TWI672899B - Method for controlling resonant converter - Google Patents

Method for controlling resonant converter Download PDF

Info

Publication number
TWI672899B
TWI672899B TW107104678A TW107104678A TWI672899B TW I672899 B TWI672899 B TW I672899B TW 107104678 A TW107104678 A TW 107104678A TW 107104678 A TW107104678 A TW 107104678A TW I672899 B TWI672899 B TW I672899B
Authority
TW
Taiwan
Prior art keywords
resonant converter
output voltage
signal
resonant
feedback circuit
Prior art date
Application number
TW107104678A
Other languages
Chinese (zh)
Other versions
TW201935834A (en
Inventor
陳博銘
呂紹捷
Original Assignee
大陸商明緯(廣州)電子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商明緯(廣州)電子有限公司 filed Critical 大陸商明緯(廣州)電子有限公司
Priority to TW107104678A priority Critical patent/TWI672899B/en
Publication of TW201935834A publication Critical patent/TW201935834A/en
Application granted granted Critical
Publication of TWI672899B publication Critical patent/TWI672899B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

本發明提出一種諧振轉換器的控制方法,係應用於回授電路的控制器單元之中。如此設置,當諧振轉換器由空載(或輕載)操作跳至滿載操作時,控制器單元會在輸出電壓的瞬降值與輸出電流的變化量超過設定值之時,控制諧振轉換器內部的功率開關單元依照滿載操作頻率(例如: 100 KHz)進行開/關切換,藉此方式大幅降低輸出電壓的瞬降值。因此,本發明之控制方法可以在諧振轉換器於空載操作轉滿載操作的過程中,發揮穩定輸出電壓之功效。The invention provides a control method for a resonant converter, which is applied to a controller unit of a feedback circuit. In this way, when the resonant converter jumps from no-load (or light-load) operation to full-load operation, the controller unit controls the internal of the resonant converter when the instantaneous value of the output voltage and the amount of change in the output current exceed the set value. The power switch unit performs on/off switching according to the full-load operating frequency (for example, 100 KHz), thereby greatly reducing the instantaneous drop value of the output voltage. Therefore, the control method of the present invention can exert the effect of stabilizing the output voltage during the process of the resonant converter switching from full load operation to no-load operation.

Description

諧振轉換器的控制方法Control method of resonant converter

本發明係關於電源轉換器的相關技術領域,尤指一種諧振轉換器的控制方法。The present invention relates to the related art of power converters, and more particularly to a method of controlling a resonant converter.

切換式電源轉換器(Switching-mode power supply, SMPS)的技術已被廣泛地應用於製作各式電機與電子產品的電源供應器。並且,隨著電子產品朝向輕薄短小的趨勢發展,必須透過提升切換頻率的方式來增加切換式電源轉換器的功率密度,才能夠有效地縮小切換式電源轉換器的機構體積。於是,具零電壓切換(Zero voltage switching, ZVS)與零電流切換(Zero current switching, ZCS)特色的LLC諧振轉換器(LLC resonant converter)因此被提出。Switching-mode power supply (SMPS) technology has been widely used to make power supplies for various types of motors and electronics. Moreover, as the trend toward thinner and lighter electronic products, it is necessary to increase the power density of the switching power converter by increasing the switching frequency, so that the mechanism volume of the switching power converter can be effectively reduced. Thus, an LLC resonant converter featuring zero voltage switching (ZVS) and zero current switching (ZCS) has thus been proposed.

請參閱圖1,係顯示習知的一種LLC串聯諧振轉換器的電路架構圖。如圖1所示,習知的LLC串聯諧振轉換器2’係包括:耦接直流電源V DC’的一功率開關單元23’、一諧振單元24’、 一變壓器單元25’、一輸出整流單元26’、以及一輸出濾波單元27’;其中,一閉環控制模組1’係連接於該LLC串聯諧振轉換器2’的輸出端與所述功率開關單元23’之間。並且,由圖1可以得知所述閉環控制模組1’主要包括一訊號檢出單元11’、一控制器單元12’、與一隔離驅動單元13’。在LLC串聯諧振轉換器2’的正常工作下,調變操作頻率(operating frequency)可以改變LLC串聯諧振轉換器2’的電壓增益,以控制輸出電壓範圍之調整。換句話說,相對於寬範圍的輸出電壓,操作頻率也必須跟著變寬。輸出電壓調變的範圍越寬,操作頻率也越寬,諧振線路的硬體也需要相對提升以因應操作頻率,但這會造成體積增加,且效率如未相對提升,還會產生熱能。 Referring to FIG. 1, a circuit architecture diagram of a conventional LLC series resonant converter is shown. As shown in FIG. 1 , a conventional LLC series resonant converter 2 ′ includes: a power switching unit 23 ′ coupled to a DC power source V DC ′, a resonant unit 24 ′, a transformer unit 25 ′, and an output rectifying unit. 26', and an output filtering unit 27'; wherein a closed-loop control module 1' is connected between the output of the LLC series resonant converter 2' and the power switching unit 23'. Moreover, it can be seen from FIG. 1 that the closed loop control module 1 ′ mainly includes a signal detecting unit 11 ′, a controller unit 12 ′, and an isolated driving unit 13 ′. Under normal operation of the LLC series resonant converter 2', the operating frequency of the LLC series resonant converter 2' can be varied to control the adjustment of the output voltage range. In other words, the operating frequency must also be widened relative to a wide range of output voltages. The wider the range of output voltage modulation, the wider the operating frequency, and the hardware of the resonant line also needs to be relatively raised to account for the operating frequency, but this will result in an increase in volume, and if the efficiency is not relatively increased, thermal energy will also be generated.

除了上述問題以外,輸出電壓越寬,轉換器越難被控制,例如,當負載3’從空載(no load or light load)切換至滿載(full load)時,操作頻率必須被快速且大幅度地調變,如此才能夠將輸出電壓穩定於規格內。圖2係顯示習知的LLC串聯諧振轉換器的量測資料圖。由圖2可知,當負載從空載跳滿載時,因輸出電容的能量不夠且操作頻率從高頻往低頻調變太慢(如虛線方框所標示),導致輸出電壓先是瞬降,且瞬降值超過2V。有鑑於此,LLC串聯諧振轉換器2’的製造商提出了通過調整控制器單元12’的補償參數來加快操作頻率的調變速度的方法。然而,實務上發現此方法雖然可以改善輸出電壓瞬降的問題,但卻會造成穩態輸出電壓的不穩定跳動。In addition to the above problems, the wider the output voltage, the harder it is to be controlled by the converter. For example, when the load 3' is switched from no load or light load to full load, the operating frequency must be fast and large. Ground modulation, in order to stabilize the output voltage within specifications. 2 is a graph showing the measurement data of a conventional LLC series resonant converter. As can be seen from Figure 2, when the load is full from no-load, the energy of the output capacitor is not enough and the operating frequency is too slow to change from high frequency to low frequency (as indicated by the dotted box), causing the output voltage to drop first and instantaneously. The drop is over 2V. In view of this, the manufacturer of the LLC series resonant converter 2' proposes a method of accelerating the modulation speed of the operating frequency by adjusting the compensation parameters of the controller unit 12'. However, it has been found that although this method can improve the output voltage transient, it will cause unstable jitter of the steady-state output voltage.

