TWI651921B - System for improving EMI of flyback switching power supplies - Google Patents

System for improving EMI of flyback switching power supplies Download PDF

Info

Publication number
TWI651921B
TWI651921B TW106135197A TW106135197A TWI651921B TW I651921 B TWI651921 B TW I651921B TW 106135197 A TW106135197 A TW 106135197A TW 106135197 A TW106135197 A TW 106135197A TW I651921 B TWI651921 B TW I651921B
Authority
TW
Taiwan
Prior art keywords
signal
feedback
generate
jitter
frequency
Prior art date
Application number
TW106135197A
Other languages
Chinese (zh)
Other versions
TW201909532A (en
Inventor
林元
黃曉敏
楊彭林
Original Assignee
昂寶電子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昂寶電子(上海)有限公司 filed Critical 昂寶電子(上海)有限公司
Application granted granted Critical
Publication of TWI651921B publication Critical patent/TWI651921B/en
Publication of TW201909532A publication Critical patent/TW201909532A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本發明涉及改善返馳式開關電源的EMI的系統。系統包括:邏輯電路,被配置為基於第一信號來生成鎖存信號;振盪器(OSC),被配置為生成並將第一信號傳輸到邏輯電路,其中回饋比例分壓電阻被配置為根據系統的輸出電壓來生成回饋信號;抖動生成器,被配置為生成第二信號並且將第二信號傳輸到比較器;比較器,基於回饋信號和第二信號生成比較信號;RS鎖存器,基於比較信號和鎖存信號來生成第三信號閘極驅動器;閘極驅動器被配置為接收第三信號,並且基於第三信號生成驅動信號從而控制連接到閘極驅動器的功率電晶體的導通和關斷;以及抖動控制器,接收參考信號並且基於參考信號來生成控制信號,其中第一信號是由振盪器基於控制信號生成的。 The present invention relates to a system for improving the EMI of a flyback switching power supply. The system includes: a logic circuit configured to generate a latch signal based on the first signal; an oscillator (OSC) configured to generate and transmit the first signal to the logic circuit, wherein the feedback proportional voltage-dividing resistor is configured according to the system Output voltage to generate a feedback signal; a jitter generator configured to generate a second signal and transmit the second signal to a comparator; a comparator to generate a comparison signal based on the feedback signal and the second signal; an RS latch based on the comparison Signals and latch signals to generate a third signal gate driver; the gate driver is configured to receive a third signal and generate a driving signal based on the third signal to control the on and off of a power transistor connected to the gate driver; And a jitter controller that receives a reference signal and generates a control signal based on the reference signal, wherein the first signal is generated by the oscillator based on the control signal.

Description

改善返馳式開關電源的EMI的系統 System for improving EMI of flyback switching power supply

本發明涉及開關電源,更具體地,涉及一種改善返馳式(flyback)開關電源的電磁干擾EMI(Electromagnetic Interference)的系統。 The present invention relates to a switching power supply, and more particularly, to a system for improving electromagnetic interference (EMI) of a flyback switching power supply.

在開關電源中,一般開關頻率從幾十kHz到幾百kHz不等,系統板上存在著寄生的電容和電感,EMI不可避免。為了避免嚴重干擾其它的用電器,需要嚴格限制開關電源產生的EMI。 In switching power supplies, the general switching frequency ranges from tens of kHz to hundreds of kHz. Parasitic capacitance and inductance exist on the system board, and EMI is inevitable. In order to avoid severe interference with other electrical appliances, the EMI generated by the switching power supply needs to be strictly limited.

開關電源為了減小體積,需要提高開關頻率,這樣會引起EMI問題同時會增大開關損耗。採用準諧振(QR,Quasi-Resonant)技術,利用功率MOSFET汲極端的寄生電容Cf和變壓器的漏感Lm產生諧振,實現谷底導通,從而可以提高系統效率。QR系統與傳統的固定頻率硬體開關系統相比,輻射EMI可以得到明顯改善。 In order to reduce the size of the switching power supply, the switching frequency needs to be increased, which will cause EMI problems and increase switching losses. Using Quasi-Resonant (QR) technology, the parasitic capacitance Cf of the drain side of the power MOSFET and the leakage inductance Lm of the transformer are used to resonate to achieve valley conduction, thereby improving system efficiency. Compared with the traditional fixed-frequency hardware switching system, the QR system can significantly improve radiated EMI.

但是傳統的固定頻率系統可以容易實現開關頻率抖動,導通EMI可以通過開關頻率抖動使原來比較集中的頻譜能量分散開來。由於QR系統的開關頻率由系統及負載決定,即在某個輸入電壓下當輸出負載不變情況下,系統的開關頻率基本恒定,這樣導通EMI在低頻時頻譜能量分佈比較集中,從而導致導通EMI難以解決。 However, traditional fixed-frequency systems can easily achieve switching frequency jitter, and conducting EMI can disperse the originally concentrated spectral energy through switching frequency jitter. Because the switching frequency of the QR system is determined by the system and the load, that is, when the output load is constant at a certain input voltage, the switching frequency of the system is basically constant, so that the conduction EMI is more concentrated at low frequencies, resulting in conduction EMI Difficult to resolve.

第1圖是示出了返馳式開關電源系統,以及傳統的固定頻率PWM控制器100的示意性框圖。一次側固定頻率PWM控制器100(如虛線所示),其外部可以連接有電流源(例如,AC電流源)。PWM控制器100包括振盪器110、回饋比例分壓電阻120、PWM比較器130、RS鎖存器140、以及閘極驅動器150。其中,開關頻率完全由振盪器110所控制。其連接關係如第1圖所示,PWM控制器100外部與回饋隔離元 件的輸出相連接系統實現了包括一次繞組和二次繞組的變壓器,以使一次側上的AC輸入電壓和二次側上的輸出電壓相隔離。回饋隔離元件處理關於輸出電壓的資訊並生成回饋信號,通過控制PWM信號來控制能量傳輸,從而實現對系統的閉環(closed-loop)控制。例如,隔離回饋元件可以包括誤差放大器、補償網路、和光耦合器(未示出)。 FIG. 1 is a schematic block diagram showing a flyback switching power supply system, and a conventional fixed-frequency PWM controller 100. The primary-side fixed-frequency PWM controller 100 (shown as a dotted line) may be externally connected with a current source (for example, an AC current source). The PWM controller 100 includes an oscillator 110, a feedback proportional voltage dividing resistor 120, a PWM comparator 130, an RS latch 140, and a gate driver 150. The switching frequency is completely controlled by the oscillator 110. The connection relationship is shown in Figure 1. The PWM controller 100 external and feedback isolator The output phase connection system of the device implements a transformer including a primary winding and a secondary winding to isolate the AC input voltage on the primary side from the output voltage on the secondary side. The feedback isolation element processes the information about the output voltage and generates a feedback signal, and controls the energy transmission by controlling the PWM signal, thereby achieving closed-loop control of the system. For example, the isolated feedback element may include an error amplifier, a compensation network, and an optocoupler (not shown).

第2圖是示出了如第1圖所示的固定頻率PWM控制器的抖動信號的圖示。為了改善EMI,通常在振盪器110中增加頻率抖動功能。振盪器110中頻率抖動方式,如第2圖所示,開關頻率從低斜坡爬升到高,然後從高斜坡降低到低。另外,也可以採用偽隨機發生器,對EMI改善也有相同的效果。通常頻率抖動幅度可以控制在一定範圍內,可以在保證EMI改善時不會因為頻率變化幅度太大而引起雜訊問題。例如對60K的固定頻率系統,可以採用±4%抖動範圍,即系統開關頻率為60K±2.4K,在n次諧波能量分佈頻率範圍為±2.4nK,相比固定頻率系統總的諧波能量不變,但每個諧波頻點上能量幅度有明顯下降,從而改善導通EMI。 FIG. 2 is a diagram showing a dither signal of the fixed-frequency PWM controller shown in FIG. 1. To improve EMI, a frequency dithering function is usually added to the oscillator 110. In the frequency dithering mode of the oscillator 110, as shown in FIG. 2, the switching frequency climbs from a low slope to high, and then decreases from a high slope to low. In addition, a pseudo-random generator can also be used, which has the same effect on EMI improvement. Generally, the frequency jitter amplitude can be controlled within a certain range, which can ensure that the EMI improvement does not cause noise problems because the frequency change amplitude is too large. For example, for a fixed frequency system of 60K, ± 4% jitter range can be adopted, that is, the system switching frequency is 60K ± 2.4K, and the frequency range of the n-th harmonic energy distribution is ± 2.4nK, compared with the total harmonic energy of the fixed-frequency system. It is unchanged, but the energy amplitude at each harmonic frequency point is significantly reduced, thereby improving the conduction EMI.

