TWI690440B - 基於支持向量機之路口智慧駕駛方法及其系統 - Google Patents

基於支持向量機之路口智慧駕駛方法及其系統 Download PDF

Info

Publication number
TWI690440B
TWI690440B TW107136584A TW107136584A TWI690440B TW I690440 B TWI690440 B TW I690440B TW 107136584 A TW107136584 A TW 107136584A TW 107136584 A TW107136584 A TW 107136584A TW I690440 B TWI690440 B TW I690440B
Authority
TW
Taiwan
Prior art keywords
support vector
vector machine
vehicle
time
intelligent driving
Prior art date
Application number
TW107136584A
Other languages
English (en)
Other versions
TW202015947A (zh
Inventor
許琮明
王正賢
Original Assignee
財團法人車輛研究測試中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人車輛研究測試中心 filed Critical 財團法人車輛研究測試中心
Priority to TW107136584A priority Critical patent/TWI690440B/zh
Priority to US16/200,613 priority patent/US10878346B2/en
Priority to DE102018130004.2A priority patent/DE102018130004B3/de
Priority to JP2018228020A priority patent/JP6755291B2/ja
Application granted granted Critical
Publication of TWI690440B publication Critical patent/TWI690440B/zh
Publication of TW202015947A publication Critical patent/TW202015947A/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0088Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo or light sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • B60W2420/408
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks

Abstract

本發明提供一種基於支持向量機之路口智慧駕駛方法,其應用於一車輛且包含提供支持向量機提供步驟、資料處理步驟以及決策步驟。於支持向量機提供步驟中,提供一支持向量機,支持向量機預先經過訓練過程,在訓練過程中,提供訓練資料予支持向量機,訓練資料由原始資料經過維度降低模組及時間補值模組處理後獲得;於資料處理步驟中,將環境感測單元所獲取之p個特徵經由維度降低模組及時間補值模組處理後,提供予支持向量機進行分類;於決策步驟中,以支持向量機的分類結果決定車輛之駕駛行為。藉此,可有效提升支持向量機的決策準確度。