由上述說明可以得知,實有必要重新設計並提出一個解決方案,用以使LLC串聯諧振轉換器2’能夠穩態輸出寬範圍的電壓調整。有鑑於此,本案之創作人係極力加以研究發明,而終於研發完成本發明之一種諧振轉換器的控制方法。As can be seen from the above description, it is necessary to redesign and propose a solution for enabling the LLC series resonant converter 2' to output a wide range of voltage adjustments in a steady state. In view of this, the creator of the present invention tried his best to study the invention, and finally developed a control method of the resonant converter of the present invention.

於習知的LLC串聯諧振轉換器的架構中,主要是利用回授電路依照(輸出電壓)誤差量進行回授補償,接著輸出以控制訊號控制功率開關單元的操作頻率以穩定輸出電壓;然而,實際的執行面顯示,當負載從空載跳滿載之時,操作頻率無法快速地從高頻往低頻調變(如圖2的虛線方框所標示),導致輸出電壓瞬降。因此,本發明之主要目的在於提出一種諧振轉換器的控制方法,係應用於回授電路的控制器單元之中。如此設置,當諧振轉換器由空載(或輕載)操作跳至滿載操作時,回授電路會在輸出電壓的瞬降值與輸出電流的變化量超過設定值之時,控制功率開關單元依照滿載操作頻率(例如:100 KHz)進行開/關切換,藉此方式大幅降低輸出電壓的瞬降值。因此,本發明之控制方法可以在諧振轉換器於空載操作轉滿載操作的過程中,發揮穩定輸出電壓之功效。除此之外,本發明之控制方法同時能夠在諧振轉換器於空載操作轉滿載操作的過程中,避免過載(流)現象的發生。具體的過載防護措施是先設立兩個輸出電流變化量的設定值。當輸出電流變化量超過第一個設定值之時(例如:10A),回授電路直接輸出第二控制訊號控制該功率開關單元依照滿載操作頻率進行開/關切換。並且,當電流變化量持續增大並達到或超過第二個設定值之時(例如:13A),回授電路便會對應地輸出控制訊號以關閉該功率開關單元持續兩個電壓環執行時間。In the architecture of the conventional LLC series resonant converter, the feedback circuit is mainly used to perform feedback compensation according to the (output voltage) error amount, and then the control signal is used to control the operating frequency of the power switching unit to stabilize the output voltage; however, The actual execution surface shows that when the load is fully loaded from no load, the operating frequency cannot be quickly modulated from high frequency to low frequency (as indicated by the dashed box in Figure 2), causing the output voltage to drop. Accordingly, it is a primary object of the present invention to provide a control method for a resonant converter that is applied to a controller unit of a feedback circuit. In this way, when the resonant converter jumps from the no-load (or light-load) operation to the full-load operation, the feedback circuit controls the power switch unit according to the instantaneous value of the output voltage and the change of the output current exceeding the set value. The full-load operating frequency (for example, 100 KHz) is switched on/off, which greatly reduces the instantaneous drop of the output voltage. Therefore, the control method of the present invention can exert the effect of stabilizing the output voltage during the process of the resonant converter switching from full load operation to no-load operation. In addition, the control method of the present invention can simultaneously avoid the occurrence of an overload (flow) phenomenon during the transition of the resonant converter to the no-load operation. The specific overload protection measures are to set the two set values of the output current change amount first. When the output current change exceeds the first set value (for example, 10A), the feedback circuit directly outputs the second control signal to control the power switch unit to perform on/off switching according to the full load operating frequency. Moreover, when the current change amount continues to increase and reaches or exceeds the second set value (for example, 13A), the feedback circuit outputs a control signal correspondingly to turn off the power switch unit for two voltage loop execution times.

值得特別強調的是,本發明之控制方法可令諧振轉換器還具有以下優點: (1)不需變更回授電路的設計,能夠以最低成本的方式使諧振轉換器具備輸出寬範圍電壓之能力,同時亦可根據負載的大幅變動而快速地變更操作頻率,維持穩定電壓的輸出; (2)在PWM的控制模式下,快速調變操作頻率;或者,在相移控制(Phase-shift)模式下,快速調變量移量;以及 (3)將本發明之控制方法整合至現有的回授電路之中,可獲得能夠同時穩定暫態反應與穩態反應的回授控制器。It is worth emphasizing that the control method of the present invention can make the resonant converter have the following advantages: (1) The resonant converter can be equipped with a wide range of voltages at the lowest cost without changing the design of the feedback circuit. At the same time, it can also quickly change the operating frequency according to the large fluctuation of the load to maintain the output of the stable voltage; (2) quickly adjust the operating frequency in the PWM control mode; or, in the phase shift control (Phase-shift) mode Next, the variable shift amount is quickly adjusted; and (3) the control method of the present invention is integrated into the existing feedback circuit to obtain a feedback controller capable of simultaneously stabilizing the transient reaction and the steady state reaction.

為了達成上述本發明之主要目的,本案創作人係提供所述諧振轉換器的控制方法的一實施例,係應用於一回授電路之中;其中,該回授電路係連接於一諧振轉換器與連接於該諧振轉換器的至少一負載之間;該諧振轉換器的控制方法係包括以下步驟: (1)輸入一使用者控制訊號至該回授電路之一控制器中,其中,該控制器係連接該諧振轉換器之一功率開關單元,同時還連接一功率因數轉換器之一PFC開關; (2)該使用者控制訊號可被轉換為一輸出電壓控制訊息,且該控制器根據該使用者控制訊號控制該功率因數轉換器以及該功率開關單元; (3)該功率因數轉換器建立一第一輸出電壓,同時,該功率開關單元控制該諧振轉換器的一諧振單元以及一變壓器單元,以建立一第二輸出電壓;其中,該第一輸出電壓係早於該第二輸出電壓被建立; (4)該控制器判斷該輸出電壓控制訊息為一調高輸出電壓訊息或一調低輸出電壓訊息;若為所述調高輸出電壓訊息則執行步驟(5);並且,若為所述調低輸出電壓訊息則執行步驟(6); (5)該第一輸出電壓被提高,同時,該第二輸出電壓被提高;回到該步驟(3);以及 (6)該第一輸出電壓被降低,同時,該第二輸出電壓被降低;回到該步驟(3)。In order to achieve the above-mentioned primary object of the present invention, the creator of the present invention provides an embodiment of the control method of the resonant converter, which is applied to a feedback circuit; wherein the feedback circuit is connected to a resonant converter The control method of the resonant converter includes the following steps: (1) inputting a user control signal to a controller of the feedback circuit, wherein the control The device is connected to one of the power converter units of the resonant converter, and is also connected to a PFC switch of a power factor converter; (2) the user control signal can be converted into an output voltage control message, and the controller is configured according to the a user control signal controls the power factor converter and the power switch unit; (3) the power factor converter establishes a first output voltage, and the power switch unit controls a resonant unit of the resonant converter and a transformer unit a second output voltage is established; wherein the first output voltage is established earlier than the second output voltage; (4) the controller judges Disconnecting the output voltage control message as a high output voltage message or a low output voltage message; if the output voltage signal is increased, performing step (5); and if the output voltage signal is low, executing Step (6); (5) the first output voltage is increased, and at the same time, the second output voltage is increased; returning to the step (3); and (6) the first output voltage is lowered, and at the same time, the The two output voltages are reduced; return to step (3).

