TWI662555B - Data reading device and data reading method for design-for-testing - Google Patents

Data reading device and data reading method for design-for-testing Download PDF

Info

Publication number
TWI662555B
TWI662555B TW107119923A TW107119923A TWI662555B TW I662555 B TWI662555 B TW I662555B TW 107119923 A TW107119923 A TW 107119923A TW 107119923 A TW107119923 A TW 107119923A TW I662555 B TWI662555 B TW I662555B
Authority
TW
Taiwan
Prior art keywords
data
clock
signal
trigger signal
negative
Prior art date
Application number
TW107119923A
Other languages
Chinese (zh)
Other versions
TW202001921A (en
Inventor
林哲民
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW107119923A priority Critical patent/TWI662555B/en
Application granted granted Critical
Publication of TWI662555B publication Critical patent/TWI662555B/en
Publication of TW202001921A publication Critical patent/TW202001921A/en

Links

Landscapes

  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

一種用於可測試性設計的資料讀取裝置及資料讀取方法。資料讀取裝置包括緩衝器以及資料序列化電路。資料序列化電路接收時脈正緣觸發信號、時脈負緣觸發信號、觸發遮罩信號與待測資料。資料序列化電路依據觸發遮罩信號遮蔽時脈正緣觸發信號與時脈負緣觸發信號其中之一,並依據並未被遮蔽的時脈正緣觸發信號或時脈負緣觸發信號以將部分的待測資料提供至資料序列化電路的輸出端以作為資料讀取裝置的輸出信號。藉此,可增大待測資料的資料有效窗口。A data reading device and a data reading method for testability design. The data reading device includes a buffer and a data serialization circuit. The data serialization circuit receives a clock positive edge trigger signal, a clock negative edge trigger signal, a trigger mask signal, and data to be measured. The data serialization circuit masks one of the clock positive edge trigger signal and the clock negative edge trigger signal according to the trigger mask signal, and uses the clock positive edge trigger signal or the clock negative edge trigger signal to be uncovered to The data to be tested is provided to the output of the data serialization circuit as an output signal of the data reading device. With this, the data valid window of the data to be measured can be enlarged.

Description

用於可測試性設計的資料讀取裝置及資料讀取方法Data reading device and method for testability design

本發明是有關於一種可測試性設計(Design for Testing;DFT)技術,且特別是有關於一種用於可測試性設計的資料讀取裝置及資料讀取方法。 The invention relates to a design for testing (DFT) technology, and in particular, to a data reading device and a data reading method for testability design.

在可測試性設計(Design for Testing;DFT)技術中,為了方便對晶片或電路的功能進行測試或驗證,通常會在電路的設計階段植入相關的測試電路,以便於在電路設計完成後進行測試。 In Design for Testing (DFT) technology, in order to facilitate the testing or verification of the function of a chip or a circuit, a related test circuit is usually implanted during the design phase of the circuit so that it can be performed after the circuit design is completed. test.

當測試機台利用對晶片或電路進行信號的量測時,由於測試電路中每個接腳的信號傳遞速度因接腳阻抗、走線長度、邏輯閘反應時間不盡相同而讓信號在傳遞過程中發生延遲致能/禁能的情形,此種現象可稱為是資料偏斜(data skew)。基於半導體製程的技術進步及通訊規格逐漸提升其傳輸能力的情況下,電路的信號傳輸速度將可預期地愈來愈快,但也導致可利用的資料有效 窗口(data valid window)也將愈來愈小。此外,當接腳鄰近電力線時,也可能因為電力線的電力傳輸而使得此接腳中信號發生資料偏斜。 When the test machine uses signal measurement on the chip or circuit, the signal transmission speed of each pin in the test circuit is different due to the pin impedance, trace length, and logic gate response time. In the case of delayed enabling / disabling, this phenomenon can be called data skew. In the case of technological progress based on semiconductor processes and communication specifications that gradually increase its transmission capacity, the signal transmission speed of the circuit will be expected to be faster and faster, but it will also lead to effective data availability. The data valid window will also get smaller and smaller. In addition, when the pin is close to the power line, the data in this pin may be skewed due to the power transmission of the power line.

如此一來,想要在高速情況下從資料有效窗口中準確地獲得待測信號的難度亦愈來愈高。因此,如何更易於獲得並測試待測信號,便是在信號測試領域中長年存在的問題之一。 As a result, it is becoming increasingly difficult to accurately obtain the signal to be measured from the data valid window at high speeds. Therefore, how to more easily obtain and test the signal under test is one of the problems that has existed in the signal testing field for many years.

本發明提供一種用於可測試性設計的資料讀取裝置及資料讀取方法,其用以加大待測信號中可利用的資料有效窗口。 The invention provides a data reading device and a data reading method for testability design, which are used to increase the effective window of data available in the signal to be tested.

本發明實施例所述的用於可測試性設計的資料讀取裝置包括緩衝器以及資料序列化電路。緩衝器用以暫存待測資料。資料序列化電路耦接緩衝器。資料序列化電路接收時脈正緣觸發信號、時脈負緣觸發信號、觸發遮罩信號與待測資料。資料序列化電路依據所述觸發遮罩信號以遮蔽時脈正緣觸發信號與時脈負緣觸發信號其中之一,並依據並未被遮蔽的時脈正緣觸發信號或時脈負緣觸發信號以將部分的待測資料提供至資料序列化電路的輸出端以作為資料讀取裝置的輸出信號。 The data reading device for testability design according to the embodiment of the present invention includes a buffer and a data serialization circuit. The buffer is used to temporarily store the data to be tested. The data serialization circuit is coupled to the buffer. The data serialization circuit receives a clock positive edge trigger signal, a clock negative edge trigger signal, a trigger mask signal, and data to be measured. The data serialization circuit masks one of the clock positive edge trigger signal and the clock negative edge trigger signal according to the trigger mask signal, and according to the unmasked clock positive edge trigger signal or clock negative edge trigger signal A part of the data to be tested is provided to the output end of the data serialization circuit as an output signal of the data reading device.