Description

基於支持向量機之路口智慧駕駛方法及其系統
本發明是有關於一種路口智慧駕駛方法及其系統,且尤其是有關一種基於支持向量機之路口智慧駕駛方法及其系統。
一般而言,十字路口或道路交會處具有多方向之車輛轉彎或直行交會,因此在通過路口時,需要依駕駛之判斷來進行加速、減速或定速行駛,一旦駕駛判斷錯誤,交通事故便會發生。根據美國統計局的統計,2008年於十字路口或道路交會處發生交通事故的比例高達40%;而根據德國聯邦統計局的統計,2013於十字路口或道路交會處發生交通事故的比例高達47.5%,在部分國家,發生交通事故的比例甚至高達98%。
為了輔助駕駛通過路口時的決策判斷,有業/學者發展出高度自動化車輛(highly automated vehicle,HAV),其包含人工智慧方式進行機器學習,以輔助駕駛決 策,而支持向量機便是其中一種機器學習方式,其透過建構模型進行預測或估計,便可進行決策。例如通過路口時,何時該加速、減速或定速。
在實際的情況下,駕駛會依據過去幾個單位時間內的周遭資訊,做出適合當下的駕駛行為,也就是說,真實的駕駛情況是具有時間相依關係的。然而,在習知之支持向量機的訓練過程中,用來訓練的資料雖然是依照連續的時間點來錄製,但每一個時間所觀察的數據皆被當作一筆獨立之資料,而未考慮變數有時間相依性,因此判斷出來的決策準確度仍有改善空間。
有鑑於此,如何有效的提升支持向量機的決策準確度,遂成相關業者努力的目標。
本發明提供一種基於支持向量機之路口智慧駕駛方法及其系統,其透過維度降低處理及時間補值處理後,可有效提升支持向量機的決策準確度。
依據本發明之一態樣之一實施方式提供一種基於支持向量機之路口智慧駕駛方法,其應用於一車輛且包含一支持向量機提供步驟、一資料處理步驟以及一決策步驟。於支持向量機提供步驟中,提供一支持向量機,所提供之支持向量機預先經過一訓練過程,在訓練過程中,提供一訓練資料予支持向量機,訓練資料由一原始資料經過一維度降低模組及一時間補值模組處理後獲得,其中,原始資料包含複 數個訓練樣本,各訓練樣本包含通過一路口之一時間總值,及在時間總值內的複數個取樣時點中每一取樣時點所對應之p個特徵及一當下決策;維度降低模組將p個特徵整合為k個新特徵,時間補值模組提供一預設時間,時間補值模組將任一訓練樣本中任一取樣時點及在前述任一取樣時點之前的其他取樣時點所分別對應之新特徵視為一待擴展數列,且時間補值模組將待擴展數列重整為一擴展數列,擴展數列的長度等於預設時間內所具有的取樣時點的數目,其中,pk為正整數,且p>k;於資料處理步驟中,將一環境感測單元所獲取之p個特徵經由維度降低模組及時間補值模組處理後,提供予支持向量機進行分類;於決策步驟中,以支持向量機的分類結果決定車輛之駕駛行為。
藉此,訓練資料及駕駛當下所獲取之特徵在經過維度降低模組及時間補值模組處理後,會具有時間相依關係,而能提升預測結果的準確度。
依據前述之基於支持向量機之路口智慧駕駛方法的複數實施例,其中維度降低模組可採用一主成分分析法。或時間補值模組可採用一均勻縮放法。或預設時間可等於時間總值中之最大者。
依據前述之基於支持向量機之路口智慧駕駛方法的複數實施例,其中p個特徵可包含車輛相對一來車之一橫向速度、車輛相對來車之一橫向加速度、車輛相對來車之一縱向速度、車輛相對來車之一縱向加速度、車輛與來車之一距離、車輛與路口之一距離,及來車之一速度。原始資料 中的複數特徵可由環境感測單元取得,環境感測單元包含一雷達、一攝影機及一GPS定位裝置中至少其中之一。
依據本發明之一態樣之另一實施方式提供一種基於支持向量機之路口智慧駕駛方法,其應用於一車輛且包含一支持向量機提供步驟、一資料處理步驟及一決策步驟。於支持向量機提供步驟中,提供一支持向量機,所提供之支持向量機預先經過一訓練過程,在訓練過程中,提供一訓練資料予支持向量機,訓練資料由一原始資料經過一維度降低模組及一時間補值模組處理後獲得,其中,原始資料包含複數個訓練樣本,各訓練樣本包含通過一路口之一時間總值,及在時間總值內的複數個取樣時點中每一取樣時點所對應之p個特徵及一當下決策;維度降低模組將p個特徵整合為k個新特徵,時間補值模組提供一預設時間,時間補值模組將任一訓練樣本中任一取樣時點及在前述任一取樣時點之前的其他取樣時點所分別對應之新特徵視為一待擴展數列,且當待擴展數列的長度小於預設時間內所具有的取樣時點的數目時,於待擴展數列補入一預估值後形成一新待擴展數列,且時間補值模組將新待擴展數列重整為一擴展數列,擴展數列的長度等於預設時間內所具有的取樣時點的數目,其中,pk為正整數,且p>k;於資料處理步驟中,將一環境感測單元所獲取之p個特徵經由維度降低模組及時間補值模組處理後,提供予支持向量機進行分類;於決策步驟中,以支持向量機的分類結果決定車輛之行為。
依據前述之基於支持向量機之路口智慧駕駛方法的複數實施例,其中,時間補值模組可使用一主成分分析法。或時間補值模組可使用一均勻縮放法。
依據本發明之另一態樣之一實施方式提供一種基於支持向量機之路口智慧駕駛系統,其應用於一車輛,基於支持向量機之路口智慧駕駛系統包含一處理單元以及一環境感測單元;處理單元設置於車輛且包含一維度降低模組、一時間補值模組及一支持向量機。維度降低模組將複數個取樣時點中每一取樣時點所對應之p個特徵整合為k個新特徵,其中,pk為正整數,且p>k;時間補值模組提供一預設時間,時間補值模組將任一取樣時點及在前述任一取樣時點之前的其他取樣時點所分別對應之新特徵視為一待擴展數列,且時間補值模組將待擴展數列重整為一擴展數列,擴展數列的長度等於預設時間內所具有的取樣時點的數目;支持向量機經過一訓練資料訓練,訓練資料由一原始資料經過維度降低模組及時間補值模組處理後獲得,原始資料包含複數個訓練樣本,各訓練樣本包含通過一路口之一時間總值,及在時間總值內的各取樣時點所對應之p個特徵及一當下決策。環境感測單元設置於車輛且訊號連接處理單元,環境感測單元用以取得p個特徵;其中,環境感測單元所獲取之p個特徵經由處理單元的維度降低模組及時間補值模組處理後,提供予支持向量機進行分類,支持向量機的分類結果用以決定車輛之駕駛行為。
依據前述之基於支持向量機之路口智慧駕駛系統的複數實施例,其中p個特徵可包含車輛相對一來車之一橫向速度、車輛相對來車之一橫向加速度、車輛相對來車之一縱向速度、車輛相對來車之一縱向加速度、車輛與來車之一距離、車輛與路口之一距離及來車之一速度。或環境感測單元可包含一雷達、一攝影機及一GPS定位裝置中至少其中之一。或當下決策可包含加速、減速或定速中至少其中之一。