為了能夠更清楚地描述本發明所提出之一種諧振轉換器的控制方法,以下將配合圖式,詳盡說明本發明之較佳實施例。In order to more clearly describe the control method of a resonant converter proposed by the present invention, a preferred embodiment of the present invention will be described in detail below with reference to the drawings.

請參閱圖3,係顯示應用有本發明之一種諧振轉換器的控制方法的諧振轉換器的架構圖。如圖3所示,本發明之諧振轉換器的控制方法係應用於一回授電路1之中;其中,該回授電路1係連接於一諧振轉換器2與連接於該諧振轉換器2的至少一負載3之間。由圖3可知,該諧振轉換器2係至少包括:一功率因數轉換器21、一PFC開關22、一功率開關單元23、一諧振單元24、一變壓器單元25、一輸出整流單元26、與一輸出濾波單元27;並且,該回授電路1係包括:一訊號檢出單元11、一控制器12與一隔離驅動單元13。長期涉及諧振轉換器2開發製造的電子工程師應該知道,諧振轉換器2內部的功率因數轉換器21可以是Buck線路、Boost線路或者Buck-Boost線路,且該PFC開關22係為該功率因數轉換器21之工作開關,是以透過改變控制該PFC開關22之佔空比,便可以調整該功率因數轉換器21之輸出電壓。Referring to Fig. 3, there is shown an architectural diagram of a resonant converter to which a control method of a resonant converter of the present invention is applied. As shown in FIG. 3, the control method of the resonant converter of the present invention is applied to a feedback circuit 1; wherein the feedback circuit 1 is connected to a resonant converter 2 and connected to the resonant converter 2. At least one load between three. As shown in FIG. 3, the resonant converter 2 includes at least: a power factor converter 21, a PFC switch 22, a power switch unit 23, a resonating unit 24, a transformer unit 25, an output rectifying unit 26, and a The output filtering unit 27 includes a signal detecting unit 11, a controller 12 and an isolated driving unit 13. An electronic engineer who has long been involved in the development and manufacture of the resonant converter 2 should know that the power factor converter 21 inside the resonant converter 2 can be a Buck line, a Boost line, or a Buck-Boost line, and the PFC switch 22 is the power factor converter. The working switch of 21 can adjust the output voltage of the power factor converter 21 by changing the duty ratio of the PFC switch 22.

一般而言,功率開關單元23可以是由兩個金氧半導體場效電晶體所組成的半橋架構,該諧振單元24可為LLC串聯諧振線路,且該訊號檢出單元11可以包含由放大器所組成之電路,用以檢測諧振轉換器2傳送至負載3的輸出電壓與輸出電流。另一方面,隔離驅動單元13可為光耦合器,而該控制器12可為一般可程式數位控制晶片。在本發明中,如圖3所示,該訊號檢出單元11檢測輸出電壓及電流後,經過隔離驅動單元13回傳到該控制器12,使得控制器12依照檢測輸出的結果控制所述功率開關單元23的開/關。必須補充說明的是,就實際電路的安排上,控制器12也可設置在隔離驅動單元13的另一側;如此設置,在訊號檢出單元11檢測輸出電壓與電流之後,控制器12根據檢測結果產生用以控制功率開關單元23的開/關的控制訊號,再透過隔離驅動單元13將該控制訊號傳送至該功率開關單元23。In general, the power switch unit 23 can be a half bridge architecture composed of two MOSFETs, the resonant unit 24 can be an LLC series resonant line, and the signal detecting unit 11 can be included by an amplifier. A circuit is formed for detecting an output voltage and an output current that the resonant converter 2 transmits to the load 3. Alternatively, the isolated drive unit 13 can be an optocoupler and the controller 12 can be a generally programmable digital control chip. In the present invention, as shown in FIG. 3, after detecting the output voltage and current, the signal detecting unit 11 returns to the controller 12 via the isolation driving unit 13, so that the controller 12 controls the power according to the result of the detection output. The switching unit 23 is turned on/off. It should be additionally noted that, in terms of the actual circuit arrangement, the controller 12 may also be disposed on the other side of the isolated driving unit 13; thus, after the signal detecting unit 11 detects the output voltage and current, the controller 12 performs detection according to the detection. As a result, a control signal for controlling the on/off of the power switch unit 23 is generated, and the control signal is transmitted to the power switch unit 23 through the isolation drive unit 13.

由此可知,使用者可以依照實務需求而適當規畫回授電路1的架構,例如輸出訊號需要兩個以上的偵測點,那就會需要兩個隔離驅動單元13回傳到該控制器12。簡單地說,隨著偵測點的增加,可以對應地在回授線路1內安排上等數量的隔離驅動單元13。繼續地參閱圖3,並請同時參閱圖4A與圖4B,係顯示本發明之一種諧振轉換器的控制方法的流程圖。本發明欲提供具有寬範圍電壓輸出的線路,包含以下步驟: 步驟(S1):輸入一使用者控制訊號4至該回授電路1的一控制器12中,其中,該控制器12係連接該諧振轉換器2之一功率開關單元23,同時還連接一功率因數轉換器21之一PFC開關22; 步驟(S2):該使用者控制訊號4為一輸出電壓控制訊息,且該控制器12根據該使用者控制訊號4控制該功率因數轉換器21以及該功率開關單元23; 步驟(S3):該功率因數轉換器21建立一第一輸出電壓V1,同時,該功率開關單元23控制該諧振轉換器2的一諧振單元24以及一變壓器單元25,以建立一第二輸出電壓V2;其中,該第一輸出電壓V1係早於該第二輸出電壓V2被建立; 步驟(S4):該控制器12判斷該輸出電壓控制訊息為一調高輸出電壓訊息或一調低輸出電壓訊息;若為所述調高輸出電壓訊息則執行步驟(S5);並且,若為所述調低輸出電壓訊息則執行步驟(S6); 步驟(S5):該第一輸出電壓V1被提高,同時,該第二輸出電壓V2被提高;回到該步驟(3);以及 步驟(S6):該第一輸出電壓V1被降低,同時,該第二輸出電壓V2被降低;回到該步驟(3)。Therefore, the user can appropriately plan the architecture of the feedback circuit 1 according to the actual needs. For example, if the output signal requires more than two detection points, then the two isolation driving units 13 are required to be transmitted back to the controller 12. . Briefly, as the number of detection points increases, an equal number of isolated drive units 13 can be arranged correspondingly within the feedback line 1. Continuing to refer to FIG. 3, and referring also to FIGS. 4A and 4B, a flow chart of a method of controlling a resonant converter of the present invention is shown. The present invention is intended to provide a line having a wide range of voltage outputs, comprising the steps of: Step (S1): inputting a user control signal 4 to a controller 12 of the feedback circuit 1, wherein the controller 12 is connected to the controller 12 a power switching unit 23 of the resonant converter 2 is also connected to a PFC switch 22 of a power factor converter 21; Step (S2): the user control signal 4 is an output voltage control message, and the controller 12 is based on The user control signal 4 controls the power factor converter 21 and the power switching unit 23; Step (S3): the power factor converter 21 establishes a first output voltage V1, and the power switching unit 23 controls the resonant conversion a resonant unit 24 of the device 2 and a transformer unit 25 to establish a second output voltage V2; wherein the first output voltage V1 is established earlier than the second output voltage V2; step (S4): the controller 12 determining that the output voltage control message is a high output voltage message or a low output voltage message; if the output voltage signal is increased, performing step (S5); and, if the output is low The message proceeds to step (S6); step (S5): the first output voltage V1 is increased, and at the same time, the second output voltage V2 is increased; back to the step (3); and the step (S6): the first The output voltage V1 is lowered while the second output voltage V2 is lowered; returning to the step (3).