本發明實施例所述的用於可測試性設計的資料讀取方法適用於包括資料序列化電路的資料讀取裝置。所述資料讀取方法包括下列步驟:獲得時脈正緣觸發信號、時脈負緣觸發信號、觸發遮罩信號與待測資料;以及,依據所述觸發遮罩信號以遮蔽所 述時脈正緣觸發信號與所述時脈負緣觸發信號其中之一,並依據並未被遮蔽的時脈正緣觸發信號或時脈負緣觸發信號以將部分的待測資料提供至資料序列化電路的輸出端以作為資料讀取裝置的輸出信號。 The data reading method for testability design according to the embodiment of the present invention is applicable to a data reading device including a data serialization circuit. The data reading method includes the following steps: obtaining a clock positive edge trigger signal, a clock negative edge trigger signal, a trigger mask signal, and the data to be measured; and shielding the data according to the trigger mask signal. Said one of the clock positive edge trigger signal and the clock negative edge trigger signal, and according to the unmasked clock positive edge trigger signal or clock negative edge trigger signal to provide part of the data to be tested to the data The output end of the serialization circuit is used as an output signal of the data reading device.

基於上述,本發明實施例所述的資料讀取裝置與資料讀取方法可在讀取待測信號時,利用額外設置的觸發遮蔽信號來阻擋或遮蔽時脈正緣觸發信號與時脈負緣觸發信號的其中之一,並利用並未被遮蔽的另一個觸發信號來獲得對應的部分待測資料。如此一來,待測資料的輸出時間將會從原有時脈的一個時脈週期的一半增加到一個時脈週期。藉此,便可在不調整使用此資料讀取裝置的晶片中之內部資料類型、不改變時脈或相關配置的情況下增加可使用的資料有效窗口,讓外部的測試機台能夠更為簡易地判讀資料讀取裝置所獲得的待測資料的正確性。 Based on the above, the data reading device and data reading method according to the embodiments of the present invention can use an additional trigger mask signal to block or mask the clock positive edge trigger signal and the clock negative edge when reading the signal to be measured. One of the trigger signals, and another trigger signal that is not masked is used to obtain the corresponding part of the data to be tested. As a result, the output time of the data to be measured will increase from half of a clock cycle of the original clock to a clock cycle. In this way, the available data valid window can be increased without adjusting the internal data type in the chip using this data reading device, without changing the clock or related configuration, and making the external test machine easier. To judge the correctness of the data to be tested obtained by the data reading device.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.

100‧‧‧資料讀取電路 100‧‧‧Data reading circuit

110‧‧‧緩衝器 110‧‧‧Buffer

112‧‧‧先進先出緩衝器 112‧‧‧ FIFO buffer

114‧‧‧並列轉串列緩衝器 114‧‧‧ Parallel to Serial Buffer

120‧‧‧資料序列化電路 120‧‧‧Data serialization circuit

130‧‧‧晶片外驅動器 130‧‧‧ Off-chip driver

140‧‧‧襯墊 140‧‧‧ cushion

RWD‧‧‧待測資料 RWD‧‧‧Data to be tested

D+‧‧‧正緣待測資料 D + ‧‧‧Positive data to be tested

D-‧‧‧負緣待測資料 D-‧‧‧ Negative margins to be tested data

D<3:0>、D0~D3‧‧‧資料 D <3: 0, D0 ~ D3‧‧‧ Data

CLKOUT_T‧‧‧時脈正緣觸發信號 CLKOUT_T‧‧‧ Clock positive edge trigger signal

CLKOUT_C‧‧‧時脈負緣觸發信號 CLKOUT_C‧‧‧ Clock negative edge trigger signal

DMASK‧‧‧觸發遮罩信號 DMASK‧‧‧Trigger mask signal

tCK‧‧‧時脈週期 tCK‧‧‧clock cycle

DVW1、DVW2、DVW3‧‧‧資料有效窗口 DVW1, DVW2, DVW3‧‧‧Data valid window

t1‧‧‧時間 t1‧‧‧time

圖1是依照本發明一實施例的一種資料讀取裝置的方塊圖。 FIG. 1 is a block diagram of a data reading device according to an embodiment of the present invention.

圖2是用來說明時脈信號DQS、時脈正緣觸發信號CLKOUT_T、時脈負緣觸發信號CLKOUT_C及待測資料D0~D3與D<3:0>的波型圖。 FIG. 2 is a waveform diagram for explaining the clock signal DQS, the clock positive edge trigger signal CLKOUT_T, the clock negative edge trigger signal CLKOUT_C, and the data to be measured D0 ~ D3 and D <3: 0.

圖3是依據本發明一實施例以說明時脈信號DQS、時脈正緣觸發信號CLKOUT_T、時脈負緣觸發信號CLKOUT_C、觸發遮罩信號DMASK及待測資料D0~D3與D<3:0>的波型圖。 FIG. 3 illustrates a clock signal DQS, a clock positive edge trigger signal CLKOUT_T, a clock negative edge trigger signal CLKOUT_C, a trigger mask signal DMASK, and data to be measured D0 ~ D3 and D <3: 0 according to an embodiment of the present invention. > Wave pattern.

圖4是圖1中資料序列化電路120的方塊圖。 FIG. 4 is a block diagram of the data serialization circuit 120 in FIG. 1.

圖5是依照本發明一實施例的一種用於可測試性設計的資料讀取方法的流程圖。 FIG. 5 is a flowchart of a data reading method for testability design according to an embodiment of the present invention.

如圖1所示,資料讀取電路100可應用於動態資料隨機存取記憶體(DRAM)裝置,尤其是應用於低功率(low power)動態隨機存取記憶體裝置。低功率動態隨機存取記憶體裝置為了降低電源消耗而將延遲鎖定迴路(delay lock loop;DLL)從原有的DRAM架構中移除,因而降低了DRAM裝置中資料的傳輸穩定度。本實施例的資料讀取電路100可設置於晶片中,並且位於晶片外部的測試機台可利用資料讀取電路100來讀取欲待測量的相關信號或資料。 As shown in FIG. 1, the data reading circuit 100 can be applied to a dynamic data random access memory (DRAM) device, and particularly to a low power dynamic random access memory device. In order to reduce power consumption, the low power dynamic random access memory device removes a delay lock loop (DLL) from the original DRAM architecture, thereby reducing the stability of data transmission in the DRAM device. The data reading circuit 100 of this embodiment may be disposed in a chip, and a test machine located outside the chip may use the data reading circuit 100 to read the relevant signals or data to be measured.

