used to illustrate this embodiment. In other embodiments, it may be changed according to implementation requirements, and the disclosure is not limited thereto.

更進一步而言,圖2E是依照圖2A中光源裝置的方塊圖,請參照圖2E,在本實施例中,光源裝置100可更包括一使用者介面130,控制單元120根據使用者介面130所輸入的一對應於使用者UR的操作之訊號而決定光源裝置100目前所處的照明模式。詳細而言,控制單元120例如是一微處理器,並可根據一時間管理資料DT使發光模組110於多個不同時間分別切換至不同的照明模式,其中時間管理資料DT與生物的生理時鐘相關。舉例而言,時間管理資料DT可如圖2D中的時序圖中的模式切換時間資料,然本揭露不此以為限。更詳細而言,光源裝置100可更包括一資料寫入系統DR,時間管理資料DT可透過資料寫入系統DR與控制單元120連接而被接收並儲存於一儲存單元SV內,並且控制單元120可藉由從儲存單元SV載入時間管理資料DT以控制控制單元120並使發光模組110的光源驅動模組DM驅動第一部分P1或第二部分P2,以達成圖2A實施例中所述之功效。另一方面,光源裝置100可更包括一連接介面140,連接介面140將來自資料寫入系統DR的時間管理資料DT傳遞至控制單元120,其中連接介面140為有線連接介面或無線連接介面。舉例而言,連接介面140例如是一手動開關或者是遙控器,使用者UR可利用手動開關或遙控器來選取或改變光源裝置100的照明模式。而另一方面,光源裝置100亦可根據時間管理資料DT的內容,依照時間而自動地選取或改變照明模式,以配合使用者UR的需求。Furthermore, FIG. 2E is a block diagram of the light source device in FIG. 2A. Please refer to FIG. 2E. In this embodiment, the light source device 100 may further include a user interface 130, and the control unit 120 is configured according to the user interface 130. An input signal corresponding to the operation of the user UR determines the current lighting mode of the light source device 100. In detail, the control unit 120 is, for example, a microprocessor, and can switch the light-emitting module 110 to different lighting modes at a plurality of different times according to a time management data DT, wherein the time management data DT and the biological clock Related. For example, the time management data DT may be the mode switching time data in the timing diagram in FIG. 2D, but the disclosure is not limited thereto. In more detail, the light source device 100 can further include a data writing system DR. The time management data DT can be received and stored in a storage unit SV through the data writing system DR connected to the control unit 120, and the control unit 120 The time management data DT can be loaded from the storage unit SV to control the control unit 120 and make the light source driving module DM of the light emitting module 110 drive the first part P1 or the second part P2 to achieve the embodiment described in FIG. 2A effect. On the other hand, the light source device 100 may further include a connection interface 140 that transmits the time management data DT from the data writing system DR to the control unit 120, wherein the connection interface 140 is a wired connection interface or a wireless connection interface. For example, the connection interface 140 is, for example, a manual switch or a remote control, and the user UR can use the manual switch or the remote control to select or change the lighting mode of the light source device 100. On the other hand, the light source device 100 can also automatically select or change the lighting mode according to the time according to the content of the time management data DT to meet the needs of the user UR.

然而,在圖2A實施例中的光源裝置100的發光模組110可提供具有相同色溫以及不同生理刺激值的第一光線L1與第二光線L2。但在其它實施例中,亦可提供具有相同或不同色溫以及不同生理刺激值的光線。However, the light-emitting module 110 of the light source device 100 in the embodiment of FIG. 2A can provide the first light L1 and the second light L2 with the same color temperature and different physiological stimulation values. However, in other embodiments, light with the same or different color temperature and different physiological stimulation values can also be provided.

舉例而言,圖4A是本揭露之另一實施例中的光源裝置的示意圖,與圖2A實施例相似,光源裝置300包含第一發光單元D1,第二發光單元D2,第三發光單元D3可包括D31與D32。For example, FIG. 4A is a schematic diagram of a light source device in another embodiment of the present disclosure. Similar to the embodiment of FIG. 2A, the light source device 300 includes a first light emitting unit D1, a second light emitting unit D2, and a third light emitting unit D3. Including D31 and D32.

其中光源裝置300的第一部分P13包括第一發光單元D1、第二發光單元D2、第三發光單元D31,其對應產生第一子光線W1、第二子光線W2和第三子光線W3,其中,第二子光線W2可由一螢光體被第一子光線W1激發所產生(即第二發光單元D2可為一螢光體),第三子光線W3由一發光二極體所產生。光源裝置300發光的第二部分P23包括第一發光單元D1和第三發光單元D32,其對應產生第一子光線W1和第三子光線W3。其中,第一子光線W1可為由一發光二極體所產生的光線,第三子光線W3可由一螢光體被第一子光線W1激發所產生(即第三發光單元D32可為一螢光體)。其中,第一子光線W1的至少一波峰值範圍大於420nm且小於480nm,第二子光線W2的至少一波峰值範圍大於480nm且小於540nm,第三子光線W3的至少一波峰值範圍大於540nm。The first part P13 of the light source device 300 includes a first light-emitting unit D1, a second light-emitting unit D2, and a third light-emitting unit D31, which correspondingly generate a first sub-ray W1, a second sub-ray W2, and a third sub-ray W3, wherein, The second sub-ray W2 may be generated by a phosphor being excited by the first sub-ray W1 (that is, the second light-emitting unit D2 may be a phosphor), and the third sub-ray W3 may be generated by a light-emitting diode. The second part P23 where the light source device 300 emits light includes a first light-emitting unit D1 and a third light-emitting unit D32, which correspondingly generate the first sub-ray W1 and the third sub-ray W3. Wherein, the first sub-ray W1 may be a light generated by a light emitting diode, and the third sub-ray W3 may be generated by a phosphor being excited by the first sub-ray W1 (that is, the third light-emitting unit D32 may be a phosphor Light body). Wherein, at least one peak range of the first sub-light W1 is greater than 420 nm and less than 480 nm, at least one peak range of the second sub-light W2 is greater than 480 nm and less than 540 nm, and at least one peak range of the third sub-light W3 is greater than 540 nm.

在圖4A實施例中,不同之處在於圖4A中的光源裝置300中,控制模組320使發光模組310所發出的光線B3在第一光線L13與第二光線L23間切換,第一光線L13與第二光線L23的色溫不相同。In the embodiment of FIG. 4A, the difference is that in the light source device 300 in FIG. 4A, the control module 320 switches the light B3 emitted by the light-emitting module 310 between the first light L13 and the second light L23. The color temperature of L13 and the second light L23 are different.

圖4B繪示出圖4A實施例中的第一光線L13的光譜曲線,而圖4C繪示出圖4A實施例中的第二光線L23的光譜曲線。在本實施例中,圖4B以6500k色溫為例,而圖4C以3000k色溫為例。藉由圖4B與圖4C中的光譜曲線經由上述之各算式計算推得光源裝置300的發光模組310所提供的的第一光線L13的生理刺激值約為0.94,而第二光線L23的生理刺激值約為0.27,其中第一光線L13的生理刺激值約為第二光線L23的生理刺激值的3.48倍,即第一光線L13的生理刺激值比第二光線L23的生理刺激值多出第二光線L23的生理刺激值的5%以上。FIG. 4B illustrates the spectral curve of the first light L13 in the embodiment of FIG. 4A, and FIG. 4C illustrates the spectral curve of the second light L23 in the embodiment of FIG. 4A. In this embodiment, FIG. 4B uses a color temperature of 6500k as an example, and FIG. 4C uses a color temperature of 3000k as an example. According to the spectral curves in FIGS. 4B and 4C, the physiological stimulus value of the first light L13 provided by the light-emitting module 310 of the light source device 300 is approximately 0.94, and the physiological stimulus value of the second light L23 is calculated through the above calculations. The stimulus value is about 0.27, and the physiological stimulus value of the first light L13 is about 3.48 times that of the second light L23, that is, the physiological stimulus value of the first light L13 is greater than the physiological stimulus value of the second light L23. The physiological stimulus value of the second light L23 is more than 5%.

圖4D繪示出圖4A實施例中的光源裝置在不同時段具有不同照明模式的時序圖。藉此,光源裝置300可應用於居家照明,如圖4D所繪示,光源裝置300的發光模組310可於白晝時段(例如9:00至18:00)提供具有高生理刺激值與高色溫(6500k)的光源以使人感覺清爽並可提振精神,在夜晚時段(例如18:00至22:00)則提供具有低生理刺激值與低色溫(3000k)的光源以使人有溫暖舒適的感覺。其中,上述的生理刺激數值和圖4B與圖4C的光譜曲線僅用於說明本實施例,在其它實施例中亦可依照實際需求而有所不同,本揭露不以此為限。在其他實施例中,發光模組可在不同模式下提供分別具有不同的相關色溫但具有實質上相同的生理刺激值的光線,亦或是提供具有不同或實質上相同的光學參數的光線,其將於下述圖15至圖22B的實施例中呈現。FIG. 4D illustrates a timing diagram of the light source device in the embodiment of FIG. 4A having different lighting modes at different time periods. Therefore, the light source device 300 can be used for home lighting. As shown in FIG. 4D, the light-emitting module 310 of the light source device 300 can provide high physiological stimulus value and high color temperature during daylight hours (for example, 9:00 to 18:00). (6500k) light source to make people feel refreshed and boost the spirit, at night time (for example, 18:00 to 22:00), provide a light source with low physiological stimulation value and low color temperature (3000k) to make people feel warm and comfortable a feeling of. Wherein, the aforementioned physiological stimulus values and the spectral curves of FIG. 4B and FIG. 4C are only used to illustrate this embodiment, and other embodiments may be different according to actual needs, and the present disclosure is not limited thereto. In other embodiments, the light-emitting module may provide light with different correlated color temperatures but substantially the same physiological stimulus value in different modes, or provide light with different or substantially the same optical parameters. It will be presented in the following embodiments in FIGS. 15-22B.

圖5A是本揭露之又一實施例中的光源裝置的示意圖,與圖2A實施例相似,然而在本實施例中,發光模組410更包括至少一第四發光單元D4。其中,第一發光單元D1提供一第一子光線W1,第二發光單元D2提供一第二子光線W2,第三發光單元D3提供一第三子光線W3,且第四發光單元D4提供一第四子光線W4。並且如圖5A所繪示,第一部分P14可包括第一發光單元D1、第二發光單元D2與第四發光單元D4,且第二部分P24可包括第一發光單元D1、第三發光單元D3與第四發光單元D4。當控制單元420使發光模組410切換至第一生理刺激模式時,第一發光單元D1發出第一子光線W1,第二發光單元D2發出第二子光線W2,以及第四發光單元D4發出第四子光線W4,當控制單元420使發光模組410切換至第二生理刺激模式時,第一發光單元D1發出第一子光線W1,第三發光單元D3發出第三子光線W3,且第四發光單元D4發出第四子光線W4,其中第一子光線W1的生理刺激值大於第二子光線W2的生理刺激值,且第二子光線W2的生理刺激值大於第三子光線W3的生理刺激值。簡言之,在第一生理刺激模式下,光源裝置400的發光模組410所提供的第一光線L14可包括第一子光線W1、第二子光線W2與第四子光線W4。而在第二生理刺激模式下,光源裝置400的發光模組410所提供的第二光線L24可包括第一子光線W1、第三子光線W3與第四子光線W4。藉此可與圖2A中實施例的光源裝置100具有相似的功效。FIG. 5A is a schematic diagram of a light source device in another embodiment of the present disclosure, which is similar to the embodiment in FIG. 2A. However, in this embodiment, the light-emitting module 410 further includes at least one fourth light-emitting unit D4. The first light-emitting unit D1 provides a first sub-light W1, the second light-emitting unit D2 provides a second sub-light W2, the third light-emitting unit D3 provides a third sub-light W3, and the fourth light-emitting unit D4 provides a first Four sub-ray W4. And as shown in FIG. 5A, the first portion P14 may include a first light emitting unit D1, a second light emitting unit D2, and a fourth light emitting unit D4, and the second portion P24 may include a first light emitting unit D1, a third light emitting unit D3, and The fourth light emitting unit D4. When the control unit 420 switches the light-emitting module 410 to the first physiological stimulation mode, the first light-emitting unit D1 emits the first sub-light W1, the second light-emitting unit D2 emits the second sub-light W2, and the fourth light-emitting unit D4 emits the first sub-light W2. Four sub-rays W4. When the control unit 420 switches the light-emitting module 410 to the second physiological stimulation mode, the first light-emitting unit D1 emits the first sub-ray W1, the third light-emitting unit D3 emits the third sub-ray W3, and the fourth sub-ray W3. The light emitting unit D4 emits a fourth sub-ray W4, wherein the physiological stimulus value of the first sub-ray W1 is greater than that of the second sub-ray W2, and the physiological stimulus value of the second sub-ray W2 is greater than that of the third sub-ray W3 value. In short, in the first physiological stimulation mode, the first light L14 provided by the light-emitting module 410 of the light source device 400 may include the first sub-light W1, the second sub-light W2, and the fourth sub-light W4. In the second physiological stimulation mode, the second light L24 provided by the light-emitting module 410 of the light source device 400 may include the first sub-light W1, the third sub-light W3, and the fourth sub-light W4. Thereby, the light source device 100 of the embodiment in FIG. 2A can have a similar effect.

換言之,光源裝置400的發光模組410可包括第一發光單元D1、第二發光單元D2、第三發光單元D3以及第四發光單元D4。其中,至少第一發光單元D1、第二發光單元D2與第四發光單元D4可形成第一光源(即第一部分P14)並發出第一光線L14,而第一發光單元D1、第三發光單元D3與第四發光單元D4可形成第二光源(即第二部份P24)並發出第二光線L24。其中,第一光源與第二光源色溫實質上相同且具有不同的生理刺激值。In other words, the light emitting module 410 of the light source device 400 may include a first light emitting unit D1, a second light emitting unit D2, a third light emitting unit D3, and a fourth light emitting unit D4. Among them, at least the first light-emitting unit D1, the second light-emitting unit D2, and the fourth light-emitting unit D4 can form a first light source (that is, the first portion P14) and emit the first light L14, and the first light-emitting unit D1, the third light-emitting unit D3 The fourth light emitting unit D4 can form a second light source (ie, the second part P24) and emit a second light L24. Wherein, the color temperature of the first light source and the second light source are substantially the same and have different physiological stimulation values.

在本實施例中,圖5A中的第一發光單元D1可為發光二極體,第二子光線W2可由一第一螢光體被第一子光線W1激發所產生,並且第三子光線W3可由一第二螢光體被第一子光線W1激發所產生,換言之,在本實施例中,第二發光單元D2與第三發光單元D3可為光致發光(如螢光)材料,其可受到第一子光線W1激發而產生不同波峰值範圍的第二子光線W2和第三子光線W3。此外,在本實施例中,第四發光單元D4例如是發光二極體,然而在其他實施例中,第四發光單元D4或可為受光激發而產生第四子光線W4的光致發光材料(如螢光體),本揭露不以此為限。在另一實施例中,第一發光單元D1、第二發光單元D2、第三發光單元D3和第四發光單元D4可為具有不同波峰值範圍的發光二極體或發光二極體和螢光體之組合。In this embodiment, the first light-emitting unit D1 in FIG. 5A may be a light-emitting diode, the second sub-light W2 may be generated by a first phosphor excited by the first sub-light W1, and the third sub-light W3 It can be generated by a second phosphor being excited by the first sub-light W1. In other words, in this embodiment, the second light-emitting unit D2 and the third light-emitting unit D3 can be photoluminescent (such as fluorescent) materials, which can be Excited by the first sub-ray W1, a second sub-ray W2 and a third sub-ray W3 with different peak ranges are generated. In addition, in this embodiment, the fourth light-emitting unit D4 is, for example, a light-emitting diode, but in other embodiments, the fourth light-emitting unit D4 may be a photoluminescent material that is excited by light to generate the fourth sub-light W4 ( Such as phosphor), this disclosure is not limited to this. In another embodiment, the first light-emitting unit D1, the second light-emitting unit D2, the third light-emitting unit D3, and the fourth light-emitting unit D4 may be light-emitting diodes or light-emitting diodes and fluorescent lights with different wave peak ranges. Body combination.

圖5B繪示出圖5A實施例中的第一光線L14的光譜曲線,而圖5C繪示出圖5A實施例中的第二光線L24的光譜曲線,圖5D繪示出圖5A實施例中的光源裝置在不同時段具有不同照明模式的時序圖,詳細而言,第一子光線W1的至少一波峰值範圍大於420nm且小於480nm,第二子光線W2的至少一波峰值範圍大於480nm且小於540nm,第三子光線W3的至少一波峰值範圍大於540nm且小於590nm,並且第四子光線W4的至少一波峰值範圍大於590nm且小於680nm。其中,當光源裝置400處於第一生理刺激模式時,發光模組410所提供的第一光線L14的光譜如圖5B中的混光光譜曲線。當光源裝置400處於第二生理刺激模式時,發光模組410所提供的第二光線L24的混光光譜如圖5C中的光譜曲線。在本實施例中,圖5B與圖5C以6500K色溫為例,藉由圖5B與圖5C中的光譜曲線,可推得光源裝置400的第一光線L14的生理刺激值約為0.94,而第二光線L24的生理刺激值約為0.79。藉此,光源裝置400可應用於工作照明(如醫院或工廠照明),如圖5D所繪示,光源裝置400的發光模組410可於白晝時段(例如9:00至18:00)提供具有高生理刺激值且高色溫的光源以使工作人員感覺清爽並可提振精神,在夜晚時段(例如18:00至22:00)則提供具有低生理刺激值但仍維持高色溫的光源,以降低對在晚間工作的工作人員的生理刺激,以避免影響工作人員的健康。其中,上述的生理刺激數值和圖5B與圖5C的光譜曲線僅用於說明本實施例,在其它實施例中亦可依照實際需求而有所不同,本揭露不以此為限。值得注意的是,圖5A中的光源裝置400亦可如圖4A實施例中的光源裝置300,藉由調整第一子光線W1、第二子光線W2、第三子光線W3與第四子光線W4之間的比例以提供不同色溫且不同生理刺激值差異達5%以上的第一光線L14以及第二光線L24,相關的詳細敘述可參照圖2A及圖4A實施例,在此不再贅述。5B depicts the spectral curve of the first light L14 in the embodiment of FIG. 5A, and FIG. 5C depicts the spectral curve of the second light L24 in the embodiment of FIG. 5A, and FIG. 5D depicts the spectral curve of the embodiment in FIG. 5A The light source device has timing diagrams of different illumination modes at different time periods. In detail, at least one peak range of the first sub-light W1 is greater than 420 nm and less than 480 nm, and at least one peak range of the second sub-light W2 is greater than 480 nm and less than 540 nm. At least one peak range of the third sub-light W3 is greater than 540 nm and less than 590 nm, and at least one peak range of the fourth sub-light W4 is greater than 590 nm and less than 680 nm. Wherein, when the light source device 400 is in the first physiological stimulation mode, the spectrum of the first light L14 provided by the light emitting module 410 is as shown in the mixed light spectrum curve in FIG. 5B. When the light source device 400 is in the second physiological stimulation mode, the mixed light spectrum of the second light L24 provided by the light emitting module 410 is as shown in the spectrum curve in FIG. 5C. In this embodiment, FIG. 5B and FIG. 5C take a color temperature of 6500K as an example. Based on the spectral curves in FIG. 5B and FIG. 5C, it can be deduced that the physiological stimulus value of the first light L14 of the light source device 400 is about 0.94, and the The physiological stimulus value of the two rays L24 is about 0.79. In this way, the light source device 400 can be applied to work lighting (such as hospital or factory lighting). As shown in FIG. 5D, the light-emitting module 410 of the light source device 400 can be provided during daylight hours (for example, 9:00 to 18:00). The light source with high physiological stimulus value and high color temperature can make the staff feel refreshed and boost their spirits. At night time (for example, 18:00 to 22:00), a light source with low physiological stimulus value but still high color temperature is provided. Reduce the physiological stimulation of the staff working at night to avoid affecting the health of the staff. Wherein, the aforementioned physiological stimulus values and the spectral curves of FIG. 5B and FIG. 5C are only used to illustrate this embodiment, and other embodiments may be different according to actual needs, and the present disclosure is not limited thereto. It is worth noting that the light source device 400 in FIG. 5A can also be the light source device 300 in the embodiment of FIG. 4A by adjusting the first sub-ray W1, the second sub-ray W2, the third sub-ray W3, and the fourth sub-ray The ratio between W4 is to provide the first light L14 and the second light L24 with different color temperatures and different physiological stimulus values of more than 5%. The detailed description can refer to the embodiments of FIG. 2A and FIG. 4A, which will not be repeated here.

圖6A是本揭露之再一實施例中的光源裝置的示意圖,圖6B到圖6I繪示出光源裝置500分別在各色溫條件下所提供的光線之光譜曲線,與圖5A之實施例相似,並具有相同波峰值範圍的第一子光線W1、第二子光線W2、第三子光線W3、第四子光線W4,然而不同之處在於,在本實施例中,圖6A的光源裝置500的發光模組510在這些照明模式下可提供更多組具有高低生理刺激值的不同色溫的光源。舉例而言,在本實施例中,當光源裝置500的發光模組510中所包括的第一發光單元D11與第一發光單元D12提供第一子光線W1、第二發光單元D2提供第二子光線W2以及第四發光單元D4提供第四子光線W4時,光源裝置500的發光模組510可藉由調整第一子光線W1、第二子光線W2與第四子光線W4的比例,以分別依照使用需求提供具有較高生理刺激值的第一光線L15(例如6500K、CS/P值0.82)、第三光線L35(例如5000K、CS/P值0.67)、第五光線L55(例如4000K、CS/P值0.54)以及第七光線L75(例如3000K、CS/P值0.39)。另一方面,當光源裝置500的發光模組510中的第一發光單元D11與第一發光單元D13提供第一子光線W1、第三發光單元D3提供第三子光線W3以及第四發光單元D4提供第四子光線W4時,光源裝置500的發光模組510可藉由調整第一子光線W1、第三子光線W3與第四子光線W4的比例,以分別依照使用需求提供具有較低生理刺激值的第二光線L25(6500K、CS/P值0.72)、第四光線L45(5000K、CS/P值0.57)、第六光線L65(4000K、CS/P值0.45)以及第八光線L85(3000K、CS/P值0.30)。因此,光源裝置500的發光模組510相較於圖2A與圖2C的光源裝置100與100’的發光模組110與110’能提供更多組色溫的光源,藉此可符合各種使用需求,並具有良好的應用潛力。6A is a schematic diagram of a light source device in another embodiment of the present disclosure. FIGS. 6B to 6I illustrate the spectral curves of light provided by the light source device 500 under various color temperature conditions, similar to the embodiment of FIG. 5A, The first sub-ray W1, the second sub-ray W2, the third sub-ray W3, and the fourth sub-ray W4 have the same peak range. However, the difference is that in this embodiment, the light source device 500 of FIG. 6A The light-emitting module 510 can provide more groups of light sources with different color temperatures with high and low physiological stimulus values in these lighting modes. For example, in this embodiment, when the first light-emitting unit D11 and the first light-emitting unit D12 included in the light-emitting module 510 of the light source device 500 provide the first sub-light W1 and the second light-emitting unit D2 provides the second sub-beam When the light W2 and the fourth light emitting unit D4 provide the fourth sub light W4, the light emitting module 510 of the light source device 500 can adjust the ratio of the first sub light W1, the second sub light W2, and the fourth sub light W4 to respectively Provide first light L15 (e.g. 6500K, CS/P value 0.82), third light L35 (e.g. 5000K, CS/P value 0.67), fifth light L55 (e.g. 4000K, CS /P value 0.54) and the seventh light L75 (for example, 3000K, CS/P value 0.39). On the other hand, when the first light-emitting unit D11 and the first light-emitting unit D13 in the light-emitting module 510 of the light source device 500 provide the first sub-light W1, the third light-emitting unit D3 provides the third sub-light W3 and the fourth light-emitting unit D4 When the fourth sub-ray W4 is provided, the light-emitting module 510 of the light source device 500 can adjust the proportions of the first sub-ray W1, the third sub-ray W3, and the fourth sub-ray W4 to provide a lower physiology according to usage requirements. The second ray L25 (6500K, CS/P value 0.72), the fourth ray L45 (5000K, CS/P value 0.57), the sixth ray L65 (4000K, CS/P value 0.45) and the eighth ray L85 ( 3000K, CS/P value 0.30). Therefore, the light-emitting module 510 of the light source device 500 can provide more sets of color temperature light sources than the light-emitting modules 110 and 110' of the light source devices 100 and 100' of FIGS. 2A and 2C, thereby meeting various usage requirements. And has good application potential.

詳細而言,在本實施例中,光源裝置500可包括第一生理刺激模式、第二生理刺激模式、第三生理刺激模式、第四生理刺激模式、第五生理刺激模式、第六生理刺激模式、第七生理刺激模式與第八生理刺激模式。並且,控制單元520使發光模組500分別於這些生理刺激模式下所發出的光線在第一光線L15(光譜曲線如圖6B)、第二光線L25(光譜曲線如圖6C)、第三光線L35(光譜曲線如圖6D)、第四光線L45(光譜曲線如圖6E)、第五光線L55(光譜曲線如圖6F)、第六光線65(光譜曲線如圖6G)、第七光線L75(光譜曲線如圖6H)以及第八光線L85(光譜曲線如圖6I)間切換,進而可提供更多組光源。In detail, in this embodiment, the light source device 500 may include a first physiological stimulation mode, a second physiological stimulation mode, a third physiological stimulation mode, a fourth physiological stimulation mode, a fifth physiological stimulation mode, and a sixth physiological stimulation mode. , The seventh physiological stimulation mode and the eighth physiological stimulation mode. In addition, the control unit 520 makes the light emitted by the light-emitting module 500 in these physiological stimulation modes be in the first light L15 (the spectral curve is shown in Fig. 6B), the second light L25 (the spectral curve is shown in Fig. 6C), and the third light L35. (Spectral curve shown in Figure 6D), fourth light L45 (spectral curve shown in Figure 6E), fifth light L55 (spectral curve shown in Figure 6F), sixth light 65 (spectral curve shown in Figure 6G), seventh light L75 (spectral curve shown in Figure 6F) The curve shown in Fig. 6H) and the eighth light L85 (spectral curve shown in Fig. 6I) are switched between, thereby providing more groups of light sources.

更詳細而言,第二光線L25的生理刺激值小於第一光線L15的生理刺激值,且第二光線L25與第一光線L15的色溫實質上相同。第四光線L45的生理刺激值小於第三光線L35的生理刺激值,且第四光線L45與第三光線L35的色溫實質上相同。第六光線L65的生理刺激值小於第五光線L55的生理刺激值,且第六光線L65與第五光線L55的色溫實質上相同。第八光線L85的生理刺激值小於第七光線L75的生理刺激值,且第八光線L85與第七光線L75的色溫實質上相同。並且,第一光線L15、第三光線L35、第五光線L55以及第七光線L75的色溫實質上不相同、且第二光線L25、第四光線L45、第六光線L65以及第八光線L85的色溫實質上不相同。換言之,光源裝置500的發光模組510可藉由調整第一子光線W1、第二子光線W2、第三子光線W3與第四子光線W4的比例,而可提供更多組色溫的光線,並且每一組同色溫的光線可於高生理刺激值與低生理刺激值之間切換。In more detail, the physiological stimulus value of the second light L25 is smaller than the physiological stimulus value of the first light L15, and the color temperature of the second light L25 and the first light L15 are substantially the same. The physiological stimulus value of the fourth light L45 is smaller than that of the third light L35, and the color temperature of the fourth light L45 and the third light L35 are substantially the same. The physiological stimulus value of the sixth light L65 is smaller than that of the fifth light L55, and the color temperature of the sixth light L65 and the fifth light L55 are substantially the same. The physiological stimulus value of the eighth light L85 is less than that of the seventh light L75, and the color temperature of the eighth light L85 and the seventh light L75 are substantially the same. Moreover, the color temperatures of the first light L15, the third light L35, the fifth light L55, and the seventh light L75 are substantially different, and the color temperatures of the second light L25, the fourth light L45, the sixth light L65, and the eighth light L85 are substantially different. Substantially different. In other words, the light-emitting module 510 of the light source device 500 can adjust the ratio of the first sub-ray W1, the second sub-ray W2, the third sub-ray W3 and the fourth sub-ray W4 to provide more groups of light with color temperature. And each group of light with the same color temperature can be switched between high physiological stimulation value and low physiological stimulation value.