100‧‧‧基於支持向量機之路口智慧駕駛方法
110‧‧‧支持向量機提供步驟
120‧‧‧資料處理步驟
130‧‧‧決策步驟
200‧‧‧基於支持向量機之路口智慧駕駛系統
210‧‧‧處理單元
211‧‧‧維度降低模組
212‧‧‧時間補值模組
213‧‧‧支持向量機
220‧‧‧環境感測單元
V1‧‧‧車輛
V2‧‧‧來車
R1‧‧‧橫向道路
第1圖繪示依照本發明第一實施例之一種基於支持向量機之路口智慧駕駛方法的流程圖;第2圖繪示依照第1圖之基於支持向量機之路口智慧駕駛方法的一第一模擬訓練;第3圖繪示依照第1圖之基於支持向量機之路口智慧駕駛方法的一第二模擬訓練;第4圖繪示依照第1圖之基於支持向量機之路口智慧駕駛方法的一第三模擬訓練;第5圖繪示第2圖之第一模擬訓練的第一累積率;第6圖繪示第3圖之第二模擬訓練的第一累積率;第7圖繪示第4圖之第三模擬訓練的第一累積率;以及第8圖繪示依照本發明第三實施例之一種基於支持向量機之路口智慧駕駛系統的方塊圖。
以下將參照圖式說明本發明之實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,閱讀者應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示;並且重複之元件將可能使用相同的編號或類似的編號表示。
請參閱第1圖,其中第1圖繪示依照本發明第一實施例之一種基於支持向量機之路口智慧駕駛方法100的流程圖。基於支持向量機之路口智慧駕駛方法100應用於一車輛且包含一支持向量機提供步驟110、一資料處理步驟120以及一決策步驟130。
於支持向量機提供步驟110中,提供一支持向量機,支持向量機預先經過一訓練過程,在訓練過程中,提供一訓練資料予支持向量機,訓練資料由一原始資料經過一維度降低模組及一時間補值模組處理後獲得,其中,原始資料包含複數個訓練樣本,各訓練樣本包含通過一路口之一時間總值,及在時間總值內的複數個取樣時點中每一取樣時點所對應之p個特徵及一當下決策,維度降低模組將p個特徵整合為k個新特徵,時間補值模組提供一預設時間,時間補值模組視任一訓練樣本中任一取樣時點及在前述任一取樣時點之前的其他取樣時點所分別對應之新特徵為一待擴展數列,且時間補值模組將待擴展數列重整為一擴展數列,擴 展數列的長度等於預設時間內所具有的取樣時點的數目,其中,pk為正整數,且p>k
於資料處理步驟120中,將一環境感測單元所獲取之p個特徵經由維度降低模組及時間補值模組處理後,提供予支持向量機進行分類。
於決策步驟130中,以支持向量機的分類結果決定車輛之駕駛行為。
藉此,訓練資料及駕駛當下所獲取之特徵在經過維度降低模組及時間補值模組處理後,會具有時間相依關係,而能提升預測結果的準確度。後面將詳述基於支持向量機之路口智慧駕駛方法100的細節。
支持向量機是一種監督式機器學習的分類器,其可以用來輔助判定車輛的行為。而在支持向量機提供步驟110中,所提供之支持向量機是經過訓練過程訓練,而能判定車輛在經過路口時的減速、加速或定速行為。
在訓練過程中,可以利用模擬方式來模擬車輛經過路口的狀況,而形成多個訓練樣本。在第一實施例中,模擬的平台可以是Tass international公司開發的PreScan高級駕駛員輔助系統(Advanced Driver Assistance Systems;ADAS),其可以建置相關的路口資訊以進行車輛經過路口的模擬。在其他實施例中,亦可以在實際的道路上取得多個訓練樣本,或用其他模擬軟體,不以此為限。
車輛經過路口一次,其所取得的資料可視為一個訓練樣本。也就是說,當車輛經過路口十次,可取得十個 訓練樣本。每一個訓練樣本中,包含通過路口之時間總值,及在時間總值內的複數個取樣時點中每一取樣時點所對應之p個特徵及一當下決策。舉例而言,假設在第1個訓練樣本中,通過路口的時間總值為2秒,而每間隔0.4秒取樣一次,則會有5個取樣時點,而每個取樣時點均會蒐集p個特徵及一個當下決策,當下決策可以是加速、減速或定速,而p個特徵可包含車輛相對一來車之一橫向速度、車輛相對來車之一橫向加速度、車輛相對來車之一縱向速度、車輛相對來車之一縱向加速度、車輛與來車之一距離、車輛與路口之一距離,及來車之一速度。
第1個訓練樣本的資料可如表1所示。其中,單一個訓練樣本中,q個取樣時點所取得的p個特徵可形成一個原特徵矩陣XX=(x 1 ,...,x p ),其中x i =(x i1 ,..,x iq )T,而閱讀者應該了解到,當具有n個訓練樣本時,就會具有n個原特徵矩陣X l 對應不同的取樣時點數目q l nq為正整數,l為1到n的正整數,i為1到p的正整數。n個訓練樣本中所有的當下決策可形成一個當下決策矩陣ZZ,ZZ=(z 1 ,...,z n )。下文中,T lw 代表第l個訓練樣本中第w個取樣時點,w為1到q l 的正整數,x lwi 代表在取樣時點T lw 所獲得的第i個特徵,z lw 代表在取樣時點T lw 所獲得的當下決策。因此,表1中的T 11 為第1個訓練樣本中的第1個取樣時點,在第一實施例中即為0.4秒,T 12 為第1個訓練樣本中的第2個取樣時點,在第一實施例中即為0.8秒,x 111 代表在第1個訓練樣本中第1個取樣時點T 11 所獲得的第1個特徵,x 122 代表在第1個訓練 樣本中第2個取樣時點T 12 所獲得的第2個特徵,z 13 代表在第1個訓練樣本中第3個取樣時點T 13 所獲得的當下決策,以此類推,不再贅述。
Figure 107136584-A0101-12-0010-1
又,假設在第2個訓練樣本中,通過路口的時間總值為2.4秒,而每間隔0.4秒取樣一次,共有6個取樣時點。則第2個訓練樣本的資料可如表2所示。
Figure 107136584-A0101-12-0010-2
假設只有2個訓練樣本,則原始資料即包含表1及表2之資料。
上述的原始資料會經過維度降低模組及時間補值模組處理後轉為訓練資料。而維度降低模組可使用主成分分析法(Principal Component Analysis;PCA)、偏最小平方迴歸法(Partial Least Squares Regression;PLSR)、多維標度法(Multidimensional Scaling;MDS)、投影尋蹤法(Projection Pursuit method)、主成分回歸法(Principal Component Regression;PCR)、二次判別分析法(Quadratic Discriminant Analysis;QDA)、正規化判別分析法(Regularized Discriminant Analysis;RDA)及線性判別分析法(Linear Discriminant Analysis;LDA)等。較佳地,維度降低模組使用主成分分析法,主成分分析法的相關公式如式(1)、式(2)及式(3)所示。