須特別說明的是,在本發明中,該第一輸出電壓V1必須早於該第二輸出電壓V2被建立,否則系統將會不穩定。所述使用者控制訊號4可以被轉換為一佔空比訊號,且該控制器12依照該佔空比訊號控制該功率因數轉換器21,同時,該使用者控制訊號4被轉換為一頻率訊號,該頻率訊號在一定範圍內調變,且在固定佔空比的情況下,該控制器12依照該頻率訊號控制該功率開關單元23;此時,如圖5所示,操作頻率被固定在最高頻率f1以及最低頻率f2之間,佔空比可以被固定在0.5,而頻率則隨著輸出電壓不同而調整。接續前述,該使用者控制訊號4被轉換為該頻率訊號,如果該控制器12判斷該頻率訊號已經超過預設值,此時,為了能夠繼續調整輸出電壓,該使用者控制訊號4被轉成佔空比訊號,該佔空比訊號在一定範圍內調變,並在固定頻率之情況下,該控制器12依照該佔空比訊號控制該功率開關單元23;如圖5所示,佔空比則是在最低佔空比d以及最高佔空比Tr之間調變,如此,便能夠讓輸出電壓的調變範圍更寬。It should be particularly noted that in the present invention, the first output voltage V1 must be established earlier than the second output voltage V2, otherwise the system will be unstable. The user control signal 4 can be converted into a duty cycle signal, and the controller 12 controls the power factor converter 21 according to the duty cycle signal, and the user control signal 4 is converted into a frequency signal. The frequency signal is modulated within a certain range, and in the case of a fixed duty cycle, the controller 12 controls the power switching unit 23 according to the frequency signal; at this time, as shown in FIG. 5, the operating frequency is fixed at Between the highest frequency f1 and the lowest frequency f2, the duty cycle can be fixed at 0.5, and the frequency is adjusted with the output voltage. In the foregoing, the user control signal 4 is converted into the frequency signal. If the controller 12 determines that the frequency signal has exceeded the preset value, the user control signal 4 is converted into a current value in order to continue to adjust the output voltage. The duty cycle signal, the duty cycle signal is modulated within a certain range, and in the case of a fixed frequency, the controller 12 controls the power switch unit 23 according to the duty cycle signal; as shown in FIG. 5, the duty The ratio is modulated between the lowest duty cycle d and the highest duty cycle Tr, so that the output voltage can be modulated over a wider range.

一般而言,要讓諧振轉換器2達成寬範圍電壓輸出,則調變的頻率範圍也要變寬,但這會增加硬體體積。有鑑於此,本發明之控制方法也同時提供可以令諧振轉換器2達成寬範圍輸出的方法。具體的作法係將所述使用者控制訊號4被轉換為一第一佔空比訊號,使得該控制器12依照該第一佔空比訊號控制該功率因數轉換器21,諧振轉換器2之輸出電壓要調整範圍時,可以調整該第一佔空比訊號改變該功率因數轉換器21的輸出電壓,進而改變諧振轉換器2之輸出電壓;同時,該使用者控制訊號4也被轉換成在一定範圍內調變的頻率訊號,在固定佔空比的情況下,調整控制該功率開關單元23的頻率,當頻率已經超過範圍,例如圖5所示,當頻率已經高到H點時,硬體上已經無法達到更高的頻率,則該使用者控制訊號4被轉換成在一第二佔空比訊號,使得該控制器12在固定頻率的情況下調整該第二佔空比訊號來控制該功率開關單元23,進而改變諧振轉換器2之輸出電壓。。In general, for the resonant converter 2 to achieve a wide range of voltage outputs, the frequency range of the modulation is also widened, but this increases the volume of the hardware. In view of this, the control method of the present invention also provides a method that allows the resonant converter 2 to achieve a wide range of outputs. The specific method is to convert the user control signal 4 into a first duty cycle signal, so that the controller 12 controls the power factor converter 21 and the output of the resonant converter 2 according to the first duty signal. When the voltage is to be adjusted, the first duty signal can be adjusted to change the output voltage of the power factor converter 21, thereby changing the output voltage of the resonant converter 2; meanwhile, the user control signal 4 is also converted to a certain value. The frequency signal modulated in the range, in the case of a fixed duty ratio, adjusts the frequency of the power switching unit 23, when the frequency has exceeded the range, for example, as shown in FIG. 5, when the frequency has been high to H point, the hardware If the higher frequency is not reached, the user control signal 4 is converted into a second duty signal, so that the controller 12 adjusts the second duty signal to control the fixed frequency. The power switching unit 23, in turn, changes the output voltage of the resonant converter 2. .

另外,在本發明中,使用者控制訊號4可以包含電壓值;如此設定,當該步驟(S4)判斷由所述使用者控制訊號4轉換而成的電壓值高於一預設值,則控制器12便會將佔空比以及該頻率訊號同時向上調整,使得該第一輸出電壓V1以及該第二輸出電壓V2整體工作區間被提高。相反地,當該步驟(S4)判斷由所述使用者控制訊號4轉換而成的電壓值低於預設值,則第一輸出電壓V1與第二輸出電壓V2整體工作區間則是被降低。換句話說,使用本發明之方法係以階梯式控制諧振轉換器2的整體輸出電壓。每當由使用者控制訊號4轉換而成的電壓值高(低)過一個預設值,便將第一輸出電壓V1與第二輸出電壓V2往上提升(降低)。值得說明的是,本發明的控制方法除了可以控制諧振轉換器2的寬範圍輸出電壓,也使得回授電路1的硬體設計可以比較簡單同時也降低諧振轉換器2整體的體積。In addition, in the present invention, the user control signal 4 may include a voltage value; thus, when the step (S4) determines that the voltage value converted by the user control signal 4 is higher than a preset value, then control The device 12 adjusts the duty ratio and the frequency signal upward at the same time, so that the overall operating interval of the first output voltage V1 and the second output voltage V2 is increased. Conversely, when the step (S4) determines that the voltage value converted by the user control signal 4 is lower than the preset value, the overall operating interval of the first output voltage V1 and the second output voltage V2 is lowered. In other words, the overall output voltage of the resonant converter 2 is controlled stepwise using the method of the present invention. Whenever the voltage value converted by the user control signal 4 is high (low) by a predetermined value, the first output voltage V1 and the second output voltage V2 are raised (lowered) upward. It should be noted that the control method of the present invention can control the wide range of output voltage of the resonant converter 2, and also makes the hardware design of the feedback circuit 1 relatively simple while also reducing the overall volume of the resonant converter 2.