進一步而言,在本實施例中,光源裝置500的發光模組510可包括第一發光單元D11、D12與D13、第二發光單元D2、第三發光單元D3與第四發光單元D4。其中,第一發光單元D11與D12、第二發光單元D2以及第四發光單元D4可形成第一光源(即第一部分P1)並分別於各生理刺激模式下發出第一光線L15、第三光線L35、第五光線L55或第七光線L75。另一方面,第一發光單元D11與D13、第三發光單元D3以及第四發光單元D4可形成第二光源(即第二部分P2)並分別於各生理刺激模式下發出第二光線L25、第四光線L45、第六光線L65或第八光線L85。Furthermore, in this embodiment, the light emitting module 510 of the light source device 500 may include first light emitting units D11, D12, and D13, a second light emitting unit D2, a third light emitting unit D3, and a fourth light emitting unit D4. Among them, the first light-emitting unit D11 and D12, the second light-emitting unit D2, and the fourth light-emitting unit D4 can form a first light source (ie, the first part P1) and emit the first light L15 and the third light L35 in each physiological stimulation mode, respectively , Fifth light L55 or seventh light L75. On the other hand, the first light-emitting unit D11 and D13, the third light-emitting unit D3, and the fourth light-emitting unit D4 can form a second light source (ie, the second part P2) and emit the second light L25 and the first light in each physiological stimulation mode. Four light rays L45, sixth light rays L65 or eighth light rays L85.

藉此,光源裝置500可藉由改變第一子光線W1、第二子光線W2、第三子光線W3以及第四子光線W4的混光比例,而可在6500K色溫條件下,於具高生理刺激值的第一光線L15與具低生理刺激值的第二光線L25之間切換。亦可在5000K色溫條件下,於具高生理刺激值的第三光線L35與具低生理刺激值的第四光線L45之間切換。亦可在4000K色溫條件下,於具高生理刺激值的第五光線L55與具低生理刺激值的第六光線L65之間切換。並且亦可在3000K色溫條件下,於具高生理刺激值的第七光線L75與具低生理刺激值的第八光線L85之間切換。如此,光源裝置500可具有更大的應用潛力。Thereby, the light source device 500 can change the light mixing ratio of the first sub-ray W1, the second sub-ray W2, the third sub-ray W3, and the fourth sub-ray W4, and can achieve high physiological performance under the condition of 6500K color temperature. Switch between the first light L15 of stimulation value and the second light L25 of low physiological stimulation value. It is also possible to switch between the third light L35 with high physiological stimulation value and the fourth light L45 with low physiological stimulation value under the condition of 5000K color temperature. It is also possible to switch between the fifth light L55 with high physiological stimulation value and the sixth light L65 with low physiological stimulation value under the condition of 4000K color temperature. And it can also switch between the seventh light L75 with high physiological stimulation value and the eighth light L85 with low physiological stimulation value under the condition of 3000K color temperature. In this way, the light source device 500 may have greater application potential.

此外,進一步而言,上述之第一光線L15與第二光線L25具有同色溫不同生理刺激值,第三光線L35與第四光線L45具有同色溫不同生理刺激值,第五光線L55與第六光線L65具有同色溫不同生理刺激值,並且第七光線L75與第八光線L85具有同色溫不同生理刺激值。然而,在其他實施例中,第一光線L15與第二光線L25亦可為不同色溫且第一光線L15的生理刺激值比第二光線L25的生理刺激值多出第二光線L25的生理刺激值的5%以上。第三光線L35與第四光線L45亦可為不同色溫且第三光線L35的生理刺激值比第四光線L45的生理刺激值多出第四光線L45的生理刺激值的5%以上。第五光線L55與第六光線L65亦可為不同色溫且第五光線L55的生理刺激值比第六光線L65的生理刺激值多出第六光線L65的生理刺激值的5%以上。第七光線L75與第八光線L85亦可為不同色溫且第七光線L75的生理刺激值可比第八光線L85的生理刺激值多出第八光線L85的生理刺激值的5%以上。藉此,亦可具有與圖6A中的光源裝置500具有相似的功效。In addition, further, the first light L15 and the second light L25 mentioned above have the same color temperature and different physiological stimulus values, the third light L35 and the fourth light L45 have the same color temperature and different physiological stimulus values, the fifth light L55 and the sixth light L55 L65 has the same color temperature and different physiological stimulation values, and the seventh light L75 and the eighth light L85 have the same color temperature and different physiological stimulation values. However, in other embodiments, the first light L15 and the second light L25 may also have different color temperatures, and the physiological stimulus value of the first light L15 is greater than the physiological stimulus value of the second light L25 than the physiological stimulus value of the second light L25 5% or more. The third light L35 and the fourth light L45 may also have different color temperatures, and the physiological stimulus value of the third light L35 is greater than the physiological stimulus value of the fourth light L45 by more than 5% of the physiological stimulus value of the fourth light L45. The fifth light L55 and the sixth light L65 may also have different color temperatures, and the physiological stimulus value of the fifth light L55 is greater than the physiological stimulus value of the sixth light L65 by more than 5% of the physiological stimulus value of the sixth light L65. The seventh light L75 and the eighth light L85 may also have different color temperatures, and the physiological stimulus value of the seventh light L75 may be greater than the physiological stimulus value of the eighth light L85 by more than 5% of the physiological stimulus value of the eighth light L85. Thereby, it can also have a similar effect to the light source device 500 in FIG. 6A.

圖6J繪示出圖6A實施例中的光源裝置在不同時段具有不同照明模式的時序圖,請參照圖6J,舉例而言,光源裝置500可應用於辦公室照明,其中,光源裝置500在白晝時段(如圖6J中的8:00至11:00)可切換至第一生理刺激模式以使發光模組510提供高色溫(6500K)且具有高生理刺激值的第一光線L15。而在午休時段(11:00至13:00),光源裝置500則可切換至第二生理刺激模式以使發光模組510提供高色溫且具有低生理刺激值的第二光線L25,可減少對休息中的工作人員的生理刺激。接著,光源裝置500可於午休結束後的下午時段(13:00至16:00)再次切換回第一生理刺激模式以提升工作效率。而在下班的晚間時段(如圖6J中的18:00以後),光源裝置500則可切換至第七生理刺激模式以使發光模組510提供低色溫(3000K)的第七光線L75。並且,光源裝置500更可於睡眠時間(如圖6J中的22:00以後)切換至第八生理刺激模式以使發光模組510提供低色溫(3000K)且具有最低生理刺激值的第八光線L85。此外,光源裝置500可提供更多種光源組合,藉此以配合更廣泛的應用。6J illustrates a timing diagram of the light source device in the embodiment of FIG. 6A having different lighting modes at different time periods. Please refer to FIG. 6J. For example, the light source device 500 can be applied to office lighting, where the light source device 500 is in daylight hours. (8:00 to 11:00 in FIG. 6J) can be switched to the first physiological stimulation mode so that the light-emitting module 510 provides the first light L15 with high color temperature (6500K) and high physiological stimulation value. During the lunch break (11:00 to 13:00), the light source device 500 can be switched to the second physiological stimulation mode to enable the light-emitting module 510 to provide the second light L25 with high color temperature and low physiological stimulation value, which can reduce the damage Physiological stimulation of staff during rest. Then, the light source device 500 can switch back to the first physiological stimulation mode again in the afternoon (13:00 to 16:00) after the lunch break to improve the work efficiency. In the evening hours after get off work (after 18:00 in FIG. 6J), the light source device 500 can be switched to the seventh physiological stimulation mode so that the light-emitting module 510 provides the seventh light L75 with a low color temperature (3000K). In addition, the light source device 500 can be switched to the eighth physiological stimulation mode during sleep time (after 22:00 in FIG. 6J) so that the light emitting module 510 provides the eighth light with a low color temperature (3000K) and the lowest physiological stimulation value. L85. In addition, the light source device 500 can provide more combinations of light sources to meet a wider range of applications.

圖7是本揭露之另一實施例的光源裝置的示意圖,圖8A繪示出圖7中於第一照明模式下分別從發光單元發出的光線與第一光線的光譜,圖8B繪示出圖7中於第二照明模式下分別從發光單元發出的光線與第二光線的光譜,且圖9繪示出圖7中的第一光線與第二光線在CIE 1976 u’-v’圖(CIE 1976 u’-v’ diagram)中的色座標。在圖8A與圖8B中,水平軸代表波長,其單位是奈米(nm),而垂直軸代表光譜強度,其單位是任意單位。參考圖7、圖8A、圖8B和圖9,本實施例的光源裝置100a與圖2A中的光源裝置100相似,其間的主要差別在於,在光源裝置100中,第一光線L1的光譜相異於第二光線L2的光譜,且第一光線L1的色溫與第二光線L2的色溫彼此實質上相同,但在此不考慮第一光線L1與第二光線L2的生理刺激值。FIG. 7 is a schematic diagram of a light source device according to another embodiment of the present disclosure. FIG. 8A illustrates the spectra of the light and the first light respectively emitted from the light-emitting unit in the first illumination mode in FIG. 7, and FIG. 8B illustrates the graph The spectra of the light and the second light respectively emitted from the light-emitting unit in the second lighting mode in 7 and FIG. 9 shows the CIE 1976 u'-v' diagram of the first light and the second light in FIG. 7 (CIE 1976 u'-v' diagram) color coordinates. In FIGS. 8A and 8B, the horizontal axis represents wavelength, and its unit is nanometer (nm), and the vertical axis represents spectral intensity, and its unit is arbitrary unit. Referring to FIGS. 7, 8A, 8B and 9, the light source device 100a of this embodiment is similar to the light source device 100 in FIG. 2A, and the main difference is that in the light source device 100, the spectrum of the first light L1 is different Regarding the spectrum of the second light L2, the color temperature of the first light L1 and the color temperature of the second light L2 are substantially the same as each other, but the physiological stimulation values of the first light L1 and the second light L2 are not considered here.

在本實施例中,光源裝置100a包括發光模組110a與控制單元120。發光模組用以提供光線B,控制單元120使發光模組110a所發出的光線B在第一光線L1與第二光線L2間切換。第一光線L1的光譜(見圖8A)相異於第二光線L2的光譜(見圖8B),且第一光線L1與第二光線L2的色溫(見圖9)彼此實質上相同。參見圖9,第一光線L1的色座標和第二光線L2的色座標實質上位於代表相關色溫是3000 K的相同線段上。In this embodiment, the light source device 100a includes a light emitting module 110a and a control unit 120. The light-emitting module is used to provide light B, and the control unit 120 switches the light B emitted by the light-emitting module 110a between the first light L1 and the second light L2. The spectrum of the first light L1 (see FIG. 8A) is different from the spectrum of the second light L2 (see FIG. 8B), and the color temperatures of the first light L1 and the second light L2 (see FIG. 9) are substantially the same as each other. Referring to FIG. 9, the color coordinates of the first light L1 and the color coordinates of the second light L2 are substantially located on the same line segment representing the correlated color temperature of 3000 K.

在本實施例中,控制單元120使發光單元110a在多個照明模式間切換。照明模式包括第一照明模式和第二照明模式。發光模組110a包括多個發光單元,例如:第一發光單元D1、第二發光單元D2、第三發光單元D3、第四發光單元D4以及第五發光單元D5。當控制單元120切換發光模組110a至第一照明模式時,控制單元120使第一部分或全部的發光單元發出第一光線L1。在本實施例中,當控制單元120切換發光模組110a至第一照明模式時,控制單元120使全部的發光單元(包括第一至第五發光單元D1-D5)發出第一光線L1。當控制單元120切換發光模組110a至第二照明模式時,控制單元120使發光單元的第二部分P2 (例如:包括第一至第四發光單元D1-D4)發出第二光線L2。第一部分和第二部分彼此部分相同或完全相異。In this embodiment, the control unit 120 causes the light emitting unit 110a to switch between multiple lighting modes. The lighting mode includes a first lighting mode and a second lighting mode. The light emitting module 110a includes a plurality of light emitting units, such as a first light emitting unit D1, a second light emitting unit D2, a third light emitting unit D3, a fourth light emitting unit D4, and a fifth light emitting unit D5. When the control unit 120 switches the light emitting module 110a to the first lighting mode, the control unit 120 causes the first part or all of the light emitting units to emit the first light L1. In this embodiment, when the control unit 120 switches the light emitting module 110a to the first lighting mode, the control unit 120 causes all the light emitting units (including the first to fifth light emitting units D1-D5) to emit the first light L1. When the control unit 120 switches the light-emitting module 110a to the second lighting mode, the control unit 120 causes the second part P2 of the light-emitting unit (for example, including the first to fourth light-emitting units D1-D4) to emit the second light L2. The first part and the second part are partly the same or completely different from each other.

發光單元(例如第一至第五發光發光單元)包括電致發光元件(electroluminescent light-emitting element)、光致發光元件(light-induced light-emitting element)或其組合。The light-emitting unit (for example, the first to fifth light-emitting units) includes an electroluminescent light-emitting element, a light-induced light-emitting element, or a combination thereof.

在本實施例中,發光模組110a包括至少一第一發光單元D1,至少一第二發光單元D2,至少一第三發光單元D3,至少一第四發光單元D4,至少一第五發光單元D5。第一發光單元D1提供一第一子光線W1,第二發光單元D2提供一第二子光線W2,第三發光單元D3提供一第三子光線W3,第四發光單元D4提供一第四子光線W4以及第五發光單元D5提供一第五子光線W5。第二部分P2至少包括第一發光單元D1、第二發光單元D2、第三發光單元D3和第四發光單元D4。In this embodiment, the light emitting module 110a includes at least one first light emitting unit D1, at least one second light emitting unit D2, at least one third light emitting unit D3, at least one fourth light emitting unit D4, and at least one fifth light emitting unit D5 . The first light-emitting unit D1 provides a first sub-light W1, the second light-emitting unit D2 provides a second sub-light W2, the third light-emitting unit D3 provides a third sub-light W3, and the fourth light-emitting unit D4 provides a fourth sub-light W4 and the fifth light-emitting unit D5 provide a fifth sub-light W5. The second part P2 includes at least a first light-emitting unit D1, a second light-emitting unit D2, a third light-emitting unit D3, and a fourth light-emitting unit D4.

當控制單元120切換發光模組110a至第一照明模式時,第一發光單元D1發出第一子光線W1,第二發光單元D2發出第二子光線W2,第三發光單元D3發出第三子光線W3,第四發光單元D4發出第四子光線W4以及第五發光單元D5發出第五子光線W5。當控制單元120切換發光模組110a至第二照明模式時,第一發光單元D1發出第一子光線W1,第二發光單元D2發出第二子光線W2,第三發光單元D3發出第三子光線W3以及第四發光單元D4發出第四子光線W4。再者,第五子光線W5是不可見光線。When the control unit 120 switches the light-emitting module 110a to the first lighting mode, the first light-emitting unit D1 emits a first sub-light W1, the second light-emitting unit D2 emits a second sub-light W2, and the third light-emitting unit D3 emits a third sub-light W3, the fourth light-emitting unit D4 emits a fourth sub-ray W4 and the fifth light-emitting unit D5 emits a fifth sub-ray W5. When the control unit 120 switches the light-emitting module 110a to the second lighting mode, the first light-emitting unit D1 emits a first sub-light W1, the second light-emitting unit D2 emits a second sub-light W2, and the third light-emitting unit D3 emits a third sub-light W3 and the fourth light-emitting unit D4 emit a fourth sub-light W4. Furthermore, the fifth sub-ray W5 is an invisible ray.

在本實施例中,第一光線L1與第二光線L2的其中之一可包含不可見光。舉例來說,第一子光線W1、第二子光線W2、第三子光線W3和第四子光線W4可以是可見光線,並且第五子光線W5是不可見光線。特別來說,在本實施例中,第一子光線W1是藍色光線,第二子光線W2是綠色光線,第三子光線W3是黃色光線,第四子光線W4是紅色光線以及第五子光線W5是紫外光線。再者,在本實施例中,第一發光單元D1是第一發光二極體(light-emitting diode, LED),第二發光單元D2是第一螢光體(phophor),第三發光單元D3是第二螢光體,第四發光單元D4是第三螢光體以及第五發光單元D5是第二發光二極體。第二子光線W2由第一子光線W1激發的第一螢光體所產生,第三子光線W3由第一子光線W1激發的第二螢光體所產生,以及第四子光線W4由第一子光線W1激發的第三螢光體所產生。在本實施例中,第一、第二及第三螢光體可摻雜入包覆第一發光單元D1(例如第一發光二極體)的密封材料中。In this embodiment, one of the first light L1 and the second light L2 may include invisible light. For example, the first sub-ray W1, the second sub-ray W2, the third sub-ray W3, and the fourth sub-ray W4 may be visible rays, and the fifth sub-ray W5 may be invisible rays. In particular, in this embodiment, the first sub-ray W1 is a blue ray, the second sub-ray W2 is a green ray, the third sub-ray W3 is a yellow ray, and the fourth sub-ray W4 is a red ray and a fifth sub-ray. The light W5 is ultraviolet light. Furthermore, in this embodiment, the first light-emitting unit D1 is a first light-emitting diode (LED), the second light-emitting unit D2 is a first phophor, and the third light-emitting unit D3 Is the second phosphor, the fourth light-emitting unit D4 is the third phosphor, and the fifth light-emitting unit D5 is the second light-emitting diode. The second sub-ray W2 is generated by the first phosphor excited by the first sub-ray W1, the third sub-ray W3 is generated by the second phosphor excited by the first sub-ray W1, and the fourth sub-ray W4 is generated by the first phosphor. The third phosphor is excited by a sub-ray W1. In this embodiment, the first, second, and third phosphors can be doped into the sealing material covering the first light-emitting unit D1 (for example, the first light-emitting diode).

在本實施例中,第一光線L1包含紫外光線,但是第二光線L2不包含紫外光線。因此,當發光模組110a切換至第一照明模式時,發光模組110a發出包含白光和紫外光的第一光線L1,因此第一光線L1適用於照亮包含螢光增白劑的產品上,例如,布料產品。當發光模組110a切換至第二照明模式時,發光模組110a發出包含白光但不包含紫外光的第二光線L2,因此第二光線L2適用於照亮容易受到紫外光傷害的皮鞋、皮革產品及藝術品等。再者,在本實施例的光源裝置100a中,因為第一光線L1和第二光線L2的色溫彼此實質上相同,當多個光源裝置100a或是發光模組110a位於相同展示空間且分別發出第一光線L1與第二光線L2時,光源裝置100a或發光模組110a的光線顏色是一致的,並且第一光線L1和第二光線L2可能分別達到不同之功效。In this embodiment, the first light L1 includes ultraviolet light, but the second light L2 does not include ultraviolet light. Therefore, when the light-emitting module 110a is switched to the first lighting mode, the light-emitting module 110a emits the first light L1 including white light and ultraviolet light. Therefore, the first light L1 is suitable for illuminating the product containing the fluorescent whitening agent. For example, cloth products. When the light-emitting module 110a switches to the second lighting mode, the light-emitting module 110a emits a second light L2 containing white light but not ultraviolet light. Therefore, the second light L2 is suitable for illuminating leather shoes and leather products that are susceptible to ultraviolet light. And artworks. Furthermore, in the light source device 100a of this embodiment, because the color temperatures of the first light L1 and the second light L2 are substantially the same as each other, when multiple light source devices 100a or light-emitting modules 110a are located in the same display space and emit the first light When a light L1 and a second light L2 are used, the light color of the light source device 100a or the light emitting module 110a is the same, and the first light L1 and the second light L2 may achieve different effects respectively.

在另一實施例中,第一子光線W1是藍色光線,第二子光線W2可以是青藍色(cyan)光線,第三子光線W3可以是淡黃綠色(lime color)光線,第四子光線W4是紅色光線以及第五子光線W5是紫外光線,因此包含第一子光線W1、第二子光線W2、第三子光線W3及第四子光線W4的第二光線L2的光譜較相似於自然白光的連續光譜。In another embodiment, the first sub-ray W1 is a blue light, the second sub-ray W2 may be a cyan light, the third sub-ray W3 may be a lime color light, and the fourth The sub-ray W4 is a red light and the fifth sub-ray W5 is an ultraviolet light, so the spectra of the second light L2 including the first sub-ray W1, the second sub-ray W2, the third sub-ray W3, and the fourth sub-ray W4 are similar The continuous spectrum of natural white light.

在再一實施例中,第五子光線W5可以是紅外光線,且紅外光線可以用於定位系統中。因此,第一光線L1可用於照明與定位兩者之上。In still another embodiment, the fifth sub-light W5 may be an infrared light, and the infrared light may be used in the positioning system. Therefore, the first light L1 can be used for both illumination and positioning.

圖10是本揭露之另一實施例的光源裝置的示意圖。圖11A繪示出圖10中於第一照明模式下分別從發光單元發出的光線與第一光線的光譜。圖11B的繪示出圖10中於第二照明模式下分別從發光單元發出的光線與第二光線的光譜。圖12繪示出圖10中的第一光線與第二光線在CIE 1976 u’-v’圖中的色座標。在圖11A與11B中,水平軸代表波長,單位是奈米(nm),而垂直軸代表光譜強度,單位是任意單位。參見圖10、11A、11B及12,在本實施例中的光源裝置100b相似於在圖7中的光源裝置100a,且其間主要差異如下。FIG. 10 is a schematic diagram of a light source device according to another embodiment of the disclosure. FIG. 11A illustrates the spectra of the light and the first light respectively emitted from the light-emitting unit in the first illumination mode in FIG. 10. FIG. 11B is a drawing showing the spectra of the light and the second light respectively emitted from the light-emitting unit in the second illumination mode in FIG. 10. Fig. 12 shows the color coordinates of the first ray and the second ray in Fig. 10 in the CIE 1976 u'-v' diagram. In FIGS. 11A and 11B, the horizontal axis represents wavelength in nanometers (nm), and the vertical axis represents spectral intensity in arbitrary units. 10, 11A, 11B, and 12, the light source device 100b in this embodiment is similar to the light source device 100a in FIG. 7, and the main differences therebetween are as follows.

在本實施例中,第一光線L1’的一般演色性指數(general color rendering index, general CRI)大於第二光線L2’的一般演色性指數。一般演色性指數定義為演色性指數R1(CRI R1)至演色性指數R8(CRI R8)的平均值,並標註為“Ra”。再者,在本實施例中,第二光線L2’的發光效率大於第一光線L1’的發光效率。In this embodiment, the general color rendering index (general CRI) of the first light L1' is greater than the general color rendering index of the second light L2'. The general color rendering index is defined as the average value of the color rendering index R1 (CRI R1) to the color rendering index R8 (CRI R8), and it is marked as "Ra". Furthermore, in this embodiment, the luminous efficiency of the second light L2' is greater than that of the first light L1'.

在本實施例中,發光模組110b包括至少一個第一發光單元D1’、至少一個第二發光單元D2’、至少一個第三發光單元D3’、至少一個第四發光單元D4’、至少一個第五發光單元D5’以及至少一個第六發光單元D6’。第一發光單元D1’提供一第一子光線W1’,第二發光單元D2’提供一第二子光線W2’,第三發光單元D3’提供一第三子光線W3’,第四發光單元D4’提供一第四子光線W4’,第五發光單元D5’提供一第五子光線W5’以及第六發光單元D6’提供一第六子光線W6’。In this embodiment, the light-emitting module 110b includes at least one first light-emitting unit D1', at least one second light-emitting unit D2', at least one third light-emitting unit D3', at least one fourth light-emitting unit D4', and at least one Five light-emitting units D5' and at least one sixth light-emitting unit D6'. The first light-emitting unit D1' provides a first sub-light W1', the second light-emitting unit D2' provides a second sub-light W2', the third light-emitting unit D3' provides a third sub-light W3', and the fourth light-emitting unit D4 'Provide a fourth sub-ray W4', the fifth light-emitting unit D5' provides a fifth sub-ray W5' and the sixth light-emitting unit D6' provides a sixth sub-ray W6'.

當控制單元120切換發光模組110b至第一照明模式時,控制單元120使發光單元的第一部分P1’(例如:第一、第二、第三及第四發光單元D1’、D2’、D3’及D4’)發出第一光線L1’。當控制單元120切換發光模組110b至第二照明模式時,控制單元120使發光單元的第二部分P2’(例如:第一、第五及第六發光單元D1’、D5’、D6’)發出第二光線L2’。第一部分P1’和第二部分P2’彼此部分相同或彼此完全相異。在本實施例中,第一部分P1’與第二部分P2’彼此部分相同,這是因為第一部分P1’與第二部分P2’都包含第一發光單元D1’。When the control unit 120 switches the light-emitting module 110b to the first lighting mode, the control unit 120 makes the first part P1' of the light-emitting unit (for example, the first, second, third and fourth light-emitting units D1', D2', D3 'And D4') emit the first light L1'. When the control unit 120 switches the light emitting module 110b to the second lighting mode, the control unit 120 causes the second part P2' of the light emitting unit (for example: the first, fifth and sixth light emitting units D1', D5', D6') The second light L2' is emitted. The first part P1' and the second part P2' are partially identical to each other or completely different from each other. In this embodiment, the first part P1' and the second part P2' are partially identical to each other, because both the first part P1' and the second part P2' include the first light-emitting unit D1'.

第一部分P1’至少包括第一發光單元D1’、第二發光單元D2’、第三發光單元D3’以及第四發光單元D4’。第二部分P2’至少包括第一發光單元D1’、第五發光單元D5’以及第六發光單元D6’。當控制單元120切換發光模組110b至第一照明模式時,第一發光單元D1’發出第一子光線W1’,第二發光單元D2’發出第二子光線W2’,第三發光單元D3’發出第三子光線W3’以及第四發光單元D4’發出第四子光線W4’。當控制單元120切換發光模組110b至第二照明模式時,第一發光單元D1’發出第一子光線W1’,第五發光單元D5’發出第五子光線W5’以及第六發光單元D6’發出第六子光線W6’。The first part P1' includes at least a first light-emitting unit D1', a second light-emitting unit D2', a third light-emitting unit D3', and a fourth light-emitting unit D4'. The second part P2' includes at least a first light-emitting unit D1', a fifth light-emitting unit D5', and a sixth light-emitting unit D6'. When the control unit 120 switches the light-emitting module 110b to the first lighting mode, the first light-emitting unit D1' emits the first sub-light W1', the second light-emitting unit D2' emits the second sub-light W2', and the third light-emitting unit D3' The third sub-ray W3' is emitted and the fourth light-emitting unit D4' emits the fourth sub-ray W4'. When the control unit 120 switches the light-emitting module 110b to the second lighting mode, the first light-emitting unit D1' emits the first sub-light W1', and the fifth light-emitting unit D5' emits the fifth sub-light W5' and the sixth light-emitting unit D6' The sixth sub-ray W6' is emitted.

在本實施例中,第一子光線W1’是藍色光線,第二子光線W2’是綠色光線,第三子光線W3’是黃色光線,第四子光線W4’是紅色光線,第五子光線是W5’是紅色光線以及第六子光線W6’是淡黃綠色光線。In this embodiment, the first sub-ray W1' is a blue light, the second sub-ray W2' is a green light, the third sub-ray W3' is a yellow light, and the fourth sub-ray W4' is a red light. The light W5' is a red light and the sixth sub-light W6' is a yellowish green light.

在本實施例中,第一發光單元D1’是第一發光二極體,第二發光單元D2’是第一螢光體,第三發光單元D3’是第二螢光體,第四發光單元D4’是第三螢光體,第五發光單元D5’是第二發光二極體以及第六發光單元D6’是第四螢光體。第一螢光體、第二螢光體及第三螢光體被七發光單元D7’(例如:第三發光二極體)所發出的光線(例如第七子光線W7’)激發,而分別發出第二子光線W2’、第三子光線W3’及第四子光線W4’。第四螢光體被第八發光單元D8’(例如第四發光二極體)所發出的光線(例如第八子光線W8’)激發,而發出第六子光線W6’。在本實施例中,舉例來說,第七子光線W7’和第八子光線W8’是藍色光線。在本實施例中,第一螢光體、第二螢光體及第三螢光體可摻雜入包覆第七發光單元D7’的密封材料113中,並且第四螢光體可摻雜入包覆第八發光單元D8’的密封材料115中。In this embodiment, the first light emitting unit D1' is a first light emitting diode, the second light emitting unit D2' is a first phosphor, the third light emitting unit D3' is a second phosphor, and the fourth light emitting unit D4' is the third phosphor, the fifth light-emitting unit D5' is the second light-emitting diode, and the sixth light-emitting unit D6' is the fourth phosphor. The first phosphor, the second phosphor, and the third phosphor are excited by the light (for example, the seventh sub-light W7') emitted by the seven light-emitting unit D7' (for example, the third light-emitting diode), and respectively The second sub-ray W2', the third sub-ray W3' and the fourth sub-ray W4' are emitted. The fourth phosphor is excited by the light (e.g., the eighth sub-light W8') emitted by the eighth light-emitting unit D8' (e.g., the fourth light-emitting diode) to emit the sixth sub-light W6'. In this embodiment, for example, the seventh sub-ray W7' and the eighth sub-ray W8' are blue rays. In this embodiment, the first phosphor, the second phosphor, and the third phosphor can be doped into the sealing material 113 covering the seventh light-emitting unit D7', and the fourth phosphor can be doped Into the sealing material 115 covering the eighth light-emitting unit D8'.

