TWI686653B - Display device - Google Patents

Display device Download PDF

Info

Publication number
TWI686653B
TWI686653B TW105115015A TW105115015A TWI686653B TW I686653 B TWI686653 B TW I686653B TW 105115015 A TW105115015 A TW 105115015A TW 105115015 A TW105115015 A TW 105115015A TW I686653 B TWI686653 B TW I686653B
Authority
TW
Taiwan
Prior art keywords
layer
wiring
display device
liquid crystal
electrode
Prior art date
Application number
TW105115015A
Other languages
Chinese (zh)
Other versions
TW201741749A (en
Inventor
木村幸弘
福吉健藏
伊藤大
Original Assignee
日商凸版印刷股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商凸版印刷股份有限公司 filed Critical 日商凸版印刷股份有限公司
Priority to TW105115015A priority Critical patent/TWI686653B/en
Publication of TW201741749A publication Critical patent/TW201741749A/en
Application granted granted Critical
Publication of TWI686653B publication Critical patent/TWI686653B/en

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

本發明的液晶顯示裝置(LCD1、LCD2、LCD3)具備:顯示裝置基板(100)、陣列基板(200)、被挾持在顯示裝置基板(100)與陣列基板(200)之間的顯示功能層(300)、和控制部(120)。顯示裝置基板(100)具備觸控感測配線(3)。陣列基板(200)具備:共通電極(17),具有設置在複數個像素開口部(18)的每一者中的1個以上的電極部(17A);導電配線(30),在第2絕緣層(12)下與共通電極(17)電性連接且橫跨複數個像素開口部(18);主動元件(28),係設置在第3絕緣層(13)下而與像素電極(20)電性連接的頂閘構造的薄膜電晶體;閘極配線(10),具有與導電配線(30)相同的層結構,在第2絕緣層與第3絕緣層之間形成在與導電配線(30)相同的位置,並且在俯視下在第2方向上延伸而與主動元件電性聯結;和接觸孔(H),設置在電極部(17A)的圖案的長邊方向的中央,並且電性連接共通電極(17)和導電配線(30)。在相對於顯示功能層(300)的厚度方向傾斜的斜方向上觸控感測配線(3)和共通電極(17)係彼此相對。 The liquid crystal display device (LCD1, LCD2, LCD3) of the present invention includes: a display device substrate (100), an array substrate (200), and a display function layer held between the display device substrate (100) and the array substrate (200) 300), and the control department (120). The display device substrate (100) includes touch sensing wiring (3). The array substrate (200) includes: a common electrode (17) having one or more electrode portions (17A) provided in each of the plurality of pixel openings (18); a conductive wiring (30), insulated on the second Under the layer (12), it is electrically connected to the common electrode (17) and spans a plurality of pixel openings (18); the active element (28) is provided under the third insulating layer (13) and connected to the pixel electrode (20) Thin-film transistor of top gate structure electrically connected; gate wiring (10), having the same layer structure as the conductive wiring (30), formed between the second insulating layer and the third insulating layer and the conductive wiring (30 ) In the same position and extending in the second direction in plan view to be electrically connected to the active element; and the contact hole (H) is provided in the center of the longitudinal direction of the pattern of the electrode portion (17A) and is electrically connected Common electrode (17) and conductive wiring (30). The touch sensing wiring (3) and the common electrode (17) are opposed to each other in an oblique direction inclined with respect to the thickness direction of the display function layer (300).

Description

顯示裝置 Display device

本發明係關於可以進行穩定的觸控感測(touch sensing)且觸控感測感度高的顯示裝置。 The present invention relates to a display device that can perform stable touch sensing and has high touch sensing sensitivity.

具備顯示功能層的顯示裝置係用於電視等大型顯示器、平板、智慧手機等。使用液晶作為顯示功能層的液晶顯示裝置大略具有在玻璃等2片透明基板間挾持液晶層的結構。這樣的液晶顯示裝置中的主要的液晶驅動方式能大致區分為以縱電場方式為人所知的VA(Vertical Alignment)模式和以橫電場方式為人所知的IPS(In-Plane Switching)模式或邊緣電場切換FFS(Fringe Field Switching)模式。 Display devices with a display function layer are used for large displays such as TVs, tablets, and smartphones. A liquid crystal display device using liquid crystal as a display function layer roughly has a structure in which a liquid crystal layer is sandwiched between two transparent substrates such as glass. The main liquid crystal driving method in such a liquid crystal display device can be roughly divided into a VA (Vertical Alignment) mode known as a vertical electric field method and an IPS (In-Plane Switching) mode known as a horizontal electric field method or FFS (Fringe Field Switching) mode.

在顯示裝置的薄型化的觀點上,使用有機發光二極體作為顯示功能層的有機EL裝置(OLED:Organic Light Emitting Diode)受到了注目。在低消耗電力化的觀點上,用電性要素和機械要素所構成的EMS(Electro Mechanical System)受到了注目。MEMS(Micro-Electro-Mechanical System)包含致動器、變換器(transducer)、感測器、微鏡(micro-mirror)、MEMS開關、及光學薄膜等光學零件、以及光干涉調變器(IMOD:Interferometric Modulation)。此外,近年來, 將複數個微LED排列在基板上的顯示功能層也為人所知。 From the viewpoint of thinning the display device, an organic EL device (OLED: Organic Light Emitting Diode) using an organic light-emitting diode as a display function layer has attracted attention. From the viewpoint of reducing power consumption, EMS (Electro Mechanical System) composed of electrical elements and mechanical elements has attracted attention. MEMS (Micro-Electro-Mechanical System) includes actuators, transducers, sensors, micro-mirrors, MEMS switches, optical parts such as optical films, and optical interference modulators (IMOD : Interferometric Modulation). In addition, in recent years, It is also known to arrange a plurality of micro LEDs on a display function layer on a substrate.

在IPS模式或FFS模式中,使液晶分子相對於液晶顯示裝置的基板面水平配向,在相對於基板面約略平行的方向上將電場施加於液晶分子,從而進行液晶驅動。IPS模式或FFS模式係在具有廣視角的液晶顯示裝置中所使用的液晶驅動方式。採用FFS模式的液晶顯示裝置具有能藉由使用邊緣電場來高速地驅動液晶這樣的大優點。 In the IPS mode or FFS mode, liquid crystal molecules are aligned horizontally with respect to the substrate surface of the liquid crystal display device, and an electric field is applied to the liquid crystal molecules in a direction approximately parallel to the substrate surface to drive the liquid crystal. The IPS mode or FFS mode is a liquid crystal driving method used in a liquid crystal display device having a wide viewing angle. The liquid crystal display device adopting the FFS mode has a great advantage that the liquid crystal can be driven at high speed by using fringe electric fields.

關於液晶的驅動方式,為了抑制液晶顯示的烙印而進行了在經過既定的影像顯示期間後使施加於液晶層的電壓的正和負反轉的極性反轉驅動(交流反轉驅動)。作為極性反轉驅動的方法,已知有:使複數個像素各自的極性個別地反轉的點反轉驅動;以沿著畫面的橫方向排列複數個像素的行單位使像素的極性反轉的水平線反轉驅動;以沿著畫面的縱方向排列複數個像素的列單位使像素的極性反轉的列(column)反轉驅動;以一個畫面單位使像素的極性反轉、或者是以複數個區塊(block)區隔畫面並且以區塊單位使像素的極性反轉的幅(frame)反轉驅動等。這樣的液晶驅動技術,例如,在專利文獻1~5、7中有所記載或暗示。 Regarding the driving method of the liquid crystal, in order to suppress burn-in of the liquid crystal display, polarity inversion driving (AC inversion driving) in which the positive and negative voltages applied to the liquid crystal layer are reversed after a predetermined image display period has passed. As a method of polarity inversion driving, there is known a dot inversion drive in which the polarities of the pixels are individually inverted, and the polarity of the pixels is inverted in a row unit in which the pixels are arranged along the horizontal direction of the screen. Horizontal line inversion drive; column inversion drive in which the polarity of pixels is reversed in a column unit in which a plurality of pixels are arranged along the longitudinal direction of the screen; the pixel polarity is reversed in one screen unit, or in plural A block divides the screen and inverts the frame in which the polarity of the pixel is reversed in block units. Such a liquid crystal driving technique is described or suggested in Patent Documents 1 to 5, 7 for example.

作為這樣的液晶顯示裝置,最近大多利用具有具備了偵測電容的手段的觸控感測功能的液晶顯示裝置。作為觸控感測方式,主要利用藉由例如在X方向和Y方向所排列的觸控感測配線(觸控電極)來偵測當手 指或筆等指示器(pointer)接觸或接近顯示畫面時產生的電容變化的方式。 As such a liquid crystal display device, recently, a liquid crystal display device having a touch sensing function equipped with a means for detecting capacitance is often used. As a touch sensing method, a touch sensing wiring (touch electrode) arranged for example in the X direction and the Y direction is mainly used to detect the current hand A method of changing capacitance when a pointer such as a finger or a pen touches or approaches the display screen.

此外,作為具有觸控感測功能的顯示裝置的構造,已知有:將具備觸控感測功能的觸控面板貼附在顯示裝置的表面的外掛(out-cell)方式、和顯示裝置本身具備觸控感測功能的內嵌(in-cell)方式。近年來,相較於外掛方式,許多顯示裝置採用了內嵌方式。 In addition, as a structure of a display device having a touch sensing function, an out-cell method of attaching a touch panel having a touch sensing function to the surface of the display device and the display device itself are known In-cell method with touch sensing function. In recent years, many display devices have adopted an in-line method compared to an external method.

專利文獻2~6公開了使用內嵌方式的觸控感測技術。儘管如此,在內嵌方式方面,這些專利文獻陸續出現了尚不明確的觸控感測技術的問題。換言之,有就外掛觸控面板的方式而言很難變成問題的問題,即,觸控感測配線容易受到來自與液晶胞內部所設置的主動元件電性聯結的源極配線的雜訊(noise)的影響這樣的新技術課題。 Patent documents 2 to 6 disclose touch sensing technology using an embedded method. Nonetheless, in terms of the embedded method, these patent documents have successively appeared unclear problems of touch sensing technology. In other words, there is a problem that it is difficult to become a problem in terms of the manner of attaching the touch panel, that is, the touch sensing wiring is susceptible to noise from the source wiring electrically connected to the active element provided inside the liquid crystal cell (noise) ) Affects such new technical issues.

專利文獻1涉及液晶驅動,公開了以沿著畫面的縱方向排列複數個像素的列單位使像素的極性反轉的技術。專利文獻1不包含觸控感測技術。 Patent Literature 1 relates to liquid crystal driving, and discloses a technique of inverting the polarities of pixels in a column unit in which a plurality of pixels are arranged along the longitudinal direction of the screen. Patent Literature 1 does not include touch sensing technology.

專利文獻2包含涉及點反轉驅動的記載,並且公開了觸控感測技術。在專利文獻2的公開中,進行觸控感測功能的驅動電極及檢測電極係實質上用金屬配線構成。 Patent Literature 2 contains descriptions related to dot inversion driving, and discloses a touch sensing technology. In the disclosure of Patent Document 2, the drive electrode and the detection electrode that perform the touch sensing function are substantially composed of metal wiring.

專利文獻3涉及面內切換(IPS)液晶顯示器,公開了觸控感測驅動電極形成觸控感測訊號的檢測及顯示器所使用的電極對的技術。這樣的專利文獻3的公開類似專利文獻5記載的請求項2的特徵點。 Patent Document 3 relates to an in-plane switching (IPS) liquid crystal display, and discloses techniques for detecting touch sensing driving electrodes to form touch sensing signals and electrode pairs used in the display. The disclosure of Patent Document 3 is similar to the feature points of claim 2 described in Patent Document 5.

專利文獻4公開了在彩色濾光片上積層相對電極的縱電場方式的液晶顯示裝置中,裝入觸控螢幕(touch screen)的構造。這樣的構造,例如,例示在專利文獻4的請求項1及實施例。此外,如專利文獻4的請求項1所記載,顯示器像素(pixel)包含累積電容器。另外,觸控驅動電極係在顯示動作期間,作動為累積電容器的相對電極。又,在專利文獻4的段落0156之後公開了面內切換(IPS)的2種電極在單一面內成為彼此平行的結構。專利文獻4的段落0157中指出IPS顯示器欠缺能使用於觸控驅動或觸控感應的Vcom層。 Patent Document 4 discloses a structure in which a touch screen is incorporated in a liquid crystal display device of a longitudinal electric field type in which opposing electrodes are stacked on a color filter. Such a structure is exemplified in claim 1 and the embodiment of Patent Document 4, for example. In addition, as described in claim 1 of Patent Document 4, display pixels include accumulation capacitors. In addition, the touch drive electrode is operated as the counter electrode of the accumulation capacitor during the display operation. Furthermore, after paragraph 0156 of Patent Document 4, it is disclosed that two types of electrodes of in-plane switching (IPS) are parallel to each other in a single plane. Paragraph 0157 of Patent Document 4 indicates that the IPS display lacks a Vcom layer that can be used for touch driving or touch sensing.

在專利文獻4公開的構造中,必須使yVcom跨越(crossover)xVcom(專利文獻4的段落0033、及第5圖、第1E圖、第1F圖等)。 In the structure disclosed in Patent Document 4, yVcom must crossover xVcom (paragraph 0033 of Patent Document 4, and Figure 5, Figure 1E, Figure 1F, etc.).

專利文獻5公開了在液晶胞內使用正交的帶狀導體的觸控感測技術。 Patent Literature 5 discloses a touch sensing technology using orthogonal strip conductors in a liquid crystal cell.

專利文獻6公開了具備用透明材料所構成的在第1方向上延伸的複數個觸控驅動電極(作為驅動區域而與相互連接導線xVcom連接)、和在第2方向上延伸的複數個觸控檢測電極(作為感測區域而用yVcom予以連接),觸控驅動電極及觸控檢測電極當中一者發揮作為液晶顯示器的相對電極的功能。 Patent Document 6 discloses a plurality of touch drive electrodes (connected to the interconnection wire xVcom as a driving region) made of a transparent material and extending in the first direction, and a plurality of touches extending in the second direction The detection electrode (connected with yVcom as a sensing area), one of the touch drive electrode and the touch detection electrode functions as a counter electrode of the liquid crystal display.

專利文獻6公開了在包含複數個顯示器像素(display pixel)的第1群組的驅動線、與包含複數個顯示器像素的第2群組的感測線之間,進行觸控感測的技術,成為在第2群的電路元件之間設置旁路通道(by-pass tunnel)的極複雜的結構。 Patent Literature 6 discloses a technique of performing touch sensing between a first group of driving lines including a plurality of display pixels and a second group of sensing lines including a plurality of display pixels. An extremely complicated structure in which a bypass channel (by-pass tunnel) is provided between the circuit elements of the second group.

專利文獻7公開了抑制在進行液晶驅動的線循序掃描的情況下畫質降低的手段。在專利文獻7中,將多晶矽半導體用於驅動液晶的主動元件(TFT:Thin Film Transistor,薄膜電晶體)。另外,設置包含閂部的轉送電路進行電位保持,從而防止截止漏電流(off-leak current)多的多晶矽的TFT固有的掃描訊號線的電位降低,並且防止液晶顯示的畫質降低。 Patent Document 7 discloses a method of suppressing the decrease in image quality when performing line sequential scanning of liquid crystal driving. In Patent Document 7, a polycrystalline silicon semiconductor is used as an active element (TFT: Thin Film Transistor) for driving liquid crystals. In addition, a transfer circuit including a latch portion is provided to maintain the potential, thereby preventing the potential of the scan signal line inherent in the polycrystalline silicon TFT having a large amount of off-leak current (off-leak current) from decreasing, and preventing the image quality of the liquid crystal display from being reduced.

此外,由專利文獻7的第6圖、第7圖、及段落0035的記載可知,觸控檢測電極及像素訊號線是平行的,且在俯視下以重疊的方式構成。原本,能藉由縮短觸控檢測配線和觸控的驅動電極COML的距離來提高S/N比(特別是「S」,訊號的值)。儘管如此,在觸控檢測電極和像素訊號線在俯視下以在像素的長邊方向上延伸的方式形成為長線狀且重疊的結構中,因使觸控檢測電極和像素訊號線靠近而使得在上述2條線間產生的寄生電容變大。換言之,從像素訊號線產生的「N」(雜訊)容易施加至觸控檢測電極,結果很難使S/N比提升。 In addition, as can be seen from the descriptions in FIG. 6, FIG. 7, and paragraph 0035 of Patent Document 7, the touch detection electrodes and the pixel signal lines are parallel, and are configured to overlap in a plan view. Originally, the S/N ratio (especially "S", the value of the signal) can be improved by shortening the distance between the touch detection wiring and the drive electrode COML of the touch. Nevertheless, in the structure in which the touch detection electrode and the pixel signal line are formed in a long line shape and overlapped in the longitudinal direction of the pixel in a plan view, the proximity of the touch detection electrode and the pixel signal line makes the The parasitic capacitance generated between the above two lines becomes larger. In other words, "N" (noise) generated from the pixel signal line is easily applied to the touch detection electrode, and as a result, it is difficult to increase the S/N ratio.

在專利文獻8的段落0064中,公開了形成用含有銦的層/銅/含有銦的層所構成的3層構造的金屬配線,作為薄膜電晶體的訊號線、掃描線、及用於液晶驅動的輔助電容線的配線構造。 Paragraph 0064 of Patent Document 8 discloses the formation of metal wiring of a three-layer structure composed of an indium-containing layer/copper/indium-containing layer, as a signal line of a thin film transistor, a scanning line, and a liquid crystal drive The wiring structure of the auxiliary capacitor line.

此外,專利文獻8公開了在後述的觸控感測空間內包含有訊號線(源極線)或像素電極的結構。訊號線(源極線)或像素電極成為雜訊產生源,因此並未考慮使肇因於訊號(影像訊號)的雜訊對觸控感測的影響減少。例如, 專利文獻8的第4實施形態或第11圖中公開了在用於觸控感測且用ITO等透明導電膜所形成的共通電極上,具備像素電極的結構。對像素電極施加頻繁地更換透過源極線所供給的供影像顯示用的訊號的液晶驅動電壓。因此,在共通電極上具備像素電極的第11圖所示的結構是不佳的。此外,專利文獻8的第5實施形態或第12圖中公開了在觸控感測配線上,除了像素電極外還具備源極配線的結構。因此,容易偶然得到比第11圖所示的構造還多的雜訊或寄生電容,依此觀點,公開了並非最佳的結構。在第12圖所示的例子中,閘極線係在Y方向上位於最下部,薄膜電晶體具有底閘(bottom-gate)構造。 In addition, Patent Document 8 discloses a structure including a signal line (source line) or a pixel electrode in a touch sensing space described later. The signal line (source line) or pixel electrode becomes a source of noise, so no consideration is given to reducing the influence of noise caused by the signal (image signal) on touch sensing. E.g, The fourth embodiment of Patent Document 8 or FIG. 11 discloses a structure in which a pixel electrode is provided on a common electrode used for touch sensing and formed with a transparent conductive film such as ITO. The pixel electrode is applied with a liquid crystal drive voltage that frequently replaces the signal for image display supplied through the source line. Therefore, the structure shown in FIG. 11 including the pixel electrode on the common electrode is not good. In addition, the fifth embodiment or the twelfth embodiment of Patent Document 8 discloses a structure in which a source wiring is provided on the touch sensing wiring in addition to the pixel electrode. Therefore, it is easy to accidentally obtain more noise or parasitic capacitance than the structure shown in FIG. 11, and from this point of view, a structure that is not optimal is disclosed. In the example shown in FIG. 12, the gate line is located at the lowermost part in the Y direction, and the thin film transistor has a bottom-gate structure.

專利文獻1到專利文獻8所公開的技術,並未充分考慮削減肇因於賦予供進行各影像顯示用的影像訊號的源極配線的雜訊的手段,很難提供高感度的觸控感測技術。另外,就抑制與液晶驅動有關的雜訊產生而言是不充分的。 The technologies disclosed in Patent Literature 1 to Patent Literature 8 do not fully consider the means of reducing the noise caused by the source wiring given to the image signal for each image display, making it difficult to provide high-sensitivity touch sensing technology. In addition, it is insufficient in terms of suppressing noise generation related to liquid crystal driving.

先前技術文獻 Prior technical literature 專利文獻 Patent Literature

專利文獻1 日本特公平4-22486號公報 Patent Document 1 Japanese Patent Publication No. 4-22486

專利文獻2 日本特開2014-109904號公報 Patent Document 2 Japanese Patent Application Publication No. 2014-109904

專利文獻3 日本專利第4584342號公報 Patent Literature 3 Japanese Patent No. 4584342

專利文獻4 日本專利第5517611號公報 Patent Document 4 Japanese Patent No. 5517611

專利文獻5 日本特開平7-36017號公報 Patent Literature 5 Japanese Patent Laid-Open No. 7-36017

專利文獻6 日本專利第5746736號公報 Patent Literature 6 Japanese Patent No. 5746736

專利文獻7 日本特開2014-182203號公報 Patent Document 7 Japanese Patent Application Publication No. 2014-182203

專利文獻8 日本專利第5807726號公報 Patent Literature 8 Japanese Patent No. 5807726

在採用內嵌方式並且具備觸控感測功能的顯示裝置方面,就使感測感度提升而言,因應由液晶驅動而產生的雜訊的對策是不可缺少的。 In terms of the display device adopting the embedded method and having a touch sensing function, in terms of improving the sensing sensitivity, countermeasures for noise due to liquid crystal driving are indispensable.

如上所述,為了避免因電荷累積所造成的烙印(sticking),一般採用極性反轉驅動作為液晶驅動。儘管如此,傳遞影像訊號的源極配線成為使肇因於極性反轉的雜訊產生的產生源。除此之外,源極配線容易伴隨影像訊號的極性反轉所附帶的寄生電容的變化。在採用內嵌方式並且具備觸控感測功能的顯示裝置中,控制肇因於傳遞影像訊號的源極配線的雜訊的產生變得重要。 As described above, in order to avoid sticking due to charge accumulation, polarity inversion driving is generally adopted as liquid crystal driving. In spite of this, the source wiring that transmits the image signal becomes a source that generates noise due to polarity reversal. In addition, the source wiring is easily accompanied by changes in the parasitic capacitance accompanying the inversion of the polarity of the video signal. In a display device that uses an embedded method and has a touch sensing function, it becomes important to control the generation of noise caused by the source wiring that transmits image signals.

此外,如專利文獻6所公開的,陣列基板(TFT基板)具有觸控感測功能的方式係在極靠近驅動主動元件(TFT)的源極配線或閘極配線等訊號配線的位置,且與這些配線平行地配設與觸控感測有關的配線(以下稱為觸控感測配線)。特別是,利用各種電壓且以高頻率傳遞影像訊號的源極配線對觸控感測配線造成巨大的不良影響。 In addition, as disclosed in Patent Document 6, the array substrate (TFT substrate) has a touch sensing function in a position very close to the signal wiring such as the source wiring or gate wiring of the driving active element (TFT), and These wires are arranged in parallel with wires related to touch sensing (hereinafter referred to as touch sensing wires). In particular, source wiring using various voltages and transmitting image signals at a high frequency has a huge adverse effect on touch sensing wiring.

在使用多晶矽半導體作為電晶體的通道層的主動元件中,漏電流大,必須頻繁地更新影像訊號,而擔心由源極配線產生的雜訊對觸控感測配線造成影響。此外,在TFT基板具有觸控感測功能的構造中,在將感測線(觸 控訊號的檢測配線)、驅動線(觸控感測的驅動配線)、及供驅動主動元件用的源極配線或閘極配線一併設置在一片陣列基板的情況下,必須設置跳接線或旁路通道等。即,變得需要導致高成本的複雜結構。 In an active device using a polysilicon semiconductor as the channel layer of the transistor, the leakage current is large, and the image signal must be updated frequently, and there is a concern that noise generated by the source wiring will affect the touch sensing wiring. In addition, in the structure where the TFT substrate has a touch sensing function, the sensing line (touch Control signal detection wiring), drive line (touch-sensing drive wiring), and source wiring or gate wiring for driving active components are all installed on an array substrate. Road channel, etc. That is, a complicated structure that leads to high costs becomes necessary.

此外,為了減少多晶矽半導體的漏電流,必須採用在各像素中將2個TFT連接於像素電極的雙閘極構造,但雙閘極構造成為高成本的因素並且會使像素的開口率降低。 In addition, in order to reduce the leakage current of the polysilicon semiconductor, it is necessary to adopt a double gate structure in which two TFTs are connected to the pixel electrode in each pixel. However, the double gate structure becomes a factor of high cost and reduces the aperture ratio of the pixel.

本發明係有鑑於上述課題所完成者,在以FFS模式為代表的橫電場方式的液晶顯示裝置方面,提供減輕對觸控感測造成影響的雜訊的影響的液晶顯示裝置。 The present invention has been accomplished in view of the above-mentioned problems, and provides a liquid crystal display device that reduces the influence of noise that affects touch sensing in the liquid crystal display device of the horizontal electric field type represented by the FFS mode.

本發明的一態樣的顯示裝置,包含顯示裝置基板、陣列基板、顯示功能層、和控制部,該顯示裝置基板具備:第1透明基板、和設置在前述第1透明基板上的在第1方向上延伸的觸控感測配線,該陣列基板具備:第2透明基板;前述第2透明基板上的複數個多角形的像素開口部;共通電極,具有設置在前述複數個像素開口部的每一者中並且在俯視下在前述第1方向上延伸的1個以上的電極部;第1絕緣層,設置在前述共通電極下;像素電極,在前述複數個像素開口部的每一者中設置在前述第1絕緣層下;第2絕緣層,設置在前述像素電極下;導電配線,在前述第2絕緣層下與前述共通電極電性連接,且在與前述第1方向正交的第2方 向上延伸而橫跨前述複數個像素開口部;第3絕緣層,設置在前述導電配線下;主動元件,係設置在前述第3絕緣層下而與前述像素電極電性連接的頂閘構造的薄膜電晶體;閘極配線,具有與前述導電配線相同的層結構,在前述第2絕緣層與前述第3絕緣層之間形成在與前述導電配線相同的位置,並且在俯視下在前述第2方向上延伸而與前述主動元件電性聯結;源極配線,在俯視下在前述第1方向上延伸而與前述主動元件電性聯結;和接觸孔,設置在前述電極部的圖案的長邊方向的中央,並且電性連接前述共通電極和前述導電配線,該顯示功能層係挾持在前述顯示裝置基板與前述陣列基板之間,該控制部係藉由在前述像素電極與前述共通電極之間施加驅動電壓來使前述顯示功能層驅動,從而進行影像顯示,偵測在前述共通電極與前述觸控感測配線之間的電容的變化以進行觸控感測。在相對於前述顯示功能層的厚度方向傾斜的斜方向上,前述觸控感測配線和前述共通電極係彼此相對。 A display device according to an aspect of the present invention includes a display device substrate, an array substrate, a display function layer, and a control unit. The display device substrate includes a first transparent substrate, and a first transparent substrate provided on the first transparent substrate The touch sensing wiring extending in the direction, the array substrate includes: a second transparent substrate; a plurality of polygonal pixel openings on the second transparent substrate; a common electrode having each provided in the plurality of pixel openings One or more electrode portions extending in the first direction in a plan view; a first insulating layer provided under the common electrode; and a pixel electrode provided in each of the plurality of pixel openings Under the first insulating layer; the second insulating layer is provided under the pixel electrode; the conductive wiring is electrically connected to the common electrode under the second insulating layer, and in the second direction orthogonal to the first direction square Extending upwards across the plurality of pixel openings; the third insulating layer is provided under the conductive wiring; the active element is a thin film of a top gate structure provided under the third insulating layer and electrically connected to the pixel electrode Transistor; gate wiring, having the same layer structure as the conductive wiring, formed between the second insulating layer and the third insulating layer at the same position as the conductive wiring, and in the second direction in a plan view Extending upward to be electrically connected to the active element; source wiring extending in the first direction in a plan view to be electrically connected to the active element; and contact holes provided in the longitudinal direction of the pattern of the electrode portion The center is electrically connected to the common electrode and the conductive wiring, the display function layer is sandwiched between the display device substrate and the array substrate, and the control unit is driven by applying between the pixel electrode and the common electrode The voltage drives the display function layer to perform image display, and detects a change in capacitance between the common electrode and the touch sensing wiring for touch sensing. The touch sensing wiring and the common electrode system are opposed to each other in an oblique direction inclined with respect to the thickness direction of the display function layer.

本發明的一態樣中的「顯示功能層」意指實現在電極間進行光透射、遮光、光反射、或發光等作用的功能的層。作為這樣的顯示功能層,例如,可舉出:液晶元件、有機EL元件、EMS元件、MEMS元件、IMOD元件、微LED元件等。 The "display function layer" in one aspect of the present invention means a layer that realizes functions such as light transmission, light shielding, light reflection, or light emission between the electrodes. Examples of such a display function layer include liquid crystal elements, organic EL elements, EMS elements, MEMS elements, IMOD elements, and micro LED elements.

在本發明的一態樣的顯示裝置中,前述共通電極可以具有在俯視下在與前述觸控感測配線平行的長條方向上延伸的條紋圖案(stripe pattern)。 In the display device according to an aspect of the present invention, the common electrode may have a stripe pattern extending in a longitudinal direction parallel to the touch sensing wiring in a plan view.

在本發明的一態樣的顯示裝置中,前述主動元件可以是包含用氧化物半導體所構成的通道層,前述通道層係與閘極絕緣膜接觸的薄膜電晶體。 In the display device according to one aspect of the present invention, the active element may include a channel layer made of an oxide semiconductor, and the channel layer is a thin film transistor in contact with the gate insulating film.

在本發明的一態樣的顯示裝置中,前述氧化物半導體可以是包含鎵、銦、鋅、錫、鋁、鍺、銻、鉍、鈰當中2種以上的金屬氧化物的氧化物半導體。 In the display device according to one aspect of the present invention, the oxide semiconductor may be an oxide semiconductor including two or more metal oxides among gallium, indium, zinc, tin, aluminum, germanium, antimony, bismuth, and cerium.

在本發明的一態樣的顯示裝置中,前述閘極絕緣膜可以是用包含氧化鈰的複合氧化物所形成的閘極絕緣膜。 In the display device of one aspect of the present invention, the gate insulating film may be a gate insulating film formed of a composite oxide containing cerium oxide.

在本發明的一態樣的顯示裝置中,前述顯示功能層係液晶層,前述液晶層的液晶可以具有與前述陣列基板平行的初期配向,用藉由施加在前述共通電極與前述像素電極之間的液晶驅動電壓而產生的邊緣電場予以驅動。 In the display device according to an aspect of the present invention, the display function layer is a liquid crystal layer, and the liquid crystal of the liquid crystal layer may have an initial alignment parallel to the array substrate, and is applied between the common electrode and the pixel electrode. The fringe electric field generated by the driving voltage of the liquid crystal is driven.

在本發明的一態樣的顯示裝置中,前述共通電極及前述像素電極可以是用至少包含氧化銦、氧化錫的複合氧化物構成。 In the display device of one aspect of the present invention, the common electrode and the pixel electrode may be composed of a composite oxide containing at least indium oxide and tin oxide.

在本發明的一態樣的顯示裝置中,前述觸控感測配線可以是用包含銅合金層的金屬層構成。 In the display device of one aspect of the present invention, the touch sensing wiring may be composed of a metal layer including a copper alloy layer.

在本發明的一態樣的顯示裝置中,前述觸控感測配線可以具有銅合金層被導電性金屬氧化物層挾持的構造。 In the display device of one aspect of the present invention, the touch sensing wiring may have a structure in which the copper alloy layer is sandwiched by the conductive metal oxide layer.

在本發明的一態樣的顯示裝置中,前述導電配線可具有銅合金層被導電性金屬氧化物層挾持的構造。 In the display device of one aspect of the present invention, the conductive wiring may have a structure in which the copper alloy layer is sandwiched by the conductive metal oxide layer.

在本發明的一態樣的顯示裝置中,前述導電性金屬氧化物層可以是包含氧化銦、氧化鋅、氧化銻、氧化錫當中2種以上的複合氧化物層。 In the display device of one aspect of the present invention, the conductive metal oxide layer may be a composite oxide layer containing two or more of indium oxide, zinc oxide, antimony oxide, and tin oxide.

在本發明的一態樣的顯示裝置中,前述顯示裝置基板可以具備設置在前述第1透明基板與前述觸控感測配線之間的黑色矩陣,前述觸控感測配線係與前述黑色矩陣的一部分重疊。 In the display device according to an aspect of the present invention, the display device substrate may include a black matrix provided between the first transparent substrate and the touch sensing wiring, and the touch sensing wiring may be Partly overlapping.

在本發明的一態樣的顯示裝置中,前述顯示裝置基板可以具備設置在與複數個像素開口部相對應的位置的彩色濾光片。 In the display device according to an aspect of the present invention, the display device substrate may include a color filter provided at a position corresponding to a plurality of pixel openings.

根據本發明的一態樣,便能提供減輕對觸控感測造成不良影響的雜訊,且將與觸控感測有關的配線構造簡化的液晶顯示裝置。此外,能實現不將供給影像訊號的源極配線或像素電極包含在觸控感測空間的結構,能減輕與影像訊號有關的雜訊。 According to one aspect of the present invention, it is possible to provide a liquid crystal display device that reduces noise that adversely affects touch sensing and simplifies the wiring structure related to touch sensing. In addition, it is possible to realize a structure that does not include source wiring or pixel electrodes supplied to the image signal in the touch sensing space, and can reduce noise related to the image signal.