Y=a T X (1)。
Figure 107136584-A0305-02-0013-1
Figure 107136584-A0305-02-0013-2
上式是基於一個訓練樣本中一個取樣時點的公式,所以未包含代表訓練樣本數目的變數l及代表取樣時點的變數w。其中,Y代表經整合後的新特徵矩陣,其包含k個新特徵,即Y=(y 1 ,....,y k ),其中y j 表示第j個新特徵,j為1到k的正整數。而當考慮n個訓練樣本及其所對應之取樣時點數目q l 時,Y l =(y 11 ,....,y lk ),Y lj =(y lj1 ,....,
Figure 107136584-A0305-02-0013-5
)。a為系數矩陣,a ji 表示第i個特徵x i 所對應的系數。而第一實施例 中,維度降低模組使各訓練樣本中的p個特徵整合成1個新特徵,也就是說,上述的k為1。因此,經維度降低模組處理後的第1個訓練樣本如表3所示,經維度降低模組處理後的第2個訓練樣本如表4所示。其中,y ljw 代表經重整後對應取樣時點T lw 的第j個新特徵,經維度降低模組處理後的資料為(Y l ,z l )。
Figure 107136584-A0101-12-0012-5
Figure 107136584-A0101-12-0012-6
接著,上述資料會再經過時間補值模組處理以進行補值。由於監督式分類器輸入之分類資料須為同長度且 為數列資料,因此藉由時間補值模組可將每一單位時間之累積資料拉成相同時間長度。
時間補值模組的補值方法可採用動態時間校正法(dynamic time warping;DTW)或均勻縮放法(Uniform scaling)。較佳地,時間補值模組採用均勻縮放法。
在使用均勻縮放法時,時間補值模組可提供預設時間,其中,預設時間可等於時間總值中之最大者。也就是說,在第一實施例中,第1個訓練樣本的時間總值為2秒,第2個訓練樣本的時間總值為2.4秒,最大值為2.4,故預設時間可定為2.4秒,預設時間內所具有的取樣時點的數目為6。
在進行補值之前,時間補值模組視任一訓練樣本中任一取樣時點及在前述任一取樣時點之前的其他取樣時點所分別對應之新特徵為一待擴展數列。表5為待擴展數列表,其中L ljw 表示待擴展數列,L ljw =(y lj1 ,...,y ljw )。若經維度降低模組後使各訓練樣本中的p個特徵整合成1個新特徵,則表7中的j均為1。
Figure 107136584-A0101-12-0013-7
Figure 107136584-A0101-12-0014-8
更詳細地說,在表5中,待擴展數L ljw 包含第l個訓練樣本中第1個至第w個取樣時點T l1 ~T lw 對應的所有第j個新特徵y lj1 ~y ljw 。舉例而言,對擴展數列L 111 而言,w=1,j=1,因此擴展數列L 111 具有第1個取樣時點T 11 的1個第1個新特徵y 111 ,且待擴展數列L 111 的長度為1,也就是其由一個數值組成。對待擴展數列L 213 而言,w=3,j=1,因此擴展數列L 213 具有第2個訓練樣本中第1個至第3個取樣時點T 21 ~T 23 所對應的3個第1個新特徵y 211 ~y 213 ,且待擴展數列L 213 的長度為3,也就是其由三個數值組成,其他以此類推。因此,透過補值可使待擴展數列重整為一擴展數列,且擴展數列的長度等於預設時間內所具有的取樣時點的數目。因為在第一實施例中,預設時間內所具有的取樣時點的數目為6,故擴展數列會由6個數值組成。是以,經時間補值模組補值後,所有擴展數列均由6個數值組成,如表6所示,其中L * ljw 表示擴展數列。若經維度降低模組後使各訓練樣本中的p個特徵整合成1個新特徵,則表7中的j均為1。
表6、擴展數列表
Figure 107136584-A0101-12-0015-9
表6中的擴展數列L * ljw =(L * ljw1 ,...,L * ljwr ),其為待擴展數列L ljw 經由式(4)及式(5)轉換而來。
Figure 107136584-A0101-12-0015-40
Figure 107136584-A0101-12-0015-41
其中r=1,...,q s q s 表示預設時間內所具有的取樣時點的數目,q s 小於等於q l ,當預設時間等於時間總值中之最大者時,q s =max(q l )
Figure 107136584-A0101-12-0015-56
r×w/q s
Figure 107136584-A0101-12-0015-57
表示地板公式,且
Figure 107136584-A0101-12-0015-58
,Z為整數集,也就是說,將r×w/q s 的結果無條件捨去僅保留整數。
舉例而言,L 113 =(y 111 ,y 112 ,y 113 )擴展為L * 113 =(L * 1131 ,L * 1132 ,L * 1133 ,L * 1134 ,L * 1135 ,L * 1136 ),而 L * 1131 =y 111 L * 1132 =y 111 (因為2x3/6=1,所以選擇將位於L 113 第1個位置的y 111 補入L * 113 的第二個位置),L * 1133 =y 111 (因為3x3/6=1.5,無條件捨去僅保留整數為1,所以選擇將位於L 113 第1個位置的y 111 補入L * 113 的第三個位置),L * 1134 =y 112 (因為4x3/6=2,所以選擇將位於L 113 第2個位置的y 112 補入L * 113 的第四個位置),L * 1135 =Y 112 (因為5x3/6=2.5,無條件捨去僅保留整數為2,所以選擇將位於L 113 第2個位置y 112 的補入L * 113 的第五個位置),L * 1136 =y 113 (因為6x3/6=3,所以選擇將位於L 113 第3個位置y 113 的補入L * 113 的第六個位置)。在此要特別說明的是,當上述的待擴展數列的長度大於預設時間內所具有的取樣時點的數目,也就是說,待擴展數列的長度大於預計重整後之擴展數列的長度時,則仍可依式(4)及式(5)進行縮值,而達到本發明之目的。