請參考圖6,係顯示本發明之輸出電壓穩定步驟圖。當負載有變動時,可能會造成整個諧振轉換器不穩定;此時,如圖6所示,本發明之諧振轉換器的控制方法會首先執行步驟S11,以該回授電路1監測該諧振轉換器2的一輸出電流與一輸出電壓之變化。繼續地,控制方法接著執行步驟S12以判斷是否該輸出電壓的變化大於一電壓臨界值且該輸出電流的變化大於一電流臨界值。若步驟S12的判斷結果為“否”,則方法流程接著執行步驟S13。於此,必須補充說明的是,此處所稱電壓臨界值可以設定為200mV;簡單地說,若輸出電壓的變化量超過200mV,則系統會趨向不穩定;另一方面,該電流臨界值則可設定為10A,並且當輸出電流值超過10A表示系統已經操作在重載。將本發明之控制方法應用至回授電路1時,使用者可以依照諧振單元24的特性來調整電壓臨界值以及電流臨界值。Please refer to FIG. 6, which is a diagram showing the step of stabilizing the output voltage of the present invention. When the load changes, the entire resonant converter may be unstable; at this time, as shown in FIG. 6, the control method of the resonant converter of the present invention first performs step S11, and the feedback circuit 1 monitors the resonant conversion. A change in output current and an output voltage of the device 2. Continuing, the control method then performs step S12 to determine whether the change in the output voltage is greater than a voltage threshold and the change in the output current is greater than a current threshold. If the decision result in the step S12 is "NO", the method flow then proceeds to a step S13. Here, it must be additionally added that the voltage threshold referred to herein can be set to 200 mV; simply speaking, if the variation of the output voltage exceeds 200 mV, the system tends to be unstable; on the other hand, the current threshold can be Set to 10A, and when the output current value exceeds 10A, the system has been operating at heavy load. When the control method of the present invention is applied to the feedback circuit 1, the user can adjust the voltage threshold and the current threshold in accordance with the characteristics of the resonance unit 24.

相反地,若回授電路1偵測到諧振轉換器2的輸出電壓瞬降值未超過200mV,同時也偵測到諧振轉換器2的單位時間輸出電流的變化量未超過10A,則本發明之控制方法就會執行步驟S13,進以令該回授電路1依據所測得的輸出電流與輸出電壓計算出該諧振轉換器2之一頻率訊號,並對應地輸出一第一控制訊號至該諧振轉換器2。在步驟S11中,該功率開關單元23係以一脈寬調變數值被控制,一脈寬調變數值代表該功率開關單元23被導通的時間加上被關斷的時間,代表一個工作週期,而該週期範圍在二工作週期至十九工作週期之間。另外,該滿載操作頻率係依據該諧振單元24之諧振槽所得,並預先被存入於該回授電路1之控制器12中。簡單地說,在負載的變化量未達設定條件之時,回授電路1仍舊是依照(輸出電壓)誤差量進行回授補償,接著輸出以所述第一控制訊號控制該功率開關單元23的操作頻率。Conversely, if the feedback circuit 1 detects that the output voltage drop value of the resonant converter 2 does not exceed 200 mV and also detects that the variation of the unit time output current of the resonant converter 2 does not exceed 10 A, the present invention The control method performs step S13, so that the feedback circuit 1 calculates a frequency signal of the resonant converter 2 according to the measured output current and the output voltage, and correspondingly outputs a first control signal to the resonance. Converter 2. In step S11, the power switching unit 23 is controlled by a pulse width modulation value, and a pulse width modulation value represents a time when the power switching unit 23 is turned on plus a time that is turned off, representing a duty cycle. The period ranges from two to nineteen duty cycles. In addition, the full load operating frequency is obtained according to the resonant tank of the resonant unit 24, and is previously stored in the controller 12 of the feedback circuit 1. Briefly, when the amount of change of the load does not reach the set condition, the feedback circuit 1 still performs feedback compensation according to the (output voltage) error amount, and then outputs the power control unit 23 controlled by the first control signal. Operating frequency.

請同時參閱圖7,係顯示串聯諧振轉換器的量測資料圖。若步驟S12的判斷結果為“是”,方法流程便會執行步驟S14,進以令該回授電路1對應地輸出一第二控制訊號至該諧振轉換器2,使該諧振轉換器2基於一滿載操作頻率而運轉。依據發明人針對特定的諧振轉換器2之機型的量測資料,可以得知所述滿載操作頻率為100 KHz。簡單地說,當回授電路1偵測到負載的變化量超過設定條件之時(如圖7的量測資料(a)所示),回授電路1不依據(輸出電壓)誤差量進行回授補償,而是直接輸出第二控制訊號控制該功率開關單元23依照100 KHz的滿載操作頻率進行開/關切換。如圖7的量測資料(b)所示,直接控制功率開關單元23依照滿載操作頻率進行開/關切換之後,輸出電壓的瞬降值可降至0.9V,同時也不會造成穩態輸出電壓的不穩定跳動。Please also refer to Figure 7, which shows the measurement data of the series resonant converter. If the result of the determination in step S12 is YES, the method flow proceeds to step S14, so that the feedback circuit 1 correspondingly outputs a second control signal to the resonant converter 2, so that the resonant converter 2 is based on the Operates at full load operating frequency. According to the measurement data of the model of the specific resonant converter 2 by the inventors, it can be known that the full-load operating frequency is 100 KHz. Briefly, when the feedback circuit 1 detects that the amount of change in the load exceeds the set condition (as shown in the measurement data (a) of Fig. 7), the feedback circuit 1 does not return according to the (output voltage) error amount. The compensation is directly applied, and the second control signal is directly output to control the power switching unit 23 to perform on/off switching in accordance with the full load operating frequency of 100 KHz. As shown in the measurement data (b) of FIG. 7, after directly controlling the power switch unit 23 to perform on/off switching according to the full-load operating frequency, the instantaneous voltage drop of the output voltage can be reduced to 0.9V without causing a steady-state output. Unstable jitter of the voltage.

值得特別強調的是,本發明之諧振轉換器的控制方法進一步具有過負載(流)保護之功能。請重複參閱圖5與圖6,並請同時參閱圖8與圖9;其中,圖8係顯示本發明之過負載穩定步驟圖,而圖9則是顯示串聯諧振轉換器的量測資料圖。當發生過負載的時候,本發明進一步提供過負載穩定方法,包含以下步驟:(S21) 該諧振轉換器2提供能量至該負載3,且該回授電路1檢測一輸出電流;(S22)該控制器12判斷該輸出電流的變化是否上升至一第一預定值,若是,執行步驟(S23);若否,則重複執行步驟(S21);(S23) 該控制器12調整該功率開關單元23之一頻率訊號,並判斷該輸出電流的變化是否上升至一第二預定值,若是,執行步驟(S24);若否,則重複執行步驟(S21);(S24) 該回授電路1對應地輸出一第三控制訊號至該諧振轉換器2,用以關閉該功率開關單元23持續一諧振週期;接著,重複執行步驟(S21)。在本發明中,該第二預定值係大於該第一預定值,而該諧振周期係指該諧振單元24之能量完全被釋放所需時間。能量能夠被完全釋放與諧振單元24的諧振槽相關,在本發明中,該功率開關單元23係以一脈寬調變數值被控制,也就是一個佔空比數值,一脈寬調變數值代表該功率開關單元23被導通的時間加上被關斷的時間,也代表了一個工作週期,該諧振周期的範圍在一工作週期至三工作週期之間。It is particularly emphasized that the control method of the resonant converter of the present invention further has the function of overload (flow) protection. Please refer to FIG. 5 and FIG. 6 repeatedly, and please refer to FIG. 8 and FIG. 9 at the same time. FIG. 8 is a diagram showing the overload stability step of the present invention, and FIG. 9 is a measurement data diagram showing the series resonant converter. When an overload occurs, the present invention further provides an overload stabilization method comprising the steps of: (S21) the resonant converter 2 supplies energy to the load 3, and the feedback circuit 1 detects an output current; (S22) The controller 12 determines whether the change of the output current rises to a first predetermined value, and if so, performs the step (S23); if not, repeats the step (S21); (S23) the controller 12 adjusts the power switch unit 23 a frequency signal, and determining whether the change of the output current rises to a second predetermined value, and if so, performing the step (S24); if not, repeating the step (S21); (S24) the feedback circuit 1 correspondingly A third control signal is outputted to the resonant converter 2 for turning off the power switching unit 23 for a resonance period; then, the step (S21) is repeated. In the present invention, the second predetermined value is greater than the first predetermined value, and the resonant period refers to the time required for the energy of the resonant unit 24 to be completely released. The energy can be completely released in relation to the resonant tank of the resonant unit 24. In the present invention, the power switching unit 23 is controlled by a pulse width modulation value, that is, a duty cycle value, and a pulse width modulation value represents The time during which the power switching unit 23 is turned on plus the time that is turned off also represents a duty cycle ranging from one duty cycle to three duty cycles.