3‧‧‧觸控感測配線 3‧‧‧Touch sensing wiring

4‧‧‧第2導電性金屬氧化物層(導電性金屬氧化物層) 4‧‧‧Second conductive metal oxide layer (conductive metal oxide layer)

5‧‧‧金屬層 5‧‧‧Metal layer

6‧‧‧第1導電性金屬氧化物層(導電性金屬氧化物層) 6‧‧‧The first conductive metal oxide layer (conductive metal oxide layer)

8‧‧‧黑色層 8‧‧‧Black layer

10‧‧‧閘極配線 10‧‧‧Gate wiring

11‧‧‧第1絕緣層 11‧‧‧The first insulating layer

11F‧‧‧填充部 11F‧‧‧Filling Department

11H‧‧‧貫通孔 11H‧‧‧Through hole

11T‧‧‧上表面 11T‧‧‧Top surface

12‧‧‧第2絕緣層 12‧‧‧The second insulating layer

12H‧‧‧貫通孔 12H‧‧‧Through hole

12T‧‧‧上表面 12T‧‧‧Top surface

13‧‧‧第3絕緣層 13‧‧‧The third insulating layer

13A‧‧‧突起部 13A‧‧‧Protrusion

14‧‧‧第4絕緣層 14‧‧‧The fourth insulating layer

16‧‧‧透明樹脂層 16‧‧‧Transparent resin layer

17‧‧‧共通電極 17‧‧‧Common electrode

17A‧‧‧電極部 17A‧‧‧Electrode

17B‧‧‧導電連接部 17B‧‧‧Conductive connection

17K‧‧‧壁部 17K‧‧‧Wall

18‧‧‧像素開口部 18‧‧‧Pixel opening

20‧‧‧像素電極 20‧‧‧Pixel electrode

20K‧‧‧內壁 20K‧‧‧Inner wall

20S‧‧‧貫穿孔 20S‧‧‧Through hole

21‧‧‧透明基板(第1透明基板) 21‧‧‧Transparent substrate (1st transparent substrate)

22‧‧‧透明基板(第2透明基板) 22‧‧‧Transparent substrate (second transparent substrate)

24‧‧‧源極電極 24‧‧‧Source electrode

25‧‧‧閘極電極 25‧‧‧Gate electrode

26‧‧‧汲極電極 26‧‧‧ Drain electrode

27‧‧‧通道層 27‧‧‧channel layer

28‧‧‧主動元件 28‧‧‧Active components

29‧‧‧接觸孔 29‧‧‧Contact hole

30‧‧‧共同配線(導電配線) 30‧‧‧Common wiring (conductive wiring)

31‧‧‧源極配線 31‧‧‧Source wiring

33‧‧‧電力線 33‧‧‧Power line

34‧‧‧端子部 34‧‧‧Terminal

39‧‧‧液晶分子 39‧‧‧Liquid crystal molecules

43H‧‧‧第3接觸孔(接觸孔) 43H‧‧‧3rd contact hole (contact hole)

51‧‧‧彩色濾光片 51‧‧‧Color filter

100‧‧‧顯示裝置基板 100‧‧‧Display device substrate

110‧‧‧顯示部 110‧‧‧Display

120‧‧‧控制部 120‧‧‧Control Department

121‧‧‧影像訊號控制部 121‧‧‧Image signal control department

122‧‧‧觸控感測控制部 122‧‧‧Touch Sensing Control Department

123‧‧‧系統控制部 123‧‧‧System Control Department

200‧‧‧陣列基板 200‧‧‧Array substrate

206‧‧‧液晶層 206‧‧‧Liquid crystal layer

213‧‧‧透明樹脂層 213‧‧‧ transparent resin layer

214‧‧‧彩色濾光片 214‧‧‧ color filter

215‧‧‧透明基板 215‧‧‧Transparent substrate

221‧‧‧對向電極 221‧‧‧counter electrode

250‧‧‧液晶顯示裝置 250‧‧‧LCD display device

250A‧‧‧液晶顯示裝置 250A‧‧‧LCD display device

300‧‧‧液晶層 300‧‧‧Liquid crystal layer

BM‧‧‧黑色矩陣 BM‧‧‧Black Matrix

BU‧‧‧背光單元 BU‧‧‧Backlight unit

W17A‧‧‧寬度 W17A‧‧‧Width

D20S‧‧‧直徑 D20S‧‧‧Diameter

EL‧‧‧長度 EL‧‧‧Length

H‧‧‧接觸孔 H‧‧‧Contact hole

L‧‧‧光 L‧‧‧Light

L2‧‧‧等電位線 L2‧‧‧equipotential line

L3‧‧‧等電位線 L3‧‧‧equipotential line

LH‧‧‧左側接觸孔(第1接觸孔) LH‧‧‧Left contact hole (1st contact hole)

RH‧‧‧右側接觸孔(第2接觸孔) RH‧‧‧Right contact hole (2nd contact hole)

LCD1‧‧‧液晶顯示裝置 LCD1‧‧‧Liquid crystal display device

LCD2‧‧‧液晶顯示裝置 LCD2‧‧‧Liquid crystal display device

LCD3‧‧‧液晶顯示裝置 LCD3‧‧‧Liquid crystal display device

P17A‧‧‧間距 P17A‧‧‧spacing

Pa‧‧‧上部區域 Pa‧‧‧Upper area

Pb‧‧‧下部區域 Pb‧‧‧lower area

Rub‧‧‧配向處理方向 Rub‧‧‧Alignment processing direction

W1‧‧‧觸控感測配線與共通電極的距離 W1‧‧‧Distance between touch sensing wiring and common electrode

W2‧‧‧觸控感測配線與源極配線的距離 W2‧‧‧Distance between touch sensing wiring and source wiring

W3‧‧‧高度 W3‧‧‧Altitude

W4‧‧‧觸控感測配線與閘極配線的距離 W4‧‧‧Distance between touch sensing wiring and gate wiring

θ‧‧‧角度(與像素開口的長邊方向Y的傾斜度) θ‧‧‧angle (inclination from the longitudinal direction of pixel opening Y)

第1圖係顯示構成本發明的第1實施形態的顯示裝置的控制部(影像訊號控制部、系統控制部、及觸控感測控制部)及顯示部的方塊圖。 Fig. 1 is a block diagram showing a control unit (image signal control unit, system control unit, and touch sensing control unit) and a display unit constituting the display device according to the first embodiment of the present invention.

第2圖係部分地顯示構成本發明的第1實施形態的顯示裝置的陣列基板的平面圖,從觀察者側觀看的平面圖。 FIG. 2 is a plan view partially showing the array substrate constituting the display device according to the first embodiment of the present invention, as viewed from the observer side.

第3圖係部分地顯示本發明的第1實施形態的顯示裝置的剖面圖,沿著第2圖所示的A-A’線的剖面圖。 FIG. 3 is a cross-sectional view partially showing the display device according to the first embodiment of the present invention, taken along line A-A' shown in FIG. 2.

第4A圖係部分地顯示本發明的第1實施形態的顯示裝置的剖面圖,沿著第2圖所示的B-B’線的剖面圖。 Fig. 4A is a cross-sectional view partially showing the display device according to the first embodiment of the present invention, taken along the line B-B' shown in Fig. 2.

第4B圖係部分地顯示本發明的第1實施形態的顯示裝置的剖面圖,將共通電極放大顯示的放大剖面圖。 FIG. 4B is an enlarged cross-sectional view partially showing the display device according to the first embodiment of the present invention, and showing an enlarged common electrode.

第5圖係部分地顯示本發明的第1實施形態的顯示裝置的剖面圖,沿著第2圖所示的C-C’線的剖面圖。 Fig. 5 is a cross-sectional view partially showing the display device according to the first embodiment of the present invention, taken along line C-C' shown in Fig. 2.

第6圖係部分地顯示本發明的第1實施形態的顯示裝置的平面圖,顯示在第2圖所示的陣列基板上,透過液晶層,積層具備彩色濾光片及觸控感測配線的顯示裝置基板的構造的平面圖。 FIG. 6 is a plan view partially showing the display device according to the first embodiment of the present invention, which is displayed on the array substrate shown in FIG. 2 through a liquid crystal layer, a display including a color filter and a touch sensing wiring layer A plan view of the structure of the device substrate.

第7圖係部分地顯示本發明的第1實施形態的顯示裝置基板的剖面圖,沿著第6圖所示的F-F’線的剖面圖。 Fig. 7 is a partial cross-sectional view of the display device substrate according to the first embodiment of the present invention, taken along line F-F' shown in Fig. 6.

第8圖係部分地顯示本發明的第1實施形態的顯示裝置基板的剖面圖,說明觸控感測配線的端子部的剖面圖。 FIG. 8 is a cross-sectional view partially showing the display device substrate according to the first embodiment of the present invention, and a cross-sectional view illustrating the terminal portion of the touch sensing wiring.

第9圖係部分地顯示本發明的第1實施形態的顯示裝置基板的剖面圖,說明觸控感測配線的端子部的剖面圖。 FIG. 9 is a cross-sectional view partially showing the display device substrate of the first embodiment of the present invention, and a cross-sectional view illustrating the terminal portion of the touch sensing wiring.

第10圖係部分地顯示本發明的第1實施形態的陣列基板的平面圖,說明陣列基板的製造步驟當中一步驟的圖,顯示主動元件的一構成要素的通道層的圖案。在第10圖中,虛線表示在後續步驟之後所形成的源極配線及閘極配線的位置。 FIG. 10 is a plan view partially showing the array substrate of the first embodiment of the present invention, illustrating one step among the manufacturing steps of the array substrate, and showing the pattern of the channel layer of a constituent element of the active device. In FIG. 10, the broken line indicates the positions of the source wiring and the gate wiring formed after the subsequent steps.

第11圖係部分地顯示本發明的第1實施形態的陣列基板的平面圖,說明陣列基板的製造步驟當中一步驟的平面圖,顯示在通道層上形成源極配線、源極電極、及汲極電極的各圖案的構造的平面圖。 FIG. 11 is a plan view partially showing the array substrate of the first embodiment of the present invention, illustrating a plan view of one of the manufacturing steps of the array substrate, showing the formation of source wiring, source electrodes, and drain electrodes on the channel layer Plan view of the structure of each pattern.

第12圖係部分地顯示本發明的第1實施形態的陣列基板的平面圖,說明陣列基板的製造步驟當中一步驟的平面圖,顯示透過閘極絕緣膜,形成閘極電極、閘極配線、及導電配線的各圖案的構造的平面圖。在第12圖中,閘極電極、閘極配線、及導電配線各自具有用包含金屬層等的複數層所形成的積層構造。 FIG. 12 is a plan view partially showing the array substrate of the first embodiment of the present invention, illustrating a plan view of one of the manufacturing steps of the array substrate, showing the formation of the gate electrode, gate wiring, and conduction through the gate insulating film A plan view of the structure of each pattern of wiring. In FIG. 12, each of the gate electrode, the gate wiring, and the conductive wiring has a laminated structure formed of a plurality of layers including a metal layer and the like.

第13圖係部分地顯示本發明的第1實施形態的陣列基板的平面圖,說明陣列基板的製造步驟當中一步驟的平面圖,顯示透過絕緣層形成像素電極的圖案的構造的平面圖。又,第13圖所示的在陣列基板上透過絕緣層形成共通電極的積層構造相當於上述第2圖所示的構造。 FIG. 13 is a plan view partially showing the array substrate of the first embodiment of the present invention, a plan view illustrating one of the manufacturing steps of the array substrate, and a plan view showing the structure of the pixel electrode pattern formed through the insulating layer. In addition, the laminated structure shown in FIG. 13 in which the common electrode is formed through the insulating layer on the array substrate corresponds to the structure shown in FIG. 2 described above.

第14圖係顯示本發明的實施形態的顯示裝置中的進行液晶驅動和觸控感測驅動的分時驅動的一例的時序圖(timing chart)。 FIG. 14 is a timing chart showing an example of time-division driving of liquid crystal driving and touch sensing driving in the display device according to the embodiment of the present invention.

第15圖係部分地顯示本發明的第1實施形態的顯示裝置的像素的平面圖,顯示一像素中的液晶的配向狀態的平面圖。 FIG. 15 is a plan view partially showing a pixel of the display device according to the first embodiment of the present invention, and showing a state of alignment of liquid crystal in one pixel.

第16圖係部分地顯示本發明的第1實施形態的顯示裝置的像素的平面圖,顯示在像素電極與共通電極之間施加液晶驅動電壓時的液晶驅動動作的平面圖。 FIG. 16 is a plan view partially showing a pixel of the display device according to the first embodiment of the present invention, and a plan view showing the liquid crystal driving operation when a liquid crystal driving voltage is applied between the pixel electrode and the common electrode.

第17圖係顯示在本發明的第1實施形態的顯示裝置中,在觸控感測配線發揮作為觸控驅動電極的功能,且共通電極發揮作為觸控檢測電極的功能的情況下,在觸控感測配線與共通電極之間生成電場的狀態的示意剖面圖。 FIG. 17 shows that in the display device according to the first embodiment of the present invention, when the touch sensing wiring functions as a touch drive electrode and the common electrode functions as a touch detection electrode, the touch A schematic cross-sectional view of a state in which an electric field is generated between the sensing wiring and the common electrode.

第18圖係顯示本發明的第1實施形態的顯示裝置的示意剖面圖,顯示手指等指示器(pointer)接觸或接近顯示裝置基板的觀察者側的表面時的電場的生成狀態的變化的剖面圖。 FIG. 18 is a schematic cross-sectional view showing the display device according to the first embodiment of the present invention, showing a change in the state of electric field generation when a pointer such as a finger touches or approaches the surface of the display device substrate on the observer side. Figure.

第19圖係部分地顯示構成本發明的第1實施形態的變形例的顯示裝置的陣列基板的主要部分的剖面圖。 FIG. 19 is a cross-sectional view partially showing a main part of an array substrate constituting a display device according to a modification of the first embodiment of the present invention.

第20圖係部分地顯示構成本發明的第2實施形態的顯示裝置的陣列基板的平面圖,從觀察者側觀看的平面圖。 FIG. 20 is a plan view partially showing the array substrate constituting the display device of the second embodiment of the present invention, as viewed from the observer side.

第21圖係部分地顯示構成本發明的第2實施形態的顯示裝置的陣列基板的剖面圖,沿著第20圖所示的D-D’線的剖面圖。 Fig. 21 is a partial cross-sectional view of the array substrate constituting the display device of the second embodiment of the present invention, taken along the line D-D' shown in Fig. 20.

第22圖係部分地顯示本發明的第2實施形態的顯示裝置的平面圖,顯示在陣列基板上,透過液晶層,積層具備彩色濾光片及觸控感測配線的顯示裝置基板的構造的平面圖,從觀察者側觀看的平面圖。 22 is a plan view partially showing a plan view of a display device according to a second embodiment of the present invention, which is a plan view showing the structure of a display device substrate laminated on an array substrate, through a liquid crystal layer, with a color filter and touch sensing wiring stacked , A plan view from the observer's side.

第23圖係部分地顯示構成本發明的第2實施形態的顯示裝置的陣列基板的剖面圖,沿著第20圖所示的E-E’線的剖面圖。 Fig. 23 is a partial cross-sectional view of an array substrate constituting a display device according to a second embodiment of the present invention, taken along the line E-E' shown in Fig. 20.

第24圖係部分地顯示本發明的第2實施形態的顯示裝置的像素的平面圖,顯示一像素中的液晶的配向狀態的平面圖。 Fig. 24 is a plan view partially showing a pixel of a display device according to a second embodiment of the present invention, and showing a state of alignment of liquid crystal in one pixel.

第25圖係部分地顯示本發明的第2實施形態的顯示裝置的像素的平面圖,顯示在像素電極與共通電極之間施加液晶驅動電壓時的液晶驅動動作的平面圖。 FIG. 25 is a plan view partially showing a pixel of a display device according to a second embodiment of the present invention, and a plan view showing a liquid crystal driving operation when a liquid crystal driving voltage is applied between a pixel electrode and a common electrode.

第26圖係部分地顯示採用FFS模式的液晶的顯示裝置的剖面圖,顯示在像素電極與共通電極之間施加液晶驅動電壓時的由邊緣電場所造成的液晶驅動動作的剖面圖。 FIG. 26 is a cross-sectional view partially showing a display device using liquid crystal in the FFS mode, and a cross-sectional view showing a liquid crystal driving operation caused by an edge electric field when a liquid crystal driving voltage is applied between a pixel electrode and a common electrode.

第27圖係部分地顯示構成本發明的第3實施形態的顯示裝置的陣列基板的平面圖。 FIG. 27 is a plan view partially showing an array substrate constituting a display device according to a third embodiment of the present invention.

第28圖係部分地顯示本發明的第3實施形態的顯示裝置的平面圖,顯示在陣列基板上,透過液晶層,積層具備彩色濾光片及觸控感測配線的顯示裝置基板的構造的平面圖,從觀察者側觀看的平面圖。 FIG. 28 is a plan view partially showing a display device according to a third embodiment of the present invention, which is a plan view showing the structure of a display device substrate on an array substrate, through a liquid crystal layer, laminated with a color filter and touch sensing wiring , A plan view from the observer's side.

第29圖係部分地顯示構成本發明的第3實施形態的顯示裝置的陣列基板的剖面圖。 FIG. 29 is a cross-sectional view partially showing an array substrate constituting a display device according to a third embodiment of the present invention.

第30圖係與等電位線一起示意地顯示現有的液晶顯示裝置的顯示部的剖面圖。 FIG. 30 is a cross-sectional view schematically showing a display portion of a conventional liquid crystal display device together with equipotential lines.

第31圖係與等電位線一起示意地顯示現有的液晶顯示裝置的顯示部的變形例的剖面圖。 FIG. 31 is a cross-sectional view schematically showing a modification of the display unit of the conventional liquid crystal display device together with equipotential lines.

第32圖係顯示利用FFS模式的現有的液晶顯示裝置的一像素的放大平面圖。 FIG. 32 is an enlarged plan view showing one pixel of the conventional liquid crystal display device using the FFS mode.

[用於實施發明的形態] [Form for carrying out the invention]

以下,一邊參照圖式一邊針對本發明的實施形態進行說明。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

在以下的說明中,對相同或實質上相同的功能及構成要素給予相同的元件符號,省略或簡化其說明,或者是只在必要的情況下進行說明。在各圖中,由於將各構成要素畫成可在圖式上辨識的程度的大小,因此適宜地使各構成要素的尺寸及比率與實物不同。此外,根據需要,省略了很難圖示的要素,例如,形成構成液晶顯示裝置的絕緣層、緩衝層、半導體的通道層的複數層的結構,還有形成導電層的複數層的結構等圖示。作為可用於顯示裝置的基板,能應用玻璃基板、陶瓷基板、石英基板、藍寶石基板、矽、碳化矽或矽鍺等半導體基板、或塑膠基板等。 In the following description, the same or substantially the same functions and constituent elements are given the same reference symbols, and their descriptions are omitted or simplified, or they are explained only when necessary. In each drawing, since each constituent element is drawn to a size that is recognizable on the drawings, the size and ratio of each constituent element are appropriately different from those of the real thing. In addition, if necessary, elements that are difficult to illustrate are omitted, for example, the structure of forming a plurality of layers constituting an insulating layer, a buffer layer, and a channel layer of a semiconductor of a liquid crystal display device, and the structure of forming a plurality of layers of a conductive layer, etc. Show. As a substrate usable for a display device, a semiconductor substrate such as a glass substrate, a ceramic substrate, a quartz substrate, a sapphire substrate, silicon, silicon carbide, or silicon germanium, or a plastic substrate can be used.

在以下所述的各實施形態中,針對特徵部分進行說明,例如,對於通常液晶顯示裝置中所使用的構成要素與本實施形態的顯示裝置沒有差異的部分,省略說明。 In each of the embodiments described below, the characteristic parts will be described. For example, the components used in the general liquid crystal display device and the display device of this embodiment are not different from each other, and the description is omitted.

在以下的記載中,有將與觸控感測有關的配線、電極、及訊號簡稱為觸控驅動配線、觸控檢測配線、觸控電極、及觸控驅動訊號的情形。將為了驅動觸控感測所施加於觸控感測配線的電壓稱為觸控驅動電壓,將為了驅動顯示功能層的液晶層而施加在共通電極與像素電極之間的電壓稱為液晶驅動電壓。導電配線有稱為共同配線的情況。 In the following description, the wires, electrodes, and signals related to touch sensing are simply referred to as touch drive wiring, touch detection wiring, touch electrodes, and touch drive signals. The voltage applied to the touch sensing wiring for driving touch sensing is called a touch driving voltage, and the voltage applied between the common electrode and the pixel electrode to drive the liquid crystal layer of the display function layer is called a liquid crystal driving voltage. . The conductive wiring may be called common wiring.

此外,本發明的實施形態的液晶顯示裝置LCD1使用內嵌方式。此處,「內嵌方式」意指將觸控感測功能內建在液晶顯示裝置的液晶顯示裝置,或者是將觸控感測功能與液晶顯示裝置一體化的液晶顯示裝置。通常,在透過液晶層貼合顯示裝置基板和陣列基板(TFT基板)的液晶顯示裝置中,在顯示裝置基板及陣列基板的各自外側的面貼附偏光薄膜。換言之,本發明的實施形態的內嵌方式的液晶顯示裝置,係指在位於彼此對向的2個偏光薄膜之間並且在厚度方向上構成液晶顯示裝置的任一部位中,具備觸控感測功能的液晶顯示裝置。 In addition, the liquid crystal display device LCD1 of the embodiment of the present invention uses an in-line method. Here, the "embedded method" means a liquid crystal display device in which the touch sensing function is built in the liquid crystal display device, or a liquid crystal display device in which the touch sensing function and the liquid crystal display device are integrated. Generally, in a liquid crystal display device in which a display device substrate and an array substrate (TFT substrate) are bonded through a liquid crystal layer, a polarizing film is attached to the outer surfaces of the display device substrate and the array substrate. In other words, the in-cell liquid crystal display device of the embodiment of the present invention means that any part of the liquid crystal display device in the thickness direction between the two polarizing films facing each other is provided with touch sensing Functional liquid crystal display device.

(第1實施形態) (First embodiment) (液晶顯示裝置LCD1的功能結構) (Functional structure of liquid crystal display device LCD1)

以下,一邊參照第1圖至第18圖一邊說明本發明的第1實施形態的液晶顯示裝置LCD1。 Hereinafter, the liquid crystal display device LCD1 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 18.

第1圖係顯示本發明的第1實施形態的液晶顯示裝置LCD1的方塊圖。如第1圖所示,本實施形態的液晶顯示裝置LCD1具備顯示部110、和供控制顯示部110及觸控感測功能用的控制部120。 FIG. 1 is a block diagram showing a liquid crystal display device LCD1 according to the first embodiment of the present invention. As shown in FIG. 1, the liquid crystal display device LCD1 of this embodiment includes a display unit 110 and a control unit 120 for controlling the display unit 110 and the touch sensing function.

控制部120具有公知的結構,具備影像訊號控制部121(第一控制部)、觸控感測控制部122(第二控制部)、和系統控制部123(第三控制部)。 The control unit 120 has a well-known structure, and includes an image signal control unit 121 (first control unit), a touch sensing control unit 122 (second control unit), and a system control unit 123 (third control unit).

影像訊號控制部121將設置在陣列基板200的共通電極17(後述)設為定電位,並且將訊號送至設置在陣列基板200的閘極配線10(後述,掃描線)及源極配線31(後述,訊號線)。影像訊號控制部121係藉由在共 通電極17與像素電極20(後述)之間施加顯示用的液晶驅動電壓來在陣列基板200上產生邊緣電場,液晶分子沿著邊緣電場旋轉,液晶層300被驅動。藉此,在陣列基板200上顯示影像。複數個像素電極20係各自透過源極配線(訊號線),個別地施加例如矩形波的影像訊號。此外,作為矩形波,可以是正或負的直流矩形波或交流矩形波。影像訊號控制部121將這樣的影像訊號送至源極配線。 The video signal control unit 121 sets the common electrode 17 (described later) provided on the array substrate 200 to a constant potential, and sends the signal to the gate wiring 10 (described later, scan line) provided on the array substrate 200 and the source wiring 31 ( (Described later, signal line). The video signal control unit 121 is A liquid crystal driving voltage for display is applied between the through electrode 17 and the pixel electrode 20 (described later) to generate a fringe electric field on the array substrate 200, the liquid crystal molecules rotate along the fringe electric field, and the liquid crystal layer 300 is driven. In this way, images are displayed on the array substrate 200. The plurality of pixel electrodes 20 are each transmitted through the source wiring (signal line) to individually apply image signals such as rectangular waves. In addition, the rectangular wave may be a positive or negative DC rectangular wave or an AC rectangular wave. The video signal control unit 121 sends such a video signal to the source wiring.

觸控感測控制部122係對觸控感測配線3(後述)施加觸控感測驅動電壓,檢測在觸控感測配線3與共通電極17之間產生的電容的變化,進行觸控感測。 The touch-sensing control unit 122 applies a touch-sensing drive voltage to the touch-sensing wiring 3 (described later), detects a change in capacitance generated between the touch-sensing wiring 3 and the common electrode 17, and performs touch sensing Measurement.

系統控制部123控制影像訊號控制部121及觸控感測控制部122,可以交替地,即分時地進行液晶驅動和電容的變化的檢測。此外,系統控制部123也可以具有用與液晶驅動頻率和觸控感測驅動頻率不同的頻率,或者用不同的電壓驅動液晶的功能。 The system control unit 123 controls the image signal control unit 121 and the touch sensing control unit 122 to detect the liquid crystal drive and the change in capacitance alternately, that is, time-sharing. In addition, the system control unit 123 may have a function of driving the liquid crystal at a frequency different from the liquid crystal driving frequency and the touch sensing driving frequency, or at a different voltage.

在具有這樣的功能的系統控制部123中,例如,偵測液晶顯示裝置LCD1偶然得到的來自外部環境的雜訊的頻率,選擇與雜訊頻率不同的觸控感測驅動頻率。藉此,能減輕雜訊的影響。此外,在這樣的系統控制部123中,也能選定與手指或筆等指示器的掃描速度匹配的觸控感測驅動頻率。 In the system control unit 123 having such a function, for example, the frequency of noise from the external environment accidentally obtained by the liquid crystal display device LCD1 is detected, and a touch sensing driving frequency different from the noise frequency is selected. In this way, the influence of noise can be reduced. In addition, in such a system control unit 123, it is also possible to select a touch sensing driving frequency that matches the scanning speed of a pointer such as a finger or a pen.

在具有第1圖所示的結構的液晶顯示裝置LCD1中,共通電極17兼具在共通電極17與像素電極20之間施加顯示用的液晶驅動電壓以驅動液晶的功能、 和檢測在觸控感測配線3與共通電極17之間產生的電容的變化的觸控感測功能。本發明的實施形態的觸控感測配線,由於能以導電率佳的金屬層形成,因此能降低觸控感測配線的電阻值以使觸控感度提升(後述)。 In the liquid crystal display device LCD1 having the structure shown in FIG. 1, the common electrode 17 also has the function of applying a liquid crystal driving voltage for display between the common electrode 17 and the pixel electrode 20 to drive the liquid crystal. And a touch sensing function that detects a change in capacitance generated between the touch sensing wiring 3 and the common electrode 17. Since the touch sensing wiring of the embodiment of the present invention can be formed of a metal layer having good conductivity, the resistance value of the touch sensing wiring can be reduced to improve the touch sensitivity (described later).

如後所述,控制部120較佳為具有在影像顯示的穩定期間、及影像顯示後的黑顯示穩定期間中至少一者的穩定期間內,進行利用觸控感測配線3及共通電極17的觸控感測驅動的功能。 As will be described later, the control unit 120 preferably has a function that utilizes the touch sensing wiring 3 and the common electrode 17 during at least one of a stable period of image display and a black display stable period after image display. Touch sensing drive function.

(液晶顯示裝置LCD1的構造) (Structure of liquid crystal display device LCD1)

本實施形態的液晶顯示裝置能具備後述的實施形態的顯示裝置基板。此外,以下記載的「俯視」意指從觀察者觀察液晶顯示裝置的顯示面(顯示裝置用基板的平面)的方向觀看的平面。本發明的實施形態的液晶顯示裝置的顯示部的形狀、或規定像素的像素開口部的形狀、構成液晶顯示裝置的像素數沒有限定。但是,在以下詳述的實施形態中,在俯視下,將像素開口部的短邊的方向規定為X方向,將長邊的方向(長邊方向)規定為Y方向,另外,將透明基板的厚度方向規定為Z方向,說明液晶顯示裝置。在以下的實施形態中,也可以將如上述所規定的X方向和Y方向交換,構成液晶顯示裝置。 The liquid crystal display device of this embodiment can include the display device substrate of the embodiment described later. In addition, the “plan view” described below means a plane viewed from the direction in which the viewer views the display surface of the liquid crystal display device (the plane of the substrate for the display device). The shape of the display portion of the liquid crystal display device of the embodiment of the present invention, the shape of the pixel opening portion of the predetermined pixel, and the number of pixels constituting the liquid crystal display device are not limited. However, in the embodiments described in detail below, in a plan view, the direction of the short side of the pixel opening is defined as the X direction, and the direction of the long side (long side direction) is defined as the Y direction. The thickness direction is defined as the Z direction, which explains the liquid crystal display device. In the following embodiments, the X direction and the Y direction as defined above may be exchanged to constitute a liquid crystal display device.

此外,在第2圖~第18圖中,省略了對液晶層300賦予初期配向的配向膜、偏光薄膜、相位差薄膜等光學薄膜、保護用的蓋玻璃(cover glass)等。在液晶顯示裝置LCD1的表面及背面,以光軸成為正交偏光(Cross Nicol)的方式分別貼附了偏光薄膜。 In addition, in FIGS. 2 to 18, optical films such as an alignment film, a polarizing film, and a retardation film that provide initial alignment to the liquid crystal layer 300, a cover glass for protection, and the like are omitted. On the front and back surfaces of the liquid crystal display device LCD1, polarizing films are respectively attached so that the optical axis becomes cross polarized light (Cross Nicol).

第2圖係部分地顯示構成本發明的第1實施形態的液晶顯示裝置LCD1的陣列基板200的平面圖,從觀察者側觀看的平面圖。在第2圖中,為了容易瞭解陣列基板的構造以進行說明,而省略了與陣列基板對向的顯示裝置基板的圖示。 FIG. 2 is a plan view partially showing an array substrate 200 constituting the liquid crystal display device LCD1 of the first embodiment of the present invention, as viewed from the observer side. In FIG. 2, in order to easily understand the structure of the array substrate for explanation, the illustration of the display device substrate facing the array substrate is omitted.

液晶顯示裝置LCD1係在陣列基板200上具備複數條源極配線31、複數條閘極配線10、和複數條共同配線30(導電配線)。源極配線31係各自以具有在Y方向(第1方向)上延伸的線狀圖案的方式形成。閘極配線10及共同配線30係各自以具有在X方向(第2方向)上延伸的線狀圖案的方式形成。即,源極配線31係與閘極配線10及共同配線30正交。共同配線30係以橫跨複數個像素開口部的方式在X方向上延伸。複數個像素開口部係指在透明基板22上所定義的區域。 The liquid crystal display device LCD1 includes a plurality of source wirings 31, a plurality of gate wirings 10, and a plurality of common wirings 30 (conductive wirings) on the array substrate 200. The source wirings 31 are each formed to have a linear pattern extending in the Y direction (first direction). The gate wiring 10 and the common wiring 30 are each formed to have a linear pattern extending in the X direction (second direction). That is, the source wiring 31 is orthogonal to the gate wiring 10 and the common wiring 30. The common wiring 30 extends in the X direction so as to straddle a plurality of pixel openings. The plurality of pixel openings refer to the area defined on the transparent substrate 22.

另外,液晶顯示裝置LCD1具備配置成矩陣狀的複數個像素電極20、和以與像素電極20相對應的方式設置且與像素電極20連接的複數個主動元件28(薄膜電晶體)。像素電極20係設置在複數個像素開口部的每一者。具體而言,複數個像素電極20的每一者連接了主動元件28。在第2圖所示的例子中,在像素電極20的右上端的位置設置了主動元件28。 In addition, the liquid crystal display device LCD1 includes a plurality of pixel electrodes 20 arranged in a matrix, and a plurality of active elements 28 (thin film transistors) provided in correspondence with the pixel electrodes 20 and connected to the pixel electrodes 20. The pixel electrode 20 is provided in each of the plurality of pixel openings. Specifically, each of the plurality of pixel electrodes 20 is connected to the active element 28. In the example shown in FIG. 2, the active element 28 is provided at the upper right end of the pixel electrode 20.

主動元件28具備與源極配線31連接的源極電極24(後述)、通道層27(後述)、汲極電極26(後述)、和透過絕緣膜(後述)而與通道層27對向配置的閘極電極25。主動元件28的閘極電極25構成閘極配線10的一部分,與閘極配線10連接。 The active element 28 includes a source electrode 24 (described later) connected to the source wiring 31, a channel layer 27 (described later), a drain electrode 26 (described later), and a channel electrode 27 disposed opposite to the channel layer 27 through an insulating film (described later) Gate electrode 25. The gate electrode 25 of the active element 28 constitutes a part of the gate wiring 10 and is connected to the gate wiring 10.

在本實施形態中,液晶顯示裝置LCD1具備複數個像素,一個像素電極20形成一個像素。利用基於主動元件28的切換驅動,對複數個像素電極20的每一者賦予電壓(正負的電壓),液晶被驅動。在以下的說明中,有將利用像素電極20進行液晶驅動的區域稱為像素、像素開口部、或像素區域的情況。此像素係在俯視下用源極配線31、和閘極配線10所區隔的區域。 In this embodiment, the liquid crystal display device LCD1 includes a plurality of pixels, and one pixel electrode 20 forms one pixel. With the switching drive by the active element 28, a voltage (positive and negative voltage) is applied to each of the plurality of pixel electrodes 20, and the liquid crystal is driven. In the following description, the region where the liquid crystal is driven by the pixel electrode 20 is sometimes referred to as a pixel, a pixel opening, or a pixel region. This pixel is a region separated by the source wiring 31 and the gate wiring 10 in a plan view.

另外,液晶顯示裝置LCD1係在Z方向上在與像素電極20對向的位置具備共通電極17。特別是,相對於一個像素電極20設置2個具有條紋圖案的共通電極17。共通電極17係設置在複數個像素開口部的每一者。共通電極17係在Y方向上延伸,與像素電極20的長邊方向平行。Y方向上的共通電極17的長度EL比Y方向上的像素電極20的長度長。共通電極17係通過後述的貫穿孔(through hole)20S、接觸孔H而與共同配線30電性連接。如第2圖所示,接觸孔H位於共通電極17的導電圖案(電極部17A,條紋圖案)的長邊方向上的中央。 In addition, the liquid crystal display device LCD1 includes a common electrode 17 at a position facing the pixel electrode 20 in the Z direction. In particular, two common electrodes 17 having a stripe pattern are provided for one pixel electrode 20. The common electrode 17 is provided in each of the plurality of pixel openings. The common electrode 17 extends in the Y direction and is parallel to the longitudinal direction of the pixel electrode 20. The length EL of the common electrode 17 in the Y direction is longer than the length of the pixel electrode 20 in the Y direction. The common electrode 17 is electrically connected to the common wiring 30 through a through hole 20S and a contact hole H described later. As shown in FIG. 2, the contact hole H is located at the center in the longitudinal direction of the conductive pattern (electrode portion 17A, stripe pattern) of the common electrode 17.

一像素內的共通電極17的條數及接觸孔的數量,例如,能依照像素寬度(像素尺寸)調整。 The number of common electrodes 17 and the number of contact holes in a pixel can be adjusted according to the pixel width (pixel size), for example.

在X方向上,共通電極17的寬度W17A係例如約3μm。彼此鄰接的共通電極17之間的間距(pitch)P17A(距離)係例如約4μm。具體而言,並非僅在一個像素上,也在彼此鄰接的像素間,共通電極17係在X方向上以間距P17A彼此分開。 In the X direction, the width W17A of the common electrode 17 is, for example, about 3 μm. The pitch P17A (distance) between the common electrodes 17 adjacent to each other is, for example, about 4 μm. Specifically, not only on one pixel, but also between pixels adjacent to each other, the common electrodes 17 are separated from each other by a pitch P17A in the X direction.

在第2圖顯示的例子中,對一個像素電極20設置了2個具有條紋圖案的共通電極17,但本發明不限於此結構。根據像素電極20的大小,共通電極17的條數可以是1條以上,甚至是3條以上。在此情況下,共通電極17的寬度W17A及間距P17A可以根據像素尺寸等或者設計而適宜變更。 In the example shown in FIG. 2, two common electrodes 17 having a stripe pattern are provided for one pixel electrode 20, but the present invention is not limited to this structure. According to the size of the pixel electrode 20, the number of common electrodes 17 may be one or more, or even more than three. In this case, the width W17A and the pitch P17A of the common electrode 17 can be appropriately changed according to the pixel size or the like or the design.

第3圖係部分地顯示本發明的第1實施形態的液晶顯示裝置LCD1的剖面圖,沿著第2圖所示的A-A’線的剖面圖。特別是,第3圖係沿著像素開口部的短邊方向的剖面圖。 Fig. 3 is a cross-sectional view partially showing a liquid crystal display device LCD1 according to the first embodiment of the present invention, taken along line A-A' shown in Fig. 2. In particular, FIG. 3 is a cross-sectional view along the short side direction of the pixel opening.

第4A圖係部分地顯示本發明的第1實施形態的液晶顯示裝置LCD1的剖面圖,沿著第2圖所示的B-B’線的剖面圖。第4B圖係部分地顯示本發明的第1實施形態的液晶顯示裝置LCD1的剖面圖,將共通電極放大的放大剖面圖。 Fig. 4A is a cross-sectional view partially showing a liquid crystal display device LCD1 according to the first embodiment of the present invention, taken along the line B-B' shown in Fig. 2. FIG. 4B is an enlarged cross-sectional view partially showing a cross-sectional view of the liquid crystal display device LCD1 of the first embodiment of the present invention, and an enlarged common electrode.

