TWI651548B - Volume based gradient index lens by additive manufacturing - Google Patents

Volume based gradient index lens by additive manufacturing Download PDF

Info

Publication number
TWI651548B
TWI651548B TW104101711A TW104101711A TWI651548B TW I651548 B TWI651548 B TW I651548B TW 104101711 A TW104101711 A TW 104101711A TW 104101711 A TW104101711 A TW 104101711A TW I651548 B TWI651548 B TW I651548B
Authority
TW
Taiwan
Prior art keywords
dielectric material
lens
dielectric
grin
layers
Prior art date
Application number
TW104101711A
Other languages
Chinese (zh)
Other versions
TW201627689A (en
Inventor
羅納德 大衛 傑斯米
賈斯丁 馬克 強森
湯瑪士 傑弗瑞 布萊斯
Original Assignee
美商3M新設資產公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商3M新設資產公司 filed Critical 美商3M新設資產公司
Priority to TW104101711A priority Critical patent/TWI651548B/en
Publication of TW201627689A publication Critical patent/TW201627689A/en
Application granted granted Critical
Publication of TWI651548B publication Critical patent/TWI651548B/en

Links

Abstract

所述技術係用於形成一用於傳播一電磁波的梯度折射率(GRIN)透鏡,其包括:藉由一具有一或多個處理器的製造裝置,接收一包含指定複數個層的資料之模型,其中該複數個層的至少一層包含一或多個體積元素的一配置,該一或多個體積元素包含一第一介電材料與一第二介電材料,其中該複數個層的該至少一層具有一介電常數分佈,該介電常數分佈係由該層中的該等體積元素之複數個不同有效介電常數所構成;以及基於該模型,使用該製造裝置藉由一積層製程來產生該GRIN透鏡。 The technique is for forming a gradient index (GRIN) lens for propagating an electromagnetic wave, comprising: receiving a model containing data of a specified plurality of layers by a manufacturing device having one or more processors At least one layer of the plurality of layers comprising a configuration of one or more volume elements, the one or more volume elements comprising a first dielectric material and a second dielectric material, wherein the at least one of the plurality of layers One layer has a dielectric constant distribution consisting of a plurality of different effective dielectric constants of the equal volume elements in the layer; and based on the model, the manufacturing apparatus is used to generate by a lamination process The GRIN lens.

Description

利用積層製造之以體積為基礎的梯度折射率透鏡 Volume-based gradient index lens fabricated by lamination

本揭露係關於製造三維(3D)結構。具體而言,本揭露係關於3D光學結構的製程。 The disclosure relates to the fabrication of three-dimensional (3D) structures. In particular, the present disclosure relates to the process of 3D optical structures.

可用的射頻頻譜時常受限於管轄地法規與標準。對於頻寬要求的不斷提高(即增加的資料處理量)導致數種無線點對點技術興起,這些技術提供光纖資料率且可支援密集部署架構。毫米波通訊系統可用於此功能,提供短鏈路、高資料率、低成本、高密度、高安全性、與低傳輸功率的操作效益。 The available RF spectrum is often subject to jurisdictional regulations and standards. The ever-increasing bandwidth requirements (ie, increased data throughput) have led to the emergence of several wireless peer-to-peer technologies that provide fiber data rates and support dense deployment architectures. The millimeter wave communication system can be used for this function, providing short link, high data rate, low cost, high density, high security, and low transmission power operation benefits.

這些優點使毫米波通訊系統有利於傳送射頻頻譜中的各種不同波。同軸電纜可用於攜帶此類毫米波,然而要將這些電纜結合至毫米波通訊系統中目前仍極為昂貴。 These advantages make the millimeter wave communication system facilitate the transmission of various different waves in the radio frequency spectrum. Coaxial cables can be used to carry such millimeter waves, but it is still extremely expensive to incorporate these cables into millimeter wave communication systems.

用於製造毫米波或光學裝置及其他結構的製造技術包括體型加工(bulk machining)技術,諸如研磨透鏡;精密模製以建立非球面;及平面技術方法以產生薄膜裝置。這些製程通常生產需要組裝至系統中的組件。所製造毫米波或光學裝置的實例包括可採取習知雙凸透鏡形式的實體梯度折射率(Gradient-Index,GRIN)透鏡。 Manufacturing techniques for fabricating millimeter wave or optical devices and other structures include bulk machining techniques such as grinding lenses; precision molding to create aspheric surfaces; and planar techniques to create thin film devices. These processes typically produce components that need to be assembled into the system. Examples of fabricated millimeter wave or optical devices include a solid gradient index (GRIN) lens that can take the form of a conventional lenticular lens.

產生用於射頻與聲學系統的結構(諸如GRIN透鏡)之已知製造方法可能需要耗能的處理,且可能耗時。GRIN透鏡已使用數種技術製造,包括中子照射、化學氣相沉積、部分聚合、離子交換、與離子填充。 Known manufacturing methods that produce structures for radio frequency and acoustic systems, such as GRIN lenses, may require energy consuming processing and may be time consuming. GRIN lenses have been fabricated using several techniques including neutron irradiation, chemical vapor deposition, partial polymerization, ion exchange, and ion packing.

大體上,本揭露係關於透鏡及用於形成透鏡的技術。例如,本揭露說明形成供各種不同射頻(RF)頻率使用的梯度折射率(GRIN)透鏡。例如,根據本揭露的技術,GRIN透鏡可藉由積層製程(additive manufacturing process)來形成,諸如藉由用3D列印機進行列印,其中透鏡的表面可為平坦、彎曲或階梯式。形成透鏡的材料可列印成具有受控量之次波長間隙的一型樣以控制局部密度、有效局部介電常數、或有效局部相對電容率、與局部折射率。這些局部參數可在透鏡的整個體積中持續變化,以產生具有獨立受控光學效能與實體形狀的透鏡,如藉由3D列印機所列印者。 In general, the present disclosure relates to lenses and techniques for forming lenses. For example, the present disclosure illustrates the formation of gradient index (GRIN) lenses for use with a variety of different radio frequency (RF) frequencies. For example, in accordance with the techniques of the present disclosure, a GRIN lens can be formed by an additive manufacturing process, such as by printing with a 3D printer, where the surface of the lens can be flat, curved, or stepped. The material forming the lens can be printed as a pattern having a controlled amount of sub-wavelength gap to control local density, effective local dielectric constant, or effective local relative permittivity, and local refractive index. These local parameters can be continuously varied throughout the volume of the lens to produce a lens with independently controlled optical performance and solid shape, such as those listed by a 3D printer.

在一種形成用於傳播電磁波的一梯度折射率(GRIN)透鏡的方法之一個實例中,該方法包括:藉由具有一或多個處理器的一製造裝置,接收包括指定複數個層的資料之一模型,其中該複數個層的至少一層包括一或多個體積元素(volume element)的一配置,該一或多個體積元素包括一第一介電材料與一第二介電材料,其中該複數個層的該至少一層具有一介電常數分佈,該分佈係由該層中的該等體積元素之複數個不同有效介電常數所構成;及基於該模型而利用該製造裝置藉由一積層製程,產生該GRIN透鏡。 In one example of a method of forming a gradient index (GRIN) lens for propagating electromagnetic waves, the method includes receiving data comprising a specified plurality of layers by a manufacturing device having one or more processors a model wherein at least one of the plurality of layers comprises a configuration of one or more volume elements, the one or more volume elements comprising a first dielectric material and a second dielectric material, wherein the The at least one layer of the plurality of layers has a dielectric constant distribution consisting of a plurality of different effective dielectric constants of the equal volume elements in the layer; and using the manufacturing apparatus by a layer based on the model The process produces the GRIN lens.

在另一實例中,一種用於傳播電磁波之梯度折射率(GRIN)透鏡,該透鏡包括:複數個層,其等係經積層地形成以包括複數個體積元素,其中該複數個層的至少一層包括該一或多個體積元素的一配置,該一或多個體積元素包括一第一介電材料與一第二介電材料,其中該等體積元素係藉由一積層製程形成,其中該複數個層的該至少一層具有一介電常數分佈,該分佈係由該層中的該等體積元素之複數個不同有效介電常數所構成,且其中該等局部有效介電常數之各者為下列者的函數:各別該等體積元素中之該第一介電材料對該第二介電材料的體積比、該第一介電材料的介電常數、與該第二介電材料的介電常數。 In another example, a gradient index (GRIN) lens for propagating electromagnetic waves, the lens comprising: a plurality of layers that are sequentially formed to include a plurality of volume elements, wherein at least one of the plurality of layers An arrangement comprising the one or more volume elements, the one or more volume elements comprising a first dielectric material and a second dielectric material, wherein the equal volume elements are formed by a laminate process, wherein the plurality The at least one layer of the layers has a dielectric constant distribution consisting of a plurality of different effective dielectric constants of the equal volume elements in the layer, and wherein each of the local effective dielectric constants is the following Function of: a volume ratio of the first dielectric material to the second dielectric material in each of the volume elements, a dielectric constant of the first dielectric material, and a dielectric with the second dielectric material constant.

以下在附圖及說明中提出本揭露之一或多項實例之細節。從說明與圖式以及申請專利範圍中將明白本揭露之其他特徵、目的與優點。 The details of one or more examples of the disclosure are set forth in the accompanying drawings and description. Other features, objects, and advantages of the present disclosure will be apparent from the description and appended claims.

10‧‧‧環境 10‧‧‧ Environment

14‧‧‧計算裝置 14‧‧‧ Computing device

18‧‧‧鍵盤 18‧‧‧ keyboard

20‧‧‧顯示裝置 20‧‧‧ display device

22‧‧‧模型 22‧‧‧Model

24‧‧‧積層製造裝置 24‧‧‧Laminated manufacturing equipment

30‧‧‧模型化應用程式 30‧‧‧Modeled application

34‧‧‧作業系統 34‧‧‧Operating system

36‧‧‧資料儲存裝置 36‧‧‧Data storage device

38‧‧‧處理器 38‧‧‧ Processor

40‧‧‧輸入/輸出 40‧‧‧ Input/Output

42‧‧‧GRIN透鏡資料 42‧‧‧GRIN lens data

44‧‧‧AM裝置管理 44‧‧‧AM device management

50‧‧‧GRIN透鏡聚焦環境 50‧‧‧GRIN lens focusing environment

52‧‧‧波導 52‧‧‧Band

54‧‧‧3D GRIN透鏡 54‧‧‧3D GRIN lens

56‧‧‧電磁波 56‧‧‧Electromagnetic waves

58‧‧‧點 58‧‧‧ points

60‧‧‧端口 60‧‧‧port

100‧‧‧單位格子 100‧‧‧unit grid

102‧‧‧介電材料 102‧‧‧ dielectric materials

104‧‧‧介電材料 104‧‧‧ dielectric materials

110‧‧‧單位格子 110‧‧‧unit grid

112‧‧‧介電材料 112‧‧‧Dielectric materials

114‧‧‧介電材料 114‧‧‧Dielectric materials

120‧‧‧單位格子 120‧‧‧unit grid

130‧‧‧介電材料 130‧‧‧Dielectric materials

132‧‧‧介電材料 132‧‧‧ dielectric materials

134‧‧‧介電材料 134‧‧‧ dielectric materials

136‧‧‧介電材料 136‧‧‧ dielectric materials

200‧‧‧輪輻設計 200‧‧・spoke design

202‧‧‧輪幅環 202‧‧‧Sleeve ring

204‧‧‧輪幅環 204‧‧‧Sleeve ring

206‧‧‧輪幅環 206‧‧‧Spoke ring

208‧‧‧輪幅環 208‧‧‧Sleeve ring

210‧‧‧輪幅環 210‧‧‧Sleeve ring

212‧‧‧輪幅環 212‧‧‧ spoke ring

214‧‧‧圓圈 214‧‧‧ circle

222‧‧‧間隙 222‧‧‧ gap

224‧‧‧間隙 224‧‧‧ gap

250‧‧‧環狀設計 250‧‧‧Circular design

252‧‧‧環 252‧‧‧ Ring

254‧‧‧環 254‧‧‧ Ring

256‧‧‧環 256‧‧‧ ring

258‧‧‧環 258‧‧‧ ring

260‧‧‧圓圈 260‧‧‧ circle

262‧‧‧間隙 262‧‧‧ gap

264‧‧‧間隙 264‧‧‧ gap

300A‧‧‧輪輻與環狀設計 300A‧‧·spoke and ring design

300B‧‧‧環狀與輪輻設計 300B‧‧‧ring and spoke design

302A‧‧‧圓圈 302A‧‧ Circle

304A‧‧‧輪輻層 304A‧‧·spoke layer

304B‧‧‧輪輻 304B‧‧‧ spokes

306A‧‧‧環狀層 306A‧‧‧ annular layer

306B‧‧‧環狀層 306B‧‧‧ annular layer

308A‧‧‧間隙 308A‧‧‧ gap

308B‧‧‧間隙 308B‧‧‧ gap

320‧‧‧輪輻與環狀設計 320‧‧‧ spoke and ring design

322‧‧‧中心 322‧‧‧ Center

324‧‧‧輪輻環狀層 324‧‧‧ spoke annular layer

326‧‧‧環狀層 326‧‧‧ annular layer

328‧‧‧間隙 328‧‧‧ gap

330‧‧‧環狀與輪輻設計 330‧‧‧Ring and spoke design

332‧‧‧中心 332‧‧‧ Center

334‧‧‧輪輻層 334‧‧‧ spoke layer

336‧‧‧環狀層 336‧‧‧ annular layer

338‧‧‧間隙 338‧‧‧ gap

402‧‧‧密度 402‧‧‧ density

404‧‧‧半徑 404‧‧‧ Radius

406‧‧‧線 406‧‧‧ line

500‧‧‧圖表 500‧‧‧ Chart

502‧‧‧圖表 502‧‧‧ Chart

504‧‧‧增益型樣 504‧‧‧ Gain pattern

506‧‧‧增益型樣 506‧‧‧ Gain pattern

600‧‧‧概念圖 600‧‧‧ concept map

602‧‧‧GRIN透鏡 602‧‧‧GRIN lens

604‧‧‧波 604‧‧‧ waves

606‧‧‧聚焦 606‧‧‧ Focus

610‧‧‧階梯式GRIN透鏡 610‧‧‧stepped GRIN lens

612A‧‧‧層 612A‧‧ layer

612B‧‧‧層 612B‧‧ layer

614A‧‧‧層 614A‧‧ layer

614B‧‧‧層 614B‧‧ layer

626A‧‧‧層 626A‧‧ layer

626B‧‧‧層 626B‧‧ layer

630‧‧‧概念圖 630‧‧‧ concept map

634‧‧‧波 634‧‧‧ waves

636‧‧‧聚焦波 636‧‧‧ Focusing waves

640‧‧‧概念圖 640‧‧‧ concept map

644‧‧‧波 644‧‧‧ waves

646‧‧‧聚焦波 646‧‧‧ focused waves

700‧‧‧非織結構 700‧‧‧Non-woven structure

702‧‧‧GRIN透鏡 702‧‧‧GRIN lens

710‧‧‧非織結構 710‧‧‧Non-woven structure

712‧‧‧GRIN透鏡 712‧‧‧GRIN lens

802‧‧‧第一介電材料及第二介電材料 802‧‧‧first dielectric material and second dielectric material

804‧‧‧GRIN透鏡 804‧‧‧GRIN lens

圖1為繪示三維(3D)梯度折射率(GRIN)透鏡產生環境之實例的方塊圖。 1 is a block diagram showing an example of a three-dimensional (3D) gradient index (GRIN) lens generating environment.