圖1中的資料讀取電路100主要包括緩衝器110以及資料序列化電路120。緩衝器110用以暫存從記憶體陣列獲得的待測資料RWD。詳細來說,可依據記憶體位址對記憶胞陣列進行定位,並將位於記憶胞陣列中與記憶體位址相對應的資料透過讀寫資料線讀出以成為待測資料RWD,並將待測資料RWD暫存至緩衝器110中。 The data reading circuit 100 in FIG. 1 mainly includes a buffer 110 and a data serialization circuit 120. The buffer 110 is configured to temporarily store the data to be tested RWD obtained from the memory array. In detail, the memory cell array can be located according to the memory address, and the data corresponding to the memory address in the memory cell array can be read out through the read-write data line to become the RWD, and the data to be tested The RWD is temporarily stored in the buffer 110.

本實施例的緩衝器110包括先進先出(FIFO)緩衝器112以及並列轉串列緩衝器114。先進先出緩衝器112會將較先獲得的資料較先提供到其輸出端,較後獲得的資料則會在前面的資料皆已輸出之後再行輸出,以供後續的元件使用。並列轉串列緩衝器114耦接至先進先出緩衝器112,並將以並列形式傳輸的待測資料轉換為以串列形式傳輸的待測資料。應用本實施例者可依據DRAM裝置內部的資料形式與DRAM裝置外部輸出的資料形式而調整緩衝器110的結構。 The buffer 110 in this embodiment includes a first-in-first-out (FIFO) buffer 112 and a parallel-to-serial buffer 114. The first-in-first-out buffer 112 provides the data obtained earlier to its output end, and the data obtained later will be output after all the previous data has been output for subsequent components. The parallel-to-serial buffer 114 is coupled to the first-in-first-out buffer 112 and converts the data to be tested transmitted in parallel to the data to be tested transmitted in serial. Those applying this embodiment can adjust the structure of the buffer 110 according to the data format inside the DRAM device and the data format output externally by the DRAM device.

資料序列化電路120接收時脈正緣觸發信號CLKOUT_T、時脈負緣觸發信號CLKOUT_C、觸發遮罩信號DMASK與從緩衝器110中獲得的待測資料。本實施例中,待測資料包括對應至時脈正緣觸發信號CLKOUT_T的正緣待測資料D+以及對應至時脈負緣觸發信號CLKOUT_C的負緣待測資料D-。正緣待測資料D+與負緣待測資料D-皆是待測資料的一部份。換句話說,資料序列化電路120利用致能的時脈正緣觸發信號CLKOUT_T而將正緣待測資料D+輸出至襯墊140,資料序列化電路120亦利用致能的時脈負緣觸發信號CLKOUT_C而將負緣待測資料D-輸出至襯墊140。 The data serialization circuit 120 receives a clock positive edge trigger signal CLKOUT_T, a clock negative edge trigger signal CLKOUT_C, a trigger mask signal DMASK, and data under test obtained from the buffer 110. In this embodiment, the data to be tested includes a positive edge data D + corresponding to the clock positive edge trigger signal CLKOUT_T and a negative edge data D- corresponding to the clock negative edge trigger signal CLKOUT_C. The positive data to be measured D + and the negative data to be measured D- are both part of the data to be tested. In other words, the data serialization circuit 120 uses the enabled clock positive edge trigger signal CLKOUT_T to output the positive edge data D + to the pad 140, and the data serialization circuit 120 also uses the enabled clock negative edge trigger signal. CLKOUT_C and output the negative edge data D- to the pad 140.

資料序列化電路120依據觸發遮罩信號DMASK以遮蔽時脈正緣觸發信號CLKOUT_T與時脈負緣觸發信號CLKOUT_C其中之一,並依據並未被遮蔽的時脈正緣觸發信號CLKOUT_T或時脈負緣觸發信號CLKOUT_C將部分的待測資料提供至資料序列 化電路120的輸出端,以作為資料讀取裝置100的輸出信號。下述實施例中將詳細描述資料序列化電路120的詳細制動方式。 The data serialization circuit 120 masks one of the clock positive edge trigger signal CLKOUT_T and the clock negative edge trigger signal CLKOUT_C according to the trigger mask signal DMASK, and according to the clock positive edge trigger signal CLKOUT_T or clock negative Edge trigger signal CLKOUT_C provides part of the data to be tested to the data sequence The output terminal of the conversion circuit 120 is used as an output signal of the data reading device 100. The detailed braking manner of the data serialization circuit 120 will be described in detail in the following embodiments.

圖1中的資料讀取電路100還更包括晶片外驅動器(off-chip driver;OCD)130以及襯墊140。資料讀取電路100利用晶片外驅動器130以及襯墊140以將資料讀取裝置100的輸出信號透過襯墊140輸出至與襯墊140相電性耦接的裝置,例如測試機台。晶片外驅動器130耦接資料序列化電路120以接收資料讀取裝置100的輸出信號。襯墊140電性連接至晶片外驅動器130。晶片外驅動器130依據資料序列化電路120的輸出端所提供的輸出信號以使部分的待測資料提供至襯墊140。 The data reading circuit 100 in FIG. 1 further includes an off-chip driver (OCD) 130 and a pad 140. The data reading circuit 100 utilizes the off-chip driver 130 and the pad 140 to output the output signal of the data reading device 100 through the pad 140 to a device electrically coupled to the pad 140, such as a test machine. The off-chip driver 130 is coupled to the data serialization circuit 120 to receive an output signal of the data reading device 100. The pad 140 is electrically connected to the off-chip driver 130. The off-chip driver 130 provides part of the data to be tested to the pad 140 according to an output signal provided by an output terminal of the data serialization circuit 120.