第5圖係部分地顯示本發明的第1實施形態的液晶顯示裝置LCD1的剖面圖,沿著第2圖所示的C-C’線的剖面圖。 Fig. 5 is a partial cross-sectional view of the liquid crystal display device LCD1 according to the first embodiment of the present invention, taken along the line C-C' shown in Fig. 2.

第3圖或第4A圖顯示觸控感測配線3與共通電極17的距離W1。換言之,此距離W1係包含透明樹脂層16、彩色濾光片51(RGB)、未圖示的配向膜、及液晶層300的空間中的Z方向的距離。此空間中並未包含主動元件、源極配線、及像素電極。在本實施形態中,將用距離W1所表示的此空間稱為觸控感測空間。從主動元件或源極配線等雜訊源所產生的雜訊一般是放射成 3維的放射狀。因此,雜訊的大小成為距離W1的3次方分之1(距離越大則雜訊的影響變得越小。)。 FIG. 3 or FIG. 4A shows the distance W1 between the touch sensing wiring 3 and the common electrode 17. In other words, this distance W1 is the distance in the Z direction in the space including the transparent resin layer 16, the color filter 51 (RGB), an alignment film (not shown), and the liquid crystal layer 300. The active element, source wiring, and pixel electrode are not included in this space. In this embodiment, this space represented by the distance W1 is called a touch sensing space. Noise generated from noise sources such as active components or source wiring is generally radiated into 3D radial. Therefore, the size of the noise becomes one third of the distance W1 (the greater the distance, the smaller the influence of noise becomes.).

第3圖或第4A圖顯示觸控感測配線3與源極配線31的距離W2。如距離W2所示,觸控感測配線3與源極配線31分得很開。除此之外,如第2圖或第3圖所示,在俯視下,共通電極17和源極配線31沒有重疊,因此肇因於源極配線31的寄生電容極小。另外,設置在最接近觸控感測空間的位置的共通電極17在像素的長邊方向上以像素單位具有細布條的形狀。因此,與以跨過複數個像素的方式設置以直線形狀延伸的共通電極的情況相比,本實施形態的共通電極17能夠減小寄生電容。 FIG. 3 or FIG. 4A shows the distance W2 between the touch sensing wiring 3 and the source wiring 31. As shown by the distance W2, the touch sensing wiring 3 and the source wiring 31 are very apart. In addition, as shown in FIG. 2 or FIG. 3, the common electrode 17 and the source wiring 31 do not overlap in a plan view, so the parasitic capacitance caused by the source wiring 31 is extremely small. In addition, the common electrode 17 provided at the position closest to the touch sensing space has the shape of a thin strip in the pixel unit in the longitudinal direction of the pixel. Therefore, the common electrode 17 of this embodiment can reduce the parasitic capacitance compared to the case where the common electrode extending in a linear shape is provided so as to straddle a plurality of pixels.

若利用第3圖或第4A圖所示的構造的話,便能抑制肇因於供給至源極配線31的影像訊號的雜訊給予觸控感測配線3的影響,能使在觸控感測配線3與源極配線31之間產生的寄生電容減少。 If the structure shown in FIG. 3 or FIG. 4A is used, the influence of the noise caused by the image signal supplied to the source wiring 31 on the touch sensing wiring 3 can be suppressed, enabling touch sensing The parasitic capacitance generated between the wiring 3 and the source wiring 31 is reduced.

液晶顯示裝置LCD1具備顯示裝置基板100(對向基板)、以面對顯示裝置基板100的方式貼合的陣列基板200、和由顯示裝置基板100及陣列基板200所挾持的液晶層300。 The liquid crystal display device LCD1 includes a display device substrate 100 (counter substrate), an array substrate 200 bonded to face the display device substrate 100, and a liquid crystal layer 300 held by the display device substrate 100 and the array substrate 200.

液晶顯示裝置LCD1中,內部供給光L的背光單元BU係設置在構成液晶顯示裝置LCD1的陣列基板200的背面(與配置液晶層300的陣列基板200的透明基板的面為相反面)。又,背光單元也可以設置在液晶顯示裝置LCD1的側面。在此情況下,例如,將使從背光單元BU所射出的光朝向液晶顯示裝置LCD1內部而反射的反射 板、導光板、或光擴散板等設置在陣列基板200的透明基板22的背面。 In the liquid crystal display device LCD1, the backlight unit BU that supplies light L internally is provided on the back surface of the array substrate 200 constituting the liquid crystal display device LCD1 (the surface opposite to the transparent substrate surface of the array substrate 200 where the liquid crystal layer 300 is disposed). In addition, the backlight unit may be provided on the side of the liquid crystal display device LCD1. In this case, for example, the light reflected from the backlight unit BU is reflected toward the inside of the liquid crystal display device LCD1 A plate, a light guide plate, a light diffusion plate, or the like are provided on the rear surface of the transparent substrate 22 of the array substrate 200.

(顯示裝置基板100) (Display device substrate 100)

顯示裝置基板100具備透明基板21(第1透明基板)、設置在透明基板21上的觸控感測配線3、以覆蓋觸控感測配線3的方式所形成的彩色濾光片51(RGB)、和以覆蓋彩色濾光片51的方式所形成的透明樹脂層16。 The display device substrate 100 includes a transparent substrate 21 (first transparent substrate), a touch sensing wiring 3 provided on the transparent substrate 21, and a color filter 51 (RGB) formed so as to cover the touch sensing wiring 3 And a transparent resin layer 16 formed to cover the color filter 51.

觸控感測配線3發揮作為觸控驅動電極(觸控驅動配線)的功能。在液晶顯示裝置LCD1中,藉由偵測觸控感測配線3與共通電極17間的電容的變化來進行觸控感測的檢測。 The touch sensing wiring 3 functions as a touch driving electrode (touch driving wiring). In the liquid crystal display device LCD1, touch sensing is detected by detecting a change in capacitance between the touch sensing wiring 3 and the common electrode 17.

觸控感測配線3具有至少由黑色層8、和形成在黑色層8上方的包含金屬層5的導電層所形成的積層構造。另外,導電層具有第1導電性金屬氧化物層6、金屬層5、及第2導電性金屬氧化物層4的3層結構。此外,可以在第1導電性金屬氧化物層6的表面(液晶層側)進一步積層黑色層或光吸收層。在俯視下,可以有觸控感測配線3和黑色層8的線寬相等的部分。 The touch sensing wiring 3 has a laminated structure formed by at least a black layer 8 and a conductive layer including a metal layer 5 formed on the black layer 8. In addition, the conductive layer has a three-layer structure of a first conductive metal oxide layer 6, a metal layer 5, and a second conductive metal oxide layer 4. In addition, a black layer or a light-absorbing layer may be further deposited on the surface (liquid crystal layer side) of the first conductive metal oxide layer 6. In a plan view, there may be a portion where the line width of the touch sensing wiring 3 and the black layer 8 are equal.

由第1導電性金屬氧化物層6及第2導電性金屬氧化物層4挾持金屬層5的結構,也可以採用省略導電性金屬氧化物中任一者、或者是導電性氧化物的2層積層的層結構。 The structure in which the metal layer 5 is sandwiched by the first conductive metal oxide layer 6 and the second conductive metal oxide layer 4 may also be a two-layer omitting either of the conductive metal oxides or the conductive oxide Layered layer structure.

(金屬層5) (Metal layer 5)

作為金屬層5,例如,能採用銅層或銅合金層的含銅層、或者是含有鋁的鋁合金層(含鋁層)。具體而言, 作為金屬層5的材料,能應用銅、銀、金、鈦、鉬、鋁、或它們的合金。鎳為強磁性體,因此成膜速率(rate)降低,但能用濺鍍等真空成膜來形成。鉻有污染環境的問題或電阻值大這樣的缺點,但能用作本實施形態的金屬層的材料。作為形成金屬層5的金屬,為了得到對透明基板21或透明樹脂層16的緊貼性,較佳為採用對銅或鋁添加了從鎂、鈣、鈦、鉬、銦、錫、鋅、釹、鎳、鋁、銻、銀所選出的1種以上的金屬元素的合金。將金屬元素添加至金屬層5的量,若為4at%以下的話,便不會大幅地降低銅合金或鋁的電阻值,因而較佳。作為銅合金的成膜方法,例如,能使用濺鍍等真空成膜法。 As the metal layer 5, for example, a copper-containing layer of a copper layer or a copper alloy layer, or an aluminum alloy layer (aluminum-containing layer) containing aluminum can be used. in particular, As a material of the metal layer 5, copper, silver, gold, titanium, molybdenum, aluminum, or alloys thereof can be used. Nickel is a ferromagnetic body, so the film formation rate is reduced, but it can be formed by vacuum film formation such as sputtering. Chromium has a problem of environmental pollution or a large resistance value, but it can be used as a material for the metal layer of this embodiment. As the metal forming the metal layer 5, in order to obtain adhesion to the transparent substrate 21 or the transparent resin layer 16, it is preferable to add copper, aluminum, magnesium, calcium, titanium, molybdenum, indium, tin, zinc, or neodymium. , Nickel, aluminum, antimony, silver selected alloy of more than one metal element. If the amount of the metal element added to the metal layer 5 is 4 at% or less, the resistance value of the copper alloy or aluminum is not significantly reduced, which is preferable. As a copper alloy film forming method, for example, a vacuum film forming method such as sputtering can be used.

在採用銅合金薄膜或鋁合金薄膜的情況下,若將膜厚設為100nm以上或150nm以上,則變得幾乎無法透射可見光。由此,本實施形態的金屬層5,例如,若具有100nm~300nm的膜厚的話,便能得到充分的遮光性。金屬層5的膜厚可以超過300nm。又,如後所述,金屬層5的材料也能應用於共同配線30(導電配線)。此外,用導電性金屬氧化物層挾持金屬層5的積層構造也能應用於共同配線30(導電配線)。 When a copper alloy thin film or an aluminum alloy thin film is used, if the film thickness is set to 100 nm or more or 150 nm or more, it becomes almost impossible to transmit visible light. Therefore, if the metal layer 5 of this embodiment has a film thickness of 100 nm to 300 nm, for example, sufficient light-shielding properties can be obtained. The film thickness of the metal layer 5 may exceed 300 nm. As described later, the material of the metal layer 5 can also be applied to the common wiring 30 (conductive wiring). In addition, the laminated structure in which the metal layer 5 is sandwiched by the conductive metal oxide layer can also be applied to the common wiring 30 (conductive wiring).

(導電性金屬氧化物層4、6) (Conductive metal oxide layer 4, 6)

第1導電性金屬氧化物層6及第2導電性金屬氧化物層4挾持金屬層5。可以在第1導電性金屬氧化物層6與金屬層5的界面及第2導電性金屬氧化物層4與金屬層5的界面,插入鎳、鋅、銦、鈦、鉬、鎢等的與銅不同的金屬或這些金屬的合金層。 The first conductive metal oxide layer 6 and the second conductive metal oxide layer 4 sandwich the metal layer 5. Nickel, zinc, indium, titanium, molybdenum, tungsten, etc. can be inserted into the interface between the first conductive metal oxide layer 6 and the metal layer 5 and the interface between the second conductive metal oxide layer 4 and the metal layer 5 Different metals or alloy layers of these metals.

具體而言,作為第2導電性金屬氧化物層4及第1導電性金屬氧化物層6的材料,例如,能採用包含從氧化銦、氧化鋅、氧化銻、氧化錫所選出的2種以上的金屬氧化物的複合氧化物。 Specifically, as the materials of the second conductive metal oxide layer 4 and the first conductive metal oxide layer 6, for example, two or more kinds selected from indium oxide, zinc oxide, antimony oxide, and tin oxide can be used. Composite oxide of metal oxides.

第2導電性金屬氧化物層4及第1導電性金屬氧化物層6中所包含的銦(In)的量,必須含有比80at%多。銦(In)的量較佳為比80at%多。銦(In)的量更佳為比90at%多。在銦(In)的量比80at%少的情況下,所形成的導電性金屬氧化物層的比電阻變大,這是不佳的。若鋅(Zn)的量超過20at%,則導電性金屬氧化物(混合氧化物)的耐鹼性降低,因而是不佳的。在上述的第2導電性金屬氧化物層4及第1導電性金屬氧化物層6方面,皆為混合氧化物中的金屬元素的原子百分比(不計數氧元素而僅計數金屬元素)。氧化銻因由於金屬銻很難形成與銅的固溶域,抑制積層結構中的銅的擴散,因此能加到上述導電性金屬氧化物層。 The amount of indium (In) contained in the second conductive metal oxide layer 4 and the first conductive metal oxide layer 6 must be more than 80 at%. The amount of indium (In) is preferably more than 80 at%. The amount of indium (In) is more preferably more than 90at%. When the amount of indium (In) is less than 80 at%, the specific resistance of the conductive metal oxide layer formed becomes large, which is not good. If the amount of zinc (Zn) exceeds 20 at%, the alkali resistance of the conductive metal oxide (mixed oxide) decreases, which is not good. Both the second conductive metal oxide layer 4 and the first conductive metal oxide layer 6 mentioned above are atomic percentages of metal elements in the mixed oxide (oxygen elements are not counted, only metal elements are counted). Antimony oxide can be added to the conductive metal oxide layer because antimony metal hardly forms a solid solution region with copper and suppresses the diffusion of copper in the laminated structure.

第1導電性金屬氧化物層6及第2導電性金屬氧化物層4中所包含的鋅(Zn)的量必須設得比錫(Sn)的量多。若錫的含量超過含鋅量,則在後續步驟的濕式蝕刻造成阻礙。換言之,銅或銅合金的金屬層變得比導電性金屬氧化物層更容易被蝕刻,第1導電性金屬氧化物層6、金屬層5、及第2導電性金屬氧化物層4的寬度變得容易產生差異。 The amount of zinc (Zn) contained in the first conductive metal oxide layer 6 and the second conductive metal oxide layer 4 must be set to be greater than the amount of tin (Sn). If the tin content exceeds the zinc content, the wet etching in the subsequent steps causes hindrance. In other words, the metal layer of copper or copper alloy becomes easier to be etched than the conductive metal oxide layer, and the widths of the first conductive metal oxide layer 6, the metal layer 5, and the second conductive metal oxide layer 4 become It’s easy to make a difference.

第1導電性金屬氧化物層6及第2導電性金屬氧化物層4中所包含的錫(Sn)的量較佳為在0.5at%以上6at% 以下的範圍內。在相對於銦元素的比較上,將0.5at%以上6at%以下的錫添加至導電性金屬氧化物層,從而能減小上述銦、鋅、及錫的3元系混合氧化物膜(導電性的複合氧化物層)的比電阻。若錫的量超過6at%,則由於伴有對導電性金屬氧化物層添加鋅,因此3元系混合氧化物膜(導電性的複合氧化物層)的比電阻變得過大。藉由在上述的範圍(0.5at%以上6at%以下)內調整鋅及錫的量,能將比電阻,以混合氧化物膜的單層膜的比電阻而言,納入大約3×10-4Ωcm以上5×10-4Ωcm以下的小範圍內。在上述混合氧化物中,也能少量添加鈦、鋯、鎂、鋁、鍺等其他元素。但是,在本實施形態中,混合氧化物的比電阻不限於上述的範圍。 The amount of tin (Sn) contained in the first conductive metal oxide layer 6 and the second conductive metal oxide layer 4 is preferably in the range of 0.5 at% or more and 6 at% or less. In comparison with the indium element, by adding 0.5at% or more and 6at% or less of tin to the conductive metal oxide layer, the ternary mixed oxide film of the above-mentioned indium, zinc, and tin can be reduced (conductivity Of the composite oxide layer). If the amount of tin exceeds 6 at%, zinc is added to the conductive metal oxide layer, so the specific resistance of the ternary mixed oxide film (conductive composite oxide layer) becomes excessive. By adjusting the amounts of zinc and tin within the above range (0.5 at% or more and 6 at% or less), the specific resistance can be incorporated into the specific resistance of the single-layer film of the mixed oxide film by about 3×10 -4 Within a small range of Ωcm or more and 5×10 -4 Ωcm or less. In the above mixed oxide, other elements such as titanium, zirconium, magnesium, aluminum, and germanium can also be added in small amounts. However, in this embodiment, the specific resistance of the mixed oxide is not limited to the above range.

在金屬層5為銅層或銅合金層的情況下,理想的是上述的導電性金屬氧化物層係包含從氧化銦、氧化鋅、氧化銻、及氧化錫所選出的2種以上的金屬氧化物的複合氧化物。銅層或銅合金層對構成彩色濾光片51的透明樹脂層16或玻璃基板(透明基板21)的緊貼性低。因此,在直接將銅層或銅合金層應用於顯示裝置基板的情況下,很難實現實用的顯示裝置基板。然而,上述的複合氧化物充分具有對彩色濾光片51、黑色矩陣BM(黑色層8)、及玻璃基板(透明基板21)等的緊貼性,且對銅層或銅合金層的緊貼性也是足夠的。因此,在將使用複合氧化物的銅層或銅合金層應用於顯示裝置基板的情況下,變得可以實現實用的顯示裝置基板。 When the metal layer 5 is a copper layer or a copper alloy layer, it is desirable that the above-mentioned conductive metal oxide layer contains two or more kinds of metal oxides selected from indium oxide, zinc oxide, antimony oxide, and tin oxide Compound oxide. The copper layer or the copper alloy layer has low adhesion to the transparent resin layer 16 constituting the color filter 51 or the glass substrate (transparent substrate 21). Therefore, in the case of directly applying a copper layer or a copper alloy layer to a display device substrate, it is difficult to realize a practical display device substrate. However, the aforementioned composite oxide has sufficient adhesion to the color filter 51, the black matrix BM (black layer 8), and the glass substrate (transparent substrate 21), etc., and to the copper layer or copper alloy layer Sex is enough. Therefore, when a copper layer or a copper alloy layer using a composite oxide is applied to a display device substrate, it becomes possible to realize a practical display device substrate.

銅、銅合金、銀、銀合金、或它們的氧化物、氮化物一般不具有對玻璃等透明基板21或黑色矩陣BM等充分的緊貼性。因此,在沒有設置導電性金屬氧化物層的情況下,有可能在觸控感測配線3與玻璃等透明基板21的界面、或者是觸控感測配線3與黑色層8的界面產生剝離。在使用銅或銅合金作為具有細配線圖案的觸控感測配線3的情況下,在沒有形成導電性金屬氧化物層作為金屬層5(銅或銅合金)的基底層的顯示裝置基板方面,除了由剝離所造成的不良外,還有在顯示裝置基板的製造步驟的途中,觸控感測配線3中產生因靜電破壞所造成的不良的情況,是不實用的。這樣的觸控感測配線3中的靜電破壞,係因將彩色濾光片51積層在透明基板21上這樣的後續步驟、或貼合顯示裝置基板與陣列基板的步驟、或洗淨步驟等而靜電累積在配線圖案,因靜電破壞而產生圖案缺損、斷線等的現象。 Copper, copper alloy, silver, silver alloy, or their oxides and nitrides generally do not have sufficient adhesion to a transparent substrate 21 such as glass, a black matrix BM, or the like. Therefore, when the conductive metal oxide layer is not provided, peeling may occur at the interface between the touch sensing wiring 3 and the transparent substrate 21 such as glass, or at the interface between the touch sensing wiring 3 and the black layer 8. In the case of using copper or a copper alloy as the touch sensing wiring 3 with a fine wiring pattern, in terms of a display device substrate in which no conductive metal oxide layer is formed as a base layer of the metal layer 5 (copper or copper alloy), In addition to the defects caused by peeling, it is not practical to generate defects caused by electrostatic damage in the touch sensing wiring 3 during the manufacturing process of the display device substrate. Such electrostatic destruction in the touch sensing wiring 3 is due to the subsequent steps of stacking the color filter 51 on the transparent substrate 21, the step of bonding the display device substrate and the array substrate, or the cleaning step, etc. Static electricity accumulates in the wiring pattern, and the phenomenon of pattern defects, disconnection, etc. occurs due to static electricity destruction.

除此之外,在銅層或銅合金層的表面,隨著時間經過而形成不具有導電性的銅氧化物,有電性接觸變困難的情形。另一方面,氧化銦、氧化鋅、氧化銻、氧化錫等複合氧化物層能實現穩定的歐姆接觸,在使用這樣的複合氧化物層的情況下,能容易地進行後述的轉移等的電性安裝。此外,在貼合顯示裝置基板與陣列基板的密封部中,也可以在密封部的厚度方向上進行從顯示裝置基板100朝陣列基板200的導通的轉移(transfer)。將從異向性導電膜、微小的金屬球、或用金屬膜覆蓋的樹脂球等所選出的導體配置在密封部,從而能導通顯示裝置基板100與陣列基板200。 In addition, on the surface of the copper layer or the copper alloy layer, a copper oxide having no conductivity is formed as time passes, and electrical contact may become difficult. On the other hand, composite oxide layers such as indium oxide, zinc oxide, antimony oxide, and tin oxide can achieve stable ohmic contact, and when such a composite oxide layer is used, electrical properties such as transfer described below can be easily performed installation. In addition, in the sealing portion where the display device substrate and the array substrate are bonded, the conduction from the display device substrate 100 to the array substrate 200 may be transferred in the thickness direction of the sealing portion. The conductor selected from the anisotropic conductive film, the minute metal ball, the resin ball covered with the metal film, or the like is arranged in the sealing portion, and thus the display device substrate 100 and the array substrate 200 can be conducted.

作為可應用於本發明的實施形態的導電性金屬氧化物層4、6和金屬層5中的金屬氧化物的層結構,可舉出以下的結構。例如,在含有氧化銦作為中心基材的ITO(Indium Tin Oxide)或IZTO(Indium Zinc Tin Oxide,Z為氧化鋅)方面,在氧不足的狀態下,例如,可舉出:藉由在銅合金層上成膜金屬層所得到的層結構、或者是藉由將氧化鉬、氧化鎢、氧化鎳和氧化銅的混合氧化物、氧化鈦等,和將金屬層積層在鋁合金或銅合金上所得到的層結構。利用導電性金屬氧化物層和金屬層所得到的層結構有能在濺鍍裝置等真空成膜裝置進行連續成膜這樣的優點。 Examples of the layer structure of the metal oxide in the conductive metal oxide layers 4 and 6 and the metal layer 5 applicable to the embodiment of the present invention include the following structures. For example, in the case of ITO (Indium Tin Oxide) or IZTO (Indium Zinc Tin Oxide, Z is zinc oxide) containing indium oxide as the central substrate, in the state of insufficient oxygen, for example, it can be exemplified by: The layer structure obtained by forming a metal layer on the layer, or by laminating a mixed oxide of molybdenum oxide, tungsten oxide, nickel oxide and copper oxide, titanium oxide, etc., and laminating the metal on an aluminum alloy or a copper alloy The resulting layer structure. The layer structure obtained by using the conductive metal oxide layer and the metal layer has the advantage of enabling continuous film formation in a vacuum film forming apparatus such as a sputtering apparatus.

(黑色層8) (Black layer 8)

黑色層8發揮作為液晶顯示裝置LCD1的黑色矩陣BM的功能。黑色層係例如用分散有黑色的色材的著色樹脂構成。銅的氧化物或銅合金的氧化物無法得到充分的黑色或低反射率,但本實施形態的在黑色層與玻璃等基板之間的界面的可見光的反射率係抑制近乎3%以下,可得到高可見度。 The black layer 8 functions as a black matrix BM of the liquid crystal display device LCD1. The black layer is composed of, for example, a coloring resin in which black color materials are dispersed. The oxide of copper or the oxide of copper alloy cannot obtain sufficient black or low reflectance, but the visible light reflectance at the interface between the black layer and the substrate such as glass in this embodiment is suppressed by almost 3% or less. High visibility.

作為黑色的色材,可應用碳、奈米碳管、或複數個有機顏料的混合物。例如,以相對於整體色材的量為51質量%以上的比例使用碳,即,用作主色材。為了調整反射色,能將藍或紅等有機顏料添加至黑色的色材來使用。例如,能藉由調整起始材料的感光性黑色塗布液中所包含的碳的濃度(降低碳濃度)來使黑色層的再現性提升。 As a black color material, carbon, nano carbon tubes, or a mixture of a plurality of organic pigments can be used. For example, carbon is used at a ratio of 51% by mass or more relative to the entire color material, that is, as a main color material. To adjust the reflection color, organic pigments such as blue or red can be added to the black color material. For example, the reproducibility of the black layer can be improved by adjusting the concentration of carbon contained in the photosensitive black coating liquid of the starting material (decreasing the carbon concentration).

在使用液晶顯示裝置的製造裝置的大型曝光裝置的情況下,例如,能形成具有具備1~6μm寬度(細線)的圖案的黑色層(圖案化)。又,本實施形態中的碳濃度的範圍係設定在相對於包含樹脂或硬化劑和顏料的整體固體成分為4以上50以下的質量%的範圍內。此處,作為碳量,碳濃度可以超過50質量%,但若相對於整體的固體成分碳濃度超過50質量%,則有適合塗膜性降低的傾向。此外,在將碳濃度設定為小於4質量%的情況下,無法得到充分的黑色,有可輕易看見在位於黑色層下的基底的金屬層產生的反射光,使可見度降低的情況。 In the case of a large exposure device using a manufacturing device of a liquid crystal display device, for example, a black layer (patterned) having a pattern having a width (thin line) of 1 to 6 μm can be formed. In addition, the range of the carbon concentration in the present embodiment is set within a range of 4% or more and 50% or less by mass relative to the entire solid content of the resin, hardener and pigment. Here, as the amount of carbon, the carbon concentration may exceed 50% by mass, but if the carbon concentration exceeds 50% by mass with respect to the solid content of the entirety, there is a tendency for the coating film property to decrease. In addition, when the carbon concentration is set to less than 4% by mass, sufficient black cannot be obtained, and the reflected light generated in the underlying metal layer under the black layer may be easily seen, which may reduce visibility.

在後續步驟的光微影法中進行曝光處理的情況下,進行曝光對象的基板和遮罩的對位(alignment)。此時,優先進行對位,例如,能將基於透射測定的黑色層的光學濃度設為2以下。除了碳以外,也可以使用複數個有機顏料的混合物作為黑色的色調整來形成黑色層。考慮玻璃或透明樹脂等基材的折射率(約1.5),以在黑色層與那些基材之間的界面的反射率成為3%以下的方式設定黑色層的反射率。在此情況下,理想的是調整黑色色材的含量、種類、色材中所使用的樹脂、膜厚。藉由將這些條件最適化,能夠在可見光的波長區域內,將在折射率約1.5的玻璃等基材與黑色層之間的界面的反射率設為3%以下,能實現低反射率。考量防止肇因於從背光單元BU所射出的光的反射光再度反射的必要性、提升觀察者的可見度,理想的是黑色層的反射率設為3%以下。又,通常,彩色濾光片中所使用的丙烯 酸樹脂或液晶材料的折射率大約在1.5以上1.7以下的範圍內。 When exposure processing is performed in the photolithography method in the subsequent step, alignment of the substrate to be exposed and the mask is performed. At this time, alignment is preferentially performed, and for example, the optical density of the black layer based on transmission measurement can be set to 2 or less. In addition to carbon, a mixture of a plurality of organic pigments may be used as a black color adjustment to form a black layer. Considering the refractive index (approximately 1.5) of the substrate such as glass or transparent resin, the reflectance of the black layer is set so that the reflectance at the interface between the black layer and those substrates becomes 3% or less. In this case, it is desirable to adjust the content and type of the black color material, the resin used in the color material, and the film thickness. By optimizing these conditions, the reflectance at the interface between the substrate such as glass having a refractive index of about 1.5 and the black layer can be set to 3% or less in the visible light wavelength range, and low reflectance can be achieved. In consideration of the necessity of preventing the reflected light from the light emitted from the backlight unit BU from being reflected again, and improving the visibility of the observer, it is desirable that the reflectance of the black layer is set to 3% or less. Also, in general, the acrylic used in the color filter The refractive index of the acid resin or liquid crystal material is approximately in the range of 1.5 or more and 1.7 or less.

此外,能藉由在觸控感測配線3或導電配線(共同配線30)上形成具有光吸收性的金屬氧化物,來抑制由觸控感測配線3中所使用的金屬層5所造成的光反射。 In addition, the metal layer 5 used in the touch sensing wiring 3 can be suppressed by forming a metal oxide having light absorption on the touch sensing wiring 3 or the conductive wiring (common wiring 30) Light reflection.

在第3圖所示的顯示裝置基板100中,使用了設置彩色濾光片51的構造,但也可以使用省略了彩色濾光片51的構造,例如,具備設置在透明基板21上的觸控感測配線3、和以覆蓋觸控感測配線3的方式所形成的透明樹脂層16的構造。 In the display device substrate 100 shown in FIG. 3, a structure in which the color filter 51 is provided is used, but a structure in which the color filter 51 is omitted may be used, for example, a touch provided on the transparent substrate 21 The structure of the sensing wiring 3 and the transparent resin layer 16 formed so as to cover the touch sensing wiring 3.

在使用不包含彩色濾光片51的顯示裝置基板的液晶顯示裝置中,將紅色發光、綠色發光、及藍色發光的各LED設置在背光單元,用場序列的手法進行彩色顯示。設置在第3圖所示的透明基板21上的觸控感測配線3的層結構,能設為與形成在後述的陣列基板200的共同配線30(導電配線)的層結構或閘極電極25(閘極配線10)的層結構相同。 In a liquid crystal display device using a display device substrate that does not include a color filter 51, each LED that emits red light, green light, and blue light is provided in a backlight unit, and color display is performed by a field sequence method. The layer structure of the touch sensing wiring 3 provided on the transparent substrate 21 shown in FIG. 3 can be set as a layer structure with the common wiring 30 (conductive wiring) formed on the array substrate 200 described later or the gate electrode 25 The layer structure of (gate wiring 10) is the same.

(陣列基板200) (Array substrate 200)

如第3圖、第4A圖、及第4B圖所示,陣列基板200具備:透明基板22(第2透明基板)、以覆蓋透明基板22的表面的方式所形成的第4絕緣層14、形成在第4絕緣層14上的源極配線31、以覆蓋源極配線31的方式形成在第4絕緣層14上的第3絕緣層13、形成在第3絕緣層13上的閘極配線10、形成在第3絕緣層13上的共同配線30、以覆蓋閘極配線10及共同配線30的方式形成 在第3絕緣層13上的第2絕緣層12、形成在第2絕緣層12上的像素電極20、以覆蓋像素電極20的方式形成在第2絕緣層12上的第1絕緣層11、和共通電極17。 As shown in FIGS. 3, 4A, and 4B, the array substrate 200 includes a transparent substrate 22 (second transparent substrate), a fourth insulating layer 14 formed to cover the surface of the transparent substrate 22, and forming The source wiring 31 on the fourth insulating layer 14, the third insulating layer 13 formed on the fourth insulating layer 14 so as to cover the source wiring 31, and the gate wiring 10 formed on the third insulating layer 13, The common wiring 30 formed on the third insulating layer 13 is formed so as to cover the gate wiring 10 and the common wiring 30 The second insulating layer 12 on the third insulating layer 13, the pixel electrode 20 formed on the second insulating layer 12, the first insulating layer 11 formed on the second insulating layer 12 so as to cover the pixel electrode 20, and Common electrode 17.

作為形成第1絕緣層11、第2絕緣層12、第3絕緣層13、及第4絕緣層14的材料,可採用氧化矽、氧化氮化矽、氧化鋁、氧化氮化鋁、氧化鈰、氧化鉿、或包含這樣的材料的混合材料。或者是,這些絕緣層的一部分中,可以使用聚醯亞胺樹脂、丙烯酸樹脂、苯并環丁烯樹脂或低介電率材料(low-k材料)。此外,作為這樣的絕緣層11、12、13、14的結構,可以採用包含單一層的層結構,也可以採用積層了複數層的多層結構。這樣的絕緣層11、12、13、14可以使用電漿CVD或濺鍍等成膜裝置來形成。 As materials for forming the first insulating layer 11, the second insulating layer 12, the third insulating layer 13, and the fourth insulating layer 14, silicon oxide, silicon oxide nitride, aluminum oxide, aluminum oxide nitride, cerium oxide, Hafnium oxide, or a mixed material containing such materials. Alternatively, polyimide resin, acrylic resin, benzocyclobutene resin, or low-k material (low-k material) may be used for part of these insulating layers. In addition, as the structure of such insulating layers 11, 12, 13, and 14, a layer structure including a single layer may be adopted, or a multilayer structure in which a plurality of layers are stacked may be adopted. Such insulating layers 11, 12, 13, 14 can be formed using a film forming apparatus such as plasma CVD or sputtering.

源極配線31係配設在第3絕緣層13與第4絕緣層14之間。作為源極配線31的構造,能採用多層的導電層。第1實施形態中,採用鈦/鋁合金/鈦的3層結構作為源極配線31的構造。此處,鋁合金係鋁-釹的合金。 The source wiring 31 is arranged between the third insulating layer 13 and the fourth insulating layer 14. As the structure of the source wiring 31, a multi-layer conductive layer can be used. In the first embodiment, a three-layer structure of titanium/aluminum alloy/titanium is used as the structure of the source wiring 31. Here, the aluminum alloy is an aluminum-neodymium alloy.

作為共同配線30的形成材料,可採用與上述的金屬層5相同的材料。此外,同樣地,作為共同配線30的構造,可採用與上述的金屬層5相同的構造。 As the forming material of the common wiring 30, the same material as the metal layer 5 described above can be used. Also, as the structure of the common wiring 30, the same structure as the metal layer 5 described above can be adopted.

像素電極20係設置在複數個像素開口部18的每一者,與TFT的主動元件(後述)連接。在陣列基板200中,主動元件係配置成矩陣狀,因此像素電極20也同樣地在陣列基板200上配置成矩陣狀。像素電極20係用ITO等透明導電膜形成。 The pixel electrode 20 is provided in each of the plurality of pixel openings 18 and is connected to an active element (described later) of the TFT. In the array substrate 200, the active elements are arranged in a matrix, so the pixel electrodes 20 are similarly arranged in a matrix on the array substrate 200. The pixel electrode 20 is formed of a transparent conductive film such as ITO.

構成主動元件的通道層或半導體層可以用多晶矽半導體形成,也可以用氧化物半導體形成。構成主動元件的通道層或半導體層的層結構可以是將多晶矽半導體和氧化物半導體積層的積層結構。可以是在陣列基板上的同一面,形成用2種半導體所形成的元件,例如,具備多晶矽半導體的通道層的主動元件、和具備氧化物半導體的通道層的主動元件的結構。進一步而言,可以採用在多晶矽半導體的TFT陣列上,透過絕緣層,將用氧化物半導體所形成的TFT陣列積層為2層的結構。在顯示功能層為有機EL(Organic Electroluminescence)層的情況下,用氧化物半導體所形成的TFT具有將訊號供給至用多晶矽半導體所形成的TFT(選擇TFT元件)的功能,用多晶矽半導體所形成的TFT具有驅動顯示功能層的功能。藉由此結構,能實現採用有機EL層作為顯示功能層的顯示裝置。具備載子移動率高的多晶矽半導體,同時具有作為通道層的多晶矽半導體的TFT適合朝有機EL元件注入電流(驅動有機EL元件)。 The channel layer or the semiconductor layer constituting the active device may be formed of a polycrystalline silicon semiconductor or an oxide semiconductor. The layer structure of the channel layer or the semiconductor layer constituting the active device may be a layered structure in which a polycrystalline silicon semiconductor and an oxide semiconductor are stacked. An element formed by using two kinds of semiconductors may be formed on the same surface of the array substrate, for example, an active element including a channel layer of a polycrystalline silicon semiconductor and an active element including a channel layer of an oxide semiconductor. Further, a structure in which a TFT array formed of an oxide semiconductor is laminated into two layers through an insulating layer on a TFT array of polysilicon semiconductor can be adopted. In the case where the display function layer is an organic EL (Organic Electroluminescence) layer, the TFT formed with an oxide semiconductor has the function of supplying a signal to the TFT (selective TFT element) formed with a polysilicon semiconductor, and the one formed with a polysilicon semiconductor The TFT has the function of driving the display function layer. With this structure, a display device using an organic EL layer as a display function layer can be realized. A TFT having a polycrystalline silicon semiconductor with a high carrier mobility and a polycrystalline silicon semiconductor as a channel layer is suitable for injecting current into the organic EL element (driving the organic EL element).