在本實施例中,第一光線L1’的一般演色性指數大於90且大於第二光線L2’的一般演色性指數,但第二光線L2’的發光效率大於第一光線L1’的發光效率。因此,當發光模組110b切換至第一照明模式時,發光模組110b發出具有較高一般演色性指數的第一光線L1’,因此第一光線L1’適用於照亮生鮮食品。因此,生鮮食品可能具有較佳的色彩。當發光模組110b切換至第二照明模式時,發光模組110b發出具有較高發光效率的第二光線L2’,因此第二光線L2’適用於較需考慮發光效率的情況。如圖11A、11B與12所示,第一光線L1’(圖11A)和第二光線L2’(圖11B)具有不同光譜,但具有實質上相同的色溫(圖12)。在圖12中,第一光線L1’的色座標和第二光線L2’的色座標實質上位於代表相關色溫是介於2500K與3000K之間的相同線段上。再者,第二光線L2’的光譜具有低生理刺激值和低藍光危害。In this embodiment, the general color rendering index of the first light L1' is greater than 90 and greater than the general color rendering index of the second light L2', but the luminous efficiency of the second light L2' is greater than that of the first light L1'. Therefore, when the light-emitting module 110b switches to the first lighting mode, the light-emitting module 110b emits the first light L1' with a higher general color rendering index, so the first light L1' is suitable for illuminating fresh food. Therefore, fresh foods may have better colors. When the light-emitting module 110b switches to the second lighting mode, the light-emitting module 110b emits the second light L2' with higher luminous efficiency. Therefore, the second light L2' is suitable for situations where luminous efficiency needs to be considered. As shown in FIGS. 11A, 11B, and 12, the first light L1' (FIG. 11A) and the second light L2' (FIG. 11B) have different spectra, but have substantially the same color temperature (FIG. 12). In FIG. 12, the color coordinates of the first light L1' and the color coordinates of the second light L2' are substantially located on the same line segment representing that the correlated color temperature is between 2500K and 3000K. Furthermore, the spectrum of the second light L2' has low physiological stimulus value and low blue light hazard.

圖13A是根據本揭露的另一實施例繪示出圖10中於第一發光模式下分別從發光單元發出的光線與第一光線的光譜,圖13B是根據本揭露的另一實施例繪示出圖10中於第二發光模式下分別從發光單元發出的光線與第二光線的光譜,以及圖14是根據本揭露的另一實施例繪示出圖10中的第一光線與第二光線在CIE 1976 u’-v’圖中的色座標。在圖13A與13B中,水平軸代表波長,其單位是奈米(nm),而垂直軸代表光譜強度,其單位是任意單位。參考圖10、13A、13B和14,在本實施例中的光源裝置100b的結構實質上與圖10、11A、11B和12中的實施例的光源裝置100b的結構相同,但其間主要差別在於,在本實施例中(如圖13A和13B所示)的第一光線L1’和第二光線L2’的光譜相異於圖10、11A、11B和12中的實施例(如圖11A和11B所示)的第一光線L1’和第二光線L2’的光譜。FIG. 13A is a diagram illustrating the spectrum of light and the first light respectively emitted from the light-emitting unit in the first light-emitting mode in FIG. 10 according to another embodiment of the present disclosure, and FIG. 13B is a diagram according to another embodiment of the present disclosure The spectra of the light and the second light respectively emitted from the light-emitting unit in the second light-emitting mode in FIG. 10 are shown, and FIG. 14 is a drawing of the first light and the second light in FIG. 10 according to another embodiment of the present disclosure. Color coordinates in the CIE 1976 u'-v' diagram. In FIGS. 13A and 13B, the horizontal axis represents wavelength, and its unit is nanometer (nm), and the vertical axis represents spectral intensity, and its unit is arbitrary unit. 10, 13A, 13B, and 14, the structure of the light source device 100b in this embodiment is substantially the same as the structure of the light source device 100b of the embodiment in FIGS. 10, 11A, 11B, and 12, but the main difference is that, In this embodiment (as shown in FIGS. 13A and 13B), the spectra of the first light L1' and the second light L2' are different from those of the embodiment in FIGS. 10, 11A, 11B, and 12 (as shown in FIGS. 11A and 11B). Show) the spectra of the first light L1' and the second light L2'.

在本實施例中,第一光線L1’的演色性指數R14(CRI R14)大於第二光線L2’的演色性指數R14,且第二光線L2’的演色性指數R13(CRI R13)大於第一光線L1’的演色性指數R13。特別來說,在本實施例中,第一光線L1’的演色性指數R14大於90且第二光線L2’的演色性指數R13大於90。再者,在本實施例中,第一光線L1’和第二光線L2’的一般演色性指數皆大於84。In this embodiment, the color rendering index R14 (CRI R14) of the first light L1' is greater than the color rendering index R14 of the second light L2', and the color rendering index R13 (CRI R13) of the second light L2' is greater than the first light L2'. The color rendering index of light L1' is R13. In particular, in this embodiment, the color rendering index R14 of the first light L1' is greater than 90, and the color rendering index R13 of the second light L2' is greater than 90. Furthermore, in this embodiment, the general color rendering index of the first light L1' and the second light L2' are both greater than 84.

在本實施例中,當發光模組110b被切換至第一照明模式時,發光模組110b發出具有較高的演色性指數R14的第一光線L1’,所以第一光線L1’適用於照亮綠色植物。因此,綠色植物可以具有較佳的色彩。當發光模組110b被切換至第二照明模式時,發光模組110b發出具有較高的演色性指數R13的第二光線L2’,所以第二光線L2’適用於照亮人臉或肖像,且人臉或肖像可具有較佳的色彩。如圖13A、13B及14所示,第一光線L1’(圖13A)和第二光線L2’(圖13B)具有不同的光譜,但具有實質上相同的色溫(圖14)。在圖14中,第一光線L1’的色座標與第二光線L2’的色座標實質上位於代表相關色溫是4000 K的相同線段上。In this embodiment, when the light-emitting module 110b is switched to the first lighting mode, the light-emitting module 110b emits a first light L1' with a higher color rendering index R14, so the first light L1' is suitable for lighting Green plants. Therefore, green plants can have better colors. When the light-emitting module 110b is switched to the second lighting mode, the light-emitting module 110b emits a second light L2' with a higher color rendering index R13, so the second light L2' is suitable for illuminating a human face or portrait, and Human faces or portraits can have better colors. As shown in FIGS. 13A, 13B, and 14, the first light L1' (FIG. 13A) and the second light L2' (FIG. 13B) have different spectra, but have substantially the same color temperature (FIG. 14). In Fig. 14, the color coordinates of the first light L1' and the color coordinates of the second light L2' are substantially located on the same line segment representing the correlated color temperature of 4000 K.

上述實施例的發光單元不限於發光二極體或螢光體。在其他實施例中,上述發光單元可為有機發光二極體(organic light-emitting diode, OLED)或是其他適合的發光元件。The light emitting unit of the above embodiment is not limited to light emitting diodes or phosphors. In other embodiments, the light-emitting unit may be an organic light-emitting diode (OLED) or other suitable light-emitting elements.

圖15是本揭露的另一實施例的光源裝置的示意圖,圖16A是圖15的光發射器發出的子光線的光譜,以及圖16B是圖15的發光模組發出的光線的晝夜節律作用因子相對於相關色溫的關係圖。參考圖15、16A及16B,在本實施例中的光源裝置600包括發光模組610和控制單元620。發光模組610用以提供光線B6。控制單元620使發光模組610所發出的光線B6在多種第一光線間切換。此多種第一光線的相關色溫(correlated color temperature, CCT)彼此相異,且此多種第一光線的晝夜節律作用因子(circadian action factor)彼此實質上相同。晝夜節律作用因子即是上述的生理刺激值(CS/P)。舉例來說,在圖16B中,黑色正方形點代表一種第一光線的晝夜節律作用因子與相關色溫,並且實質上沿著圖16B中的一水平線排列的黑色正方形點代表分別屬於多種第一光線的多個晝夜節律作用因子和多個相關色溫。「此多種第一光線的晝夜節律作用因子彼此實質上相同」指的是這些晝夜節律作用因子的變化量在這些晝夜節律作用因子的平均值的±20%之內,較佳地是在晝夜節律作用因子的平均值的±10%之內。15 is a schematic diagram of a light source device according to another embodiment of the present disclosure. FIG. 16A is the spectrum of the sub-light emitted by the light emitter of FIG. 15, and FIG. 16B is the circadian action factor of the light emitted by the light emitting module of FIG. 15 Relative to correlated color temperature graph. 15, 16A, and 16B, the light source device 600 in this embodiment includes a light emitting module 610 and a control unit 620. The light emitting module 610 is used to provide light B6. The control unit 620 switches the light B6 emitted by the light-emitting module 610 among multiple first lights. The correlated color temperatures (CCT) of the first rays of light are different from each other, and the circadian action factors of the first rays of light are substantially the same. The circadian rhythm factor is the physiological stimulus value (CS/P) mentioned above. For example, in FIG. 16B, the black square dots represent the circadian action factor and correlated color temperature of a first light, and the black square dots arranged substantially along a horizontal line in FIG. Multiple circadian rhythm factors and multiple correlated color temperatures. "The circadian action factors of the first rays of light are substantially the same as each other" means that the variation of these circadian action factors is within ±20% of the average value of these circadian action factors, preferably in the circadian rhythm Within ±10% of the mean value of the action factor.

在本實施例中,發光模組610包括多個光發射器E1、E2、E3、E41和E42,分別發出不同波長範圍的子光線V1、V2、V3、V41和V42,並且子光線V1、V2、V3、V41和V42構成由發光模組610提供的光線B6。從發光模組610發出的光線B6藉由改變子光線V1、V2、V3、V41和V42的比例而在此多種第一光線間切換。光發射器E1、E2、E3、E41和E42包括電致發光元件、光致發光元件或其組合。電致發光元件例如為發光二極體晶片,光致發光元件例如為螢光體。在本實施例中,光發射器E1、E2、E3及E41為發光二極體晶片,且光發射器E42是螢光體。再者,光發射器E41和光發射器E42構成光發射器E4,其中光發射器E41例如為藍色發光二極體晶片,光發射器E42例如為釔鋁石榴石(yttrium aluminum garnet, YAG)螢光體,且光發射器E4為白色發光二極體。亦即,子光線V41是藍色子光線,子光線V42是黃色子光線,子光線V41和子光線V42構成子光線V4,且子光線V4是白色光線。具體而言,當來自光發射器E41的子光線V41照射光發射器E42時,光發射器E42將子光線V41轉換成子光線V42。子光線V42和未被轉換的子光線V41構成子光線V4。In this embodiment, the light emitting module 610 includes a plurality of light emitters E1, E2, E3, E41, and E42, which respectively emit sub-lights V1, V2, V3, V41, and V42 in different wavelength ranges, and the sub-lights V1, V2 , V3, V41 and V42 constitute the light B6 provided by the light emitting module 610. The light B6 emitted from the light-emitting module 610 is switched among the multiple first lights by changing the ratio of the sub-lights V1, V2, V3, V41, and V42. The light emitters E1, E2, E3, E41, and E42 include electroluminescent elements, photoluminescent elements, or a combination thereof. The electroluminescent element is, for example, a light emitting diode chip, and the photoluminescent element is, for example, a phosphor. In this embodiment, the light emitters E1, E2, E3, and E41 are light emitting diode chips, and the light emitter E42 is a phosphor. Furthermore, the light emitter E41 and the light emitter E42 constitute a light emitter E4, where the light emitter E41 is, for example, a blue light-emitting diode chip, and the light emitter E42 is, for example, a yttrium aluminum garnet (YAG) fluorescent. The light body, and the light emitter E4 is a white light emitting diode. That is, the sub-ray V41 is a blue sub-ray, the sub-ray V42 is a yellow sub-ray, the sub-ray V41 and the sub-ray V42 constitute a sub-ray V4, and the sub-ray V4 is a white light. Specifically, when the sub-light V41 from the light emitter E41 irradiates the light emitter E42, the light emitter E42 converts the sub-light V41 into the sub-light V42. The sub-ray V42 and the unconverted sub-ray V41 constitute a sub-ray V4.

在本實施例中,子光線V1的峰值波長落在460奈米(nm)至470奈米的範圍內,子光線V2的峰值波長落於515奈米至525奈米的範圍內,子光線V3的峰值波長落於620奈米至630奈米的範圍內以及子光線V4為相關色溫是3100 K的白光。在本實施例中,藉由發光二極體晶片發出的每一個子光線V1、V2和V3的半高寬(full width at half maximum, FWHM)小於40奈米。舉例來說,子光線V1的半高寬是25奈米,子光線V2的半高寬是32奈米,子光線V3的半高寬是18奈米,且子光線V4的半高寬是74奈米,其中子光線V4包括子光線V42和未被轉換的子光線V41。在本實施例中,子光線V1、V2、V3和V4是可見光,然而本揭露不限於此。In this embodiment, the peak wavelength of the sub-light V1 falls within the range of 460 nanometers (nm) to 470 nanometers, the peak wavelength of the sub-light V2 falls within the range of 515 nanometers to 525 nanometers, and the sub-light V3 The peak wavelength of is within the range of 620 nm to 630 nm and the sub-ray V4 is white light with a correlated color temperature of 3100 K. In this embodiment, the full width at half maximum (FWHM) of each sub-ray V1, V2, and V3 emitted by the light-emitting diode chip is less than 40 nm. For example, the half-height width of the sub-ray V1 is 25 nm, the half-height width of the sub-ray V2 is 32 nm, the half-height width of the sub-ray V3 is 18 nm, and the half-height width of the sub-ray V4 is 74 In nano, the sub-ray V4 includes sub-ray V42 and unconverted sub-ray V41. In this embodiment, the sub-rays V1, V2, V3, and V4 are visible light, but the disclosure is not limited thereto.

控制單元620用以藉由改變分別施加在光發射器E1、E2、E3和E41的電流或電壓來改變子光線V1、V2、V3、V4的強度的比例,因此光線B6可在此多種第一光線間切換。在本實施例中,子光線V1、V2、V3和V4的比例被光發射器E1、E2、E3和E41的脈衝寬度調制(pulse width modulation)所改變。例如,當光線B6的生理刺激值為0.8時(如圖16B所示),藉由控制單元620執行脈衝寬度調制,光線B6的相關色溫可在3750K至5500K的範圍內被調變。舉例而言,當生理刺激值為0.8且相關色溫為3750K時,光發射器E1、E2、E3、E41的脈衝寬度調制的責任週期(duty cycle)的比為3:18:17:2。當生理刺激值為0.8且相關色溫為5500K時,光發射器E1、E2、E3、E41的脈衝寬度調制的責任週期的比例如為13:11:0:20。The control unit 620 is used to change the ratio of the intensity of the sub-lights V1, V2, V3, and V4 by changing the currents or voltages respectively applied to the light emitters E1, E2, E3, and E41. Therefore, the light B6 can be used in the first Switch between lights. In this embodiment, the proportions of the sub-lights V1, V2, V3, and V4 are changed by the pulse width modulation of the light emitters E1, E2, E3, and E41. For example, when the physiological stimulus value of the light B6 is 0.8 (as shown in FIG. 16B), the correlated color temperature of the light B6 can be adjusted within the range of 3750K to 5500K by the control unit 620 performing pulse width modulation. For example, when the physiological stimulus value is 0.8 and the correlated color temperature is 3750K, the duty cycle ratio of the pulse width modulation of the light emitters E1, E2, E3, and E41 is 3:18:17:2. When the physiological stimulus value is 0.8 and the correlated color temperature is 5500K, the duty cycle ratio of the pulse width modulation of the light emitters E1, E2, E3, and E41 is, for example, 13:11:0:20.

在本實施例中,此多種第一光線的Duv值皆小於0.005。對於白光的色彩一致性,標準相關色溫仍然具有可容許的色度(chromaticity)變化範圍。Duv值定義為在CIE 1976色彩空間中垂直於普朗克軌跡(Planckian locus)的變異,其用於說明色度的變化。通常來說,若Duv值低於0.005,則觀察者不能容易地辨別出色彩的不一致性。In this embodiment, the Duv values of the multiple first rays are all less than 0.005. For the color consistency of white light, the standard correlated color temperature still has an allowable chromaticity variation range. The Duv value is defined as the variation perpendicular to the Planckian locus in the CIE 1976 color space, which is used to describe the variation of chromaticity. Generally speaking, if the Duv value is less than 0.005, the observer cannot easily distinguish the color inconsistency.

圖16C是圖15的發光模組所發出的光線的演色性指數相對於相關色溫的關係圖。參考圖15、16A和16C,在本實施例中,控制單元620亦使發光模組610所發出的光線B6在多種第二光線間切換,其中此多種第二光線的相關色溫彼此相異,並且此多種第二光線的演色性指數彼此實質上相同。舉例來說,在圖16C中,黑色正方形點指的是一種第二光線的演色性指數和相關色溫,並且實質上沿著圖16C的一水平線排列的黑色正方形點代表分別屬於此多種第二光線的多個演色性指數和多個相關色溫。「此多種第二光線的演色性指數彼此實質上相同」指的是演色性指數的變化在±5之內。在本實施例中,此多種第二光線的Duv值皆小於0.005。在本實施例中,當光線B6的演色性指數為85時,藉由控制單元620執行脈衝寬度調制,光線B6的相關色溫可在2700 K至6500 K的範圍內被調變。FIG. 16C is a diagram of the relationship between the color rendering index of the light emitted by the light-emitting module of FIG. 15 and the correlated color temperature. Referring to FIGS. 15, 16A and 16C, in this embodiment, the control unit 620 also switches the light B6 emitted by the light-emitting module 610 between a plurality of second lights, wherein the correlated color temperatures of the second lights are different from each other, and The color rendering indexes of the multiple second light rays are substantially the same as each other. For example, in FIG. 16C, the black square dots refer to the color rendering index and correlated color temperature of a second light, and the black square dots arranged substantially along a horizontal line in FIG. 16C represent that they belong to the second light. Multiple color rendering indexes and multiple correlated color temperatures. "The color rendering indexes of the multiple second light rays are substantially the same as each other" means that the color rendering index changes within ±5. In this embodiment, the Duv values of the multiple second rays are all less than 0.005. In this embodiment, when the color rendering index of the light B6 is 85, the correlated color temperature of the light B6 can be adjusted in the range of 2700 K to 6500 K by the control unit 620 performing pulse width modulation.

在本實施例中,控制單元620亦使從發光模組610所發出的光線B6在多種第三光線間切換,其中此多種第三光線的相關色溫彼此實質上相同,並且此多種第三光線的演色性指數或晝夜節律作用因子(即生理刺激值)彼此相異。「此多種第三光線的相關色溫彼此實質上相同」中的「相關色溫實質上相同」定義如同實施方式的第二段(即第[0006]段)及表2所提到的色溫實質上相同的定義。在本實施例中,在圖16B或圖16C中的黑色正方形點代表一種第三光線的生理刺激值和相關色溫,或是一種第三光線的演色性指數和相關色溫,並且實質上沿著圖16B或16C的垂直線排列的黑色正方形點代表分別屬於此多種第三光線的多個生理刺激值及多個相關色溫,或分別屬於此多種第三光線的多個演色性指數和多個相關色溫。再者,在本實施例中,此多種第三光線的Duv值皆小於0.005。舉例來說,當相關色溫為3000 K時,藉由控制單元620執行脈衝寬度調制,光線B6的生理刺激值可在0.3至0.6的範圍內被調變。此外,當相關色溫為3000 K時,藉由控制單元620執行脈衝寬度調制,光線B6的演色性指數可在55至93的範圍內被調變。In this embodiment, the control unit 620 also switches the light B6 emitted from the light-emitting module 610 between a plurality of third lights, wherein the correlated color temperatures of the plurality of third lights are substantially the same as each other, and the The color rendering index or circadian rhythm action factor (ie, physiological stimulus value) is different from each other. The definition of "correlated color temperature is substantially the same" in "the correlated color temperature of the multiple third rays is substantially the same as each other" is the same as the color temperature mentioned in the second paragraph of the embodiment (ie paragraph [0006]) and Table 2 Definition. In this embodiment, the black square dots in FIG. 16B or FIG. 16C represent a physiological stimulus value and correlated color temperature of a third light, or a color rendering index and correlated color temperature of a third light, and are substantially along the figure. The black square dots arranged by the vertical lines of 16B or 16C represent multiple physiological stimulus values and multiple correlated color temperatures belonging to the multiple third rays, or multiple color rendering indexes and multiple correlated color temperatures belonging to the multiple third rays. . Furthermore, in this embodiment, the Duv values of the multiple third rays are all less than 0.005. For example, when the correlated color temperature is 3000 K, the control unit 620 performs pulse width modulation, and the physiological stimulus value of the light B6 can be adjusted in the range of 0.3 to 0.6. In addition, when the correlated color temperature is 3000 K, the control unit 620 performs pulse width modulation, and the color rendering index of the light B6 can be adjusted in the range of 55 to 93.

控制單元620可亦使發光模組610發出的光線B6在多種第四光線間切換,此多種第四光線的晝夜節律作用因子(即生理刺激值)包含或實質上相等於在一相關色溫範圍之內的太陽光的晝夜節律作用因子,其中此相關色溫範圍包括從3000 K至6500 K的範圍。在圖16B中的灰色正方形點和灰色線代表分別對應於太陽光的多個相關色溫的多個晝夜節律作用因子,以及在圖16B中的全部黑色正方形點代表分別對應於此多種第四光線的多個相關色溫的多個晝夜節律作用因子。圖16D是太陽光的晝夜節律作用因子相對於相關色溫的關係圖。參考圖15、16A、16B和16D,在本實施例中,在圖16B中的黑色正方形點的區域包含灰色正方形點和灰色線,其代表此多種第四光線的晝夜節律作用因子(例如生理刺激值)包含於在此相關色溫範圍(例如從3000 K至6500 K的相關色溫範圍)內的太陽光的晝夜節律作用因子。再者,在本實施例中,此多種第四光線的Duv值皆小於0.005。The control unit 620 can also switch the light B6 emitted by the light-emitting module 610 between a plurality of fourth lights, and the circadian rhythm action factors (ie, physiological stimulus values) of the fourth lights include or are substantially equal to those in a correlated color temperature range The circadian rhythm action factor of sunlight within, where this correlated color temperature range includes the range from 3000 K to 6500 K. The gray square points and gray lines in FIG. 16B represent multiple circadian action factors corresponding to multiple correlated color temperatures of sunlight, and all the black square points in FIG. 16B represent the multiple fourth rays of light, respectively. Multiple circadian action factors for multiple correlated color temperatures. Fig. 16D is a graph showing the relationship between the circadian action factor of sunlight and the correlated color temperature. Referring to FIGS. 15, 16A, 16B, and 16D, in this embodiment, the area of the black square dots in FIG. 16B includes gray square dots and gray lines, which represent the circadian rhythm effect factors (such as physiological stimulation Value) is included in the circadian rhythm action factor of sunlight in this correlated color temperature range (for example, the correlated color temperature range from 3000 K to 6500 K). Furthermore, in this embodiment, the Duv values of the multiple fourth rays are all less than 0.005.

在本實施例中,從發光模組610發出的光線B6透過控制單元620執行上述脈衝寬度調制來改變子光線V1、V2、V3和V4的比例,進而在多種第一光線、多種第二光線、多種第三光線及多種第四光線間切換。In this embodiment, the light B6 emitted from the light-emitting module 610 passes through the control unit 620 to perform the above-mentioned pulse width modulation to change the proportions of the sub-lights V1, V2, V3, and V4. Switch between multiple third rays and multiple fourth rays.

在根據本實施例的光源裝置600中,由於從發光模組610發出的光線B6可在多種第一光線、多種第二光線、多種第三光線及多種第四光線間被切換,因此光源裝置600可具有更多的應用。In the light source device 600 according to the present embodiment, since the light B6 emitted from the light emitting module 610 can be switched among multiple first lights, multiple second lights, multiple third lights, and multiple fourth lights, the light source device 600 Can have more applications.

圖17是本揭露的另一實施例的光源裝置的示意圖,圖18A是圖17的光發射器發出的子光線的光譜,以及圖18B是圖17的發光模組發出的光線的晝夜節律作用因子相對於相關色溫的關係圖。圖18C是圖17的發光元件發出的光線的演色性指數相對於相關色溫的關係圖,其中白色正方形點代表在圖17中由發光模組發出的光線B6的演色性指數和對應的相關色溫。參考圖17、18A、18B和18C,在本實施例中的光源裝置600a相似於在圖15中的光源裝置600,且其間主要差異如下。在本實施例中,發光模組610a包括多個光發射器E11a、E12a、E2a、E3a、E4a、E5a、E6a和E7a,其分別發出不同波長範圍的子光線V11a、V12a、V2a、V3a、V4a、V5a、V6a和V7a,並且子光線V11a、V12a、V2a、V3a、V4a、V5a、V6a和V7a構成發光模組610a所提供的光線B6。在本實施例中,光發射器E11a、E2a、E3a、E4a、E5a、E6a和E7a為發光二極體晶片,以及光發射器E12a為螢光體。再者,光發射器E11a和光發射器E12a構成光發射器E1a,其中光發射器E12a例如是淡黃綠色(lime color)的螢光體。當由光發射器E11a發出的子光線V11a照射在光發射器E12a時,光發射器E12a將子光線V11a轉換成子光線V12a。子光線V12a和未被轉換的子光線V11a形成子光線V1a。在本實施例中,將近全部的子光線V11a被光發射器E12a轉換成子光線V12a,並且未被轉換的子光線V11a可被忽略,因此子光線V1a可被視為具有淡黃綠色。FIG. 17 is a schematic diagram of a light source device according to another embodiment of the present disclosure. FIG. 18A is the spectrum of the sub-light emitted by the light emitter of FIG. 17, and FIG. 18B is the circadian action factor of the light emitted by the light-emitting module of FIG. Relative to correlated color temperature graph. 18C is a diagram showing the relationship between the color rendering index of the light emitted by the light emitting element of FIG. 17 and the correlated color temperature, where the white square dots represent the color rendering index of the light B6 emitted by the light emitting module in FIG. 17 and the corresponding correlated color temperature. Referring to FIGS. 17, 18A, 18B, and 18C, the light source device 600a in this embodiment is similar to the light source device 600 in FIG. 15, and the main differences therebetween are as follows. In this embodiment, the light emitting module 610a includes a plurality of light emitters E11a, E12a, E2a, E3a, E4a, E5a, E6a, and E7a, which respectively emit sub-lights V11a, V12a, V2a, V3a, V4a in different wavelength ranges. , V5a, V6a, and V7a, and sub-lights V11a, V12a, V2a, V3a, V4a, V5a, V6a, and V7a constitute the light B6 provided by the light emitting module 610a. In this embodiment, the light emitters E11a, E2a, E3a, E4a, E5a, E6a, and E7a are light emitting diode chips, and the light emitter E12a is a phosphor. Furthermore, the light emitter E11a and the light emitter E12a constitute a light emitter E1a, where the light emitter E12a is, for example, a lime color phosphor. When the sub-light V11a emitted by the light emitter E11a irradiates the light emitter E12a, the light emitter E12a converts the sub-light V11a into the sub-light V12a. The sub-ray V12a and the unconverted sub-ray V11a form a sub-ray V1a. In this embodiment, nearly all the sub-rays V11a are converted into sub-rays V12a by the light emitter E12a, and the unconverted sub-rays V11a can be ignored, so the sub-rays V1a can be regarded as having a yellowish green color.