請參見圖2,在時脈信號DQS於負緣轉換至正緣時,時脈正緣觸發信號CLKOUT_T將會致能;在時脈信號DQS於正緣轉換至負緣時,時脈負緣觸發信號CLKOUT_C將會致能。在此假設圖1的資料序列化電路120並未使用觸發遮罩信號來實現本發明實施例。為了盡速將待測資料輸出,資料序列化電路120通常會在時脈正緣觸發信號CLKOUT_T致能時傳送一筆資料(例如傳送正緣待測資料D+,且資料D<3:0>中的資料有效窗口DVW1對應於正緣待測資料D+),且於時脈負緣觸發信號CLKOUT_C致能時傳送另一筆資料(例如傳送負緣待測資料D-,且資料D<3:0>中的資料有效窗口DVW2對應於負緣待測資料D-)。本實施例中,在正緣觸發信號CLKOUT_T致能後傳輸的待測資料稱為是正緣待測資料D+;在負緣觸發信號CLKOUT_C致能後傳輸的待測資料 稱為是負緣待測資料D-。在本實施例中,正緣待測資料D+或是負緣待測資料D-的輸出時間皆為時脈信號QDS中完整的一個時脈週期tCK的一半。為方便說明,資料D<3:0>中對應正緣待測資料D+的部分為[0,1,0,1],資料D<3:0>中對應負緣待測資料D-的部分則為[1,0,1,0]。 See Figure 2. When the clock signal DQS transitions from the negative edge to the positive edge, the clock positive edge trigger signal CLKOUT_T will be enabled. When the clock signal DQS transitions from the positive edge to the negative edge, the negative clock edge will trigger. The signal CLKOUT_C will be enabled. It is assumed here that the data serialization circuit 120 of FIG. 1 does not use a trigger mask signal to implement the embodiment of the present invention. In order to output the data to be tested as soon as possible, the data serialization circuit 120 usually transmits a piece of data when the clock positive edge trigger signal CLKOUT_T is enabled (for example, the positive edge data to be tested D + is transmitted, and The data valid window DVW1 corresponds to the positive edge data to be measured D +), and another data is transmitted when the clock negative edge trigger signal CLKOUT_C is enabled (for example, the negative edge data to be measured D- is transmitted, and the data D <3: 0> The data valid window DVW2 corresponds to the negative edge data D-). In this embodiment, the data to be tested transmitted after the positive edge trigger signal CLKOUT_T is enabled is called positive data to be tested D +; the data to be tested transmitted after the negative edge trigger signal CLKOUT_C is enabled This is called negative data D-. In this embodiment, the output time of the positive edge data to be measured D + or the negative edge data to be measured D- is half of a complete clock cycle tCK in the clock signal QDS. For the convenience of explanation, the part of data D <3: 0> that corresponds to the data D + for the positive edge is [0,1,0,1], and the part of data D <3: 0> that corresponds to the data D- for the negative edge is D- It is [1,0,1,0].

然而,因低功率動態隨機存取記憶體裝置所使用的通訊協定的傳輸速率逐漸增加,例如從以往的第一代雙倍資料率同步動態隨機存取記憶體(DDR SDRAM)已發展到第四代雙倍資料率同步動態隨機存取記憶體(DDR4 SDRAM),致使資料D<3:0>的變化速度更為加快。外部的測試機台在利用資料讀取電路100獲得晶片中的待測資料時,有可能無法獲知位於晶片內的時脈信號DQS及其速率,導致有可能無法找到資料D<3:0>的資料有效窗口。例如,圖2中正緣待測資料D+對應的資料有效窗口DVW1與負緣待測資料D-對應的資料有效窗口DVW2將難以被測試機台所獲知。換句話說,當資料傳輸的速度越快,測試機台無法從資料D<3:0>的變化中找到適當的時機來找到用來擷取信號的時間點(又稱,頻閃(strobe)點),亦即,無法在資料D<3:0>的資料有效窗口中有效地擷取到想要的信息。 However, the transmission rate of protocols used by low-power dynamic random access memory devices has gradually increased. For example, from the previous first-generation double data rate synchronous dynamic random access memory (DDR SDRAM), it has developed to the fourth The generation of double data rate synchronous dynamic random access memory (DDR4 SDRAM) has caused the data D <3: 0> to change faster. When the external test machine uses the data reading circuit 100 to obtain the data to be tested in the chip, the clock signal DQS and its rate located in the chip may not be known, which may result in the failure to find the data D <3: 0>. Data valid window. For example, in Figure 2, the data valid window DVW1 corresponding to the positive edge data to be tested D + and the data valid window DVW2 corresponding to the negative data to be tested D- will be difficult to be known by the testing machine. In other words, when the speed of data transmission is faster, the tester cannot find the proper timing from the change of data D <3: 0> to find the time point for signal acquisition (also known as strobe) (Dot), that is, the desired information cannot be effectively retrieved in the data valid window of the data D <3: 0>.

因此,本實施例在圖1的資料序列化電路120中額外增加接腳及相關電路以利用觸發遮罩信號DMASK來遮蔽時脈正緣觸發信號CLKOUT_T與時脈負緣觸發信號CLKOUT_C其中之一,從而增大部分的待測資料的資料有效窗口。測試機台可透過 調整觸發遮罩信號DMASK以選擇性地遮蔽時脈正緣觸發信號CLKOUT_T與時脈負緣觸發信號CLKOUT_C其中之一。以下以圖3說明之。 Therefore, in this embodiment, additional pins and related circuits are added to the data serialization circuit 120 in FIG. 1 to use the trigger mask signal DMASK to mask one of the clock positive edge trigger signal CLKOUT_T and clock negative edge trigger signal CLKOUT_C. Thereby increasing the data valid window of some of the data to be tested. Test machine can pass The trigger mask signal DMASK is adjusted to selectively mask one of the clock positive edge trigger signal CLKOUT_T and the clock negative edge trigger signal CLKOUT_C. This is described below with reference to FIG. 3.