第3圖是示出了如第1圖所示的固定頻率PWM控制器的開關頻率Fs、閘極電壓Vcs、以及回饋信號FB的關係的圖示。在傳統固定頻率PWM返馳式系統中,系統重載時開關頻率不受FB控制,可以通過在OSC(Oscillator,振盪器)上疊加固定週期抖動信號實現頻率週期性變化,通常週期會遠大於二次側的頻寬。但是在降頻區,二次側誤差放大器回饋信號FB會控制OSC實現輕載降頻,這樣原來設計OSC週期性抖動幅度會受到FB回饋控制,實際在系統上頻率抖動一般採用週期性爬坡方式,容易受回饋信號FB調變導致最終抖動幅度會比設計值小很多,結果在降頻區由於開關頻率頻差小導致EMI傳導偏差。 FIG. 3 is a diagram showing the relationship between the switching frequency Fs, the gate voltage Vcs, and the feedback signal FB of the fixed-frequency PWM controller shown in FIG. 1. In the traditional fixed-frequency PWM flyback system, the switching frequency is not controlled by FB when the system is under heavy load. The frequency can be changed periodically by superimposing a fixed-cycle jitter signal on the OSC (Oscillator, Oscillator). Usually the period will be much larger than two. Bandwidth on the secondary side. However, in the frequency reduction area, the secondary-side error amplifier feedback signal FB will control the OSC to achieve light-load frequency reduction. In this way, the original OSC periodic jitter amplitude will be controlled by the FB feedback. Actually, the frequency jitter on the system generally uses the periodic climbing method. It is easy to be affected by the modulation of the feedback signal FB, and the final jitter amplitude will be much smaller than the design value. As a result, the EMI conduction deviation will be caused by the small switching frequency difference in the frequency reduction area.

第4圖是示出了如第1圖所示的固定頻率PWM控制器的在降頻段的開關頻率Fs、回饋信號FB與時間的關係的圖示。如第4圖所示,在降頻區,Fs_抖動為OSC在降頻區抖動週期內頻率變化幅度(開環,FB保持不變)。但是實際系統中,二次側誤差放大器回饋信號FB會 控制OSC頻率反向調變,這樣原來設計OSC週期性抖動幅度會受到FB回饋控制,最終系統開關頻率Fs上抖動幅度會遠小於OSC抖動幅度。 FIG. 4 is a diagram showing the relationship between the switching frequency Fs, the feedback signal FB, and time in the reduced frequency band of the fixed-frequency PWM controller shown in FIG. 1. As shown in Figure 4, in the down-frequency region, Fs_ jitter is the frequency variation (open loop, FB remains unchanged) of the OSC frequency during the jitter period in the down-frequency region. But in the actual system, the feedback signal FB of the secondary error amplifier will Control the OSC frequency inverse modulation, so that the original design OSC periodic jitter amplitude will be controlled by FB feedback, and the final system switching frequency Fs will be much smaller than the OSC jitter amplitude.

因此,需要改善返馳式開關電源的EMI的系統。 Therefore, a system for improving the EMI of a flyback switching power supply is needed.

鑒於以上所述的問題,本發明提出一種改善返馳式開關電源的EMI的系統。從而在系統降頻段,通過採用開關頻率擾動(switch frequency jittering)方式來改善EMI。 In view of the above problems, the present invention proposes a system for improving the EMI of a flyback switching power supply. Therefore, in the system frequency reduction, EMI is improved by adopting a switching frequency jittering method.

根據本公開的一個方面,提供了一種改善返馳式開關電源的電磁干擾EMI的系統,包括:邏輯電路,邏輯電路被配置為至少部分地基於第一信號來生成鎖存信號;振盪器OSC,OSC的輸入連接到回饋比例分壓電阻並且輸出連接到邏輯電路,並且被配置為生成並將第一信號傳輸到邏輯電路,其中回饋比例分壓電阻被配置為根據系統的輸出電壓來生成回饋信號;抖動生成器,抖動生成器被配置為生成第二信號並且將第二信號傳輸到比較器;比較器,比較器的同相輸入連接到回饋比例分壓電阻,反相輸入連接到抖動生成元件,輸出連接到RS鎖存器的R端,從而基於回饋信號和第二信號生成比較信號;RS鎖存器,RS鎖存器的R端連接到比較器的輸出,S端連接到邏輯電路的輸出,並且Q端連接到閘極驅動器的輸入,從而基於比較信號和鎖存信號來生成第三信號閘極驅動器;閘極驅動器被配置為接收第三信號,並且至少部分地基於第三信號生成驅動信號從而控制連接到閘極驅動器的功率電晶體的導通和關斷;以及抖動控制器,抖動控制器被配置為接收參考信號並且至少部分地基於參考信號來生成控制信號,其中第一信號是由OSC基於控制信號生成的。 According to an aspect of the present disclosure, there is provided a system for improving electromagnetic interference EMI of a flyback switching power supply, comprising: a logic circuit configured to generate a latch signal based at least in part on a first signal; an oscillator OSC, The input of the OSC is connected to the feedback proportional voltage dividing resistor and the output is connected to the logic circuit, and is configured to generate and transmit the first signal to the logic circuit, wherein the feedback proportional voltage dividing resistor is configured to generate a feedback signal according to the output voltage of the system ; Jitter generator, the jitter generator is configured to generate a second signal and transmit the second signal to the comparator; the comparator, the non-inverting input of the comparator is connected to the feedback proportional voltage dividing resistor, and the inverting input is connected to the jitter generating element, The output is connected to the R terminal of the RS latch, thereby generating a comparison signal based on the feedback signal and the second signal; RS latch, the R terminal of the RS latch is connected to the output of the comparator, and the S terminal is connected to the output of the logic circuit And the Q terminal is connected to the input of the gate driver to generate a third signal gate driver based on the comparison signal and the latch signal The gate driver is configured to receive a third signal and generate a driving signal based at least in part on the third signal to control the on and off of the power transistor connected to the gate driver; and a jitter controller, the jitter controller is configured A control signal is generated for receiving a reference signal and based at least in part on the reference signal, wherein the first signal is generated by the OSC based on the control signal.

根據本公開的另一方面,提供了包括根據本公開的欠壓和過壓保護系統的電源變換器。 According to another aspect of the present disclosure, a power converter including an undervoltage and an overvoltage protection system according to the present disclosure is provided.

根據本申請實施例的系統為返馳式開關電源提供了對EMI的改善。取決於實施例,還可以獲得一個或多個益處。參考下面的詳細描述和附圖可以全面地理解本發明的這些益處以及各個另外的目的、特徵和優點。 The system according to the embodiment of the present application provides an improvement in EMI for a flyback switching power supply. Depending on the embodiment, one or more benefits may also be obtained. These benefits, as well as various additional objects, features, and advantages of the present invention can be fully understood with reference to the following detailed description and accompanying drawings.