(共通電極17的構造) (Structure of common electrode 17)

參照第4B圖,說明共通電極17、和位於共通電極17的周邊的陣列基板200的構成構件。特別是,針對用共同配線30、共通電極17、像素電極20、第1絕緣層11、及第2絕緣層12所構成的積層構造具體地說明。第4B圖顯示構成陣列基板200的像素的主要部分,顯示一個像素中的一個共通電極17的構造。第4B圖所示的共 通電極17的構造也可以應用於陣列基板200中的全部像素。 With reference to FIG. 4B, the common electrode 17 and the constituent members of the array substrate 200 located around the common electrode 17 will be described. In particular, the laminated structure composed of the common wiring 30, the common electrode 17, the pixel electrode 20, the first insulating layer 11, and the second insulating layer 12 will be specifically described. FIG. 4B shows the main part of the pixels constituting the array substrate 200, and shows the structure of one common electrode 17 in one pixel. The total shown in Figure 4B The configuration of the through electrode 17 can also be applied to all pixels in the array substrate 200.

第2絕緣層12係設置在第1絕緣層11下,形成在共同配線30上,具有形成後述的接觸孔H的一部分的貫通孔12H。第1絕緣層11係設置在共通電極17的上部(電極部17A)下,形成在像素電極20上,具有形成後述的接觸孔H的一部分的貫通孔11H。貫通孔12H的位置(中心位置)與貫通孔11H的位置(中心位置)是一致的。貫通孔11H的直徑(X方向上的寬度),係在從第1絕緣層11的上表面11T朝向共同配線30的方向(Z方向)上逐漸變小。同樣地,貫通孔12H的直徑(X方向上的寬度),係在從第2絕緣層12的上表面12T朝向共同配線30的方向(Z方向)上逐漸變小。貫通孔11H及貫通孔12H具有連續的內壁,形成了接觸孔H。接觸孔H具有錐形。 The second insulating layer 12 is provided under the first insulating layer 11, is formed on the common wiring 30, and has a through hole 12H that forms a part of a contact hole H described later. The first insulating layer 11 is provided under the common electrode 17 (the electrode portion 17A), is formed on the pixel electrode 20, and has a through hole 11H that forms a part of a contact hole H described later. The position (center position) of the through hole 12H and the position (center position) of the through hole 11H coincide. The diameter (width in the X direction) of the through hole 11H gradually decreases from the upper surface 11T of the first insulating layer 11 toward the common wiring 30 (Z direction). Similarly, the diameter (width in the X direction) of the through hole 12H gradually decreases from the upper surface 12T of the second insulating layer 12 toward the common wiring 30 (Z direction). The through hole 11H and the through hole 12H have continuous inner walls, and the contact hole H is formed. The contact hole H has a tapered shape.

像素電極20係形成在第1絕緣層11下,具有貫穿孔20S。貫穿孔20S係沒有透明導電膜存在的開口部。貫穿孔20S係設置在與接觸孔H相對應的位置。 The pixel electrode 20 is formed under the first insulating layer 11 and has a through hole 20S. The through hole 20S is an opening where no transparent conductive film exists. The through hole 20S is provided at a position corresponding to the contact hole H.

在第2圖所示的例子中,在各像素設置了2個接觸孔H,即,左側接觸孔LH(H,第1接觸孔)及右側接觸孔RH(H,第2接觸孔),在與2個接觸孔H的每一者相對應的位置設置貫穿孔20S。 In the example shown in FIG. 2, two contact holes H are provided in each pixel, that is, the left contact hole LH (H, first contact hole) and the right contact hole RH (H, second contact hole), in The through hole 20S is provided at a position corresponding to each of the two contact holes H.

以下的說明中,有將左側接觸孔LH及右側接觸孔RH簡稱為接觸孔H的情形。 In the following description, the left contact hole LH and the right contact hole RH may be simply referred to as the contact hole H.

貫穿孔20S相當於設置在像素電極20的內壁20K的內側區域。貫穿孔20S的直徑D20S比接觸孔 H的直徑大。貫通孔11H(接觸孔H的一部分)係設置在貫穿孔20S的內部。在貫穿孔20S的內部填充有第1絕緣層11,以貫通埋在貫穿孔20S的內壁的第1絕緣層11的填充部11F的方式形成貫通孔11H。另外,也在貫穿孔20S的下方位置,以與貫通孔11H連續的方式形成貫通孔12H(貫穿孔H的一部分)。又,形成在像素電極20的貫穿孔20S的數量係與接觸孔H的數量相同,在俯視下,形成在相同的位置。貫穿孔20S的直徑D20S例如為3μm至6μm。貫穿孔20S的直徑可以作得比共通電極17的寬度W17A大。 The through hole 20S corresponds to a region provided inside the inner wall 20K of the pixel electrode 20. The diameter D20S of the through hole 20S is smaller than that of the contact hole The diameter of H is large. The through hole 11H (part of the contact hole H) is provided inside the through hole 20S. The first insulating layer 11 is filled inside the through hole 20S, and the through hole 11H is formed so as to penetrate the filled portion 11F of the first insulating layer 11 buried in the inner wall of the through hole 20S. In addition, at a position below the through-hole 20S, a through-hole 12H (part of the through-hole H) is formed to be continuous with the through-hole 11H. The number of through holes 20S formed in the pixel electrode 20 is the same as the number of contact holes H, and they are formed at the same position in plan view. The diameter D20S of the through hole 20S is, for example, 3 μm to 6 μm. The diameter of the through hole 20S can be made larger than the width W17A of the common electrode 17.

共通電極17具備電極部17A(導電部)、導電連接部17B。電極部17A,係形成在第1絕緣層11的上表面11T,從Z方向觀看,以與像素電極20的貫穿孔20S重疊的方式配置。電極部17A係設置在最靠近液晶層300的陣列基板200的面。具體而言,在液晶層300與陣列基板200之間形成有配向膜,在此配向膜下設置第1絕緣層11。 The common electrode 17 includes an electrode portion 17A (conductive portion) and a conductive connection portion 17B. The electrode portion 17A is formed on the upper surface 11T of the first insulating layer 11 and is arranged so as to overlap the through hole 20S of the pixel electrode 20 when viewed from the Z direction. The electrode portion 17A is provided on the surface of the array substrate 200 closest to the liquid crystal layer 300. Specifically, an alignment film is formed between the liquid crystal layer 300 and the array substrate 200, and the first insulating layer 11 is provided under the alignment film.

電極部17A的寬度W17A例如為約3μm,比導電連接部17B的上端(電極部17A與導電連接部17B的連接部)大,也可以形成為比貫穿孔20S的直徑D20S(例如,2μm)大。或者是,貫穿孔20S的直徑D20S比電極部17A的寬度W17A大。也能將貫穿孔20S的直徑D20S設為例如4μm。在從電極部17A的中心(與Z方向平行的電極部17A的中心線)朝向電極部17A的外側的方向(X方向)上,電極部17A的壁部17K比像素電極20的內壁20K的位置還突出。 The width W17A of the electrode portion 17A is, for example, about 3 μm, which is larger than the upper end of the conductive connection portion 17B (the connection portion between the electrode portion 17A and the conductive connection portion 17B), or may be formed larger than the diameter D20S (for example, 2 μm) of the through hole 20S . Alternatively, the diameter D20S of the through hole 20S is larger than the width W17A of the electrode portion 17A. The diameter D20S of the through-hole 20S can also be set to, for example, 4 μm. In the direction (X direction) from the center of the electrode portion 17A (the center line of the electrode portion 17A parallel to the Z direction) toward the outer side of the electrode portion 17A, the wall portion 17K of the electrode portion 17A is larger than the inner wall 20K of the pixel electrode 20 The location is also prominent.

導電連接部17B係設置在接觸孔H(貫通孔11H、12H)的內部,通過接觸孔H,與共同配線30電性連接。 The conductive connection portion 17B is provided inside the contact hole H (through holes 11H, 12H), and is electrically connected to the common wiring 30 through the contact hole H.

在第1絕緣層11及第2絕緣層12形成上述的接觸孔的狀態下,藉由在第1絕緣層11上實施成膜步驟及圖案化步驟,電極部17A及導電連接部17B係一體形成的。共通電極17係與像素電極20同樣地用ITO等透明導電膜形成。 In the state where the above-mentioned contact holes are formed in the first insulating layer 11 and the second insulating layer 12, by performing the film forming step and the patterning step on the first insulating layer 11, the electrode portion 17A and the conductive connection portion 17B are integrally formed of. Like the pixel electrode 20, the common electrode 17 is formed of a transparent conductive film such as ITO.

在上述的積層構造中,在電極部17A與像素電極20之間配置第1絕緣層11,且在共同配線30與像素電極20之間配置第2絕緣層12的狀態下,共通電極17及共同配線30彼此導通,共同配線30的電位與共通電極17的電位成為相同。 In the above laminated structure, the first insulating layer 11 is disposed between the electrode portion 17A and the pixel electrode 20, and the second insulating layer 12 is disposed between the common wiring 30 and the pixel electrode 20. The wirings 30 are electrically connected to each other, and the potential of the common wiring 30 and the potential of the common electrode 17 are the same.

共同配線30(或共通電極17)的電位,能夠在交替進行液晶驅動和觸控感測驅動(電容的變化的檢測)之際,即以分時的方式改變。此外,賦予共同配線30(或共通電極17)的訊號的頻率能夠在交替進行液晶驅動和觸控感測驅動(電容的變化的檢測)之際,即以分時的方式改變。此外,當液晶驅動時且幅反轉驅動時,將共同配線30(或共通電極17)的電位的極性按幅更換為正極性和負極性,例如,能用±2.5V的液晶驅動電壓驅動液晶。 The potential of the common wiring 30 (or common electrode 17) can be changed in a time-sharing manner when liquid crystal driving and touch sensing driving (detection of capacitance change) are alternately performed. In addition, the frequency of the signal given to the common wiring 30 (or the common electrode 17) can be changed in a time-sharing manner when liquid crystal driving and touch sensing driving (detection of changes in capacitance) are alternately performed. In addition, when the liquid crystal is driven and the amplitude is reversed, the polarity of the potential of the common wiring 30 (or the common electrode 17) is replaced by positive and negative polarities, for example, a liquid crystal driving voltage of ±2.5V can be used to drive the liquid crystal .

在將液晶驅動設為列反轉驅動或點反轉驅動的情況下,可以將共通電極17的電位設為一定(定電位)。此情況的「定電位」係指例如透過高電阻而與液晶顯示裝置的框體等接地的共通電極17的電位,並非意指 用於前述幅反轉驅動的±2.5V等的定電位。在液晶的臨界值Vth以下的電壓以下的範圍內,固定在約略0V(零伏特)的定電位。換言之,若在Vth的範圍內的話,「定電位」可以是偏離液晶驅動電壓的中間值的定電位。又,上述的「高電阻」係指可從500百萬歐姆(megohm)到50兆歐姆(tera-ohm)的範圍內選出的電阻值。作為這樣的電阻值,例如,能採用代表性的500十億歐姆(gigaohm)到5兆歐姆。在採用列反轉驅動或點反轉驅動作為液晶驅動方式的情況下,共同配線30,係例如,能夠透過1兆歐姆的高電阻接地,設為約0V(零伏特)的定電位。在此情況下,與共同配線30連接的共通電極17也成為約0V(零伏特)的定電位,能進行經累積的電容的重置(reset)。在將共通電極17的電位設為定電位的情況下,當觸控感測時觸控驅動電壓係施加於觸控感測配線。在將共通電極17的電位設為「定電位」的情況下,可以不分時驅動液晶驅動和觸控驅動。 When the liquid crystal drive is column inversion drive or dot inversion drive, the potential of the common electrode 17 may be constant (constant potential). The “constant potential” in this case refers to, for example, the potential of the common electrode 17 grounded to the housing of the liquid crystal display device through high resistance, and does not mean The fixed potential of ±2.5V etc. used for the aforementioned amplitude inversion drive. It is fixed at a constant potential of approximately 0 V (zero volts) within the range of the voltage below the critical value Vth of the liquid crystal. In other words, if it is within the range of Vth, the "constant potential" may be a constant potential that deviates from the middle value of the liquid crystal driving voltage. In addition, the above "high resistance" refers to a resistance value that can be selected from the range of 500 million ohms (megohm) to 50 megaohms (tera-ohm). As such a resistance value, for example, a representative 500 gigaohm to 5 megaohm can be used. When column inversion driving or dot inversion driving is adopted as the liquid crystal driving method, the common wiring 30 can be grounded through a high resistance of 1 megaohm, for example, and set to a constant potential of about 0 V (zero volt). In this case, the common electrode 17 connected to the common wiring 30 also has a constant potential of about 0 V (zero volts), and can reset the accumulated capacitance. When the potential of the common electrode 17 is set to a constant potential, the touch drive voltage is applied to the touch sensing wiring during touch sensing. When the potential of the common electrode 17 is set to “constant potential”, the liquid crystal drive and the touch drive can be driven without time-sharing.

又,在使用IGZO等氧化物半導體作為形成液晶顯示裝置的主動元件(薄膜電晶體)的通道層的材料的情況下,為了緩和容易產生液晶顯示裝置的像素的烙印的狀態,可以使用比1兆歐姆低的電阻作為上述的高電阻。 In addition, in the case of using an oxide semiconductor such as IGZO as a material for forming a channel layer of an active element (thin film transistor) of a liquid crystal display device, in order to alleviate the state in which pixels of the liquid crystal display device are easily burned, a ratio of more than 1 trillion can be used. The low-ohmic resistance serves as the above-mentioned high resistance.

當後述的黑顯示時,可以透過上述高電阻來將閘極配線或源極配線接地。在此情況下,能防止像素的烙印。 When the black display is described later, the gate wiring or the source wiring can be grounded through the above high resistance. In this case, pixel burn-in can be prevented.

此外,能夠基於調整與觸控感測有關的時間常數(time constant)的目的調整上述高電阻。就將IGZO等氧 化物半導體用於主動元件的通道層的顯示裝置而言,觸控感測中的上述各種辦法是可行的。在以下的記載中,有將氧化物半導體簡稱為IGZO的情形。 In addition, the above-mentioned high resistance can be adjusted for the purpose of adjusting the time constant related to touch sensing. IGZO and other oxygen For the display device in which the compound semiconductor is used for the channel layer of the active device, the above various methods in touch sensing are feasible. In the following description, the oxide semiconductor may be abbreviated as IGZO.

(主動元件28) (Active element 28)

接著,參照第5圖,針對與像素電極20連接的主動元件28的構造進行說明。 Next, referring to FIG. 5, the structure of the active element 28 connected to the pixel electrode 20 will be described.

第5圖顯示具有頂閘構造的薄膜電晶體(TFT)的一例。 Fig. 5 shows an example of a thin film transistor (TFT) having a top gate structure.

主動元件28具備:通道層27、與通道層27的一端(第一端,第5圖中的通道層27的左端)連接的汲極電極26、與通道層27的另一端(第二端,第5圖中的通道層27的右端)連接的源極電極24、透過第3絕緣層13而與通道層27對向配置的閘極電極25。第5圖顯示構成主動元件28的通道層27、汲極電極26、及源極電極24係形成在第4絕緣層14上的構造,但本發明不限於這樣的構造。可以不設置在第4絕緣層14而在透明基板22上直接形成主動元件28。 The active element 28 includes a channel layer 27, a drain electrode 26 connected to one end of the channel layer 27 (the first end, the left end of the channel layer 27 in FIG. 5), and the other end of the channel layer 27 (the second end, The source electrode 24 connected to the right end of the channel layer 27 in FIG. 5 and the gate electrode 25 disposed opposite to the channel layer 27 through the third insulating layer 13. FIG. 5 shows a structure in which the channel layer 27, the drain electrode 26, and the source electrode 24 constituting the active element 28 are formed on the fourth insulating layer 14, but the present invention is not limited to this structure. The active element 28 may be directly formed on the transparent substrate 22 without being provided on the fourth insulating layer 14.

用高頻率對源極配線31供給影像訊號,容易從源極配線31產生雜訊。在頂閘構造方面,有能使也是雜訊產生源的源極配線31遠離前述的觸控感測空間的優點。 By supplying a video signal to the source wiring 31 at a high frequency, noise is easily generated from the source wiring 31. In terms of the top gate structure, there is an advantage that the source wiring 31, which is also a source of noise, can be moved away from the aforementioned touch sensing space.

第5圖所示的源極電極24和汲極電極26係在相同的步驟中用相同結構的導電層形成。在第1實施形態中,採用鈦/鋁合金/鈦的3層結構作為源極電極24和汲極電極26的構造。此處,鋁合金係鋁-釹的合金。 The source electrode 24 and the drain electrode 26 shown in FIG. 5 are formed with conductive layers of the same structure in the same step. In the first embodiment, a three-layer structure of titanium/aluminum alloy/titanium is used as the structure of the source electrode 24 and the drain electrode 26. Here, the aluminum alloy is an aluminum-neodymium alloy.

位於閘極電極25的下部的絕緣層13可以是具有與閘極電極25相同的寬度的絕緣層。在此情況下,例如,進行使用閘極電極25作為遮罩的乾式蝕刻,除去閘極電極25周圍的絕緣層13。藉此,能形成具有與閘極電極25相同的寬度的絕緣層。使用閘極電極25作為遮罩而用乾式蝕刻來加工絕緣層的技術,一般被稱為自我對準(self-alignment)。 The insulating layer 13 located under the gate electrode 25 may be an insulating layer having the same width as the gate electrode 25. In this case, for example, dry etching using the gate electrode 25 as a mask is performed to remove the insulating layer 13 around the gate electrode 25. With this, an insulating layer having the same width as the gate electrode 25 can be formed. The technique of processing the insulating layer by dry etching using the gate electrode 25 as a mask is generally called self-alignment.

作為通道層27的材料,例如,能使用被稱為IGZO的氧化物半導體。作為通道層27的材料,能使用包含鎵、銦、鋅、錫、鋁、鍺、銻、鉍、鈰當中2種以上的金屬氧化物的氧化物半導體。本實施形態使用包含氧化銦、氧化鎵、及氧化鋅的氧化物半導體。用氧化物半導體所形成的通道層27的材料可以是單結晶、多結晶、微結晶、微結晶和非晶形(amorphous)的混合體、或者非晶形中任一者。作為氧化物半導體的膜厚,能設為2nm~50nm的範圍內的膜厚。又,通道層27可以用多晶矽半導體形成。 As a material of the channel layer 27, for example, an oxide semiconductor called IGZO can be used. As a material of the channel layer 27, an oxide semiconductor containing two or more kinds of metal oxides among gallium, indium, zinc, tin, aluminum, germanium, antimony, bismuth, and cerium can be used. In this embodiment, an oxide semiconductor containing indium oxide, gallium oxide, and zinc oxide is used. The material of the channel layer 27 formed with an oxide semiconductor may be single crystal, polycrystalline, microcrystalline, a mixture of microcrystalline and amorphous, or any of amorphous. The film thickness of the oxide semiconductor can be a film thickness in the range of 2 nm to 50 nm. In addition, the channel layer 27 may be formed of polysilicon semiconductor.

能將氧化物半導體或者多晶矽半導體用於例如具有p/n接面的互補型的電晶體的結構,或者是能用於僅具有n型接面的單通道型電晶體的結構。作為氧化物半導體的積層結構,例如,可以採用積層n型氧化物半導體、和與此n型氧化物半導體電性特性不同的n型氧化物半導體的積層結構。被積層的n型氧化物半導體可以用複數層來構成。在被積層的n型氧化物半導體中,能夠使基底的n型半導體的帶隙(band gap)與位於上層的n型半導體的帶隙不同。 An oxide semiconductor or a polycrystalline silicon semiconductor can be used, for example, in a structure of a complementary transistor having a p/n junction, or a structure of a single-channel transistor having only an n-junction. As the laminated structure of the oxide semiconductor, for example, a laminated structure of a laminated n-type oxide semiconductor and an n-type oxide semiconductor different from the electrical characteristics of the n-type oxide semiconductor can be used. The stacked n-type oxide semiconductor can be composed of a plurality of layers. In the stacked n-type oxide semiconductor, the band gap of the underlying n-type semiconductor can be made different from the band gap of the n-type semiconductor located above.

可以採用通道層的上表面,例如,被不同的氧化物半導體覆蓋的結構。 The upper surface of the channel layer may be used, for example, a structure covered with different oxide semiconductors.

或者是,例如,可以採用在結晶性的n型氧化物半導體上積層微結晶的(接近非晶質)氧化物半導體的積層結構。此處,微結晶係指例如,在180℃以上450℃以下的範圍內將用濺鍍裝置所成膜的非晶質的氧化物半導體進行熱處理的微結晶狀的氧化物半導體膜。或者是指在將成膜時的基板溫度設定在200℃左右的狀態下所成膜的微結晶狀的氧化物半導體膜。微結晶狀的氧化物半導體膜係能夠利用TEM等觀察方法觀察至少1nm到3nm左右、或者比3nm大的結晶粒的氧化物半導體膜。 Alternatively, for example, a layered structure in which a microcrystalline (nearly amorphous) oxide semiconductor is laminated on a crystalline n-type oxide semiconductor may be used. Here, the microcrystalline refers to, for example, a microcrystalline oxide semiconductor film in which an amorphous oxide semiconductor formed by a sputtering device is heat-treated within a range of 180°C or higher and 450°C or lower. Or, it refers to a microcrystalline oxide semiconductor film formed when the substrate temperature during film formation is set to about 200°C. The microcrystalline oxide semiconductor film system can observe an oxide semiconductor film having crystal grains of at least about 1 nm to 3 nm or larger than 3 nm by an observation method such as TEM.

氧化物半導體,能藉由使其從非晶質改變成結晶質來實現載子移動率的改善或可靠性的提升。以氧化物而言,氧化銦或氧化鎵的熔點高。氧化銻或氧化鉍的熔點皆為1000℃以下,氧化物的熔點低。例如,在採用氧化銦、氧化鎵和氧化銻的3元系複合氧化物的情況下,藉由熔點低的氧化銻的效果,能降低此複合氧化物的結晶化溫度。換言之,能提供容易使其從非晶質狀態結晶化為微結晶狀態等的氧化物半導體。 The oxide semiconductor can improve the carrier mobility or increase the reliability by changing from amorphous to crystalline. For oxide, indium oxide or gallium oxide has a high melting point. The melting point of antimony oxide or bismuth oxide is below 1000°C, and the melting point of oxide is low. For example, in the case of using a ternary composite oxide of indium oxide, gallium oxide, and antimony oxide, the crystallization temperature of the composite oxide can be lowered by the effect of antimony oxide having a low melting point. In other words, an oxide semiconductor that can be easily crystallized from an amorphous state to a microcrystalline state can be provided.

作為半導體的積層結構,可以在n型的多晶矽半導體上積層n型的氧化物半導體。作為得到使用此多晶矽半導體作為基底層的積層構造的方法,較佳為在利用雷射退火的多晶矽結晶化步驟之後,在維持真空狀態下,用濺鍍等將氧化物半導體成膜。作為可應用於此方法的氧化物半導體,由於要求在後續步驟的濕式蝕刻的易溶 性,因此能使用富含氧化鋅的複合氧化物。例如,作為濺鍍使用的靶材的金屬元素的原子比,能例示In:Ga:Zn=1:2:2。在此積層結構中,可以採用僅在多晶矽的通道層上不積層氧化物半導體(例如,用濕式蝕刻除去)的結構。 As a stacked structure of semiconductors, an n-type oxide semiconductor may be stacked on an n-type polycrystalline silicon semiconductor. As a method for obtaining a layered structure using this polycrystalline silicon semiconductor as a base layer, it is preferable to form an oxide semiconductor film by sputtering or the like while maintaining a vacuum state after the polycrystalline silicon crystallization step using laser annealing. As an oxide semiconductor that can be applied to this method, due to the ease of wet etching required in the subsequent step Therefore, it is possible to use a composite oxide rich in zinc oxide. For example, the atomic ratio of the metal element as the target material used for sputtering can be exemplified by In:Ga:Zn=1:2:2. In this laminated structure, a structure in which no oxide semiconductor (for example, removed by wet etching) can be deposited only on the channel layer of polysilicon can be adopted.

另外,能夠將具有n型氧化物半導體的通道層的薄膜電晶體(主動元件)、和具有n型矽半導體的通道層的薄膜電晶體(主動元件)各1個配設於同一像素,以活用薄膜電晶體的各通道層的特性的方式,驅動液晶層或OLED這樣的顯示功能層。在使用液晶層或OLED作為顯示功能層的情況下,能夠採用n型的多晶矽薄膜電晶體作為對顯示功能層施加電壓(電流)的驅動電晶體,採用n型氧化物半導體的薄膜電晶體作為將訊號送至此多晶矽薄膜電晶體的切換電晶體。 In addition, a thin film transistor (active element) having a channel layer of an n-type oxide semiconductor and a thin film transistor (active element) having a channel layer of an n-type silicon semiconductor can be arranged in the same pixel for use The characteristics of each channel layer of a thin film transistor drive a display function layer such as a liquid crystal layer or an OLED. In the case of using a liquid crystal layer or OLED as a display function layer, an n-type polycrystalline silicon thin film transistor can be used as a driving transistor for applying a voltage (current) to the display function layer, and an n-type oxide semiconductor thin film transistor can be used as a The signal is sent to the switching transistor of this polysilicon thin film transistor.

作為各汲極電極26及源極電極24(源極配線31),能採用相同的構造。例如,能將多層的導電層用於汲極電極26及源極電極24。例如,能採用以鉬、鈦、鉭、鎢、導電性的金屬氧化物膜等挾持鋁、銅、或它們的合金層的電極構造。可以在第4絕緣層14上,先形成汲極電極26及源極電極24,以積層在這2個電極的方式形成通道層27。電晶體的構造可以是雙閘構造等的多閘構造。 As the drain electrode 26 and the source electrode 24 (source wiring 31), the same structure can be adopted. For example, multiple conductive layers can be used for the drain electrode 26 and the source electrode 24. For example, an electrode structure that holds aluminum, copper, or an alloy layer thereof with molybdenum, titanium, tantalum, tungsten, a conductive metal oxide film, or the like can be used. The drain electrode 26 and the source electrode 24 may be formed on the fourth insulating layer 14 first, and the channel layer 27 may be formed by stacking the two electrodes. The structure of the transistor may be a multi-gate structure such as a double gate structure.

半導體層或通道層可以在其厚度方向上調整移動率或電子濃度。半導體層或通道層可以是積層不同的氧化物半導體的積層結構。由源極電極和汲極電極的最小間 隔所決定的電晶體的通道長度能設為10nm以上10μm以下,例如20nm到1μm。 The semiconductor layer or the channel layer can adjust the mobility or electron concentration in its thickness direction. The semiconductor layer or the channel layer may have a laminated structure of different oxide semiconductors. The minimum distance between the source electrode and the drain electrode The channel length of the transistor determined by the interval can be set to 10 nm or more and 10 μm or less, for example, 20 nm to 1 μm.

第3絕緣層13發揮作為閘極絕緣膜的功能。作為這樣的絕緣膜材料,可採用矽酸鉿(HfSiOx)、氧化矽、氧化鎵、氧化鋁、氮化矽、氧化氮化矽、氧化氮化鋁、氧化鎵、氧化鋅、氧化鉿、氧化鈰、或者是混合它們的絕緣膜等。氧化鈰係介電率高,且鈰與氧原子的結合是牢固的。因此,較佳為將閘極絕緣膜設為包含氧化鈰的複合氧化物。在使用氧化鈰作為構成複合氧化物的氧化物之一的情況下,在非晶質狀態下也容易保持高介電率。氧化鈰具備氧化力。因此,能用氧化物半導體和氧化鈰接觸的構造來避免氧化物半導體的缺氧,能實現穩定的氧化物。將氮化物用於閘極絕緣膜的結構並未顯現出如上所述的作用。此外,閘極絕緣膜的材料可以包含以矽酸鈰(CeSiOx)為代表的鑭金屬矽酸物。 The third insulating layer 13 functions as a gate insulating film. As such an insulating film material, hafnium silicate (HfSiOx), silicon oxide, gallium oxide, aluminum oxide, silicon nitride, silicon nitride oxide, aluminum oxide nitride, gallium oxide, zinc oxide, hafnium oxide, cerium oxide Or an insulating film mixed with them. The cerium oxide system has a high dielectric constant, and the bond between cerium and oxygen atoms is strong. Therefore, it is preferable that the gate insulating film be a composite oxide containing cerium oxide. When cerium oxide is used as one of the oxides constituting the composite oxide, it is easy to maintain a high dielectric constant even in an amorphous state. Cerium oxide has oxidizing power. Therefore, the structure in which the oxide semiconductor and cerium oxide are in contact can avoid oxygen deficiency of the oxide semiconductor, and a stable oxide can be realized. The structure using nitride for the gate insulating film does not exhibit the effect as described above. In addition, the material of the gate insulating film may include lanthanum metal silicate represented by cerium silicate (CeSiOx).

作為第3絕緣層13的構造,可以是單層膜、混合膜、或多層膜。在混合膜或多層膜的情況下,能利用從上述絕緣膜材料所選出的材料形成混合膜或多層膜。第3絕緣層13的膜厚,例如為可從2nm以上300nm以下的範圍內選出的膜厚。在用氧化物半導體形成通道層27的情況下,在包含許多氧的狀態(成膜氣體環境)下,能形成與通道層27接觸的第3絕緣層13的界面。 The structure of the third insulating layer 13 may be a single-layer film, a mixed film, or a multilayer film. In the case of a mixed film or a multilayer film, a material selected from the above-mentioned insulating film materials can be used to form a mixed film or a multilayer film. The film thickness of the third insulating layer 13 is, for example, a film thickness selectable from the range of 2 nm or more and 300 nm or less. When the channel layer 27 is formed of an oxide semiconductor, the interface of the third insulating layer 13 in contact with the channel layer 27 can be formed in a state containing a lot of oxygen (film forming gas environment).

在薄膜電晶體的製造步驟中,具有頂閘構造的薄膜電晶體能夠在形成氧化物半導體後,在包含氧的導入氣體中形成包含氧化鈰的閘極絕緣膜。此時,能 使閘極絕緣膜下的氧化物半導體的表面氧化,且能調整該表面的氧化程度。具有底閘構造的薄膜電晶體係閘極絕緣膜的形成步驟比氧化物半導體的步驟還先進行,因此很難調整氧化物半導體的表面的氧化程度。在具有頂閘構造的薄膜電晶體方面,相較於底閘構造的情況,能促進氧化物半導體的表面的氧化,很難產生氧化物半導體的缺氧。 In the manufacturing process of the thin film transistor, the thin film transistor having a top gate structure can form a gate insulating film containing cerium oxide in an introduced gas containing oxygen after forming an oxide semiconductor. At this time, can The surface of the oxide semiconductor under the gate insulating film is oxidized, and the degree of oxidation of the surface can be adjusted. The formation step of the thin film transistor system gate insulating film having a bottom gate structure is performed before the step of the oxide semiconductor, so it is difficult to adjust the degree of oxidation of the surface of the oxide semiconductor. Compared with the case of the bottom gate structure, the thin film transistor with the top gate structure can promote the oxidation of the surface of the oxide semiconductor, and it is difficult to cause oxygen deficiency of the oxide semiconductor.

包含第1絕緣層11、第2絕緣層12、第3絕緣層13、及氧化物半導體的基底的絕緣層(第4絕緣層14)的複數個絕緣層能使用無機絕緣材料或有機絕緣材料形成。作為絕緣層的材料,能使用氧化矽、氧化氮化矽、氧化鋁,作為絕緣層的構造,能使用包含上述材料的單層或複數層。可以是積層了用不同的絕緣材料所形成的複數個層的結構。為了得到將絕緣膜的上表面平坦化的效果,可以將丙烯酸樹脂、聚醯亞胺樹脂、苯并環丁烯樹脂、聚醯胺樹脂等用於一部分的絕緣層。也能使用低介電率材料(low-k材料)。 The plurality of insulating layers including the first insulating layer 11, the second insulating layer 12, the third insulating layer 13, and the underlying insulating layer of the oxide semiconductor (fourth insulating layer 14) can be formed using an inorganic insulating material or an organic insulating material . As the material of the insulating layer, silicon oxide, silicon oxynitride, or aluminum oxide can be used, and as the structure of the insulating layer, a single layer or a plurality of layers including the above materials can be used. It may be a structure in which a plurality of layers formed with different insulating materials are stacked. In order to obtain the effect of flattening the upper surface of the insulating film, acrylic resin, polyimide resin, benzocyclobutene resin, polyamide resin, etc. may be used for a part of the insulating layer. Low-dielectric materials (low-k materials) can also be used.

在通道層27上,透過第3絕緣層13,配設閘極電極25。閘極電極25(閘極配線10)能夠以使用與上述的共同配線30相同的材料,具有相同的層結構的方式,在相同的步驟中形成。此外,閘極電極25也可以以使用與上述的汲極電極26及源極電極24相同的材料,具有相同的層結構的方式形成。在使用多層的導電性材料形成閘極電極25的情況下,能採用以導電性金屬氧化物挾持銅層或銅合金層的結構。 The gate electrode 25 is arranged on the channel layer 27 through the third insulating layer 13. The gate electrode 25 (gate wiring 10) can be formed in the same step using the same material as the above-mentioned common wiring 30 and having the same layer structure. In addition, the gate electrode 25 may be formed using the same material as the drain electrode 26 and the source electrode 24 described above, and having the same layer structure. When the gate electrode 25 is formed using multiple layers of conductive materials, a structure in which a copper layer or a copper alloy layer is sandwiched with a conductive metal oxide can be adopted.

在閘極電極25的端部露出的金屬層5的表面,也能用包含銦的複合氧化物加以覆蓋。或者是,可以以包含閘極電極25的端部的方式用氮化矽或氮化鉬等氮化物覆蓋閘極電極25整體。或者是,可以用比50nm還厚的膜厚積層具有與上述的閘極絕緣膜相同的組成的絕緣膜。 The surface of the metal layer 5 exposed at the end of the gate electrode 25 can also be covered with a composite oxide containing indium. Alternatively, the entire gate electrode 25 may be covered with a nitride such as silicon nitride or molybdenum nitride so as to include the end of the gate electrode 25. Alternatively, an insulating film having a thickness greater than 50 nm and having the same composition as the above-mentioned gate insulating film can be laminated.

作為閘極電極25的形成方法,也能夠在形成閘極電極25之前,僅對位於主動元件28的通道層27的正上方的第3絕緣層13實施乾式蝕刻等,將第3絕緣層13的厚度減薄。 As a method of forming the gate electrode 25, before the gate electrode 25 is formed, only the third insulating layer 13 located directly above the channel layer 27 of the active element 28 may be dry-etched or the like, and the third insulating layer 13 may be The thickness is reduced.

可以在與第3絕緣層13接觸的閘極電極25的界面,進一步插入電性性質不同的氧化物半導體。或者是,也可以用包含氧化鈰或氧化鎵的絕緣性的金屬氧化物層形成第3絕緣層13。 An oxide semiconductor having different electrical properties may be further inserted at the interface of the gate electrode 25 in contact with the third insulating layer 13. Alternatively, the third insulating layer 13 may be formed of an insulating metal oxide layer containing cerium oxide or gallium oxide.