本發明特別設計兩個輸出電流變化量的設定值,例如第一設定值以及第二設定值分別為10A與13A。如圖9的量測資料(a)所示,當電流變化量超過10A時,回授電路1直接輸出第二控制訊號控制該功率開關單元23依照100 KHz的滿載操作頻率進行開/關切換。進一步地,若電流變化量仍持續增加並達到或超過第二個設定值(亦即,13A),則本發明之控制方法即令回授電路1對應地輸出一第三控制訊號至該諧振轉換器2,用以關閉該功率開關單元23持續兩個電壓環執行時間。執行的成效如圖7的量測資料(b)所示。The present invention specifically designs two set values of the output current change amount, for example, the first set value and the second set value are 10A and 13A, respectively. As shown in the measurement data (a) of FIG. 9, when the current variation exceeds 10 A, the feedback circuit 1 directly outputs the second control signal to control the power switching unit 23 to perform on/off switching in accordance with the 100 KHz full-load operating frequency. Further, if the amount of current change continues to increase and reaches or exceeds the second set value (ie, 13A), the control method of the present invention causes the feedback circuit 1 to correspondingly output a third control signal to the resonant converter. 2. It is used to turn off the power switch unit 23 for two voltage loop execution times. The results of the implementation are shown in the measurement data (b) of Figure 7.

如此,上述係已完整且清楚地說明本發明之諧振轉換器的控制方法的所有實施步驟;並且,經由上述可知本發明係具有下列之優點:Thus, the above-described system has completely and clearly explained all the implementation steps of the control method of the resonant converter of the present invention; and, as described above, the present invention has the following advantages:

(1)於習知的LLC串聯諧振轉換器2’(如圖1所示)的架構中,主要是閉環控制模組1’難以控制LLC串聯諧振轉換器2’提供電壓書出。因此,本發明特別提出一種諧振轉換器的控制方法,當諧振轉換器2由空載(或輕載)操作跳至滿載操作時,回授電路1會在輸出電壓的瞬降值與輸出電流的變化量超過設定值之時,控制功率開關單元23依照滿載操作頻率(例如: 100 KHz)進行開/關切換,藉此方式大幅降低輸出電壓的瞬降值。因此,本發明之控制方法可以在LLC諧振轉換器於空載操作轉滿載操作的過程中,發揮穩定輸出電壓之功效。(1) In the architecture of the conventional LLC series resonant converter 2' (shown in Fig. 1), it is mainly that the closed loop control module 1' has difficulty controlling the LLC series resonant converter 2' to provide voltage reading. Therefore, the present invention particularly proposes a control method for a resonant converter. When the resonant converter 2 is jumped from a no-load (or light-load) operation to a full-load operation, the feedback circuit 1 will have a transient value of the output voltage and an output current. When the amount of change exceeds the set value, the control power switching unit 23 performs on/off switching in accordance with the full-load operating frequency (for example, 100 KHz), whereby the instantaneous drop value of the output voltage is greatly reduced. Therefore, the control method of the present invention can exert the effect of stabilizing the output voltage during the operation of the LLC resonant converter in the no-load operation to the full load operation.

(2)除此之外,本發明之控制方法同時能夠在諧振轉換器於空載操作轉滿載操作的過程中,避免過載(流)現象的發生。具體的過載防護措施是先設立兩個輸出電流變化量的設定值。當輸出電流變化量超過第一個設定值之時(例如:10A),回授電路1直接輸出第二控制訊號控制該功率開關單元23依照滿載操作頻率進行開/關切換。並且,當電流變化量持續增大並達到或超過第二個設定值之時(例如:13A),回授電路1便會對應地輸出控制訊號以關閉該功率開關單元23持續兩個電壓環執行時間。(2) In addition to this, the control method of the present invention can simultaneously avoid the occurrence of an overload (flow) phenomenon during the transition of the resonant converter to the full load operation of the no-load operation. The specific overload protection measures are to set the two set values of the output current change amount first. When the output current change amount exceeds the first set value (for example, 10A), the feedback circuit 1 directly outputs the second control signal to control the power switch unit 23 to perform on/off switching according to the full load operation frequency. Moreover, when the current change amount continues to increase and reaches or exceeds the second set value (for example, 13A), the feedback circuit 1 correspondingly outputs a control signal to turn off the power switch unit 23 for two voltage loops to be executed. time.

必須加以強調的是,上述之詳細說明係針對本發明可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。It is to be understood that the foregoing detailed description of the embodiments of the present invention is not intended to Both should be included in the scope of the patent in this case.

<本發明> 1 回授電路 2 諧振轉換器 3 負載 4 使用者控制訊號 21 功率因數轉換器 22 PFC開關 23 功率開關單元 24 諧振單元 25 變壓器單元 26 輸出整流單元 27 輸出濾波單元 11 訊號檢出單元 12 控制器 13 隔離驅動單元 16a 第二電性插銷 S1-S6 步驟 S11-S14 步驟 S21-S24 步驟 V1 第一輸出電壓 V2 第二輸出電壓 f2 最高頻率 f1 最低頻率 D 最低佔空比 Tr 最高佔空比 <present invention>   1 Feedback circuit 2 Resonant converter 3 Load 4 User control signal 21 Power factor converter 22 PFC switch 23 Power switch unit 24 Resonant unit 25 Transformer unit 26 Output rectification unit 27 Output filter unit 11 Signal detection unit 12 Controller 13 Isolation drive unit 16a Second electrical latch S1-S6 Step S11-S14 Step S21-S24 Step V1 First output voltage V2 Second output voltage f2 Maximum frequency f1 Lowest frequency D Minimum duty ratio Tr Maximum duty ratio

<習知> 2’ LLC串聯諧振轉換器 VDC’ 直流電源 23’ 功率開關單元 24’ 諧振單元 25’ 變壓器單元 26’ 輸出整流單元 27’ 輸出濾波單元 1’ 閉環控制模組 11’ 訊號檢出單元 12’ 控制器單元 13’ 隔離驅動單元 3’ 負載 <知知>   2' LLC Series Resonant Converter VDC' DC Power Supply 23' Power Switch Unit 24' Resonant Unit 25' Transformer Unit 26' Output Rectifier Unit 27' Output Filter Unit 1' Closed Loop Control Module 11' Signal Detection Unit 12' Controller Unit 13' isolated drive unit 3' load