原始資料經過維度降低模組處理後的資料為(Y l ,z l ),(Y l ,z l )再經過時間補值模組處理後轉為訓練資料(L * l ,z l ),L * l =(L * l1 ,...,L * lk ),
Figure 107136584-A0101-12-0016-44
Figure 107136584-A0101-12-0016-46
,訓練資料如表7所示,其中最後一列因其不需補值而可以維持原數值,但為了方便表示其與支持向量機的關係,仍以L * ljwr 表示。若經維度降低模組後使各訓練樣本中的p個特徵整合成1個新特徵,則表7中的j均為1。
Figure 107136584-A0101-12-0016-10
Figure 107136584-A0101-12-0017-11
上述的訓練資料即可提供給支持向量機使用,以找出超平面,支持向量機的相關公式如式(6)至式(9)所示,其中支持向量機的開始目標如式(6)所示,式(6)代入式(7),並根據微績分及若且唯若原則將式(6)、(7)改寫為式(8)所示。
Figure 107136584-A0101-12-0017-12
Figure 107136584-A0101-12-0017-13
Figure 107136584-A0101-12-0017-14
Figure 107136584-A0101-12-0017-15
其中,C為懲罰係數(cost variable)且大於0,W為元素係數(entries parameter)、ξ l 為鬆弛參數(slack variable)、b為截距項參數(intercept term)、α d α e 為拉 格朗日乘數(lagrange multiplier)、
Figure 107136584-A0101-12-0018-47
為徑向基函數核(radial bias function),其將超平面拓展至非線性切割。L * l L * d L * e 代表上述的擴展值L * ljwr ,其為了簡單示意而省略其他變數,de均為變數。
當支持向量機經過此訓練資料後,即可找到超平面以輔助判斷決策。
於資料處理步驟120中,車輛在行經路口時,會由環境感測單元即時蒐集p個特徵,環境感測單元可包含雷達、攝影機、GPS定位裝置等複數感測裝置,感測裝置能用來偵測距離、車速等,而能感測到p個特徵,然感測裝置的種類及數量不限於此。車輛在每一取樣時點所蒐集的p個特徵均會進入維度降低模組及時間補值模組進行處理,處理方式如上所述。接著,於決策步驟130中,經處理的資料進入支持向量機,由於支持向量機已事先透過訓練過程並找到超平面,因此,當即時取得之p個特徵經處理後進入支持向量機,即可產生分類結果,並以分類結果決定車輛之駕駛行為,如減速、加速或定速。
請參閱第2圖、第3圖及第4圖,其中第2圖繪示依照第1圖之基於支持向量機之路口智慧駕駛方法100的一第一模擬訓練,第3圖繪示依照第1圖之基於支持向量機之路口智慧駕駛方法100的一第二模擬訓練,第4圖繪示依照第1圖之基於支持向量機之路口智慧駕駛方法100的一第三模擬訓練。在第一模擬訓練、第二模擬訓練及第三模擬訓練中,車輛V1經過一T形路口,而在第一模擬訓練時,橫向道 路R1上未有任何來車;在第二模擬訓練時,橫向道路R1的左側有來車V2;在第三模擬訓練時,橫向道路R1的右側有來車V2。
車輛V1的車速為每小時40公里,來車V2的車速界於每小時15公里至每小時40公里之間。所蒐集的7個特徵為車輛V1相對來車V2之一橫向速度、車輛V1相對來車V2之一橫向加速度、車輛V1相對來車V2之一縱向速度、車輛V1相對來車V2之一縱向加速度、車輛V1與來車V2之一距離、車輛V1與路口之一距離,及來車V2之一速度。且第一模擬訓練、第二模擬訓練及第三模擬訓練各別包含20個訓練樣本,當下決策包含減速、定速及加速等行為,而第一模擬訓練的預設時間為16.9秒,第二模擬訓練的預設時間為28.8秒,第三模擬訓練的預設時間為21.7秒。
請參閱第5圖、第6圖及第7圖,其中第5圖繪示第2圖之第一模擬訓練的第一累積率,第6圖繪示第3圖之第二模擬訓練的第一累積率,第7圖繪示第4圖之第三模擬訓練的第一累積率。第一模擬訓練的平均第一累積率為0.9619,第二模擬訓練的平均第一累積率為0.7588,第三模擬訓練的平均第一累積率為0.8014,上述的第一累積率均在0.7以上,表示經維度降低處理後之資訊已盡可能地解釋原資料,而符合要求。
表8表示在與第一模擬訓練相同的情況下,第一比較例與使用本案之基於支持向量機之路口智慧駕駛方法100的決策結果準確度(AC)比較,由表8可看出,使用基於 支持向量機之路口智慧駕駛方法100的決策準確度較高。其中,第一比較例亦是使用支持向量機進行分類,但不同點在於,第一比較例的支持向量機只有經過原始資料訓練。
Figure 107136584-A0101-12-0020-16
表9表示在與第二模擬訓練相同的情況下,第二比較例與使用本案之基於支持向量機之路口智慧駕駛方法100的決策結果準確度(AC)比較,由表9可看出,使用基於支持向量機之路口智慧駕駛方法100的決策準確度較高。其中,第二比較例亦是使用支持向量機進行分類,但不同點在於,第二比較例的支持向量機只有經過原始資料訓練。
Figure 107136584-A0101-12-0020-17
Figure 107136584-A0101-12-0021-18
表10表示在與第三模擬訓練相同的情況下,第三比較例與使用本案之基於支持向量機之路口智慧駕駛方法100的決策結果準確度(AC)比較,由表10可看出,使用基於支持向量機之路口智慧駕駛方法100的決策準確度較高。其中,第三比較例亦是使用支持向量機進行分類,但不同點在於,第三比較例的支持向量機只有經過原始資料訓練。
Figure 107136584-A0101-12-0021-19
在此要特別說明的是,上述的所有測試均為PreScan的模擬結果,然亦可以使用實際道路進行測試。
在本發明之第二實施例中,是於支持向量機提供步驟中,讓時間補值模組提供一預設時間,時間補值模組視任一訓練樣本中任一取樣時點及在前述任一取樣時點之前的其他取樣時點所分別對應之新特徵為一待擴展數列,且當待擴展數列的長度小於預設時間內所具有的取樣時點的數目時,於待擴展數列補入前述取樣時點之下一個取樣時點的一預估值後形成一新待擴展數列,且時間補值模組將新待擴展數列重整為一擴展數列,擴展數列的長度等於預設時間內所具有的取樣時點的數目。