具體而言,為了抑制肇因於供給至源極配線31的影像訊號的雜訊傳到共同配線30,必須將第3絕緣層13增厚。另一方面,第3絕緣層13具有作為位於閘極電極25與通道層27之間的閘極絕緣膜的功能,要求考慮過主動元件28的切換特性的適切膜厚。如此一來,為了實現相反的2個功能,而在大幅維持在共同配線30與源極配線31之間的第3絕緣層13的膜厚下,將位於通道層27正上方的第3絕緣層13的厚度減薄,從而能抑制肇因於供給至源極配線的影像訊號的雜訊傳到共同配線30,同時能在主動元件28中實現所要的切換特性。 Specifically, in order to suppress the noise caused by the video signal supplied to the source wiring 31 from passing to the common wiring 30, the third insulating layer 13 must be thickened. On the other hand, the third insulating layer 13 has a function as a gate insulating film between the gate electrode 25 and the channel layer 27, and an appropriate film thickness considering the switching characteristics of the active element 28 is required. In this way, in order to realize the opposite two functions, the third insulating layer located directly above the channel layer 27 will be maintained under the film thickness of the third insulating layer 13 substantially maintained between the common wiring 30 and the source wiring 31 The thickness of 13 is reduced, so that the noise caused by the image signal supplied to the source wiring can be suppressed from being transmitted to the common wiring 30, and the desired switching characteristics can be realized in the active device 28.

此外,也可以在通道層27的下部形成遮光膜。作為遮光膜的材料,能使用鉬、鎢、鈦、鉻等高熔點金屬。 In addition, a light-shielding film may be formed under the channel layer 27. As the material of the light-shielding film, high melting point metals such as molybdenum, tungsten, titanium, and chromium can be used.

閘極配線10係與主動元件28電性聯結。具體而言,與閘極配線10連接的閘極電極25和主動元件28的通道層27係透過第3絕緣層13而對向。根據從影像訊號控制部121供給至閘極電極25的掃描訊號,在主動元件28中進行切換驅動。 The gate wiring 10 is electrically connected to the active element 28. Specifically, the gate electrode 25 connected to the gate wiring 10 and the channel layer 27 of the active element 28 face each other through the third insulating layer 13. Based on the scanning signal supplied from the video signal control unit 121 to the gate electrode 25, the active element 28 is switched and driven.

對源極配線31賦予來自影像訊號控制部121的作為影像訊號的電壓。對源極配線31賦予例如±2.5V至±5的正或負電壓的影像訊號。作為施加於共通電極17的電壓,例如,能設在按幅反轉進行變化的±2.5V的範圍內。此外,也可以將共通電極17的電位設為液晶驅動的臨界值Vth以下至0V的範圍的定電位。在將此共通電極應用於後述的定電位驅動的情況下,理想的是將氧化物半導體用於通道層27。用氧化物半導體所構成的通道層的電性耐電壓高,可以藉由使用氧化物半導體的電晶體來將超越±5V範圍(range)的高驅動電壓施加於電極部17A,將液晶的響應高速化。液晶驅動,能應用幅反轉驅動、列反轉(垂直線)反轉驅動、水平線反轉驅動、點反轉驅動等各種驅動方法。針對本實施形態的液晶驅動,參照第14圖後述。 The source wiring 31 is given a voltage as a video signal from the video signal control unit 121. The source wiring 31 is given a video signal with a positive or negative voltage of, for example, ±2.5V to ±5. As the voltage applied to the common electrode 17, for example, it can be set within a range of ±2.5V that varies by amplitude inversion. In addition, the potential of the common electrode 17 may be set to a constant potential in the range from the critical value Vth of liquid crystal driving to 0V. When this common electrode is applied to constant-potential driving described later, it is desirable to use an oxide semiconductor for the channel layer 27. The channel layer composed of an oxide semiconductor has a high electrical withstand voltage. By using an oxide semiconductor transistor, a high driving voltage exceeding a range of ±5 V can be applied to the electrode portion 17A to increase the response of the liquid crystal at high speed. Change. For liquid crystal driving, various driving methods such as amplitude inversion driving, column inversion (vertical line) inversion driving, horizontal line inversion driving, and dot inversion driving can be applied. The liquid crystal drive of this embodiment will be described later with reference to FIG. 14.

在閘極電極25的結構的一部分採用銅合金的情況下,能添加相對於銅為0.1at%以上4at%以下的範圍內的金屬元素或半金屬元素。藉由依此方式將元素添加至銅,可得到能夠抑制銅的遷移這樣的效果。特別是, 較佳為將藉由在銅層的結晶(晶粒(grain))內與一部分銅原子進行取代而能配置在銅的晶格位置的元素、和在銅層的結晶粒界析出而抑制銅的晶粒附近的銅原子的行動的元素一起添加於銅。或者是,較佳為為了抑制銅原子的行動而將比銅原子重(原子量大)的元素添加於銅。除此之外,較佳為選擇在相對於銅為0.1at%至4at%的範圍內的添加量下,銅的導電率很難降低的添加元素。另外,若考慮濺鍍等真空成膜,則較佳為濺鍍等的成膜速率接近銅的元素。如上所述將元素添加於銅的技術,在假如將銅取代為銀或鋁的情況下也能適用。換言之,可以使用銀合金或鋁合金來取代銅合金。 When a copper alloy is used as a part of the structure of the gate electrode 25, a metal element or a semimetal element within a range of 0.1 at% or more and 4 at% or less relative to copper can be added. By adding an element to copper in this way, an effect capable of suppressing the migration of copper can be obtained. especially, It is preferable that the element which can be arranged in the lattice position of copper by substituting a part of copper atoms in the crystal (grain) of the copper layer and the precipitation at the crystal grain boundaries of the copper layer suppress copper. Elements that act as copper atoms near the crystal grains are added to the copper together. Alternatively, it is preferable to add an element heavier than copper atoms (larger atomic weight) to copper in order to suppress the action of copper atoms. In addition to this, it is preferable to select an additive element whose copper conductivity is difficult to decrease at an addition amount in the range of 0.1 at% to 4 at% relative to copper. In addition, in consideration of vacuum film formation such as sputtering, it is preferable that the film formation rate such as sputtering is close to copper. The technique of adding elements to copper as described above can also be applied if copper is replaced with silver or aluminum. In other words, silver alloy or aluminum alloy can be used instead of copper alloy.

將在銅層的結晶(晶粒)內與一部分銅原子進行取代而能配置在銅的晶格位置的元素添加於銅,換言之,是將在常溫附近與銅形成固溶體的金屬或半金屬添加於銅。容易與銅形成固溶體的金屬可舉出:錳、鎳、鋅、鈀、鎵、金(Au)等。將在銅層的結晶粒界析出以抑制銅的晶粒附近的銅原子的行動的元素添加於銅,換言之,是添加在常溫附近不與銅形成固溶體的金屬或半金屬。很難與銅形成固溶體,或不與銅形成固溶體的金屬或半金屬可舉出各種材料。例如,能舉出:鈦、鋯、鉬、鎢等的高熔點金屬;矽、鍺、銻、鉍等的被稱為半金屬的元素等。 An element that can be placed in the lattice position of copper by substituting a part of copper atoms in the crystals (grains) of the copper layer is added to copper, in other words, it is a metal or semimetal that forms a solid solution with copper at normal temperature Added to copper. Examples of metals that easily form solid solutions with copper include manganese, nickel, zinc, palladium, gallium, and gold (Au). An element that precipitates at the crystal grain boundaries of the copper layer to suppress the movement of copper atoms in the vicinity of the copper crystal grains is added to copper, in other words, a metal or semimetal that does not form a solid solution with copper near normal temperature is added. Various materials can be cited as metals or semi-metals that are difficult to form a solid solution with copper, or do not form a solid solution with copper. For example, high-melting-point metals such as titanium, zirconium, molybdenum, and tungsten; elements called semimetals such as silicon, germanium, antimony, and bismuth;

就遷移的觀點而言,銅在可靠性面上有問題。藉由將上述的金屬或半金屬添加於銅能補充可靠性面。藉由添加相對於銅為0.1at%以上的上述金屬或半金屬,可得 到抑制遷移的效果。但是,在添加相對於銅超過4at%的上述金屬或半金屬的情況下,銅的導電率惡化變顯著,無法得到選定銅或銅合金的優點。 From a migration point of view, copper has problems with reliability. By adding the above-mentioned metal or semimetal to copper, the reliability surface can be supplemented. By adding the above metal or semimetal relative to copper at 0.1at% or more, the available To inhibit migration. However, when the above-mentioned metal or semimetal relative to copper is added at more than 4 at%, the deterioration of copper conductivity becomes significant, and the advantage of selecting copper or copper alloy cannot be obtained.

作為上述導電性金屬氧化物,例如,能採用從氧化銦、氧化錫、氧化鋅、氧化銻所選出的2個以上的複合氧化物(混合氧化物)。此複合氧化物中,可以進一步添加少量的氧化鈦、氧化鋯、氧化鋁、氧化鎂、氧化鍺。氧化銦和氧化錫的複合氧化物一般作為被稱為ITO的低電阻的透明導電膜。在使用氧化銦、氧化鋅、及氧化錫的三元系的複合氧化物的情況下,能藉由調整氧化鋅及氧化錫的混合比例來調整濕式蝕刻中的蝕刻速率。在利用氧化銦、氧化鋅、及氧化錫的三元系的複合氧化物挾持合金層的3層結構中,能調整複合氧化物的蝕刻速率和銅合金層的蝕刻速率,能使這3層的圖案寬度約略相等。 As the conductive metal oxide, for example, two or more composite oxides (mixed oxides) selected from indium oxide, tin oxide, zinc oxide, and antimony oxide can be used. To this composite oxide, a small amount of titanium oxide, zirconium oxide, aluminum oxide, magnesium oxide, and germanium oxide may be further added. The composite oxide of indium oxide and tin oxide is generally used as a low-resistance transparent conductive film called ITO. In the case of using a ternary composite oxide of indium oxide, zinc oxide, and tin oxide, the etching rate in wet etching can be adjusted by adjusting the mixing ratio of zinc oxide and tin oxide. In the three-layer structure using the ternary composite oxide of indium oxide, zinc oxide, and tin oxide to hold the alloy layer, the etching rate of the composite oxide and the etching rate of the copper alloy layer can be adjusted to enable the pattern of these three layers The width is approximately equal.

一般而言,為了進行灰階顯示,將與灰階顯示相應的各種電壓施加於源極配線,且以各種時序(timing)將影像訊號賦予源極配線。肇因於這樣的影像訊號的雜訊,容易傳到共通電極17,有使觸控感測的檢測精度降低的之虞。因此,如第5圖所示,藉由採用將源極配線31和觸控感測配線3的距離W2增大的構造,可得到能減低雜訊這樣的效果。 Generally, in order to perform gray-scale display, various voltages corresponding to the gray-scale display are applied to the source wiring, and the video signal is given to the source wiring at various timings. Noise caused by such an image signal is easily transmitted to the common electrode 17, which may lower the detection accuracy of touch sensing. Therefore, as shown in FIG. 5, by adopting a structure in which the distance W2 between the source wiring 31 and the touch sensing wiring 3 is increased, an effect that noise can be reduced can be obtained.

在本實施形態中,作為主動元件28,可採用具有頂閘構造的電晶體。也可以取代頂閘構造採用具有底閘構造的電晶體,但在採用頂閘構造的電晶體的情 況下,能使Z方向上的源極配線31的位置與觸控感測配線3分開。換言之,在具有頂閘構造的電晶體的情況下,能將源極配線從在觸控感測配線3與共通電極17之間生成電容的空間分開。依此方式使源極配線從生成電容的空間分開,從而能減低雜訊對在觸控感測配線3與共通電極17之間所檢測的觸控訊號的影響,即肇因於從源極配線產生的各種影像訊號的雜訊賦予觸控訊號的影響。在本實施形態中,在觸控感測配線3與共通電極17之間的物理性空間不包含源極配線31或像素電極20是重要的。在以下的說明中,有將觸控感測配線3與共通電極17之間的物理性空間稱為觸控感測空間的情形。此外,理想的是形成將第13圖所例示的閘極配線10與共同配線30(導電配線)的距離W4、和上述的距離W2一併考慮的觸控感測空間。藉由得到距離W4,能緩和肇因於供給至閘極配線10的閘極訊號的雜訊賦予共同配線30的影響。 In this embodiment, as the active element 28, a transistor having a top gate structure can be used. It is also possible to replace the top gate structure with a transistor with a bottom gate structure, but in the case of a transistor with a top gate structure In this case, the position of the source wiring 31 in the Z direction can be separated from the touch sensing wiring 3. In other words, in the case of a transistor having a top gate structure, the source wiring can be separated from the space where capacitance is generated between the touch sensing wiring 3 and the common electrode 17. In this way, the source wiring is separated from the space where the capacitance is generated, so that the influence of noise on the touch signal detected between the touch sensing wiring 3 and the common electrode 17 can be reduced, that is, the wiring from the source The generated noise of various image signals gives the influence of touch signals. In this embodiment, it is important that the physical space between the touch sensing wiring 3 and the common electrode 17 does not include the source wiring 31 or the pixel electrode 20. In the following description, the physical space between the touch sensing wiring 3 and the common electrode 17 may be referred to as a touch sensing space. In addition, it is desirable to form a touch sensing space considering the distance W4 of the gate wiring 10 and the common wiring 30 (conductive wiring) illustrated in FIG. 13 together with the distance W2 described above. By obtaining the distance W4, it is possible to alleviate the influence of the noise caused by the gate signal supplied to the gate wiring 10 on the common wiring 30.

(顯示裝置基板100的具體構造) (Specific structure of the display device substrate 100)

接著,參照第6圖~第9圖,針對顯示裝置基板100的具體構造進行說明。第6圖係部分地顯示本發明的第1實施形態的液晶顯示裝置LCD1的平面圖,通過透明基板21從觀察者側觀看的圖。 Next, the specific structure of the display device substrate 100 will be described with reference to FIGS. 6 to 9. FIG. 6 is a plan view partially showing the liquid crystal display device LCD1 according to the first embodiment of the present invention, viewed from the observer side through the transparent substrate 21.

第7圖係部分地顯示本發明的第1實施形態的顯示裝置基板100的剖面圖,沿著第6圖所示的F-F’線的剖面圖。第8圖係部分地顯示本發明的第1實施形態的顯示裝置基板100的剖面圖,說明觸控感測配線3的端子 部34的剖面圖。第9圖係部分地顯示本發明的第1實施形態的顯示裝置基板100的剖面圖,說明觸控感測配線3的端子部34的剖面圖。 FIG. 7 is a partial cross-sectional view of the display device substrate 100 according to the first embodiment of the present invention, taken along the line F-F' shown in FIG. 6. FIG. 8 is a cross-sectional view partially showing the display device substrate 100 according to the first embodiment of the present invention, illustrating the terminals of the touch sensing wiring 3 Sectional view of section 34. FIG. 9 is a cross-sectional view partially showing the display device substrate 100 according to the first embodiment of the present invention, and a cross-sectional view illustrating the terminal portion 34 of the touch sensing wiring 3.

如第6圖所示,在第2圖所示的陣列基板200上,透過液晶層,積層顯示裝置基板100。藉此,可得到透過液晶層300將顯示裝置基板100貼合在陣列基板200的液晶顯示裝置LCD1。 As shown in FIG. 6, on the array substrate 200 shown in FIG. 2, the display device substrate 100 is laminated through the liquid crystal layer. Thereby, the liquid crystal display device LCD1 in which the display device substrate 100 is bonded to the array substrate 200 through the liquid crystal layer 300 can be obtained.

又,在第6圖中,顯示了構成陣列基板200的源極配線31、及共同配線30,省略了構成陣列基板200的其他構件(電極、配線、主動元件等)。 In FIG. 6, the source wiring 31 and the common wiring 30 constituting the array substrate 200 are shown, and other members (electrodes, wiring, active elements, etc.) constituting the array substrate 200 are omitted.

顯示裝置基板100具備彩色濾光片51(RGB)、觸控感測配線3、及黑色矩陣BM。黑色矩陣BM具有具備複數個像素開口的格子圖案。複數個像素開口部的每一者中設置構成彩色濾光片51的紅色濾光片(R)、綠色濾光片(G)、及藍色濾光片(藍)。黑色矩陣BM具有在X方向上延伸的X方向延伸部、和在Y方向上延伸的Y方向延伸部,用上述的構成黑色層8的材料形成。此外,Y方向延伸部相當於黑色層8。以與黑色矩陣BM的Y方向延伸部(黑色矩陣的一部分)重疊的方式,將觸控感測配線3設置在顯示裝置基板100(參照第7圖)。 The display device substrate 100 includes a color filter 51 (RGB), a touch sensing wiring 3, and a black matrix BM. The black matrix BM has a lattice pattern with a plurality of pixel openings. A red filter (R), a green filter (G), and a blue filter (blue) constituting the color filter 51 are provided in each of the plurality of pixel openings. The black matrix BM has an X-direction extending portion extending in the X-direction and a Y-direction extending portion extending in the Y-direction, and is formed of the material constituting the black layer 8 described above. In addition, the Y-direction extension corresponds to the black layer 8. The touch sensing wiring 3 is provided on the display device substrate 100 (see FIG. 7) so as to overlap with the Y-direction extending portion (part of the black matrix) of the black matrix BM.

此外,觸控感測配線3係形成在黑色矩陣BM上,在Y方向上延伸。在顯示裝置基板100和陣列基板200的俯視下的位置關係中,觸控感測配線3係以與源極配線31重疊的方式配置,觸控感測配線3的延伸方向係相對於共同配線30的延伸方向正交。 In addition, the touch sensing wiring 3 is formed on the black matrix BM and extends in the Y direction. In the positional relationship of the display device substrate 100 and the array substrate 200 in a plan view, the touch sensing wiring 3 is arranged to overlap the source wiring 31, and the extending direction of the touch sensing wiring 3 is relative to the common wiring 30 The direction of extension is orthogonal.

如第7圖所示,在構成黑色矩陣BM的黑色層8上,積層第1導電性金屬氧化物層、銅合金層、及第2導電性金屬氧化物層的3層結構的觸控感測配線3。 As shown in FIG. 7, on the black layer 8 constituting the black matrix BM, a three-layer touch sensing of a first conductive metal oxide layer, a copper alloy layer, and a second conductive metal oxide layer is stacked Wiring 3.

作為導電性金屬氧化物層的材料,能應用以氧化銦或氧化錫為基材的導電性金屬氧化物。例如,能使用將氧化鋅、氧化錫、氧化鈦、氧化鋯、氧化鎂、氧化鋁、氧化鍺、氧化鎵、氧化鈰、氧化銻等添加於氧化銦的複合氧化物。至少,在使用混合氧化鋅的複合氧化物系的情況下,能根據氧化鋅、氧化銻、氧化鎵相對於氧化銦的添加量調整濕式蝕刻中的蝕刻速率。 As a material of the conductive metal oxide layer, a conductive metal oxide based on indium oxide or tin oxide can be used. For example, a composite oxide in which zinc oxide, tin oxide, titanium oxide, zirconium oxide, magnesium oxide, aluminum oxide, germanium oxide, gallium oxide, cerium oxide, antimony oxide, or the like is added to indium oxide can be used. At least, in the case of using a mixed oxide system of mixed zinc oxide, the etching rate in wet etching can be adjusted according to the addition amount of zinc oxide, antimony oxide, and gallium oxide relative to indium oxide.

在形成如上述的第1導電性金屬氧化物層、銅合金層、及第2導電性金屬氧化物層的3層結構的觸控感測配線或導電配線(在陣列基板200上所形成的共同配線30)之際,調合導電性金屬氧化物和銅合金的蝕刻速率,以約略相同的寬度進行蝕刻是重要的。以氧化銦和氧化鋅的2元系材料為主材料,進一步將其他的必要要素,例如能實現導電性改善或可靠性改善的其他金屬氧化物添加於主材料,從而能實現具有上述3層結構的配線。 The touch sensing wiring or conductive wiring (commonly formed on the array substrate 200) of the three-layer structure in which the first conductive metal oxide layer, the copper alloy layer, and the second conductive metal oxide layer are formed as described above In the case of the wiring 30), it is important to adjust the etching rate of the conductive metal oxide and the copper alloy, and to perform etching with approximately the same width. The binary material of indium oxide and zinc oxide is used as the main material, and other necessary elements, such as other metal oxides that can improve conductivity or reliability, are added to the main material to achieve the above three-layer structure. Wiring.

例如,基於氧化銦-氧化鋅-氧化錫等複合金屬氧化物的複合氧化物具有高導電性,同時具有對銅合金、彩色濾光片、及玻璃基板等的強緊貼性。另外,此複合金屬氧化物可以是硬的陶瓷,且在電性構裝構造中,可得到良好的歐姆接觸。若將包含這樣的複合氧化物的導電 性金屬氧化物層應用於上述第1導電性金屬氧化物層、銅合金層、及第2導電性金屬氧化物層的3層結構的話,則例如,能在玻璃基板上進行極牢固的電性構裝。 For example, composite oxides based on composite metal oxides such as indium oxide-zinc oxide-tin oxide have high conductivity, and also have strong adhesion to copper alloys, color filters, and glass substrates. In addition, the composite metal oxide may be a hard ceramic, and in the electrical structure, good ohmic contact can be obtained. If the conductivity of such a composite oxide When the conductive metal oxide layer is applied to the above three-layer structure of the first conductive metal oxide layer, the copper alloy layer, and the second conductive metal oxide layer, for example, extremely strong electrical properties can be performed on the glass substrate Build.

如第7圖所示,在黑色矩陣BM上,連續成膜包含氧化銦、氧化鋅和氧化錫的3元系混合氧化物膜(導電性金屬氧化物層)的第2導電性金屬氧化物層4、金屬層5、及與第2導電性金屬氧化物層4同樣的第1導電性金屬氧化物層6,從而能形成3層。作為成膜裝置,例如,使用濺鍍裝置,在維持真空氣體環境下,進行連續成膜。 As shown in FIG. 7, on the black matrix BM, a second conductive metal oxide layer including a ternary mixed oxide film (conductive metal oxide layer) of indium oxide, zinc oxide, and tin oxide is continuously formed 4. The metal layer 5 and the first conductive metal oxide layer 6 similar to the second conductive metal oxide layer 4 can form three layers. As a film forming apparatus, for example, a sputtering apparatus is used, and continuous film forming is performed while maintaining a vacuum gas environment.

例如,在第2導電性金屬氧化物層4及第1導電性金屬氧化物層6中,各自的氧化銦、氧化鋅和氧化錫、及銅合金的金屬層的組成如下所述。在任何情況下,混合氧化物中的金屬元素的原子百分比(不計數氧元素而僅計數金屬元素。以下,標記為at%)。 For example, in the second conductive metal oxide layer 4 and the first conductive metal oxide layer 6, the composition of the respective metal layers of indium oxide, zinc oxide, tin oxide, and copper alloy is as follows. In any case, the atomic percentage of the metal element in the mixed oxide (the oxygen element is not counted but only the metal element is counted. Hereinafter, marked as at%).

‧第1導電性金屬氧化物層;In:Zn:Sn

Figure 105115015-A0202-12-0051-34
90:8:2 ‧The first conductive metal oxide layer; In: Zn: Sn
Figure 105115015-A0202-12-0051-34
90: 8: 2

‧第2導電性金屬氧化物層;In:Zn:Sn

Figure 105115015-A0202-12-0051-35
91:7:2 ‧The second conductive metal oxide layer; In: Zn: Sn
Figure 105115015-A0202-12-0051-35
91: 7: 2

‧金屬層;Cu:Zn:Sb

Figure 105115015-A0202-12-0051-36
98.6:1.0:0.4 ‧Metal layer; Cu: Zn: Sb
Figure 105115015-A0202-12-0051-36
98.6: 1.0: 0.4

第1導電性金屬氧化物層6和第2導電性金屬氧化物層4中所包含的銦(In)的量,必須含有比80at%多。銦(In)的量較佳為比80at%多。銦(In)的量更佳為比90at%多。在銦(In)的量比80at%少的情況下,所形成的導電性金屬氧化物層的比電阻變大,這是不佳的。若鋅(Zn)的量超過20at%,則導電性金屬氧化物(混合氧化物)的耐鹼性降低,因而是不佳的。 The amount of indium (In) contained in the first conductive metal oxide layer 6 and the second conductive metal oxide layer 4 must be more than 80 at%. The amount of indium (In) is preferably more than 80 at%. The amount of indium (In) is more preferably more than 90at%. When the amount of indium (In) is less than 80 at%, the specific resistance of the conductive metal oxide layer formed becomes large, which is not good. If the amount of zinc (Zn) exceeds 20 at%, the alkali resistance of the conductive metal oxide (mixed oxide) decreases, which is not good.

第1導電性金屬氧化物層6及第2導電性金屬氧化物層4中所包含的鋅(Zn)的量必須設得比錫(Sn)的量多。若錫的含量超過含鋅量,則在後續步驟的濕式蝕刻造成阻礙。換言之,銅或銅合金的金屬層變得比導電性金屬氧化物層更容易被蝕刻,第1導電性金屬氧化物層6、金屬層5、及第2導電性金屬氧化物層4的寬度變得容易產生差異。 The amount of zinc (Zn) contained in the first conductive metal oxide layer 6 and the second conductive metal oxide layer 4 must be set to be greater than the amount of tin (Sn). If the tin content exceeds the zinc content, the wet etching in the subsequent steps causes hindrance. In other words, the metal layer of copper or copper alloy becomes easier to be etched than the conductive metal oxide layer, and the widths of the first conductive metal oxide layer 6, the metal layer 5, and the second conductive metal oxide layer 4 become It’s easy to make a difference.

第1導電性金屬氧化物層6及第2導電性金屬氧化物層4中所包含的錫(Sn)的量較佳為在0.5at%以上6at%以下的範圍內。在相對於銦元素的比較上,將0.5at%以上6at%以下的錫添加至導電性金屬氧化物層,從而能縮小上述銦、鋅、及錫的3元系混合氧化物膜(導電性的複合氧化物層)的比電阻。若錫的量超過6at%,則由於伴有對導電性金屬氧化物層添加鋅,因此3元系混合氧化物膜(導電性的複合氧化物層)的比電阻變得過大。藉由在上述的範圍(0.5at%以上6at%以下)內調整鋅及錫的量,或者,藉由調整成膜條件或退火條件等,能將比電阻,以混合氧化物膜的單層膜的比電阻而言,納入大約3×10-4Ωcm以上5×10-4Ωcm以下的小範圍內。在上述混合氧化物中,也能少量添加鈦、鋯、鎂、鋁、鍺等其他元素。 The amount of tin (Sn) contained in the first conductive metal oxide layer 6 and the second conductive metal oxide layer 4 is preferably within a range of 0.5 at% or more and 6 at% or less. In comparison with the indium element, by adding 0.5at% or more and 6at% or less of tin to the conductive metal oxide layer, the ternary mixed oxide film of indium, zinc, and tin (conductive Composite oxide layer). If the amount of tin exceeds 6 at%, zinc is added to the conductive metal oxide layer, so the specific resistance of the ternary mixed oxide film (conductive composite oxide layer) becomes excessive. By adjusting the amount of zinc and tin within the above range (0.5at% or more and 6at% or less), or by adjusting the film forming conditions or annealing conditions, etc., the specific resistance can be mixed with a single-layer film of an oxide film In terms of specific resistance, it is included in a small range of about 3×10 -4 Ωcm or more and 5×10 -4 Ωcm or less. In the above mixed oxide, other elements such as titanium, zirconium, magnesium, aluminum, and germanium can also be added in small amounts.

黑色矩陣BM具有包圍顯示面(顯示部110)內的矩陣區域(矩形的顯示區域和顯示畫面)的邊框區域。較佳為以朝向透明基板21的外側而從邊框區域延伸的方式將觸控感測配線3形成在透明基板21上,在位於 邊框區域的外側的觸控感測配線3形成端子部34。在此情況下,觸控感測配線3的端子部34係不與黑色矩陣BM重疊地設置在從邊框區域延伸出來的位置。在此結構中,可以在玻璃板的透明基板21的玻璃面直接形成構裝所使用的端子部34。 The black matrix BM has a frame area surrounding the matrix area (rectangular display area and display screen) in the display surface (display section 110). It is preferable to form the touch sensing wiring 3 on the transparent substrate 21 so as to extend from the frame area toward the outside of the transparent substrate 21 The touch sensing wiring 3 outside the frame area forms a terminal portion 34. In this case, the terminal portion 34 of the touch sensing wiring 3 is provided at a position extending from the frame area without overlapping with the black matrix BM. In this structure, the terminal portion 34 used for construction can be directly formed on the glass surface of the transparent substrate 21 of the glass plate.

第8圖係顯示朝向透明基板21的外側而從邊框區域的黑色矩陣BM延伸出來的觸控感測配線3的剖面圖,沿著X方向的圖。觸控感測配線3的端子部34係直接配設在玻璃板的透明基板21上。第9圖係顯示端子部34的剖面圖,沿著Y方向的圖。 FIG. 8 is a cross-sectional view of the touch sensing wiring 3 extending from the black matrix BM of the frame area toward the outside of the transparent substrate 21, along the X direction. The terminal portion 34 of the touch sensing wiring 3 is directly arranged on the transparent substrate 21 of the glass plate. FIG. 9 is a cross-sectional view showing the terminal portion 34, along the Y direction.

端子部在俯視下的形狀不限於第8圖或第9圖。例如,在用透明樹脂層16覆蓋端子部34上後,用乾式蝕刻等方法除去端子部34的上部,形成具有圓形或矩形的形狀的端子部34,使導電性金屬氧化物層在端子部34的表面露出。在此情況下,可以在將顯示裝置基板100和陣列基板200貼合的密封部、或液晶胞的內部中,在密封部的厚度方向上進行從顯示裝置基板100朝陣列基板200的導通的轉移(transfer)。將從異向性導電膜、微小的金屬球、或用金屬膜覆蓋的樹脂球所選出的導體配置在密封部,從而能導通顯示裝置基板100和陣列基板200。 The shape of the terminal portion in plan view is not limited to FIG. 8 or FIG. 9. For example, after covering the terminal portion 34 with the transparent resin layer 16, the upper portion of the terminal portion 34 is removed by dry etching or the like to form the terminal portion 34 having a circular or rectangular shape, and the conductive metal oxide layer is placed on the terminal portion The surface of 34 is exposed. In this case, it is possible to transfer the conduction from the display device substrate 100 to the array substrate 200 in the thickness direction of the sealing portion in the sealing portion where the display device substrate 100 and the array substrate 200 are bonded, or inside the liquid crystal cell (transfer). The conductor selected from the anisotropic conductive film, the tiny metal ball, or the resin ball covered with the metal film is arranged in the sealing portion, so that the display device substrate 100 and the array substrate 200 can be conducted.

在顯示裝置基板100和陣列基板200之間的導通構造中,並非使第1導電性金屬氧化物層6、銅合金層(金屬層5)、及第2導電性金屬氧化物層4的3層僅配設在顯示裝置基板100,較佳為同樣地,也將用第1 導電性金屬氧化物層、銅合金層、及第2導電性金屬氧化物層的3層所形成的端子部形成在陣列基板200。如此一來,形成在陣列基板200的端子可用作對顯示裝置基板100的導通的轉移(transfer)用的端子。具體而言,將構成形成在陣列基板200的閘極配線10的導電層的層(layer)的構造、或者是構成源極配線31的導電層的層的構造中任一者設為第1導電性金屬氧化物層、銅合金層、及第2導電性金屬氧化物層的3層構造。藉此,能將供顯示裝置基板100與陣列基板200之間的導通用的迴繞配線或端子部形成在陣列基板200。 In the conduction structure between the display device substrate 100 and the array substrate 200, three layers of the first conductive metal oxide layer 6, the copper alloy layer (metal layer 5), and the second conductive metal oxide layer 4 are not used It is only arranged on the display device substrate 100, preferably in the same way, the first The terminal portion formed by three layers of the conductive metal oxide layer, the copper alloy layer, and the second conductive metal oxide layer is formed on the array substrate 200. In this way, the terminal formed on the array substrate 200 can be used as a terminal for transferring conduction to the display device substrate 100. Specifically, either the structure of the layer constituting the conductive layer formed on the gate wiring 10 of the array substrate 200 or the structure of the layer constituting the conductive layer of the source wiring 31 is set as the first conductivity Three-layer structure of a conductive metal oxide layer, a copper alloy layer, and a second conductive metal oxide layer. With this, it is possible to form, on the array substrate 200, the return wiring or terminal portion for conduction between the display device substrate 100 and the array substrate 200.

(液晶層300) (Liquid crystal layer 300)

回到第3圖,針對液晶層300(顯示功能層)進行說明。 Returning to FIG. 3, the liquid crystal layer 300 (display function layer) will be described.

液晶層300包含具有正的介電率異向性的液晶分子39。液晶分子的初期配向係相對於顯示裝置基板100或陣列基板200的基板面為平行的。使用液晶層300的第1實施形態的液晶驅動,在俯視下,以橫跨液晶層的方式將驅動電壓施加於液晶分子,因此有稱為橫電場方式的情形。針對液晶分子39的動作,參照第15圖及第16圖後述。構成液晶層300的液晶可以是具有負的介電率異向性的液晶,也可以是正的介電率異向性的液晶。較佳為液晶顯示裝置中所使用的液晶或配向膜,甚至是顯示裝置基板中所具備的透明樹脂層的電阻率高,較佳為這些構件的電阻率為1×1013Ω‧cm以上。 The liquid crystal layer 300 includes liquid crystal molecules 39 having positive dielectric anisotropy. The initial alignment of the liquid crystal molecules is parallel to the substrate surface of the display device substrate 100 or the array substrate 200. The liquid crystal driving of the first embodiment using the liquid crystal layer 300 applies a driving voltage to the liquid crystal molecules across the liquid crystal layer in a plan view, and therefore may be referred to as a transverse electric field method. The operation of the liquid crystal molecules 39 will be described later with reference to FIGS. 15 and 16. The liquid crystal constituting the liquid crystal layer 300 may be a liquid crystal having a negative dielectric anisotropy or a liquid crystal having a positive dielectric anisotropy. Preferably, the liquid crystal or the alignment film used in the liquid crystal display device, or even the transparent resin layer provided in the display device substrate has a high resistivity, and the resistivity of these members is preferably 1×10 13 Ω‧cm or more.

(液晶顯示裝置LCD1的製造方法) (Manufacturing method of liquid crystal display device LCD1)

接著,針對具備具有第2圖~第5圖所示的像素構造的陣列基板200的液晶顯示裝置LCD1的製造方法,使用第10圖~第13圖進行說明。 Next, a method of manufacturing the liquid crystal display device LCD1 including the array substrate 200 having the pixel structure shown in FIGS. 2 to 5 will be described using FIGS. 10 to 13.

首先,準備透明基板22,以覆蓋透明基板22的表面的方式形成第4絕緣層14。 First, the transparent substrate 22 is prepared, and the fourth insulating layer 14 is formed so as to cover the surface of the transparent substrate 22.

接著,如第10圖所示,在第4絕緣層14上形成構成主動元件28的通道層27。作為通道層27的材料,可採用氧化物半導體。在本實施形態中,以在一個像素配置1個通道層27的方式進行通道層27的圖案化。在第10圖中,顯示了虛線131、90。虛線131表示在形成通道層27後形成在第4絕緣層14上的源極配線的位置。虛線90表示在形成源極配線31後形成在第3絕緣層13上的閘極配線的位置。 Next, as shown in FIG. 10, the channel layer 27 constituting the active element 28 is formed on the fourth insulating layer 14. As the material of the channel layer 27, an oxide semiconductor can be used. In this embodiment, the channel layer 27 is patterned so that one channel layer 27 is arranged in one pixel. In Fig. 10, broken lines 131 and 90 are shown. The dotted line 131 indicates the position of the source wiring formed on the fourth insulating layer 14 after the channel layer 27 is formed. The dotted line 90 indicates the position of the gate wiring formed on the third insulating layer 13 after the source wiring 31 is formed.