R1、R2‧‧‧電阻器 R1, R2‧‧‧ resistors

Q1‧‧‧功率電晶體 Q1‧‧‧Power Transistor

Rsense‧‧‧電阻值 R sense ‧‧‧ resistance

CS‧‧‧端子 CS‧‧‧Terminal

Fs‧‧‧開關頻率 Fs‧‧‧Switching frequency

Vcs‧‧‧閘極電壓 Vcs‧‧‧Gate voltage

Fs_fix‧‧‧固定值 Fs_fix‧‧‧ fixed value

VCS_抖動‧‧‧週期性變化信號 V CS _ Jitter ‧‧‧ Periodically changing signal

dem‧‧‧繞組 dem‧‧‧winding

OSC‧‧‧振盪器 OSC‧‧‧Oscillator

Va‧‧‧折返模式回饋信號 Va‧‧‧ Foldback mode feedback signal

Fs_jitter‧‧‧頻率抖動變化幅度 Fs_jitter‧‧‧ Frequency jitter change amplitude

Vcs_md1‧‧‧閘極電壓中間值1 Vcs_md1‧‧‧Median gate voltage 1

Vcs_md2‧‧‧閘極電壓中間值2 Vcs_md2‧‧‧Gate of intermediate gate voltage 2

Vin‧‧‧系統輸入電壓 Vin‧‧‧System input voltage

Vo‧‧‧系統輸出電壓 Vo‧‧‧ system output voltage

Vcs_max‧‧‧閘極電壓最大值 Vcs_max‧‧‧Maximum gate voltage

Vcs_min‧‧‧閘極電壓最小值 Vcs_min‧‧‧Minimum gate voltage

110、510、810、1010‧‧‧振盪器 110, 510, 810, 1010‧‧‧ oscillator

120、520、820、1020‧‧‧回饋比例分壓電阻 120, 520, 820, 1020‧‧‧‧ feedback proportional voltage dividing resistor

130、530、830、1030‧‧‧PWM比較器 130, 530, 830, 1030‧‧‧PWM comparator

140、540、840、1040‧‧‧RS鎖存器 140, 540, 840, 1040‧‧‧RS latches

150、550、850、1050‧‧‧閘極驅動器 150, 550, 850, 1050‧‧‧Gate drivers

Fs_max、Fs_max1‧‧‧系統最高頻率 Fs_max, Fs_max1‧‧‧System maximum frequency

Fs_min、Fs_min1‧‧‧系統最低頻率 Fs_min, Fs_min1‧‧‧System minimum frequency

T、t、T0、T1、T2‧‧‧時刻 T, t, T0, T1, T2

Clk_ref‧‧‧內部基準時鐘 Clk_ref‧‧‧ Internal reference clock

860、1060‧‧‧邏輯電路 860, 1060‧‧‧Logic circuit

870、1070‧‧‧退磁感測元件 870, 1070‧‧‧ Demagnetization sensing element

1080‧‧‧抖動控制元件 1080‧‧‧ Jitter Control Element

1090‧‧‧抖動生成元件 1090‧‧‧Jitter generating element

Ip‧‧‧一次線圈電感電流 Ip‧‧‧ primary coil inductor current

Fs_抖動‧‧‧頻率變化幅度 Fs_Jitter‧‧‧Frequency change

LPF‧‧‧低通濾波器 LPF‧‧‧Low-pass filter

gate‧‧‧閘極驅動輸出端子 gate‧‧‧Gate drive output terminal

100、500‧‧‧固定頻率PWM控制器 100, 500‧‧‧ fixed frequency PWM controller

800、1000‧‧‧準諧振(QR)控制器 800, 1000‧‧‧ Quasi-Resonant (QR) Controller

FB‧‧‧二次側誤差放大器回饋信號 FB‧‧‧Secondary error amplifier feedback signal

Vfb_burst‧‧‧間歇模式(Burst)回饋信號閾值電壓 Vfb_burst‧‧‧Burst mode feedback signal threshold voltage

Vfb_1‧‧‧回饋信號閾值電壓1 Vfb_1‧‧‧Threshold voltage of feedback signal 1

Vfb_2‧‧‧回饋信號閾值電壓2 Vfb_2‧‧‧Feedback signal threshold voltage 2

Vfb_3‧‧‧回饋信號閾值電壓3 Vfb_3‧‧‧Threshold voltage of feedback signal 3

FB_max1‧‧‧頻率抖動週期回饋信號最大值1 FB_max1‧‧‧Maximum frequency jitter cycle feedback signal 1

FB_min1‧‧‧頻率抖動週期回饋信號最小值1 FB_min1‧‧‧Minimum frequency feedback signal 1

Fs_va‧‧‧回饋信號為va時系統開關頻率 Fs_va‧‧‧System switching frequency when the feedback signal is va

Ip_max1‧‧‧一次線圈電感電流最大值1 Ip_max1‧‧‧Maximum primary coil inductor current 1

Ip_min1‧‧‧一次線圈電感電流最小值1 Ip_min1‧‧‧Minimum primary coil inductor current 1

下面,將結合附圖對本實用新型的示例性實施例的特徵、優點和技術效果進行描述,附圖中相似的附圖標記表示相似的元件,其中:第1圖是示出了傳統固定頻率PWM控制器的簡化框圖。 Hereinafter, the features, advantages, and technical effects of the exemplary embodiments of the present invention will be described with reference to the accompanying drawings. Similar reference numerals in the drawings represent similar elements, wherein: FIG. 1 shows a conventional fixed-frequency PWM Simplified block diagram of the controller.

第2圖是示出了如第1圖所示的固定頻率PWM控制器的抖動信號的圖示。 FIG. 2 is a diagram showing a dither signal of the fixed-frequency PWM controller shown in FIG. 1.

第3圖是示出了如第1圖所示的固定頻率PWM控制器的的開關頻率Fs、閘極電壓Vcs、以及回饋信號FB的關係的圖示。 FIG. 3 is a diagram showing the relationship between the switching frequency Fs, the gate voltage Vcs, and the feedback signal FB of the fixed-frequency PWM controller shown in FIG. 1.

第4圖是示出了如第1圖所示的固定頻率PWM控制器的在降頻段的開關頻率Fs、回饋信號FB與時間的關係的圖示。 FIG. 4 is a diagram showing the relationship between the switching frequency Fs, the feedback signal FB, and time in the reduced frequency band of the fixed-frequency PWM controller shown in FIG. 1.

第5圖是示出了根據本公開的實施例的固定頻率PWM控制器的簡化框圖。 FIG. 5 is a simplified block diagram illustrating a fixed-frequency PWM controller according to an embodiment of the present disclosure.

第6圖是示出了返馳式電源系統典型功率管開關頻率Fs和一次VCS值與回饋信號FB對應關係的圖示。 FIG. 6 is a diagram showing the corresponding relationship between the switching frequency Fs and the primary VCS value of the flyback power system and the feedback signal FB.

第7圖是示出了返馳式電源系統在降頻區隨時間變化的Fs抖動和Ip抖動的圖示。 FIG. 7 is a diagram showing the Fs jitter and Ip jitter of the flyback power system in the frequency reduction region over time.

第8圖是示出了根據本公開的實施例的準諧振QR控制器的簡化框圖。 FIG. 8 is a simplified block diagram illustrating a quasi-resonant QR controller according to an embodiment of the present disclosure.

第9圖是示出了QR控制器的開關頻率Fs、閘極電壓Vcs、以及回饋信號FB的關係的圖示。 FIG. 9 is a diagram showing the relationship between the switching frequency Fs, the gate voltage Vcs, and the feedback signal FB of the QR controller.

第10圖示出了根據本公開的實施例的、QR系統的抖動控制的一種實現方式的示意性框圖。 FIG. 10 shows a schematic block diagram of an implementation manner of jitter control of a QR system according to an embodiment of the present disclosure.

第11圖示出了根據本公開的實施例的、QR系統的抖動控制的另一實現方式的示意性框圖。 FIG. 11 shows a schematic block diagram of another implementation of jitter control of a QR system according to an embodiment of the present disclosure.

第12圖示出了根據本公開的實施例的、QR系統的抖動控制的又一實現方式的示意性框圖。 FIG. 12 shows a schematic block diagram of still another implementation manner of jitter control of a QR system according to an embodiment of the present disclosure.