圖1係顯示習知的一種LLC串聯諧振轉換器的電路架構圖; 圖2係顯示習知的LLC串聯諧振轉換器的量測資料圖; 圖3係顯示應用有本發明之一種諧振轉換器的控制方法的諧振轉換器的架構圖; 圖4A與圖4B係顯示本發明之一種諧振轉換器的控制方法的流程圖; 圖5係顯示本發明之一種諧振轉換器的控制方法的曲線圖; 圖6係顯示本發明之輸出電壓穩定步驟圖; 圖7係顯示串聯諧振轉換器的量測資料圖; 圖8係顯示本發明之過負載穩定步驟圖;以及 圖9係顯示串聯諧振轉換器的量測資料圖。1 is a circuit diagram showing a conventional LLC series resonant converter; FIG. 2 is a measurement data diagram showing a conventional LLC series resonant converter; and FIG. 3 is a diagram showing a resonant converter to which the present invention is applied. FIG. 4A and FIG. 4B are flowcharts showing a control method of a resonant converter of the present invention; FIG. 5 is a graph showing a control method of a resonant converter of the present invention; 6 shows the step of stabilizing the output voltage of the present invention; FIG. 7 is a graph showing the measurement of the series resonant converter; FIG. 8 is a diagram showing the overload stabilizing step of the present invention; and FIG. 9 is a graph showing the amount of the series resonant converter. Survey data map.

Claims (10)

一種諧振轉換器的控制方法,係應用於一回授電路之中;其中,該回授電路係連接於一諧振轉換器與連接於該諧振轉換器的至少一負載之間;該諧振轉換器的控制方法係包括以下步驟: (1)輸入一使用者控制訊號至該回授電路之一控制器中,其中,該控制器係連接該諧振轉換器之一功率開關單元,同時還連接一功率因數轉換器之一PFC開關; (2)該使用者控制訊號為一輸出電壓控制訊息,且該控制器根據該輸出電壓控制訊息制該功率因數轉換器以及該功率開關單元; (3)該功率因數轉換器建立一第一輸出電壓,同時,該功率開關單元控制該諧振轉換器的一諧振單元以及一變壓器單元,以建立一第二輸出電壓;其中,該第一輸出電壓係早於該第二輸出電壓被建立; (4)該控制器判斷該輸出電壓控制訊息為一調高輸出電壓訊息或一調低輸出電壓訊息;若為所述調高輸出電壓訊息則執行步驟(5);並且,若為所述調低輸出電壓訊息則執行步驟(6); (5)該第一輸出電壓被提高,同時,該第二輸出電壓被提高;回到該步驟(3);以及 (6)該第一輸出電壓被降低,同時,該第二輸出電壓被降低;回到該步驟(3)。A control method for a resonant converter is applied to a feedback circuit; wherein the feedback circuit is connected between a resonant converter and at least one load connected to the resonant converter; the resonant converter The control method comprises the following steps: (1) inputting a user control signal to a controller of the feedback circuit, wherein the controller is connected to one of the power converter units of the resonant converter, and is also connected with a power factor a PFC switch of the converter; (2) the user control signal is an output voltage control message, and the controller generates the power factor converter and the power switch unit according to the output voltage control message; (3) the power factor The converter establishes a first output voltage, and the power switching unit controls a resonant unit of the resonant converter and a transformer unit to establish a second output voltage; wherein the first output voltage is earlier than the second The output voltage is established; (4) the controller determines that the output voltage control message is a high output voltage message or a low output voltage message; Step (5) is performed to increase the output voltage message; and step (6) is performed if the output voltage message is turned down; (5) the first output voltage is increased, and the second output voltage is increased. Returning to the step (3); and (6) the first output voltage is lowered while the second output voltage is lowered; returning to the step (3). 如申請專利範圍第1項所述之諧振轉換器的控制方法,其中,在該步驟(5)與該步驟(6)之後,該使用者控制訊號被轉換為一頻率訊號,且該頻率訊號在一定範圍內調變;並且,在固定該頻率訊號的一佔空比的情況下,該控制器依照該頻率訊號控制該功率開關單元。The control method of the resonant converter according to claim 1, wherein after the step (5) and the step (6), the user control signal is converted into a frequency signal, and the frequency signal is The modulation is controlled within a certain range; and, in the case of fixing a duty ratio of the frequency signal, the controller controls the power switching unit according to the frequency signal. 如申請專利範圍第1項所述之諧振轉換器的控制方法,其中,在該步驟(5)與該步驟(6)之後,該使用者控制訊號被轉換為一佔空比訊號,且該佔空比訊號在一定範圍內調變;並且,在固定該佔空比訊號的一頻率的情況下,該控制器依照該佔空比訊號控制該功率開關單元。The method for controlling a resonant converter according to claim 1, wherein after the step (5) and the step (6), the user control signal is converted into a duty cycle signal, and the The space ratio signal is modulated within a certain range; and, in the case of fixing a frequency of the duty cycle signal, the controller controls the power switch unit according to the duty ratio signal. 如申請專利範圍第1項所述之諧振轉換器的控制方法,更包括以下步驟: (71)以該回授電路監測該諧振轉換器的一輸出電流與一輸出電壓之變化; (72)判斷在一週期範圍內,是否該輸出電壓的變化大於一電壓臨界值且該輸出電流的變化大於一電流臨界值;若是,執行步驟(74);若否,則執行步驟(73); (73)該回授電路1依據所測得的該輸出電流與該輸出電壓計算出該諧振轉換器之一頻率訊號,並對應地輸出一第一控制訊號至該諧振轉換器;接著,重複執行該步驟(71); (74)該回授電路對應地輸出一第二控制訊號至該諧振轉換器,使該諧振轉換器基於一滿載操作頻率而運轉;接著,重複執行該步驟(71)。The method for controlling a resonant converter according to claim 1, further comprising the steps of: (71) monitoring, by the feedback circuit, a change in an output current and an output voltage of the resonant converter; (72) determining Whether the change of the output voltage is greater than a voltage threshold and the change of the output current is greater than a current threshold in a period of time; if yes, performing step (74); if not, performing step (73); (73) The feedback circuit 1 calculates a frequency signal of the resonant converter according to the measured output current and the output voltage, and correspondingly outputs a first control signal to the resonant converter; and then repeats the step ( 71); (74) the feedback circuit correspondingly outputs a second control signal to the resonant converter, causing the resonant converter to operate based on a full load operating frequency; and then repeating the step (71). 如申請專利範圍第4項所述之諧振轉換器的控制方法,其中,在該步驟(71)之中,該功率開關單元係受到一脈寬調變訊號控制;並且,該脈寬調變訊號包含2-19個工作週期,且每個工作週期包含該功率開關單元被導通的時間與該功率開關單元被關斷的時間。The control method of the resonant converter of claim 4, wherein in the step (71), the power switching unit is controlled by a pulse width modulation signal; and the pulse width modulation signal It includes 2-19 duty cycles, and each duty cycle includes the time when the power switch unit is turned on and the time when the power switch unit is turned off. 如申請專利範圍第4項所述之諧振轉換器的控制方法,其中,該滿載操作頻率係依據該諧振單元所得,並預先被存入於該回授電路之控制器中。The method of controlling a resonant converter according to claim 4, wherein the full-load operating frequency is obtained according to the resonant unit and is pre-stored in a controller of the feedback circuit. 如申請專利範圍第1項所述之諧振轉換器的控制方法,更包括以下步驟: (81)該諧振轉換器提供能量至該負載,且該回授電路檢測該諧振轉換器的一輸出電流; (82)該控制器判斷該輸出電流的變化是否上升至一第一預定值,若是,執行步驟(83);若否,則重複執行該步驟(81); (83)該控制器調整該功率開關單元之一頻率訊號,並判斷該輸出電流的變化是否上升至一第二預定值,若是,執行步驟(84);若否,則重複執行步驟(81); (84)該回授電路對應地輸出一第三控制訊號至該諧振轉換器,以關閉該功率開關單元持續一諧振週期;接著,重複執行步驟(81)。The control method of the resonant converter according to claim 1, further comprising the following steps: (81) the resonant converter supplies energy to the load, and the feedback circuit detects an output current of the resonant converter; (82) the controller determines whether the change in the output current rises to a first predetermined value, and if so, performs step (83); if not, repeats the step (81); (83) the controller adjusts the power a frequency signal of the switching unit, and determining whether the change of the output current rises to a second predetermined value; if yes, performing step (84); if not, repeating step (81); (84) corresponding to the feedback circuit A third control signal is output to the resonant converter to turn off the power switching unit for a resonance period; then, step (81) is repeatedly performed. 如申請專利範圍第7項所述之諧振轉換器的控制方法,其中,該第二預定值係大於該第一預定值。The control method of the resonant converter of claim 7, wherein the second predetermined value is greater than the first predetermined value. 如申請專利範圍第7項所述之諧振轉換器的控制方法,其中,該諧振周期係指該諧振單元之能量完全被釋放所需時間。The control method of the resonant converter according to claim 7, wherein the resonant period refers to a time required for the energy of the resonant unit to be completely released. 如申請專利範圍第7項所述之諧振轉換器的控制方法,其中,該功率開關單元23係以一脈寬調變數值被控制,一脈寬調變數值代表該功率開關單元23被導通的時間加上被關斷的時間,代表一個工作週期,該諧振周期的範圍在一工作週期至三工作週期之間。The control method of the resonant converter according to claim 7, wherein the power switching unit 23 is controlled by a pulse width modulation value, and the pulse width modulation value represents that the power switching unit 23 is turned on. The time plus the time that is turned off represents a duty cycle that ranges from one duty cycle to three duty cycles.
TW107104678A 2018-02-09 2018-02-09 Method for controlling resonant converter TWI672899B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107104678A TWI672899B (en) 2018-02-09 2018-02-09 Method for controlling resonant converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107104678A TWI672899B (en) 2018-02-09 2018-02-09 Method for controlling resonant converter