接著,如第11圖所示,將源極電極24及汲極電極26形成在通道層27上,同時形成與源極電極24電性聯結的源極配線31。源極配線31具有在Y方向上延伸的線狀圖案。 Next, as shown in FIG. 11, the source electrode 24 and the drain electrode 26 are formed on the channel layer 27, and at the same time, the source wiring 31 electrically connected to the source electrode 24 is formed. The source wiring 31 has a linear pattern extending in the Y direction.

接著,以覆蓋通道層27、源極電極24、汲極電極26、及源極配線31的方式在透明基板21上,即在第4絕緣層14上,形成第3絕緣層13。此第3絕緣層13具有作為位於2個配線層之間的層間絕緣膜的功能、和作為閘極絕緣膜的功能。 Next, a third insulating layer 13 is formed on the transparent substrate 21, that is, on the fourth insulating layer 14 so as to cover the channel layer 27, the source electrode 24, the drain electrode 26, and the source wiring 31. This third insulating layer 13 has a function as an interlayer insulating film between two wiring layers, and a function as a gate insulating film.

接著,如第12圖所示,在形成第3絕緣層13後,以與通道層27的形成位置一致的方式在第3絕緣層13上形成閘極電極25。另外,與閘極電極25的形成同時 地,形成與閘極電極25電性聯結的閘極配線10、和共同配線30。閘極電極25、閘極配線10、及共同配線30係如上所述用導電性材料所構成的導電層,在相同的步驟中形成。 Next, as shown in FIG. 12, after the third insulating layer 13 is formed, the gate electrode 25 is formed on the third insulating layer 13 so as to coincide with the formation position of the channel layer 27. In addition, simultaneously with the formation of the gate electrode 25 Ground, the gate wiring 10 electrically connected to the gate electrode 25 and the common wiring 30 are formed. The gate electrode 25, the gate wiring 10, and the common wiring 30 are conductive layers made of a conductive material as described above, and are formed in the same step.

接著,以覆蓋閘極電極25、閘極配線10、及共同配線30的方式在透明基板22上,即在第3絕緣層13上,形成第2絕緣層12。在將第2絕緣層12成膜後,將透明導電膜成膜在第2絕緣層12的整面。 Next, the second insulating layer 12 is formed on the transparent substrate 22, that is, on the third insulating layer 13 so as to cover the gate electrode 25, the gate wiring 10, and the common wiring 30. After the second insulating layer 12 is formed, a transparent conductive film is formed on the entire surface of the second insulating layer 12.

之後,藉由將透明導電膜進行圖案化,如第13圖所示在每個像素形成像素電極20。在將像素電極20進行圖案化之際,也形成貫穿孔20S。即,貫穿孔20S成為除去了透明導電膜的開口部。 Thereafter, by patterning the transparent conductive film, the pixel electrode 20 is formed for each pixel as shown in FIG. 13. When the pixel electrode 20 is patterned, a through hole 20S is also formed. That is, the through hole 20S becomes an opening from which the transparent conductive film is removed.

第13圖顯示形成了覆蓋主動元件28、源極配線31、閘極配線10、及共同配線30等的第2絕緣層12的構造。在第2絕緣層12上,藉由圖案化來形成像素電極20。像素電極20係透過接觸孔29,與主動元件28的各個源極電極26電性連接。此外,像素電極20中所形成的貫穿孔20S的直徑比在後續步驟所形成的接觸孔H的直徑大。貫穿孔20S具有不會在接觸孔H的內部產生共通電極17和共同配線30的漏電的足夠大小(直徑)。第13圖中顯示共同配線30與閘極配線10的距離W4。由於得到了距離W4,因此成為肇因於共同配線30的雜訊很難影響閘極配線10的構造。 FIG. 13 shows a structure in which the second insulating layer 12 covering the active element 28, the source wiring 31, the gate wiring 10, the common wiring 30, and the like is formed. The pixel electrode 20 is formed on the second insulating layer 12 by patterning. The pixel electrode 20 is electrically connected to each source electrode 26 of the active device 28 through the contact hole 29. In addition, the diameter of the through hole 20S formed in the pixel electrode 20 is larger than the diameter of the contact hole H formed in the subsequent step. The through hole 20S has a sufficient size (diameter) that does not cause leakage of the common electrode 17 and the common wiring 30 inside the contact hole H. In FIG. 13, the distance W4 between the common wiring 30 and the gate wiring 10 is shown. Since the distance W4 is obtained, the noise caused by the common wiring 30 hardly affects the structure of the gate wiring 10.

接著,在透明基板22上,即在第2絕緣層12上,形成第1絕緣層11。藉此,第1絕緣層11埋設 貫穿孔20S,覆蓋像素電極20的整面。之後,在與貫穿孔20S相對應的位置,在第1絕緣層11及第2絕緣層12形成接觸孔H。藉由對第1絕緣層11及第2絕緣層12施加蝕刻,在陣列基板200的整面上一次形成複數個接觸孔H。 Next, on the transparent substrate 22, that is, on the second insulating layer 12, the first insulating layer 11 is formed. With this, the first insulating layer 11 is buried The through hole 20S covers the entire surface of the pixel electrode 20. After that, contact holes H are formed in the first insulating layer 11 and the second insulating layer 12 at positions corresponding to the through holes 20S. By etching the first insulating layer 11 and the second insulating layer 12, a plurality of contact holes H are formed on the entire surface of the array substrate 200 at a time.

之後,以覆蓋接觸孔H的方式將共通電極17的構成材料的透明導電膜成膜在第1絕緣層11上。之後,藉由對透明導電膜施加圖案化,將第4B圖所示的電極部17A形成在第1絕緣層11上,在接觸孔H的內部埋設導電連接部17B,形成共通電極17。藉此,共通電極17和共同配線30導通。經過上述的步驟,得到第2圖所示的陣列基板200。 After that, a transparent conductive film of the constituent material of the common electrode 17 is formed on the first insulating layer 11 so as to cover the contact hole H. Thereafter, by patterning the transparent conductive film, the electrode portion 17A shown in FIG. 4B is formed on the first insulating layer 11, and the conductive connection portion 17B is buried inside the contact hole H to form the common electrode 17. Thereby, the common electrode 17 and the common wiring 30 are conducted. Through the above steps, the array substrate 200 shown in FIG. 2 is obtained.

在第2圖所示的例子中,在以覆蓋像素電極20的方式所形成的第1絕緣層11上形成共通電極17。此外,在一個像素中,在像素的長邊方向上配設2條具有條紋圖案形狀的共通電極17。共通電極17的圖案形狀或條數不限於此,能依照像素尺寸或像素大小來增減。共通電極17係用ITO等的透明導電膜形成。此外,共通電極17,在像素的長邊方向上的中央位置中,通過接觸孔H而與共同配線30電性連接。共通電極17與像素電極20重疊的部分可以用作進行液晶顯示之際的輔助電容。 In the example shown in FIG. 2, the common electrode 17 is formed on the first insulating layer 11 formed so as to cover the pixel electrode 20. In addition, in one pixel, two common electrodes 17 having a stripe pattern shape are arranged in the longitudinal direction of the pixel. The pattern shape or number of the common electrode 17 is not limited thereto, and can be increased or decreased according to the pixel size or pixel size. The common electrode 17 is formed of a transparent conductive film such as ITO. In addition, the common electrode 17 is electrically connected to the common wiring 30 through the contact hole H at the center of the pixel in the longitudinal direction. The portion where the common electrode 17 overlaps the pixel electrode 20 can be used as an auxiliary capacitor when performing liquid crystal display.

若利用上述的液晶顯示裝置LCD1的製造方法的話,則即使是在將供驅動主動元件用的源極配線或閘極配線一併設置在一片陣列基板的情況下,也不必 設置跳接線或旁路通道,能以低成本製造液晶顯示裝置LCD1。 If the manufacturing method of the above-mentioned liquid crystal display device LCD1 is used, even if the source wiring or the gate wiring for driving the active element are provided together on one array substrate, there is no need to By setting jumper wires or bypass channels, the liquid crystal display device LCD1 can be manufactured at low cost.

(液晶驅動和觸控感測驅動的分時) (Time-sharing of LCD driver and touch sensor driver)

第14圖係顯示可應用於第1實施形態及後述的實施形態的液晶驅動和觸控感測驅動的分時驅動的一例的時序圖。 FIG. 14 is a timing chart showing an example of time-division driving applicable to liquid crystal driving and touch sensing driving in the first embodiment and the embodiments described later.

又,關於以下記載的第1脈衝訊號或第2脈衝訊號的序數表示,例如,假設將供給作為時脈頻率的脈衝訊號Vc的奇數個稱為第1脈衝訊號,將偶數個稱為第2脈衝訊號,只不過是表示連續的訊號而已,並非特定脈衝訊號Vc。 In addition, regarding the ordinal representation of the first pulse signal or the second pulse signal described below, for example, it is assumed that an odd number of pulse signals Vc supplied as a clock frequency is called a first pulse signal, and an even number is called a second pulse. The signal is just a continuous signal, not a specific pulse signal Vc.

第14圖所示的顯示期間係例如將1幅設為60Hz的顯示期間。在此1幅的期間內,例如,像素的一顯示單位期間包含白顯示期間和黑顯示期間。 The display period shown in FIG. 14 is a display period in which one frame is 60 Hz, for example. In this one-frame period, for example, one display unit period of pixels includes a white display period and a black display period.

藉由時脈訊號的第1脈衝訊號的輸入,進行白顯示。具體而言,伴隨第1脈衝訊號的輸入,將影像訊號供給於源極配線31,透過汲極電極26將液晶驅動電壓Vd供給於像素電極20。液晶驅動電壓Vd係保持在像素電極20與共通電極17之間,驅動液晶層。與使用多晶矽半導體作為通道層的主動元件相比,使用氧化物半導體作為通道層的主動元件(薄膜電晶體)28係液晶驅動電壓的保持能力高,能夠長期間地保持各像素的高透射率。 By inputting the first pulse signal of the clock signal, it is displayed in white. Specifically, with the input of the first pulse signal, the image signal is supplied to the source wiring 31, and the liquid crystal driving voltage Vd is supplied to the pixel electrode 20 through the drain electrode 26. The liquid crystal driving voltage Vd is held between the pixel electrode 20 and the common electrode 17 to drive the liquid crystal layer. Compared with an active device using a polycrystalline silicon semiconductor as a channel layer, an active device (thin film transistor) 28 series liquid crystal using an oxide semiconductor as a channel layer has a high driving voltage holding capability and can maintain high transmittance of each pixel for a long period of time.

接著,藉由第2脈衝訊號的輸入,從白顯示移轉到黑顯示。黑顯示,例如,能藉由以第2脈衝訊號為觸發,將在像素電極20與共通電極17之間所保持 的電壓設為0V或接地電位來實現。例如,變得可以藉由用與前述脈衝訊號的寬度相當的施加時間,將與在白顯示期間供給於源極配線的影像訊號相反極性的電壓供給於該源極配線來加速回到0V。此相反極性的電壓可以是液晶驅動的臨界值電壓Vth附近的低電壓。為了移轉到黑顯示,較佳為使閘極配線接地。在使用多晶矽半導體作為通道層的主動元件的情況下,在輸入第2脈衝訊號後,可以僅使閘極配線10或源極配線31接地。又,黑顯示意指液晶層的液晶分子回到初期配向狀態,正交偏光下的黑狀態。 Then, by inputting the second pulse signal, the white display shifts to the black display. The black display, for example, can be held between the pixel electrode 20 and the common electrode 17 by using the second pulse signal as a trigger The voltage is set to 0V or ground potential to achieve. For example, it becomes possible to accelerate the return to 0V by supplying a voltage of the opposite polarity to the image signal supplied to the source wiring during the white display with an application time corresponding to the width of the aforementioned pulse signal. The voltage of this opposite polarity may be a low voltage near the threshold voltage Vth for liquid crystal driving. In order to shift to the black display, it is preferable to ground the gate wiring. In the case of using a polycrystalline silicon semiconductor as the active element of the channel layer, after the second pulse signal is input, only the gate wiring 10 or the source wiring 31 may be grounded. In addition, black display means that the liquid crystal molecules of the liquid crystal layer return to the initial alignment state and the black state under orthogonal polarization.

觸控感測期間Ttouch係設為透射率穩定的白顯示穩定期間Wr、或者是黑顯示穩定期間Er的期間,在此期間內能夠實施觸控感測。在將影像訊號或閘極訊號供給於源極配線31或閘極配線10的期間,例如,施加電壓Vd的施加時間Dt內,觸控感測配線3變得容易偶然得到從源極配線或主動元件產生的雜訊,這是不佳的。 The touch sensing period T touch is set to a white display stabilization period Wr with stable transmittance or a black display stabilization period Er, during which touch sensing can be performed. While supplying the image signal or the gate signal to the source wiring 31 or the gate wiring 10, for example, within the application time Dt of the applied voltage Vd, the touch sensing wiring 3 becomes easily accidentally obtained from the source wiring or active The noise generated by the component is not good.

本發明的實施形態的液晶顯示裝置能採用幅反轉驅動、列反轉驅動(垂直線反轉驅動)、水平線反轉驅動、點反轉驅動等各種液晶驅動方式。按液晶驅動方式,例如,能採取如下所述的觸控感測期間的時序。 The liquid crystal display device of the embodiment of the present invention can employ various liquid crystal driving methods such as amplitude inversion driving, column inversion driving (vertical line inversion driving), horizontal line inversion driving, and dot inversion driving. According to the liquid crystal driving method, for example, the timing of the touch sensing period described below can be adopted.

(1)進行基於1像素或者是2像素等複數個像素的影像寫入後(基於顯示單位期間的影像顯示之後)的時序 (1) Timing after image writing based on multiple pixels such as 1 pixel or 2 pixels (after image display based on the display unit period)

(2)進行一垂直線的影像寫入後的時序 (2) Timing after writing a vertical line of image

(3)進行一水平線的影像寫入後的時序 (3) Timing after writing a horizontal line of image

(4)進行基於1幅或1/2幅的影像寫入後的時序 (4) Timing after writing based on 1 or 1/2 image

(1)至(4)的「進行影像寫入後」的期間係與第14圖所示的白顯示穩定期間Wr同義。除此之外,上述(1)至(4)的「進行影像寫入後」能取代為第14圖所示的黑顯示穩定期間Er。如前所述,可以在白顯示穩定期間Wr和黑顯示穩定期間Er的2個期間設置觸控感測期間。 The period "after image writing" of (1) to (4) is synonymous with the white display stable period Wr shown in FIG. In addition, the "after image writing" in (1) to (4) above can be replaced with the black display stable period Er shown in FIG. 14. As described above, the touch sensing period may be set in two periods of the white display stabilization period Wr and the black display stabilization period Er.

如第14圖的時序圖所示,在黑顯示穩定期間Er內,將高頻率的觸控感測驅動電壓Vtouch施加於觸控驅動配線(後述的觸控感測配線3或共同配線30)。 As shown in the timing chart of FIG. 14, during the black display stable period Er, a high-frequency touch sensing driving voltage V touch is applied to the touch driving wiring (touch sensing wiring 3 or common wiring 30 described later) .

此外,在黑顯示穩定期間Er,能夠停止LED等背光單元BU的發光,消除肇因於背光單元BU的驅動而產生的雜訊的影響。也能使用黑顯示穩定期間作為供減輕3D顯示(立體影像顯示)下的色偏用的「黑插入」。 In addition, during the black display stabilization period Er, the light emission of the backlight unit BU such as LED can be stopped, and the influence of noise caused by driving of the backlight unit BU can be eliminated. The black display stabilization period can also be used as "black insertion" for reducing color cast in 3D display (stereoscopic image display).

在觸控感測期間Ttouch內,觸控驅動電壓能施加在觸控感測配線3或共同配線30中任一者。換言之,在使觸控感測配線3發揮作為驅動電極的功能的情況下,共通電極17能發揮作為檢測電極的功能。相反的,在使觸控感測配線3發揮作為檢測電極的功能的情況下,共通電極17能發揮作為驅動電極的功能。即,在觸控感測配線3和共通電極17方面,能調換驅動電極和檢測電極的功能。 During the touch sensing period T touch , the touch driving voltage can be applied to either the touch sensing wiring 3 or the common wiring 30. In other words, when the touch sensing wiring 3 functions as a drive electrode, the common electrode 17 can function as a detection electrode. Conversely, when the touch sensing wiring 3 functions as a detection electrode, the common electrode 17 can function as a drive electrode. That is, the functions of the drive electrode and the detection electrode can be exchanged for the touch sensing wiring 3 and the common electrode 17.

此外,能採用如下方式:在液晶驅動和觸控驅動的分時驅動中,平時將觸控驅動電壓Vtouch的矩形波施加於觸控感測配線3和共通電極17中任一者,僅在施加時脈頻率的脈衝(第1脈衝訊號、第2脈衝訊號)時,不檢 測觸控檢測訊號。即,實質上,也可以採用分開驅動(dividedly driving)的方法。 In addition, in the time-division driving of liquid crystal driving and touch driving, the rectangular wave of the touch driving voltage V touch is usually applied to any one of the touch sensing wiring 3 and the common electrode 17, only in When a pulse with a clock frequency (first pulse signal, second pulse signal) is applied, the touch detection signal is not detected. That is, in essence, a method of dividedly driving may be adopted.

(使用氧化物半導體作為通道層的電晶體) (Transistor using oxide semiconductor as channel layer)

例如,若採用使用記憶性良好的IGZO、或是將氧化鋅取代為氧化銻的IGAO等的氧化物半導體作為通道層27的電晶體(主動元件),則也可以省略將共通電極17設為一定的電壓(定電位)時的定電壓驅動所需的輔助電容(storage capacitor)。使用IGZO或IGAO作為通道層27的電晶體係與使用矽半導體的電晶體不同,因為漏電流極小,因此能省略例如如先前技術文獻的專利文獻4中所記載的包含閂部的轉送電路,能採用單純的配線構造。此外,在使用具備使用IGZO等氧化物半導體作為通道層的電晶體的陣列基板200的液晶顯示裝置LCD1中,由於電晶體的漏電流小,因此能夠在對像素電極20施加液晶驅動電壓後保持電壓,能維持液晶層300的透射率。 For example, if an oxide semiconductor such as IGZO with good memory or IGAO which replaces zinc oxide with antimony oxide is used as the transistor (active element) of the channel layer 27, the common electrode 17 may be omitted A constant voltage at a constant voltage (constant potential) drives the required storage capacitor. The transistor system using IGZO or IGAO as the channel layer 27 is different from the transistor using a silicon semiconductor, and since the leakage current is extremely small, it is possible to omit the transfer circuit including the latch portion as described in Patent Document 4 of the prior art document, for example. A simple wiring structure is used. In addition, in the liquid crystal display device LCD1 using the array substrate 200 including the transistor using an oxide semiconductor such as IGZO as the channel layer, since the leakage current of the transistor is small, the voltage can be maintained after the liquid crystal driving voltage is applied to the pixel electrode 20 , The transmittance of the liquid crystal layer 300 can be maintained.

在將IGZO等氧化物半導體用於通道層27的情況下,主動元件28中的電子移動率高,例如,能夠以2msec(毫秒)以下的短時間,將與需要的影像訊號相對應的驅動電壓施加於像素電極20。例如,倍速驅動(1秒鐘的顯示格數為120幅的情況)的1幅為約8.3msec,例如,能將6msec分派至觸控感測。使用IGZO等氧化物半導體作為通道層27的薄膜電晶體具有高耐電壓。因此,例如,能藉由使用5V以上的高電壓作為液晶驅動電壓來改善液晶的響應性。 When an oxide semiconductor such as IGZO is used for the channel layer 27, the electron mobility in the active element 28 is high, for example, the driving voltage corresponding to the required image signal can be applied in a short time of less than 2msec (millisecond) Apply to the pixel electrode 20. For example, one frame of double-speed driving (in the case of 120 frames per second) is about 8.3 msec, for example, 6 msec can be allocated to touch sensing. The thin film transistor using an oxide semiconductor such as IGZO as the channel layer 27 has a high withstand voltage. Therefore, for example, the response of the liquid crystal can be improved by using a high voltage of 5 V or more as the liquid crystal driving voltage.

當具有透明電極圖案的共通電極17為定電位時,可以不將液晶驅動和觸控電極驅動進行分時驅動。能使液晶的驅動頻率和觸控金屬配線的驅動頻率不同。例如,在將IGZO等氧化物半導體用於通道層27的主動元件28方面,係與在將液晶驅動電壓施加於像素電極20後必須保持透射率(或保持電壓)的使用多晶矽半導體的電晶體不同,不需要為了保持透射率而刷新(refresh)影像(再度寫入影像訊號),閃爍少。由此,在採用IGZO等氧化物半導體的液晶顯示裝置LCD1方面,變得可以進行以低頻率驅動或低消耗電力驅動。 When the common electrode 17 having a transparent electrode pattern is at a constant potential, the liquid crystal drive and the touch electrode drive may not be driven in a time-sharing manner. The driving frequency of the liquid crystal can be different from that of the touch metal wiring. For example, the use of an oxide semiconductor such as IGZO for the active element 28 of the channel layer 27 is different from a transistor using a polysilicon semiconductor that must maintain transmittance (or hold voltage) after applying a liquid crystal driving voltage to the pixel electrode 20 There is no need to refresh the image (write the image signal again) in order to maintain the transmittance, and there is less flicker. This makes it possible to drive at a low frequency or drive with low power consumption in the liquid crystal display device LCD1 using an oxide semiconductor such as IGZO.

藉由使用前述的2層構造的TFT陣列,變得可以在低頻率至高頻率的廣區域中進行低消耗電力驅動。 By using the aforementioned two-layer structure TFT array, it becomes possible to drive with low power consumption in a wide area from a low frequency to a high frequency.

IGZO等氧化物半導體係耐電壓性高,因此能以高的電壓高速驅動液晶,變得可以用於可以3D顯示的3維影像顯示。如上所述,將IGZO等氧化物半導體用於通道層27的主動元件28係記憶性高,因此有例如,即使將液晶驅動頻率設為0.1Hz以上30Hz以下左右的低頻率,也很難產生閃爍(flicker,顯示的閃爍)的優點。使用以IGZO或IGAO作為通道層的主動元件28,藉由一起進行基於低頻率的點反轉驅動、和基於與點反轉驅動不同的頻率的觸控驅動,能夠以低消耗電力,一起得到高畫質的影像顯示和高精度的觸控感測。 Oxide semiconductor systems such as IGZO have high voltage resistance, so they can drive liquid crystals at high speeds at high speeds, and can be used for 3D video display that can display in 3D. As described above, the active element 28 using an oxide semiconductor such as IGZO for the channel layer 27 has high memory, and therefore, for example, even if the liquid crystal driving frequency is set to a low frequency of about 0.1 Hz or more and 30 Hz or less, it is difficult to generate flicker (flicker, display flashing) advantages. Using the active element 28 with IGZO or IGAO as the channel layer, by performing the dot inversion drive based on the low frequency together with the touch drive based on the frequency different from the dot inversion drive, it is possible to obtain high power with low power consumption Picture quality image display and high-precision touch sensing.

此外,如前所述,將氧化物半導體用於通道層27的主動元件28係漏電流少,因此能長時間保持施加於像素電極20的驅動電壓。用配線電阻比鋁配線小 的銅配線形成主動元件28的源極配線31或閘極配線10(輔助電容線)等,進一步使用能以短時間驅動的IGZO或IGAO作為主動元件,從而變得可以充分設立供進行觸控感測的掃描用的期間。即,能藉由將IGZO等氧化物半導體應用於主動元件來縮短液晶等的驅動時間,在顯示畫面整體的影像訊號處理之中,使得應用於觸控感測的時間十分充裕。藉此,能以高精度檢測產生的電容的變化。 In addition, as described above, the active element 28 using the oxide semiconductor for the channel layer 27 has a small leakage current, and therefore can maintain the driving voltage applied to the pixel electrode 20 for a long time. The wiring resistance is smaller than aluminum wiring The copper wiring forms the source wiring 31 or the gate wiring 10 (auxiliary capacitor line) of the active element 28, etc., and further uses IGZO or IGAO that can be driven in a short time as an active element, so that it becomes possible to fully set up for touch sensing Measured scanning period. That is, the driving time of the liquid crystal and the like can be shortened by applying an oxide semiconductor such as IGZO to the active device. In the image signal processing of the entire display screen, the time applied to touch sensing is sufficiently sufficient. With this, it is possible to detect the change in capacitance generated with high accuracy.

另外,藉由採用IGZO等的氧化物半導體作為通道層27,能約略解消在點反轉驅動或列反轉驅動下的偶合雜訊(coupling noise)的影響。這是因為使用氧化物半導體的主動元件28,能夠以極短的時間(例如,2msec)將與影像訊號相對應的電壓施加於像素電極20,此外,保持該影像訊號施加後的像素電壓的記憶性高,在活用該記憶性的保持期間內沒有新的雜訊產生,能減輕對觸控感測的影響的緣故。 In addition, by using an oxide semiconductor such as IGZO as the channel layer 27, the influence of coupling noise under dot inversion driving or column inversion driving can be approximately eliminated. This is because the active element 28 using an oxide semiconductor can apply the voltage corresponding to the image signal to the pixel electrode 20 in a very short time (for example, 2 msec), and also keeps the memory of the pixel voltage after the image signal is applied The performance is high, and no new noise is generated during the retention period in which the memory is utilized, which can reduce the influence on the touch sensing.

作為氧化物半導體,能採用包含銦、鎵、鋅、錫、鋁、鍺、銻、鈰當中2種以上的金屬氧化物的氧化物半導體。 As the oxide semiconductor, an oxide semiconductor containing two or more kinds of metal oxides among indium, gallium, zinc, tin, aluminum, germanium, antimony, and cerium can be used.

IGZO或IGAO等氧化物半導體具有高能隙(energy gap)。能將氧化物半導體的膜中所包含的銦(In)、鎵(Ga)、鋅(Zn)的當將銦原子數設為1時的鎵、鋅的原子數比分別設為1~5。作為氧化銦、氧化鎵、氧化鋅的金屬氧化物的熔點分別位於約1700℃至2200℃的範圍內。例如,氧化銻或氧化鉍能添加於上述的氧化銦、氧化鎵、 氧化鋅的複合氧化物中。此外,在複合氧化物中,可以使用氧化銻或氧化鉍來取代氧化鎵或氧化鋅。 An oxide semiconductor such as IGZO or IGAO has a high energy gap. The atomic ratios of gallium and zinc of indium (In), gallium (Ga), and zinc (Zn) contained in the oxide semiconductor film when the number of indium atoms is 1 can be set to 1 to 5, respectively. The melting points of metal oxides as indium oxide, gallium oxide, and zinc oxide are in the range of about 1700°C to 2200°C, respectively. For example, antimony oxide or bismuth oxide can be added to the above indium oxide, gallium oxide, Compound oxide of zinc oxide. In addition, in the composite oxide, antimony oxide or bismuth oxide may be used instead of gallium oxide or zinc oxide.

氧化物半導體的膜厚方向上的銦或鎵等金屬元素的濃度可以改變。例如,可以在氧化物半導體與絕緣層的界面附近增大氧化物半導體的氧化鎵量,對於膜厚方向的中央部位增大氧化銦量。在氧化物半導體的膜厚方向上可以有各金屬元素的濃度斜率存在,氧化物半導體的膜厚方向的載子移動率可以有差異。 The concentration of metal elements such as indium or gallium in the thickness direction of the oxide semiconductor can be changed. For example, the amount of gallium oxide in the oxide semiconductor can be increased near the interface between the oxide semiconductor and the insulating layer, and the amount of indium oxide can be increased in the central portion in the film thickness direction. The concentration gradient of each metal element may exist in the thickness direction of the oxide semiconductor, and the carrier mobility in the thickness direction of the oxide semiconductor may vary.

(液晶配向和液晶驅動) (LCD alignment and LCD driver)

第15圖及第16圖係部分地顯示本發明的第1實施形態的液晶顯示裝置LCD1的像素的平面圖。為了容易瞭解並說明液晶分子39的配向,顯示一像素中的液晶的配向狀態。第15圖係部分地顯示液晶顯示裝置LCD1的像素的平面圖,顯示一像素中的液晶的配向狀態(初期配向狀態)的平面圖。第16圖係部分地顯示液晶顯示裝置LCD1的像素的平面圖,顯示在像素電極20與共通電極17之間施加液晶驅動電壓時的液晶驅動動作的平面圖。 15 and 16 are plan views partially showing pixels of the liquid crystal display device LCD1 according to the first embodiment of the present invention. In order to easily understand and explain the alignment of the liquid crystal molecules 39, the alignment state of the liquid crystal in one pixel is displayed. FIG. 15 is a plan view partially showing the pixels of the liquid crystal display device LCD1, and showing the alignment state (initial alignment state) of the liquid crystal in one pixel. FIG. 16 is a plan view partially showing the pixels of the liquid crystal display device LCD1, and a plan view showing the liquid crystal driving operation when a liquid crystal driving voltage is applied between the pixel electrode 20 and the common electrode 17.

第15圖及第16圖所示的例子,像素電極20係形成為矩形,像素電極20的長邊方向係與Y方向一致。以液晶層300的液晶分子39朝向相對於這樣的矩形的像素電極20的延伸方向(Y方向)傾斜角度θ的方向的方式,對配向膜施加配向處理。 In the examples shown in FIGS. 15 and 16, the pixel electrode 20 is formed in a rectangular shape, and the longitudinal direction of the pixel electrode 20 coincides with the Y direction. The alignment treatment is applied to the alignment film so that the liquid crystal molecules 39 of the liquid crystal layer 300 are inclined at an angle θ with respect to the extending direction (Y direction) of the rectangular pixel electrode 20.

特別是,在本實施形態中,各像素被區隔成2個區域,即,各像素具有上部區域Pa(第1區域)和下部區域Pb(第2區域)。上部區域Pa及下部區域Pb係 相對於像素中央CL(與X方向平行的中央線)配置成線對稱。上部區域Pa及下部區域Pb係相對於Y方向對液晶層300的液晶分子39賦予角度θ的預傾。在上部區域Pa中,對液晶分子39賦予相對於Y方向順時鐘角度θ的預傾。在下部區域Pb中,對液晶分子39賦予相對於Y方向逆時鐘角度θ的預傾。作為配向膜的配向處理,能採用光配向處理或磨刷(rubbing)處理。不需要具體規定角度θ,例如,可以將角度θ設在3°~15°的範圍。 In particular, in this embodiment, each pixel is divided into two regions, that is, each pixel has an upper region Pa (first region) and a lower region Pb (second region). Upper area Pa and lower area Pb They are arranged in line symmetry with respect to the pixel center CL (a center line parallel to the X direction). The upper region Pa and the lower region Pb give the liquid crystal molecules 39 of the liquid crystal layer 300 a pretilt at an angle θ with respect to the Y direction. In the upper region Pa, the liquid crystal molecules 39 are given a pretilt at a clock angle θ with respect to the Y direction. In the lower region Pb, the liquid crystal molecules 39 are given a pretilt at a counterclockwise angle θ with respect to the Y direction. As the alignment treatment of the alignment film, light alignment treatment or rubbing treatment can be used. There is no need to specify the angle θ, for example, the angle θ may be set in the range of 3° to 15°.

依此方式賦予初期配向的液晶分子39,在像素電極20與共通電極17之間施加電壓之際,如第16圖的箭頭所示在像素電極20與共通電極17之間生成邊緣電場,液晶分子39以沿著邊緣電場的方向配向,驅動液晶分子39。更具體而言,如第26圖所示,產生從像素電極20朝向共通電極17的邊緣電場,液晶分子39被沿著邊緣電場驅動,在俯視下旋轉。 In this way, the liquid crystal molecules 39 that are initially aligned are applied. When a voltage is applied between the pixel electrode 20 and the common electrode 17, a fringe electric field is generated between the pixel electrode 20 and the common electrode 17 as shown by the arrow in FIG. 16, and the liquid crystal molecules 39 aligns along the direction of the fringe electric field, driving liquid crystal molecules 39. More specifically, as shown in FIG. 26, a fringe electric field is generated from the pixel electrode 20 toward the common electrode 17, and the liquid crystal molecules 39 are driven along the fringe electric field and rotate in a plan view.

第26圖係部分地顯示液晶顯示裝置LCD1的剖面圖,顯示在共通電極17與像素電極20之間施加液晶驅動電壓時的液晶驅動動作。被稱為FFS的液晶驅動方式,係藉由在共通電極17與像素電極20之間產生的電場,特別是,在被稱為邊緣的電極端部中產生的電場來驅動液晶分子39。如第26圖所示,液晶層300的厚度方向上的一部分R1中的液晶分子39旋轉,此液晶分子39主要有助於透射率變化。由此,關於從觀察者觀看的垂直方向的透射率,與FFS等橫電場驅動的液晶顯示裝置相比,在能充分活用液晶層300的厚度方向上的 液晶分子的VA等縱電場驅動的液晶顯示裝置方面可得到高透射率。儘管如此,FFS等橫電場驅動的液晶顯示裝置具有視角廣的這樣的特性,因此就此特性的觀點而言,本實施形態的液晶顯示裝置LCD1採用橫電場驅動方式。 FIG. 26 is a partial cross-sectional view of the liquid crystal display device LCD1, showing the liquid crystal driving operation when a liquid crystal driving voltage is applied between the common electrode 17 and the pixel electrode 20. The liquid crystal driving method called FFS drives the liquid crystal molecules 39 by the electric field generated between the common electrode 17 and the pixel electrode 20, in particular, the electric field generated at the end of the electrode called the edge. As shown in FIG. 26, the liquid crystal molecules 39 in a part R1 in the thickness direction of the liquid crystal layer 300 rotate, and the liquid crystal molecules 39 mainly contribute to the change in transmittance. As a result, the transmittance in the vertical direction viewed from the observer can fully utilize the thickness direction of the liquid crystal layer 300 compared to a liquid crystal display device driven by a horizontal electric field such as FFS. Liquid crystal display devices driven by a vertical electric field such as VA of liquid crystal molecules can achieve high transmittance. Nevertheless, the liquid crystal display device driven by a transverse electric field such as FFS has such a characteristic that the viewing angle is wide. Therefore, from the viewpoint of this characteristic, the liquid crystal display device LCD1 of the present embodiment adopts a transverse electric field driving method.

第30圖係顯示現有的液晶顯示裝置250的剖面圖,顯示施加液晶驅動電壓時的等電位線L2的示意圖。在透明電極或導電膜不存在於透明基板215側的情況下,等電位線L2係貫通透明樹脂層213、彩色濾光片214、及透明基板215而在上部延伸。在等電位線L2於液晶層206的厚度方向上被延伸的情況下,某種程度確保液晶層206的實效厚度,因此能確保橫電場驅動方式的液晶顯示裝置250的本來的透射率。 FIG. 30 is a cross-sectional view showing a conventional liquid crystal display device 250, and a schematic diagram showing an equipotential line L2 when a liquid crystal driving voltage is applied. When the transparent electrode or the conductive film is not present on the transparent substrate 215 side, the equipotential line L2 penetrates through the transparent resin layer 213, the color filter 214, and the transparent substrate 215 and extends above. When the equipotential line L2 is extended in the thickness direction of the liquid crystal layer 206, the effective thickness of the liquid crystal layer 206 is ensured to some extent, so the original transmittance of the liquid crystal display device 250 of the horizontal electric field driving method can be ensured.