下面將詳細描述本發明的各個方面的特徵和示例性實施例。在下面的詳細描述中,提出了許多具體細節,以便提供對本發明的全面理解。但是,對於本領域技術人員來說很明顯的是,本發明可以在不需要這些具體細節中的一些細節的情況下實施。下面對實施例的描述僅僅是為了通過示出本發明的示例來提供對本發明的更好的理解。本發明決不限於下面所提出的任何具體配置和演算法,而是在不脫離本發明的精神的前提下覆蓋了元素、部件和演算法的任何修改、替換和改進。在附圖和下面的描述中,沒有示出公知的結構和技術,以便避免對本發明造成不必要的模糊。 Features and exemplary embodiments of various aspects of the invention will be described in detail below. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it is obvious to a person skilled in the art that the present invention can be implemented without the need for some of these specific details. The following description of the embodiments is merely for providing a better understanding of the present invention by showing examples of the present invention. The invention is by no means limited to any specific configuration and algorithm proposed below, but covers any modification, replacement and improvement of elements, components and algorithms without departing from the spirit of the invention. In the drawings and the following description, well-known structures and techniques are not shown in order to avoid unnecessarily obscuring the present invention.

第5圖示出了根據本公開的實施例的固定頻率PWM控制器的簡化框圖。該圖僅作為示例,其不應該不適當地限制專利申請範圍。本領域的普通技術人員應該理解很多變化、替代和修改。 FIG. 5 shows a simplified block diagram of a fixed-frequency PWM controller according to an embodiment of the present disclosure. This figure is only an example, and it should not unduly limit the scope of patent applications. Those of ordinary skill in the art should understand many variations, substitutions, and modifications.

固定頻率PWM控制器500(如虛線所示)包括振盪器(OSC)510、回饋比例分壓電阻520、PWM比較器530、RS鎖存器540、以及閘極驅動器550。第5圖還示出了PWM控制器500所連接到的電流源、回饋隔離元件等。PWM控制器連接到諸如一次繞組、二次繞組、電磁干擾(EMI)濾波器、整流電橋、隔離回饋組件等的外部設備。隔離回饋元件可以例如包括多個電阻器、電容器、三端穩壓器和光耦合器。 The fixed-frequency PWM controller 500 (shown as a dotted line) includes an oscillator (OSC) 510, a feedback proportional voltage dividing resistor 520, a PWM comparator 530, an RS latch 540, and a gate driver 550. FIG. 5 also shows a current source, a feedback isolation element, and the like to which the PWM controller 500 is connected. The PWM controller is connected to external devices such as primary windings, secondary windings, electromagnetic interference (EMI) filters, rectifier bridges, isolated feedback components, and the like. The isolated feedback element may include, for example, a plurality of resistors, capacitors, three-terminal regulators, and optocouplers.

如第5圖所示,交流電(Alternate Current,AC)輸入由EMI濾波器進行處理,並且整流橋提供輸入電壓用於PWM控制器500的操作。包括一次繞組和二次繞組的變壓器隔離PWM控制器500的一次側和二次側。與二次側上的輸出電壓相關的資訊可以通過包括電阻器R1和R2的回饋比例分壓電阻520來提取。 As shown in FIG. 5, an alternating current (Alternate Current, AC) input is processed by an EMI filter, and the rectifier bridge provides an input voltage for operation of the PWM controller 500. A transformer including a primary winding and a secondary winding isolates the primary and secondary sides of the PWM controller 500. Information related to the output voltage on the secondary side can be extracted by a feedback proportional voltage dividing resistor 520 including resistors R1 and R2.

隔離回饋元件基於與輸出電壓相關聯的資訊來生成回饋信號。控制器的資訊接收回饋信號並生成驅動信號,以導通和關斷開關從而調節輸出電壓。如果電源開關被閉合(例如,導通)時,能量被存儲在包括一次繞組和二次繞組的變壓器中。閉合的電源開關允許電流流過一次 繞組。電流由電阻器感測並通過終端(例如,端子CS)轉換成電流感測信號(例如,VCS)。隨後,如果電源開關是斷開的(例如,被關斷),所存儲的能量釋放到輸出端並且系統進入退磁過程。 The isolated feedback element generates a feedback signal based on information associated with the output voltage. The controller's information receives the feedback signal and generates a drive signal to turn the switch on and off to regulate the output voltage. If the power switch is closed (eg, turned on), energy is stored in a transformer including a primary winding and a secondary winding. A closed power switch allows current to flow through the winding once. The current is sensed by a resistor and converted into a current sensing signal (for example, V CS ) through a terminal (for example, terminal CS ). Subsequently, if the power switch is turned off (eg, turned off), the stored energy is released to the output and the system enters a demagnetization process.

在一個示例中,功率電晶體是雙極結型電晶體。在另一示例中,功率電晶體是場效應電晶體(例如,金屬氧化物半導體場效應電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET))。在又另一示例中,功率電晶體是絕緣閘雙極性接面電晶體(Insulated Gate Bipolar Transistor,IGBT)。其中功率電晶體(例如,第1圖中的Q1)的集電極經由變壓器的一次繞組連接到輸入電壓,並且經由取樣電阻連接到地。在各種示例中,回饋分壓電阻器R1和R2的電阻值可以由本領域技術人員根據需要設置。 In one example, the power transistor is a bipolar junction transistor. In another example, the power transistor is a field effect transistor (eg, a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)). In yet another example, the power transistor is an Insulated Gate Bipolar Transistor (IGBT). The collector of the power transistor (for example, Q1 in Fig. 1) is connected to the input voltage via the primary winding of the transformer, and is connected to the ground via the sampling resistor. In various examples, the resistance values of the feedback voltage-dividing resistors R1 and R2 can be set by those skilled in the art as needed.

第6圖是示出了返馳式電源系統典型功率管開關頻率Fs和一次VCS值與回饋信號FB對應關係的圖示。如第6圖所示,當FB>Vfb_2時,開關頻率Fs為固定值(例如,Fs_fix)與FB電壓無關,此時振盪器OSC(例如,第5圖的OSC 510)直接控制開關頻率fs,可以通過在OSC上調變頻率的方式來調變開關頻率Fs,改善EMI傳導。 FIG. 6 is a diagram showing the corresponding relationship between the switching frequency Fs and the primary VCS value of the flyback power system and the feedback signal FB. As shown in FIG. 6, when FB> Vfb_2, the switching frequency Fs is a fixed value (for example, Fs_fix) has nothing to do with the FB voltage. At this time, the oscillator OSC (for example, OSC 510 in FIG. 5) directly controls the switching frequency fs, The switching frequency Fs can be adjusted by adjusting the frequency on the OSC to improve EMI conduction.

隨著輸出負載降低,當Vfb_3<FB<Vfb_2時,此時FB信號會控制OSC頻率,隨著FB電壓降低OSC頻率而降低。在FB=Va處,通過OSC上增加調變頻率方式,Fs=Fs_va±△fs,由於輸出負載不變,系統環路調節FB電壓會隨著OSC上疊加抖動幅度△fs而變化。換言之,隨著OSC上疊加抖動增大(+△fs),即系統開關頻率會升高,通過二次側回饋迴圈控制FB電壓會下降,即FB=Va-△fb,由於OSC上疊加抖動週期將會較大,二次側回饋迴圈比快,則最終在系統上開關頻率週期性變化幅度會遠小於OSC上設計的調變幅度△fs。其中,輸出功率Pout(1)可以表示如下: 其中L p 為電感器的電感值,I p 為系統一次輸出電流,△fs為OSC上設計的調變幅度。 As the output load decreases, when Vfb_3 <FB <Vfb_2, the FB signal will control the OSC frequency at this time, and it will decrease as the FB voltage decreases. At FB = Va, by increasing the modulation frequency mode on the OSC, Fs = Fs_va ± △ fs. Because the output load is unchanged, the system loop adjustment FB voltage will change with the superimposed jitter amplitude △ fs on the OSC. In other words, as the superimposed jitter on the OSC increases (+ △ fs), that is, the system switching frequency will increase, and the control of the FB voltage through the secondary-side feedback loop will decrease, that is, FB = Va- △ fb. The period will be larger, and the secondary-side feedback loop ratio is faster. In the end, the periodic change of the switching frequency on the system will be much smaller than the designed modulation amplitude Δfs on the OSC. Among them, the output power P out (1) can be expressed as follows: Where L p is the inductance value of the inductor, I p is the primary output current of the system, and Δfs is the modulation amplitude designed on the OSC.