圖3的實施例係利用致能(亦即,邏輯”1”)的觸發遮罩信號DMASK以選擇遮蔽時脈負緣觸發信號CLKOUT_C並且不遮蔽時脈正緣觸發信號CLKOUT_T,以使資料序列化電路120會正常地在時脈正緣觸發信號CLKOUT_T致能時輸出正緣待測資料D+,且不會因為時脈負緣觸發信號CLKOUT_C的致能而輸出負緣待測資料D-。如此一來,正緣待測資料D+的資料有效窗口DVW3將比圖2中的資料有效窗口DVW1增加時間t1。正緣待測資料D+的輸出時間將會從時脈信號QDS中完整的一個時脈週期tCK的一半增加到完整的一個時脈週期tCK,使得正緣待測資料D+的資料有效窗口DVW3因而增加。 The embodiment of FIG. 3 uses the enabled (ie, logic “1”) trigger mask signal DMASK to select to mask the negative clock trigger signal CLKOUT_C and not to mask the positive clock trigger signal CLKOUT_T to serialize the data. The circuit 120 normally outputs the positive edge data D + when the positive clock edge trigger signal CLKOUT_T is enabled, and does not output the negative edge data D- due to the enable of the negative clock edge trigger signal CLKOUT_C. In this way, the data valid window DVW3 of the positive edge data D + to be measured will increase the time t1 than the data valid window DVW1 in FIG. 2. The output time of the positive edge data D + will increase from half of a complete clock period tCK in the clock signal QDS to a complete clock period tCK, which will increase the data valid window DVW3 of the positive edge data D +. .

圖3中的實施例已將時脈負緣觸發信號CLKOUT_C遮蔽,因此僅會讓部分的待測資料(亦即,正緣待測資料D+)輸出到圖1的襯墊140。因此,若要獲得完整的待測資料,外部的測試機台便需要將觸發遮罩信號DMASK從致能(亦即,邏輯”1”)調整為禁能,以讓時脈正緣觸發信號CLKOUT_T被遮蔽而無法輸出正緣待測資料D+,如此一來便會將與時脈負緣觸發信號CLKOUT_C相對應的負緣待測資料D-輸出到圖1的襯墊140。換句話說,外部的測試機台可藉由調整觸發遮罩信號DMASK,以較多的時間來獲得正緣待測資料D+以及負緣待測資料D-。 The embodiment in FIG. 3 has masked the clock negative edge trigger signal CLKOUT_C, so that only part of the data to be tested (ie, the positive edge to be tested data D +) is output to the pad 140 in FIG. Therefore, in order to obtain complete data under test, the external test machine needs to adjust the trigger mask signal DMASK from enabled (that is, logic "1") to disabled to allow the clock positive edge trigger signal CLKOUT_T It is masked and cannot output the positive edge data to be measured D +, so the negative edge data to be measured D- corresponding to the clock negative edge trigger signal CLKOUT_C is output to the pad 140 in FIG. 1. In other words, the external test machine can obtain the positive edge data to be measured D + and the negative edge data to be measured D- by adjusting the trigger mask signal DMASK in a longer time.

本實施例以圖4舉例說明資料序列化電路120的實現電路。應用本實施例者應可依其需求而可以利用符合本發明實施例之精神的其他電路來實現資料序列化電路120,不應受限於本實施例內容。 This embodiment uses FIG. 4 as an example to illustrate the implementation circuit of the data serialization circuit 120. Those applying this embodiment should be able to use other circuits in accordance with the spirit of the embodiment of the present invention to implement the data serialization circuit 120 according to their needs, and should not be limited to the content of this embodiment.

請參閱圖4,資料序列化電路120主要包括第一開關410、第二開關420、第一組合邏輯415以及第二組合邏輯425。第一組合邏輯415接收由時脈正緣觸發信號CLKOUT_T與觸發遮罩信號DMASK,並產生第一開關信號SW1。第二組合邏輯425接收由時脈負緣觸發信號CLKOUT_C與觸發遮罩信號DMASK,並產生第二開關信號SW2。第一開關410的控制端接收第一開關信號SW1。第一開關410的接收端接收正緣待測資料D+。第一開關410的輸出端則耦接資料序列化電路120的輸出端OUT。第二開關420的控制端接收由第二開關信號SW2。第二開關420的接收端接收負緣待測資料D-。第二開關420的輸出端亦耦接資料序列化電路120的輸出端OUT。因此,當觸發遮罩信號DMASK致能(亦即,邏輯”1”),第一組合邏輯415依據觸發遮罩信號DMASK與正緣觸發信號CLKOUT_T而致能第一開關信號SW1。第二組合邏輯425依據觸發遮罩信號DMASK與負緣觸發信號CLKOUT_C而讓第二開關信號SW2持續地禁能。因此,第一開關410的接收端將由於第一開關信號SW1的致能而耦接至第一開關410的輸出端,從而輸出正緣待測資料D+。 Referring to FIG. 4, the data serialization circuit 120 mainly includes a first switch 410, a second switch 420, a first combination logic 415, and a second combination logic 425. The first combination logic 415 receives the clock positive edge trigger signal CLKOUT_T and the trigger mask signal DMASK, and generates a first switch signal SW1. The second combination logic 425 receives the clock negative edge trigger signal CLKOUT_C and the trigger mask signal DMASK, and generates a second switch signal SW2. The control terminal of the first switch 410 receives a first switching signal SW1. The receiving end of the first switch 410 receives the positive edge data D + to be tested. The output terminal of the first switch 410 is coupled to the output terminal OUT of the data serialization circuit 120. The control terminal of the second switch 420 receives the second switching signal SW2. The receiving end of the second switch 420 receives the negative edge test data D-. An output terminal of the second switch 420 is also coupled to an output terminal OUT of the data serialization circuit 120. Therefore, when the trigger mask signal DMASK is enabled (ie, logic “1”), the first combination logic 415 enables the first switch signal SW1 according to the trigger mask signal DMASK and the positive edge trigger signal CLKOUT_T. The second combination logic 425 continuously disables the second switch signal SW2 according to the trigger mask signal DMASK and the negative edge trigger signal CLKOUT_C. Therefore, the receiving end of the first switch 410 is coupled to the output end of the first switch 410 due to the enabling of the first switch signal SW1, so as to output positive edge data D + to be tested.