第31圖係顯示現有的液晶顯示裝置250A的剖面圖,顯示除了前述的液晶顯示裝置250的各結構外,還在液晶層206與透明樹脂層213之間具備對向電極221的情況。在此情況下,等電位線L3不貫通對向電極221,因此等電位線L3的形狀係由前述的等電位線L2的形狀變形。此時,與液晶顯示裝置250的液晶層206的實效厚度相比,液晶層206的實效厚度變薄,液晶顯示裝置250A的亮度(透射率)大幅降低。 FIG. 31 is a cross-sectional view of a conventional liquid crystal display device 250A, which shows a case where the counter electrode 221 is provided between the liquid crystal layer 206 and the transparent resin layer 213 in addition to the above-described structures of the liquid crystal display device 250. In this case, the equipotential line L3 does not penetrate the counter electrode 221, so the shape of the equipotential line L3 is deformed by the shape of the aforementioned equipotential line L2. At this time, the effective thickness of the liquid crystal layer 206 is thinner than the effective thickness of the liquid crystal layer 206 of the liquid crystal display device 250, and the brightness (transmittance) of the liquid crystal display device 250A is greatly reduced.

本實施形態的液晶顯示裝置LCD1係與這樣的第30圖及第31圖所示的現有的液晶顯示裝置不同。在本實施形態的液晶顯示裝置LCD1中,在像素電極20的上方形成共通電極17,將共通電極17的電位維 持在0V,在像素電極20與共通電極17之間施加電壓,從而使從像素電極20朝向共通電極17的邊緣電場產生,藉由此邊緣電場驅動液晶分子39。 The liquid crystal display device LCD1 of this embodiment is different from the conventional liquid crystal display device shown in FIGS. 30 and 31. In the liquid crystal display device LCD1 of this embodiment, the common electrode 17 is formed above the pixel electrode 20, and the potential of the common electrode 17 is maintained. At 0V, a voltage is applied between the pixel electrode 20 and the common electrode 17 to generate a fringe electric field from the pixel electrode 20 toward the common electrode 17, and the liquid crystal molecules 39 are driven by the fringe electric field.

(觸控感測驅動) (Touch sensing driver)

第17圖及第18圖顯示在本發明的第1實施形態的液晶顯示裝置LCD1中,在觸控感測配線3發揮作為觸控驅動電極的功能,且共通電極17發揮作為觸控檢測電極的功能的情況下的構造。 FIGS. 17 and 18 show that in the liquid crystal display device LCD1 according to the first embodiment of the present invention, the touch sensing wiring 3 functions as a touch drive electrode, and the common electrode 17 functions as a touch detection electrode. Structure in case of function.

基於第17圖及第18圖所示的構造,進行以下的說明。 Based on the structures shown in FIGS. 17 and 18, the following description will be made.

又,如上所述,能將觸控驅動電極和觸控檢測電極的角色交換。 In addition, as described above, the roles of the touch drive electrode and the touch detection electrode can be exchanged.

第17圖係顯示在觸控感測配線與共通電極之間生成電場的狀態的示意剖面圖,第18圖係顯示手指等指示器接觸或接近顯示裝置基板100的觀察者側的表面時的電場的生成狀態的變化的剖面圖。 FIG. 17 is a schematic cross-sectional view showing a state where an electric field is generated between the touch sensing wiring and the common electrode, and FIG. 18 is a view showing the electric field when a pointer such as a finger touches or approaches the surface of the display device substrate 100 on the observer side The cross-sectional view of the change of the generation state.

在第17圖及第18圖中,說明使用觸控感測配線3和共通電極17的觸控感測技術。第17圖及第18圖,為了容易瞭解並說明觸控感測驅動,顯示構成陣列基板200的第1絕緣層11及共通電極17、和顯示裝置基板100,省略了其他結構。 In FIGS. 17 and 18, the touch sensing technique using the touch sensing wiring 3 and the common electrode 17 will be described. FIGS. 17 and 18 show the first insulating layer 11 and the common electrode 17 that constitute the array substrate 200 and the display device substrate 100 for easy understanding and description of touch sensing driving, and other structures are omitted.

如第17圖及第18圖所示,在相對於液晶層300的厚度方向傾斜的斜方向上,觸控感測配線3和共通電極17彼此相對。因此,可以容易地提升檢測訊號相對於生成斜方向的電場的狀態的變化的反差 (contrast),可得到能提高觸控感測的S/N比這樣的效果(S/N比的改善效果)。另外,在依此方式在斜方向上觸控感測配線3和共通電極17彼此相對的配置中,在俯視下,不形成觸控感測配線3和共通電極17重疊的重疊部,因此能大幅減少寄生電容。此外,觸控檢測電極和觸控驅動電極在厚度的上下方向上重疊的結構,係觸控檢測電極及觸控驅動電極彼此重疊的部分中的電容很難變化,因此很難對觸控感測的S/N比提供反差。例如,在觸控檢測電極和觸控驅動電極處於同一面上的平行的位置關係的情況下,電容變得容易依手指等指示器的位置而不均勻地變化,有誤檢測及解析度降低之虞。 As shown in FIGS. 17 and 18, the touch sensing wiring 3 and the common electrode 17 face each other in an oblique direction inclined with respect to the thickness direction of the liquid crystal layer 300. Therefore, it is possible to easily increase the contrast of the detection signal with respect to the change in the state of the obliquely generated electric field (contrast), an effect that can improve the S/N ratio of touch sensing (the effect of improving the S/N ratio) can be obtained. In addition, in the arrangement in which the touch sensing wiring 3 and the common electrode 17 are opposed to each other in an oblique direction in this way, the overlapping portion where the touch sensing wiring 3 and the common electrode 17 overlap is not formed in a plan view, so it can be greatly Reduce parasitic capacitance. In addition, the structure in which the touch detection electrode and the touch drive electrode overlap in the vertical direction of the thickness is difficult to change the capacitance in the portion where the touch detection electrode and the touch drive electrode overlap each other, so it is difficult to sense the touch The S/N ratio provides contrast. For example, in the case where the touch detection electrode and the touch drive electrode are in a parallel positional relationship on the same plane, the capacitance tends to change unevenly depending on the position of the pointer such as a finger, which may cause false detection and reduced resolution Yu.

在本發明的實施形態的液晶顯示裝置LCD1中,如第2圖或第20圖所示,共通電極17發揮作為檢測電極的功能,具有長度EL。在俯視下,此共通電極17係與發揮作為驅動電極的功能的觸控感測配線3平行,藉由具有長度EL的共通電極17,能夠充分且均勻地確保電容。 In the liquid crystal display device LCD1 of the embodiment of the present invention, as shown in FIG. 2 or FIG. 20, the common electrode 17 functions as a detection electrode and has a length EL. In a plan view, the common electrode 17 is parallel to the touch sensing wiring 3 functioning as a drive electrode, and the common electrode 17 having a length EL can sufficiently and uniformly ensure capacitance.

第17圖示意地顯示在使觸控感測配線3發揮作為觸控驅動電極的功能,且使共通電極17發揮作為觸控檢測電極的功能的情況下電容的產生狀況。用既定頻率對觸控感測配線3供給脈衝狀的寫入訊號。此寫入訊號的供給可以用液晶驅動和觸控驅動的分時來進行。藉由寫入訊號,可在被接地的共通電極17與觸控感測配線3之間維持用電力線33(箭頭)所示的電容。 FIG. 17 schematically shows the generation of capacitance when the touch sensing wiring 3 functions as a touch drive electrode and the common electrode 17 functions as a touch detection electrode. A pulse-shaped write signal is supplied to the touch sensing wiring 3 at a predetermined frequency. The supply of the write signal can be performed by time-sharing of liquid crystal driving and touch driving. By writing the signal, the capacitance shown by the power line 33 (arrow) can be maintained between the grounded common electrode 17 and the touch sensing wiring 3.

如第18圖所示,若手指等指示器接觸或接近顯示裝置基板100的觀察者側的表面,則共通電極17與觸控感測配線3之間的電容變化,藉由此電容的變化,檢測有無手指等指示器的觸控。 As shown in FIG. 18, if a pointer such as a finger touches or approaches the surface of the display device substrate 100 on the observer side, the capacitance between the common electrode 17 and the touch sensing wiring 3 changes, and thus the capacitance changes. Detects the presence or absence of finger touches.

如第17圖及第18圖所示,在觸控感測配線3與共通電極17之間,並未設置與液晶驅動有關的電極或配線。另外,如第3圖或第5圖所示,源極配線31離開觸控感測配線3及共通電極17(觸控驅動配線及觸控檢測配線)。因此,可實現很難偶然得到與液晶驅動有關的雜訊的構造。 As shown in FIGS. 17 and 18, between the touch sensing wiring 3 and the common electrode 17, no electrode or wiring related to liquid crystal driving is provided. In addition, as shown in FIG. 3 or FIG. 5, the source wiring 31 is away from the touch sensing wiring 3 and the common electrode 17 (touch driving wiring and touch detection wiring). Therefore, a structure in which it is difficult to accidentally obtain noise related to liquid crystal driving can be realized.

例如,在俯視下,複數條觸控感測配線3係配設為在第1方向(例如,Y方向)上延伸,同時在第2方向(例如,X方向)上排列。複數條共同配線30(導電配線)係在Z方向上,位於比陣列基板200的內部中的像素電極20還下方的位置,在第2方向(例如,X方向)上延伸,在第1方向(例如,Y方向)上排列。共通電極17係與共同配線30電性連接,將共通電極17與觸控感測配線3之間的電容的變化用於有無觸控的檢測。 For example, in a plan view, a plurality of touch sensing wires 3 are configured to extend in the first direction (for example, Y direction) and be arranged in the second direction (for example, X direction) at the same time. The plural common wirings 30 (conductive wirings) are located in the Z direction below the pixel electrode 20 in the array substrate 200, extend in the second direction (for example, X direction), and extend in the first direction ( For example, in the Y direction). The common electrode 17 is electrically connected to the common wiring 30, and changes in the capacitance between the common electrode 17 and the touch sensing wiring 3 are used to detect the presence or absence of touch.

在本實施形態的液晶顯示裝置LCD1中,在觸控感測配線3與共通電極17之間,例如,用500Hz以上500KHz以下的頻率施加矩形波狀的脈衝訊號。通常,藉由此脈衝訊號的施加,檢測電極的共通電極17維持一定的輸出波形。若手指等指示器接觸或接近顯示裝置基板100的觀察者側的表面,則該部位的共通電極17的輸出波形出現變化,可判斷有無觸控。手指等指示器 離顯示面的距離能藉由指示器從接近到接觸的時間(通常為數百μsec以上數msec以下)、或在該時間內所計數的輸出脈衝數等來測定。能藉由取得觸控檢測訊號的積分值來進行穩定的觸控檢測。 In the liquid crystal display device LCD1 of the present embodiment, between the touch sensing wiring 3 and the common electrode 17, for example, a rectangular wave-shaped pulse signal is applied at a frequency of 500 Hz or more and 500 KHz or less. Generally, by the application of this pulse signal, the common electrode 17 of the detection electrode maintains a certain output waveform. If a pointer such as a finger touches or approaches the surface of the display device substrate 100 on the observer side, the output waveform of the common electrode 17 at that location changes, and it can be determined whether touch is present. Fingers and other indicators The distance from the display surface can be measured by the time from the proximity of the pointer to the contact (usually several hundreds of μsec or more and several msec or less), or the number of output pulses counted during this time. Stable touch detection can be performed by obtaining the integrated value of the touch detection signal.

可以不將全部的觸控感測配線3及共同配線30(或與導電配線連接的共通電極)用於觸控感測。可以進行減省驅動。接著,針對使觸控感測配線3進行減省驅動的情況進行說明。首先,將全部的觸控感測配線3區分為複數個群組。群組的數量比全部的觸控感測配線3的數量少。構成一個群組的配線數,例如,設為6條。此處,全部的配線(配線數為6條)當中,例如,選擇2條配線(比全部的配線的條數少的條數,2條<6條)。在一個群組中,使用所選擇的2條配線進行觸控感測,將剩下的4條配線中的電位設定為浮動(floating)電位。液晶顯示裝置LCD1具有複數個群組,因此能按如上述定義配線的功能的群組進行觸控感測。同樣地,在共同配線30方面,也可以進行減省驅動。 It is not necessary to use all of the touch sensing wiring 3 and the common wiring 30 (or the common electrode connected to the conductive wiring) for touch sensing. Can drive reduction. Next, a case where the touch-sensing wiring 3 is driven to be reduced will be described. First, all the touch sensing wires 3 are divided into a plurality of groups. The number of groups is smaller than the number of all touch sensing wires 3. The number of wires forming one group is set to 6, for example. Here, among all the wirings (the number of wirings is 6), for example, 2 wirings are selected (the number of wirings is smaller than the number of all wirings, 2<6). In one group, the selected two wires are used for touch sensing, and the potential in the remaining four wires is set to a floating potential. The liquid crystal display device LCD1 has a plurality of groups, so that touch sensing can be performed according to the above-defined group of wiring functions. Similarly, the common wiring 30 can also be driven in a reduced manner.

觸控所使用的指示器為手指的情況和筆的情況,接觸或接近的指示器的面積或電容是不同的。能依這樣的指示器的大小來調整減省的配線的條數。就筆或針尖等前端細的指示器而言,能夠減少配線的減省條數而使用高密度的觸控感測配線的矩陣。指紋認證時也能使用高密度的觸控感測配線的矩陣。 The indicator used for touch is the case of a finger and the case of a pen, and the area or capacitance of the contacted or approached indicator is different. The number of wires reduced can be adjusted according to the size of such an indicator. For a pointer with a thin tip such as a pen or a needle tip, it is possible to reduce the number of wires and use a high-density touch-sensing matrix of wires. A matrix of high-density touch sensing wiring can also be used for fingerprint authentication.

依此方式按群組進行觸控感測驅動,從而減少掃描或檢測所使用的配線數,因此能提升觸控感測 速度。另外,在上述的例子,構成一個群組的配線數為6條,但例如,也可以用10以上的配線數形成一個群組,在一個群組中使用所選擇的2條配線進行觸控感測。即,增加所減省的配線的數量(成為浮動電位的配線的數量),藉此使觸控感測所使用的選擇配線的密度(選擇配線對全部配線數的密度)降低,利用選擇配線進行掃描或檢測,從而有助於消耗電力的削減或觸控檢測精度的提升。相反的,減少所減省的配線的數量,提高觸控感測所使用的選擇配線的密度,利用選擇配線進行掃描或檢測,從而例如,能活用於指紋認證或利用觸控筆的輸入。這樣的觸控感測期間,能夠將源極配線31或閘極配線10設為接地或開放(open)(浮動),減少肇因於這些配線的寄生電容。 In this way, the touch sensing drive is performed in groups, thereby reducing the number of wires used for scanning or detection, and thus can improve touch sensing speed. In addition, in the above example, the number of wires constituting one group is 6, but for example, it is also possible to form a group with more than 10 wires, and use the selected 2 wires in one group for touch sensing Measurement. That is, the number of wirings to be reduced (the number of wirings that become floating potentials) is increased, thereby reducing the density of the selection wiring used for touch sensing (density of the selection wiring to the total number of wirings), and the selection wiring is used for Scanning or detection, which helps reduce power consumption or improve touch detection accuracy. On the contrary, reducing the number of wires saved, increasing the density of the selection wiring used for touch sensing, and using the selection wiring for scanning or detection can be used for fingerprint authentication or input using a stylus pen, for example. During such a touch sensing period, the source wiring 31 or the gate wiring 10 can be grounded or opened (floating) to reduce the parasitic capacitance caused by these wirings.

也能以分時進行觸控感測驅動和液晶驅動。可以配合所要求的觸控輸入的速度調整觸控驅動的頻率。觸控驅動頻率能採用比液晶驅動頻率高的頻率。手指等指示器接觸或接近顯示裝置基板100的觀察者側的表面的時序為不定期且為短時間,因此理想的是觸控驅動頻率高。 It is also possible to perform touch sensing driving and liquid crystal driving in time-sharing. The frequency of touch driving can be adjusted in accordance with the required speed of touch input. The touch drive frequency can be higher than the liquid crystal drive frequency. The timing at which a pointer such as a finger touches or approaches the surface of the display device substrate 100 on the observer side is irregular and short, so it is desirable that the touch drive frequency is high.

使觸控驅動頻率和液晶驅動頻率不同的方法可舉出好幾個。例如,可以在常閉(normally off)的液晶驅動中,當黑顯示(off)時也將背光設為關閉,而在此黑顯示的期間(對液晶顯示沒有影響的期間)進行觸控感測。在此情況下,能選擇各種觸控驅動的頻率。 There are several ways to make the touch drive frequency and the liquid crystal drive frequency different. For example, in a normally off liquid crystal drive, the backlight can also be turned off when the black display is off, and touch sensing is performed during the black display period (a period that does not affect the liquid crystal display) . In this case, various touch drive frequencies can be selected.

此外,即使是在使用具有負的介電率異向性的液晶的情況下,也容易選擇與液晶驅動頻率不同的觸控驅動頻率。換言之,如第17圖及第18圖所示,從觸控感測配線3朝向共通電極17而產生的電力線33係作用在液晶層300的斜方向或厚度方向上,但若使用具有負的介電率異向性的液晶的話,則液晶分子不會在此電力線33的方向上翹起,因此對顯示品質的影響變少。 In addition, even in the case of using liquid crystal having a negative dielectric anisotropy, it is easy to select a touch driving frequency different from the liquid crystal driving frequency. In other words, as shown in FIGS. 17 and 18, the power lines 33 generated from the touch sensing wiring 3 toward the common electrode 17 act in the oblique direction or thickness direction of the liquid crystal layer 300, but if a negative medium is used, In the case of anisotropic liquid crystal, the liquid crystal molecules do not warp in the direction of the power line 33, so the influence on the display quality is reduced.

進一步而言,在降低觸控感測配線3或共同配線30的配線電阻,伴隨電阻的降低而降低觸控驅動電壓的情況下,也能容易地設定與液晶驅動頻率不同的觸控驅動頻率。藉由將銅或銀等導電率良好的金屬、合金用於構成觸控感測配線3或共同配線30的金屬層,可得到低的配線電阻。 Furthermore, even when the wiring resistance of the touch sensing wiring 3 or the common wiring 30 is lowered and the touch driving voltage is lowered as the resistance is lowered, the touch driving frequency different from the liquid crystal driving frequency can be easily set. By using a metal or alloy with good conductivity such as copper or silver for the metal layer constituting the touch sensing wiring 3 or the common wiring 30, a low wiring resistance can be obtained.

在為進行3D(立體影像)顯示的顯示裝置的情況下,除了通常的2維影像的顯示外,為了3維地顯示跟前的影像或位於裡頭的影像而變得需要複數個影像訊號(例如,右眼用的影像訊號和左眼用的影像訊號)。因此,關於液晶驅動的頻率,例如,變得需要240Hz或480Hz等的高速驅動及許多影像訊號。此時,藉由使觸控驅動的頻率與液晶驅動的頻率不同所得到的優點大。例如,變得可以在利用本實施形態進行3D顯示的遊戲機器中,進行高速及高精度的觸控感測。本實施形態,在遊戲機器或自動櫃員機等手指等的觸控輸入頻率高的顯示器中也是特別有用的。 In the case of a display device for 3D (stereoscopic image) display, in addition to the normal 2-dimensional video display, a plurality of video signals (for example, (The image signal for the right eye and the image signal for the left eye). Therefore, regarding the frequency of liquid crystal driving, for example, high-speed driving such as 240 Hz or 480 Hz and many image signals are required. In this case, the advantage obtained by making the frequency of touch driving different from the frequency of liquid crystal driving is large. For example, it becomes possible to perform high-speed and high-precision touch sensing in a game machine that performs 3D display using this embodiment. This embodiment is also particularly useful in displays with a high frequency of touch input such as fingers of game machines, ATMs and the like.

以動畫顯示為代表,像素的基於影像訊號的更換動作係頻繁地進行。這些影像訊號所附帶的雜訊係從源極配線衍生,因此較佳為如本發明的實施形態般使源極配線31的厚度方向(Z方向)的位置遠離觸控感測配線3。根據本發明的實施形態,觸控驅動訊號係施加在位於遠離源極配線31的位置的觸控感測配線3,因此與公開了施加觸控驅動訊號的配線係設置在陣列基板的構造的專利文獻6相比,雜訊的影響變少。 Represented by an animation display, pixel-based image signal replacement operations are frequently performed. The noise attached to these image signals is derived from the source wiring, so it is preferable to position the source wiring 31 in the thickness direction (Z direction) away from the touch sensing wiring 3 as in the embodiment of the present invention. According to the embodiment of the present invention, the touch driving signal is applied to the touch sensing wiring 3 located at a position away from the source wiring 31. Therefore, the patent that discloses a structure in which the touch driving signal is applied to the array substrate is provided on the array substrate Compared with literature 6, the influence of noise becomes less.

一般而言,液晶驅動的頻率係60Hz或此頻率的整數倍的驅動頻率。通常,觸控感測部位受到伴隨液晶驅動的頻率的雜訊影響。另外,一般的家庭電源係50Hz或60Hz的交流電源,觸控感測部位容易偶然得到從用這樣的外部電源作動的電器產生的雜訊。由此,作為觸控驅動的頻率,採用與50Hz或60Hz的頻率不同的頻率、或使其與這些頻率的整數倍若干偏離的頻率,從而能大幅減低從液晶驅動或外部的電子機器產生的雜訊的影響。或者是,可以在時間軸上,使觸控感測驅動訊號的施加時序與液晶驅動訊號的施加時序偏離。偏離量可以是若干量,例如,可以是雜訊頻率±3%~±17%的偏離量。在此情況下,能減低對雜訊頻率的干涉。例如,觸控驅動的頻率,例如,能夠從500Hz~500KHz的範圍選出不會與上述液晶驅動頻率或電源頻率干涉的不同頻率。選擇不會與液晶驅動頻率或電源頻率干涉的不同頻率作為觸控驅動的頻率,從而例如,能減輕列反轉驅動下的偶合雜訊等雜訊的影響。 Generally speaking, the liquid crystal driving frequency is a driving frequency of 60 Hz or an integer multiple of this frequency. Generally, the touch sensing part is affected by noise accompanying the frequency of liquid crystal driving. In addition, a general household power supply is an AC power supply of 50 Hz or 60 Hz, and the touch-sensing part is likely to accidentally obtain noise generated from electrical appliances operated by such an external power supply. Therefore, as the frequency of the touch drive, a frequency different from the frequency of 50 Hz or 60 Hz, or a frequency slightly deviating from the integer multiple of these frequencies can be used, thereby greatly reducing the noise generated from the liquid crystal drive or external electronic equipment The impact of information. Alternatively, the application timing of the touch sensing driving signal and the application timing of the liquid crystal driving signal may be deviated on the time axis. The amount of deviation can be a number of amounts, for example, it can be a deviation of ±3% to ±17% of the noise frequency. In this case, interference with the noise frequency can be reduced. For example, the frequency of the touch drive, for example, can select a different frequency that does not interfere with the liquid crystal drive frequency or the power supply frequency from the range of 500 Hz to 500 KHz. A different frequency that does not interfere with the liquid crystal driving frequency or the power supply frequency is selected as the frequency of the touch driving, so that, for example, the influence of noise such as coupling noise under column inversion driving can be reduced.

此外,在觸控感測驅動中,並非將驅動電壓供給於全部的觸控感測配線3,而是如上所述,利用減省驅動進行觸控位置檢測,從而能減低在觸控感測上的消耗電力。 In addition, in the touch sensing driving, the driving voltage is not supplied to all the touch sensing wirings 3, but as described above, the touch position detection is performed using the reduced driving, which can reduce the touch sensing Power consumption.

在減省驅動中,對於未用於觸控感測的配線,即具有浮動圖案(floating pattern)的配線,可以利用切換元件切換為檢測電極或驅動電極以進行高精細的觸控感測。或者是,具有浮動圖案的配線也能以與地線(ground)(接地於框體)電性連接的方式切換。為了改善觸控感測的S/N比,也可以在觸控感測的訊號檢測時暫時將TFT等主動元件的訊號配線接地於地線(框體等)。 In the reduced driving, the wiring that is not used for touch sensing, that is, wiring with a floating pattern, can be switched to a detection electrode or a driving electrode by a switching element for high-definition touch sensing. Alternatively, the wiring with a floating pattern can also be switched to be electrically connected to the ground (grounded to the frame). In order to improve the S/N ratio of touch sensing, the signal wiring of active elements such as TFTs may be temporarily grounded to the ground wire (frame, etc.) during the detection of touch sensing signals.

此外,以觸控感測控制進行檢測的電容的重置需要時間的觸控感測配線,即,觸控感測的時間常數(電容和電阻值的積)大的觸控感測配線,例如,可以交替地將奇數行的觸控感測配線和偶數行的觸控感測配線用於感測,進行調整過時間常數的大小的驅動。可以將複數條觸控感測配線分組(grouping)以進行驅動或檢測。複數條觸控感測配線的分組可以不設為線循序,而是基於其群組單位採取被稱為自我檢測方式的一次性檢測的手法。可以進行基於群組單位的並聯驅動(parallel driving)。或者是,可以為了寄生電容等的雜訊消除(noise cancel)而採用取得彼此接近或鄰接的觸控感測配線的檢測訊號的差的差分檢測方式。 In addition, the reset of the capacitance detected by the touch sensing control requires time for the touch sensing wiring, that is, the touch sensing wiring with a large time constant of touch sensing (product of capacitance and resistance value), for example It is possible to alternately use the odd-numbered rows of touch sensing wiring and the even-numbered rows of touch sensing wiring for sensing, and drive to adjust the magnitude of the time constant. A plurality of touch sensing wires can be grouped for driving or detection. The grouping of the plurality of touch-sensing wires may not be set as a line sequence, but adopts a one-time detection method called a self-detection method based on its group unit. Parallel driving based on group units can be performed. Alternatively, a differential detection method that obtains the difference in the detection signals of the touch sensing wires that are close to or adjacent to each other may be used for noise cancellation of parasitic capacitance or the like.

根據上述的第1實施形態,便能提供S/N比高、高解析度且可對應高速觸控輸入的液晶顯示裝置 LCD1。另外,藉由採用使用氧化物半導體作為通道層的薄膜電晶體,能實現在低消耗電力下閃爍少且具備觸控感測功能的液晶顯示裝置。 According to the above-mentioned first embodiment, it is possible to provide a liquid crystal display device with a high S/N ratio, a high resolution, and can respond to high-speed touch input LCD1. In addition, by adopting a thin film transistor using an oxide semiconductor as a channel layer, a liquid crystal display device with less flicker under low power consumption and having a touch sensing function can be realized.

(第1實施形態的變形例) (Modification of the first embodiment)

第19圖係顯示本發明的第1實施形態的變形例的液晶顯示裝置的主要部分的放大剖面圖。在第19圖中,對與上述的實施形態相同的構件給予相同的元件符號,省略或簡化其說明。 FIG. 19 is an enlarged cross-sectional view showing a main part of a liquid crystal display device according to a modification of the first embodiment of the present invention. In FIG. 19, the same components as those in the above-mentioned embodiment are given the same reference numerals, and their description is omitted or simplified.

在第19圖中,顯示了形成在陣列基板200的第3絕緣層13、形成在第3絕緣層13上的突起部13A、和形成在突起部13A上的共同配線30,省略其他的絕緣層、配線、電極等。突起部13A,係例如,使用形成上述的絕緣層的絕緣材料形成。 In FIG. 19, the third insulating layer 13 formed on the array substrate 200, the protruding portion 13A formed on the third insulating layer 13, and the common wiring 30 formed on the protruding portion 13A are shown, and other insulating layers are omitted. , Wiring, electrodes, etc. The protrusion 13A is formed using, for example, an insulating material that forms the above-mentioned insulating layer.

在俯視下,突起部13A的圖案和共同配線30的圖案一致。突起部13A的上表面、與未形成突起部13A的第3絕緣層13的上表面之間的高度為W3。作為形成突起部13A的方法,可舉出:在利用上述的實施形態形成第3絕緣層13後,在先前形成在第4絕緣層14上的第3絕緣層13上附加地設置突起部13A的方法。這樣的突起部13A的形成方法可使用公知的成膜步驟或圖案化步驟。第3絕緣層13的材料和突起部13A的材料可以是相同的,也可以是不同的。 In a plan view, the pattern of the protrusion 13A and the pattern of the common wiring 30 match. The height between the upper surface of the protrusion 13A and the upper surface of the third insulating layer 13 where the protrusion 13A is not formed is W3. As a method of forming the protruding portion 13A, after the third insulating layer 13 is formed in the above-described embodiment, the protruding portion 13A is additionally provided on the third insulating layer 13 previously formed on the fourth insulating layer 14 method. As a method for forming such a protrusion 13A, a well-known film forming step or patterning step can be used. The material of the third insulating layer 13 and the material of the protrusion 13A may be the same or different.

在抑制肇因於供給至源極配線31的影像訊號的雜訊傳到共同配線30的觀點上,可以適切地設定突起部13A的高度W3。 From the viewpoint of suppressing the noise caused by the image signal supplied to the source wiring 31 to the common wiring 30, the height W3 of the protrusion 13A can be appropriately set.

特別是,如第5圖所示,第3絕緣層13發揮作為位於閘極電極25與通道層27之間的閘極絕緣膜的功能,要求考慮過主動元件28的切換特性的適切膜厚。因此,若同時考慮抑制肇因於供給至源極配線的影像訊號的雜訊傳到共同配線30,以及在主動元件28中實現所要的切換特性,則在第4絕緣層14上必須使第3絕緣層13的膜厚部分地不同。 In particular, as shown in FIG. 5, the third insulating layer 13 functions as a gate insulating film between the gate electrode 25 and the channel layer 27, and a proper film thickness considering the switching characteristics of the active element 28 is required. Therefore, if it is also considered to suppress the noise caused by the image signal supplied to the source wiring to the common wiring 30 and realize the desired switching characteristics in the active device 28, the third insulating layer 14 must be The film thickness of the insulating layer 13 is partially different.

因此,首先,在第4絕緣層14上,用考慮過主動元件28中的切換特性的適切膜厚形成第3絕緣層13,之後,在第3絕緣層13上,形成考慮過雜訊對共同配線30的影響的具有高度W3的突起部13A,進而,在突起部13A上形成共同配線30。利用此結構的話,便能夠在大幅維持在共同配線30與源極配線31之間的絕緣體的厚度(第3絕緣層13的膜厚和突起部13A的膜厚的合計)下,將位於通道層27正上方的第3絕緣層13的厚度減薄。藉此,能夠抑制肇因於供給至源極配線的影像訊號的雜訊傳到共同配線30,同時能夠在主動元件28中實現所要的切換特性。 Therefore, first, on the fourth insulating layer 14, the third insulating layer 13 is formed with a proper thickness considering the switching characteristics of the active element 28, and then, on the third insulating layer 13, the noise-considered pair is formed in common. The protrusions 13A having a height W3 that are influenced by the wiring 30 further form a common wiring 30 on the protrusions 13A. With this structure, the thickness of the insulator between the common wiring 30 and the source wiring 31 (total of the film thickness of the third insulating layer 13 and the film thickness of the protrusion 13A) can be maintained at the channel layer. The thickness of the third insulating layer 13 directly above 27 is reduced. With this, it is possible to suppress the noise caused by the image signal supplied to the source wiring from being transmitted to the common wiring 30, and at the same time, the desired switching characteristics can be realized in the active element 28.

(第2實施形態) (Second embodiment)

使用第20圖至第25圖說明第2實施形態的液晶顯示裝置LCD2。對與上述的第1實施形態相同的構件給予相同的元件符號,省略或簡化其說明。 The liquid crystal display device LCD2 of the second embodiment will be described using FIGS. 20 to 25. FIG. The same components as those in the above-mentioned first embodiment are given the same reference symbols, and their descriptions are omitted or simplified.

第20圖係部分地顯示構成本發明的第2實施形態的液晶顯示裝置LCD2的陣列基板200的平面圖,從觀察者側觀看的平面圖。 FIG. 20 is a plan view partially showing an array substrate 200 constituting the liquid crystal display device LCD2 of the second embodiment of the present invention, as viewed from the observer side.

第21圖係部分地顯示構成本發明的第2實施形態的液晶顯示裝置LCD2的陣列基板200的剖面圖,沿著第20圖所示的D-D’線的剖面圖。 Fig. 21 is a partial cross-sectional view of the array substrate 200 constituting the liquid crystal display device LCD2 of the second embodiment of the present invention, taken along line D-D' shown in Fig. 20.

第22圖係部分地顯示本發明的第2實施形態的液晶顯示裝置LCD2的平面圖,顯示在陣列基板200上,透過液晶層,積層具備彩色濾光片及觸控感測配線的顯示裝置基板的構造的平面圖,從觀察者側觀看的平面圖。 FIG. 22 is a plan view partially showing a liquid crystal display device LCD2 according to a second embodiment of the present invention, shown on an array substrate 200, through a liquid crystal layer, a display device substrate laminated with a color filter and touch sensing wiring Structured plan view, plan view viewed from the observer side.

第23圖係部分地顯示構成本發明的第2實施形態的液晶顯示裝置LCD2的陣列基板200的剖面圖,沿著第20圖所示的E-E’線的剖面圖。 Fig. 23 is a partial cross-sectional view of the array substrate 200 constituting the liquid crystal display device LCD2 of the second embodiment of the present invention, taken along the line E-E' shown in Fig. 20.

第24圖係部分地顯示本發明的第2實施形態的液晶顯示裝置LCD2的像素的平面圖,顯示一像素中的液晶的配向狀態的平面圖。 FIG. 24 is a plan view partially showing a pixel of a liquid crystal display device LCD2 according to a second embodiment of the present invention, and showing a state of alignment of liquid crystal in one pixel.

第25圖係部分地顯示本發明的第2實施形態的液晶顯示裝置LCD2的像素的平面圖,顯示在像素電極與共通電極之間施加液晶驅動電壓時的液晶驅動動作的平面圖。 FIG. 25 is a plan view partially showing a pixel of a liquid crystal display device LCD2 according to a second embodiment of the present invention, and a plan view showing a liquid crystal driving operation when a liquid crystal driving voltage is applied between a pixel electrode and a common electrode.

如第20圖所示,第2實施形態的液晶顯示裝置LCD2所具備的像素具有ㄑ字形圖案(折線狀圖案(dog-legged pattern))。 As shown in FIG. 20, the pixels included in the liquid crystal display device LCD2 of the second embodiment have a zigzag pattern (dog-legged pattern).

如第24圖及第25圖所示,共通電極17及像素電極20具有相對於Y方向傾斜角度θ的傾斜部。具體而言,各像素中的共通電極17及像素電極20具有上部區域Pa(第1區域)和下部區域Pb(第2區域)。上部區域Pa及下部區域Pb係相對於像素中央(與X方向平行的中央線) 配置成線對稱。在上部區域Pa中,共通電極17及像素電極20係相對於Y方向順時鐘傾斜角度θ。在下部區域Pb中,共通電極17及像素電極20係相對於Y方向逆時鐘傾斜角度θ。藉由依此方式使共通電極17及像素電極20傾斜,藉由沿著與Y方向平行的配向處理方向Rub對配向膜施加磨刷處理,能在Y方向上對液晶分子39賦予初期配向。作為配向膜的配向處理,能採用光配向處理或磨刷處理。不需要具體規定角度θ,例如,可以將角度θ設在3°~15°的範圍。在第20圖中,共通電極17係形成為具有條紋圖案,具有形成為ㄑ字形的2個電極部17A。接觸孔H位於共通電極17的導電圖案(電極部17A,ㄑ字形圖案)的中央。 As shown in FIGS. 24 and 25, the common electrode 17 and the pixel electrode 20 have an inclined portion inclined at an angle θ with respect to the Y direction. Specifically, the common electrode 17 and the pixel electrode 20 in each pixel have an upper region Pa (first region) and a lower region Pb (second region). The upper area Pa and the lower area Pb are relative to the pixel center (the center line parallel to the X direction) Configured to be line symmetrical. In the upper region Pa, the common electrode 17 and the pixel electrode 20 are inclined at an angle θ clockwise with respect to the Y direction. In the lower region Pb, the common electrode 17 and the pixel electrode 20 are inclined at an angle θ counterclockwise with respect to the Y direction. By tilting the common electrode 17 and the pixel electrode 20 in this way, and applying rubbing treatment to the alignment film along the alignment processing direction Rub parallel to the Y direction, the liquid crystal molecules 39 can be given initial alignment in the Y direction. As the alignment treatment of the alignment film, light alignment treatment or brushing treatment can be used. There is no need to specify the angle θ, for example, the angle θ may be set in the range of 3° to 15°. In FIG. 20, the common electrode 17 is formed to have a stripe pattern, and has two electrode portions 17A formed in a zigzag shape. The contact hole H is located in the center of the conductive pattern (electrode portion 17A, zigzag pattern) of the common electrode 17.