在等式1中,FB回饋信號不變條件下,降頻區OSC頻率增加抖動後,可以看出此時輸出功率與系統開關頻率成正比POut(1) n(F s +△Fs)。 In Equation 1, under the condition that the FB feedback signal is unchanged, after the OSC frequency in the down-frequency region increases jitter, it can be seen that the output power at this time is proportional to the system switching frequency P Out (1) n ( F s + △ Fs ).

實際系統中,輸出二次測誤差放大器回饋控制FB信號,在OSC抖動幅度增大到△fs,FB信號減小△fb,輸出功率Pout(1)如下式所示: In the actual system, the secondary control error amplifier feedback FB signal is output. When the OSC jitter amplitude increases to △ fs, the FB signal decreases by △ fb, and the output power P out (1) is as follows:

在等式2中,實際OSC抖動幅度會受FB迴圈控制後最終幅度為△fs-Fs△fb,最終在系統上開關頻率週期性變化幅度會遠小於OSC上設計的調變幅度△fs。 In Equation 2, the actual OSC jitter amplitude will be controlled by FB loops and the final amplitude will be Δfs-Fs △ fb. Finally, the periodic change amplitude of the switching frequency on the system will be much smaller than the designed modulation amplitude Δfs on OSC.

第7圖是示出了返馳式電源系統在降頻區隨時間變化的Fs抖動和Ip抖動的圖示。如第7圖所示,在OSC頻率上增加週期性抖動幅度△fs,同時會在CS信號上疊加同向信號△Vcs,抖動週期與OSC上頻率週期保持一致。其中反映開關導通時一次線圈電感電流信號的強度的CS信號Vcs可以表示如下:Vcs=Ip Rsence (等式3)其中,Ip為一次線圈電感電流,Rsence為感測電阻器的電阻值。 FIG. 7 is a diagram showing the Fs jitter and Ip jitter of the flyback power system in the frequency reduction region over time. As shown in Figure 7, the periodic jitter amplitude Δfs is increased at the OSC frequency, and the same-direction signal △ Vcs is superimposed on the CS signal, and the jitter period is consistent with the frequency period on the OSC. The CS signal Vcs, which reflects the strength of the primary coil inductor current signal when the switch is on, can be expressed as follows: Vcs = I p R sence (Equation 3) where I p is the primary coil inductor current and R sence is the resistance of the sensing resistor value.

在一個實施例中,輸出功率Pout可以表示如下: 其中L p 為電感器的電感值,I p 為系統一次電感電流,Fs為開關頻率。 In one embodiment, the output power P out can be expressed as follows: Where L p is the inductance value of the inductor, I p is the primary inductance current of the system, and Fs is the switching frequency.

當系統工作在降頻區,保持輸出負載不變(即,Pout恒定),OSC頻率抖動上升△fs,同時CS上信號幅度降低△Vcs(其中△Vcs為一次線圈電感電流感測信號的變化)可以得出: When the system works in the frequency reduction area, keeping the output load constant (that is, P out is constant), the OSC frequency jitter increases by Δfs, and the signal amplitude on CS decreases by ΔVcs (where ΔVcs is the change of the primary coil inductor current sensing signal ) Can be obtained:

其中,Pout(T0)T0時刻的輸出功率;Pout(T1)T0時刻的輸出功率;並且△Ip=△Vcs/Rsense,△Vcs為端子CS處的電壓變化並且Rsense為感測電阻器的電阻值。 Among them, P out ( T0 ) is the output power at T0 ; P out ( T1 ) is the output power at T0 ; and △ Ip = △ Vcs / Rsense, △ Vcs is the voltage change at the terminal CS and Rsense is the sensing resistance Resistor value.

通過控制Fs上疊加抖動幅度△fs以及Vcs信號上疊加抖動幅度,可以基本保持Pout(T0)基本等於Pout(T1),此時二次側回饋控制信號FB基本保持不變,這樣設計希望得到開關頻率幅度△fs與系統上實際測試頻率變化幅度大體一致。 By controlling the superimposed jitter amplitude △ fs on Fs and the superimposed jitter amplitude on the Vcs signal, P out ( T0 ) can be kept substantially equal to P out ( T1 ) . At this time, the secondary-side feedback control signal FB remains basically unchanged. It is found that the switching frequency amplitude Δfs is generally consistent with the actual test frequency variation on the system.

第8圖是示出了根據本公開的實施例的準諧振QR控制器的簡化框圖。該圖僅作為示例,其不應該不適當地限制專利申請範圍。本領域的普通技術人員應該理解很多變化、替代和修改。 FIG. 8 is a simplified block diagram illustrating a quasi-resonant QR controller according to an embodiment of the present disclosure. This figure is only an example, and it should not unduly limit the scope of patent applications. Those of ordinary skill in the art should understand many variations, substitutions, and modifications.

如第8圖所示,準諧振(QR)控制器800(如虛線所示)包括振盪器(OSC)810、回饋比例分壓電阻820、PWM比較器830、RS鎖存器840、閘極驅動器850、邏輯電路860、以及退磁感測元件870。第8圖還示出了PWM控制器800所連接到的電流源、回饋隔離元件等。PWM控制器連接到諸如一次繞組、次級繞組、電磁干擾(EMI)濾波器、整流電橋、隔離回饋組件等的外部設備。隔離回饋元件可以例如包括多個電阻器、電容器、三端穩壓器和光耦合器。 As shown in FIG. 8, the quasi-resonant (QR) controller 800 (shown as a dotted line) includes an oscillator (OSC) 810, a feedback proportional voltage dividing resistor 820, a PWM comparator 830, an RS latch 840, and a gate driver. 850, a logic circuit 860, and a demagnetization sensing element 870. FIG. 8 also shows a current source, a feedback isolation element, and the like to which the PWM controller 800 is connected. The PWM controller is connected to external devices such as primary windings, secondary windings, electromagnetic interference (EMI) filters, rectifier bridges, isolated feedback components, and the like. The isolated feedback element may include, for example, a plurality of resistors, capacitors, three-terminal regulators, and optocouplers.

如第8圖所示,包括一次繞組和次級繞組的變壓器隔離QR控制器800的一次側和次級側。與次級側上的輸出電壓相關的資訊可以通過包括電阻器R1和R2的回饋比例分壓電阻820來提取。隔離回饋元件基於與輸出電壓相關聯的資訊來生成回饋信號。控制器的資訊接收回饋信號並生成驅動信號,以導通和關斷開關從而調節輸出電壓。如果電源開關被閉合(例如,導通)時,能量被存儲在包括一次繞組和次級繞組的變壓器中。閉合的電源開關允許電流流過一次繞組。電流由電阻器感測並通過終端(例如,端子CS)轉換成電流感測信號(例如,VCS)。隨後,如果電源開關是斷開的(例如,被關斷),所存儲的能量釋放到輸出端並且系統進入退磁過程。 As shown in FIG. 8, a transformer including a primary winding and a secondary winding isolates the primary side and the secondary side of the QR controller 800. Information related to the output voltage on the secondary side can be extracted by a feedback proportional voltage dividing resistor 820 including resistors R1 and R2. The isolated feedback element generates a feedback signal based on information associated with the output voltage. The controller's information receives the feedback signal and generates a drive signal to turn the switch on and off to regulate the output voltage. If the power switch is closed (eg, turned on), energy is stored in a transformer including a primary winding and a secondary winding. A closed power switch allows current to flow through the winding once. The current is sensed by a resistor and converted into a current sensing signal (for example, VCS) through a terminal (for example, terminal CS). Subsequently, if the power switch is turned off (eg, turned off), the stored energy is released to the output and the system enters a demagnetization process.