更詳細地說,假設原始資料包含表1及表2的資料,預設時間為2.4秒,待擴展數列如表5所示,因為表5中累積取樣時點0~T11時對應的待擴展數列長度為1,其小於預設時間內所具有的取樣時點的數目(等於6),且在此累積取樣時點0~T11中尚未取得下一個取樣時點T12的資料,因此可以補入一預估值y' 1j2 對應取樣時點T12。類似地,在表5中,所有累積取樣時點對應的待擴展數列長度均小於6,因此需分別補入預估值,則新待擴展數列L' ljw 表如表11所示,其中y' ljw 表示預估值。在此需特別說明的是,在表11的新待擴展數列中,累積取樣時點0~T15、0~T25對應的待擴展數列長度為6,而不需再進行補值,但為了清楚的表現出新待擴展數列與待擴展數列的差異,仍將其列出,而不以此限制本發明。
Figure 107136584-A0305-02-0024-4
Figure 107136584-A0101-12-0023-21
第二實施例中,使用待擴展數列的聯合分配及所有新特徵y ljw 的資料服從高斯分配可求出預估值的條件分配,最終可求得預估值。由於上述經維度降低後的新特徵y ljw 可配適資料服從高斯分配(或稱高斯隨機過程,gaussian random process,marginal distribution),即y ljw ~GP(μ jw ,Σ jw ),其中(μ jw ,Σ jw )可由式(10)及式(11)估算。此外,可以由式(12)求得預估值前的其他新特徵y ljw (相當於待擴展數列)之聯合分配(joint distribution),其中式(12)中的w大於2,式(15)中的c指第c個訓練樣本,m指第m個訓練樣本。
Figure 107136584-A0101-12-0023-22
Figure 107136584-A0101-12-0023-23
y lj[1:(w-1)]≡(y lj1 ,...,y lj(w-1))~GP(μ j[1:(w-1)] ,Σ j[1:(w-1)]) (12)。
(μ j[1:(t-1)] ,Σ j[1:(t-1)])可被式(13)、式(14)及式(15)估算。
Figure 107136584-A0101-12-0023-42
Figure 107136584-A0101-12-0023-24
Figure 107136584-A0101-12-0023-25
最終,可求得在過去時間點下預測下一單位時間的條件分配(conditional distribution),也就是說,在累積取樣時點0~T11預測取樣時點T12的條件分配,條件分配如式(16)、式(17)所示。
Figure 107136584-A0101-12-0024-26
Figure 107136584-A0101-12-0024-27
而(
Figure 107136584-A0101-12-0024-48
,
Figure 107136584-A0101-12-0024-49
)可由(
Figure 107136584-A0101-12-0024-50
,
Figure 107136584-A0101-12-0024-52
)估算,有了條件分配,可以根據條件分配預測下一取樣時點的預估值(其可根據Monte Carlo概念生成預估值)。
其中,
Figure 107136584-A0101-12-0024-59
y ljw ,y lj[1:w-1]之變異數矩陣(covariance matrix),GP(.,.)為高斯隨機過程之縮寫,μ為高斯隨機過程平均數,Σ為高斯隨機過程變異數矩陣(Covariance-variance矩陣),
Figure 107136584-A0101-12-0024-53
為變異數矩陣內之元素(Element)估計量。
表12表示在加入預估值後的第一模擬訓練情境下的決策結果準確度,表13表示在加入預估值後的第二模擬訓練情境下的決策結果準確度,表14表示在加入預估值後的第三模擬訓練情境下的決策結果準確度。由表12、表13及表14的結果可知,加入預估值可使決策準確度更提升。
Figure 107136584-A0101-12-0024-28
Figure 107136584-A0101-12-0025-29
Figure 107136584-A0101-12-0025-30
Figure 107136584-A0101-12-0025-31
請參閱第8圖,其中第8圖繪示依照本發明第三實施例之一種基於支持向量機之路口智慧駕駛系統200的方塊圖。基於支持向量機之路口智慧駕駛系統200應用於一車輛且包含一處理單元210以及一環境感測單元220,處理單元包含一維度降低模組211、一時間補值模組212及一支持向量機213,維度降低模組211將複數個取樣時點中每一取樣時點所對應之p個特徵整合為k個新特徵,其中,pk為正整數,且p>k;時間補值模組212提供一預設時間,時間補值模組212將任一取樣時點及在前述任一取樣時點之前的其他取樣時點所分別對應之新特徵視為一待擴展數列,且時間補值模組212將待擴展數列重整為一擴展數列,擴展數列的長度等於預設時間內所具有的取樣時點的數目;支持向量機213經過一訓練資料訓練,訓練資料由一原 始資料經過維度降低模組211及時間補值模組212處理後獲得,原始資料包含複數個訓練樣本,各訓練樣本包含通過一路口之一時間總值,及在時間總值內的各取樣時點所對應之p個特徵及一當下決策。
環境感測單元220設置於車輛且訊號連接處理單元210,環境感測單元220用以取得p個特徵;其中,環境感測單元220所獲取之p個特徵經由處理單元210的維度降低模組211及時間補值模組212處理後,提供予支持向量機213進行分類,支持向量機213的分類結果用以決定車輛之駕駛行為。
藉此,可以輔助車輛決定經過路口時的加速、減速或定速行為。維度降低模組211、時間補值模組212的處理細節及其與支持向量機213之間的關係如上面所述,在此不再贅述。而p個特徵可包含車輛相對一來車之一橫向速度、車輛相對來車之一橫向加速度、車輛相對來車之一縱向速度、車輛相對來車之一縱向加速度、車輛與來車之一距離、車輛與路口之一距離及來車之一速度。環境感測單元220可包含一雷達、一攝影機及一GPS定位裝置中至少其中之一。或當下決策可包含加速、減速或定速中至少其中之一。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100‧‧‧基於支持向量機之路口智慧駕駛方法
110‧‧‧支持向量機提供步驟
120‧‧‧資料處理步驟
130‧‧‧決策步驟