如第22圖所示,源極配線31、黑色層8(黑色矩陣BM的Y方向延伸部)、觸控感測配線3、及構成彩色濾光片51的紅色濾光片(R)、綠色濾光片(G)、及藍色濾光片(藍)也具有ㄑ字形圖案(折線狀圖案)。 As shown in FIG. 22, the source wiring 31, the black layer 8 (the Y-direction extending portion of the black matrix BM), the touch sensing wiring 3, and the red filter (R) and the green color that constitute the color filter 51 The filter (G) and the blue filter (blue) also have a zigzag pattern (broken line pattern).

在第23圖所示的例子中,在第4絕緣層14上形成了通道層27、源極電極24、及汲極電極26。在上述第1實施形態中,將源極電極24及汲極電極26形成在通道層27上(第11圖),但在本實施形態中,在源極電極24及汲極電極26上形成通道層27。 In the example shown in FIG. 23, the channel layer 27, the source electrode 24, and the drain electrode 26 are formed on the fourth insulating layer 14. In the first embodiment described above, the source electrode 24 and the drain electrode 26 are formed on the channel layer 27 (FIG. 11 ), but in this embodiment, the channel is formed on the source electrode 24 and the drain electrode 26 Layer 27.

即,在本實施形態中,在第4絕緣層14上,先形成源極電極24和汲極電極26。作為第2實施形態中的源極電極24和汲極電極26的結構,採用鉬/鋁合金/鉬的3層結構。通道層27的一部分係與源極電極24及汲極電 極26重疊。作為通道層27的材料,採用氧化銦、氧化鎵、氧化鋅的複合氧化物半導體。氧化鋅能取代為氧化銻。 That is, in this embodiment, the source electrode 24 and the drain electrode 26 are formed on the fourth insulating layer 14 first. As the structure of the source electrode 24 and the drain electrode 26 in the second embodiment, a three-layer structure of molybdenum/aluminum alloy/molybdenum is used. Part of the channel layer 27 is electrically connected to the source electrode 24 and the drain electrode Pole 26 overlap. As a material of the channel layer 27, a composite oxide semiconductor of indium oxide, gallium oxide, and zinc oxide is used. Zinc oxide can be replaced by antimony oxide.

接著,針對像素形狀具有上述形狀的優點,參照第24圖及第25圖進行說明。 Next, the advantage that the pixel shape has the above shape will be described with reference to FIGS. 24 and 25.

第25圖顯示在共通電極17與像素電極20之間施加液晶驅動電壓時的液晶驅動動作。液晶驅動電壓係施加在像素電極20至共通電極17的箭頭方向上,如第26圖所示,產生從像素電極20朝向共通電極17的邊緣電場,沿著邊緣電場驅動液晶分子39,在俯視下沿著箭頭方向旋轉。位於像素的上部區域Pa和像素的下部區域Pb的液晶分子39係如第25圖所示彼此逆向地旋轉。具體而言,在上部區域Pa的液晶分子39逆時鐘旋轉,在下部區域Pb的液晶分子39順時鐘旋轉。因此,能實現光學性補償,能增廣液晶顯示裝置LCD2的視角。 FIG. 25 shows the liquid crystal driving operation when the liquid crystal driving voltage is applied between the common electrode 17 and the pixel electrode 20. The liquid crystal driving voltage is applied in the direction of the arrow from the pixel electrode 20 to the common electrode 17. As shown in FIG. 26, a fringe electric field is generated from the pixel electrode 20 toward the common electrode 17, and the liquid crystal molecules 39 are driven along the fringe electric field. Rotate in the direction of the arrow. The liquid crystal molecules 39 located in the upper region Pa of the pixel and the lower region Pb of the pixel rotate oppositely to each other as shown in FIG. 25. Specifically, the liquid crystal molecules 39 in the upper region Pa rotate counterclockwise, and the liquid crystal molecules 39 in the lower region Pb rotate clockwise. Therefore, optical compensation can be realized, and the viewing angle of the liquid crystal display device LCD2 can be increased.

在本實施形態中,作為液晶分子39,採用具有正的介電率異向性的液晶分子。在採用具有負的介電率異向性的液晶分子的情況下,液晶分子很難在液晶層300的厚度方向上翹起。在本實施形態中,觸控驅動電壓係施加在從觸控感測配線3朝向共通電極17的方向上,即在相對於液晶的厚度方向傾斜的斜方向上,因此較佳為採用具有負的介電率異向性的液晶分子。作為液晶材料,例如,理想的是液晶層300的固有低效率為1×1013Ωcm以上的高純度材料。 In the present embodiment, as the liquid crystal molecules 39, liquid crystal molecules having positive dielectric anisotropy are used. In the case where liquid crystal molecules having negative dielectric anisotropy are used, it is difficult for the liquid crystal molecules to warp in the thickness direction of the liquid crystal layer 300. In this embodiment, the touch driving voltage is applied in the direction from the touch sensing wiring 3 toward the common electrode 17, that is, in the oblique direction inclined with respect to the thickness direction of the liquid crystal, so it is preferable to use a negative Liquid crystal molecules with dielectric anisotropy. As the liquid crystal material, for example, a high-purity material whose inherent low efficiency of the liquid crystal layer 300 is 1×10 13 Ωcm or more is desirable.

根據本實施形態,除了由上述的第1實施形態所得到的效果外,能藉由施行與Y方向平行的配向處理方向Rub,來對上部區域Pa和下部區域Pb中的液晶分子39賦予初期配向。 According to this embodiment, in addition to the effects obtained by the first embodiment described above, the liquid crystal molecules 39 in the upper region Pa and the lower region Pb can be given initial alignment by performing the alignment processing direction Rub parallel to the Y direction. .

參照第32圖,對於本實施形態的優點更具體地進行說明。 The advantages of this embodiment will be described more specifically with reference to FIG. 32.

第32圖係顯示利用FFS模式的現有的液晶顯示裝置的一像素的放大平面圖,顯示陣列基板的平面圖。第32圖中,像素電極50位於陣列基板的上表面,共通電極47係透過絕緣層位於像素電極50的下方。像素電極50及共通電極係用ITO等透明導電膜形成。像素電極50係透過接觸孔48而與薄膜電晶體46的汲極電極電性相連。在靠近位於像素電極50的上端部的薄膜電晶體46的位置配置接觸孔48。 FIG. 32 is an enlarged plan view of one pixel of the conventional liquid crystal display device using the FFS mode, and a plan view showing the array substrate. In FIG. 32, the pixel electrode 50 is located on the upper surface of the array substrate, and the common electrode 47 is located below the pixel electrode 50 through the insulating layer. The pixel electrode 50 and the common electrode system are formed of a transparent conductive film such as ITO. The pixel electrode 50 is electrically connected to the drain electrode of the thin film transistor 46 through the contact hole 48. The contact hole 48 is arranged near the thin film transistor 46 located at the upper end of the pixel electrode 50.

在這樣的現有的液晶顯示裝置中,必須從接觸孔48的位置起,以達到最大距離Pd的方式延長像素電極50。在此情況下,因形成像素電極50的透明導電膜的電阻值和像素電極50的位置的關係,在靠近接觸孔的位置的液晶分子、與在遠離接觸孔的位置(分開最大距離Pd)的液晶分子之間產生了響應性的差。 In such a conventional liquid crystal display device, it is necessary to extend the pixel electrode 50 from the position of the contact hole 48 so as to reach the maximum distance Pd. In this case, due to the relationship between the resistance value of the transparent conductive film forming the pixel electrode 50 and the position of the pixel electrode 50, the liquid crystal molecules at the position close to the contact hole and the position away from the contact hole (separated by the maximum distance Pd) There is a difference in responsiveness between liquid crystal molecules.

在構成現有的液晶顯示裝置的像素中較大的問題係在靠近用複數個條紋圖案(梳齒狀圖案)所形成的像素電極的接觸孔的位置中,產生了液晶的向錯區域D。向錯區域D中,從像素電極50朝共通電極47的電力線49的方向改變,因此無法得到充分的透射率,此外,有透射的光產生變色的情況。 A major problem in the pixels constituting the conventional liquid crystal display device is that a dislocation region D of liquid crystal is generated in a position close to the contact hole of the pixel electrode formed with a plurality of stripe patterns (comb-tooth patterns). In the staggered region D, the direction of the power line 49 from the pixel electrode 50 toward the common electrode 47 changes, so that sufficient transmittance cannot be obtained, and the transmitted light may be discolored.

本實施形態係與如第32圖所示的連接像素電極50和薄膜電晶體46的聯結部的現有結構不同。在本實施形態中,如第20圖所示,任一共通電極17係通過位於像素的長條方向上的中央的接觸孔H(LH、RH)而與導電配線(共同配線30)電性相連,因此有形成共通電極17的透明導電膜的電阻值的差變得比現有結構小的優點。由於沒有設置上述的現有結構的像素電極的聯結部,因此幾乎不產生液晶的向錯區域D的不良影響。 This embodiment is different from the conventional structure of the connection portion connecting the pixel electrode 50 and the thin film transistor 46 as shown in FIG. 32. In this embodiment, as shown in FIG. 20, any common electrode 17 is electrically connected to the conductive wiring (common wiring 30) through the contact hole H (LH, RH) located in the center in the longitudinal direction of the pixel Therefore, there is an advantage that the difference in resistance value of the transparent conductive film forming the common electrode 17 becomes smaller than in the conventional structure. Since the connection part of the pixel electrode of the above-mentioned conventional structure is not provided, the adverse effect of the liquid crystal misalignment region D hardly occurs.

在上述的實施形態中,對於作為共通電極17的圖案說明了在Y方向上延伸的條紋圖案或ㄑ字形圖案(dog-legged pattern),但本發明不限於此結構。例如,可以採用正方形圖案、長方形圖案、平行四邊形圖案等。 In the above-mentioned embodiment, the stripe pattern or the dog-legged pattern extending in the Y direction has been described as the pattern of the common electrode 17, but the present invention is not limited to this structure. For example, a square pattern, a rectangular pattern, a parallelogram pattern, or the like can be used.

(第3實施形態) (Third Embodiment)

使用第27圖至第29圖說明第3實施形態的液晶顯示裝置LCD3。 The liquid crystal display device LCD3 of the third embodiment will be described using FIGS. 27 to 29.

對與上述的第1實施形態相同的構件給予相同的元件符號,省略或簡化其說明。 The same components as those in the above-mentioned first embodiment are given the same reference symbols, and their descriptions are omitted or simplified.

第27圖係部分地顯示本發明的第3實施形態的液晶顯示裝置的陣列基板的平面圖。第28圖係部分地顯示本發明的第3實施形態的顯示裝置的平面圖,顯示在陣列基板上,透過液晶層,積層具備彩色濾光片及觸控感測配線的顯示裝置基板的構造的平面圖,從觀察者側觀看的平面圖。第29圖係部分地顯示構成本發明的第3實施形態的顯示裝置的陣列基板的剖面圖。 FIG. 27 is a plan view partially showing an array substrate of a liquid crystal display device according to a third embodiment of the present invention. FIG. 28 is a plan view partially showing a display device according to a third embodiment of the present invention, which is a plan view showing the structure of a display device substrate on an array substrate, through a liquid crystal layer, laminated with a color filter and touch sensing wiring , A plan view from the observer's side. FIG. 29 is a cross-sectional view partially showing an array substrate constituting a display device according to a third embodiment of the present invention.

第3實施形態中的像素開口部18係在俯視下,以角度不同的平行四邊形形狀四邊形形狀形成,排列在Y方向上。各像素係利用與X方向平行的閘極配線10、和沿著平行四邊形形狀的像素的源極配線31區隔為矩陣狀。在第27圖中,在像素開口部18的每一者的右上端設置了主動元件28。主動元件28具備:與源極配線31連接的源極電極24、通道層27、汲極電極26、和透過絕緣膜而與通道層27對向配置的閘極電極25。主動元件28的閘極電極25係構成閘極配線10的一部分,與閘極配線10連接。又,薄膜電晶體的主動元件的結構係與第5圖所示的構造相同。 The pixel opening 18 in the third embodiment is formed in a parallelogram shape with a different angle and a quadrangular shape in a plan view, and is arranged in the Y direction. Each pixel is divided into a matrix by the gate wiring 10 parallel to the X direction and the source wiring 31 of the pixels along the parallelogram. In FIG. 27, an active element 28 is provided on the upper right end of each of the pixel openings 18. The active element 28 includes a source electrode 24 connected to the source wiring 31, a channel layer 27, a drain electrode 26, and a gate electrode 25 disposed opposite to the channel layer 27 through an insulating film. The gate electrode 25 of the active element 28 constitutes a part of the gate wiring 10 and is connected to the gate wiring 10. In addition, the structure of the active element of the thin film transistor is the same as the structure shown in FIG. 5.

像素電極20係如第27圖所示透過位於像素電極20的右上角的接觸孔29而與汲極電極26電性相連。 The pixel electrode 20 is electrically connected to the drain electrode 26 through the contact hole 29 located at the upper right corner of the pixel electrode 20 as shown in FIG. 27.

共通電極17係形成為具有條紋圖案。具體而言,共通電極17係與具有平行四邊形形狀的像素的朝向Y方向的延伸方向(相對於Y方向傾斜角度θ的方向)平行地延伸,位於像素開口部18的中央。 The common electrode 17 is formed to have a stripe pattern. Specifically, the common electrode 17 extends parallel to the extending direction of the pixel having a parallelogram shape in the Y direction (the direction inclined by the angle θ with respect to the Y direction), and is located in the center of the pixel opening 18.

共通電極17係在各像素設置一個。角度θ係在俯視下,相對於Y方向的傾斜度。在共通電極17的每一者的下部中,係在剖面上,設置位於第1絕緣層11的下部的像素電極20。在共通電極17的Y方向的中央,設置了第3接觸孔43H。共通電極17係透過第3接觸孔43H而與共同配線30(導電配線)連接。 One common electrode 17 is provided for each pixel. The angle θ is the inclination with respect to the Y direction in a plan view. In the lower part of each of the common electrodes 17, the pixel electrode 20 located under the first insulating layer 11 is provided on the cross section. In the center of the common electrode 17 in the Y direction, a third contact hole 43H is provided. The common electrode 17 is connected to the common wiring 30 (conductive wiring) through the third contact hole 43H.

又,在本實施形態中,在各像素設置1個共通電極17,在各像素中,第3接觸孔43H的數量也是1個。為了與在第1實施形態及第2實施形態中說明的第1接觸孔LH及第2接觸孔RH有所區別,在第3實施形態中,將導通共通電極17和共同配線30的接觸孔稱為第3接觸孔43H。角度θ係與第2實施形態同樣地,例如,能設定為3°至15°的角度。 In this embodiment, one common electrode 17 is provided for each pixel, and the number of third contact holes 43H is also one for each pixel. In order to distinguish it from the first contact hole LH and the second contact hole RH described in the first embodiment and the second embodiment, in the third embodiment, the contact hole that conducts the common electrode 17 and the common wiring 30 is called This is the third contact hole 43H. The angle θ is similar to the second embodiment, and can be set to an angle of 3° to 15°, for example.

液晶分子係配向成與具備共通電極17或像素電極20的平面平行,且其長軸方向係配向成與Y方向平行。成為由施加在共通電極17與像素電極20間的液晶驅動電壓所驅動的所謂的FFS模式的液晶驅動。 The liquid crystal molecules are aligned parallel to the plane including the common electrode 17 or the pixel electrode 20, and the long axis direction is aligned parallel to the Y direction. This is liquid crystal driving in a so-called FFS mode driven by a liquid crystal driving voltage applied between the common electrode 17 and the pixel electrode 20.

觸控感測係藉由偵測觸控感測配線3與共通電極17間的電容變化來進行。觸控感測配線3和共通電極17,係能將任一者作為觸控驅動電極,將任一者作為觸控檢測電極。 The touch sensing is performed by detecting the change in capacitance between the touch sensing wiring 3 and the common electrode 17. The touch sensing wiring 3 and the common electrode 17 can use either one as a touch drive electrode and any one as a touch detection electrode.

第29圖顯示觸控感測配線3和共通電極17的距離W1。換言之,此距離W1係包含透明樹脂層16、彩色濾光片51(RGB)、未圖示的配向膜、及液晶層300的空間中的Z方向的距離。此空間中,並未包含主動元件、源極配線、及像素電極。在本實施形態中,將用距離W1所示的此空間稱為觸控感測空間。 FIG. 29 shows the distance W1 between the touch sensing wiring 3 and the common electrode 17. In other words, this distance W1 is the distance in the Z direction in the space including the transparent resin layer 16, the color filter 51 (RGB), an alignment film (not shown), and the liquid crystal layer 300. This space does not include active components, source wiring, and pixel electrodes. In the present embodiment, this space shown by the distance W1 is called a touch sensing space.

如第27圖所示,能確保共同配線30和閘極配線10的距離W4,因此能減輕閘極訊號對觸控感測的影響。此外,如第29圖所示,能充分確保供給影像訊號的源極配線31和觸控感測配線3的距離W2,因此能減輕肇因於影像訊號的雜訊所給予的對觸控感測的影響。 As shown in FIG. 27, the distance W4 between the common wiring 30 and the gate wiring 10 can be secured, so that the influence of the gate signal on touch sensing can be reduced. In addition, as shown in FIG. 29, the distance W2 between the source wiring 31 supplying the image signal and the touch sensing wiring 3 can be sufficiently ensured, so that the touch sensing given by the noise caused by the image signal can be reduced Impact.

本實施形態的顯示裝置基板,係在液晶層側具備包含黑色矩陣的彩色濾光片51(RGB)、黑色矩陣BM、和設置在黑色矩陣BM上的觸控感測配線3。又,在將紅色LED、綠色LED、藍色LED的3種LED用於背光單元,以分時驅動依序使3色發光,使液晶同步的多色顯示的情況下,能省略彩色濾光片51。 The display device substrate of this embodiment includes a color filter 51 (RGB) including a black matrix, a black matrix BM, and a touch sensing wiring 3 provided on the black matrix BM on the liquid crystal layer side. In addition, when three types of LEDs of red LED, green LED, and blue LED are used in the backlight unit, the three colors are sequentially emitted by time-division driving, and the multi-color display in which the liquid crystal is synchronized can omit the color filter 51.

根據本實施形態,能夠藉由施行與Y方向平行的配向處理方向,來在Y方向上彼此鄰接的像素的液晶分子39中賦予彼此不同的初期配向。此外,可得到與上述的第1實施形態及第2實施形態同樣的效果。 According to the present embodiment, it is possible to give different initial alignments to the liquid crystal molecules 39 of pixels adjacent to each other in the Y direction by performing an alignment processing direction parallel to the Y direction. In addition, the same effects as those in the first embodiment and the second embodiment described above can be obtained.

例如,上述的實施形態的液晶顯示裝置可以有各種應用。作為可以應用上述的實施形態的液晶顯示裝置的電子機器,可舉出:行動電話、攜帶型遊戲機器、可攜式資訊終端機、個人電腦、電子書、攝影機、數位相機、頭戴式顯示器、導航系統、音響播放裝置(汽車音響、數位音響播放器等)、影印機、傳真機、印表機、印表機複合機、自動販賣機、自動櫃員機(ATM)、個人認證機器、光通訊機器等。上述各實施形態能夠自由組合使用。 For example, the liquid crystal display device of the above-mentioned embodiment can have various applications. Examples of electronic devices to which the liquid crystal display device of the above-mentioned embodiment can be applied include mobile phones, portable game devices, portable information terminals, personal computers, e-books, video cameras, digital cameras, head-mounted displays, Navigation systems, audio playback devices (car audio, digital audio players, etc.), photocopiers, fax machines, printers, printer multifunction machines, vending machines, automatic teller machines (ATM), personal authentication machines, optical communication machines Wait. The above-mentioned embodiments can be freely used in combination.

可應用於本發明的液晶驅動方法不限於上述的實施形態中敘述的液晶驅動方法。例如,可以使用以下記載的液晶驅動方法。 The liquid crystal driving method applicable to the present invention is not limited to the liquid crystal driving method described in the above embodiment. For example, the liquid crystal driving method described below can be used.

例如,可以將主動矩陣中的訊號電極(源極配線)的極性進行幅反轉以驅動液晶(例如,記載在日本專利第2982877號公報)。 For example, the polarity of the signal electrode (source wiring) in the active matrix may be inverted to drive the liquid crystal (for example, described in Japanese Patent No. 2982877).

此外,也可以在液晶的主動矩陣驅動中,按液晶驅動的水平期間,交替地更換第1訊號線(源極配線)和第2訊號線以進行點反轉驅動(例如,記載在日本特開平11-102174號公報)。 In addition, in the active matrix driving of liquid crystal, the first signal line (source wiring) and the second signal line may be alternately replaced for dot inversion driving according to the horizontal period of liquid crystal driving (for example, described in Japanese Patent Laid-Open 11-102174).

此外,也可以在液晶的主動矩陣驅動中,每一像素使用2條源極配線作為資料驅動(data drive)(源極配線),按幅將極性不同的影像訊號傳送至此資料驅動以進行水平線驅動(例如,記載在日本特開平9-134152號公報)。 In addition, in the active matrix driving of the liquid crystal, each pixel uses two source wirings as data drives (source wirings), and transmits image signals with different polarities to the data driving according to the amplitude for horizontal line driving (For example, it is described in Japanese Patent Laid-Open No. 9-134152).

此外,也可以在液晶的主動矩陣驅動中,每一像素使用2條閘極配線作為掃描訊號線(閘極配線)。在此情況下,例如,對奇數行的掃描訊號線和偶數行的掃描訊號線寫入相反極性的資料。可以在某個顯示期間內,對鄰接的像素的奇數列和偶數列,分別寫入相反極性的資料,而在下一個顯示期間內,分別寫入與前一個顯示期間為相反極性的資料(例如,記載在日本特開平7-181927號公報)。 In addition, in the active matrix driving of liquid crystal, each pixel may use two gate wirings as scanning signal lines (gate wirings). In this case, for example, data of opposite polarities are written to scan signal lines of odd rows and scan signal lines of even rows. In a certain display period, data of opposite polarities can be written to the odd and even columns of adjacent pixels, respectively, and in the next display period, data of opposite polarities can be written separately from the previous display period (for example, It is described in Japanese Unexamined Patent Publication No. 7-181927).

在將上述的液晶驅動方法應用於本發明的情況下,不論是在那種方法中,每一像素的主動元件(TFT)的個數可以是1以上的複數。能將上述的液晶驅動技術應用於本發明。 When the above-mentioned liquid crystal driving method is applied to the present invention, regardless of which method, the number of active elements (TFTs) per pixel may be a complex number of 1 or more. The above-mentioned liquid crystal driving technology can be applied to the present invention.

以上說明了本發明的較佳實施形態,但上述說明是本發明的例示,應理解的是不該將它們用於限定本發明。能在不脫離本發明的範圍下進行追加、省略、取代、及其他變更。由此,本發明不應被視為受限於前述的說明,而是受限於申請專利範圍。 The preferred embodiments of the present invention have been described above, but the above description is an illustration of the present invention, and it should be understood that they should not be used to limit the present invention. Additions, omissions, substitutions, and other changes can be made without departing from the scope of the present invention. Therefore, the present invention should not be regarded as limited by the foregoing description, but by the scope of patent application.

3‧‧‧觸控感測配線 3‧‧‧Touch sensing wiring

8‧‧‧黑色層 8‧‧‧Black layer

11‧‧‧第1絕緣層 11‧‧‧The first insulating layer

12‧‧‧第2絕緣層 12‧‧‧The second insulating layer

13‧‧‧第3絕緣層 13‧‧‧The third insulating layer

14‧‧‧第4絕緣層 14‧‧‧The fourth insulating layer

16‧‧‧透明樹脂層 16‧‧‧Transparent resin layer

17‧‧‧共通電極 17‧‧‧Common electrode

17A‧‧‧電極部 17A‧‧‧Electrode

18‧‧‧像素開口部 18‧‧‧Pixel opening

20‧‧‧像素電極 20‧‧‧Pixel electrode

21‧‧‧透明基板(第1透明基板) 21‧‧‧Transparent substrate (1st transparent substrate)

22‧‧‧透明基板(第2透明基板) 22‧‧‧Transparent substrate (second transparent substrate)

30‧‧‧共同配線(導電配線) 30‧‧‧Common wiring (conductive wiring)

31‧‧‧源極配線 31‧‧‧Source wiring

51‧‧‧彩色濾光片 51‧‧‧Color filter

100‧‧‧顯示裝置基板 100‧‧‧Display device substrate

200‧‧‧陣列基板 200‧‧‧Array substrate

300‧‧‧液晶層 300‧‧‧Liquid crystal layer

L‧‧‧光 L‧‧‧Light

LCD1‧‧‧液晶顯示裝置 LCD1‧‧‧Liquid crystal display device

W1‧‧‧觸控感測配線與共通電極的距離 W1‧‧‧Distance between touch sensing wiring and common electrode

W2‧‧‧觸控感測配線與源極配線的距離 W2‧‧‧Distance between touch sensing wiring and source wiring

BU‧‧‧背光單元 BU‧‧‧Backlight unit

Claims (13)

一種顯示裝置,包含顯示裝置基板、陣列基板、顯示功能層、和控制部,該顯示裝置基板具備:第1透明基板、和設置在該第1透明基板上的在第1方向上延伸的觸控感測配線,該陣列基板具備:第2透明基板;該第2透明基板上的複數個多角形的像素開口部;共通電極,具有設置在該複數個像素開口部的每一者中並且在俯視下在該第1方向上延伸的1個以上的電極部;第1絕緣層,設置在該共通電極下;像素電極,在該複數個像素開口部的每一者中設置在該第1絕緣層下;第2絕緣層,設置在該像素電極下;導電配線,在該第2絕緣層下與該共通電極電性連接,且在與該第1方向正交的第2方向上延伸而橫跨該複數個像素開口部;第3絕緣層,設置在該導電配線下;主動元件,係設置在該第3絕緣層下而與該像素電極電性連接的頂閘構造的薄膜電晶體;閘極配線,具有與該導電配線相同的層結構,在該第2絕緣層與該第3絕緣層之間形成在與該導電配線相同的位置,並且在俯視下在該第2方向上延伸而與該主動元件電性聯結;源極配線,在俯視下在該第1方向上延伸而與該主動元件電性聯結;和接觸孔,設置在該電極部的圖案的長邊方向的中央,並且電性連接該共通電極和該導電配線, 該顯示功能層係挾持在該顯示裝置基板與該陣列基板之間,該控制部係藉由在該像素電極與該共通電極之間施加驅動電壓來使該顯示功能層驅動,從而進行影像顯示,偵測在該共通電極與該觸控感測配線之間的電容的變化以進行觸控感測(touch sensing),在相對於該顯示功能層的厚度方向傾斜的斜方向上,該觸控感測配線和該共通電極係彼此相對。 A display device includes a display device substrate, an array substrate, a display function layer, and a control unit. The display device substrate includes a first transparent substrate and a touch extending in the first direction provided on the first transparent substrate Sensing wiring, the array substrate includes: a second transparent substrate; a plurality of polygonal pixel openings on the second transparent substrate; a common electrode having a plurality of pixel openings provided in each of the plurality of pixel openings and viewed in plan One or more electrode portions extending in the first direction; a first insulating layer provided under the common electrode; a pixel electrode provided in the first insulating layer in each of the plurality of pixel openings The second insulating layer is provided under the pixel electrode; the conductive wiring is electrically connected to the common electrode under the second insulating layer, and extends in the second direction orthogonal to the first direction and spans The plurality of pixel openings; a third insulating layer, disposed under the conductive wiring; an active element, a thin-film transistor of a top gate structure disposed under the third insulating layer and electrically connected to the pixel electrode; The wiring has the same layer structure as the conductive wiring, is formed at the same position as the conductive wiring between the second insulating layer and the third insulating layer, and extends in the second direction in plan view to be The active element is electrically connected; the source wiring extends in the first direction in a plan view to be electrically connected to the active element; and the contact hole is provided at the center of the longitudinal direction of the pattern of the electrode portion and is electrically Connect the common electrode and the conductive wiring, The display function layer is sandwiched between the display device substrate and the array substrate, and the control unit drives the display function layer by applying a driving voltage between the pixel electrode and the common electrode to perform image display. Detecting a change in capacitance between the common electrode and the touch sensing wiring for touch sensing, in a diagonal direction inclined with respect to the thickness direction of the display function layer, the touch sensing The test wiring and the common electrode system are opposed to each other. 如請求項1的顯示裝置,其中該共通電極具有在俯視下在與該觸控感測配線平行的長條方向上延伸的條紋圖案(stripe pattern)。 The display device of claim 1, wherein the common electrode has a stripe pattern extending in a long direction parallel to the touch sensing wiring in a plan view. 如請求項1的顯示裝置,其中該主動元件係薄膜電晶體,該薄膜電晶體係包含用氧化物半導體所構成的通道層,該通道層與閘極絕緣膜接觸。 The display device according to claim 1, wherein the active element is a thin film transistor, and the thin film transistor system includes a channel layer made of an oxide semiconductor, and the channel layer is in contact with the gate insulating film. 如請求項3的顯示裝置,其中該氧化物半導體係包含鎵、銦、鋅、錫、鋁、鍺、銻、鉍、鈰當中之2種以上的金屬氧化物的氧化物半導體。 The display device according to claim 3, wherein the oxide semiconductor is an oxide semiconductor including two or more kinds of metal oxides among gallium, indium, zinc, tin, aluminum, germanium, antimony, bismuth, and cerium. 如請求項3的顯示裝置,其中該閘極絕緣膜係用包含氧化鈰的複合氧化物所形成的閘極絕緣膜。 The display device according to claim 3, wherein the gate insulating film is a gate insulating film formed of a composite oxide containing cerium oxide. 如請求項1的顯示裝置,其中該顯示功能層係液晶層,該液晶層的液晶具有與該陣列基板平行的初期配向,用藉由施加在該共通電極與該像素電極之間的液晶驅動電壓而產生的邊緣電場予以驅動。 The display device according to claim 1, wherein the display function layer is a liquid crystal layer, and the liquid crystal of the liquid crystal layer has an initial alignment parallel to the array substrate, by applying a liquid crystal driving voltage applied between the common electrode and the pixel electrode The generated fringe electric field is driven. 如請求項1的顯示裝置,其中該共通電極及該像素電極係用至少包含氧化銦、氧化錫的複合氧化物構成。 The display device according to claim 1, wherein the common electrode and the pixel electrode are composed of a composite oxide containing at least indium oxide and tin oxide. 如請求項1的顯示裝置,其中該觸控感測配線係用包含銅合金層的金屬層構成。 The display device according to claim 1, wherein the touch sensing wiring is composed of a metal layer including a copper alloy layer. 如請求項1的顯示裝置,其中該觸控感測配線具有銅合金層被導電性金屬氧化物層挾持的構造。 The display device according to claim 1, wherein the touch sensing wiring has a structure in which a copper alloy layer is held by a conductive metal oxide layer. 如請求項1的顯示裝置,其中該導電配線具有銅合金層被導電性金屬氧化物層挾持的構造。 The display device according to claim 1, wherein the conductive wiring has a structure in which the copper alloy layer is held by the conductive metal oxide layer. 如請求項9或10的顯示裝置,其中該導電性金屬氧化物層係包含氧化銦、氧化鋅、氧化銻、氧化錫當中之2種以上的複合氧化物層。 The display device according to claim 9 or 10, wherein the conductive metal oxide layer includes a composite oxide layer of two or more of indium oxide, zinc oxide, antimony oxide, and tin oxide. 如請求項1的顯示裝置,其中該顯示裝置基板具備設置在該第1透明基板與該觸控感測配線之間的黑色矩陣,該觸控感測配線係與該黑色矩陣的一部分重疊。 The display device according to claim 1, wherein the display device substrate includes a black matrix disposed between the first transparent substrate and the touch sensing wiring, and the touch sensing wiring overlaps a part of the black matrix. 如請求項1的顯示裝置,其中該顯示裝置基板具備設置在與複數個像素開口部相對應的位置的彩色濾光片。 The display device according to claim 1, wherein the display device substrate includes a color filter provided at a position corresponding to a plurality of pixel openings.
TW105115015A 2016-05-16 2016-05-16 Display device TWI686653B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105115015A TWI686653B (en) 2016-05-16 2016-05-16 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105115015A TWI686653B (en) 2016-05-16 2016-05-16 Display device

Publications (2)

Publication Number Publication Date
TW201741749A TW201741749A (en) 2017-12-01
TWI686653B true TWI686653B (en) 2020-03-01

Family

ID=61230200

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105115015A TWI686653B (en) 2016-05-16 2016-05-16 Display device

Country Status (1)

Country Link
TW (1) TWI686653B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108664165B (en) * 2018-05-08 2021-06-11 业成科技(成都)有限公司 Display panel and electronic device using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193231A (en) * 2010-03-19 2011-09-21 乐金显示有限公司 Touch sensing type liquid crystal display device and method of fabricating the same
TW201241532A (en) * 2011-04-01 2012-10-16 Lg Display Co Ltd Touch sensor integrated type display device
KR20120119369A (en) * 2011-04-21 2012-10-31 엘지디스플레이 주식회사 Touch sensor in-cell type liquid crystal display device and method of fabricating the same
JP2015049426A (en) * 2013-09-03 2015-03-16 パナソニック液晶ディスプレイ株式会社 Liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193231A (en) * 2010-03-19 2011-09-21 乐金显示有限公司 Touch sensing type liquid crystal display device and method of fabricating the same
TW201241532A (en) * 2011-04-01 2012-10-16 Lg Display Co Ltd Touch sensor integrated type display device
KR20120119369A (en) * 2011-04-21 2012-10-31 엘지디스플레이 주식회사 Touch sensor in-cell type liquid crystal display device and method of fabricating the same
JP2015049426A (en) * 2013-09-03 2015-03-16 パナソニック液晶ディスプレイ株式会社 Liquid crystal display device

Also Published As

Publication number Publication date
TW201741749A (en) 2017-12-01

Similar Documents

Publication Publication Date Title
KR102055740B1 (en) Liquid crystal display
US10452221B2 (en) Liquid crystal display device
JP6252689B1 (en) Display device
JP6070896B2 (en) Display device substrate, display device substrate manufacturing method, and display device using the same
CN109416598B (en) Display device and display device substrate
US10437115B2 (en) Liquid crystal display device
JP5764665B2 (en) Thin film transistor array substrate and liquid crystal display device
JP2020080416A (en) Semiconductor device
TWI685781B (en) Display device and display device substrate
TWI686653B (en) Display device
CN110168706B (en) Display device and display device substrate
TWI591402B (en) Liquid crystal display device
TWI576744B (en) Liquid crystal display device
TW201642107A (en) Liquid crystal display device