輸出電壓經過負回饋誤差放大器控制輸入FB,FB經過電阻分壓與CS信號進入PWM比較器,回饋誤差放大器輸出FB控制CS的峰值電流,實現輸出電壓調節。為了整個系統可以穩定工作,回饋誤差放大器需要進行補償,通常頻寬需要控制在開關頻率的1/10-1/15以下。 The output voltage passes through the negative feedback error amplifier control input FB, and FB enters the PWM comparator through the resistor divider and CS signal. The feedback error amplifier output FB controls the peak current of CS to achieve output voltage adjustment. In order for the entire system to work stably, the feedback error amplifier needs to be compensated, and usually the bandwidth needs to be controlled below 1 / 10-1 / 15 of the switching frequency.

第9圖是示出了QR控制器的開關頻率Fs、閘極電壓Vcs、以及回饋信號FB的關係的圖示。其中,系統頻率和Vcs對應FB關係,當FB>Vfb_1時系統在QR模式,即通過繞組DEM pin感測到退磁就導通電晶體。在Vfb_2<FB<Vfb_1區間,隨著負載降低系統開關頻率升高,達到系統最高頻率Fs_max,為了開關頻率不超過最高頻率限制,系統會在第二谷底、第三谷底依次延後導通。隨著輸出負載繼續降低,Vfb_3<FB<Vfb_2,為了減小系統開關損耗系統的最高頻率隨著FB信號降低而降低。 FIG. 9 is a diagram showing the relationship between the switching frequency Fs, the gate voltage Vcs, and the feedback signal FB of the QR controller. Among them, the system frequency and Vcs correspond to the FB relationship. When FB> Vfb_1, the system is in the QR mode, that is, the demagnetization is sensed by the winding DEM pin, and the crystal is turned on. In the interval of Vfb_2 <FB <Vfb_1, as the load decreases, the switching frequency of the system increases to reach the maximum frequency Fs_max of the system. In order to prevent the switching frequency from exceeding the maximum frequency limit, the system will delay the conduction at the second valley bottom and the third valley bottom in turn. As the output load continues to decrease, Vfb_3 <FB <Vfb_2, in order to reduce the switching loss of the system, the maximum frequency of the system decreases as the FB signal decreases.

在輕載降頻段Vfb_3<FB<Vfb_2區間,為了改善導通模式EMI,希望系統的開關頻率不能太集中,能像固定頻率系統可以實現頻率抖動,從而改善EMI。在FB信號控制的降頻曲線上增加週期性抖動控制,同時CS信號上疊加反向抖動信號,最終系統開關頻率可得以分散開來。 In the light-load drop-down frequency band Vfb_3 <FB <Vfb_2, in order to improve the conduction mode EMI, it is hoped that the switching frequency of the system should not be too concentrated. It can achieve frequency jitter like a fixed frequency system, thereby improving EMI. The periodic jitter control is added to the frequency reduction curve of the FB signal control, and the reverse jitter signal is superimposed on the CS signal, so that the switching frequency of the system can be spread out.

第10圖示出了根據本公開的實施例的、QR系統的抖動控制的一種實現方式的示意性框圖。該圖僅作為示例,其不應該不適當地限制專利申請範圍。本領域的普通技術人員應該理解很多變化、替代和修改。QR控制器1000如第10圖所示,包括振盪器(OSC)1010、回饋比例分壓電阻1020、PWM比較器1030、RS鎖存器1040、閘極驅動器1050、邏輯電路1060、退磁感測元件1070,以及抖動控制元件1080和抖動生成元件1090。 FIG. 10 shows a schematic block diagram of an implementation manner of jitter control of a QR system according to an embodiment of the present disclosure. This figure is only an example, and it should not unduly limit the scope of patent applications. Those of ordinary skill in the art should understand many variations, substitutions, and modifications. As shown in FIG. 10, the QR controller 1000 includes an oscillator (OSC) 1010, a feedback proportional voltage dividing resistor 1020, a PWM comparator 1030, an RS latch 1040, a gate driver 1050, a logic circuit 1060, and a demagnetization sensing element. 1070, and a jitter control element 1080 and a jitter generating element 1090.

如第10圖所示,OSC 1010的輸入連接到回饋比例分壓電阻1020並且輸出連接到邏輯電路1060。PWM比較器1030的同相輸入連接到回饋比例分壓電阻1020,反相輸入連接到抖動生成元件1090,輸出連接到RS鎖存器1040的R端。RS鎖存器1040的R端連接到PWM比 較器1030的輸出,S端連接到邏輯電路輸出,Q端連接到閘極驅動器1050的輸入。閘極驅動器1050的輸出與功率電晶體(例如,Q1)的基極相耦接。功率電晶體的基極與閘極驅動器1050的輸出相耦接,集電極與變壓器(未示出)的一次繞組電感的一端相耦接,並且發射極與取樣電阻器Rs的一端相耦接(電阻器Rs的另一端耦接到地信號)。 As shown in FIG. 10, the input of the OSC 1010 is connected to the feedback proportional voltage dividing resistor 1020 and the output is connected to the logic circuit 1060. The non-inverting input of the PWM comparator 1030 is connected to the feedback proportional voltage dividing resistor 1020, the inverting input is connected to the jitter generating element 1090, and the output is connected to the R terminal of the RS latch 1040. The R terminal of the RS latch 1040 is connected to the PWM ratio The output of the comparator 1030, the S terminal is connected to the logic circuit output, and the Q terminal is connected to the input of the gate driver 1050. The output of the gate driver 1050 is coupled to the base of a power transistor (eg, Q1). The base of the power transistor is coupled to the output of the gate driver 1050, the collector is coupled to one end of the primary winding inductance of a transformer (not shown), and the emitter is coupled to one end of the sampling resistor Rs ( The other end of the resistor Rs is coupled to the ground signal).

如第10圖所示,輕載降頻區OSC頻率受回饋信號FB控制,同時OSC頻率上疊加週期性抖動調變。在Vcs信號進入PWM比較器之前疊加一個Vcs_抖動信號,實現對一次線圈電感峰值電流Ipk的抖動調變,這樣系統的開關頻率也可以受到抖動週期性信號調變。VCS_抖動為週期性變化信號與OSC週期保持一致,在週期內信號幅度是連續變化的方式。 As shown in Figure 10, the frequency of the OSC in the light-load down-conversion area is controlled by the feedback signal FB, and the periodic jitter modulation is superimposed on the OSC frequency. A Vcs_ jitter signal is superimposed before the V cs signal enters the PWM comparator to achieve the jitter modulation of the primary coil inductance peak current I pk , so that the switching frequency of the system can also be modulated by the jitter periodic signal. V CS _ jitter is a way that the periodically changing signal is consistent with the OSC period, and the signal amplitude is continuously changing during the period.

第11圖示出了根據本公開的實施例的、QR系統的抖動控制的另一實現方式的示意性框圖。該圖僅作為示例,其不應該不適當地限制專利申請範圍。本領域的普通技術人員應該理解很多變化、替代和修改。所示出的控制器類似於第10圖,其連接關係在此不再贅述。在第11圖所示的實施例中,還包括低通濾波器(Low Pass Filter,LPF),被配置為接收回饋信號並且將經濾波的回饋信號輸出到振盪器。在QR系統輕載降頻段,FB信號控制OSC降頻,降低最高頻率方式實現降頻。相對根據第10圖的實施例,FB信號經過LPF後進入OSC,由於VCS_抖動為與OSC週期保持一致的週期性變化信號,在週期內信號幅度是連續變化的方式,可以減小二次側EA回饋FB信號波動對OSC抖動幅度的影響。 FIG. 11 shows a schematic block diagram of another implementation of jitter control of a QR system according to an embodiment of the present disclosure. This figure is only an example, and it should not unduly limit the scope of patent applications. Those of ordinary skill in the art should understand many variations, substitutions, and modifications. The controller shown is similar to FIG. 10, and its connection relationship is not repeated here. In the embodiment shown in FIG. 11, a low-pass filter (LPF) is further included, which is configured to receive a feedback signal and output the filtered feedback signal to an oscillator. In the QR system light-load frequency reduction, the FB signal controls the frequency reduction of the OSC, reducing the highest frequency to achieve frequency reduction. Compared with the embodiment shown in FIG. 10, the FB signal enters the OSC after passing through the LPF. Since V CS _ jitter is a periodically changing signal consistent with the OSC cycle, the signal amplitude is continuously changed in the cycle, which can reduce the secondary The influence of side EA feedback FB signal fluctuation on the amplitude of OSC jitter.