相對地,當觸發遮罩信號DMASK禁能(亦即,邏輯”0”), 第一組合邏輯415依據觸發遮罩信號DMASK與正緣觸發信號CLKOUT_T而讓第一開關信號SW1持續地禁能。第二組合邏輯455依據觸發遮罩信號DMASK與負緣觸發信號CLKOUT_C而致能第二開關信號SW2。因此,第二開關420的接收端將由於第二開關信號SW2的致能而耦接至第二開關420的輸出端,從而輸出負緣待測資料D-。 In contrast, when the trigger mask signal DMASK is disabled (ie, logic "0"), The first combination logic 415 continuously disables the first switch signal SW1 according to the trigger mask signal DMASK and the positive edge trigger signal CLKOUT_T. The second combination logic 455 enables the second switch signal SW2 according to the trigger mask signal DMASK and the negative edge trigger signal CLKOUT_C. Therefore, the receiving end of the second switch 420 is coupled to the output terminal of the second switch 420 due to the enabling of the second switch signal SW2, so as to output the negative edge data D- to be measured.

圖5是依照本發明一實施例的一種用於可測試性設計的資料讀取方法的流程圖。圖5中的資料讀取方法適用於圖1中包括資料序列化電路120的資料讀取裝置100。請見圖5,於步驟S510中,資料讀取裝置100的資料序列化電路120獲得時脈正緣觸發信號CLKOUT_T、時脈負緣觸發信號CLKOUT_C、觸發遮罩信號DMASK與待測資料。於步驟S520中,資料序列化電路120依據觸發遮罩信號DMASK以遮蔽時脈正緣觸發信號CLKOUT_T與時脈負緣觸發信號CLKOUT_C其中之一,並依據並未被遮蔽的時脈正緣觸發信號CLKOUT_T或時脈負緣觸發信號CLKOUT_C以將部分的待測資料提供至資料序列化電路120的輸出端以作為資料讀取裝置100的輸出信號。 FIG. 5 is a flowchart of a data reading method for testability design according to an embodiment of the present invention. The data reading method in FIG. 5 is applicable to the data reading device 100 including the data serialization circuit 120 in FIG. 1. Please refer to FIG. 5. In step S510, the data serialization circuit 120 of the data reading device 100 obtains a clock positive edge trigger signal CLKOUT_T, a clock negative edge trigger signal CLKOUT_C, a trigger mask signal DMASK, and the data to be measured. In step S520, the data serialization circuit 120 masks one of the clock positive edge trigger signal CLKOUT_T and the clock negative edge trigger signal CLKOUT_C according to the trigger mask signal DMASK, and according to the clock positive edge trigger signal that is not masked. The CLKOUT_T or clock negative edge trigger signal CLKOUT_C provides a part of the data to be tested to the output terminal of the data serialization circuit 120 as an output signal of the data reading device 100.

步驟S520亦可以下述步驟實現。當時脈正緣觸發信號CLKOUT_T依據觸發遮罩信號DMASK而被遮蔽時,資料序列化電路120輸出負緣待測資料D-。當時脈負緣觸發信號CLKOUT_C依據觸發遮罩信號DMASK而被遮蔽時,資料序列化電路120輸出正緣待測資料D+。上述步驟的實現方式已揭露於本發明各實施 例中。 Step S520 may also be implemented in the following steps. When the clock positive edge trigger signal CLKOUT_T is masked according to the trigger mask signal DMASK, the data serialization circuit 120 outputs the negative edge test data D-. When the negative clock trigger signal CLKOUT_C is masked according to the trigger mask signal DMASK, the data serialization circuit 120 outputs the positive data D + to be tested. The implementation of the above steps has been disclosed in various implementations of the present invention. Example.

綜上所述,本發明實施例所述的資料讀取裝置與資料讀取方法可在讀取待測信號時,利用額外設置的觸發遮蔽信號來阻擋或遮蔽時脈正緣觸發信號與時脈負緣觸發信號的其中之一,並利用並未被遮蔽的另一個觸發信號來獲得對應的部分待測資料。如此一來,待測資料的輸出時間將會從原有時脈的一個時脈週期的一半增加到一個時脈週期。藉此,便可在不調整使用此資料讀取裝置的晶片中之內部資料類型、不改變時脈或相關配置的情況下增加可使用的資料有效窗口,讓外部的測試機台能夠更為簡易地判讀資料讀取裝置所獲得的待測資料的正確性。 In summary, the data reading device and data reading method according to the embodiments of the present invention can use an additional trigger mask signal to block or mask the clock positive edge trigger signal and clock when reading the signal to be measured. One of the negative edge trigger signals, and another trigger signal that is not masked is used to obtain the corresponding part of the data to be tested. As a result, the output time of the data to be measured will increase from half of a clock cycle of the original clock to a clock cycle. In this way, the available data valid window can be increased without adjusting the internal data type in the chip using this data reading device, without changing the clock or related configuration, and making the external test machine easier. To judge the correctness of the data to be tested obtained by the data reading device.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.

Claims (10)