圖2為繪示計算裝置之實例的方塊圖,該計算裝置係依據本文中所述之技術來運作。 2 is a block diagram showing an example of a computing device that operates in accordance with the techniques described herein.

圖3A至圖3B為繪示3D GRIN透鏡聚焦環境之實例的概念圖。 3A-3B are conceptual diagrams showing an example of a 3D GRIN lens focusing environment.

圖4為繪示概念性三維單位格子(unit cell)之實例的圖解,該單位格子具有一各別體積之一第一介電材料與一第二介電材料。 4 is a diagram showing an example of a conceptual three-dimensional unit cell having a first dielectric material and a second dielectric material in a respective volume.

圖5為繪示概念性三維單位格子之另一實例的圖解,該單位格子具有一各別體積之一第一介電材料與一第二介電材料。 FIG. 5 is a diagram showing another example of a conceptual three-dimensional unit lattice having a first dielectric material and a second dielectric material in a respective volume.

圖6為繪示概念性三維單位格子之一陣列之實例的圖解,該單位格子陣列具有基於該三維單位格子陣列中之各三維單位格子的各別體積之一體積。 6 is a diagram showing an example of an array of conceptual three-dimensional unit grids having one volume of respective volumes based on each three-dimensional unit grid in the three-dimensional unit grid array.

圖7為繪示以一輪輻(spoke)設計來結構化的數位三維立體像素之一陣列之實例的圖解。 7 is a diagram showing an example of an array of digital three-dimensional pixels structured in a spoke design.

圖8為繪示以一環狀設計來結構化的數位三維立體像素之一陣列之另一實例的圖解。 8 is a diagram showing another example of an array of digital three-dimensional pixels structured in a ring design.

圖9A至圖9B為繪示數位三維立體像素之一陣列之實例的圖解,該等立體像素係以輪輻設計與環狀設計的一組合來結構化以形成一輪輻與環狀設計、以及一環狀與輪輻設計。 9A-9B are diagrams showing an example of an array of digital three-dimensional pixels, which are structured in a combination of a spoke design and a ring design to form a spoke and ring design, and a ring. Shape and spoke design.

圖10為繪示以一輪輻與環狀設計來結構化的實體三維立體像素之一陣列之實例的圖解。 10 is a diagram showing an example of an array of solid three-dimensional pixels structured in a spoke and ring design.

圖11為繪示以一環狀與輪輻設計來結構化的實體三維立體像素之一陣列之實例的圖解。 11 is a diagram showing an example of an array of solid three-dimensional pixels structured in a ring and spoke design.

圖12為繪示根據3D GRIN透鏡的半徑之一第一介電材料密度之實例的圖表。 Figure 12 is a graph showing an example of the density of a first dielectric material according to one of the radii of a 3D GRIN lens.

圖13A至圖13B為繪示所測得增益模式之實例的圖表,該實例並非使用GRIN透鏡而是使用如圖10至圖11所描述之GRINS透鏡。 13A-13B are graphs showing examples of measured gain patterns that do not use a GRIN lens but use a GRINS lens as described in FIGS. 10-11.

圖14為繪示具有一單一介電常數之一第一介電材料與具有一雙凸透鏡之一結構的聚焦效應之實例的概念圖。 Figure 14 is a conceptual diagram showing an example of a focusing effect of a first dielectric material having a single dielectric constant and a structure having a lenticular lens.

圖15為繪示一階梯式GRIN透鏡之實例的概念圖,該透鏡包含具有一階梯式介電常數分佈及類似於一雙凸GRIN透鏡的聚焦效應之兩種或更多種介電材料。 Figure 15 is a conceptual diagram showing an example of a stepped GRIN lens comprising two or more dielectric materials having a stepped dielectric constant distribution and a focusing effect similar to a biconvex GRIN lens.

圖16為繪示兩種或更多種介電材料的聚焦效應之實例的概念圖,該等介電材料係根據本文中所揭露之一或多種技術來形成一階梯式介電常數分佈。 16 is a conceptual diagram illustrating an example of focusing effects of two or more dielectric materials that form a stepped dielectric constant distribution in accordance with one or more techniques disclosed herein.

圖17為繪示兩種或更多種介電材料的聚焦效應之實例的概念圖,該等介電材料係根據本文中所揭露之一或多種技術來形成一階梯式介電常數分佈。 17 is a conceptual diagram illustrating an example of focusing effects of two or more dielectric materials that form a stepped dielectric constant distribution in accordance with one or more techniques disclosed herein.

圖18繪示根據本文中所揭露之一或多種技術之具有兩種或更多種介電材料的一非織結構之實例。 18 illustrates an example of a nonwoven structure having two or more dielectric materials in accordance with one or more techniques disclosed herein.

圖19繪示根據本文中所揭露之一或多種技術之具有兩種或更多種介電材料的一非織結構之另一實例。 19 illustrates another example of a nonwoven structure having two or more dielectric materials in accordance with one or more techniques disclosed herein.

圖20為繪示一積層製造裝置的實例程序之流程圖,該裝置依據本文中所揭露技術產生具有兩種或更多種介電材料的一3D GRIN透鏡。 20 is a flow chart showing an example procedure for a laminate manufacturing apparatus that produces a 3D GRIN lens having two or more dielectric materials in accordance with the techniques disclosed herein.

本揭露說明用於建立、自訂、及產生梯度折射率(GRIN)透鏡的技術,該等透鏡對應於一不同的GRIN透鏡結構同時維持一類似的介電常數分佈。例如,技術係說明為用於在一虛擬環境中建立一 數位GRIN透鏡表示、從其中取得資訊、及透過積層製造技術來產生對應於該數位GRIN透鏡表示之實體GRIN透鏡。此外,本揭露的至少某些態樣是針對用於管理GRIN透鏡的多個態樣之技術,諸如介電常數、形狀、或類似者。本文中所用的術語「介電常數」係指實體GRIN透鏡的相對電容率,且術語「介電常數」與「相對電容率」可互換使用。 The present disclosure describes techniques for creating, customizing, and producing gradient index (GRIN) lenses that correspond to a different GRIN lens structure while maintaining a similar dielectric constant distribution. For example, the technical department is described as being used to build a virtual environment The digital GRIN lens represents, obtains information therefrom, and produces a physical GRIN lens corresponding to the digital GRIN lens representation through a layered fabrication technique. Moreover, at least some aspects of the present disclosure are directed to techniques for managing multiple aspects of a GRIN lens, such as dielectric constant, shape, or the like. The term "dielectric constant" as used herein refers to the relative permittivity of a solid GRIN lens, and the terms "dielectric constant" and "relative permittivity" are used interchangeably.

大體上,GRIN透鏡可包括實體GRIN透鏡與數位GRIN透鏡表示。實體GRIN透鏡通常係指具有一般界線、重量、及形狀的實體物件,其用來將光(包括紅外線及紫外線)或其他電磁信號聚焦,例如,諸如具有自30至300吉赫(GHz)之頻率的極高頻率(Extremely High Frequency,EHF)信號。實體GRIN透鏡可包括例如藉由電腦數值控制(Computer Numerical Control,CNC)機、3D列印機、或類似者,在基於一數位GRIN透鏡表示來建立、模製、或生產之後所得的物件。 In general, a GRIN lens can include a physical GRIN lens and a digital GRIN lens representation. A solid GRIN lens generally refers to a physical object having a general boundary, weight, and shape that is used to focus light, including infrared and ultraviolet light, or other electromagnetic signals, such as, for example, having a frequency from 30 to 300 GHz. Extremely High Frequency (EHF) signal. The physical GRIN lens may comprise an article obtained after being built, molded, or produced based on a digital GRIN lens representation, such as by a computer numerical control (CNC) machine, a 3D printer, or the like.

利用本揭露的技術,可用積層製造裝置(諸如3D列印機)列印一GRIN透鏡以供在RF頻率下使用,其中該透鏡的表面可為平坦、彎曲或階梯狀,且材料可列印為具有受控量之次波長間隙之一型樣以控制局部密度、有效局部介電常數、與局部折射率。這些局部參數可在透鏡的整個體積中持續變化,以產生具獨立受控光學效能與實體形狀的一透鏡,如藉由積層製造裝置所列印者。對於維度x、y及z的折射率控制,使得能夠實現可提供一透鏡功能的獨特構造,其 同時亦提供對於許多像差的控制(包括球面及色像差),並且亦提供透鏡表面的設計自由度。 Using the techniques of the present disclosure, a GRIN lens can be printed for use at an RF frequency by a laminate manufacturing apparatus, such as a 3D printer, wherein the surface of the lens can be flat, curved or stepped, and the material can be printed as A pattern having a controlled amount of sub-wavelength gaps to control local density, effective local dielectric constant, and local refractive index. These local parameters can be continuously varied throughout the volume of the lens to produce a lens with independently controlled optical performance and solid shape, such as by a laminate manufacturing device. Refractive index control for dimensions x, y, and z enables a unique configuration that provides a lens function, It also provides control of many aberrations (including spherical and chromatic aberrations) and also provides design freedom for the lens surface.

此外,利用本揭露中所說明之一或多種技術,可建立具有廣泛各式形狀或輪廓的透鏡以符合任何所欲之介電常數分佈,諸如雙凸GRIN透鏡的介電常數分佈。實體GRIN透鏡可有各種不同形狀與尺寸。舉一實例來說,實體GRIN透鏡可具有50毫米(mm)直徑與7.8mm厚度。在一些情況下,實體GRIN透鏡可具有符合標準的已知形狀及/或尺寸。例如,透鏡可採用習知透鏡形狀來形成,諸如凸透鏡及/或凹透鏡;或者可以其他已知形狀來形成,可不受限於諸如正方形、長方形、圓形或類似者的幾何形狀。在一些實例中,實體GRIN透鏡可具有各式輪廓(連續或其他者),諸如彎曲輪廓與平坦輪廓。此外,在一實例中,透鏡的尺寸(諸如直徑)可小於指定的波長數,諸如10個波長。在其他情況下,使用本揭露中所說明之一或多種技術,實體GRIN透鏡可具有非標準化形狀,及/或不規則尺寸。 Moreover, with one or more of the techniques described in this disclosure, lenses having a wide variety of shapes or contours can be created to conform to any desired dielectric constant distribution, such as the dielectric constant distribution of a biconvex GRIN lens. Solid GRIN lenses are available in a variety of different shapes and sizes. By way of an example, a solid GRIN lens can have a diameter of 50 millimeters (mm) and a thickness of 7.8 mm. In some cases, a solid GRIN lens can have a known shape and/or size that conforms to the standard. For example, the lens may be formed using conventional lens shapes, such as convex lenses and/or concave lenses; or may be formed in other known shapes, and may not be limited to geometric shapes such as square, rectangular, circular, or the like. In some examples, a solid GRIN lens can have various contours (continuous or otherwise), such as a curved contour and a flat contour. Moreover, in one example, the size of the lens, such as the diameter, can be less than a specified number of wavelengths, such as 10 wavelengths. In other cases, the physical GRIN lens can have a non-normalized shape, and/or an irregular size, using one or more of the techniques described in this disclosure.

本文中所用的術語「數位GRIN透鏡表示」係指數位物件,其具有資訊及/或虛擬界線,諸如每層的立體像素數目,以及各立體像素為達到基於複數個有效介電常數之一介電常數分佈所必須的有效介電常數。數位GRIN透鏡表示可使用數位輸入來產生。數位輸入可包括(例如)鍵盤、觸控螢幕、滑鼠、或類似者。 The term "digital GRIN lens representation" as used herein is an exponential object having information and/or imaginary boundaries, such as the number of voxels per layer, and each voxel is dielectrically based on one of a plurality of effective dielectric constants. The effective dielectric constant necessary for the constant distribution. Digital GRIN lens representations can be generated using digital inputs. Digital inputs can include, for example, a keyboard, a touch screen, a mouse, or the like.