在本實施例中,子光線V1a的峰值波長落在550奈米至560奈米的範圍內,子光線V2a的峰值波長落在440奈米至450奈米的範圍內,子光線V3a的峰值波長落在460奈米至470奈米的範圍內,子光線V4a的峰值波長落在490奈米至500奈米的範圍內,子光線V5a的峰值波長落在520奈米至530奈米的範圍內,子光線V6a落在610奈米至620奈米的範圍內,以及子光線V7a的峰值波長落在650奈米至670奈米的範圍內。再者,舉例而言,子光線V1a的半高寬為93奈米,子光線V2a的半高寬為16奈米,子光線V3a的半高寬為20奈米,子光線V4a的半高寬為22奈米,子光線V5a的半高寬為28奈米,子光線V6a的半高寬為14奈米以及子光線V7a的半高寬為15奈米。In this embodiment, the peak wavelength of the sub-ray V1a falls within the range of 550 nm to 560 nm, the peak wavelength of the sub-ray V2a falls within the range of 440 nm to 450 nm, and the peak wavelength of the sub-ray V3a In the range of 460nm to 470nm, the peak wavelength of sub-ray V4a falls within the range of 490nm to 500nm, and the peak wavelength of sub-ray V5a falls within the range of 520nm to 530nm. , The sub-ray V6a falls within the range of 610 nm to 620 nm, and the peak wavelength of the sub-ray V7a falls within the range of 650 nm to 670 nm. Furthermore, for example, the half-height width of the sub-ray V1a is 93 nm, the half-height width of the sub-ray V2a is 16 nm, the half-height width of the sub-ray V3a is 20 nm, and the half-height width of the sub-ray V4a is The FWHM of the sub-ray V5a is 28 nm, the FWHM of the sub-ray V6a is 14 nm and the FWHM of the sub-ray V7a is 15 nm.

控制單元620用以藉由改變分別施加至光發射器E11a、E2a、E3a、E4a、E5a、E6a和E7的電流或電壓,而改變子光線V1a、V2a、V3a、V4a、V5a、V6a及V7a的強度的比例,因此光線B6可在多種第一光線、多種第二光線、多種第三光線以及多種第四光線間切換。在本實施例中,子光線V1a、V2a、V3a、V4a、V5a、V6a和V7a的比例藉由光發射器E11a、E2a、E3a、E4a、E5a、E6a和E7a的脈衝寬度調制來改變。舉例來說,如圖18B所示,當光線B6的生理刺激值為0.7時,光線B6的相關色溫可藉由控制單元620執行脈衝寬度調制,而在2700 K至6500 K的範圍內被調變。當光線B6的演色性指數為93時,光線B6的相關色溫可藉由控制單元620執行脈衝寬度調制而在2700 K至6500 K的範圍內被調變。此外,當光線B6的相關色溫為6000 K時,光線B6的生理刺激值可藉由控制單元620執行脈衝寬度調制而在0.62至1.4的範圍內被調變。當光線B6的相關色溫為6000 K時,光線B6的演色性指數可藉由控制單元620執行脈衝寬度調制而在1至98的範圍內被調變。在本實施例中,此多種第一光線、此多種第二光線、此多種第三光線以及此多種第四光線的Duv值皆小於0.005。The control unit 620 is used to change the current or voltage applied to the light emitters E11a, E2a, E3a, E4a, E5a, E6a, and E7 to change the sub-lights V1a, V2a, V3a, V4a, V5a, V6a, and V7a. Intensity ratio, so the light B6 can be switched among multiple first lights, multiple second lights, multiple third lights, and multiple fourth lights. In this embodiment, the proportions of the sub-lights V1a, V2a, V3a, V4a, V5a, V6a, and V7a are changed by the pulse width modulation of the light emitters E11a, E2a, E3a, E4a, E5a, E6a, and E7a. For example, as shown in FIG. 18B, when the physiological stimulus value of the light B6 is 0.7, the correlated color temperature of the light B6 can be modulated in the range of 2700 K to 6500 K by performing pulse width modulation by the control unit 620 . When the color rendering index of the light B6 is 93, the correlated color temperature of the light B6 can be adjusted in the range of 2700 K to 6500 K by the control unit 620 performing pulse width modulation. In addition, when the correlated color temperature of the light B6 is 6000 K, the physiological stimulus value of the light B6 can be adjusted within the range of 0.62 to 1.4 by the control unit 620 performing pulse width modulation. When the correlated color temperature of the light B6 is 6000 K, the color rendering index of the light B6 can be adjusted in the range of 1 to 98 by the control unit 620 performing pulse width modulation. In this embodiment, the Duv values of the plurality of first rays, the plurality of second rays, the plurality of third rays, and the plurality of fourth rays are all less than 0.005.

圖19A至圖19D分別是當演色性指數大於80、90、93和95時,在圖17的發光模組發出的光線的晝夜節律作用因子相對於相關色溫的關係圖。參考圖17、18B和19A至19D,控制單元620可亦使發光模組610a發出的光線B6在多種第四光線間切換,此多種第四光線的晝夜節律作用因子(即生理刺激值)包含或實質上相同於在一相關色溫範圍內的太陽光的晝夜節律作用因子,其中此相關色溫範圍例如為3000 K至6500 K的範圍。在圖18B和圖19A至19D中的灰色正方形點和灰色線代表分別對應於太陽光的相關色溫的晝夜節律作用因子,以及在圖18B和19A至19D的全部黑色正方形點代表分別對應於此多種第四光線的相關色溫的晝夜節律作用因子。在圖18B、19A和19B中,此多種第四光線的晝夜節律作用因子(例如生理刺激值)包含在此相關色溫範圍(例如由3000 K至6500 K的相關色溫範圍)內的太陽光的晝夜節律作用因子。在圖19A的實施例中,此多種第四光線的演色性指數皆大於80。此外,在圖19C和19D中,此多種第四光線的晝夜節律作用因子(即生理刺激值)實質上相等於在此相關色溫範圍(例如由3000 K至6500 K的相關色溫範圍)內的太陽光的晝夜節律作用因子,其中「此多種第四光線的晝夜節律作用因子(即生理刺激值)實質上相等於太陽光的晝夜節律作用因子」指的是,此多種第四光線的晝夜節律作用因子從在對應的相關色溫中的太陽光的晝夜節律作用因子起算的偏差值分別落在對應的相關色溫的晝夜節律作用因子的±20%之內,較佳地是落在對應的相關色溫的晝夜節律作用因子的±10%之內。19A to 19D are diagrams showing the relationship between the circadian rhythm action factor of the light emitted by the light emitting module of FIG. 17 and the correlated color temperature when the color rendering index is greater than 80, 90, 93, and 95, respectively. Referring to FIGS. 17, 18B and 19A to 19D, the control unit 620 can also switch the light B6 emitted by the light-emitting module 610a between multiple fourth light rays. The circadian rhythm action factors (ie, physiological stimulation values) of the multiple fourth light rays include or It is substantially the same as the circadian action factor of sunlight in a range of correlated color temperature, where the range of correlated color temperature is, for example, a range of 3000 K to 6500 K. The gray square dots and gray lines in Figure 18B and Figures 19A to 19D represent the circadian action factors corresponding to the correlated color temperature of sunlight, and all the black square dots in Figures 18B and 19A to 19D represent corresponding to these various The circadian action factor of the correlated color temperature of the fourth light. In FIGS. 18B, 19A, and 19B, the circadian rhythm effect factors (such as physiological stimulus values) of the fourth rays of light are included in the correlated color temperature range (for example, the correlated color temperature range from 3000 K to 6500 K). Rhythm action factor. In the embodiment of FIG. 19A, the color rendering indexes of the multiple fourth rays are all greater than 80. In addition, in FIGS. 19C and 19D, the circadian action factors (ie, physiological stimulus values) of the fourth rays of light are substantially equal to the sun in the correlated color temperature range (for example, from 3000 K to 6500 K). The circadian action factor of light, where "the circadian action factor of the fourth rays of light (ie physiological stimulus value) is substantially equal to the circadian action factor of sunlight" refers to the circadian action of the fourth rays of light The deviation value of the factor calculated from the circadian action factor of sunlight in the corresponding correlated color temperature falls within ±20% of the circadian action factor of the corresponding correlated color temperature, and preferably falls within the corresponding correlated color temperature. Within ±10% of the circadian rhythm factor.

圖20繪示出本揭露的另一實施例的光源裝置的示意圖,圖21A是圖20的光發射器發出的子光線的光譜,以及圖21B是圖20的發光模組發出的光線的晝夜節律作用因子相對於相關色溫的關係圖。圖21C是圖20的發光模組發出的光線的演色性指數相對於相關色溫的關係圖,其中白色正方形點代表在圖20中的發光模組發光的光線B6的演色性指數和其對應的相關色溫。參考圖20和21A至21C,在本實施例中的光源裝置600b相似於在圖17中的光源裝置600a,且其間主要差別如下。在本實施例中,光發射器E1b用以置換圖17的光發射器E1a。光發射器E1b例如是發光二極體晶片,以及經由光發射器E1a發出的子光線V1b的峰值波長落在550奈米至560奈米的範圍內。舉例來說,子光線V1b的半高寬為28奈米。20 illustrates a schematic diagram of a light source device according to another embodiment of the present disclosure. FIG. 21A is the spectrum of the sub-light emitted by the light emitter of FIG. 20, and FIG. 21B is the circadian rhythm of the light emitted by the light emitting module of FIG. 20 A graph of the effect factor versus the correlated color temperature. 21C is a diagram showing the relationship between the color rendering index of light emitted by the light emitting module of FIG. 20 and the correlated color temperature, wherein the white square dots represent the color rendering index of light B6 emitted by the light emitting module of FIG. 20 and its corresponding correlation Color temperature. Referring to FIGS. 20 and 21A to 21C, the light source device 600b in this embodiment is similar to the light source device 600a in FIG. 17, and the main differences therebetween are as follows. In this embodiment, the light emitter E1b is used to replace the light emitter E1a in FIG. 17. The light emitter E1b is, for example, a light emitting diode chip, and the peak wavelength of the sub-light V1b emitted by the light emitter E1a falls within a range of 550 nm to 560 nm. For example, the half-height width of the sub-ray V1b is 28 nm.

控制單元620用以藉由改變分別施加至光發射器E1b、E2a、E3a、E4a、E5a、E6a和E7a的電流與電壓,而改變子光線V1b、V2a、V3a、V4a、V5a、V6a和V7a的強度的比例,因此光線B6可在多種第一光線、多種第二光線、多種第三光線及多種第四光線間被切換。在本實施例中,子光線V1b、V2a、V3a、V4a、V5a、V6a和V7a的比例藉由光發射器E1b、E2a、E3a、E4a、E5a、E6a和E7a的脈衝寬度調制來改變。舉例來說,如圖21B所示,當光線B6的生理刺激值為0.4時,光線B6的相關色溫可藉由控制單元620執行脈衝寬度調制而在2700 K至6500 K的範圍內被調變。當光線B6的演色性指數為90時,光線B6的相關色溫可藉由控制單元620執行脈衝寬度調制在2700 K至6500 K的範圍內被調變。此外,當光線B6的相關色溫為6000 K時,光線B6的生理刺激值可藉由控制單元620執行脈衝寬度調制而在0.4至1.4的範圍內被調變。當光線B6的相關色溫為6000 K時,光線B6的演色性指數可藉由控制單元620執行脈衝寬度調制被在1至92的範圍內被調變。在本實施例中,此多種第一光線、此多種第二光線、此多種第三光線以及此多種第四光線的Duv值皆小於0.005。The control unit 620 is used to change the sub-lights V1b, V2a, V3a, V4a, V5a, V6a, and V7a by changing the current and voltage applied to the light emitters E1b, E2a, E3a, E4a, E5a, E6a, and E7a. Intensity ratio, so the light B6 can be switched among multiple first lights, multiple second lights, multiple third lights, and multiple fourth lights. In this embodiment, the proportions of the sub-lights V1b, V2a, V3a, V4a, V5a, V6a, and V7a are changed by the pulse width modulation of the light emitters E1b, E2a, E3a, E4a, E5a, E6a, and E7a. For example, as shown in FIG. 21B, when the physiological stimulus value of the light B6 is 0.4, the correlated color temperature of the light B6 can be adjusted in the range of 2700 K to 6500 K by the control unit 620 performing pulse width modulation. When the color rendering index of the light B6 is 90, the correlated color temperature of the light B6 can be modulated in the range of 2700 K to 6500 K by the control unit 620 performing pulse width modulation. In addition, when the correlated color temperature of the light B6 is 6000 K, the physiological stimulus value of the light B6 can be modulated in the range of 0.4 to 1.4 by the control unit 620 performing pulse width modulation. When the correlated color temperature of the light B6 is 6000 K, the color rendering index of the light B6 can be adjusted in the range of 1 to 92 by the control unit 620 performing pulse width modulation. In this embodiment, the Duv values of the plurality of first rays, the plurality of second rays, the plurality of third rays, and the plurality of fourth rays are all less than 0.005.

圖22A與22B分別是當演色性指數大於80與90時,在圖20的發光模組發出的光線的晝夜節律作用因子相對於相關色溫的關係圖。參考圖20、21B、22A和22B,控制單元620可亦使發光模組610b發出的光線B6在多種第四光線間切換,此多種第四光線的晝夜節律作用因子(即生理刺激值)包含或實質上相等於在一相關色溫範圍內的太陽光的晝夜節律作用因子,其中此相關色溫範圍例如為3000 K至6500 K的範圍。在圖21B、圖22A和22B中的灰色圓點和灰色線代表分別對應於太陽光的多個相關色溫的多個晝夜節律作用因子,以及在圖21B、22A和22B中的全部黑色正方形點代表分別對應於此多種第四光線的多個相關色溫的多個晝夜節律作用因子。在圖21B和22A中,此多種第四光線的晝夜節律作用因子(即生理刺激值)包含太陽光在一相關色溫範圍(例如由3000 K至6500 K的相關色溫範圍)內的晝夜節律作用因子。此外,在圖22B中,此多種第四光線的晝夜節律作用因子(例如生理刺激值)實質上相同於太陽光在此相關色溫範圍(例如由3000 K至6500 K的相關色溫範圍)內的晝夜節律作用因子,其中「此多種第四光線的晝夜節律作用因子(例如生理刺激值)實質上相同於太陽光的晝夜節律作用因子」指的是此多種第四光線的晝夜節律作用因子從在對應的相關色溫中的太陽光的晝夜節律作用因子的偏差量分別為對應的相關色溫的晝夜節律作用因子的±20%,較佳地為對應的相關色溫的晝夜節律作用因子的±10%。22A and 22B are diagrams showing the relationship between the circadian rhythm action factor of the light emitted by the light emitting module of FIG. 20 and the correlated color temperature when the color rendering index is greater than 80 and 90, respectively. 20, 21B, 22A, and 22B, the control unit 620 can also switch the light B6 emitted by the light-emitting module 610b between multiple fourth light rays, and the circadian rhythm action factors (ie, physiological stimulus values) of the multiple fourth light rays include or It is substantially equivalent to the circadian action factor of sunlight in a correlated color temperature range, where the correlated color temperature range is, for example, 3000 K to 6500 K. The gray dots and gray lines in FIGS. 21B, 22A, and 22B represent multiple circadian action factors corresponding to multiple correlated color temperatures of sunlight, and all black square dots in FIGS. 21B, 22A, and 22B represent Multiple circadian action factors corresponding to multiple correlated color temperatures of the multiple fourth light rays, respectively. In FIGS. 21B and 22A, the circadian action factors (ie physiological stimulus values) of the fourth rays of light include the circadian action factors of sunlight in a correlated color temperature range (for example, a correlated color temperature range from 3000 K to 6500 K) . In addition, in FIG. 22B, the circadian action factors (such as physiological stimulus values) of the multiple fourth rays are substantially the same as the day and night of sunlight in the correlated color temperature range (for example, the correlated color temperature range from 3000 K to 6500 K). Circadian action factors, where "the circadian action factors of the fourth rays of light (such as physiological stimulus values) are substantially the same as the circadian action factors of sunlight" means that the circadian action factors of the fourth rays of light are always corresponding The deviation of the circadian action factor of sunlight in the correlated color temperature is ±20% of the circadian action factor of the corresponding correlated color temperature, preferably ±10% of the circadian action factor of the corresponding correlated color temperature.

圖23繪示出本揭露的另一實施例的光源裝置的示意圖。圖24A至24D是圖23的四個實施例的光發射器發出的子光線的光譜。圖25A與25B是圖23的發光模組發出的光線與太陽光的晝夜節律作用因子相對於相關色溫的關係圖。請參照圖23至25B,本實施例的光源裝置600c包括一發光模組610c以及一控制單元620c。發光模組610c用以提供一光線B6c。控制單元620c用以改變一第一子光線V1c與一第二子光線V2c的比例以形成光線B6c,因此光線的晝夜節律作用因子與相關色溫沿著相異於太陽光的晝夜節律作用因子相對於相關色溫之軌跡(例如,在圖25A中的虛線)的光線B6c的晝夜節律作用因子相對於相關色溫之軌跡(例如,在圖25A中三角形或圓形所形成的曲線)而變化,其中第一子光線V1c與第二子光線V2c之一的晝夜節律作用因子相對於相關色溫的座標落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的下方,且第一子光線V1c與第二子光線V2c之另一的晝夜節律作用因子相對於相關色溫的座標落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的上方。例如,第一子光線V1c的相關色溫低於第二子光線V2c的相關色溫,在圖25A中三角形所形成的曲線的左邊端點的晝夜節律作用因子相對於相關色溫的座標表示為第一子光線V1c的晝夜節律作用因子相對於相關色溫的座標,且在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的上方,而在圖25A中三角形所形成的曲線的右邊端點的晝夜節律作用因子相對於相關色溫的座標表示為第二子光線V2c的晝夜節律作用因子相對於相關色溫的座標,且在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的下方。在另一實施例中,在圖25A中圓形所形成的曲線的左邊端點的晝夜節律作用因子相對於相關色溫的座標表示為第一子光線V1c的晝夜節律作用因子相對於相關色溫的座標,且在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的下方,而在圖25A中圓形所形成的曲線的右邊端點的晝夜節律作用因子相對於相關色溫的座標表示為第二子光線V2c的晝夜節律作用因子相對於相關色溫的座標,且在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的上方。FIG. 23 is a schematic diagram of a light source device according to another embodiment of the disclosure. 24A to 24D are the spectra of the sub-rays emitted by the light emitters of the four embodiments in FIG. 23. 25A and 25B are diagrams showing the relationship between the circadian action factor of the light emitted by the light-emitting module of FIG. 23 and the sunlight with respect to the correlated color temperature. Referring to FIGS. 23 to 25B, the light source device 600c of this embodiment includes a light emitting module 610c and a control unit 620c. The light emitting module 610c is used to provide a light B6c. The control unit 620c is used to change the ratio of a first sub-light V1c and a second sub-light V2c to form a light B6c, so the circadian action factor and the correlated color temperature of the light are relative to the circadian action factor different from sunlight The circadian action factor of light B6c in the trajectory of correlated color temperature (for example, the dashed line in FIG. 25A) changes with respect to the trajectory of correlated color temperature (for example, the curve formed by a triangle or circle in FIG. 25A), where the first The coordinate of the circadian action factor of one of the sub-rays V1c and the second sub-ray V2c with respect to the correlated color temperature is below the trajectory of the circadian action factor of sunlight with respect to the correlated color temperature, and the first sub-ray V1c and the second The coordinate of the other circadian action factor of the light V2c relative to the correlated color temperature lies above the trajectory of the circadian action factor of sunlight relative to the correlated color temperature. For example, the correlated color temperature of the first sub-light V1c is lower than the correlated color temperature of the second sub-light V2c, and the coordinate of the circadian action factor relative to the correlated color temperature at the left end of the curve formed by the triangle in FIG. The coordinate of the circadian action factor of light V1c relative to the correlated color temperature, and above the trajectory of the circadian action factor of sunlight relative to the correlated color temperature, and the circadian action at the right end of the curve formed by the triangle in Fig. 25A The coordinate of the factor relative to the correlated color temperature is expressed as the coordinate of the circadian action factor of the second sub-ray V2c relative to the correlated color temperature, and is below the trajectory of the circadian action factor of sunlight relative to the correlated color temperature. In another embodiment, the coordinate of the circadian action factor relative to the correlated color temperature at the left end of the curve formed by the circle in FIG. 25A is expressed as the coordinate of the circadian action factor of the first sub-ray V1c relative to the correlated color temperature , And below the trajectory of the circadian action factor of sunlight relative to the correlated color temperature, and the coordinates of the circadian action factor relative to the correlated color temperature at the right end of the curve formed by the circle in Figure 25A are expressed as the second sub The coordinate of the circadian action factor of the light V2c relative to the correlated color temperature is above the trajectory of the circadian action factor of sunlight relative to the correlated color temperature.

在本實施例中,發光模組610c包括多個光發射器Elc與E2c,分別發出第一子光線V1c與第二子光線V2c。光發射器Elc與E2c可各包括至少一個電致發光元件、至少一個光致發光元件或其組合。電致發光元件例如為發光二極體晶片,光致發光元件例如為螢光體。在本實施例中,第一子光線V1c與第二子光線V2c可為白光。光發射器Elc可包括多個不同顏色的發光二極體晶片,例如是紅光發光二極體晶片、綠光發光二極體晶片與藍色發光二極體晶片,或是具有至少一種螢光體的至少一個發光二極體晶片,例如是被黃色螢光體包覆的藍色發光二極體晶片。同樣地,光發射器E2c可包括多個不同顏色的發光二極體晶片,例如是紅光發光二極體晶片、綠光發光二極體晶片與藍色發光二極體晶片,或是具有至少一種螢光體的至少一個發光二極體晶片,例如是被黃色螢光體包覆的藍色發光二極體晶片。圖24A示意了一實施例中第一子光線V1c與第二子光線V2c的光譜,圖24B示意了另一實施例中第一子光線V1c與第二子光線V2c的光譜。在圖24A的實施例中,第一子光線V1c的晝夜節律作用因子相對於相關色溫的座標(即在圖25A中由圓形所形成的曲線的左邊端點的座標)落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的下方,且第二子光線V2c的晝夜節律作用因子相對於相關色溫的座標(即在圖25A中由圓形所形成的曲線的右邊端點的座標)落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的上方。因此,相對於太陽光,光線B6c可被調整為具有低相關色溫與低晝夜節律作用因子,特別是在夜間以維持使用者自然的生理週期並同時提供足夠的光源,且相對於太陽光,可被調整為具有高相關色溫與高晝夜節律作用因子,以促進使用者的工作。In this embodiment, the light-emitting module 610c includes a plurality of light emitters Elc and E2c, which respectively emit a first sub-light V1c and a second sub-light V2c. The light emitters Elc and E2c may each include at least one electroluminescent element, at least one photoluminescent element, or a combination thereof. The electroluminescent element is, for example, a light emitting diode chip, and the photoluminescent element is, for example, a phosphor. In this embodiment, the first sub-ray V1c and the second sub-ray V2c may be white light. The light emitter Elc may include a plurality of light-emitting diode chips of different colors, such as red light-emitting diode chips, green light-emitting diode chips, and blue light-emitting diode chips, or have at least one type of fluorescent light. The at least one light-emitting diode chip of the body is, for example, a blue light-emitting diode chip covered by a yellow phosphor. Similarly, the light emitter E2c may include a plurality of light-emitting diode chips of different colors, such as a red light-emitting diode chip, a green light-emitting diode chip, and a blue light-emitting diode chip, or have at least At least one light-emitting diode chip of a phosphor is, for example, a blue light-emitting diode chip covered by a yellow phosphor. FIG. 24A illustrates the spectra of the first sub-ray V1c and the second sub-ray V2c in an embodiment, and FIG. 24B illustrates the spectra of the first sub-ray V1c and the second sub-ray V2c in another embodiment. In the embodiment of FIG. 24A, the coordinate of the circadian action factor of the first sub-ray V1c with respect to the correlated color temperature (that is, the coordinate of the left end of the curve formed by the circle in FIG. 25A) falls on the day and night of sunlight. The rhythmic action factor is below the trajectory of the correlated color temperature, and the circadian action factor of the second sub-ray V2c is relative to the coordinate of the correlated color temperature (that is, the coordinates of the right end of the curve formed by the circle in FIG. 25A). Above the trajectory of the circadian rhythm action factor of sunlight relative to the correlated color temperature. Therefore, relative to sunlight, the light B6c can be adjusted to have a low correlated color temperature and a low circadian rhythm action factor, especially at night to maintain the user’s natural physiological cycle while providing sufficient light sources, and compared to sunlight, It is adjusted to have a high correlated color temperature and a high circadian rhythm effect factor to promote the user's work.

另一方面,在圖24B的實施例中,第一子光線V1c的晝夜節律作用因子相對於相關色溫的座標(即在圖25A中由三角形所形成的曲線的左邊端點的座標)落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的上方,且第二子光線V2c的晝夜節律作用因子相對於相關色溫的座標(即在圖25A中由三角形所形成的曲線的右邊端點的座標)落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的下方。因此,相對於太陽光,光線B6c可被調整為具有低相關色溫與高晝夜節律作用因子,以促進使用者在低相關色溫的工作,且相對於太陽光,可被調整為具有高相關色溫與低晝夜節律作用因子,以維持使用者於高相關色溫下的自然的生理週期。On the other hand, in the embodiment of FIG. 24B, the coordinates of the circadian action factor of the first sub-ray V1c relative to the correlated color temperature (ie, the coordinates of the left end of the curve formed by the triangle in FIG. 25A) fall on the sun The circadian action factor of light is above the trajectory of the correlated color temperature, and the circadian action factor of the second sub-light V2c is relative to the coordinate of the correlated color temperature (that is, the coordinates of the right end of the curve formed by the triangle in FIG. 25A ) Falls below the trajectory of the circadian action factor of sunlight relative to the correlated color temperature. Therefore, relative to sunlight, light B6c can be adjusted to have a low correlated color temperature and a high circadian rhythm effect factor to promote the user's work at low correlated color temperature, and relative to sunlight, it can be adjusted to have a high correlated color temperature and Low circadian rhythm factors to maintain the user's natural menstrual cycle at high correlated color temperature.

圖24C與圖24D示意了另外兩個實施例的第一子光線V1c與第二子光線V2c的光譜。在圖24C的實施例中,第一子光線V1c的晝夜節律作用因子相對於相關色溫的座標(即在圖25B中由正方形所形成的曲線的左邊端點的座標)落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的下方,且第二子光線V2c的晝夜節律作用因子相對於相關色溫的座標(即在圖25B中由正方形所形成的曲線的右邊端點的座標)也落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的下方。因此,當其相關色溫被調整時,相對於太陽光,光線B6c總是具有低晝夜節律作用因子,以總是維持使用者的自然的生理週期。24C and 24D illustrate the spectra of the first sub-ray V1c and the second sub-ray V2c of the other two embodiments. In the embodiment of FIG. 24C, the coordinates of the circadian action factor of the first sub-ray V1c relative to the correlated color temperature (ie, the coordinates of the left end of the curve formed by the square in FIG. 25B) fall on the circadian rhythm of sunlight The action factor is below the trajectory of the correlated color temperature, and the coordinates of the circadian action factor of the second sub-ray V2c relative to the correlated color temperature (that is, the coordinates of the right end of the curve formed by the square in FIG. 25B) also fall on The circadian rhythm action factor of sunlight is below the trajectory of the correlated color temperature. Therefore, when the correlated color temperature is adjusted, the light B6c always has a low circadian rhythm action factor relative to sunlight, so as to always maintain the user's natural physiological cycle.

另一方面,在圖24D的實施例中,第一子光線V1c的晝夜節律作用因子相對於相關色溫的座標(即在圖25B中由星形所形成的曲線的左邊端點的座標)落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的上方,且第二子光線V2c的晝夜節律作用因子相對於相關色溫的座標(即在圖25B中由星形所形成的曲線的右邊端點的座標)也是落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的上方。因此,當其相關色溫被調整時,相對於太陽光,光線B6c總是具有高晝夜節律作用因子,以總是促進使用者的工作。On the other hand, in the embodiment of FIG. 24D, the coordinates of the circadian action factor of the first sub-ray V1c with respect to the correlated color temperature (ie, the coordinates of the left end of the curve formed by the star in FIG. 25B) fall on The circadian action factor of sunlight is above the trajectory of the correlated color temperature, and the circadian action factor of the second sub-ray V2c is relative to the coordinate of the correlated color temperature (that is, the right end of the curve formed by the star in Fig. 25B The coordinates of) also fall above the trajectory of the circadian action factor of sunlight relative to the correlated color temperature. Therefore, when the correlated color temperature is adjusted, the light B6c always has a high circadian rhythm action factor relative to sunlight, so as to always promote the user's work.