Claims (13)

  1. 一種基於支持向量機之路口智慧駕駛方法,其應用於一車輛,該基於支持向量機之路口智慧駕駛方法包含:一支持向量機提供步驟,提供一支持向量機,該支持向量機預先經過一訓練過程,在該訓練過程中,提供一訓練資料予該支持向量機,該訓練資料由一原始資料經過一維度降低模組及一時間補值模組處理後獲得,其中,該原始資料包含複數個訓練樣本,各該訓練樣本包含通過一路口之一時間總值,及在該時間總值內的複數個取樣時點中每一該取樣時點所對應之p個特徵及一當下決策,該維度降低模組將該p個特徵整合為k個新特徵,該時間補值模組提供一預設時間,該時間補值模組將任一該訓練樣本中任一該取樣時點及在該任一取樣時點之前的其他該取樣時點所分別對應之該些新特徵視為一待擴展數列,且該時間補值模組將該待擴展數列重整為一擴展數列,該擴展數列的長度等於該預設時間內所具有的該些取樣時點的數目,其中,pk為正整數,且p>k;一資料處理步驟,將一環境感測單元所獲取之該p個特徵經由該維度降低模組及該時間補值模組處理後,提供予該支持向量機進行分類;以及 一決策步驟,以該支持向量機的分類結果決定該車輛之駕駛行為。
  2. 如申請專利範圍第1項所述之基於支持向量機之路口智慧駕駛方法,其中,該維度降低模組採用一主成分分析法。
  3. 如申請專利範圍第1項所述之基於支持向量機之路口智慧駕駛方法,其中,該時間補值模組採用一均勻縮放法。
  4. 如申請專利範圍第1項所述之基於支持向量機之路口智慧駕駛方法,其中該預設時間等於該些時間總值中之最大者。
  5. 如申請專利範圍第1項所述之基於支持向量機之路口智慧駕駛方法,其中該p個特徵包含該車輛相對一來車之一橫向速度、該車輛相對該來車之一橫向加速度、該車輛相對該來車之一縱向速度、該車輛相對該來車之一縱向加速度、該車輛與該來車之一距離、該車輛與該路口之一距離及該來車之一速度。
  6. 如申請專利範圍第1項所述之基於支持向量機之路口智慧駕駛方法,其中該原始資料中的該些特徵由該環境感測單元取得,該環境感測單元包含一雷達、一攝影機及一GPS定位裝置中至少其中之一。
  7. 一種基於支持向量機之路口智慧駕駛方法,其應用於一車輛,該基於支持向量機之路口智慧駕駛方法包含:一支持向量機提供步驟,提供一支持向量機,該支持向量機預先經過一訓練過程,在該訓練過程中,提供一訓練資料予該支持向量機,該訓練資料由一原始資料經過一維度降低模組及一時間補值模組處理後獲得,其中,該原始資料包含複數個訓練樣本,各該訓練樣本包含通過一路口之一時間總值,及在該時間總值內的複數個取樣時點中每一該取樣時點所對應之p個特徵及一當下決策,該維度降低模組將該p個特徵整合為k個新特徵,該時間補值模組提供一預設時間,該時間補值模組將任一該訓練樣本中任一該取樣時點及在該任一取樣時點之前的其他該取樣時點所分別對應之該些新特徵視為一待擴展數列,且當該待擴展數列的長度小於該預設時間內所具有的該些取樣時點的數目時,於該待擴展數列補入一預估值後形成一新待擴展數列,且該時間補值模組將該新待擴展數列重整為一擴展數 列,該擴展數列的長度等於該預設時間內所具有的該些取樣時點的數目,其中,pk為正整數,且p>k;一資料處理步驟,將一環境感測單元所獲取之該p個特徵經由該維度降低模組及該時間補值模組處理後,提供予該支持向量機進行分類;以及一決策步驟,以該支持向量機的分類結果決定該車輛之駕駛行為。
  8. 如申請專利範圍第7項所述之基於支持向量機之路口智慧駕駛方法,其中,該時間補值模組使用一主成分分析法。
  9. 如申請專利範圍第7項所述之基於支持向量機之路口智慧駕駛方法,其中,該時間補值模組使用一均勻縮放法。
  10. 一種基於支持向量機之路口智慧駕駛系統,其應用於一車輛,該基於支持向量機之路口智慧駕駛系統包含:一處理單元,設置於該車輛且包含: 一維度降低模組,將複數個取樣時點中每一該取樣時點所對應之p個特徵整合為k個新特徵,其中,pk為正整數,且p>k;一時間補值模組,提供一預設時間,該時間補值模組將任一該取樣時點及在該任一取樣時點之前的其他該取樣時點所分別對應之該些新特徵視為一待擴展數列,且該時間補值模組將該待擴展數列重整為一擴展數列,該擴展數列的長度等於該預設時間內所具有的該些取樣時點的數目;及一支持向量機,經過一訓練資料訓練,該訓練資料由一原始資料經過該維度降低模組及該時間補值模組處理後獲得,該原始資料包含複數個訓練樣本,各該訓練樣本包含通過一路口之一時間總值,及在該時間總值內的各該取樣時點所對應之該p個特徵及一當下決策;以及一環境感測單元,設置於該車輛且訊號連接該處理單元;其中,由該環境感測單元取得之該p個特徵經由該處理單元的該維度降低模組及該時間補值模組處理後,提供予該支持向量機進行分類,該支持向量機的分類結果用以決定該車輛之駕駛行為。
  11. 如申請專利範圍第10項所述之基於支持向量機之路口智慧駕駛系統,其中該p個特徵包含該車輛相對一來車之一橫向速度、該車輛相對該來車之一橫向加速度、該車輛相對該來車之一縱向速度、該車輛相對該來車之一縱向加速度、該車輛與該來車之一距離、該車輛與該路口之一距離及該來車之一速度。
  12. 如申請專利範圍第10項所述之基於支持向量機之路口智慧駕駛系統,其中該環境感測單元包含一雷達、一攝影機及一GPS定位裝置中至少其中之一。
  13. 如申請專利範圍第10項所述之基於支持向量機之路口智慧駕駛系統,其中該當下決策包含加速、減速或定速中至少其中之一。
TW107136584A 2018-10-17 2018-10-17 基於支持向量機之路口智慧駕駛方法及其系統 TWI690440B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW107136584A TWI690440B (zh) 2018-10-17 2018-10-17 基於支持向量機之路口智慧駕駛方法及其系統
US16/200,613 US10878346B2 (en) 2018-10-17 2018-11-26 Intelligent driving method for passing intersections based on support vector machine and intelligent driving system thereof
DE102018130004.2A DE102018130004B3 (de) 2018-10-17 2018-11-27 Auf einer support vector machine basierende intelligente fahrweise zum passieren von kreuzungen und intelligentes fahrsystem dafür
JP2018228020A JP6755291B2 (ja) 2018-10-17 2018-12-05 サポートベクターマシンに基づく交差点知能運転方法及びそのシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107136584A TWI690440B (zh) 2018-10-17 2018-10-17 基於支持向量機之路口智慧駕駛方法及其系統