在一些情況下,數位GRIN透鏡表示係建立在一虛擬空間中且可為實體GRIN透鏡之表示。虛擬空間可指(例如)電腦輔助設計(Computer Aided Design,CAD)環境,其允許使用者手動建立或 自動產生具有所欲參數(諸如形狀、尺寸與介電常數分佈)的數位GRIN透鏡表示。虛擬空間可稱為模型化空間、工作空間、或類似者。 In some cases, a digital GRIN lens representation is created in a virtual space and can be a representation of a physical GRIN lens. A virtual space can refer to, for example, a Computer Aided Design (CAD) environment that allows a user to manually create or A digital GRIN lens representation with desired parameters such as shape, size, and dielectric constant distribution is automatically generated. A virtual space can be called a modeled space, a workspace, or the like.

圖1為繪示GRIN透鏡產生環境10之實例的方塊圖。在圖1的實例中,GRIN透鏡產生環境10包括一計算裝置14,計算裝置14致使積層製造(Additive Manufacturing,AM)裝置24從數位GRIN透鏡表示的模型22產生一或多個實體GRIN透鏡。如本文中所述,計算裝置14提供一或多個軟體應用程式的執行環境,其如所述可有效率產生及編輯大量數位GRIN透鏡表示的GRIN透鏡內容。在此實例中,一數位GRIN透鏡表示可事先由計算裝置14儲存。如所述,計算裝置14與執行於其上的軟體應用程式可執行各種製造相關操作,包含自動化產生數位GRIN透鏡表示的模型22,以及使用積層製造(AM)裝置24自動製造代表模型22的實體GRIN透鏡。 FIG. 1 is a block diagram showing an example of a GRIN lens generating environment 10. In the example of FIG. 1, GRIN lens generating environment 10 includes a computing device 14 that causes Additive Manufacturing (AM) device 24 to generate one or more physical GRIN lenses from model 22 represented by a digital GRIN lens. As described herein, computing device 14 provides an execution environment for one or more software applications that, as described, can efficiently generate and edit GRIN lens content for a large number of digital GRIN lens representations. In this example, a digital GRIN lens representation may be previously stored by computing device 14. As described, the computing device 14 and the software application executing thereon can perform various manufacturing related operations, including automatically generating a model 22 of a digital GRIN lens representation, and automatically fabricating an entity representing the model 22 using an overlay manufacturing (AM) device 24. GRIN lens.

在例示性實施中,除其他組件外,計算裝置14尚包括顯示裝置20與鍵盤18。此外,雖然未顯示在圖1中,不過計算裝置14可包括一或多個處理器、微處理器、內部記憶體及/或資料儲存裝置及其他用於執行軟體或韌體以提供本文中所述的功能性之電子電路系統。 In an exemplary implementation, computing device 14 includes display device 20 and keyboard 18, among other components. Moreover, although not shown in FIG. 1, computing device 14 may include one or more processors, microprocessors, internal memory and/or data storage devices, and others for executing software or firmware to provide the context herein. The functional electronic circuit system described.

顯示裝置20可包括(例如)電子可定址顯示器如液晶顯示器(LCD),或用以搭配計算裝置14使用的其他類型顯示器裝置。在一些實施中,計算裝置14產生內容以在顯示裝置20上顯示數位GRIN透鏡表示的各種視圖,例如上視圖、下視圖、分解視圖、逐層 視圖(layer by layer view)、逐立體像素視圖(voxel by voxel view)、或類似者。在一些情況下,計算裝置14可傳遞用於由其他裝置(諸如平板電腦、投影機、或其他外部裝置)顯示的顯示資訊。 Display device 20 may include, for example, an electronic addressable display such as a liquid crystal display (LCD), or other type of display device for use with computing device 14. In some implementations, computing device 14 generates content to display various views of the digital GRIN lens representation on display device 20, such as top view, bottom view, exploded view, layer by layer A layer by layer view, a voxel by voxel view, or the like. In some cases, computing device 14 may communicate display information for display by other devices, such as a tablet, projector, or other external device.

鍵盤18可包括例如實體使用者介面(諸如按鍵)或用以搭配計算裝置14使用的其他類型實體使用者介面裝置。在一些情況下,計算裝置14可基於以鍵盤18從使用者(未顯示)接收的資訊來產生模型22。 Keyboard 18 may include, for example, a physical user interface (such as a button) or other type of physical user interface device for use with computing device 14. In some cases, computing device 14 may generate model 22 based on information received from a user (not shown) by keyboard 18.

如本文中所述,計算裝置14與執行於其上的軟體係提供一平台,該平台用於建立及操縱代表實體GRIN透鏡的數位GRIN透鏡表示。例如,大體上,計算裝置14係經組態以建立及/或產生數位GRIN透鏡表示的模型22。在一些實例中,模型22係由使用者(未顯示)建立。在其他實例中,模型22係儲存於資料庫中,如圖2中所述。計算裝置14可提供表示模型22的AM裝置24資料,以讓AM裝置24能夠基於模型22製造至少一個實體GRIN透鏡(未顯示)。 As described herein, computing device 14 and the soft system executing thereon provide a platform for establishing and manipulating a digital GRIN lens representation representative of a physical GRIN lens. For example, in general, computing device 14 is configured to create and/or generate a model 22 of a digital GRIN lens representation. In some examples, model 22 is established by a user (not shown). In other examples, model 22 is stored in a database, as described in FIG. Computing device 14 may provide AM device 24 data representative of model 22 to enable AM device 24 to fabricate at least one physical GRIN lens (not shown) based on model 22.

AM裝置24為一種能夠從數位模型製造三維實體物件之裝置。在一實例中,AM裝置24為3D列印機,其可使用積層製程進行列印,其中接連材料層係以不同形狀及/或線寬來鋪設。此材料積層方式不同於習知加工方法,習知加工方法可能仰賴藉由切削或鑽孔來去除材料,亦已知為減去性製程(subtractive processes)。在一些實例中,AM裝置24可使用雙光子(two-photon)光聚合製程來建立具有微米或奈米級解析度的三維(3D)結構。雙光子光聚合製程的實例係在 2005年2月15日發證的美國專利第6,855,478號中說明,其整體內容係以引用方式併入本文中。 The AM device 24 is a device capable of manufacturing a three-dimensional physical object from a digital model. In one example, the AM device 24 is a 3D printer that can be printed using a laminate process in which successive layers of material are laid in different shapes and/or line widths. This material lamination is different from conventional processing methods, which may rely on cutting or drilling to remove material, also known as subtractive processes. In some examples, AM device 24 may use a two-photon photopolymerization process to create a three-dimensional (3D) structure having micrometer or nanoscale resolution. An example of a two-photon photopolymerization process is U.S. Patent No. 6,855,478 issued toK.

如下所進一步說明,計算裝置14可實施用於下列者之技術:自動產生數位GRIN透鏡表示的模型22,以及萃取與各數位GRIN透鏡表示相關聯的資訊、內容或其他特性。舉例而言,計算裝置14可允許使用者細微控制計算裝置14所使用之技術,以產生數位GRIN透鏡表示的一或多個模型,如模型22。依據本文中所述的技術,計算裝置14可實施用於自動產生數位GRIN透鏡表示的模型22之技術,該實施係藉由基於整體介電常數分佈來處理具有複數個有效介電常數之複數層。計算裝置14可基於在複數個層中複數個有效介電常數的配置(其對應於整體介電常數分佈),提供模型22的替代形狀及/或尺寸。 As further explained below, computing device 14 may implement techniques for automatically generating a model 22 of a digital GRIN lens representation and extracting information, content, or other characteristics associated with each digital GRIN lens representation. For example, computing device 14 may allow a user to fine-tune the techniques used by computing device 14 to produce one or more models of digital GRIN lens representations, such as model 22. In accordance with the techniques described herein, computing device 14 may implement techniques for automatically generating a model 22 of a digital GRIN lens representation by processing a plurality of layers having a plurality of effective dielectric constants based on an overall dielectric constant distribution. . Computing device 14 may provide an alternate shape and/or size of model 22 based on a configuration of a plurality of effective dielectric constants in a plurality of layers that correspond to an overall dielectric constant distribution.

在一些實例中,模型22的整體介電常數分佈可包含由複數個立體像素界定的複數個有效介電常數,並且模型22的各立體像素可包含一體積之與一第一介電常數相關聯的一第一介電材料以及一體積之與一第二介電常數相關聯的一第二介電材料。在其他實例中,模型22的複數個立體像素可包含一或多個體積元素的配置,該一或多個體積元素具有由積層製程所形成的一或多個線條之配置。在其他實例中,整體介電常數分佈可包含由複數個層界定的複數個有效介電常數,其中各層可包含一體積之與一第一介電常數相關聯的一第一介電材料以及一體積之與一第二介電常數相關聯的一第二介電材料。在一些實例中,第一介電材料可包含相關聯的光反應性樹脂(例如具有相 對介電常數2.8),並且第二介電材料可包含空氣(其相關聯的相對介電常數約為1)。空氣的絕對介電常數接近真空的介電常數,其大約為8.8541878176×10-12F/m。相對介電常數2.8代表其絕對介電常數比真空的介電常數大2.8倍。 In some examples, the overall dielectric constant distribution of model 22 can include a plurality of effective dielectric constants defined by a plurality of voxels, and each voxel of model 22 can include a volume associated with a first dielectric constant. a first dielectric material and a volume of a second dielectric material associated with a second dielectric constant. In other examples, the plurality of voxels of model 22 can include a configuration of one or more volume elements having a configuration of one or more lines formed by a lamination process. In other examples, the overall dielectric constant distribution can comprise a plurality of effective dielectric constants defined by a plurality of layers, wherein each layer can comprise a volume of a first dielectric material associated with a first dielectric constant and a A second dielectric material of volume associated with a second dielectric constant. In some examples, the first dielectric material can comprise an associated photoreactive resin (eg, having a relative dielectric constant of 2.8), and the second dielectric material can comprise air (with an associated relative dielectric constant of about 1) ). The absolute dielectric constant of air is close to the dielectric constant of vacuum, which is approximately 8.8541878176 x 10 -12 F/m. The relative dielectric constant of 2.8 represents that its absolute dielectric constant is 2.8 times greater than the dielectric constant of vacuum.

一立體像素可為一體積元素,並可代表三維空間中之一規則網格上之一值。在一些實例中,立體像素亦可為構成概念性三維空間的體積元素之一陣列。亦即,複數個立體像素中的各立體像素可形成離散體積元素之一陣列,一個三維物件之一表示可分割成離散體積元素。在一些實例中,一立體像素可為一體積元素,其中該體積元素包含一特定體積(量)之一或多種介電材料。舉例而言,在某些情況下,一立體像素可完全由一體積之一第一介電材料組成,從而為該立體像素提供等於該第一介電材料的介電常數之有效介電常數。在其他實例中,一立體像素可包括一體積之一第一介電材料及一第二介電材料之組合,藉以使得該立體像素的有效介電常數有效地依據該一或多種介電材料的各別介電常數而變。 A voxel can be a volume element and can represent one of the values on one of the regular grids in three dimensions. In some examples, a voxel may also be an array of volume elements that make up a conceptual three-dimensional space. That is, each of the plurality of voxels may form an array of discrete volume elements, and one of the three-dimensional objects represents a segmentable into discrete volume elements. In some examples, a voxel can be a volume element, wherein the volume element comprises one or more dielectric materials of a particular volume (amount). For example, in some cases, a voxel may be composed entirely of one volume of a first dielectric material, thereby providing the voxel with an effective dielectric constant equal to the dielectric constant of the first dielectric material. In other examples, a voxel can include a volume of a combination of a first dielectric material and a second dielectric material such that the effective dielectric constant of the voxel is effectively dependent on the one or more dielectric materials. The respective dielectric constants vary.

一層可為複數個體積元素,並代表三維空間中的一規則網格上之複數個值。在一些實例中,一層可具有複數個立體像素,使得該複數個立體像素可在一或多種介電材料之間包括複數個體積。在其他實例中,一層可具有複數個有效介電常數,其等由該一或多個有效介電常數的複數個體積界定。 A layer can be a plurality of volume elements and represents a plurality of values on a regular grid in three-dimensional space. In some examples, a layer can have a plurality of voxels such that the plurality of voxels can include a plurality of volumes between one or more dielectric materials. In other examples, a layer can have a plurality of effective dielectric constants, such as defined by a plurality of volumes of the one or more effective dielectric constants.

依據本揭露之技術,基於模型22,AM裝置24可變化該一或多種介電材料之比例,諸如第一介電材料對第二介電材料之比 例,此比例可依一逐立體像素基礎或依一逐層基礎來變化。在第一與第二介電材料之間的比例之一實例中,該比例越高,單位格子(例如,立體像素)的密度及有效介電常數與第一介電材料(例如,塊體3D列印材料)的介電常數靠得越近。此比例越低,單位格子的有效介電常數與第二介電材料(如,自由空間、空氣,或實體GRIN透鏡結構所浸入的任何介質)的介電常數靠得越近。 In accordance with the techniques of the present disclosure, based on the model 22, the AM device 24 can vary the ratio of the one or more dielectric materials, such as the ratio of the first dielectric material to the second dielectric material. For example, the ratio may vary on a per-pixel basis or on a layer-by-layer basis. In one example of the ratio between the first and second dielectric materials, the higher the ratio, the density and effective dielectric constant of the unit lattice (eg, a voxel) and the first dielectric material (eg, bulk 3D) The closer the dielectric constant of the printing material is. The lower the ratio, the closer the effective dielectric constant of the unit cell is to the dielectric constant of the second dielectric material (e.g., free space, air, or any medium into which the physical GRIN lens structure is immersed).