下面表3示意了關於不同比例的第一子光線V1c與第二子光線V2c的光學數據。 表3

Figure 108143650-A0304-0003
The following Table 3 illustrates the optical data of the first sub-ray V1c and the second sub-ray V2c of different proportions. table 3
Figure 108143650-A0304-0003

在表3中,PWM1與PWM2的比值指的是光發射器E1c與E2c的脈衝寬度調變的工作週期的比值,為關於第一子光線V1c與第二子光線V2c的強度的比值。再者,表3中x和y指的是於CIE 1931色彩空間色度圖(CIE 1931 color space chromaticity diagram)的x與y色座標(chromaticity coordinate)。In Table 3, the ratio of PWM1 to PWM2 refers to the ratio of the duty cycle of the pulse width modulation of the light emitters E1c and E2c, and is the ratio of the intensity of the first sub-light V1c and the second sub-light V2c. Furthermore, x and y in Table 3 refer to the x and y chromaticity coordinates of the CIE 1931 color space chromaticity diagram.

圖26繪示出本揭露的另一實施例的光源裝置的示意圖。圖27A與27B是圖26的兩個實施例的光發射器發出的子光線的光譜。圖28A與28B是圖26的發光模組發出的光線與太陽光的晝夜節律作用因子相對於相關色溫的關係圖。請參照圖26至圖28B,圖26的光源裝置600d與圖23的光源裝置600c相似,其間的主要差別如下所述。在本實施例中,光源裝置600d的發光模組610d更包括一發出一第三子光線V3d的光發射器E3d,光發射器E3d可包括至少一個電致發光元件、至少一個光致發光元件或其組合。電致發光元件例如為發光二極體晶片,光致發光元件例如為螢光體。在本實施例中,第三子光線V3d可為白光。光發射器E3d可包括多個不同顏色的發光二極體晶片,例如是紅光發光二極體晶片、綠光發光二極體晶片與藍色發光二極體晶片,或是具有至少一種螢光體的至少一個發光二極體晶片,例如是被黃色螢光體包覆的藍色發光二極體晶片。FIG. 26 is a schematic diagram of a light source device according to another embodiment of the disclosure. 27A and 27B are the spectra of sub-rays emitted by the light emitters of the two embodiments in FIG. 26. 28A and 28B are diagrams showing the relationship between the circadian rhythm action factors of the light emitted by the light-emitting module of FIG. 26 and the sunlight with respect to the correlated color temperature. Referring to FIGS. 26 to 28B, the light source device 600d of FIG. 26 is similar to the light source device 600c of FIG. 23, and the main differences therebetween are as follows. In this embodiment, the light-emitting module 610d of the light source device 600d further includes a light emitter E3d that emits a third sub-light V3d. The light emitter E3d may include at least one electroluminescent element, at least one photoluminescent element, or Its combination. The electroluminescent element is, for example, a light emitting diode chip, and the photoluminescent element is, for example, a phosphor. In this embodiment, the third sub-light V3d may be white light. The light emitter E3d may include a plurality of light emitting diode chips of different colors, such as red light emitting diode chips, green light emitting diode chips, and blue light emitting diode chips, or have at least one type of fluorescent light. The at least one light-emitting diode chip of the body is, for example, a blue light-emitting diode chip covered by a yellow phosphor.

在本實施例中,控制單元620c用以改變第一子光線V1c、第二子光線V2c與第三子光線V3d的比例以形成光線B6d,因此光線B6d的晝夜節律作用因子相對於相關色溫的座標在具有分別位於第一子光線V1c、第二子光線V2c與第三子光線V3d的晝夜節律作用因子相對於相關色溫的座標的三個頂點Q1、Q2與Q3的一區域之間改變。In this embodiment, the control unit 620c is used to change the ratio of the first sub-ray V1c, the second sub-ray V2c, and the third sub-ray V3d to form the light B6d. Therefore, the coordinate of the circadian action factor of the light B6d relative to the correlated color temperature It changes between an area having three vertices Q1, Q2, and Q3 with coordinates of the circadian action factors of the first sub-ray V1c, the second sub-ray V2c, and the third sub-ray V3d with respect to the correlated color temperature.

圖27A示意了一實施例的第一子光線V1c、第二子光線V2c與第三子光線V3d的光譜,圖27B示意了另一實施例的第一子光線V1c、第二子光線V2c與第三子光線V3d的光譜。進一步而言,圖28A對應於圖27A的實施例,圖28B對應於圖27B的實施例。在圖27A的實施例,第一子光線V1c的相關色溫(即頂點Q1的相關色溫)低於第二子光線V2c的相關色溫(即頂點Q2的相關色溫),第三子光線V3d的相關色溫(即頂點Q3的相關色溫)低於第二子光線V2c的相關色溫(即頂點Q2的相關色溫)。再者,第一子光線V1c的晝夜節律作用因子相對於相關色溫的座標(即頂點Q1的座標)與第三子光線V3d的晝夜節律作用因子相對於相關色溫的座標(即頂點Q3的座標)分別在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的相對兩側。在本實施例中,第一子光線V1c的晝夜節律作用因子相對於相關色溫的座標(即頂點Q1的座標)落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的下方,第二子光線V2c的晝夜節律作用因子相對於相關色溫的座標(即頂點Q2的座標)落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的上方,而第三子光線V3d的晝夜節律作用因子相對於相關色溫的座標(即頂點Q3的座標)落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的上方。FIG. 27A illustrates the spectra of the first sub-ray V1c, the second sub-ray V2c, and the third sub-ray V3d of an embodiment, and FIG. 27B illustrates the first sub-ray V1c, the second sub-ray V2c, and the first sub-ray V3d in another embodiment. The spectrum of the three sub-rays V3d. Furthermore, FIG. 28A corresponds to the embodiment of FIG. 27A, and FIG. 28B corresponds to the embodiment of FIG. 27B. In the embodiment of FIG. 27A, the correlated color temperature of the first sub-light V1c (that is, the correlated color temperature of the vertex Q1) is lower than the correlated color temperature of the second sub-light V2c (that is, the correlated color temperature of the vertex Q2), and the correlated color temperature of the third sub-light V3d (That is, the correlated color temperature of the vertex Q3) is lower than the correlated color temperature of the second sub-light V2c (that is, the correlated color temperature of the vertex Q2). Furthermore, the coordinates of the circadian action factor of the first sub-ray V1c relative to the correlated color temperature (that is, the coordinates of the vertex Q1) and the coordinates of the circadian action factor of the third sub-ray V3d relative to the correlated color temperature (that is, the coordinates of the vertex Q3) They are on opposite sides of the trajectory of the circadian rhythm of sunlight relative to the correlated color temperature. In this embodiment, the coordinate of the circadian action factor of the first sub-ray V1c relative to the correlated color temperature (that is, the coordinate of the vertex Q1) falls below the trajectory of the circadian action factor of sunlight relative to the correlated color temperature, and the second sub-ray V1c The coordinate of the circadian action factor of the light V2c relative to the correlated color temperature (that is, the coordinate of the vertex Q2) lies above the trajectory of the circadian action factor of the sunlight relative to the correlated color temperature, and the circadian action factor of the third sub-ray V3d is relatively The coordinates of the correlated color temperature (that is, the coordinates of the apex Q3) fall above the trajectory of the circadian action factor of sunlight relative to the correlated color temperature.

在圖27B的實施例,第一子光線V1c的相關色溫(即頂點Q1的相關色溫)低於第二子光線V2c的相關色溫(即頂點Q2的相關色溫),第三子光線V3d的相關色溫(即頂點Q3的相關色溫)高於第一子光線V1c的相關色溫(即頂點Q1的相關色溫)。再者,第二子光線V2c的晝夜節律作用因子相對於相關色溫的座標(即頂點Q2的座標)與第三子光線V3d的晝夜節律作用因子相對於相關色溫的座標(即頂點Q3的座標)分別在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的相對兩側。在本實施例中,第一子光線V1c的晝夜節律作用因子相對於相關色溫的座標(即頂點Q1的座標)落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的下方,第二子光線V2c的晝夜節律作用因子相對於相關色溫的座標(即頂點Q2的座標)落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的上方,而第三子光線V3d的晝夜節律作用因子相對於相關色溫的座標(即頂點Q3的座標)落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的下方。In the embodiment of FIG. 27B, the correlated color temperature of the first sub-light V1c (that is, the correlated color temperature of the vertex Q1) is lower than the correlated color temperature of the second sub-light V2c (that is, the correlated color temperature of the vertex Q2), and the correlated color temperature of the third sub-light V3d (That is, the correlated color temperature of the vertex Q3) is higher than the correlated color temperature of the first sub-light V1c (that is, the correlated color temperature of the vertex Q1). Furthermore, the coordinates of the circadian action factor of the second sub-ray V2c relative to the correlated color temperature (that is, the coordinates of the vertex Q2) and the coordinate of the circadian action factor of the third sub-ray V3d relative to the correlated color temperature (that is, the coordinate of the vertex Q3) They are on opposite sides of the trajectory of the circadian rhythm of sunlight relative to the correlated color temperature. In this embodiment, the coordinate of the circadian action factor of the first sub-ray V1c relative to the correlated color temperature (that is, the coordinate of the vertex Q1) falls below the trajectory of the circadian action factor of sunlight relative to the correlated color temperature, and the second sub-ray V1c The coordinate of the circadian action factor of the light V2c relative to the correlated color temperature (that is, the coordinate of the vertex Q2) lies above the trajectory of the circadian action factor of the sunlight relative to the correlated color temperature, and the circadian action factor of the third sub-ray V3d is relatively The coordinates of the correlated color temperature (that is, the coordinates of the vertex Q3) fall below the trajectory of the circadian action factor of sunlight with respect to the correlated color temperature.

下面表4示意了關於不同比例的第一子光線V1c、第二子光線V2c與第三子光線V3d的光學數據。 表4

Figure 108143650-A0304-0004
The following Table 4 illustrates the optical data of the first sub-ray V1c, the second sub-ray V2c, and the third sub-ray V3d in different proportions. Table 4
Figure 108143650-A0304-0004

在表4中,(PWM1):(PWM2):(PWM3)的比值指的是光發射器E1c、E2c與E3d的脈衝寬度調變的工作週期的比值,為關於第一子光線V1c、第二子光線V2c與第三子光線V3d的強度的比值。再者,表4中x和y指的是於CIE 1931色彩空間色度圖的x與y色座標。In Table 4, the ratio of (PWM1):(PWM2):(PWM3) refers to the ratio of the duty cycle of the pulse width modulation of the light emitters E1c, E2c and E3d, which is related to the first sub-light V1c, the second The ratio of the intensity of the sub-ray V2c to the third sub-ray V3d. Furthermore, x and y in Table 4 refer to the x and y color coordinates of the CIE 1931 color space chromaticity diagram.

圖29繪示出本揭露的另一實施例的光源裝置的示意圖。圖30是圖29的光發射器發出的子光線的光譜。圖31是圖29的發光模組發出的光線與太陽光的晝夜節律作用因子相對於相關色溫的關係圖。請參照圖29至圖31,圖29的光源裝置600e與圖26的光源裝置600d相似,其間的主要差別如下所述。在本實施例中,光源裝置600e的發光模組610e更包括發出一第四子光線V4e的光發射器E4e,光發射器E4e可包括至少一個電致發光元件、至少一個光致發光元件或其組合。電致發光元件例如為發光二極體晶片,光致發光元件例如為螢光體。在本實施例中,第四子光線V4e可為白光。光發射器E4e可包括多個不同顏色的發光二極體晶片,例如是紅光發光二極體晶片、綠光發光二極體晶片與藍色發光二極體晶片,或是具有至少一種螢光體的至少一個發光二極體晶片,例如是被黃色螢光體包覆的藍色發光二極體晶片。FIG. 29 is a schematic diagram of a light source device according to another embodiment of the disclosure. Fig. 30 is a spectrum of sub-rays emitted by the light emitter of Fig. 29. FIG. 31 is a diagram of the relationship between the light emitted by the light-emitting module of FIG. 29 and the circadian rhythm action factor of sunlight with respect to the correlated color temperature. Please refer to FIGS. 29 to 31. The light source device 600e of FIG. 29 is similar to the light source device 600d of FIG. 26, and the main differences therebetween are as follows. In this embodiment, the light emitting module 610e of the light source device 600e further includes a light emitter E4e that emits a fourth sub-light V4e. The light emitter E4e may include at least one electroluminescent element, at least one photoluminescent element, or combination. The electroluminescent element is, for example, a light emitting diode chip, and the photoluminescent element is, for example, a phosphor. In this embodiment, the fourth sub-ray V4e may be white light. The light emitter E4e may include a plurality of LED chips of different colors, such as red LED chips, green LED chips, and blue LED chips, or have at least one type of fluorescent The at least one light-emitting diode chip of the body is, for example, a blue light-emitting diode chip covered by a yellow phosphor.

在本實施例中,控制器620c用以改變第一子光線V1c、第二子光線V2c、第三子光線V3d與第四子光線V4e的比例以形成光線B6e,因此光線B6e的晝夜節律作用因子相對於相關色溫的座標在具有分別位於第一子光線V1c、第二子光線V2c、第三子光線V3d與第四子光線V4e的晝夜節律作用因子相對於相關色溫的座標的四個頂點Q1、Q2、Q3與Q4的一區域之間改變。In this embodiment, the controller 620c is used to change the ratio of the first sub-ray V1c, the second sub-ray V2c, the third sub-ray V3d and the fourth sub-ray V4e to form the light B6e, so the circadian rhythm effect factor of the light B6e The coordinates relative to the correlated color temperature are at four vertices Q1, which have the coordinates of the circadian action factors of the first sub-ray V1c, the second sub-ray V2c, the third sub-ray V3d, and the fourth sub-ray V4e with respect to the correlated color temperature. Change between Q2, Q3 and Q4.

圖30示意了圖29的第一子光線V1c、第二子光線V2c、第三子光線V3d與第四子光線V4e的光譜。在本實施例中,第一子光線V1c的相關色溫(即頂點Q1的相關色溫)低於第二子光線V2c的相關色溫(即頂點Q2的相關色溫),並低於第四子光線V4e的相關色溫(即頂點Q4的相關色溫),而且,第三子光線V3d的相關色溫(即頂點Q3的相關色溫)低於第二子光線V2c的相關色溫(即頂點Q2的相關色溫),並低於第四子光線V4e的相關色溫(即頂點Q4的相關色溫)。第一子光線V1c的晝夜節律作用因子相對於相關色溫的座標(即頂點Q1的座標)與第三子光線V3d的晝夜節律作用因子相對於相關色溫的座標(即頂點Q3的座標)分別在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的相對兩側,第二子光線V2c的晝夜節律作用因子相對於相關色溫的座標(即頂點Q2的座標)與第四子光線V4e的晝夜節律作用因子相對於相關色溫的座標(即頂點Q4的座標)分別在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的相對兩側。在本實施例中,第一子光線V1c的晝夜節律作用因子相對於相關色溫的座標(即頂點Q1的座標)落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的下方,第二子光線V2c的晝夜節律作用因子相對於相關色溫的座標(即頂點Q2的座標)落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的上方,第三子光線V3d的晝夜節律作用因子相對於相關色溫的座標(即頂點Q3的座標)落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的上方,而第四子光線V4e的晝夜節律作用因子相對於相關色溫的座標(即頂點Q4的座標)落在太陽光的晝夜節律作用因子相對於相關色溫之軌跡的下方。FIG. 30 illustrates the spectra of the first sub-ray V1c, the second sub-ray V2c, the third sub-ray V3d, and the fourth sub-ray V4e in FIG. 29. In this embodiment, the correlated color temperature of the first sub-ray V1c (that is, the correlated color temperature of the vertex Q1) is lower than the correlated color temperature of the second sub-light V2c (that is, the correlated color temperature of the vertex Q2), and is lower than that of the fourth sub-ray V4e The correlated color temperature (that is, the correlated color temperature of the vertex Q4), and the correlated color temperature of the third sub-ray V3d (that is, the correlated color temperature of the vertex Q3) is lower than the correlated color temperature of the second sub-ray V2c (that is, the correlated color temperature of the vertex Q2), and is lower Is the correlated color temperature of the fourth sub-ray V4e (that is, the correlated color temperature of the vertex Q4). The coordinates of the circadian action factor of the first sub-ray V1c relative to the correlated color temperature (that is, the coordinates of the vertex Q1) and the coordinates of the circadian action factor of the third sub-ray V3d relative to the correlated color temperature (that is, the coordinates of the vertex Q3) are in the sun The circadian action factor of light is on the opposite sides of the trajectory of the correlated color temperature, the circadian action factor of the second sub-ray V2c relative to the coordinate of the correlated color temperature (ie the coordinate of the vertex Q2) and the circadian rhythm of the fourth sub-ray V4e The coordinates of the factor relative to the correlated color temperature (that is, the coordinates of the vertex Q4) are on opposite sides of the trajectory of the circadian rhythm action factor of sunlight relative to the correlated color temperature. In this embodiment, the coordinate of the circadian action factor of the first sub-ray V1c relative to the correlated color temperature (that is, the coordinate of the vertex Q1) falls below the trajectory of the circadian action factor of sunlight relative to the correlated color temperature, and the second sub-ray V1c The coordinate of the circadian action factor of the light V2c relative to the correlated color temperature (that is, the coordinate of the vertex Q2) lies above the trajectory of the circadian action factor of the sunlight relative to the correlated color temperature, and the circadian action factor of the third sub-ray V3d is relative to The coordinates of the correlated color temperature (that is, the coordinates of the vertex Q3) are above the trajectory of the circadian action factor of sunlight relative to the correlated color temperature, and the circadian action factor of the fourth sub-ray V4e is relative to the coordinate of the correlated color temperature (that is, the vertex Q4). The coordinates of) fall below the trajectory of the circadian action factor of sunlight relative to the correlated color temperature.

下面表5示意了關於不同比例的第一子光線V1c、第二子光線V2c、第三子光線V3d與第四子光線V4e的光學數據。 表5

Figure 108143650-A0304-0005
The following Table 5 illustrates the optical data of the first sub-ray V1c, the second sub-ray V2c, the third sub-ray V3d, and the fourth sub-ray V4e in different proportions. table 5
Figure 108143650-A0304-0005

在表5中,(PWM1):(PWM2):(PWM3):(PWM4)的比值指的是光發射器E1c、E2c、E3d與E4e的脈衝寬度調變的工作週期的比值,為關於第一子光線V1c、第二子光線V2c、第三子光線V3d與第四子光線V4e的強度的比值。再者,表5中x和y指的是於CIE 1931色彩空間色度圖的x與y色座標。In Table 5, the ratio of (PWM1):(PWM2):(PWM3):(PWM4) refers to the ratio of the duty cycle of the pulse width modulation of the light emitters E1c, E2c, E3d and E4e, which is about the first The ratio of the intensities of the sub-ray V1c, the second sub-ray V2c, the third sub-ray V3d and the fourth sub-ray V4e. Furthermore, x and y in Table 5 refer to the x and y color coordinates of the CIE 1931 color space chromaticity diagram.

圖32是圖23的另一實施例的光發射器發出的子光線的光譜。圖33是圖32的發光模組發出的光線的晝夜節律作用因子相對於相關色溫的關係圖。圖34A是當相關色溫大於5000 K時,在圖32的實施例的發光模組發出的光線的藍光危害相對於相關色溫的關係圖。圖34B是當相關色溫大於5000 K時,在圖32的實施例的發光模組發出的光線的藍光危害相對於演色性指數的關係圖。請參照圖23與圖32至34B,圖32的實施例與圖24A的實施例相似,其間的主要差別如下所述。在本實施例中,控制器620c用以改變第一子光線V1c與第二子光線V2c的比例以形成光線B6c,因此改變光線B6c的相關色溫與藍光危害,其中,在相同的相關色溫下,光線B6c的藍光危害是可改變的。例如,在圖34A的一鉛直線代表了在相同的相關色溫下,可穿過分別具有不同藍光危害的多個光線B6c的藍光危害相對於相關色溫的座標點(即菱形點)。在本實施例中,第一子光線V1c的相關色溫低於第二子光線V2c的相關色溫,且第一子光線V1c與第二子光線V2c為白光。Fig. 32 is a spectrum of sub-rays emitted by the light emitter of another embodiment of Fig. 23. FIG. 33 is a diagram showing the relationship between the circadian rhythm action factor of the light emitted by the light emitting module of FIG. 32 and the correlated color temperature. FIG. 34A is a diagram showing the relationship between the blue light hazard of the light emitted by the light emitting module in the embodiment of FIG. 32 and the correlated color temperature when the correlated color temperature is greater than 5000 K. FIG. 34B is a diagram showing the relationship between the blue light hazard of the light emitted by the light emitting module of the embodiment of FIG. 32 and the color rendering index when the correlated color temperature is greater than 5000 K. Please refer to FIG. 23 and FIGS. 32 to 34B. The embodiment of FIG. 32 is similar to the embodiment of FIG. 24A, and the main differences therebetween are as follows. In this embodiment, the controller 620c is used to change the ratio of the first sub-light V1c to the second sub-light V2c to form the light B6c, so that the correlated color temperature and the blue light hazard of the light B6c are changed, wherein, under the same correlated color temperature, The blue light hazard of light B6c is changeable. For example, a straight line in FIG. 34A represents the coordinate point (ie, diamond point) of the blue light hazard relative to the correlated color temperature that can pass through multiple light rays B6c with different blue light hazards under the same correlated color temperature. In this embodiment, the correlated color temperature of the first sub-light V1c is lower than the correlated color temperature of the second sub-light V2c, and the first sub-light V1c and the second sub-light V2c are white light.

進一步而言,在本實施例中,於相同的藍光危害下,光線B6c的演色性指數是可變的。例如,在圖34B的一水平線代表了在相同的藍光危害下,可穿過分別具有不同演色性指數的多個光線B6c的藍光危害相對於相關色溫的座標點(即菱形點)。因此,當採用一藍光危害,使用者可選擇多個演色性指數。Furthermore, in this embodiment, under the same blue light damage, the color rendering index of light B6c is variable. For example, a horizontal line in FIG. 34B represents the coordinate point (ie, diamond point) of the blue light hazard relative to the correlated color temperature that can pass through multiple light rays B6c with different color rendering indexes under the same blue light hazard. Therefore, when using a blue light hazard, the user can select multiple color rendering indexes.

圖35繪示出本揭露的另一實施例的光源裝置的示意圖。圖36A是圖35的光發射器E1f、E2f與E3f所發出的紅色子光線V1f、綠色子光線V2f與第一藍色子光線V3f的光譜。圖36B是圖35的光發射器E1f、E2f與E4f所發出的紅色子光線V1f、綠色子光線V2f與第二藍色子光線V4f的光譜。圖37A是圖35分別從光發射器E1f、E2f與E3f以及光發射器E1f、E2f與E4f所發出的第一光線VB1f與第二光線VB2f的晝夜節律作用因子相對於x色座標的關係圖。圖37B是圖35分別從光發射器E1f、E2f與E3f以及光發射器E1f、E2f與E4f所發出的第一光線VB1f與第二光線VB2f的晝夜節律作用因子相對於y色座標的關係圖。圖38A是圖35分別從光發射器E1f、E2f與E3f以及光發射器E1f、E2f與E4f所發出的第一光線VB1f與第二光線VB2f的藍光危害相對於演色性指數的關係圖。圖38B是圖35分別從光發射器E1f、E2f與E3f以及光發射器E1f、E2f與E4f所發出的第一光線VB1f與第二光線VB2f的藍光危害相對於晝夜節律作用因子的關係圖。FIG. 35 is a schematic diagram of a light source device according to another embodiment of the disclosure. 36A is the spectrum of the red sub-ray V1f, the green sub-ray V2f and the first blue sub-ray V3f emitted by the light emitters E1f, E2f, and E3f of FIG. 35. 36B is the spectrum of the red sub-ray V1f, the green sub-ray V2f and the second blue sub-ray V4f emitted by the light emitters E1f, E2f, and E4f of FIG. 35. 37A is a diagram showing the relationship between the circadian rhythm action factors of the first light VB1f and the second light VB2f emitted from the light emitters E1f, E2f, and E3f and the light emitters E1f, E2f, and E4f in FIG. 35 with respect to the x-color coordinates. FIG. 37B is a diagram of the relationship between the circadian rhythm action factors of the first light VB1f and the second light VB2f emitted from the light emitters E1f, E2f and E3f and the light emitters E1f, E2f and E4f in FIG. 35 with respect to the y color coordinates. 38A is a diagram showing the relationship between the blue light hazards of the first light VB1f and the second light VB2f emitted from the light emitters E1f, E2f, and E3f and the light emitters E1f, E2f, and E4f in relation to the color rendering index in FIG. 35. 38B is a diagram showing the relationship between the blue light hazards of the first light VB1f and the second light VB2f emitted from the light emitters E1f, E2f, and E3f and the light emitters E1f, E2f, and E4f in FIG. 35 with respect to the circadian rhythm action factor.

請參照圖35至38B,圖35的光源裝置600f與圖23的光源裝置600c相似,其間的主要差別如下所述。在本實施例中,發光模組610f用以提供一光線B6f。控制單元620f用以使光線B6f在一第一光線VB1f與一第二光線VB2f間切換,因此改變光線B6f的藍光危害與晝夜節律作用因子的至少其中之一。圖36A示意了第一光線VB1f的光譜,圖36B示意了第二光線VB2f的光譜,第一光線VB1f的光譜中(參照圖36A)的藍光主波峰波長(例如在圖36A為460奈米)大於第二光線VB2f的光譜中(參照圖36B)的藍光主波峰波長(例如在圖36B為447奈米)。Referring to FIGS. 35 to 38B, the light source device 600f of FIG. 35 is similar to the light source device 600c of FIG. 23, and the main differences therebetween are as follows. In this embodiment, the light emitting module 610f is used to provide a light B6f. The control unit 620f is used to switch the light B6f between a first light VB1f and a second light VB2f, thereby changing at least one of the blue light hazard and the circadian action factor of the light B6f. Figure 36A illustrates the spectrum of the first light VB1f, and Figure 36B illustrates the spectrum of the second light VB2f. In the spectrum of the first light VB1f (refer to Figure 36A), the main peak wavelength of blue light (for example, 460 nm in Figure 36A) is greater than The main peak wavelength of blue light in the spectrum of the second light VB2f (refer to FIG. 36B) (for example, 447 nm in FIG. 36B).

在本實施例中,第一光線VB1f包括一紅色子光線V1f、一綠色子光線V2f以及一第一藍色子光線V3f,第二光線VB2f包括紅色子光線V1f、綠色子光線V2f以及一第二藍色子光線V4f,第一藍色子光線V3f的光譜中(參照圖36A)的主波峰波長(例如460奈米)大於第二藍色子光線V4f的光譜中(參照圖36B)的主波峰波長(例如447奈米)。控制單元620f用以改變紅色子光線V1f、綠色子光線V2f和第一藍色子光線V3f的比例以及改變紅色子光線V1f、綠色子光線V2f及第二藍色子光線V4f的比例,因此改變第一光線VB1f與第二光線VB2f的藍光危害、晝夜節律作用因子與演色性指數的至少其中之一。In this embodiment, the first ray VB1f includes a red sub-ray V1f, a green sub-ray V2f, and a first blue sub-ray V3f, and the second ray VB2f includes a red sub-ray V1f, a green sub-ray V2f, and a second The blue sub-ray V4f, the main peak wavelength (for example, 460 nm) in the spectrum of the first blue sub-ray V3f (refer to FIG. 36A) is greater than the main peak in the spectrum of the second blue sub-ray V4f (refer to FIG. 36B) Wavelength (e.g. 447 nm). The control unit 620f is used to change the proportions of the red sub-ray V1f, the green sub-ray V2f and the first blue sub-ray V3f and the proportions of the red sub-ray V1f, the green sub-ray V2f and the second blue sub-ray V4f, thus changing the At least one of the blue light hazard, circadian rhythm action factor, and color rendering index of the first light VB1f and the second light VB2f.