一種用於可測試性設計的資料讀取裝置,包括:緩衝器,用以暫存待測資料,並輸出串列化待測資料;以及資料序列化電路,耦接所述緩衝器,其中所述資料序列化電路接收時脈正緣觸發信號、時脈負緣觸發信號、觸發遮罩信號,並從所述緩衝器接收所述串列化待測資料,其中,所述資料序列化電路依據所述觸發遮罩信號以遮蔽所述時脈正緣觸發信號與所述時脈負緣觸發信號其中之一,並依據並未被遮蔽的所述時脈正緣觸發信號或所述時脈負緣觸發信號以將部分的所述串列化待測資料提供至所述資料序列化電路的輸出端以作為所述資料讀取裝置的輸出信號。A data reading device for testability design includes a buffer to temporarily store data to be tested and output serialized data to be tested; and a data serialization circuit coupled to the buffer, wherein The data serialization circuit receives a clock positive edge trigger signal, a clock negative edge trigger signal, and a trigger mask signal, and receives the serialized data to be tested from the buffer, wherein the data serialization circuit is based on The trigger mask signal is used to mask one of the positive clock edge trigger signal and the negative clock edge trigger signal, and is based on the positive clock edge trigger signal or the negative clock edge that is not masked. An edge trigger signal is used to provide a part of the serialized data to be tested to an output end of the data serialization circuit as an output signal of the data reading device. 如申請專利範圍第1項所述的資料讀取裝置,其中所述串列化待測資料包括對應至所述時脈正緣觸發信號的正緣待測資料以及對應至所述時脈負緣觸發信號的負緣待測資料,並且,所述資料序列化電路包括:第一開關,其控制端接收由所述時脈正緣觸發信號與所述觸發遮罩信號產生的第一開關信號,所述第一開關的接收端接收所述正緣待測資料,所述第一開關的輸出端耦接所述資料序列化電路的所述輸出端;以及第二開關,其控制端接收由所述時脈負緣觸發信號與所述觸發遮罩信號產生的第二開關信號,所述第二開關的接收端接收所述負緣待測資料,所述第二開關的輸出端耦接所述資料序列化電路的所述輸出端,其中,當所述時脈正緣觸發信號依據所述觸發遮罩信號而被遮蔽時,所述第二開關信號被致能以使所述第二開關的所述接收端耦接至所述第二開關的輸出端,從而輸出所述負緣待測資料,當所述時脈負緣觸發信號依據所述觸發遮罩信號而被遮蔽時,所述第一開關信號被致能以使所述第一開關的所述接收端耦接至所述第一開關的輸出端,從而輸出所述正緣待測資料。The data reading device according to item 1 of the scope of patent application, wherein the serialized data to be tested includes positive data to be tested corresponding to the clock positive edge trigger signal and corresponding to the negative clock edge The negative edge of the trigger signal is the data to be tested, and the data serialization circuit includes a first switch whose control end receives a first switch signal generated by the clock positive edge trigger signal and the trigger mask signal, A receiving end of the first switch receives the positive edge data to be tested, an output end of the first switch is coupled to the output end of the data serialization circuit; and a second switch, a control end of which receives The clock negative edge trigger signal and the second switch signal generated by the trigger mask signal, the receiving end of the second switch receives the negative edge test data, and the output end of the second switch is coupled to the The output terminal of the data serialization circuit, wherein when the clock positive edge trigger signal is masked according to the trigger mask signal, the second switch signal is enabled to enable the second switch The receiving end is coupled to the first The output ends of the two switches, so as to output the data of the negative edge to be measured. When the clock negative edge trigger signal is masked according to the trigger mask signal, the first switch signal is enabled to enable the The receiving end of the first switch is coupled to the output end of the first switch, so as to output the positive edge data to be tested. 如申請專利範圍第1項所述的資料讀取裝置,其中所述資料讀取裝置更包括:晶片外驅動器,耦接所述資料序列化電路以接收所述資料讀取裝置的所述輸出信號;以及襯墊,電性連接至所述晶片外驅動器,其中所述晶片外驅動器依據所述輸出信號以使部分的所述串列化待測資料提供至所述襯墊。The data reading device according to item 1 of the patent application scope, wherein the data reading device further comprises: an off-chip driver, coupled to the data serialization circuit to receive the output signal of the data reading device And a pad, which is electrically connected to the off-chip driver, wherein the off-chip driver provides a portion of the serialized test data to the pad according to the output signal. 如申請專利範圍第1項所述的資料讀取裝置,更包括:記憶體陣列,其中所述串列化待測資料由所述記憶體陣列所儲存或產生。The data reading device according to item 1 of the patent application scope further includes a memory array, wherein the serialized data to be tested is stored or generated by the memory array. 如申請專利範圍第1項所述的資料讀取裝置,其中所述資料序列化電路依據所述觸發遮罩信號以遮蔽所述時脈正緣觸發信號與所述時脈負緣觸發信號其中之一,從而增大所述部分的所述串列化待測資料的資料有效窗口,其中所述部分的所述串列化待測資料對應至並未被遮蔽的所述時脈正緣觸發信號與所述時脈負緣觸發信號其中之另一。The data reading device according to item 1 of the scope of patent application, wherein the data serialization circuit covers one of the clock positive edge trigger signal and the clock negative edge trigger signal according to the trigger mask signal. One, thereby increasing the data valid window of the serialized test data of the part, wherein the serialized test data of the part corresponds to the clock positive edge trigger signal that is not masked And the other of the clock negative trigger signal. 如申請專利範圍第1項所述的資料讀取裝置,其中所述資料讀取裝置應用於動態資料隨機存取記憶體(DRAM)裝置。The data reading device according to item 1 of the scope of patent application, wherein the data reading device is applied to a dynamic data random access memory (DRAM) device. 如申請專利範圍第1項所述的資料讀取裝置,其中所述時脈正緣觸發信號在時脈於負緣轉換至正緣時致能,所述時脈負緣觸發信號在時脈於正緣轉換至負緣時致能。The data reading device according to item 1 of the patent application scope, wherein the clock positive edge trigger signal is enabled when the clock is switched from the negative edge to the positive edge, and the clock negative edge trigger signal is Enable when positive edge transitions to negative edge. 一種用於可測試性設計的資料讀取方法,適用於包括資料序列化電路的資料讀取裝置,所述資料讀取方法包括:獲得時脈正緣觸發信號、時脈負緣觸發信號、觸發遮罩信號,並從緩衝器接收串列化待測資料;以及依據所述觸發遮罩信號以遮蔽所述時脈正緣觸發信號與所述時脈負緣觸發信號其中之一,並依據並未被遮蔽的所述時脈正緣觸發信號或所述時脈負緣觸發信號以將部分的所述串列化待測資料提供至所述資料序列化電路的輸出端以作為所述資料讀取裝置的輸出信號。A data reading method for testability design is applicable to a data reading device including a data serialization circuit. The data reading method includes: obtaining a clock positive edge trigger signal, a clock negative edge trigger signal, and a trigger. Mask signal, and serialize the data to be tested from the buffer; and according to the trigger mask signal to mask one of the clock positive edge trigger signal and the clock negative edge trigger signal, and The unmasked positive clock edge trigger signal or the negative clock edge trigger signal is used to provide a part of the serialized data to be tested to the output of the data serialization circuit as the data read Take the output signal of the device. 如申請專利範圍第8項所述的資料讀取方法,其中所述串列化待測資料包括對應至所述時脈正緣觸發信號的正緣待測資料以及對應至所述時脈負緣觸發信號的負緣待測資料,並且,遮蔽所述時脈正緣觸發信號與所述時脈負緣觸發信號其中之一,並依據並未被遮蔽的所述時脈正緣觸發信號或所述時脈負緣觸發信號以將部分的所述串列化待測資料提供至所述資料序列化電路的輸出端以作為所述資料讀取裝置的所述輸出信號的步驟包括:當所述時脈正緣觸發信號依據所述觸發遮罩信號而被遮蔽時,輸出所述負緣待測資料;以及當所述時脈負緣觸發信號依據所述觸發遮罩信號而被遮蔽時,輸出所述正緣待測資料。The data reading method according to item 8 of the scope of patent application, wherein the serialized data to be tested includes the data to be tested corresponding to the positive edge trigger signal of the clock and the negative edge to the clock The negative edge of the trigger signal is the data to be measured, and one of the positive clock edge trigger signal and the negative clock edge trigger signal is masked, and the negative clock edge trigger signal or the negative clock edge trigger signal is not masked. The step of triggering the negative edge trigger signal to provide a part of the serialized data to be tested to the output end of the data serialization circuit as the output signal of the data reading device includes: When the positive clock edge trigger signal is masked according to the trigger mask signal, output the negative edge test data; and when the negative clock edge trigger signal is masked according to the trigger mask signal, output The positive edge data to be tested. 如申請專利範圍第8項所述的資料讀取方法,其中所述資料序列化電路依據所述觸發遮罩信號遮蔽所述時脈正緣觸發信號與所述時脈負緣觸發信號其中之一,從而增大所述部分的所述串列化待測資料的資料有效窗口,其中所述部分的所述串列化待測資料對應至並未被遮蔽的所述時脈正緣觸發信號與所述時脈負緣觸發信號其中之另一。The data reading method according to item 8 of the patent application scope, wherein the data serialization circuit masks one of the clock positive edge trigger signal and the clock negative edge trigger signal according to the trigger mask signal. , Thereby increasing the data valid window of the serialized test data of the part, wherein the serialized test data of the part corresponds to the positive clock edge trigger signal and The clock negative edge trigger signal is the other.
TW107119923A 2018-06-08 2018-06-08 Data reading device and data reading method for design-for-testing TWI662555B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107119923A TWI662555B (en) 2018-06-08 2018-06-08 Data reading device and data reading method for design-for-testing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107119923A TWI662555B (en) 2018-06-08 2018-06-08 Data reading device and data reading method for design-for-testing