根據一個實施例,OSC頻率上疊加週期性抖動調變,在Vcs信號進入PWM比較器之前疊加一個Vcs_抖動信號,實現對Ipk電流的抖動調變,這樣系統的開關頻率也可以受到抖動週期性信號調變。VCS_抖動為週期性變化信號與OSC週期保持一致,在週期內信號幅度是連續變化的方式。 According to an embodiment, a periodic jitter modulation is superimposed on the OSC frequency, and a Vcs_ jitter signal is superimposed before the V cs signal enters the PWM comparator to implement jitter modulation of the I pk current, so that the switching frequency of the system can also be jittered. Periodic signal modulation. V CS _ jitter is a way that the periodically changing signal is consistent with the OSC period, and the signal amplitude is continuously changing during the period.

第12圖示出了根據本公開的實施例的、QR系統的抖動控制的又一實現方式的示意性框圖。該圖僅作為示例,其不應該不適當地 限制專利申請範圍。本領域的普通技術人員應該理解很多變化、替代和修改。所示出的控制器類似於第10圖,其連接關係在此不再贅述。在第11圖所示的實施例中, 根據一個實施例,輕載降頻區OSC頻率受回饋信號FB控制,同時OSC頻率上疊加週期性抖動調變。在Vcs信號進入PWM比較器之前疊加一個Vcs_抖動信號,實現對Ipk電流的抖動調變。根據一個實施例,二次側回饋FB信號和OSC抖動的時鐘信號控制抖動生成器輸出信號的幅度,從而控制CS上疊加的抖動幅度,這樣可以控制OSC上抖動和CS上疊加抖動信號相對應,減小OSC抖動對整個環路的干擾,即在OSC抖動週期內FB信號保持相對恒定,減小二次側EA對OSC抖動的影響。 FIG. 12 shows a schematic block diagram of still another implementation manner of jitter control of a QR system according to an embodiment of the present disclosure. This figure is only an example, and it should not unduly limit the scope of patent applications. Those of ordinary skill in the art should understand many variations, substitutions, and modifications. The controller shown is similar to FIG. 10, and its connection relationship is not repeated here. In the embodiment shown in FIG. 11, according to one embodiment, the OSC frequency of the light-load frequency reduction region is controlled by the feedback signal FB, and the periodic jitter modulation is superimposed on the OSC frequency. A Vcs_ jitter signal is superimposed before the V cs signal enters the PWM comparator to achieve jitter modulation of the I pk current. According to an embodiment, the clock signal of the secondary-side feedback FB signal and the OSC jitter controls the amplitude of the output signal of the jitter generator, thereby controlling the amplitude of the jitter superimposed on the CS, so that the jitter on the OSC can be controlled to correspond to the jitter signal superimposed on the CS, Reduce the interference of the OSC jitter on the entire loop, that is, the FB signal remains relatively constant during the OSC jitter cycle, and reduce the effect of the secondary-side EA on the OSC jitter.

在本公開的實施例中,同時在OSC和CS上引入抖動信號,以實現系統開關頻率的抖動功能。導通EMI在頻譜上每個諧波頻點能量分佈範圍更寬,同時由於總能量不變,每個諧波頻點的幅度會更低,EMI冗餘(margin)更大。 In the embodiment of the present disclosure, a jitter signal is introduced on both the OSC and the CS to implement the jitter function of the system switching frequency. Turn-on EMI has a wider energy distribution range at each harmonic frequency point in the frequency spectrum. At the same time, because the total energy is constant, the amplitude of each harmonic frequency point will be lower, and the EMI margin will be greater.

本發明可以以其他的具體形式實現,而不脫離其精神和本質特徵。例如,特定實施例中所描述的演算法可以被修改,而系統體系結構並不脫離本發明的基本精神。因此,當前的實施例在所有方面都被看作是示例性的而非限定性的,本發明的範圍由所附申請專利範圍而非上述描述定義,並且,落入申請專利範圍的含義和等同物的範圍內的全部改變從而都被包括在本發明的範圍之中。 The present invention may be implemented in other specific forms without departing from the spirit and essential characteristics thereof. For example, the algorithms described in particular embodiments may be modified without the system architecture departing from the basic spirit of the invention. Therefore, the current embodiment is considered in all aspects as exemplary rather than limiting, the scope of the present invention is defined by the scope of the attached patent application rather than the above description, and the meanings and equivalents falling within the scope of the patent application All changes within the scope of the substance are thus included in the scope of the present invention.

本發明各個實施例中的一些或所有元件單獨地和/或與至少另一元件相組合地是利用一個或多個軟體元件、一個或多個硬體元件和/或軟體與硬體元件的一種或多種組合來實現的。在另一示例中,本發明各個實施例中的一些或所有元件單獨地和/或與至少另一元件相組合地在一個或多個電路中實現,例如在一個或多個類比電路和/或一個或多個數位電路中實現。在又一示例中,本發明的各個實施例和/或示例可以相組合。 Some or all of the elements of the various embodiments of the invention, alone and / or in combination with at least another element, are one of one or more software elements, one or more hardware elements, and / or software and hardware elements Or multiple combinations to achieve. In another example, some or all of the elements of various embodiments of the present invention are implemented in one or more circuits alone and / or in combination with at least another element, such as in one or more analog circuits and / or Implemented in one or more digital circuits. In yet another example, various embodiments and / or examples of the present invention may be combined.

雖然已描述了本發明的具體實施例,然而本領域技術人員將明白,還存在於所述實施例等同的其它實施例。因此,將明白,本發明不受所示具體實施例的限制,而是僅由專利申請範圍來限定。 Although specific embodiments of the present invention have been described, those skilled in the art will appreciate that there are other embodiments equivalent to the described embodiments. Therefore, it will be understood that the present invention is not limited by the specific embodiments shown, but only by the scope of the patent application.

Claims (8)