在一例示性實施中,一立體像素可完全由一體積之一第一介電材料所構成,諸如具有關聯介電常數2.8之熱塑性樹脂或光反應性樹脂。在此實例中,因為立體像素完全由具有關聯介電常數2.8之第一介電材料所構成,該立體像素的有效介電常數為2.8。在另一實例中,一立體像素可由各別體積之多種(如兩種或更多種)不同介電材料所構成,諸如,具有相關聯第一介電常數2.8之第一介電材料(例如熱塑性樹脂、光反應性樹脂)以及具有關聯介電常數1之第二介電材料(例如空氣)。在一些實例中,介電材料可為固體、液體、或氣體。在其他實例中,立體像素之有效介電常數係有效地依據第一介電材料及第二介電材料之間的體積與其各別介電常數而變化。 In an exemplary implementation, a voxel may be composed entirely of one volume of a first dielectric material, such as a thermoplastic resin or photoreactive resin having an associated dielectric constant of 2.8. In this example, since the voxel is entirely composed of the first dielectric material having an associated dielectric constant of 2.8, the voxel has an effective dielectric constant of 2.8. In another example, a voxel can be composed of a plurality of (eg, two or more) different dielectric materials of respective volumes, such as a first dielectric material having an associated first dielectric constant of 2.8 (eg, A thermoplastic resin, a photoreactive resin) and a second dielectric material (for example, air) having an associated dielectric constant of 1. In some examples, the dielectric material can be a solid, a liquid, or a gas. In other examples, the effective dielectric constant of the voxel is effectively varied depending on the volume between the first dielectric material and the second dielectric material and its respective dielectric constant.

在另一例示性實施中,於計算裝置14上執行的一數位GRIN透鏡表示模型化應用程式,可將模型22分成表示一介電常數分佈中複數個不同有效介電常數的複數個層。在一些例示性實施中,針對該複數個有效介電常數的各者,計算裝置14可產生該等層中之一或多個層,該一或多個層具有對應於各層之有效介電常數的一或多種介電材料。根據此層方法,偵測來自不同層的介電常數,並將之用於最 終界定一個別實體GRIN透鏡的各層中之一或多種介電材料的體積。因此,由數位GRIN透鏡表示模型化應用程式30所產生的複數個數位GRIN透鏡表示之各者,可由複數個層來表示。在一些實例中,模型22可藉由不同顏色來表示該等層的不同有效介電常數。在其他實例中,模型22的複數個層可包含一或多個體積元素的一配置,該一或多個體積元素具有由積層製程所形成的一或多個線條之一配置。 In another exemplary implementation, a digital GRIN lens representation on the computing device 14 represents a modeling application that can divide the model 22 into a plurality of layers representing a plurality of different effective dielectric constants in a dielectric constant distribution. In some exemplary implementations, for each of the plurality of effective dielectric constants, computing device 14 can generate one or more layers in the layers, the one or more layers having an effective dielectric constant corresponding to each layer One or more dielectric materials. According to this layer method, the dielectric constants from different layers are detected and used for the most The volume of one or more dielectric materials in each of the layers of the other physical GRIN lens is ultimately defined. Thus, each of the plurality of digital GRIN lens representations produced by the modeled application 30 by the digital GRIN lens can be represented by a plurality of layers. In some examples, model 22 may represent different effective dielectric constants of the layers by different colors. In other examples, the plurality of layers of the model 22 can include a configuration of one or more volume elements having one of one or more lines formed by a laminate process.

在一些例示性實施中,根據本揭露之技術所形成的GRIN透鏡可用以提供聚焦功能。在其他例示性實施中,根據本揭露之技術所形成的GRIN透鏡可用以產生抗反射塗層及/或層。在另外其他例示性實施中,計算裝置14提供使用者能藉以將數位GRIN透鏡表示導出至其他系統的功能性,如雲端式儲存庫(例如,雲端伺服器)或其他計算裝置(如電腦系統或行動裝置)(未顯示)。 In some exemplary implementations, a GRIN lens formed in accordance with the techniques of the present disclosure may be used to provide a focusing function. In other exemplary implementations, GRIN lenses formed in accordance with the techniques of the present disclosure may be used to create an anti-reflective coating and/or layer. In still other exemplary implementations, computing device 14 provides functionality by which a user can derive a digital GRIN lens representation to other systems, such as a cloud-based repository (eg, a cloud server) or other computing device (eg, a computer system or Mobile device) (not shown).

在圖1之實例中,計算裝置14係為舉例之目的而繪示為桌上型電腦。然而,在其他實例中,計算裝置14可為平板電腦、個人數位助理(PDA)、智慧型手機、膝上型電腦、或適合用以執行本文中所述技術的任何其他類型的計算或非計算用之計算裝置。 In the example of FIG. 1, computing device 14 is illustrated as a desktop computer for purposes of example. However, in other examples, computing device 14 can be a tablet, a personal digital assistant (PDA), a smart phone, a laptop, or any other type of computing or non-computing suitable for performing the techniques described herein. A computing device used.

圖2為繪示一計算裝置之實例的方塊圖,該計算裝置係依據本文中所述之技術來運作。為舉例之目的,會依圖1之計算裝置14描述圖2的計算裝置14。 2 is a block diagram showing an example of a computing device that operates in accordance with the techniques described herein. For purposes of example, the computing device 14 of FIG. 2 will be described in accordance with computing device 14 of FIG.

在此實例中,計算裝置14包含各種提供用於裝置運作的核心功能性之硬體組件。例如,計算裝置14包含一或多個可程式化處理器38,其經組態以依據可執行指令(即,程式碼)運作,該等指 令一般儲存在電腦可讀媒體或資料儲存器36中,諸如靜態隨機存取記憶體(SRAM)裝置或快閃記憶體裝置。輸入/輸出(I/O)40可包含一或多個裝置,諸如鍵盤18(如圖1中所說明)、滑鼠、軌跡球、或顯示裝置20(如圖1中所說明),並提供與其他裝置的無線通訊,諸如雲端伺服器、電腦系統、或者AM裝置24(如圖1中所說明),其係透過無線或有線通訊介面(如圖1中所說明),諸如但不限於高頻射頻(RF)信號或通用串列匯流排(USB)連接。在另一實例中,圖1之計算裝置14包含AM裝置管理模組44及GRIN透鏡資料42。計算裝置14可包含額外的離散數位邏輯或類比電子電路,其未顯示於圖2中。 In this example, computing device 14 includes various hardware components that provide core functionality for device operation. For example, computing device 14 includes one or more programmable processors 38 that are configured to operate in accordance with executable instructions (ie, code) that are The data is typically stored in a computer readable medium or data store 36, such as a static random access memory (SRAM) device or a flash memory device. Input/output (I/O) 40 may include one or more devices, such as a keyboard 18 (as illustrated in FIG. 1), a mouse, a trackball, or display device 20 (as illustrated in FIG. 1) and provided Wireless communication with other devices, such as a cloud server, computer system, or AM device 24 (as illustrated in Figure 1), through a wireless or wired communication interface (as illustrated in Figure 1), such as but not limited to high Frequency radio frequency (RF) signal or universal serial bus (USB) connection. In another example, computing device 14 of FIG. 1 includes AM device management module 44 and GRIN lens data 42. Computing device 14 may include additional discrete digital logic or analog electronic circuitry, which is not shown in FIG.

GRIN透鏡資料42可為GRIN透鏡模型之資料庫,例如包含圖1中所說明的模型22。在一些實例中,模型化應用程式30可將GRIN透鏡模型儲存於GRIN透鏡資料42中。在其他實例中,模型化應用程式30可從GRIN透鏡資料42擷取GRIN透鏡模型。 The GRIN lens data 42 can be a library of GRIN lens models, including, for example, the model 22 illustrated in FIG. In some examples, the modeling application 30 can store the GRIN lens model in the GRIN lens data 42. In other examples, the modeling application 30 can retrieve the GRIN lens model from the GRIN lens data 42.

AM裝置管理44可控制如圖1中所說明的AM裝置24。在一些實例中,模型化應用程式30可從GRIN透鏡資料42擷取一GRIN透鏡模型,並輸出該GRIN透鏡模型至AM裝置24。在其他實例中,AM裝置管理44可使用來自模型化應用程式30的模型22控制AM裝置24,該模型化應用程式30可能已從GRIN透鏡資料42擷取模型22或從使用者的輸入產生模型22。 The AM device management 44 can control the AM device 24 as illustrated in FIG. In some examples, modeling application 30 may retrieve a GRIN lens model from GRIN lens data 42 and output the GRIN lens model to AM device 24. In other examples, AM device management 44 may control AM device 24 using model 22 from modeling application 30, which may have captured model 22 from GRIN lens data 42 or generated a model from user input. twenty two.

一般而言,作業系統34係在處理器38上執行並為一或多個使用者應用程式(包含模型化應用程式30)提供作業環境。舉例而言,使用者應用程式包括儲存在電腦可讀儲存裝置內(例如,資料 儲存裝置36)的可執行程式碼以供處理器38執行。另舉其他實例,使用者應用程式可包括韌體或在一些實例中可實施在離散邏輯中。 In general, operating system 34 is executed on processor 38 and provides a working environment for one or more user applications, including modeling application 30. For example, the user application includes storage in a computer readable storage device (eg, data The executable code of storage device 36) is executable by processor 38. As a further example, the user application can include firmware or, in some instances, can be implemented in discrete logic.

在操作中,計算裝置14透過I/O 40(諸如圖1中所說明的鍵盤18)接收來自使用者的使用者輸入,並依據本文所述之技術處理該使用者輸入。舉例而言,模型化應用程式30可基於複數個層在虛擬空間中產生模型22(如圖1中所說明),並且各層由具有複數個體積之一或多種介電材料之一立體像素陣列所構成。舉另一實例,計算裝置14可透過I/O 40接收來自內部來源(諸如GRIN透鏡資料42)或外部來源(如雲端伺服器、電腦系統、或行動裝置)的數位GRIN透鏡表示資料。一般而言,計算裝置14將數位GRIN透鏡表示資料儲存於GRIN透鏡資料42中以供由模型化應用程式30及/或其他使用者應用程式存取及處理。 In operation, computing device 14 receives user input from a user via I/O 40 (such as keyboard 18 illustrated in Figure 1) and processes the user input in accordance with the techniques described herein. For example, the modeling application 30 can generate a model 22 (as illustrated in FIG. 1) in a virtual space based on a plurality of layers, and each layer is composed of a stereo pixel array having one or more dielectric materials of a plurality of volumes. Composition. As another example, computing device 14 may receive digital GRIN lens representation data from an internal source (such as GRIN lens data 42) or an external source (such as a cloud server, computer system, or mobile device) via I/O 40. In general, computing device 14 stores digital GRIN lens representation data in GRIN lens data 42 for access and processing by modeling application 30 and/or other user applications.

如圖2所示,模型化應用程式30可調用作業系統34的核心函數以輸出資料用於將資訊呈現給計算裝置(如圖1中所說明的計算裝置14)之使用者。如下所進一步說明,模型化應用程式30可產生一圖形使用者介面以提供改良電子環境,用以產生及操縱表示實體GRIN透鏡的對應數位GRIN透鏡表示之模型22。舉例而言,模型化應用程式30可產生一圖形使用者介面,以包含允許使用者基於所欲介電常數分佈容易選擇一或多個數位GRIN透鏡表示的形狀和尺寸之機制。在一些實例中,所欲介電常數分佈係經選擇以使該GRIN透鏡能夠將電磁波聚焦。在其他實例中,電磁波係在毫米波段內。 As shown in FIG. 2, the modeling application 30 can invoke the core functions of the operating system 34 to output data for presenting information to a user of a computing device (such as computing device 14 illustrated in FIG. 1). As further explained below, the modeling application 30 can generate a graphical user interface to provide an improved electronic environment for generating and manipulating the model 22 representing the corresponding digital GRIN lens representation of the physical GRIN lens. For example, the modeling application 30 can generate a graphical user interface to include mechanisms that allow the user to easily select the shape and size of one or more digital GRIN lens representations based on the desired dielectric constant distribution. In some examples, the desired dielectric constant distribution is selected to enable the GRIN lens to focus electromagnetic waves. In other examples, the electromagnetic waves are in the millimeter band.

如下所進一步詳細說明,模型化應用程式30可利用自動化GRIN透鏡輪廓技術,其將模型22(如圖1中所說明)分成複數個層。模型化應用程式30可針對每個層,依據對應於所欲介電常數分佈的複數個有效介電常數之所欲形狀及/或尺寸,來配置複數個立體像素。根據立體像素方法,各立體像素可個別界定為在模型22的各層中具有一或多種介電材料。基於該立體像素中的一或多種介電材料之各者的體積,各立體像素具有一有效介電常數,並且該複數個層內的一給定位置處之局部介電常數可對應於所欲介電常數分佈。在某些情況下,舉例而言,模型化應用程式30可基於選擇待形成之GRIN透鏡(具有一介電常數分佈)的所欲尺寸及形狀之使用者輸入來產生模型22,從而提供所欲的功能性,如一成像透鏡。在其他情況下,該成像透鏡可類似於一固體雙凸GRIN透鏡的功能性。此外,模型化應用程式30可輸出模型22至AM裝置管理44以控制AM裝置24,如圖1中所說明。 As described in further detail below, the modeling application 30 can utilize an automated GRIN lens profile technique that divides the model 22 (as illustrated in Figure 1) into a plurality of layers. The modeling application 30 can configure a plurality of voxels for each layer based on the desired shape and/or size of the plurality of effective dielectric constants corresponding to the desired dielectric constant distribution. According to the voxel method, each voxel can be individually defined as having one or more dielectric materials in each layer of the model 22. Each of the voxels has an effective dielectric constant based on a volume of each of the one or more dielectric materials in the voxel, and a local dielectric constant at a given position within the plurality of layers may correspond to a desired Dielectric constant distribution. In some cases, for example, the modeling application 30 can generate the model 22 based on user input selecting the desired size and shape of the GRIN lens (having a dielectric constant distribution) to be formed, thereby providing The functionality, such as an imaging lens. In other cases, the imaging lens can be similar to the functionality of a solid biconvex GRIN lens. Additionally, the modeling application 30 can output the model 22 to the AM device management 44 to control the AM device 24, as illustrated in FIG.