Publications (2)

Publication Number Publication Date
TWI690440B true TWI690440B (zh) 2020-04-11
TW202015947A TW202015947A (zh) 2020-05-01

Family

ID=67701422

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107136584A TWI690440B (zh) 2018-10-17 2018-10-17 基於支持向量機之路口智慧駕駛方法及其系統

Country Status (4)

Country Link
US (1) US10878346B2 (zh)
JP (1) JP6755291B2 (zh)
DE (1) DE102018130004B3 (zh)
TW (1) TWI690440B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3614223B1 (en) * 2018-08-24 2020-06-17 The Boeing Company Method, system and emergency control device for traffic management of autonomous vehicles in emergency situations
US20200393840A1 (en) * 2019-06-12 2020-12-17 International Business Machines Corporation Metric learning prediction of simulation parameters
CN114056425B (zh) * 2021-11-23 2023-07-18 东软集团股份有限公司 车辆转向控制方法、装置、车辆及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101271625A (zh) * 2008-04-03 2008-09-24 东南大学 集成支持向量机检测高速公路交通事件的方法
CN102890866A (zh) * 2012-09-17 2013-01-23 上海交通大学 基于多核支持向量回归机的交通流速度估计方法
KR20140118157A (ko) * 2013-03-28 2014-10-08 현대모비스 주식회사 기계학습기법에 의한 자동차 충돌 경보 시스템 및 방법
CN106777776A (zh) * 2017-01-10 2017-05-31 长沙理工大学 一种基于支持向量机模型的车辆换道决策方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7647180B2 (en) * 1997-10-22 2010-01-12 Intelligent Technologies International, Inc. Vehicular intersection management techniques
US7268700B1 (en) * 1998-01-27 2007-09-11 Hoffberg Steven M Mobile communication device
DE10146398A1 (de) * 2001-09-20 2003-04-17 Siemens Ag System zum Steuern von Lichtsignalgebern an Kreuzungen
US9818136B1 (en) * 2003-02-05 2017-11-14 Steven M. Hoffberg System and method for determining contingent relevance
US7457282B2 (en) * 2003-10-29 2008-11-25 Nokia Corporation Method and apparatus providing smooth adaptive management of packets containing time-ordered content at a receiving terminal
US7424026B2 (en) * 2004-04-28 2008-09-09 Nokia Corporation Method and apparatus providing continuous adaptive control of voice packet buffer at receiver terminal
US7590589B2 (en) * 2004-09-10 2009-09-15 Hoffberg Steven M Game theoretic prioritization scheme for mobile ad hoc networks permitting hierarchal deference
US7702502B2 (en) * 2005-02-23 2010-04-20 Digital Intelligence, L.L.C. Apparatus for signal decomposition, analysis and reconstruction
EP1946293A1 (en) * 2005-11-07 2008-07-23 Telefonaktiebolaget L M Ericsson (PUBL) Method and arrangement in a mobile telecommunication network
JP2008140118A (ja) * 2006-12-01 2008-06-19 Advanced Telecommunication Research Institute International 危険動作検出装置および危険動作検出方法
US7469035B2 (en) * 2006-12-11 2008-12-23 The Board Of Trustees Of The Leland Stanford Junior University Method to track three-dimensional target motion with a dynamical multi-leaf collimator
US20090089029A1 (en) * 2007-09-28 2009-04-02 Rockwell Automation Technologies, Inc. Enhanced execution speed to improve simulation performance
US8069021B2 (en) * 2007-09-28 2011-11-29 Rockwell Automation Technologies, Inc. Distributed simulation and synchronization
US8892348B2 (en) * 2009-11-18 2014-11-18 The Mitre Corporation Method and system for aircraft conflict detection and resolution
JP5521893B2 (ja) * 2010-08-24 2014-06-18 株式会社デンソー 運転支援システム、車載装置
US9250625B2 (en) * 2011-07-19 2016-02-02 Ge Intelligent Platforms, Inc. System of sequential kernel regression modeling for forecasting and prognostics
US10112258B2 (en) * 2012-03-30 2018-10-30 View, Inc. Coaxial distance measurement via folding of triangulation sensor optics path
SG11201510149RA (en) * 2013-06-12 2016-01-28 Nec Corp Prediction function creation device, prediction function creation method, and computer-readable storage medium
JP5943358B2 (ja) * 2014-09-30 2016-07-05 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 学習装置、処理装置、予測システム、学習方法、処理方法、およびプログラム
EP3272610B1 (en) * 2015-04-21 2019-07-17 Panasonic Intellectual Property Management Co., Ltd. Information processing system, information processing method, and program
JP6511982B2 (ja) * 2015-06-19 2019-05-15 株式会社デンソー 運転操作判別装置
US9784592B2 (en) * 2015-07-17 2017-10-10 Honda Motor Co., Ltd. Turn predictions
US10687175B2 (en) * 2015-08-14 2020-06-16 Lg Electronics Inc. Method for transmitting and receiving V2X message in wireless communication system, and an apparatus for same
US10042038B1 (en) * 2015-09-01 2018-08-07 Digimarc Corporation Mobile devices and methods employing acoustic vector sensors
US9983591B2 (en) 2015-11-05 2018-05-29 Ford Global Technologies, Llc Autonomous driving at intersections based on perception data
WO2017164641A2 (ko) * 2016-03-22 2017-09-28 엘지전자 주식회사 데이터 유닛을 전송하는 방법 및 사용자기기와, 데이터 유닛을 수신하는 방법 및 사용자기기
JP6575818B2 (ja) * 2016-03-25 2019-09-18 パナソニックIpマネジメント株式会社 運転支援方法およびそれを利用した運転支援装置、自動運転制御装置、車両、運転支援システム、プログラム
US10118696B1 (en) * 2016-03-31 2018-11-06 Steven M. Hoffberg Steerable rotating projectile
CN105930625B (zh) 2016-06-13 2018-12-14 天津工业大学 Q学习结合神经网络的智能驾驶行为决策系统的设计方法
US20180045522A1 (en) * 2016-08-13 2018-02-15 Skymachines, Inc. Sky Machines
US10994729B2 (en) * 2017-03-29 2021-05-04 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling lateral motion of vehicle
CN107272687A (zh) 2017-06-29 2017-10-20 深圳市海梁科技有限公司 一种自动驾驶公交车辆的驾驶行为决策系统
US10417224B2 (en) * 2017-08-14 2019-09-17 Palantir Technologies Inc. Time series database processing system
CN107499262A (zh) 2017-10-17 2017-12-22 芜湖伯特利汽车安全系统股份有限公司 基于机器学习的acc/aeb系统及车辆
US11017249B2 (en) * 2018-01-29 2021-05-25 Futurewei Technologies, Inc. Primary preview region and gaze based driver distraction detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101271625A (zh) * 2008-04-03 2008-09-24 东南大学 集成支持向量机检测高速公路交通事件的方法
CN102890866A (zh) * 2012-09-17 2013-01-23 上海交通大学 基于多核支持向量回归机的交通流速度估计方法
KR20140118157A (ko) * 2013-03-28 2014-10-08 현대모비스 주식회사 기계학습기법에 의한 자동차 충돌 경보 시스템 및 방법
CN106777776A (zh) * 2017-01-10 2017-05-31 长沙理工大学 一种基于支持向量机模型的车辆换道决策方法

Also Published As

Publication number Publication date
JP2020064584A (ja) 2020-04-23
US20200125994A1 (en) 2020-04-23
JP6755291B2 (ja) 2020-09-16
US10878346B2 (en) 2020-12-29
TW202015947A (zh) 2020-05-01
DE102018130004B3 (de) 2019-09-12

Similar Documents

Publication Publication Date Title
Zeng et al. Application of social force model to pedestrian behavior analysis at signalized crosswalk
Hamdar et al. From behavioral psychology to acceleration modeling: Calibration, validation, and exploration of drivers’ cognitive and safety parameters in a risk-taking environment
Kruber et al. An unsupervised random forest clustering technique for automatic traffic scenario categorization
Young et al. Simulation of safety: A review of the state of the art in road safety simulation modelling
CN112487617B (zh) 基于碰撞模型的风险预防方法、装置、设备及存储介质
Ali et al. CLACD: A complete LAne-Changing decision modeling framework for the connected and traditional environments
TWI690440B (zh) 基於支持向量機之路口智慧駕駛方法及其系統
Chen et al. Modeling accident risks in different lane-changing behavioral patterns
Hyeon et al. Short-term speed forecasting using vehicle wireless communications
Tan et al. Development of a real-time prediction model of driver behavior at intersections using kinematic time series data
US11798407B1 (en) Method and system for identifying lane changing intention of manually driven vehicle
CN113935143A (zh) 通过自主车辆的增加的严重性等级估计碰撞概率
Platho et al. Predicting velocity profiles of road users at intersections using configurations
Mao et al. A multi-mode electric vehicle range estimator based on driving pattern recognition
Aghabayk et al. Exploring a local linear model tree approach to car‐following
Aghabayk et al. New car-following model considering impacts of multiple lead vehicle types
Krampe et al. Injury severity for hazard & risk analyses: calculation of ISO 26262 S-parameter Values from Real-World Crash Data
Golakiya et al. Reexamining pedestrian crossing warrants based on vehicular delay at urban arterial midblock sections under mixed traffic conditions
CN111055849B (zh) 基于支持向量机的路口智能驾驶方法及其系统
Shangguan et al. An empirical investigation of driver car-following risk evolution using naturistic driving data and random parameters multinomial logit model with heterogeneity in means and variances
Ghods et al. Development and evaluation of a microscopic overtaking gap acceptance model for two-lane highways
Reiterer et al. Beyond-design-basis evaluation of advanced driver assistance systems
Abdul Samad et al. Optimization of vehicle pulse index parameters based on validated vehicle-occupant finite element model
Tawfeek Human-like speed modeling for autonomous vehicles during car-following at intersections
Sha et al. Safety impact of dedicated lanes for connected and autonomous vehicles—a traffic microsimulation study