Publications (2)

Publication Number Publication Date
TWI662555B true TWI662555B (en) 2019-06-11
TW202001921A TW202001921A (en) 2020-01-01

Family

ID=67764146

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107119923A TWI662555B (en) 2018-06-08 2018-06-08 Data reading device and data reading method for design-for-testing

Country Status (1)

Country Link
TW (1) TWI662555B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW265443B (en) * 1993-08-26 1995-12-11 Siemens Ag
US5933379A (en) * 1996-11-18 1999-08-03 Samsung Electronics, Co., Ltd. Method and circuit for testing a semiconductor memory device operating at high frequency
US6212113B1 (en) * 1999-02-09 2001-04-03 Nec Corporation Semiconductor memory device input circuit
US20040246801A1 (en) * 2003-06-04 2004-12-09 Jae-Woong Lee Integrated circuit memory devices and operating methods that are configured to output data bits at a lower rate in a test mode of operation
US20060242521A1 (en) * 1997-04-30 2006-10-26 Hii Kuong H Built-in self-test arrangement for integrated circuit memory devices
US20110112788A1 (en) * 2005-06-29 2011-05-12 Saeed Azimi Integrated Systems Testing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW265443B (en) * 1993-08-26 1995-12-11 Siemens Ag
US5933379A (en) * 1996-11-18 1999-08-03 Samsung Electronics, Co., Ltd. Method and circuit for testing a semiconductor memory device operating at high frequency
US20060242521A1 (en) * 1997-04-30 2006-10-26 Hii Kuong H Built-in self-test arrangement for integrated circuit memory devices
US6212113B1 (en) * 1999-02-09 2001-04-03 Nec Corporation Semiconductor memory device input circuit
US20040246801A1 (en) * 2003-06-04 2004-12-09 Jae-Woong Lee Integrated circuit memory devices and operating methods that are configured to output data bits at a lower rate in a test mode of operation
US20110112788A1 (en) * 2005-06-29 2011-05-12 Saeed Azimi Integrated Systems Testing

Also Published As

Publication number Publication date
TW202001921A (en) 2020-01-01

Similar Documents

Publication Publication Date Title
US10572406B2 (en) Memory controller for receiving differential data strobe signals and application processor having the memory controller
US10482936B2 (en) Signal training for prevention of metastability due to clocking indeterminacy
TWI433150B (en) Apparatus and method for data strobe and timing variation detection of an sdram interface
KR100866601B1 (en) Apparatus and Method for controlling on-die terminator in semiconductor device
US8321779B2 (en) Semiconductor device and method for operating the same
US7385861B1 (en) Synchronization circuit for DDR IO interface
US8347198B2 (en) Semiconductor memory device having capability of stable initial operation
US10163486B1 (en) Command signal clock gating
US7161856B2 (en) Circuit for generating data strobe signal of semiconductor memory device
JP2012527061A (en) Method for calibrating the start value of write leveling in a memory system
US11056171B1 (en) Apparatuses and methods for wide clock frequency range command paths
US20190259445A1 (en) Systems and methods for improving output signal quality in memory devices
US8754656B2 (en) High speed test circuit and method
US7053686B2 (en) Data strobe circuit using clock signal
CN110574110B (en) Dynamic termination edge control
US10438649B2 (en) Systems and methods for conserving power in signal quality operations for memory devices
US7619937B2 (en) Semiconductor memory device with reset during a test mode
TWI662555B (en) Data reading device and data reading method for design-for-testing
US7853840B2 (en) Semiconductor memory device and methods thereof
JPH11297097A (en) Semiconductor memory
US10591538B2 (en) Data reading device and data reading method for design-for-testing
KR20110130883A (en) Memory device including write levelization scheme
CN110687438A (en) Data reading device and data reading method for testability design
TWI835534B (en) Control apparatus, memory, signal processing method, and electronic device
TWI556252B (en) Memory test system and method thereof