在本實施例中,發光模組610f包括多個光發射器E1f、E2f、E3f與E4f,分別發出紅色子光線V1f、綠色子光線V2f、第一藍色子光線V3f與第二藍色子光線V4f。光發射器E1f與E2f可各包括至少一個電致發光元件、至少一個光致發光元件、至少一彩色濾光器或其組合。電致發光元件例如為發光二極體晶片或有機發光二極體,光致發光元件例如為螢光體。光源裝置600f可為一顯示器,例如是有機發光二極體顯示器、液晶顯示器、微發光二極體顯示器或其它任何合適的顯示器,且發光模組610f可包括多個光發射器E1f、多個光發射器E2f、多個光發射器E3f與多個光發射器E4f,其交替地排列以形成顯示器的子畫素。然而,在其它實施例中,光源裝置600f可為照明燈具。In this embodiment, the light-emitting module 610f includes a plurality of light emitters E1f, E2f, E3f, and E4f, which respectively emit red sub-rays V1f, green sub-rays V2f, first blue sub-rays V3f, and second blue sub-rays V4f. The light emitters E1f and E2f may each include at least one electroluminescence element, at least one photoluminescence element, at least one color filter, or a combination thereof. The electroluminescent element is, for example, a light emitting diode chip or an organic light emitting diode, and the photoluminescent element is, for example, a phosphor. The light source device 600f may be a display, such as an organic light emitting diode display, a liquid crystal display, a micro light emitting diode display or any other suitable display, and the light emitting module 610f may include a plurality of light emitters E1f and a plurality of light emitters. The emitter E2f, the multiple light emitters E3f, and the multiple light emitters E4f are alternately arranged to form sub-pixels of the display. However, in other embodiments, the light source device 600f may be a lighting fixture.

在本實施例中,如圖37A與圖37B所示,於相同的x和y色座標以及相同強度下,第一光線VB1f的的晝夜節律作用因子大於第二光線VB2f的晝夜節律作用因子,因此,使用者可根據所需的晝夜節律作用因子來選擇第一光線VB1f或是第二光線VB2f。在本實施例中,如圖38A所示,於相同的藍光危害下,第一光線VB1f的演色性指數大於第二光線VB2f的演色性指數,因此,使用者可根據所需的演色性指數來選擇第一光線VB1f或是第二光線VB2f。再者,在本實施例中,於相同的晝夜節律作用因子下,第一光線VB1f的藍光危害小於第二光線VB2f的藍光危害,因此,使用者可根據所需的藍光危害來選擇第一光線VB1f或是第二光線VB2f。In this embodiment, as shown in FIG. 37A and FIG. 37B, at the same x and y color coordinates and the same intensity, the circadian action factor of the first light VB1f is greater than the circadian action factor of the second light VB2f, so , The user can select the first light VB1f or the second light VB2f according to the required circadian rhythm action factor. In this embodiment, as shown in FIG. 38A, under the same blue light hazard, the color rendering index of the first light VB1f is greater than the color rendering index of the second light VB2f. Therefore, the user can determine the color rendering index according to the required color rendering index. Select the first light VB1f or the second light VB2f. Furthermore, in this embodiment, under the same circadian rhythm factor, the blue light hazard of the first light VB1f is less than the blue light hazard of the second light VB2f. Therefore, the user can select the first light according to the required blue light hazard VB1f or the second light VB2f.

在另一實施例中,光源裝置600f的發光模組610f可包括光發射器E1f、光發射器E2f與光發射器E3f,分別提供紅色子光線V1f、綠色子光線V2f與第一藍色子光線V3f(即藍色子光線),但不包括光發射器E4f。進一步而言,控制器620f用以改變紅色子光線V1f、綠色子光線V2f與第一藍色子光線V3f的比例以形成不同的白光(即是,在圖37A、圖37B、圖38A與圖38B中,分別對應於不同的光學數據的第一光線VB1f)。再者,在本實施例中,第一藍色子光線V3f光譜中的主波峰波長落在460奈米至480奈米的範圍內。在本實施例中,光源裝置600f可提供具有高晝夜節律作用因子與高演色性指數的光線B6f。In another embodiment, the light emitting module 610f of the light source device 600f may include a light emitter E1f, a light emitter E2f, and a light emitter E3f, which respectively provide a red sub-ray V1f, a green sub-ray V2f and a first blue sub-ray V3f (ie blue sub-ray), but does not include the light emitter E4f. Furthermore, the controller 620f is used to change the proportions of the red sub-light V1f, the green sub-light V2f and the first blue sub-light V3f to form different white light (that is, in FIGS. 37A, 37B, 38A, and 38B). , The first light rays VB1f respectively corresponding to different optical data). Furthermore, in this embodiment, the wavelength of the main peak in the spectrum of the first blue sub-ray V3f falls within the range of 460 nm to 480 nm. In this embodiment, the light source device 600f can provide light B6f having a high circadian rhythm action factor and a high color rendering index.

在又一個實施例中,光源裝置600f的發光模組610f可包括光發射器E1f、光發射器E2f與光發射器E4f,分別提供紅色子光線V1f、綠色子光線V2f與第二藍色子光線V4f(即藍色子光線),但不包括光發射器E3f。進一步而言,控制器620f用以改變紅色子光線V1f、綠色子光線V2f與第二藍色子光線V4f的比例以形成不同的白光(即是,在圖37A、圖37B、圖38A與圖38B中,分別對應於不同的光學數據的第二光線VB2f)。再者,在本實施例中,第二藍色子光線V4f的光譜中的主波峰波長落在440奈米至450奈米的範圍內。在本實施例中,光源裝置600f可提供具有低晝夜節律作用因子與低演色性指數的光線B6f。In yet another embodiment, the light emitting module 610f of the light source device 600f may include a light emitter E1f, a light emitter E2f, and a light emitter E4f, which provide a red sub-ray V1f, a green sub-ray V2f, and a second blue sub-ray, respectively V4f (ie blue sub-ray), but does not include the light emitter E3f. Furthermore, the controller 620f is used to change the proportions of the red sub-light V1f, the green sub-light V2f and the second blue sub-light V4f to form different white light (that is, in FIGS. 37A, 37B, 38A, and 38B). , The second light rays VB2f respectively corresponding to different optical data). Furthermore, in this embodiment, the main peak wavelength in the spectrum of the second blue sub-ray V4f falls within the range of 440 nm to 450 nm. In this embodiment, the light source device 600f can provide light B6f with a low circadian rhythm action factor and a low color rendering index.

圖39繪示出根據本揭露的一實施例的顯示裝置的示意圖。請參照圖39,本實施例的顯示裝置900包括一顯示器800以及一背光元件701。顯示器800可為液晶顯示面板或其它合適的空間光調變器(spatial light modulator)。背光元件701可為上述所提到的任何一個光源裝置,其用以照明顯示器800。FIG. 39 is a schematic diagram of a display device according to an embodiment of the disclosure. Referring to FIG. 39, the display device 900 of this embodiment includes a display 800 and a backlight element 701. The display 800 can be a liquid crystal display panel or other suitable spatial light modulators. The backlight element 701 can be any of the light source devices mentioned above, and is used to illuminate the display 800.

圖40繪示出本揭露的另一實施例的光源裝置的示意圖。圖41A是圖40的第一光源的子光源所提供的子光線與太陽光的晝夜節律作用因子相對於相關色溫的關係圖。圖41B是圖40的子光源發出的子光線的光譜。圖41C是圖40的子光源的螢光體I、螢光體II、螢光體III與螢光體IV的光譜。圖41D是圖40的子光源中,具有峰值波長443奈米、458奈米與461奈米的藍色發光二極體晶片的光譜。請參照圖40至圖41D,本實施例的光源裝置700與圖23的光源裝置600c相似,其間的主要差別如下所述。在本實施例中,光源裝置700包括一第一光源710,用以提供一第一光線B6g。在本實施例中,第一光源710包括一子光源E1g、一子光源E2g、一子光源E3g與一子光源E4g,子光源E1g包括一光發射器E11g與包覆著光發射器E11g的一光發射器E12g,子光源E2g包括一光發射器E21g與包覆著光發射器E21g的一光發射器E22g,子光源E3g包括一光發射器E31g與包覆著光發射器E31g的一光發射器E32g,以及子光源E4g包括一光發射器E41g與包覆著光發射器E41g的一光發射器E42g。在本實施例中,光發射器E11g為具有峰值波長458奈米的藍色發光二極體晶片,光發射器E12g具有佔光發射器E12g的比重15%的樹脂以及佔光發射器E12g的比重85%的螢光體,其光發射器E12g的螢光體的比重95%為螢光體III,光發射器E12g的螢光體的比重5%為螢光體II。光發射器E21g為具有峰值波長461奈米的藍色發光二極體晶片,光發射器E22g具有佔光發射器E22g的比重15%的樹脂以及佔光發射器E22g的比重85%的螢光體,其光發射器E22g的螢光體的比重90%為螢光體I,光發射器E22g的螢光體的比重10%為螢光體IV。光發射器E31g為具有峰值波長461奈米的藍色發光二極體晶片,光發射器E32g具有佔光發射器E32g的比重12%的樹脂以及佔光發射器E32g的比重88%的螢光體,其光發射器E32g的螢光體的比重95%為螢光體I,光發射器E32g的螢光體的比重5%為螢光體IV。光發射器E41g為具有峰值波長443奈米的藍色發光二極體晶片,光發射器E42g具有佔光發射器E42g的比重10%的樹脂以及佔光發射器E42g的比重90%的螢光體,其光發射器E42g的螢光體的比重95%為螢光體I,光發射器E42g的螢光體的比重5%為螢光體IV。FIG. 40 is a schematic diagram of a light source device according to another embodiment of the disclosure. FIG. 41A is a diagram of the relationship between the circadian action factor of the sub-light provided by the sub-light source of the first light source and the sunlight and the correlated color temperature in FIG. 40. FIG. 41B is the spectrum of the sub-light emitted by the sub-light source in FIG. 40. FIG. 41C shows the spectra of phosphor I, phosphor II, phosphor III, and phosphor IV of the sub-light source in FIG. 40. Fig. 41D is the spectrum of blue light-emitting diode wafers with peak wavelengths of 443 nm, 458 nm, and 461 nm in the sub-light source of Fig. 40. Referring to FIGS. 40 to 41D, the light source device 700 of this embodiment is similar to the light source device 600c of FIG. 23, and the main differences therebetween are as follows. In this embodiment, the light source device 700 includes a first light source 710 for providing a first light B6g. In this embodiment, the first light source 710 includes a sub-light source E1g, a sub-light source E2g, a sub-light source E3g, and a sub-light source E4g. The sub-light source E1g includes a light emitter E11g and a light emitter E11g. Light emitter E12g, the sub-light source E2g includes a light emitter E21g and a light emitter E22g covering the light emitter E21g, and the sub-light source E3g includes a light emitter E31g and a light emitter covering the light emitter E31g The sub-light source E32g and the sub-light source E4g include a light emitter E41g and a light emitter E42g covering the light emitter E41g. In this embodiment, the light emitter E11g is a blue light emitting diode chip with a peak wavelength of 458 nm, and the light emitter E12g has a resin that accounts for 15% of the light emitter E12g and a proportion of the light emitter E12g. For 85% of phosphors, 95% of the phosphor of the light emitter E12g is phosphor III, and 5% of the phosphor of the light emitter E12g is phosphor II. The light emitter E21g is a blue light-emitting diode chip with a peak wavelength of 461 nm. The light emitter E22g has a resin that accounts for 15% of the light emitter E22g and a phosphor that accounts for 85% of the light emitter E22g. , The specific gravity of the phosphor of the light emitter E22g is 90% of the phosphor I, and the specific gravity of the phosphor of the light emitter E22g is 10% of the phosphor IV. The light emitter E31g is a blue light emitting diode chip with a peak wavelength of 461 nm. The light emitter E32g has a resin that accounts for 12% of the light emitter E32g and a phosphor that accounts for 88% of the light emitter E32g. , The specific gravity of the phosphor of the light emitter E32g is 95% of the phosphor I, and the specific gravity of the phosphor of the light emitter E32g is 5% of the phosphor IV. The light emitter E41g is a blue light emitting diode chip with a peak wavelength of 443 nm. The light emitter E42g has a resin that accounts for 10% of the light emitter E42g and a phosphor that accounts for 90% of the light emitter E42g. , The specific gravity of the phosphor of the light emitter E42g is 95% of the phosphor I, and the specific gravity of the phosphor of the light emitter E42g is 5% of the phosphor IV.

在本實施例中,子光源E1g發出一子光線V1g,子光源E2g發出一子光線V2g,子光源E3g發出一子光線V3g,且子光源E4g發出一子光線V4g。子光線V1g、V2g、V3g與V4g例如是白光,子光線V1g、V2g、V3g與V4g組合以形成第一光線B6g。In this embodiment, the sub-light source E1g emits a sub-ray V1g, the sub-light source E2g emits a sub-ray V2g, the sub-light source E3g emits a sub-ray V3g, and the sub-light source E4g emits a sub-ray V4g. The sub-lights V1g, V2g, V3g, and V4g are, for example, white light, and the sub-lights V1g, V2g, V3g, and V4g are combined to form the first light B6g.

然而,在其它實施例中,子光源E1g、E2g、E3g與E4g可包括具有不同光線顏色的多個發光二極體晶片,例如是紅色發光二極體晶片、綠色發光二極體晶片與藍色發光二極體晶片,用以發出一紅色子光線、綠色子光線與藍色子光線,其組合以形成白光。在其它實施例中,子光源E1g、E2g、E3g與E4g可包括具有不同光線顏色的多個發光二極體晶片以及具有不同光線顏色與包覆著這些發光二極體的至少其中之一的多種螢光體。However, in other embodiments, the sub-light sources E1g, E2g, E3g, and E4g may include multiple light-emitting diode chips with different light colors, such as red light-emitting diode chips, green light-emitting diode chips, and blue light-emitting diode chips. The light-emitting diode chip is used to emit a red sub-ray, a green sub-ray and a blue sub-ray, which are combined to form a white light. In other embodiments, the sub-light sources E1g, E2g, E3g, and E4g may include a plurality of light-emitting diode chips with different light colors, and multiple light-emitting diode chips with different light colors and covering at least one of these light-emitting diodes. Fluorescent body.

在本實施例中,第一光線B6g的演色性指數大於80,子光線V1g、V2g、V3g與V4g的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)繪示於圖41A,子光線V1g、V2g、V3g與V4g的光譜繪示於圖41B,螢光體I、II、III、IV的光譜繪示於圖41C,分別具有峰值波長443奈米、458奈米與461奈米的藍色發光二極體晶片的光譜示意於圖41D。In this embodiment, the color rendering index of the first light B6g is greater than 80, and the circadian action factors of the sub-lights V1g, V2g, V3g, and V4g relative to the coordinates (CCT, CAF) of the correlated color temperature are shown in FIG. 41A. The spectra of V1g, V2g, V3g, and V4g are shown in Figure 41B, and the spectra of phosphors I, II, III, and IV are shown in Figure 41C, with blue peak wavelengths of 443 nm, 458 nm, and 461 nm, respectively. The spectrum of the color light emitting diode chip is shown in Fig. 41D.

在本實施例中,光源裝置700更包括一控制單元720,電性連接至光發射器E11g、E21g、E31g與E41g,並用以調控子光線V1g、V2g、V3g與V4g的比例。因此,第一光線B6g的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)可為落在由子光線V1g、V2g、V3g與V4g的晝夜節律作用因子相對於相關色溫的座標為頂點所定義出的區域A1(例如是一多邊形)內的任一座標,子光線V1g、V2g、V3g與V4g的晝夜節律作用因子相對於相關色溫的座標(CCT,CAF)例如是(2700±100 K, 0.24)、(2700±100 K, 0.53)、(6500±300 K, 1.06)與(6500±300 K, 0.788)。然而,在其它實施例中,第一光源710可包括發出如同第一光線B6g的子光線的一個子光源,且藉由調整此子光源的螢光體的組成與藍色發光二極體晶片的種類,第一光線B6g的晝夜節律作用因子相對於相關色溫的座標可為落在區域A1的任一座標。再者,在其它實施例中,第一光源710可包括兩個子光源、三個子光源、或五個或更多個子光源,其發出子光線以形成第一光線B6g,且藉由調整這些子光源的螢光體的組成與藍色發光二極體晶片的種類,第一光線B6g的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)可為落在區域A1的任一座標。In this embodiment, the light source device 700 further includes a control unit 720, which is electrically connected to the light emitters E11g, E21g, E31g, and E41g, and used to adjust the ratio of the sub-lights V1g, V2g, V3g, and V4g. Therefore, the coordinates (CCT, CAF) of the circadian action factor of the first ray B6g relative to the correlated color temperature can be defined by the apex defined by the coordinates of the circadian action factor of the sub-rays V1g, V2g, V3g, and V4g relative to the correlated color temperature. The coordinates of the circadian action factors of the sub-rays V1g, V2g, V3g, and V4g relative to the correlated color temperature (CCT, CAF) are, for example, (2700±100 K, 0.24). ), (2700±100 K, 0.53), (6500±300 K, 1.06) and (6500±300 K, 0.788). However, in other embodiments, the first light source 710 may include a sub-light source that emits sub-rays like the first light B6g, and by adjusting the composition of the phosphor of this sub-light source and that of the blue light-emitting diode chip Type, the coordinate of the circadian action factor of the first ray B6g relative to the correlated color temperature can be any landmark that falls in the area A1. Furthermore, in other embodiments, the first light source 710 may include two sub-light sources, three sub-light sources, or five or more sub-light sources, which emit sub-lights to form the first light B6g, and by adjusting these sub-lights The composition of the phosphor of the light source and the type of the blue light-emitting diode chip, the coordinate of the circadian action factor of the first light B6g relative to the correlated color temperature (CCT, CAF) can be any index that falls in the area A1.

在本實施例中,子光線V1g、V2g、V3g與V4g的演色性指數例如分別是81、81、81與84,子光線V1g、V2g、V3g與V4g的相關色溫例如分別是2614 K、2689 K、6691 K與6245 K,子光線V1g、V2g、V3g與V4g的晝夜節律作用因子例如分別是0.242、0.534、1.060與0.788,子光線V1g、V2g、V3g與V4g的Duv值例如分別是0.01、-0.01、-0.00與-0.01。In this embodiment, the color rendering indices of the sub-rays V1g, V2g, V3g, and V4g are, for example, 81, 81, 81, and 84, respectively, and the correlated color temperatures of the sub-rays V1g, V2g, V3g, and V4g are, for example, 2614 K and 2689 K, respectively. , 6691 K and 6245 K, the circadian action factors of the sub-rays V1g, V2g, V3g, and V4g are, for example, 0.242, 0.534, 1.060, and 0.788, respectively, and the Duv values of the sub-rays V1g, V2g, V3g, and V4g are, for example, 0.01,- 0.01, -0.00 and -0.01.

在本實施例中,第一光線B6g的晝夜節律作用因子相對於相關色溫的座標可為落在區域A1中的任一位置,因此光源裝置700可符合各種使用上的需求。In this embodiment, the coordinate of the circadian action factor of the first light B6g relative to the correlated color temperature can be any position in the area A1, so the light source device 700 can meet various usage requirements.

圖42是根據本揭露的另一實施例的光源裝置的第一光源的子光源所提供的子光線與太陽光的晝夜節律作用因子相對於相關色溫的關係圖。請參照圖42,根據本實施例的光源裝置與圖40的光源裝置700相似,其間的主要差別如下所述。在本實施例中,第一光線B6g的演色性指數大於60,且第一光線B6g的晝夜節律作用因子相對於相關色溫的座標(CCT,CAF)落在以如圖42所示的(2700±100 K, 0.696)、(2700±100 K, 0.197)、(6500±300 K, 0.759)與(6500±300 K, 1.229)的四個晝夜節律作用因子相對於相關色溫的座標為頂點所形成的一區域A2內。在本實施例中,第一光線B6由具有分別位於圖42所示的四個頂點的晝夜節律作用因子相對於相關色溫的座標的四個子光線所形成。然而,在其它實施例中,第一光線B6g可由一個子光源、兩個子光源、或三個或更多個子光源所發出的一個子光線、兩個子光線、或三個或更多個子光線所形成,且第一光線B6g的晝夜節律作用因子相對於相關色溫的座標可藉由調整螢光體的組成與子光源的藍色發光二極體晶片的型式所決定。42 is a diagram showing the relationship between the sub-light provided by the sub-light source of the first light source of the first light source and the circadian action factor of sunlight with respect to the correlated color temperature according to another embodiment of the present disclosure. Referring to FIG. 42, the light source device according to this embodiment is similar to the light source device 700 of FIG. 40, and the main differences therebetween are as follows. In this embodiment, the color rendering index of the first light B6g is greater than 60, and the circadian action factor of the first light B6g relative to the coordinate (CCT, CAF) of the correlated color temperature falls at (2700± 100 K, 0.696), (2700±100 K, 0.197), (6500±300 K, 0.759) and (6500±300 K, 1.229) of the four circadian action factors relative to the coordinates of the correlated color temperature are formed by the apex Within an area A2. In this embodiment, the first ray B6 is formed by four sub-rays having the coordinates of the circadian action factor relative to the correlated color temperature at the four vertices shown in FIG. 42. However, in other embodiments, the first ray B6g may be one sub-ray, two sub-rays, or three or more sub-rays emitted by one sub-light source, two sub-light sources, or three or more sub-light sources. The coordinate of the circadian action factor of the first light B6g relative to the correlated color temperature can be determined by adjusting the composition of the phosphor and the type of the blue light-emitting diode chip of the sub-light source.

圖43是根據本揭露的另一實施例的光源裝置的第一光源的子光源所提供的子光線與太陽光的晝夜節律作用因子相對於相關色溫的關係圖。請參照圖43,根據本實施例的光源裝置與圖40的光源裝置700相似,其間的主要差別如下所述。在本實施例中,第一光線B6g的演色性指數並沒有被限制,且第一光線B6g的晝夜節律作用因子相對於相關色溫的座標(CCT,CAF)落在以如圖43所示的(2700±100 K, 0.197)、(2700±100 K, 0.696)、(4500±200 K, 0.474)、(4500±200 K, 1.348)、(6500±300 K, 0.759)與(6500±300 K, 1.604)的六個晝夜節律作用因子相對於相關色溫的座標為頂點所形成的一區域A3內。然而,在其它實施例,第一光線B6g可由一個子光源、兩個子光源、或三個或更多個子光源所發出的一個子光線、兩個子光線、或三個或更多個子光線所形成,且第一光線B6g的晝夜節律作用因子相對於相關色溫的座標可藉由調整螢光體的組成與子光源的藍色發光二極體晶片的型式所決定。FIG. 43 is a diagram of the relationship between the sub-light provided by the sub-light source of the first light source of the first light source and the circadian rhythm action factor of sunlight relative to the correlated color temperature according to another embodiment of the light source device of the present disclosure. Please refer to FIG. 43. The light source device according to this embodiment is similar to the light source device 700 of FIG. 40, and the main differences therebetween are as follows. In this embodiment, the color rendering index of the first light B6g is not limited, and the circadian action factor of the first light B6g relative to the coordinate (CCT, CAF) of the correlated color temperature falls as shown in Figure 43 ( 2700±100 K, 0.197), (2700±100 K, 0.696), (4500±200 K, 0.474), (4500±200 K, 1.348), (6500±300 K, 0.759) and (6500±300 K, The coordinates of the six circadian action factors of 1.604) relative to the correlated color temperature are in an area A3 formed by the apex. However, in other embodiments, the first ray B6g may be caused by one sub-ray, two sub-rays, or three or more sub-rays emitted by one sub-light source, two sub-light sources, or three or more sub-light sources. The coordinates of the circadian action factor of the first light B6g relative to the correlated color temperature can be determined by adjusting the composition of the phosphor and the type of the blue light-emitting diode chip of the sub-light source.

圖44是根據本揭露的另一實施例的光源裝置的第一光源的子光源所提供的子光線的晝夜節律作用因子相對於相關色溫的上邊界與下邊界以及太陽光的晝夜節律作用因子相對於相關色溫的關係圖。請參照圖44,圖44的實施例的光源裝置與圖43的實施例的光源裝置相似,其間的主要差別如下所述。在本實施例中,第一光線B6g的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)落在一區域內,此區域具有一上邊界、一下邊界及落在上邊界與下邊界之間的座標。在本實施例中,上邊界為對圖43的上方三個頂點做二次函數的擬合(fitting)所建立,且其決定係數(coefficient of determination) R2 例如是1。例如,上邊界為函數:CAF=-5E-08×(CCT)2 + 0.0007×(CCT) - 0.8439。再者,下邊界為對圖43的下方三個頂點做二次函數的擬合所建立,且其決定係數R2 例如是1。例如,下邊界為函數:CAF=-8E-09×(CCT)2 + 0.0002×(CCT) - 0.3804。FIG. 44 shows the circadian action factor of the sub-light provided by the sub-light source of the first light source of the light source device according to another embodiment of the present disclosure relative to the upper boundary and the lower boundary of the correlated color temperature and the circadian action factor of sunlight The graph of the correlation color temperature. Please refer to FIG. 44. The light source device of the embodiment of FIG. 44 is similar to the light source device of the embodiment of FIG. 43, and the main differences therebetween are as follows. In this embodiment, the circadian action factor of the first light B6g relative to the coordinate (CCT, CAF) of the correlated color temperature falls within a region, which has an upper boundary, a lower boundary, and falls on the upper boundary and the lower boundary. Coordinates between. In this embodiment, the upper boundary is established by fitting a quadratic function to the upper three vertices of FIG. 43, and the coefficient of determination R 2 is, for example, 1. For example, the upper boundary is a function: CAF=-5E-08×(CCT) 2 + 0.0007×(CCT)-0.8439. Furthermore, the lower boundary is established by fitting a quadratic function to the lower three vertices of FIG. 43, and the coefficient of determination R 2 is 1, for example. For example, the lower boundary is the function: CAF=-8E-09×(CCT) 2 + 0.0002×(CCT)-0.3804.

圖45是根據本揭露的另一實施例的光源裝置的第一光源的子光源所提供的子光線與太陽光的晝夜節律作用因子相對於相關色溫的關係圖。請參照圖45,根據本實施例的光源裝置與圖40的光源裝置700相似,其間的主要差別如下所述。在本實施例中,第一光線B6g的演色性指數大於80,且第一光線B6g的晝夜節律作用因子相對於相關色溫的座標(CCT,CAF)落在分別以如圖45所示的(2700±100 K, 0.242)、(2700±100 K, 0.534)、(4500±200 K, 0.580)、(4500±200 K, 0.841)、(6500±300 K, 0.788)與(6500±300 K, 1.060)的六個晝夜節律作用因子相對於相關色溫的座標為頂點所形成的一區域A4之間。然而,在其它實施例,第一光線B6g可由一個子光源、兩個子光源、或三個或更多個子光源所發出的一個子光線、兩個子光線、或三個或更多個子光線所形成,且第一光線B6g的晝夜節律作用因子相對於相關色溫的座標可藉由調整螢光體的組成與子光源的藍色發光二極體晶片的型式所決定。FIG. 45 is a diagram showing the relationship between the sub-light provided by the sub-light source of the first light source of the light source device and the circadian rhythm action factor of sunlight with respect to the correlated color temperature according to another embodiment of the present disclosure. Please refer to FIG. 45. The light source device according to this embodiment is similar to the light source device 700 of FIG. 40, and the main differences therebetween are as follows. In this embodiment, the color rendering index of the first light B6g is greater than 80, and the circadian action factor of the first light B6g with respect to the coordinates (CCT, CAF) of the correlated color temperature falls at (2700 ±100 K, 0.242), (2700±100 K, 0.534), (4500±200 K, 0.580), (4500±200 K, 0.841), (6500±300 K, 0.788) and (6500±300 K, 1.060 The coordinates of the six circadian action factors of) relative to the correlated color temperature are between the vertices of an area A4. However, in other embodiments, the first ray B6g may be caused by one sub-ray, two sub-rays, or three or more sub-rays emitted by one sub-light source, two sub-light sources, or three or more sub-light sources. The coordinates of the circadian action factor of the first light B6g relative to the correlated color temperature can be determined by adjusting the composition of the phosphor and the type of the blue light-emitting diode chip of the sub-light source.

在本實施例中,於相同的相關色溫下,第一光線B6g的晝夜節律作用因子落在太陽光的晝夜節律作用因子的±0.15的範圍內。In this embodiment, under the same correlated color temperature, the circadian action factor of the first light B6g falls within the range of ±0.15 of the circadian action factor of sunlight.