為了產生模型22,模型化應用程式30可建立複數個層,其中各層具有對應於所欲介電常數分佈的複數個有效介電常數,從而提供所欲功能性如成像透鏡,其類似於固體單一介電常數雙凸透鏡之功能性。在一些實例中,模型化應用程式30可藉由控制一層中各立體像素中的一或多種介電材料之體積,來個別界定各立體像素之有效介電常數,而改變各層的介電常數。在其他實例中,模型化應用程式30可藉由以兩種或更多種介電材料之一體積來界定各層,使得兩種或更多種介電材料之該體積對應於橫過各層的複數個有效介電常數, 並作為一整體介電常數分佈的一部分,以改變各層的介電常數。因此,在此實例中,模型化應用程式30針對一給定介電常數分佈(諸如雙凸透鏡介電常數分佈)所產生的複數個數位GRIN透鏡表示之各者,亦可由具有不同形狀及/或尺寸的複數個其他數位GRIN透鏡表示來代表,並且所有這些其他數位GRIN透鏡表示皆對應於該成像透鏡(如雙凸透鏡)的功能性。以此方式,模型化應用程式30可用來產生用於製造具有一自訂形狀和尺寸(如,形狀因數)、亦具有導致近似習知雙凸透鏡功能性的透鏡功能性(或波前操縱)之介電常數分佈的一GRIN透鏡之資料。 To generate the model 22, the modeling application 30 can create a plurality of layers, each of which has a plurality of effective dielectric constants corresponding to the desired dielectric constant distribution, thereby providing the desired functionality, such as an imaging lens, which is similar to a solid single The functionality of the dielectric constant lenticular lens. In some examples, the modeling application 30 can individually define the dielectric constant of each layer by controlling the volume of one or more dielectric materials in each of the voxels in a layer to individually define the effective dielectric constant of each of the voxels. In other examples, the modeling application 30 can define the layers by one volume of two or more dielectric materials such that the volume of the two or more dielectric materials corresponds to a plurality of layers across the layers Effective dielectric constant, And as part of a whole dielectric constant distribution to change the dielectric constant of each layer. Thus, in this example, each of the plurality of digital GRIN lens representations generated by the modeling application 30 for a given dielectric constant distribution, such as a lenticular dielectric constant distribution, may also have different shapes and/or A plurality of other digital GRIN lens representations of the size are representative, and all of these other digital GRIN lens representations correspond to the functionality of the imaging lens, such as a lenticular lens. In this manner, the modeling application 30 can be used to produce lens functionality (or wavefront manipulation) for fabricating a custom shape and size (eg, form factor) that also results in approximation of conventional lenticular functionality. A material of a GRIN lens with a dielectric constant distribution.

圖3A至圖3B繪示三維(3D)GRIN透鏡聚焦環境50之實例。在GRIN透鏡聚焦環境50之實例中,其包含具有組態用來導引電磁波56(諸如頻率約為60GHz的電磁波)傳輸的波導52之圖3A,以及具有3D GRIN透鏡54以將電磁波聚焦(諸如將電磁波56聚焦於點58)之圖3B。 3A-3B illustrate an example of a three-dimensional (3D) GRIN lens focusing environment 50. In the example of a GRIN lens focusing environment 50, it includes FIG. 3A having a waveguide 52 configured to direct transmission of electromagnetic waves 56 (such as electromagnetic waves having a frequency of approximately 60 GHz), and having a 3D GRIN lens 54 to focus the electromagnetic waves (such as The electromagnetic wave 56 is focused on Figure 3B of point 58).

在圖3A與圖3B的實例中,波導52為用於導引及發射電磁波56的結構。波導52大致上是將信號侷限在一個維度中行進。在開放空間中時,電磁波56一般是以球面波在所有方向傳播。在此發生時,電磁波56會與所行進距離的平方成比例地損失其功率。在理想條件下,當波導52將電磁波侷限只在單一方向行進時,波在傳播時損失極少功率或沒有損失功率。 In the example of FIGS. 3A and 3B, the waveguide 52 is a structure for guiding and emitting electromagnetic waves 56. Waveguide 52 is generally intended to confine the signal to travel in one dimension. In open space, electromagnetic waves 56 are generally propagated in all directions by spherical waves. When this occurs, the electromagnetic wave 56 loses its power in proportion to the square of the distance traveled. Under ideal conditions, when waveguide 52 confines electromagnetic waves only in a single direction, the waves lose little or no power when propagating.

在圖3A與圖3B的實例中,波導52為在其長度的各端具有一開口(例如,凸緣)之結構,其兩個開口,或端口(例如端口 60)係藉由沿著波導52內部長度的中空部分來連接。波導52可例如由銅、黃銅、銀、鋁或其他具有低塊體電阻率的金屬製成。在一些實例中,如果波導52的內壁鍍有低塊體電阻率的金屬,則波導52可由導電特性不良之金屬、塑膠或其他非導電材料製成。此外,雖然未在圖3A及圖3B中顯示,波導52可連接到天線、介電耦合透鏡、或其他電子組件,以提供本文中所述的功能性。 In the example of Figures 3A and 3B, the waveguide 52 is of a structure having an opening (e.g., a flange) at each end of its length, two openings, or ports (e.g., ports) 60) is connected by a hollow portion along the inner length of the waveguide 52. The waveguide 52 can be made, for example, of copper, brass, silver, aluminum, or other metal having a low bulk resistivity. In some examples, if the inner wall of the waveguide 52 is plated with a low bulk resistivity metal, the waveguide 52 can be made of a metal, plastic or other non-conductive material that is poorly conductive. Moreover, although not shown in Figures 3A and 3B, the waveguide 52 can be coupled to an antenna, a dielectric coupling lens, or other electronic component to provide the functionality described herein.

在圖3A的實例中,3D GRIN透鏡54可包含使用本文中所述的技術製造的GRIN透鏡。在一些實例中,3D GRIN透鏡54可具有一介電常數分佈或相對電容率及功能性,諸如用於在電磁波56上提供類似於習知雙凸GRIN透鏡所會提供之聚焦效應,但是具有不同的實體結構和形狀因數。舉例而言,3D GRIN透鏡54可為平坦、彎曲、或任何積層製造可用的輪廓、形狀、及/或尺寸,同時仍產生類似於習知GRIN透鏡(諸如雙凸透鏡)的聚焦效應(因為類似的介電常數分佈)。在其他實例中,相較於習知凸透鏡,3D GRIN透鏡54可改善帶寬,例如藉由降低色像差而在更大的掃頻寬度上提供功能性。 In the example of FIG. 3A, the 3D GRIN lens 54 can comprise a GRIN lens fabricated using the techniques described herein. In some examples, the 3D GRIN lens 54 can have a dielectric constant distribution or relative permittivity and functionality, such as for providing a focusing effect on the electromagnetic wave 56 that is similar to that provided by conventional biconvex GRIN lenses, but with different The physical structure and form factor. For example, the 3D GRIN lens 54 can be flat, curved, or any laminate that can be used to create contours, shapes, and/or sizes while still producing focusing effects similar to conventional GRIN lenses, such as lenticular lenses (because of similar Dielectric constant distribution). In other examples, the 3D GRIN lens 54 can improve bandwidth, such as by reducing chromatic aberration, to provide functionality over a larger sweep width than conventional convex lenses.

在另外其他實例中,3D GRIN透鏡54可具有平坦的輪廓,其可以更容易附接及安裝到其他實體物件。在一些實例中,3D GRIN透鏡54可設計成使氣體或液體通過其結構中的介電材料之一者,在整個透鏡中皆為單一介電常數之單一介電材料的固體雙凸GRIN透鏡中可能無法達成此特徵。在其他實例中,3D GRIN透鏡54可設計成具有特定孔隙率以使氣體或液體過濾通過其結構中的介電材料之一者,在固體雙凸GRIN透鏡中可能無法達成此特徵。在一些實 例中,3D GRIN透鏡54內的間隙大小可由積層製程控制,以滿足特定的過濾要求。在另外其他實例中,3D GRIN透鏡54可用來產生非反射塗層及/或層。在一些實例中,3D GRIN透鏡54可基於兩種或更多種介電材料之構造來實現極性選擇性。在其他實例中,可利用一系列具有關聯介電常數範圍的列印材料,藉由AM裝置24來產生3D GRIN透鏡54。在一些實例中,僅使用單一種(或少量種)3D列印材料並以受控方式以受控密度進行列印來變化介電常數可為有利的。在一些實例中,3D GRIN透鏡54各層的厚度相較於特定頻率的波長可為相對較小。在其他實例中,各層的厚度可小於一波長,諸如介於所欲頻率之波長的1/10及1/15之厚度。在另外其他實例中,該所欲頻率可為60GHz。在一些實例中,各別體積元素中的第一介電材料對第二介電材料之體積比,係以藉由積層製程形成的第一介電材料之線寬來控制。在其他實例中,3D GRIN透鏡54可具有熱塑性樹脂或光反應性樹脂之第一介電材料。在其他實例中,3D GRIN透鏡54可具有空氣、或熱塑性樹脂或光反應性樹脂其中之一者的第二介電材料。 In still other examples, the 3D GRIN lens 54 can have a flat profile that can be more easily attached and mounted to other physical items. In some examples, the 3D GRIN lens 54 can be designed to pass a gas or liquid through one of the dielectric materials in its structure, in a solid biconvex GRIN lens that is a single dielectric material of a single dielectric constant throughout the lens. This feature may not be reached. In other examples, the 3D GRIN lens 54 can be designed to have a specific porosity to filter a gas or liquid through one of the dielectric materials in its structure, which may not be achieved in a solid biconvex GRIN lens. In some real In the example, the gap size within the 3D GRIN lens 54 can be controlled by a lamination process to meet specific filtering requirements. In still other examples, a 3D GRIN lens 54 can be used to create a non-reflective coating and/or layer. In some examples, the 3D GRIN lens 54 can achieve polarity selectivity based on the configuration of two or more dielectric materials. In other examples, the 3D GRIN lens 54 can be produced by the AM device 24 using a series of print materials having a range of associated dielectric constants. In some instances, it may be advantageous to use only a single (or small) 3D printing material and print in a controlled manner at a controlled density to vary the dielectric constant. In some examples, the thickness of each layer of the 3D GRIN lens 54 can be relatively small compared to the wavelength of a particular frequency. In other examples, the thickness of each layer can be less than a wavelength, such as a thickness of 1/10 and 1/15 of the wavelength of the desired frequency. In still other examples, the desired frequency can be 60 GHz. In some examples, the volume ratio of the first dielectric material to the second dielectric material in the respective volume elements is controlled by the line width of the first dielectric material formed by the build-up process. In other examples, the 3D GRIN lens 54 can have a first dielectric material of a thermoplastic resin or a photoreactive resin. In other examples, the 3D GRIN lens 54 can have a second dielectric material of air, or one of a thermoplastic resin or a photoreactive resin.

在圖3B的實例中,電磁波56可包含極高頻電磁波,例如頻率約60GHz的電磁波。在圖3A與圖3B的一些實施中,波導52傳輸行進通過3D GRIN透鏡54的電磁波56,以將電磁波56聚焦在點58。在圖3A與圖3B的其他實施中,波導52接收行進通過3D GRIN透鏡54的電磁波56,以將電磁波56聚焦至波導52中。 In the example of FIG. 3B, electromagnetic waves 56 may comprise extremely high frequency electromagnetic waves, such as electromagnetic waves having a frequency of about 60 GHz. In some implementations of FIGS. 3A and 3B, waveguide 52 transmits electromagnetic waves 56 traveling through 3D GRIN lens 54 to focus electromagnetic waves 56 at point 58. In other implementations of FIGS. 3A and 3B, waveguide 52 receives electromagnetic waves 56 traveling through 3D GRIN lens 54 to focus electromagnetic waves 56 into waveguide 52.

在一些實例中,3D GRIN透鏡54可實用於電磁譜的毫米波段中。在一些實例中,3D GRIN透鏡54例如可搭配頻率範圍從 10GHz至120GHz的信號使用。在其他實例中,3D GRIN透鏡54例如可搭配頻率範圍從10GHz至300GHz的信號使用。3D GRIN透鏡54可用於各式系統中,包含例如低成本電纜市場、非接觸式測量應用、晶片對晶片通訊,及各式其他提供光纖資料率的無線點對點應用,且可支援密集部署架構。 In some examples, the 3D GRIN lens 54 can be used in the millimeter band of the electromagnetic spectrum. In some examples, the 3D GRIN lens 54 can be collocated, for example, with a frequency range from Signal usage from 10 GHz to 120 GHz. In other examples, the 3D GRIN lens 54 can be used, for example, with signals having a frequency ranging from 10 GHz to 300 GHz. The 3D GRIN lens 54 can be used in a variety of systems including, for example, low cost cable markets, non-contact measurement applications, wafer-to-wafer communication, and a variety of other wireless point-to-point applications that provide fiber data rates and support dense deployment architectures.