Publications (2)

Publication Number Publication Date
TW201935834A TW201935834A (en) 2019-09-01
TWI672899B true TWI672899B (en) 2019-09-21

Family

ID=68618518

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107104678A TWI672899B (en) 2018-02-09 2018-02-09 Method for controlling resonant converter

Country Status (1)

Country Link
TW (1) TWI672899B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755736B (en) * 2020-05-22 2022-02-21 亞源科技股份有限公司 Conversion device with overload control and method of overload control the same
CN112003480B (en) * 2020-09-01 2022-11-08 亚瑞源科技(深圳)有限公司 Conversion device with overload control function and overload control method thereof
TWI812354B (en) * 2022-07-18 2023-08-11 宏碁股份有限公司 Power supply device with high efficiency

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635524A (en) * 2008-07-25 2010-01-27 美国思睿逻辑有限公司 Transformer with split primary winding
TW201316668A (en) * 2011-09-29 2013-04-16 Fsp Technology Inc Resonant power converion apparatus
TW201332274A (en) * 2012-01-19 2013-08-01 Xiao-Xian Nian LLC resonant type converter operated at near constant frequency
CN104377959A (en) * 2013-08-16 2015-02-25 台达电子企业管理(上海)有限公司 Power converter and method for stabilizing voltage gain
CN105207484A (en) * 2015-08-31 2015-12-30 天津电气科学研究院有限公司 Novel full-bridge LLC no-load and loaded voltage control method
CN204967624U (en) * 2015-10-14 2016-01-13 苏州翊宣电子有限公司 Soft switching power supply system of LLC resonance based on integrated main inductance and resonant inductance
CN205123584U (en) * 2015-10-31 2016-03-30 哈尔滨理工大学 3kW communication power supply based on LLC resonant transformation ware
TWI601367B (en) * 2016-10-05 2017-10-01 A DC-DC Converter Based on Load Current Modulation Full-Bridge Control Mode

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635524A (en) * 2008-07-25 2010-01-27 美国思睿逻辑有限公司 Transformer with split primary winding
TW201316668A (en) * 2011-09-29 2013-04-16 Fsp Technology Inc Resonant power converion apparatus
TWI583117B (en) * 2011-09-29 2017-05-11 全漢企業股份有限公司 Resonant power converion apparatus
TW201332274A (en) * 2012-01-19 2013-08-01 Xiao-Xian Nian LLC resonant type converter operated at near constant frequency
TWI437809B (en) * 2012-01-19 2014-05-11
CN104377959A (en) * 2013-08-16 2015-02-25 台达电子企业管理(上海)有限公司 Power converter and method for stabilizing voltage gain
CN105207484A (en) * 2015-08-31 2015-12-30 天津电气科学研究院有限公司 Novel full-bridge LLC no-load and loaded voltage control method
CN204967624U (en) * 2015-10-14 2016-01-13 苏州翊宣电子有限公司 Soft switching power supply system of LLC resonance based on integrated main inductance and resonant inductance
CN205123584U (en) * 2015-10-31 2016-03-30 哈尔滨理工大学 3kW communication power supply based on LLC resonant transformation ware
TWI601367B (en) * 2016-10-05 2017-10-01 A DC-DC Converter Based on Load Current Modulation Full-Bridge Control Mode

Also Published As

Publication number Publication date
TW201935834A (en) 2019-09-01

Similar Documents

Publication Publication Date Title
RU2427068C2 (en) Resonant direct current converter and control method of this converter
US10097077B2 (en) Control method for improving dynamic response of switch power
JP6004197B2 (en) Power converter
US9543847B2 (en) Switched mode power supply with improved light load efficiency
TWI535173B (en) Resonant power conversion apparatus and control method thereof
TWI542128B (en) Dc to dc converter system and method for dc to dc conversion
US8427847B2 (en) Resonant converter
US10250126B1 (en) Method for controlling resonant converter
US20130016531A1 (en) Power supply device and method of controlling power supply device
TWI672899B (en) Method for controlling resonant converter
JP2004503198A (en) Method and apparatus for improving the light load efficiency of a switching regulator
WO2020015391A1 (en) Control method for improving output precision of switching power supply
JP6089529B2 (en) Switching power supply
JP2011087394A (en) Switching element driving control circuit and switching power supply device
JP2013236428A (en) Dc conversion device
CN110138222B (en) Control method of resonant converter
JP7322881B2 (en) switching power supply
CN110957915B (en) Active clamping flyback power converter capable of switching operation modes
JP4039362B2 (en) DC converter
JP6810150B2 (en) Switching power supply and semiconductor device
JP2002216986A (en) Electric discharge lamp lighting equipment
TWI751725B (en) Llc resonant converter and method for control the same
JP2006158109A (en) Chopper
KR20060056700A (en) Switching mode power supply having soft start features
TW202414979A (en) Switching power converter circuit and conversion control circuit and method thereof