一種改善返馳式開關電源的電磁干擾(EMI)的系統,包括:邏輯電路,所述邏輯電路被配置為至少部分地基於第一信號來生成鎖存信號;振盪器(OSC),所述振盪器的輸入連接到回饋比例分壓電阻並且輸出連接到所述邏輯電路,並且被配置為生成所述第一信號並將所述第一信號傳輸到所述邏輯電路,其中所述回饋比例分壓電阻被配置為根據所述系統的輸出電壓來生成回饋信號;抖動生成器,所述抖動生成器被配置為生成第二信號並且將所述第二信號傳輸到比較器;所述比較器,所述比較器的同相輸入連接到所述回饋比例分壓電阻,反相輸入連接到抖動生成器,輸出連接到RS鎖存器的R端,從而基於所述回饋信號和第二信號生成比較信號;所述RS鎖存器,所述RS鎖存器的R端連接到所述比較器的輸出,S端連接到所述邏輯電路的輸出,並且Q端連接到閘極驅動器的輸入,從而基於所述比較信號和所述鎖存信號來生成第三信號;所述閘極驅動器,所述閘極驅動器被配置為接收所述第三信號,並且至少部分地基於所述第三信號生成驅動信號從而控制連接到所述閘極驅動器的功率電晶體的導通和關斷;以及抖動控制器,所述抖動控制器被配置為接收參考信號並且至少部分地基於所述參考信號來生成控制信號,其中所述第一信號是由所述振盪器基於所述控制信號生成的;其中所述抖動生成器被配置為至少部分地基於所述系統的開關頻率的降頻區的內頻率變化幅度來生成所述第二信號。A system for improving electromagnetic interference (EMI) of a flyback switching power supply includes: a logic circuit configured to generate a latch signal based at least in part on a first signal; an oscillator (OSC), the oscillation An input of the converter is connected to the feedback proportional voltage dividing resistor and an output is connected to the logic circuit, and is configured to generate the first signal and transmit the first signal to the logic circuit, wherein the feedback proportional voltage division The resistor is configured to generate a feedback signal according to an output voltage of the system; a jitter generator configured to generate a second signal and transmit the second signal to a comparator; the comparator, all The non-inverting input of the comparator is connected to the feedback proportional voltage dividing resistor, the inverting input is connected to the jitter generator, and the output is connected to the R terminal of the RS latch, so as to generate a comparison signal based on the feedback signal and the second signal; In the RS latch, an R terminal of the RS latch is connected to an output of the comparator, an S terminal is connected to an output of the logic circuit, and a Q terminal is connected to a gate driver. Input to generate a third signal based on the comparison signal and the latch signal; the gate driver, the gate driver is configured to receive the third signal, and is based at least in part on the third signal A signal generating driving signal to control on and off of a power transistor connected to the gate driver; and a jitter controller configured to receive a reference signal and generate based at least in part on the reference signal A control signal, wherein the first signal is generated by the oscillator based on the control signal; wherein the jitter generator is configured to be based at least in part on a change in an internal frequency of a switching frequency of the system Amplitude to generate the second signal. 如專利申請範圍第1項所述的系統,其中所述第一信號是由所述振盪器基於所述控制信號和所述回饋信號生成的。The system of claim 1, wherein the first signal is generated by the oscillator based on the control signal and the feedback signal. 如專利申請範圍第1項所述的系統,進一步包括低通濾波器,所述低通濾波器被配置為接收所述回饋信號並且將經濾波的回饋信號輸出到所述振盪器。The system according to item 1 of the scope of patent application, further comprising a low-pass filter configured to receive the feedback signal and output the filtered feedback signal to the oscillator. 如專利申請範圍第1項所述的系統,其中所述抖動生成器被配置為至少部分地基於所述時鐘信號來生成所述第二信號。The system of claim 1, wherein the jitter generator is configured to generate the second signal based at least in part on the clock signal. 如專利申請範圍第1項所述的系統,進一步包括感測電阻器,所述感測電阻器一端與所述比較器相耦接,一端接地,並且被配置為基於所述系統的一次線圈電感電流來生成電流感測信號,其中所述抖動生成器的輸出信號與所述電流感測信號疊加,並且經疊加的信號被輸出到所述比較器的反相輸入端。The system according to item 1 of the patent application scope, further comprising a sensing resistor, one end of which is coupled to the comparator, one end of which is grounded, and is configured to be based on a primary coil inductance of the system A current is used to generate a current sensing signal, wherein an output signal of the jitter generator is superimposed on the current sensing signal, and the superimposed signal is output to an inverting input terminal of the comparator. 如專利申請範圍第1項所述的系統,進一步包括誤差放大器,所述誤差放大器被配置為接收所述系統的輸出電壓,並且基於所述輸出電壓來生成回饋電壓,其中所述回饋信號是基於所述回饋電壓生成的。The system according to item 1 of the patent application scope, further comprising an error amplifier configured to receive an output voltage of the system and generate a feedback voltage based on the output voltage, wherein the feedback signal is based on The feedback voltage is generated. 如專利申請範圍第6項所述的系統,其中所述誤差放大器被配置為將所述系統的頻寬控制為小於所述系統的開關頻率的1/10。The system according to item 6 of the patent application scope, wherein the error amplifier is configured to control a bandwidth of the system to be less than 1/10 of a switching frequency of the system. 一種開關電源,包括如專利申請範圍第1-7項中任一項所述的改善返馳式開關電源的電磁干擾(EMI)的系統。A switching power supply includes the system for improving electromagnetic interference (EMI) of a flyback switching power supply according to any one of patent application scope items 1-7.
TW106135197A 2017-07-17 2017-10-13 System for improving EMI of flyback switching power supplies TWI651921B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710580345.2A CN107359789B (en) 2017-07-17 2017-07-17 Improve the system of the EMI of inverse-excitation type switch power-supply
??201710580345.2 2017-07-17

Publications (2)

Publication Number Publication Date
TWI651921B true TWI651921B (en) 2019-02-21
TW201909532A TW201909532A (en) 2019-03-01

Family

ID=60293109

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106135197A TWI651921B (en) 2017-07-17 2017-10-13 System for improving EMI of flyback switching power supplies

Country Status (2)

Country Link
CN (1) CN107359789B (en)
TW (1) TWI651921B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190735A (en) * 2019-06-21 2019-08-30 杰华特微电子(杭州)有限公司 Switching Power Supply
CN111756219A (en) * 2020-07-05 2020-10-09 上海韦孜美电子科技有限公司 Switching frequency dithering method, switching circuit and DC-DC converter
CN112953199B (en) * 2021-02-05 2023-11-14 矽力杰半导体技术(杭州)有限公司 Switching power supply controller and control method thereof
CN113541469A (en) * 2021-06-24 2021-10-22 深圳市必易微电子股份有限公司 Self-adaptive quasi-resonant EMI optimization circuit, optimization method and switching power supply circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201218590A (en) * 2010-10-27 2012-05-01 Inergy Technology Inc Control circuit of a power converter for switching frequency jitter
TW201234746A (en) * 2011-02-01 2012-08-16 Richpower Microelectronics Pulse width modulation controller and method for output ripple reduction of a jittering frequency switching power supply
TW201318324A (en) * 2011-10-25 2013-05-01 On Bright Electronics Shanghai Systems and methods for reducing electomagnetic interference using switching frequency jittering
TW201414146A (en) * 2012-09-21 2014-04-01 Anwell Semiconductor Corp Power conversion control chip and device thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877531B (en) * 2009-04-30 2012-11-07 辉芒微电子(深圳)有限公司 Switch power supply as well as used frequency jitter generating device and method thereof
TWI433437B (en) * 2011-02-01 2014-04-01 Richpower Microelectronics Jittering frequency control circuit for a switching mode power supply
US9203292B2 (en) * 2012-06-11 2015-12-01 Power Systems Technologies Ltd. Electromagnetic interference emission suppressor
CN102780392B (en) * 2012-07-31 2016-05-18 上海新进半导体制造有限公司 A kind of PFM Switching Power Supply and tremble frequency circuit and tremble frequency method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201218590A (en) * 2010-10-27 2012-05-01 Inergy Technology Inc Control circuit of a power converter for switching frequency jitter
TW201234746A (en) * 2011-02-01 2012-08-16 Richpower Microelectronics Pulse width modulation controller and method for output ripple reduction of a jittering frequency switching power supply
TW201318324A (en) * 2011-10-25 2013-05-01 On Bright Electronics Shanghai Systems and methods for reducing electomagnetic interference using switching frequency jittering
TW201414146A (en) * 2012-09-21 2014-04-01 Anwell Semiconductor Corp Power conversion control chip and device thereof

Also Published As

Publication number Publication date
CN107359789B (en) 2019-08-06
TW201909532A (en) 2019-03-01
CN107359789A (en) 2017-11-17

Similar Documents

Publication Publication Date Title
US10447149B2 (en) Introducing jitter to a switching frequency by way of modulating current limit
US11005361B2 (en) Control circuit and method of a switching power supply
US9490706B2 (en) Power supply controller with input voltage compensation for efficiency and maximum power output
US9859788B2 (en) Power factor correction circuit and switching power supply apparatus
JP6170659B2 (en) Power controller
US8891255B2 (en) Switching power supply apparatus including simultanous control of multiple outputs
US9780673B2 (en) Control method and device for switching power supplies having more than one control mode
TWI501524B (en) A system and method for reducing electromagnetic interference using switching frequency jitter
TWI651921B (en) System for improving EMI of flyback switching power supplies
TWI542128B (en) Dc to dc converter system and method for dc to dc conversion
US8063507B2 (en) Multiple output switching power source apparatus
US10568169B2 (en) Control circuit, control method and LED driver thereof
EP3490131B1 (en) Controller with frequency to on-time converter
JP2011087394A (en) Switching element driving control circuit and switching power supply device
JP7400188B2 (en) Control device
KR20220092510A (en) Digital Non-Linear Conversion for Voltage Mode Control of Power Converters