圖4為繪示概念性三維單位格子100之實例的圖解,該單位格子100具有一體積之第一介電材料102與一體積之第二介電材料104。在圖4的實例中,單位格子100包含兩種不同介電材料102、104,各具有其各別體積及各別介電常數。在一實例中,單位格子100可具有一結構,該結構界定具有介電常數為2.8之一體積的介電材料102(例如,光反應性樹脂)。在另一實例中,單位格子100可具有另一結構(諸如間隙),該結構在單位格子100內具有界定介電常數為1之一體積之第二介電材料104(例如,空氣)。單位格子100的有效介電常數係依據兩種介電材料102、104的各別體積而變化。在其他實例中,單位格子100可為AM裝置24可用的任何形狀(如圖1中所說明),諸如箱形、球形、或長方形。在一些實例中,單位格子100可代表一立體像素。在其他實例中,單位格子100可代表複數個立體像素。 4 is a diagram showing an example of a conceptual three-dimensional unit cell 100 having a volume of a first dielectric material 102 and a volume of a second dielectric material 104. In the example of FIG. 4, unit cell 100 includes two different dielectric materials 102, 104, each having its respective volume and respective dielectric constants. In one example, unit cell 100 can have a structure that defines a dielectric material 102 (eg, a photoreactive resin) having a dielectric constant of 2.8. In another example, the unit cell 100 can have another structure (such as a gap) having a second dielectric material 104 (eg, air) within the unit cell 100 that defines a volume having a dielectric constant of one. The effective dielectric constant of the unit cell 100 varies depending on the respective volumes of the two dielectric materials 102,104. In other examples, unit grid 100 can be any shape available for AM device 24 (as illustrated in Figure 1), such as box, sphere, or rectangle. In some examples, unit grid 100 can represent a voxel. In other examples, unit grid 100 may represent a plurality of cubes.

在一例示性實施中,單位格子100可藉由積層製程,諸如透過圖1中所說明之逐立體像素或逐層之方式來重複鋪設以填充GRIN透鏡體積。在另一例示性實施中,如果圖4的單位格子100之結構相對於所操縱波的波長明顯較小,則基於兩種材料的體積比與立 體像素幾何,該結構將作用為單一同質性材料,其具有介於兩個介電常數(例如,空氣及3D列印材料)之間的有效介電常數。在一些實例中,第一介電材料可載有低損耗高介電材料,以進一步擴展3D GRIN透鏡之積層製造的RF光學應用範圍。 In an exemplary implementation, the unit cell 100 can be repeatedly laid to fill the GRIN lens volume by a lamination process, such as by a per-pixel or layer-by-layer approach as illustrated in FIG. In another exemplary implementation, if the structure of the unit cell 100 of FIG. 4 is significantly smaller relative to the wavelength of the manipulated wave, then based on the volume ratio of the two materials Body pixel geometry, which acts as a single homogenous material with an effective dielectric constant between two dielectric constants (eg, air and 3D printed material). In some examples, the first dielectric material can carry a low loss, high dielectric material to further extend the range of RF optical applications for multilayer fabrication of 3D GRIN lenses.

圖5為繪示概念性三維單位格子110之另一實例的圖解,該單位格子110具有一體積之第一介電材料112與一體積之第二介電材料114。在一些實例中,圖5之介電材料112、114可分別為與介電材料102、104(圖4)相同的介電材料。在圖5的實例中,單位格子110包含兩種不同介電材料112、114,各具有其各別體積及各別介電常數。在一實例中,單位格子110可結構化為具有介電常數為2.8之第一介電材料112(例如,光反應性樹脂)之一單位格子。在另一實例中,單位格子110在介電材料112之箱形內可包含具有界定介電常數為1之一體積之第二介電材料114的一間隙。單位格子110的有效介電常數係依據兩種介電材料112、114的各別體積來界定。在其他實例中,單位格子110可為AM裝置24可用的任何形狀(如圖1中所說明),諸如箱形、球形、或長方形。在圖5的另一實例中,單位格子110所具有的第一介電材料112可多於第二介電材料114,不像圖4的單位格子100所具有的第一介電材料102體積少於第二介電材料104。在一些實例中,單位格子110的有效介電常數高於單位格子100的有效介電常數,因為單位格子110比單位格子100具有更高比例的介電常數材料。在一些實例中,單位格子110可代表一立體像素。在其他實例中,單位格子110可代表複數個立體像素。 FIG. 5 is a diagram showing another example of a conceptual three-dimensional unit cell 110 having a volume of a first dielectric material 112 and a volume of a second dielectric material 114. In some examples, the dielectric materials 112, 114 of FIG. 5 can be the same dielectric material as the dielectric materials 102, 104 (FIG. 4), respectively. In the example of FIG. 5, unit cell 110 includes two different dielectric materials 112, 114, each having its respective volume and respective dielectric constants. In one example, the unit cell 110 can be structured as one unit cell of a first dielectric material 112 (eg, a photoreactive resin) having a dielectric constant of 2.8. In another example, the unit cell 110 can include a gap in the box shape of the dielectric material 112 having a second dielectric material 114 that defines a volume having a dielectric constant of one. The effective dielectric constant of the unit cell 110 is defined by the respective volumes of the two dielectric materials 112, 114. In other examples, unit grid 110 can be any shape available for AM device 24 (as illustrated in Figure 1), such as box, sphere, or rectangle. In another example of FIG. 5, the unit cell 110 may have more first dielectric material 112 than the second dielectric material 114, unlike the first dielectric material 102 of the unit cell 100 of FIG. The second dielectric material 104. In some examples, the effective dielectric constant of the unit cell 110 is higher than the effective dielectric constant of the unit cell 100 because the unit cell 110 has a higher proportion of dielectric constant material than the unit cell 100. In some examples, unit grid 110 can represent a voxel. In other examples, unit grid 110 may represent a plurality of voxels.

在一例示性實施中,可重複單位格子110以諸如透過圖1中所說明之逐立體像素或逐層之方式填充GRIN透鏡體積。在另一例示性實施中,如果圖5的單位格子110之結構相對於所操縱波的波長明顯較小,則基於兩種介電材料的體積比與立體像素幾何,該結構將作用為單一同質性材料,其具有介於兩個介電常數(例如,空氣及3D列印材料)之間的有效介電常數。在一些實例中,第一介電材料可載有低損耗高介電材料,以進一步擴展3D GRIN透鏡之積層製造的RF光學應用範圍。 In an exemplary implementation, the repeatable unit cell 110 is filled with a GRIN lens volume, such as by a per-pixel or layer-by-layer approach as illustrated in FIG. In another exemplary implementation, if the structure of the unit cell 110 of FIG. 5 is significantly smaller than the wavelength of the manipulated wave, based on the volume ratio of the two dielectric materials and the voxel geometry, the structure will function as a single homogeneity. A material having an effective dielectric constant between two dielectric constants (eg, air and 3D printing material). In some examples, the first dielectric material can carry a low loss, high dielectric material to further extend the range of RF optical applications for multilayer fabrication of 3D GRIN lenses.

圖6為繪示概念性三維單位格子之一陣列之實例的圖解,該三維單位格子陣列具有基於該三維單位格子陣列中之各三維單位格子的各別體積之一體積。在一些實例中,圖6之介電材料130、132、134、136可對應於圖4至圖5之介電材料102、104、112、114的一或多者。在圖6的實例中,單位格子120包含兩種不同介電材料,例如一第一介電材料及一第二介電材料,各具有各別體積及各別介電常數。在一實例中,單位格子120的陣列可具有一結構(諸如箱形),以及由介電常數為2.8之第一介電材料130、134(例如,光反應性樹脂)界定之一體積。在另一實例中,可具有一結構(諸如間隙),以及由介電常數為1之第二介電材料132、136界定之一體積。單位格子120的陣列之有效介電常數係依據介電材料130、132、134、136的各別體積而界定。在其他實例中,單位格子120的陣列可為AM裝置24可用的任何形狀(如圖1中所說明),諸如球形、長方形、圓柱形或四面體。在圖6的另一實例中,單位格子120的陣列可 具有一個單位格子,該單位格子的第一介電材料130之體積大於第二介電材料132之體積,如圖5中所說明之單位格子110。在一些實例中,單位格子110的有效介電常數(如圖5中所說明)高於單位格子100的有效介電常數,因為單位格子110比單位格子100具有更高比例的介電常數材料。在一些實例中,單位格子120的陣列可包含一立體像素陣列。在其他實例中,單位格子120的陣列所具有的有效介電常數可依據單位格子陣列中的一或多種介電材料之各別體積而變化。 6 is a diagram showing an example of an array of conceptual three-dimensional unit grids having one volume of respective volumes based on respective three-dimensional unit grids in the three-dimensional unit grid array. In some examples, the dielectric material 130, 132, 134, 136 of FIG. 6 can correspond to one or more of the dielectric materials 102, 104, 112, 114 of FIGS. 4-5. In the example of FIG. 6, unit cell 120 includes two different dielectric materials, such as a first dielectric material and a second dielectric material, each having a respective volume and a respective dielectric constant. In one example, the array of unit cells 120 can have a structure (such as a box shape) and a volume defined by a first dielectric material 130, 134 (eg, a photoreactive resin) having a dielectric constant of 2.8. In another example, there may be one structure (such as a gap) and one volume defined by a second dielectric material 132, 136 having a dielectric constant of one. The effective dielectric constant of the array of unit cells 120 is defined by the respective volumes of dielectric materials 130, 132, 134, 136. In other examples, the array of unit cells 120 can be any shape available for the AM device 24 (as illustrated in Figure 1), such as a sphere, rectangle, cylinder, or tetrahedron. In another example of FIG. 6, the array of unit cells 120 can be There is a unit grid, the volume of the first dielectric material 130 of the unit grid is larger than the volume of the second dielectric material 132, such as the unit grid 110 illustrated in FIG. In some examples, the effective dielectric constant of the unit cell 110 (as illustrated in FIG. 5) is higher than the effective dielectric constant of the unit cell 100 because the unit cell 110 has a higher proportion of dielectric constant material than the unit cell 100. In some examples, the array of unit cells 120 can include a matrix of voxels. In other examples, the array of unit cells 120 may have an effective dielectric constant that varies depending on the respective volume of one or more dielectric materials in the array of cells.

在一例示性實施中,單位格子120的陣列可藉由積層製程,諸如透過圖1中所說明之逐立體像素或逐層之方式來重複鋪設以填充GRIN透鏡體積。在另一例示性實施中,如果圖6的單位格子120陣列中的單位格子相對於所操縱波的波長明顯較小,則基於兩種介電材料的體積比與立體像素幾何,該結構可作用為單一同質性材料,其具有介於兩個介電常數(例如,空氣及3D列印材料)之間的有效介電常數。在一些實例中,第一介電材料可載有低損耗高介電材料,以進一步擴展3D GRIN透鏡之積層製造的RF光學應用範圍。在其他實例中,單位格子120的陣列可稱為一網格型樣。在一些實例中,各別體積元素中的第一介電材料對第二介電材料之體積比,係以藉由積層製程形成的第一介電材料之線寬來控制。 In an exemplary implementation, the array of unit cells 120 may be repeatedly laid to fill the GRIN lens volume by a lamination process, such as by a per-pixel or layer-by-layer approach as illustrated in FIG. In another exemplary implementation, if the unit lattice in the array of unit cells 120 of FIG. 6 is significantly smaller relative to the wavelength of the manipulated wave, the structure may function based on the volume ratio of the two dielectric materials and the voxel geometry. A single homogeneous material having an effective dielectric constant between two dielectric constants (eg, air and 3D printed material). In some examples, the first dielectric material can carry a low loss, high dielectric material to further extend the range of RF optical applications for multilayer fabrication of 3D GRIN lenses. In other examples, the array of unit cells 120 may be referred to as a grid pattern. In some examples, the volume ratio of the first dielectric material to the second dielectric material in the respective volume elements is controlled by the line width of the first dielectric material formed by the build-up process.

圖7為繪示以一輪輻設計200來結構化的數位三維立體像素之一陣列之實例的圖解。在圖7的實例中,輪輻設計200包含輪輻環、間隙、及圓圈,諸如輪輻環202至212、圓圈214、及間隙222至224。輪輻環202至212可由關聯介電常數為2.8之第一介電材料 (例如,光反應性樹脂)所組成。間隙222至224可類似輪輻環202至214,使得間隙222至224係由關聯介電常數為1之第二介電材料(例如,空氣)所構成。 7 is a diagram showing an example of an array of digital three-dimensional pixels structured in a spoke design 200. In the example of FIG. 7, spoke design 200 includes spoke rings, gaps, and circles, such as spoke rings 202-212, circles 214, and gaps 222-224. The spoke rings 202 to 212 may be made of a first dielectric material having a dielectric constant of 2.8 (for example, a photoreactive resin). The gaps 222 to 224 may be similar to the spoke rings 202 to 214 such that the gaps 222 to 224 are composed of a second dielectric material (e.g., air) having an associated dielectric constant of one.

在輪輻設計200的一例示性實施中,輪輻環202具有最低的第一介電材料(例如,光反應性樹脂)對間隙222(由第二介電材料所構成,例如,空氣)比例。在其他實例中,各後續輪輻環(諸如輪輻環204至212)具有較高的第一介電材料對間隙(由第二介電材料所構成)比例。亦即,在一實例中,一外輪輻環212具有最高的第一介電材料對第二介電材料比例。此外,在圖7的一實例中,圓圈214可由一種固體介電材料形成,諸如第一介電材料。 In an exemplary implementation of spoke design 200, spoke ring 202 has the lowest ratio of first dielectric material (e.g., photoreactive resin) to gap 222 (consisting of a second dielectric material, such as air). In other examples, each subsequent spoke ring (such as spoke rings 204-212) has a higher ratio of first dielectric material to gap (consisting of second dielectric material). That is, in one example, an outer spoke ring 212 has the highest ratio of first dielectric material to second dielectric material. Moreover, in one example of FIG. 7, circle 214 may be formed from a solid dielectric material, such as a first dielectric material.