圖46是根據本揭露的另一實施例的光源裝置的第一光源的子光源所提供的子光線與太陽光的晝夜節律作用因子相對於相關色溫的關係圖。請參照圖46,根據本實施例的光源裝置與圖45的光源裝置相似,其間的主要差別如下所述。在本實施例中,第一光線B6g的演色性指數大於60,且第一光線B6的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)落在以圖46所示的六個晝夜節律作用因子相對於相關色溫的座標為頂點所形成的一區域A5的範圍內。在本實施例中,第一光線B6由分別具有在圖46所示的六個頂點的晝夜節律作用因子相對於相關色溫的座標的六個子光線所形成。然而,在其它實施例,第一光線B6g可由一個子光源、兩個子光源、或三個或更多個子光源所發出的一個子光線、兩個子光線、或三個或更多個子光線所形成,且第一光線B6g的晝夜節律作用因子相對於相關色溫的座標可藉由調整螢光體的組成與子光源的藍色發光二極體晶片的型式所決定。Fig. 46 is a diagram of the relationship between the sub-light provided by the sub-light source of the first light source of the light source device and the circadian rhythm action factor of sunlight relative to the correlated color temperature according to another embodiment of the present disclosure. Please refer to FIG. 46. The light source device according to this embodiment is similar to the light source device of FIG. 45, and the main differences therebetween are as follows. In this embodiment, the color rendering index of the first light B6g is greater than 60, and the circadian rhythm action factor of the first light B6 relative to the coordinate (CCT, CAF) of the correlated color temperature falls within the six circadian rhythms shown in FIG. 46 The coordinate of the action factor relative to the correlated color temperature is within the range of an area A5 formed by the apex. In this embodiment, the first ray B6 is formed by six sub-rays respectively having the coordinates of the circadian action factor at the six vertices shown in FIG. 46 with respect to the correlated color temperature. However, in other embodiments, the first ray B6g may be caused by one sub-ray, two sub-rays, or three or more sub-rays emitted by one sub-light source, two sub-light sources, or three or more sub-light sources. The coordinates of the circadian action factor of the first light B6g relative to the correlated color temperature can be determined by adjusting the composition of the phosphor and the type of the blue light-emitting diode chip of the sub-light source.

請再參照圖23,在一實施例中,光發射器E1c可為圖40至圖46中的任一個實施例的第一光源710,第一子光線V1c可為圖40至圖46中的任一個實施例的第一光線B6g,光發射器E2c可為一第二光源,且第二子光線V2c可為第二光線。第二光源與第一光源710相似,且第二光線的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)可落在圖41A的區域A1、圖42的區域A2、圖43的區域A3、圖45的區域A4、或圖46的區域A5或圖44的上邊界與下邊界所定義的區域之間,其間的差別在於,第二光線的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)與第一光線B6g的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)不同。Please refer to FIG. 23 again. In one embodiment, the light emitter E1c may be the first light source 710 of any of the embodiments in FIGS. 40 to 46, and the first sub-ray V1c may be any of the embodiments in FIGS. 40 to 46. In one embodiment, the first light B6g and the light emitter E2c may be a second light source, and the second sub-light V2c may be the second light. The second light source is similar to the first light source 710, and the coordinates (CCT, CAF) of the circadian action factor of the second light with respect to the correlated color temperature can fall in the area A1 of FIG. 41A, the area A2 of FIG. 42 and the area A3 of FIG. 43 , Area A4 in FIG. 45, or area A5 in FIG. 46, or the area defined by the upper and lower boundaries of FIG. 44, the difference between them is that the circadian action factor of the second ray is relative to the coordinate of the correlated color temperature (CCT , CAF) is different from the coordinate of the correlated color temperature (CCT, CAF) of the circadian action factor of the first light B6g.

進一步而言,在本實施例,控制單元620c用以控制第一光源710(即光發射器E1c)與第二光源(即光發射器E2c),並用以結合第一光線B6g(即第一子光線V1c)與第二光線(第二子光線V2c)以輸出一第三光線(即光線B6c)。Further, in this embodiment, the control unit 620c is used to control the first light source 710 (ie, the light emitter E1c) and the second light source (ie, the light emitter E2c), and is used to combine the first light B6g (ie, the first sub The light V1c) and the second light (second sub-light V2c) are used to output a third light (ie, light B6c).

在本實施例,如圖25A所示,第一光線B6g(即第一子光線V1c)與第二光線(即第二子光線V2c)之一的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)落在太陽光的晝夜節律作用因子相對於相關色溫的軌跡的下方,且如圖25A所示,第一光線B6g(即第一子光線V1c)與第二光線(即第二子光線V2c)之另一的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)落在該太陽光的晝夜節律作用因子相對於相關色溫的軌跡的上方。In this embodiment, as shown in FIG. 25A, the coordinate (CCT) of the circadian action factor of one of the first ray B6g (ie, the first sub-ray V1c) and the second ray (ie, the second sub-ray V2c) relative to the correlated color temperature (CCT) , CAF) falls below the trajectory of the circadian action factor of sunlight with respect to the correlated color temperature, and as shown in FIG. 25A, the first ray B6g (ie, the first sub-ray V1c) and the second ray (ie, the second sub-ray The coordinate (CCT, CAF) of the other circadian action factor of V2c) relative to the correlated color temperature falls above the trajectory of the circadian action factor of the sunlight relative to the correlated color temperature.

在一實施例中,第三光線(即光線B6c)的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)落在太陽光的晝夜節律作用因子相對於相關色溫的軌跡的下方,例如是圖25A在太陽光的晝夜節律作用因子相對於相關色溫的軌跡的下方的圓形或三角形。在另一實施例中,第三光線(即光線B6c)的晝夜節律作用因子相對於相關色溫的座標落在太陽光的晝夜節律作用因子相對於相關色溫的軌跡的上方,例如是圖25A在太陽光的晝夜節律作用因子相對於相關色溫的軌跡的上方的圓形或三角形。在又一個實施例中,第三光線(即光線B6c)的晝夜節律作用因子相對於相關色溫的座標落在太陽光的晝夜節律作用因子相對於相關色溫的軌跡上,例如是圖25A在太陽光的晝夜節律作用因子相對於相關色溫的軌跡上的圓形或三角形。In one embodiment, the coordinates (CCT, CAF) of the circadian action factor of the third light (ie ray B6c) with respect to the correlated color temperature fall below the trajectory of the circadian action factor of sunlight with respect to the correlated color temperature, for example, Fig. 25A is a circle or triangle below the trajectory of the circadian action factor of sunlight with respect to the correlated color temperature. In another embodiment, the coordinate of the circadian action factor of the third light (ie ray B6c) with respect to the correlated color temperature lies above the trajectory of the circadian action factor of sunlight with respect to the correlated color temperature, for example, as shown in FIG. 25A in the sun The circle or triangle above the trajectory of the light's circadian rhythm action factor relative to the correlated color temperature. In yet another embodiment, the coordinate of the circadian action factor of the third light (ie ray B6c) relative to the correlated color temperature falls on the trajectory of the circadian action factor of sunlight relative to the correlated color temperature, for example, as shown in FIG. 25A The circle or triangle on the trajectory of the circadian rhythm action factor relative to the correlated color temperature.

上述的控制單元例如是包括中央處理單元(central processing unit, CPU)、微處理器(microprocessor)、數位訊號處理器(digital signal processor, DSP)、可程式化控制器、可程式化邏輯裝置(programmable logic device, PLD)或其他類似裝置或這些裝置的組合,本揭露並不加以限制。此外,在一實施例中,控制單元的各功能可被實作為多個程式碼。這些程式碼會被儲存在一個記憶體中,由控制單元來執行這些程式碼。或者,在一實施例中,控制單元的各功能可被實作為一或多個電路。本揭露並不限制用軟體或硬體的方式來實作控制單元的各功能。The above-mentioned control unit includes, for example, a central processing unit (CPU), a microprocessor (microprocessor), a digital signal processor (digital signal processor, DSP), a programmable controller, and a programmable logic device (programmable logic device). logic device, PLD) or other similar devices or combinations of these devices, this disclosure is not limited. In addition, in one embodiment, each function of the control unit can be implemented as multiple program codes. These codes will be stored in a memory and executed by the control unit. Alternatively, in an embodiment, each function of the control unit may be implemented as one or more circuits. This disclosure does not limit the use of software or hardware to implement the functions of the control unit.

上述的「生理刺激值」可以是上述CS/P值、晝夜節律作用因子(CAF)或等效黑色素勒克斯(equivalent melanopic lux, EML),其中EML=R×(CAF)×(Lux),其中,R為一常數,當考慮CS(λ)和P(λ)的響應強度時,R=1.218。當光源裝置為照明裝置時,Lux可為照度,而當光源裝置為顯示器時,Lux可為輝度。上述實施例中的CS/P值可以用晝夜節律作用因子或等效黑色素勒克斯來取代。上述實施例中的晝夜節律作用因子可以用CS/P值或等效黑色素勒克斯來取代。The aforementioned "physiological stimulus value" can be the aforementioned CS/P value, circadian action factor (CAF) or equivalent melanopic lux (EML), where EML=R×(CAF)×(Lux), where, R is a constant, when considering the response intensity of CS(λ) and P(λ), R=1.218. When the light source device is a lighting device, Lux can be illuminance, and when the light source device is a display, Lux can be brightness. The CS/P value in the above embodiment can be replaced by a circadian rhythm action factor or equivalent melanin lux. The circadian rhythm action factor in the above embodiment can be replaced by CS/P value or equivalent melanin lux.

綜上所述,本揭露之實施例中的光源裝置可透過控制單元控制發光模組提供色溫相同而生理刺激值不同的光線。發光模組亦可藉由多組發光單元以提供多組色溫的光線,並且每一組同色溫的光線亦可於不同生理刺激值的光線間切換。此外,本揭露之實施例中的光源裝置亦可透過控制單元控制發光模組提供生理刺激值差異5%以上的光線,並且這些光線可具有完全不同的色溫,或是有部分的這些光線的色溫相同。藉此,光源裝置可因應實際使用環境、時間及目的以選擇提供具有不同生理刺激值的光源,以維持使用者自然的生理週期並同時提供足夠的光源。本揭露之光源裝置可為用以照明之照明裝置或作為顯示器之背光的背光裝置,但不以此為限。In summary, the light source device in the embodiment of the present disclosure can control the light emitting module through the control unit to provide light with the same color temperature but different physiological stimulation values. The light-emitting module can also provide multiple sets of light of color temperature through multiple sets of light-emitting units, and each group of light of the same color temperature can also be switched between lights of different physiological stimulation values. In addition, the light source device in the embodiment of the present disclosure can also control the light-emitting module through the control unit to provide light with a physiological stimulus value difference of more than 5%, and these lights can have completely different color temperatures, or some of these lights have color temperatures. the same. In this way, the light source device can select and provide light sources with different physiological stimulation values according to the actual use environment, time and purpose, so as to maintain the user's natural physiological cycle and provide sufficient light sources at the same time. The light source device of the present disclosure can be an illuminating device used for lighting or a backlight device used as a backlight of a display, but is not limited to this.

此外,根據本實施例的光源裝置中,因為第一光線和第二光線的色溫彼此實質上相同並且第一光線和第二光線的光譜不同,當多個光源裝置或發光模組用於相同的顯示空間且分別發出第一光線與第二光線,光源裝置或發光模組的光的顏色是一致的,且第一光線和第二光線可能分別達到不同的功效。In addition, in the light source device according to this embodiment, because the color temperatures of the first light and the second light are substantially the same as each other and the spectra of the first light and the second light are different, when multiple light source devices or light-emitting modules are used for the same The display space emits the first light and the second light respectively, the color of the light of the light source device or the light-emitting module is the same, and the first light and the second light may achieve different effects respectively.

另外,根據本實施例的光源裝置中,因為此多種第一光線的相關色溫彼此相異,且此多種第一光線的晝夜節律作用因子彼此實質上相同,所以光源裝置可具有更多的應用。In addition, in the light source device according to this embodiment, because the correlated color temperatures of the multiple first lights are different from each other, and the circadian action factors of the multiple first lights are substantially the same as each other, the light source device can have more applications.

除此之外,在根據實施例的光源裝置中,第一子光線與第二子光線的比例可被改變,因此光線的晝夜節律作用因子與相關色溫可沿著相異於太陽光的晝夜節律作用因子相對於相關色溫之軌跡的光線的晝夜節律作用因子相對於相關色溫的軌跡而改變,所以光源裝置可具有更多的應用。在根據實施例的光源裝置中,光線可在第一光線與第二光線之間切換,因此光線的藍光危害與晝夜節律作用因子的至少其中之一可被改變,所以光源裝置可具有更多的應用。根據本實施例的光源裝置中,第一子光線與第二子光線的比例可被改變,因此光線的相關色溫與藍光危害可被改變,其中,在相同的相關色溫下,光線的藍光危害是可變的,因此使用者可根據需求而選擇合適的藍光危害。In addition, in the light source device according to the embodiment, the ratio of the first sub-ray to the second sub-ray can be changed, so the circadian action factor and the correlated color temperature of the light can follow a circadian rhythm different from that of sunlight. The circadian action factor of the light with the action factor relative to the trajectory of the correlated color temperature changes relative to the trajectory of the correlated color temperature, so the light source device can have more applications. In the light source device according to the embodiment, the light can be switched between the first light and the second light, so at least one of the blue light hazard and the circadian rhythm action factor of the light can be changed, so the light source device can have more application. In the light source device according to this embodiment, the ratio of the first sub-ray to the second sub-ray can be changed, so the correlated color temperature and the blue light hazard of the light can be changed. Among them, at the same correlated color temperature, the blue light hazard of the light is Variable, so users can choose the appropriate blue light hazard according to their needs.

再者,在根據實施例的光源裝置中,由第一光源所發出的第一光線的晝夜節律作用因子相對於相關色溫的座標可落在晝夜節律作用因子相對於相關色溫圖的一區域內的任意位置,因此根據實施例的光源裝置可符合各種使用上的需求。Furthermore, in the light source device according to the embodiment, the coordinates of the circadian action factor relative to the correlated color temperature of the first light emitted by the first light source may fall within a region of the circadian action factor relative to the correlated color temperature map. Any position, so the light source device according to the embodiment can meet various usage requirements.

雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作些許之更動與潤飾,故本揭露之保護範圍當視後附之申請專利範圍所界定者為準。Although the present disclosure has been disclosed in the above embodiments, it is not intended to limit the present disclosure. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of this disclosure. Therefore, The scope of protection of this disclosure shall be subject to those defined by the attached patent application scope.

100、100a、100b、100’、300、400、500、600、600a、600b、600c、600d、600e:光源裝置 110、110a、110b、310、410、510、610、610a、610b、610c、610d、610f:發光模組 120、320、420、520、620、620c、620f、720:控制單元 130:使用者介面 140:連接介面 700:光源裝置 701:背光元件 710:第一光源 800:顯示器 900:顯示裝置 A1、A2、A3、A4、A5:區域 B、B3、B6、B6c、B6d、B6e、B6f:光線 B6g:第一光線 D:發光單元 D1、D1’、D11、D12、D13:第一發光單元 D2、D2’:第二發光單元 D3、D3’、D31、D32:第三發光單元 D4、D4’:第四發光單元 D5、D5’:第五發光單元 D6’:第六發光單元 D7’:第七發光單元 D8’:第八發光單元 DM:光源驅動模組 DR:資料寫入系統 DT:時間管理資料 E1、E1a、E12a、E11a、E1c、E1f、E2c、E2、E2a、E2f、E3、E3a、E3d、E3f、E4、E4a、E4e、E4f、E5a、E6a、E7a、E11g、E12g、E21g、E22g、E31g、E32g、E41、E41g、E42、E42g:光發射器 E1g、E2g、E3g、E4g:子光源 e1、e2、e3、e4、e5、e6、e7、e8:橢圓色溫範圍 L1、L1’、L13、L14、L15、VB1f:第一光線 L2、L2’、L23、L24、L25、VB2f:第二光線 L35:第三光線 L45:第四光線 L55:第五光線 L65:第六光線 L75:第七光線 L85:第八光線 P1、P1’、P13、P14:第一部分 P2、P2’、P23、P24:第二部分 S1、S2、S3、S4、S5、S6、S7、S8:公差四邊形色溫範圍 Q1、Q2、Q3、Q4:頂點 SH1、SL1:光譜曲線 SV:儲存單元 UR:使用者 V1、V1a、V1g、V2g、V3g、V4g、V11a、V12a、V2、V2a、V3、V3a、V4、V4a、V41、V42、V5a、V6a、V7a:子光線 V1c、W1、W1’:第一子光線 V1f:紅色子光線 V2c、W2、W2’:第二子光線 V2f:綠色子光線 V3d、W3、W3’:第三子光線 V3f:第一藍色子光線 V4e、W4、W4’:第四子光線 V4f:第二藍色子光線 W5、W5’:第五子光線 W6’:第六子光線 W7’:第七子光線 W8’:第八子光線100, 100a, 100b, 100’, 300, 400, 500, 600, 600a, 600b, 600c, 600d, 600e: light source device 110, 110a, 110b, 310, 410, 510, 610, 610a, 610b, 610c, 610d, 610f: light emitting module 120, 320, 420, 520, 620, 620c, 620f, 720: control unit 130: User Interface 140: connection interface 700: Light source device 701: Backlight element 710: First light source 800: display 900: display device A1, A2, A3, A4, A5: area B, B3, B6, B6c, B6d, B6e, B6f: light B6g: first light D: Light-emitting unit D1, D1’, D11, D12, D13: the first light-emitting unit D2, D2’: the second light-emitting unit D3, D3’, D31, D32: third light-emitting unit D4, D4’: The fourth light-emitting unit D5, D5’: The fifth light-emitting unit D6’: The sixth light-emitting unit D7’: The seventh light-emitting unit D8’: Eighth light-emitting unit DM: Light source drive module DR: Data writing system DT: Time Management Information E1, E1a, E12a, E11a, E1c, E1f, E2c, E2, E2a, E2f, E3, E3a, E3d, E3f, E4, E4a, E4e, E4f, E5a, E6a, E7a, E11g, E12g, E21g, E22g, E31g, E32g, E41, E41g, E42, E42g: optical transmitter E1g, E2g, E3g, E4g: sub light source e1, e2, e3, e4, e5, e6, e7, e8: elliptical color temperature range L1, L1’, L13, L14, L15, VB1f: first light L2, L2’, L23, L24, L25, VB2f: second light L35: third light L45: Fourth ray L55: Fifth Ray L65: Sixth Ray L75: The seventh ray L85: Eighth Ray P1, P1’, P13, P14: Part One P2, P2’, P23, P24: Part Two S1, S2, S3, S4, S5, S6, S7, S8: Tolerance quadrilateral color temperature range Q1, Q2, Q3, Q4: vertex SH1, SL1: spectral curve SV: storage unit UR: User V1, V1a, V1g, V2g, V3g, V4g, V11a, V12a, V2, V2a, V3, V3a, V4, V4a, V41, V42, V5a, V6a, V7a: sub-ray V1c, W1, W1’: the first sub-ray V1f: Red sub-ray V2c, W2, W2’: the second sub-ray V2f: Green sub-ray V3d, W3, W3’: the third sub-ray V3f: the first blue sub-ray V4e, W4, W4’: the fourth sub-ray V4f: the second blue sub-ray W5, W5’: the fifth sub-ray W6’: The sixth sub-ray W7’: The seventh sub-ray W8’: Eighth sub-ray

圖1繪示出光源與生理刺激對應曲線。 圖2A是本揭露之一實施例中的光源裝置的示意圖。 圖2B是依照圖2A實施例中的光源裝置的一種變化。 圖2C是依照圖2B實施例中的光源裝置所發出之光線的相對光強度與光波長的光譜示意圖。 圖2D繪示出圖2B實施例中的光源裝置在不同時段具有不同照明模式的時序圖。 圖2E是依照圖2A中光源裝置的方塊圖。 圖3是美國國家標準協會所定義的同色溫的色座標型態的示意圖。 圖4A是本揭露之另一實施例中的光源裝置的示意圖。 圖4B繪示出圖4A實施例中的第一光線的光譜曲線。 圖4C繪示出圖4A實施例中的第二光線的光譜曲線。 圖4D繪示出圖4A實施例中的光源裝置在不同時段具有不同照明模式的時序圖。 圖5A是本揭露之又一實施例中的光源裝置的示意圖。 圖5B繪示出圖5A實施例中的第一光線的光譜曲線。 圖5C繪示出圖5A實施例中的第二光線的光譜曲線。 圖5D繪示出圖5A實施例中的光源裝置在不同時段具有不同照明模式的時序圖。 圖6A是本揭露之再一實施例中的光源裝置的示意圖。 圖6B到圖6I繪示出光源裝置500分別在各色溫條件下所提供的光線之光譜曲線。 圖6J繪示出圖6A實施例中的光源裝置在不同時段具有不同照明模式的時序圖。 圖7是本揭露之另一實施例的光源裝置的示意圖。 圖8A繪示出圖7中於第一發光模式下分別從發光單元發出的光線與第一光線的光譜。 圖8B繪示出圖7中於第二發光模式下分別從發光單元發出的光線與第二光線的光譜。 圖9繪示出圖7中的第一光線與第二光線在CIE 1976 u’-v’圖(CIE 1976 u’-v’ diagram)中的色座標。 圖10是本揭露之另一實施例的光源裝置的示意圖。 圖11A繪示出圖10中於第一發光模式下分別從發光單元發出的光線與第一光線的光譜。 圖11B的繪示出圖10中於第二發光模式下分別從發光單元發出的光線與第二光線的光譜。 圖12繪示出圖10中的第一光線與第二光線在CIE 1976 u’-v’圖中的色座標。 圖13A是根據本揭露的另一實施例繪示出圖10中於第一發光模式下分別從發光單元發出的光線與第一光線的光譜。 圖13B是根據本揭露的另一實施例繪示出圖10中於第二發光模式下分別從發光單元發出的光線與第二光線的光譜。 圖14是根據本揭露的另一實施例繪示出圖10中的第一光線與第二光線在CIE 1976 u’-v’圖中的色座標。 圖15是本揭露的另一實施例的光源裝置的示意圖。 圖16A是圖15的光發射器發出的子光線的光譜。 圖16B是圖15的發光模組發出的光線的晝夜節律作用因子相對於相關色溫的關係圖。 圖16C是圖15的發光模組所發出的光線的演色性指數相對於相關色溫的關係圖。 圖16D是太陽光的晝夜節律作用因子相對於相關色溫的關係圖。 圖17是本揭露的另一實施例的光源裝置的示意圖。 圖18A是圖17的光發射器發出的子光線的光譜。 圖18B是圖17的發光模組發出的光線的晝夜節律因子相對於相關色溫的關係圖。 圖18C是圖17的發光元件發出的光線的演色性指數相對於相關色溫的關係圖。 圖19A至19D分別是當演色性指數大於80、90、93和95時,在圖17的發光模組發出的光線的晝夜節律因子相對於相關色溫的關係圖。 圖20繪示出本揭露的另一實施例的光源裝置的示意圖。 圖21A是圖20的光發射器發出的子光線的光譜。 圖21B是圖20的發光模組發出的光線的晝夜節律因子相對於相關色溫的關係圖。 圖21C是圖20的發光模組發出的光線的演色性指數相對於相關色溫的關係圖。 圖22A與22B分別是當演色性指數大於80與90時,在圖20的發光模組發出的光線的晝夜節律作用因子相對於相關色溫的關係圖。 圖23繪示出本揭露的另一實施例的光源裝置的示意圖。 圖24A至24D是圖23的四個實施例的光發射器發出的子光線的光譜。 圖25A與25B是圖23的發光模組發出的光線與太陽光的晝夜節律作用因子相對於相關色溫的關係圖。 圖26繪示出本揭露的另一實施例的光源裝置的示意圖。 圖27A與27B是圖26的兩個實施例的光發射器發出的子光線的光譜。 圖28A與28B是圖26的發光模組發出的光線與太陽光的晝夜節律作用因子相對於相關色溫的關係圖。 圖29繪示出本揭露的另一實施例的光源裝置的示意圖。 圖30是圖29的光發射器發出的子光線的光譜。 圖31是圖29的發光模組發出的光線與太陽光的晝夜節律作用因子相對於相關色溫的關係圖。 圖32是圖23的另一實施例的光發射器發出的子光線的光譜。 圖33是圖32的實施例的發光模組發出的光線的演色性指數相對於相關色溫的關係圖。 圖34A是當相關色溫大於5000 K時,在圖32的實施例的發光模組發出的光線的藍光危害相對於相關色溫的關係圖。 圖34B是當相關色溫大於5000 K時,在圖32的實施例的發光模組發出的光線的藍光危害相對於演色性指數的關係圖。 圖35繪示出本揭露的另一實施例的光源裝置的示意圖。 圖36A是圖35的光發射器E1f、E2f與E3f所發出的紅色子光線V1f、綠色子光線V2f與第一藍色子光線V3f的光譜。 圖36B是圖35的光發射器E1f、E2f與E4f所發出的紅色子光線V1f、綠色子光線V2f與第二藍色子光線V4f的光譜。 圖37A是圖35分別從光發射器E1f、E2f與E3f以及光發射器E1f、E2f與E4f所發出的第一光線VB1f與第二光線VB2f的晝夜節律作用因子相對於x色座標的關係圖。 圖37B是圖35分別從光發射器E1f、E2f與E3f以及光發射器E1f、E2f與E4f所發出的第一光線VB1f與第二光線VB2f的晝夜節律作用因子相對於y色座標的關係圖。 圖38A是圖35分別從光發射器E1f、E2f與E3f以及光發射器E1f、E2f與E4f所發出的第一光線VB1f與第二光線VB2f的藍光危害相對於演色性指數的關係圖。 圖38B是圖35分別從光發射器E1f、E2f與E3f以及光發射器E1f、E2f與E4f所發出的第一光線VB1f與第二光線VB2f的藍光危害相對於晝夜節律作用因子的關係圖。 圖39繪示出根據本揭露的一實施例的顯示裝置的示意圖。 圖40繪示出本揭露的另一實施例的光源裝置的示意圖。 圖41A是圖40的第一光源的子光源所提供的子光線與太陽光的晝夜節律作用因子相對於相關色溫的關係圖。 圖41B是圖40的子光源發出的子光線的光譜。 圖41C是圖40的子光源的螢光體I、螢光體II、螢光體III與螢光體IV的光譜。 圖41D是圖40的子光源中,具有峰值波長443奈米、458奈米與461奈米的藍色發光二極體晶片的光譜。 圖42是根據本揭露的另一實施例的光源裝置的第一光源的子光源所提供的子光線與太陽光的晝夜節律作用因子相對於相關色溫的關係圖。 圖43是根據本揭露的另一實施例的光源裝置的第一光源的子光源所提供的子光線與太陽光的晝夜節律作用因子相對於相關色溫的關係圖。 圖44是根據本揭露的另一實施例的光源裝置的第一光源的子光源所提供的子光線的晝夜節律作用因子相對於相關色溫的上邊界與下邊界以及太陽光的晝夜節律作用因子相對於相關色溫的關係圖。 圖45是根據本揭露的另一實施例的光源裝置的第一光源的子光源所提供的子光線與太陽光的晝夜節律作用因子相對於相關色溫的關係圖。 圖46是根據本揭露的另一實施例的光源裝置的第一光源的子光源所提供的子光線與太陽光的晝夜節律作用因子相對於相關色溫的關係圖。Figure 1 depicts the corresponding curve of the light source and the physiological stimulus. FIG. 2A is a schematic diagram of a light source device in an embodiment of the disclosure. FIG. 2B is a variation of the light source device in the embodiment in FIG. 2A. 2C is a schematic diagram of the relative light intensity and light wavelength spectrum of light emitted by the light source device in the embodiment of FIG. 2B. FIG. 2D illustrates a timing diagram of the light source device in the embodiment of FIG. 2B having different lighting modes at different time periods. Fig. 2E is a block diagram of the light source device according to Fig. 2A. FIG. 3 is a schematic diagram of the color coordinate pattern of the same color temperature defined by the American National Standards Institute. 4A is a schematic diagram of a light source device in another embodiment of the disclosure. FIG. 4B illustrates the spectral curve of the first light in the embodiment of FIG. 4A. FIG. 4C illustrates the spectral curve of the second light in the embodiment of FIG. 4A. FIG. 4D illustrates a timing diagram of the light source device in the embodiment of FIG. 4A having different lighting modes at different time periods. FIG. 5A is a schematic diagram of a light source device in another embodiment of the disclosure. FIG. 5B illustrates the spectral curve of the first light in the embodiment of FIG. 5A. FIG. 5C illustrates the spectral curve of the second light in the embodiment of FIG. 5A. FIG. 5D illustrates a timing diagram of the light source device in the embodiment of FIG. 5A having different lighting modes at different time periods. FIG. 6A is a schematic diagram of a light source device in another embodiment of the disclosure. 6B to 6I illustrate the spectral curves of light provided by the light source device 500 under various color temperature conditions. FIG. 6J illustrates a timing diagram of the light source device in the embodiment of FIG. 6A having different lighting modes at different time periods. FIG. 7 is a schematic diagram of a light source device according to another embodiment of the disclosure. FIG. 8A illustrates the spectra of the light and the first light respectively emitted from the light-emitting unit in the first light-emitting mode in FIG. 7. FIG. 8B illustrates the spectra of the light and the second light respectively emitted from the light-emitting unit in the second light-emitting mode in FIG. 7. FIG. 9 illustrates the color coordinates of the first ray and the second ray in FIG. 7 in the CIE 1976 u'-v' diagram (CIE 1976 u'-v' diagram). FIG. 10 is a schematic diagram of a light source device according to another embodiment of the disclosure. FIG. 11A illustrates the spectra of the light and the first light respectively emitted from the light-emitting unit in the first light-emitting mode in FIG. 10. FIG. 11B is a drawing showing the spectra of the light and the second light respectively emitted from the light-emitting unit in the second light-emitting mode in FIG. 10. Fig. 12 shows the color coordinates of the first ray and the second ray in Fig. 10 in the CIE 1976 u'-v' diagram. FIG. 13A illustrates the spectra of the light and the first light respectively emitted from the light-emitting unit in the first light-emitting mode in FIG. 10 according to another embodiment of the present disclosure. FIG. 13B illustrates the spectra of the light and the second light respectively emitted from the light-emitting unit in the second light-emitting mode in FIG. 10 according to another embodiment of the present disclosure. FIG. 14 is a drawing showing the color coordinates of the first light and the second light in FIG. 10 in the CIE 1976 u'-v' diagram according to another embodiment of the present disclosure. FIG. 15 is a schematic diagram of a light source device according to another embodiment of the disclosure. Fig. 16A is a spectrum of sub-rays emitted by the light emitter of Fig. 15. 16B is a diagram of the relationship between the circadian rhythm action factor of the light emitted by the light emitting module of FIG. 15 and the correlated color temperature. FIG. 16C is a diagram of the relationship between the color rendering index of the light emitted by the light-emitting module of FIG. 15 and the correlated color temperature. Fig. 16D is a graph showing the relationship between the circadian action factor of sunlight and the correlated color temperature. FIG. 17 is a schematic diagram of a light source device according to another embodiment of the disclosure. FIG. 18A is a spectrum of sub-rays emitted by the light emitter of FIG. 17. FIG. 18B is a diagram showing the relationship between the circadian rhythm factor of the light emitted by the light emitting module of FIG. 17 and the correlated color temperature. 18C is a graph showing the relationship between the color rendering index of light emitted by the light-emitting element of FIG. 17 and the correlated color temperature. 19A to 19D are diagrams showing the relationship between the circadian rhythm factor of the light emitted by the light emitting module of FIG. 17 and the correlated color temperature when the color rendering index is greater than 80, 90, 93, and 95, respectively. FIG. 20 is a schematic diagram of a light source device according to another embodiment of the disclosure. Fig. 21A is a spectrum of sub-rays emitted by the light emitter of Fig. 20. FIG. 21B is a diagram showing the relationship between the circadian rhythm factor of the light emitted by the light emitting module of FIG. 20 and the correlated color temperature. FIG. 21C is a diagram of the relationship between the color rendering index of the light emitted by the light emitting module of FIG. 20 and the correlated color temperature. 22A and 22B are diagrams showing the relationship between the circadian rhythm action factor of the light emitted by the light emitting module of FIG. 20 and the correlated color temperature when the color rendering index is greater than 80 and 90, respectively. FIG. 23 is a schematic diagram of a light source device according to another embodiment of the disclosure. 24A to 24D are the spectra of the sub-rays emitted by the light emitters of the four embodiments in FIG. 23. 25A and 25B are diagrams showing the relationship between the circadian action factor of the light emitted by the light-emitting module of FIG. 23 and the sunlight with respect to the correlated color temperature. FIG. 26 is a schematic diagram of a light source device according to another embodiment of the disclosure. 27A and 27B are the spectra of sub-rays emitted by the light emitters of the two embodiments in FIG. 26. 28A and 28B are diagrams showing the relationship between the circadian rhythm action factors of the light emitted by the light-emitting module of FIG. 26 and the sunlight with respect to the correlated color temperature. FIG. 29 is a schematic diagram of a light source device according to another embodiment of the disclosure. Fig. 30 is a spectrum of sub-rays emitted by the light emitter of Fig. 29. FIG. 31 is a diagram of the relationship between the light emitted by the light-emitting module of FIG. 29 and the circadian rhythm action factor of sunlight with respect to the correlated color temperature. Fig. 32 is a spectrum of sub-rays emitted by the light emitter of another embodiment of Fig. 23. FIG. 33 is a diagram of the relationship between the color rendering index of light emitted by the light emitting module of the embodiment of FIG. 32 and the correlated color temperature. FIG. 34A is a diagram showing the relationship between the blue light hazard of the light emitted by the light emitting module in the embodiment of FIG. 32 and the correlated color temperature when the correlated color temperature is greater than 5000 K. FIG. 34B is a diagram showing the relationship between the blue light hazard of the light emitted by the light emitting module of the embodiment of FIG. 32 and the color rendering index when the correlated color temperature is greater than 5000 K. FIG. 35 is a schematic diagram of a light source device according to another embodiment of the disclosure. 36A is the spectrum of the red sub-ray V1f, the green sub-ray V2f and the first blue sub-ray V3f emitted by the light emitters E1f, E2f, and E3f of FIG. 35. 36B is the spectrum of the red sub-ray V1f, the green sub-ray V2f and the second blue sub-ray V4f emitted by the light emitters E1f, E2f, and E4f of FIG. 35. 37A is a diagram showing the relationship between the circadian rhythm action factors of the first light VB1f and the second light VB2f emitted from the light emitters E1f, E2f, and E3f and the light emitters E1f, E2f, and E4f in FIG. 35 with respect to the x-color coordinates. FIG. 37B is a diagram of the relationship between the circadian rhythm action factors of the first light VB1f and the second light VB2f emitted from the light emitters E1f, E2f and E3f and the light emitters E1f, E2f and E4f in FIG. 35 with respect to the y color coordinates. 38A is a diagram showing the relationship between the blue light hazards of the first light VB1f and the second light VB2f emitted from the light emitters E1f, E2f, and E3f and the light emitters E1f, E2f, and E4f in relation to the color rendering index in FIG. 35. 38B is a diagram showing the relationship between the blue light hazards of the first light VB1f and the second light VB2f emitted from the light emitters E1f, E2f, and E3f and the light emitters E1f, E2f, and E4f in FIG. 35 with respect to the circadian rhythm action factor. FIG. 39 is a schematic diagram of a display device according to an embodiment of the disclosure. FIG. 40 is a schematic diagram of a light source device according to another embodiment of the disclosure. FIG. 41A is a diagram of the relationship between the circadian action factor of the sub-light provided by the sub-light source of the first light source and the sunlight and the correlated color temperature in FIG. 40. FIG. 41B is the spectrum of the sub-light emitted by the sub-light source in FIG. 40. FIG. 41C shows the spectra of phosphor I, phosphor II, phosphor III, and phosphor IV of the sub-light source in FIG. 40. Fig. 41D is the spectrum of blue light-emitting diode wafers with peak wavelengths of 443 nm, 458 nm, and 461 nm in the sub-light source of Fig. 40. 42 is a diagram showing the relationship between the sub-light provided by the sub-light source of the first light source of the first light source and the circadian action factor of sunlight with respect to the correlated color temperature according to another embodiment of the present disclosure. FIG. 43 is a diagram of the relationship between the sub-light provided by the sub-light source of the first light source of the first light source and the circadian rhythm action factor of sunlight relative to the correlated color temperature according to another embodiment of the light source device of the present disclosure. FIG. 44 shows the circadian action factor of the sub-light provided by the sub-light source of the first light source of the light source device according to another embodiment of the present disclosure relative to the upper boundary and the lower boundary of the correlated color temperature and the circadian action factor of sunlight The graph of the correlation color temperature. FIG. 45 is a diagram showing the relationship between the sub-light provided by the sub-light source of the first light source of the light source device and the circadian rhythm action factor of sunlight with respect to the correlated color temperature according to another embodiment of the present disclosure. Fig. 46 is a diagram of the relationship between the sub-light provided by the sub-light source of the first light source of the light source device and the circadian rhythm action factor of sunlight relative to the correlated color temperature according to another embodiment of the present disclosure.