在圖7的一些實例中,輪輻環202至212、圓圈214、及間隙222至224各可具有複數個有效介電常數,其等對應於輪輻設計200的整體介電常數分佈。在一實例中,輪輻環202至212及圓圈214具有基於第一介電材料之體積的有效介電常數,且間隙222至224可具有基於第二介電材料的有效介電常數。在一些實例中,輪輻環202至212可具有基於一或多種介電材料的體積之有效常數。在其他實例中,圓圈214可具有基於一或多種介電材料之有效介電常數。在另外其他實例中,間隙222至224可具有基於一或多種介電材料之有效介電常數。在圖7的輪輻設計200之一些實例中,輪輻環、圓圈及間隙的複數個有效介電常數可包括類似於GRIN透鏡(諸如一雙凸透鏡)的介電常數分佈之整體介電常數分佈。在一些例示性實施中,輪輻設計200可具有一整體直徑之一或多個層,其依據所聚焦波的波長 而變化。舉例而言,輪輻設計200可具有直徑為10個波長的一或多個層,例如50mm,等同於在60GHz時之10個波長。在一些實例中,輪輻設計200可稱為輪輻型樣。在其他實例中,各別體積元素中的第一介電材料對第二介電材料之體積比,係以藉由積層製程形成的第一介電材料之線寬來控制。 In some examples of FIG. 7, spoke rings 202-212, circle 214, and gaps 222-224 may each have a plurality of effective dielectric constants that correspond to the overall dielectric constant distribution of spoke design 200. In one example, spoke rings 202-212 and circle 214 have an effective dielectric constant based on the volume of the first dielectric material, and gaps 222-224 may have an effective dielectric constant based on the second dielectric material. In some examples, spoke rings 202-212 can have an effective constant based on the volume of one or more dielectric materials. In other examples, circle 214 can have an effective dielectric constant based on one or more dielectric materials. In still other examples, the gaps 222 through 224 can have an effective dielectric constant based on one or more dielectric materials. In some examples of the spoke design 200 of FIG. 7, the plurality of effective dielectric constants of the spoke rings, circles, and gaps may include an overall dielectric constant distribution similar to the dielectric constant distribution of a GRIN lens, such as a lenticular lens. In some exemplary implementations, the spoke design 200 can have one or more layers of an overall diameter depending on the wavelength of the focused wave And change. For example, the spoke design 200 can have one or more layers having a diameter of 10 wavelengths, such as 50 mm, equivalent to 10 wavelengths at 60 GHz. In some examples, the spoke design 200 can be referred to as a spoke pattern. In other examples, the volume ratio of the first dielectric material to the second dielectric material in the respective volume elements is controlled by the line width of the first dielectric material formed by the build-up process.

圖8為繪示以環狀設計250來結構化的數位三維立體像素之一陣列之另一實例的圖解。在圖8的實例中,環狀設計包含環252至258、圓圈260、及間隙262至264。環252至258可由以環狀設計來結構化的不同比例之介電材料(例如,光反應性樹脂及空氣)所組成。間隙262至264可類似於環252至258,使得間隙262至264在環狀設計中可由不同比例的介電材料所組成。舉例而言,環252具有最低的第一介電材料(例如,光反應性樹脂)與第二介電材料(例如,空氣)比例,因為環252具有最大的直徑且相鄰於具有最大體積之第二介電材料(例如,空氣)的間隙262。在其他實例中,各後續環(諸如環254至258)具有較高的第一介電材料對第二介電材料比例。亦即,在一實例中,環252具有最高的第一介電材料對第二介電材料比例。此外,在圖8的一實例中,圓圈260具有一種介電材料,諸如第一介電材料(例如,光反應性樹脂),且間隙262至264可具有一種介電材料,諸如第二介電材料(例如,空氣)。 FIG. 8 is a diagram showing another example of an array of digital three-dimensional pixels structured in a ring design 250. In the example of FIG. 8, the annular design includes rings 252 through 258, circles 260, and gaps 262 through 264. Rings 252 through 258 can be composed of different proportions of dielectric materials (eg, photoreactive resins and air) that are structured in a ring design. The gaps 262 through 264 can be similar to the rings 252 through 258 such that the gaps 262 through 264 can be composed of different proportions of dielectric material in a loop design. For example, the ring 252 has the lowest ratio of the first dielectric material (eg, photoreactive resin) to the second dielectric material (eg, air) because the ring 252 has the largest diameter and is adjacent to the largest volume. A gap 262 of a second dielectric material (eg, air). In other examples, each subsequent ring (such as rings 254 through 258) has a higher ratio of first dielectric material to second dielectric material. That is, in one example, ring 252 has the highest ratio of first dielectric material to second dielectric material. Further, in an example of FIG. 8, the circle 260 has a dielectric material such as a first dielectric material (eg, a photoreactive resin), and the gaps 262 to 264 may have a dielectric material such as a second dielectric Material (for example, air).

在圖8的一些實例中,第一介電材料的介電常數為2.8,且第二介電材料的介電常數為1。環252至258、圓圈260及間隙262至264各具有一有效介電常數而為環狀設計250的介電常數分 佈之一部分。在一實例中,環252至258可具有基於第一及第二介電材料的體積之有效介電常數,圓圈260可具有基於第一介電材料之有效介電常數,且間隙262至264可具有基於第二介電材料之有效介電常數。在一些實例中,環252至258可具有基於兩種或多種介電材料的體積之有效常數。在其他實例中,圓圈260可具有基於一或多種介電材料之有效介電常數。在另外其他實例中,間隙262至264可具有基於一或多種介電材料之有效介電常數。在圖8的環狀設計250之一些實例中,環、圓圈、及間隙的有效介電常數可一起形成類似於GRIN透鏡(諸如雙凸透鏡)的整體介電常數分佈。在一些實例中,環狀設計250可稱為環狀型樣。在其他實例中,各別體積元素中的第一介電材料對第二介電材料之體積比,係以藉由積層製程形成的第一介電材料之線寬來控制。 In some examples of FIG. 8, the first dielectric material has a dielectric constant of 2.8 and the second dielectric material has a dielectric constant of one. Rings 252 through 258, circle 260, and gaps 262 through 264 each have an effective dielectric constant and are dielectric constants of annular design 250. One part of the cloth. In one example, rings 252 through 258 can have an effective dielectric constant based on the volume of the first and second dielectric materials, circle 260 can have an effective dielectric constant based on the first dielectric material, and gaps 262 through 264 can There is an effective dielectric constant based on the second dielectric material. In some examples, rings 252 through 258 can have an effective constant based on the volume of two or more dielectric materials. In other examples, circle 260 can have an effective dielectric constant based on one or more dielectric materials. In still other examples, the gaps 262 through 264 can have an effective dielectric constant based on one or more dielectric materials. In some examples of the annular design 250 of FIG. 8, the effective dielectric constants of the rings, circles, and gaps may together form an overall dielectric constant distribution similar to a GRIN lens, such as a lenticular lens. In some examples, the annular design 250 can be referred to as a toroidal pattern. In other examples, the volume ratio of the first dielectric material to the second dielectric material in the respective volume elements is controlled by the line width of the first dielectric material formed by the build-up process.

圖9A至圖9B為繪示數位三維立體像素之一陣列之實例的圖解,該等立體像素係以輪輻設計200與環狀設計250的一組合來結構化以形成輪輻與環狀設計300A以及環狀與輪輻設計300B。在圖9A與圖9B的一些實例中,一些參考符號可依據圖7至圖8來說明。在輪輻與環狀設計300A以及環狀與輪輻設計300B的一些實例中,GRIN透鏡可用環狀層與輪輻層的一交替層來建構,以降低其對於EM波的偏極化之敏感度。在圖9A與圖9B的其他實例中,設計300A、300B可使15個輪輻層與15個環狀層相交替。在另外其他實例中,設計300A、300B可具有複數個與環狀層交替的輪輻層。在一些實例中,各層的厚度相對於波長可較小。在輪輻與環狀設計300A 以及環狀與輪輻設計300B中,各層的厚度可介於在60GHz時的波長厚之1/10至1/15之間。在自由空間中,在60GHz時的波長為5mm,但在具有相對介電常數為2.8之材料中,波長為5mm/平方根(2.8)。在一些實例中,設計300A、300B可將15個輪輻層與15個環狀層交錯以達到7.8mm的厚度。 9A-9B are diagrams showing an example of an array of digital three-dimensional pixels that are structured in a combination of a spoke design 200 and a ring design 250 to form a spoke and ring design 300A and a ring. Shape and spoke design 300B. In some examples of Figures 9A and 9B, some of the reference symbols can be illustrated in accordance with Figures 7-8. In some examples of the spoke and ring design 300A and the ring and spoke design 300B, the GRIN lens can be constructed with an alternating layer of an annular layer and a spoke layer to reduce its sensitivity to polarization of the EM wave. In the other examples of Figures 9A and 9B, designs 300A, 300B can alternate 15 spoke layers with 15 annular layers. In still other examples, designs 300A, 300B can have a plurality of spoke layers alternating with annular layers. In some examples, the thickness of each layer can be relatively small relative to the wavelength. In the spoke and ring design 300A In the ring and spoke design 300B, the thickness of each layer may be between 1/10 and 1/15 of the wavelength at 60 GHz. In free space, the wavelength at 60 GHz is 5 mm, but in materials having a relative dielectric constant of 2.8, the wavelength is 5 mm/square root (2.8). In some examples, designs 300A, 300B can interleave 15 spoke layers with 15 annular layers to a thickness of 7.8 mm.

在圖9A的實例中,三維立體像素陣列300A包含環狀層、輪輻層、間隙及圓圈,例如環狀層306A、輪輻層304A、間隙308A、及圓圈302A。環狀層306A、輪輻304A、及間隙308A可由以輪輻與環狀設計來結構化的不同體積之一或多種介電材料(例如,光反應性樹脂及空氣)所組成。舉例而言,環狀層306A具有最低的第一介電材料(例如,光反應性樹脂)對第二介電材料(例如,空氣)比例,因為間隙308A在輪輻與環狀設計300的邊緣處具有最大體積。在其他實例中,各後續環具有較高的第一介電材料對第二介電材料比例,因為間隙的體積朝向圓圈302A變小。亦即,在一實例中,最靠近中心的環具有最高的第一介電材料對第二介電材料比例。此外,在圖9A的一實例中,圓圈302A具有一種介電材料,諸如第一介電材料(例如,光反應性樹脂)。 In the example of FIG. 9A, three-dimensional pixel array 300A includes an annular layer, spoke layers, gaps, and circles, such as annular layer 306A, spoke layer 304A, gap 308A, and circle 302A. Annular layer 306A, spokes 304A, and gap 308A may be comprised of one or more dielectric materials (eg, photoreactive resins and air) of different volumes that are structured in a spoke and ring design. For example, the annular layer 306A has the lowest ratio of the first dielectric material (eg, photoreactive resin) to the second dielectric material (eg, air) because the gap 308A is at the edge of the spoke and ring design 300 Has the largest volume. In other examples, each subsequent ring has a higher ratio of first dielectric material to second dielectric material because the volume of the gap becomes smaller toward circle 302A. That is, in one example, the ring closest to the center has the highest ratio of first dielectric material to second dielectric material. Further, in an example of FIG. 9A, the circle 302A has a dielectric material such as a first dielectric material (eg, a photoreactive resin).

在圖9A的一些實例中,第一介電材料的介電常數為2.8,且第二介電材料的介電常數為1。複數個環、輪輻、間隙及圓圈(包含環狀層306A、輪輻304A、間隙308A、及圓圈302A)各具有一有效介電常數而為輪輻與環狀設計300A的整體介電常數分佈之一部分。在一實例中,環、輪輻及間隙具有基於第一及第二介電材料的 體積之有效介電常數,且圓圈302A具有基於第一介電材料之有效介電常數。在一些實例中,環、輪輻、及間隙具有基於兩種或更多種介電材料的體積之有效常數。在其他實例中,圓圈302A具有基於一或多種介電材料之有效介電常數。在圖9A中的輪輻與環狀設計300A之一些實例中,輪輻、環、圓圈、及間隙的有效介電常數可具有類似於GRIN透鏡(諸如雙凸透鏡)的整體介電常數分佈。 In some examples of FIG. 9A, the first dielectric material has a dielectric constant of 2.8 and the second dielectric material has a dielectric constant of one. A plurality of rings, spokes, gaps, and circles (including annular layer 306A, spokes 304A, gaps 308A, and circles 302A) each have an effective dielectric constant and are part of the overall dielectric constant distribution of the spoke and ring design 300A. In one example, the rings, spokes, and gaps have a first and second dielectric material based The effective dielectric constant of the volume, and the circle 302A has an effective dielectric constant based on the first dielectric material. In some examples, the rings, spokes, and gaps have an effective constant based on the volume of two or more dielectric materials. In other examples, circle 302A has an effective dielectric constant based on one or more dielectric materials. In some examples of the spoke and ring design 300A in Figure 9A, the effective dielectric constant of the spokes, rings, circles, and gaps may have an overall dielectric constant distribution similar to a GRIN lens, such as a lenticular lens.