600:光源裝置 600: light source device

610:發光模組 610: Light-emitting module

620:控制單元 620: control unit

B6:光線 B6: light

E1、E2、E3、E4、E41、E42:光發射器 E1, E2, E3, E4, E41, E42: optical transmitter

V1、V2、V3、V4、V41、V42:子光線 V1, V2, V3, V4, V41, V42: sub-ray

Claims (16)

一種光源裝置,包括: 一第一光源,用以提供一第一光線,其中該第一光線的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)落在以(2700±100 K, 0.197)、(2700±100 K, 0.696)、(4500±200 K, 0.474)、(4500±200 K, 1.348)、(6500±300 K, 0.759)與(6500±300 K, 1.604)的六個晝夜節律作用因子相對於相關色溫的座標為頂點所形成的一第一區域內。A light source device includes: A first light source is used to provide a first light, wherein the circadian action factor of the first light relative to the coordinate (CCT, CAF) of the correlated color temperature falls between (2700±100 K, 0.197), (2700±100 K, 0.696), (4500±200 K, 0.474), (4500±200 K, 1.348), (6500±300 K, 0.759) and (6500±300 K, 1.604) of the six circadian rhythm action factors are relatively related The coordinates of the color temperature are in a first area formed by the apex. 如申請專利範圍第1項所述之光源裝置,其中該第一光線的演色性指數大於60,且該第一光線的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)落在以(2700±100 K, 0.696)、(2700±100 K, 0.197)、(6500±300 K, 0.759)與(6500±300 K, 1.229)的四個晝夜節律作用因子相對於相關色溫的座標為頂點所形成的一第二區域內。According to the light source device described in item 1 of the scope of patent application, wherein the color rendering index of the first light is greater than 60, and the circadian action factor of the first light is relative to the coordinate of the correlated color temperature (CCT, CAF). 2700±100 K, 0.696), (2700±100 K, 0.197), (6500±300 K, 0.759) and (6500±300 K, 1.229) of the four circadian rhythm action factors relative to the coordinates of the correlated color temperature are the apex points. Formed within a second area. 如申請專利範圍第1項所述之光源裝置,更包括: 一第二光源,用以提供一第二光線,其中該第二光線的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)落在該第一區域內,且不同於該第一光源的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)。The light source device described in item 1 of the scope of patent application further includes: A second light source for providing a second light, wherein the circadian action factor of the second light relative to the coordinate (CCT, CAF) of the correlated color temperature falls in the first area and is different from that of the first light source The coordinates of the circadian rhythm factor relative to the correlated color temperature (CCT, CAF). 如申請專利範圍第3項所述之光源裝置,更包括: 一控制單元,用以控制該第一光源與該第二光源,以結合該第一光線與該第二光線以輸出一第三光線。The light source device described in item 3 of the scope of patent application further includes: A control unit is used for controlling the first light source and the second light source to combine the first light and the second light to output a third light. 如申請專利範圍第4項所述之光源裝置,其中該第三光線的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)落在太陽光的晝夜節律作用因子相對於相關色溫的軌跡的下方。The light source device described in item 4 of the scope of patent application, wherein the coordinate (CCT, CAF) of the circadian action factor of the third light rays with respect to the coordinate of the correlated color temperature falls on the trajectory of the circadian action factor of sunlight with respect to the correlated color temperature Below. 如申請專利範圍第4項所述之光源裝置,其中該第三光線的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)落在太陽光的晝夜節律作用因子相對於相關色溫的軌跡的上方。The light source device described in item 4 of the scope of patent application, wherein the coordinate (CCT, CAF) of the circadian action factor of the third light rays with respect to the coordinate of the correlated color temperature falls on the trajectory of the circadian action factor of sunlight with respect to the correlated color temperature Above. 如申請專利範圍第4項所述之光源裝置,其中該第三光線的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)落在太陽光的晝夜節律作用因子相對於相關色溫的軌跡上。The light source device described in item 4 of the scope of patent application, wherein the coordinate (CCT, CAF) of the circadian action factor of the third light with respect to the correlated color temperature falls on the track of the circadian action factor of sunlight with respect to the correlated color temperature . 如申請專利範圍第3項所述之光源裝置,其中該第一光線與該第二光線之一的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)落在太陽光的晝夜節律作用因子相對於相關色溫的軌跡的下方,且該第一光線與該第二光線之另一的晝夜節律作用因子相對於相關色溫的座標落在該太陽光的晝夜節律作用因子相對於相關色溫的軌跡的上方。The light source device described in item 3 of the scope of patent application, wherein the circadian action factor of one of the first light and the second light relative to the coordinate (CCT, CAF) of the correlated color temperature falls on the circadian action factor of sunlight Relative to the bottom of the trajectory of the correlated color temperature, and the coordinates of the circadian action factor of the other of the first light and the second light relative to the correlated color temperature fall on the coordinate of the circadian action factor of the sunlight with respect to the trajectory of the correlated color temperature Above. 如申請專利範圍第1項所述之光源裝置,其中該第一光線的演色性指數大於80,且該第一光線的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)落在以(2700±100 K, 0.242)、(2700±100 K, 0.534)、(4500±200 K, 0.580)、(4500±200 K, 0.841)、(6500±300 K, 0.788)與(6500±300 K, 1.060)的六個晝夜節律作用因子相對於相關色溫的座標為頂點所形成的一第三區域內。The light source device described in item 1 of the scope of patent application, wherein the color rendering index of the first light is greater than 80, and the circadian action factor of the first light relative to the coordinate of the correlated color temperature (CCT, CAF) falls below ( 2700±100 K, 0.242), (2700±100 K, 0.534), (4500±200 K, 0.580), (4500±200 K, 0.841), (6500±300 K, 0.788) and (6500±300 K, 1.060) The coordinates of the six circadian rhythm action factors relative to the correlated color temperature are in a third area formed by the apex. 一種光源裝置,包括: 一發光模組,用以提供一光線;以及 一控制單元,用以改變一第一子光線與一第二子光線的比例以形成該光線,因此該光線的晝夜節律作用因子與相關色溫沿著相異於太陽光的晝夜節律作用因子相對於相關色溫之軌跡的該光線的晝夜節律作用因子相對於相關色溫之軌跡而變化,其中該第一子光線與該第二子光線之一的晝夜節律作用因子相對於相關色溫的座標落在該太陽光的晝夜節律作用因子相對於相關色溫之軌跡的下方,且該第一子光線與該第二子光線的另一的晝夜節律作用因子相對於相關色溫的座標落在該太陽光的晝夜節律作用因子相對於相關色溫之軌跡的上方。A light source device includes: A light emitting module for providing a light; and A control unit for changing the ratio of a first sub-ray to a second sub-ray to form the light, so that the circadian action factor and the correlated color temperature of the light are relative to the circadian action factor different from sunlight The circadian action factor of the light in the trajectory of the correlated color temperature changes with respect to the trajectory of the correlated color temperature, wherein the circadian action factor of one of the first sub-ray and the second sub-ray is located in the sun relative to the coordinate of the correlated color temperature The circadian action factor of light is below the trajectory of the correlated color temperature, and the coordinates of the other circadian action factor of the first sub-ray and the second sub-ray relative to the correlated color temperature fall on the circadian action of the sunlight The factor is above the locus of the correlated color temperature. 如申請專利範圍第10項所述之光源裝置,其中該控制單元用以改變該第一子光線、該第二子光線、一第三子光線與一第四子光線的比例以形成該光線,因此該光線的晝夜節律作用因子相對於相關色溫的座標在具有分別位於該第一子光線、該第二子光線、該第三子光線與該第四子光線的晝夜節律作用因子相對於相關色溫的座標的四個頂點的一區域內改變。The light source device according to claim 10, wherein the control unit is used to change the ratio of the first sub-ray, the second sub-ray, a third sub-ray and a fourth sub-ray to form the light, Therefore, the coordinate of the circadian action factor of the light with respect to the correlated color temperature is that the circadian action factors of the first sub-ray, the second sub-ray, the third sub-ray, and the fourth sub-ray are respectively located in relation to the correlated color temperature. The coordinates of the four vertices change within an area. 如申請專利範圍第11項所述之光源裝置,其中該第一子光線的相關色溫小於該第二子光線的相關色溫且小於該第四子光線的相關色溫,該第三子光線的相關色溫小於該第二子光線的相關色溫且小於該第四子光線的相關色溫,該第一子光線與該第三子光線的晝夜節律作用因子相對於相關色溫的座標分別落在該太陽光的晝夜節律作用因子相對於相關色溫之軌跡的相對兩側,且該第二子光線與該第四子光線的晝夜節律作用因子相對於相關色溫的座標分別落在該太陽光的晝夜節律作用因子相對於相關色溫之軌跡的相對兩側。The light source device according to claim 11, wherein the correlated color temperature of the first sub-light is less than the correlated color temperature of the second sub-light and less than the correlated color temperature of the fourth sub-light, and the correlated color temperature of the third sub-light Is less than the correlated color temperature of the second sub-ray and less than the correlated color temperature of the fourth sub-ray, the coordinates of the circadian action factors of the first sub-ray and the third sub-ray relative to the correlated color temperature fall on the day and night of the sunlight, respectively The circadian action factor relative to the opposite sides of the trajectory of the correlated color temperature, and the coordinates of the circadian action factor of the second sub-ray and the fourth sub-ray relative to the correlated color temperature respectively fall on the solar circadian action factor relative to Opposite sides of the locus of correlated color temperature. 如申請專利範圍第10項所述之光源裝置,其中該第一子光線與該第二子光線為白光。According to the light source device described in claim 10, the first sub-ray and the second sub-ray are white lights. 一種光源裝置,包括: 一第一光源,用以提供一第一光線,其中該第一光線的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)落在一區域內,該區域具有一上邊界、一下邊界及在該上邊界與該下邊界之間的晝夜節律作用因子相對於相關色溫的座標,其中晝夜節律作用因子相對於相關色溫的座標(2700±100 K, 0.696)、(4500±200 K, 1.348)與(6500±300 K, 1.604)位於該上邊界上,晝夜節律作用因子相對於相關色溫的座標(2700±100 K, 0.197)、(4500±200 K, 0.474)與(6500±300 K, 0.759)位於該下邊界上。A light source device includes: A first light source for providing a first light, wherein the circadian action factor of the first light is located in a region relative to the coordinate (CCT, CAF) of the correlated color temperature, and the region has an upper boundary, a lower boundary, and The coordinates of the circadian action factor relative to the correlated color temperature between the upper boundary and the lower boundary, where the circadian action factor is relative to the coordinate of the correlated color temperature (2700±100 K, 0.696), (4500±200 K, 1.348) And (6500±300 K, 1.604) are located on the upper boundary, and the coordinates of the circadian rhythm action factor relative to the correlated color temperature (2700±100 K, 0.197), (4500±200 K, 0.474) and (6500±300 K, 0.759) ) Is located on the lower boundary. 如申請專利範圍第14項所述的光源裝置,其中該上邊界與下邊界各為一個二次函數。For the light source device described in item 14 of the scope of patent application, the upper boundary and the lower boundary are each a quadratic function. 如申請專利範圍第14項所述的光源裝置,更包括: 一第二光源,用以提供一第二光線,其中該第二光線的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)落在該區域內,且不同於該第一光線的晝夜節律作用因子相對於相關色溫的座標(CCT, CAF)。The light source device described in item 14 of the scope of patent application further includes: A second light source for providing a second light, wherein the circadian action factor of the second light relative to the coordinate (CCT, CAF) of the correlated color temperature falls in the area and is different from the circadian rhythm of the first light The coordinate of the action factor relative to the correlated color temperature (CCT, CAF).
TW108143650A 2017-06-26 2018-06-26 Light source apparatus TWI700961B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/632,393 2017-06-26
US15/632,393 US10039169B2 (en) 2012-12-28 2017-06-26 Light source apparatus

Publications (2)

Publication Number Publication Date
TW202015490A TW202015490A (en) 2020-04-16
TWI700961B true TWI700961B (en) 2020-08-01

Family

ID=62816321

Family Applications (3)

Application Number Title Priority Date Filing Date
TW108143650A TWI700961B (en) 2017-06-26 2018-06-26 Light source apparatus
TW108145971A TWI743622B (en) 2017-06-26 2018-06-26 Light source apparatus
TW107121837A TWI683596B (en) 2017-06-26 2018-06-26 Light source apparatus and display apparatus

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW108145971A TWI743622B (en) 2017-06-26 2018-06-26 Light source apparatus
TW107121837A TWI683596B (en) 2017-06-26 2018-06-26 Light source apparatus and display apparatus

Country Status (4)

Country Link
EP (1) EP3422817A3 (en)
JP (1) JP6707219B2 (en)
CN (1) CN109121243B (en)
TW (3) TWI700961B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10371325B1 (en) 2018-06-25 2019-08-06 Intematix Corporation Full spectrum white light emitting devices
US10685941B1 (en) * 2019-07-09 2020-06-16 Intematix Corporation Full spectrum white light emitting devices
TWI670446B (en) * 2019-02-13 2019-09-01 東貝光電科技股份有限公司 Led lighting device manufacturing method and led lighting device thereof
JP2020136597A (en) * 2019-02-25 2020-08-31 パナソニックIpマネジメント株式会社 Light emitting device and lighting system
JP2020136619A (en) * 2019-02-25 2020-08-31 パナソニックIpマネジメント株式会社 Light emitting device and lighting system
US10959304B2 (en) 2019-04-09 2021-03-23 Nichia Corporation Lighting control system
JP6940796B2 (en) * 2019-04-09 2021-09-29 日亜化学工業株式会社 Lighting control system and lighting equipment.
US11887973B2 (en) 2019-07-09 2024-01-30 Intematix Corporation Full spectrum white light emitting devices
CN111443526B (en) * 2020-05-08 2022-06-07 内江市兴展光电有限公司 Backlight module capable of realizing multiple composite light equalization
CN111538184B (en) * 2020-05-08 2022-07-15 深圳中剑光电通信有限公司 Light-induced/electric-induced matched light-equalizing backlight module
TWI737444B (en) 2020-08-12 2021-08-21 和欣光通科技股份有限公司 Lighting device with physiological dimming and dimming method thereof
CN112153786A (en) * 2020-09-09 2020-12-29 中山和欣灯饰有限公司 Lighting device with physiological dimming function and dimming method thereof
CN112255785A (en) * 2020-10-16 2021-01-22 安徽阳光照明电器有限公司 White light LED color mixing design method for light health and illumination system thereof
CN114585142A (en) * 2020-12-01 2022-06-03 深圳市泛科科技有限公司 Multiband batch dimming method and system for plant lamp
TWI796057B (en) * 2021-06-21 2023-03-11 財團法人工業技術研究院 Phototherapy device and display device
US11948531B2 (en) 2021-06-21 2024-04-02 Industrial Technology Research Institute Light source device and display device alternately emitting light beams

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201245634A (en) * 2011-05-13 2012-11-16 Delta Electronics Inc Lighting device, lamp and method for lighting the same
US20140228914A1 (en) * 2013-02-08 2014-08-14 Cree, Inc. Solid state light emitting devices including adjustable melatonin suppression effects
US20150382427A1 (en) * 2009-10-08 2015-12-31 Delos Living Llc Led lighting system
US20160273717A1 (en) * 2013-08-29 2016-09-22 Soraa, Inc. Circadian-friendly led light sources
US20170086274A1 (en) * 2015-09-15 2017-03-23 Biological Innovation & Optimization Systems, LLC Systems and methods for controlling the spectral content of led lighting devices

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101396588B1 (en) * 2007-03-19 2014-05-20 서울반도체 주식회사 Light emitting apparatus having various color temperature
EP2164568B1 (en) * 2007-05-31 2016-02-24 Koninklijke Philips N.V. System for providing illumination and physiological stimuli
CN101840987A (en) * 2008-03-25 2010-09-22 三星电机株式会社 White-light emitting device and the white light source module of using this white-light emitting device
JP2011258649A (en) * 2010-06-07 2011-12-22 Sanken Electric Co Ltd Lighting system and method for controlling the same
US8449129B2 (en) * 2011-08-02 2013-05-28 Xicato, Inc. LED-based illumination device with color converting surfaces
JP5649537B2 (en) * 2011-08-12 2015-01-07 株式会社東芝 Lighting device
CN103906309B (en) * 2012-12-27 2016-07-06 财团法人工业技术研究院 Light source device and lighting device
US9693408B2 (en) * 2012-12-28 2017-06-27 Industrial Technology Research Institute Light source apparatus
US9410664B2 (en) * 2013-08-29 2016-08-09 Soraa, Inc. Circadian friendly LED light source
JP6408166B2 (en) * 2015-03-19 2018-10-17 フィリップス ライティング ホールディング ビー ヴィ Bio hue lamp
US9900957B2 (en) * 2015-06-11 2018-02-20 Cree, Inc. Lighting device including solid state emitters with adjustable control
US9603213B1 (en) * 2016-02-05 2017-03-21 Abl Ip Holding Llc Controlling multiple groups of LEDs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150382427A1 (en) * 2009-10-08 2015-12-31 Delos Living Llc Led lighting system
TW201245634A (en) * 2011-05-13 2012-11-16 Delta Electronics Inc Lighting device, lamp and method for lighting the same
US20140228914A1 (en) * 2013-02-08 2014-08-14 Cree, Inc. Solid state light emitting devices including adjustable melatonin suppression effects
US20160273717A1 (en) * 2013-08-29 2016-09-22 Soraa, Inc. Circadian-friendly led light sources
US20170086274A1 (en) * 2015-09-15 2017-03-23 Biological Innovation & Optimization Systems, LLC Systems and methods for controlling the spectral content of led lighting devices

Also Published As

Publication number Publication date
EP3422817A3 (en) 2019-03-27
TW202015491A (en) 2020-04-16
CN109121243A (en) 2019-01-01
TW202015490A (en) 2020-04-16
JP6707219B2 (en) 2020-06-10
CN109121243B (en) 2020-09-15
JP2019009126A (en) 2019-01-17
EP3422817A2 (en) 2019-01-02
TWI683596B (en) 2020-01-21
TW201906497A (en) 2019-02-01
TWI743622B (en) 2021-10-21

Similar Documents

Publication Publication Date Title
TWI700961B (en) Light source apparatus
TWI576010B (en) Light source apparatus
US10485070B2 (en) Light source apparatus and display apparatus
US10039169B2 (en) Light source apparatus
RU2536582C2 (en) Lighting installation with wakening function
CN104633499B (en) The LED light source module of a kind of high color rendering index (CRI) and LED lamp
TWI441551B (en) Color temperature tunable white light source
CN106028583B (en) Light source device and lighting device
US9693408B2 (en) Light source apparatus
CN203896552U (en) Light-adjustable alternating current light-emitting diode device
TWI710283B (en) Light source apparatus
CN109982478B (en) Light modulation method of white light LED
US10838253B2 (en) Light source apparatus and display apparatus
US10820387B2 (en) Light source apparatus and display apparatus
US20180343720A1 (en) Light source circuit and illumination apparatus
TWI510138B (en) Single-wire dimming method
WO2013053199A1 (en) Light-mixing light-emitting diode packaging structure
TW200923272A (en) LED lamp with adjustable chromaticity
US11291089B2 (en) LED control method for perceived mixing
CN209859973U (en) Light source module and lighting device comprising same
US20140265926A1 (en) Illumination apparatus with gradually changeable color temperatures
US9119237B2 (en) Lighting lamp
CN220325860U (en) Lamp and lighting device
TWI795208B (en) A driving circuit and light-emitting device using the same
US20230383929A1 (en) Lighting device