在圖9B的實例中,三維立體像素陣列300B包含環、輪輻、間隙、及圓圈的放大視圖,諸如環狀層306B、輪輻304B、及間隙308B。在環狀與輪輻設計300B的一些實例中,GRIN透鏡可用輪輻層與環狀層的一交替層來建構,以降低其對於EM波的偏極化之敏感度。環狀層306B、輪輻304B、及間隙308B可由以環狀與輪輻設計300B來結構化的不同體積之一或多種介電材料(例如,光反應性樹脂及空氣)來組成。舉例而言,環狀層306B具有最低的第一介電材料(例如,光反應性樹脂)對第二介電材料(例如,空氣)比例,因為間隙308B在環狀與輪輻設計300B的邊緣處具有最大體積。在其他實例中,各後續環具有較高的第一介電材料對第二介電材料比例,因為間隙的體積朝向環狀與輪輻設計的中心變小。亦即,在一實例中,環狀層306B具有最低的第一介電材料對第二介電材料比例。 In the example of FIG. 9B, three-dimensional pixel array 300B includes enlarged views of rings, spokes, gaps, and circles, such as annular layer 306B, spokes 304B, and gaps 308B. In some examples of the toroidal and spoke design 300B, the GRIN lens can be constructed with an alternating layer of spoke layers and annular layers to reduce its sensitivity to polarization of the EM waves. Annular layer 306B, spokes 304B, and gap 308B may be comprised of one or more dielectric materials (eg, photoreactive resins and air) of different volumes that are structured in a ring and spoke design 300B. For example, the annular layer 306B has the lowest ratio of the first dielectric material (eg, photoreactive resin) to the second dielectric material (eg, air) because the gap 308B is at the edge of the toroidal and spoke design 300B. Has the largest volume. In other examples, each subsequent ring has a higher ratio of the first dielectric material to the second dielectric material because the volume of the gap becomes smaller toward the center of the ring and spoke design. That is, in one example, the annular layer 306B has the lowest ratio of the first dielectric material to the second dielectric material.

在圖9B的一些實例中,第一介電材料的介電常數為2.8,且第二介電材料的介電常數為1。複數個環、輪輻、及間隙(包含環狀層306B、輪輻304B、及間隙308B)各具有一有效介電常數而為環狀與輪輻設計300B的整體介電常數分佈之一部分。在一實例 中,環、輪輻、及間隙具有基於第一及第二介電材料的體積之有效介電常數。在一些實例中,環、輪輻、及間隙具有基於兩種或更多種介電材料的體積之有效常數。在圖9B中的環狀與輪輻設計300B之一些實例中,輪輻、環、圓圈、及間隙的有效介電常數可具有類似於GRIN透鏡(諸如雙凸透鏡)的整體介電常數分佈。 In some examples of FIG. 9B, the first dielectric material has a dielectric constant of 2.8 and the second dielectric material has a dielectric constant of one. A plurality of rings, spokes, and gaps (including annular layer 306B, spokes 304B, and gap 308B) each have an effective dielectric constant and are part of the overall dielectric constant distribution of the ring and spoke design 300B. In an instance The rings, spokes, and gaps have an effective dielectric constant based on the volume of the first and second dielectric materials. In some examples, the rings, spokes, and gaps have an effective constant based on the volume of two or more dielectric materials. In some examples of the ring and spoke design 300B in Figure 9B, the effective dielectric constants of the spokes, rings, circles, and gaps may have an overall dielectric constant distribution similar to a GRIN lens, such as a lenticular lens.

圖10為繪示以輪輻與環狀設計320來結構化的實體三維立體像素之一陣列之實例的圖解。在圖10的一些實例中,一些參考符號可參照圖7至圖9B來說明。 FIG. 10 is an illustration of an example of an array of solid three-dimensional pixels structured in a spoke and ring design 320. In some examples of FIG. 10, some of the reference symbols may be described with reference to FIGS. 7-9B.

在圖10的實例中,輪輻與環狀設計320之三維立體像素陣列包含環狀層、輪輻環狀層、間隙、及中心,諸如環狀層326、輪輻環狀層324、間隙328、及中心322。在圖10的實例中,輪輻與環狀設計320的頂層為一輪輻環狀層,例如圖7中所說明之輪輻環狀設計200。在輪輻與環狀設計320的一些實例中(如圖10中所繪示),GRIN透鏡可用環狀層與輪輻層的一交替層來建構,以降低其對於EM波的偏極化之敏感度。在一些實例中,輪輻及環狀設計320的直徑可基於一給定的電磁波波長。在其他實例中,輪輻與環狀設計320可將15個輪輻層與15個環狀層相交錯以達到7.8mm的厚度,以及50mm的直徑或約60GHz波(具有約5mm的全波長)的10個波長。 In the example of FIG. 10, the three-dimensional pixel array of spoke and ring design 320 includes an annular layer, a spoke annular layer, a gap, and a center, such as an annular layer 326, a spoke annular layer 324, a gap 328, and a center. 322. In the example of FIG. 10, the top layer of the spoke and ring design 320 is a spoke annular layer, such as the spoke ring design 200 illustrated in FIG. In some examples of spoke and ring designs 320 (as illustrated in Figure 10), the GRIN lens can be constructed with an alternating layer of an annular layer and a spoke layer to reduce its sensitivity to EM wave polarization. . In some examples, the diameter of the spoke and ring design 320 can be based on a given electromagnetic wave wavelength. In other examples, the spoke and ring design 320 can interleave 15 spoke layers with 15 annular layers to a thickness of 7.8 mm, and a diameter of 50 mm or a wave of about 60 GHz (with a full wavelength of about 5 mm). Wavelengths.

在3D GRIN透鏡320的一例示性實施中,環狀層326、輪輻環狀層324、及間隙328可各具有以輪輻與環狀設計320來結構化的不同體積之一或多種介電材料(例如,光反應性樹脂及空 氣)。舉例而言,環狀層326具有最低的第一介電材料(例如,光反應性樹脂)對第二介電材料(例如,空氣)比例,因為間隙(諸如間隙328)在輪輻與環狀設計320的邊緣處具有最大體積的第二介電材料。 In an exemplary implementation of the 3D GRIN lens 320, the annular layer 326, the spoke annular layer 324, and the gap 328 can each have one or more dielectric materials of different volumes that are structured in a spoke and ring design 320 ( For example, photoreactive resin and empty gas). For example, the annular layer 326 has the lowest ratio of the first dielectric material (eg, photoreactive resin) to the second dielectric material (eg, air) because the gap (such as the gap 328) is in the spoke and ring design. There is a second volume of the second dielectric material at the edge of 320.

在其他實例中,環狀層326內較靠近中心322的各環可具有較高的第一介電材料對第二介電材料比例,因為間隙中的第二介電材料體積朝向中心322減少。亦即,在一實例中,環狀層326最靠近中心322的環具有最高的第一介電材料對第二介電材料比例。在其他實例中,輪輻層324內之輪輻較靠近中心322的各環可具有較高的第一介電材料對第二介電材料比例,因為間隙(諸如間隙328)中的第二介電材料體積朝向中心332減少。亦即,在一實例中,輪輻層324內之輪輻最靠近中心322的環具有最高的第一介電材料對第二介電材料比例。此外,在圖10的一實例中,中心322可包括一種介電材料,例如第一介電材料(例如,光反應性樹脂)。在一些實例中,輪輻與環狀設計320包括雙凸GRIN透鏡的介電常數分佈。 In other examples, each ring within annular layer 326 that is closer to center 322 may have a higher ratio of first dielectric material to second dielectric material because the second dielectric material volume in the gap decreases toward center 322. That is, in one example, the ring of annular layer 326 closest to center 322 has the highest ratio of first dielectric material to second dielectric material. In other examples, the spokes within the spoke layer 324 may have a higher ratio of the first dielectric material to the second dielectric material than the rings closer to the center 322 because the second dielectric material in the gap (such as the gap 328) The volume decreases toward the center 332. That is, in one example, the spokes within spoke layer 324 that are closest to center 322 have the highest ratio of first dielectric material to second dielectric material. Moreover, in one example of FIG. 10, center 322 can comprise a dielectric material, such as a first dielectric material (eg, a photoreactive resin). In some examples, the spoke and loop design 320 includes a dielectric constant distribution of a biconvex GRIN lens.

圖11為繪示具有呈環狀與輪輻設計330的實體三維立體像素之一陣列之結構的實例之圖解。在圖11的一些實例中,一些參考符號可參照圖7至圖10來說明。 11 is a diagram showing an example of a structure having an array of one of three solid three-dimensional pixels in a ring and spoke design 330. In some examples of FIG. 11, some reference symbols may be described with reference to FIGS. 7-10.

在圖11的實例中,環及輪輻設計330之三維立體像素陣列包含環狀層、輪輻層、間隙、及中心,例如環狀層336、輪輻層334、間隙338、及中心332。在圖11的實例中,環狀與輪輻設計330的頂層為一環狀層,例如圖8所說明之環狀設計250。在環狀與輪輻設計330的一些實例中(如圖11中所繪示),GRIN透鏡可用環狀層 與輪輻層的一交替層來建構,以降低其對於EM波的偏極化之敏感度。在一些實例中,環狀與輪輻設計330的直徑可基於一給定的電磁波波長。在其他實例中,環狀與輪輻設計330可將15個輪輻層與15個環狀層相交錯以達到50mm的直徑或約60GHz波(具有約5mm的全波長)的10個波長。 In the example of FIG. 11, the three-dimensional array of pixels of the ring and spoke design 330 includes an annular layer, a spoke layer, a gap, and a center, such as an annular layer 336, a spoke layer 334, a gap 338, and a center 332. In the example of FIG. 11, the top layer of the toroidal and spoke design 330 is an annular layer, such as the annular design 250 illustrated in FIG. In some examples of ring and spoke design 330 (as shown in Figure 11), the GRIN lens can be used with an annular layer. Constructed with an alternating layer of spoke layers to reduce its sensitivity to polarization of EM waves. In some examples, the diameter of the toroidal and spoke design 330 can be based on a given electromagnetic wave wavelength. In other examples, the annular and spoke design 330 can interleave 15 spoke layers with 15 annular layers to achieve a diameter of 50 mm or 10 wavelengths of about 60 GHz waves (having a full wavelength of about 5 mm).

在環狀與輪輻設計330的一例示性實施中,環狀層336、輪輻層334、及間隙338可各具有以環狀與輪輻設計330來結構化的不同體積之一或多種介電材料(例如,光反應性樹脂及/或空氣)。舉例而言,環狀層336具有最低的第一介電材料(例如,光反應性樹脂)對第二介電材料(例如,空氣)比例,因為間隙(諸如間隙338)在環狀與輪輻設計330的邊緣處具有最大體積的第二介電材料。 In an exemplary implementation of the toroidal and spoke design 330, the annular layer 336, the spoke layer 334, and the gap 338 can each have one or more dielectric materials of different volumes that are structured in a ring and spoke design 330 ( For example, photoreactive resin and/or air). For example, the annular layer 336 has the lowest ratio of the first dielectric material (eg, photoreactive resin) to the second dielectric material (eg, air) because the gap (such as the gap 338) is in the ring and spoke design There is a second volume of the second dielectric material at the edge of the 330.

在其他實例中,環狀層336內較靠近中心332的各環可具有較高的第一介電材料對第二介電材料比例,因為間隙中的第二介電材料體積朝向中心332減少。亦即,在一實例中,環狀層336中最靠近中心332的環具有最高的第一介電材料對第二介電材料比例。在其他實例中,輪輻層334內之輪輻較靠近中心332的各環可具有較高的第一介電材料對第二介電材料比例,因為間隙中的介電材料體積朝向中心332減少。亦即,在一實例中,輪輻層334內之輪輻最靠近中心332的環具有最高的第一介電材料對第二介電材料比例。此外,在圖11的一實例中,中心332可包括一種介電材料,例如第一介電材料(例如,光反應性樹脂)。在一些實例中,環狀與輪輻設計330包括雙凸GRIN透鏡的介電常數分佈。 In other examples, the rings within annular layer 336 that are closer to center 332 may have a higher ratio of first dielectric material to second dielectric material because the second dielectric material volume in the gap decreases toward center 332. That is, in one example, the ring closest to the center 332 in the annular layer 336 has the highest ratio of first dielectric material to second dielectric material. In other examples, the spokes within the spoke layer 334 may have a higher ratio of the first dielectric material to the second dielectric material than the rings closer to the center 332 because the volume of dielectric material in the gap decreases toward the center 332. That is, in one example, the spokes within the spoke layer 334 closest to the center 332 have the highest ratio of first dielectric material to second dielectric material. Moreover, in an example of FIG. 11, center 332 can comprise a dielectric material, such as a first dielectric material (eg, a photoreactive resin). In some examples, the toroidal and spoke design 330 includes a dielectric constant distribution of a biconvex GRIN lens.

圖12為繪示根據3D GRIN透鏡的半徑之第一介電材料之所欲密度之實例的圖表。在圖12的實例中,密度402(如由線406所表示者)從半徑404的0mm處之約100%密度減少至半徑404的25mm處之約50%,如圖12中所繪示。密度402係依據沿著3D GRIN透鏡之半徑404的第一及第二介電材料之體積而變化。半徑404係依據GRIN透鏡尺寸而變化。在一實例中,線406表示雙凸透鏡的近似介電常數分佈。 Figure 12 is a graph showing an example of the desired density of a first dielectric material according to the radius of a 3D GRIN lens. In the example of FIG. 12, density 402 (as indicated by line 406) decreases from about 100% density at 0 mm of radius 404 to about 50% at 25 mm of radius 404, as depicted in FIG. Density 402 is a function of the volume of the first and second dielectric materials along the radius 404 of the 3D GRIN lens. The radius 404 varies depending on the size of the GRIN lens. In one example, line 406 represents the approximate dielectric constant distribution of the lenticular lens.

使用方程式1,計算具有焦距f與厚度t的一徑向梯度透鏡之折射率n並將其示於下表1,此係以焦距25mm及厚度7.5mm來計算。其中△n=n xo -n x (n xo n x 分別為x o x位置的折射率),以及△x=x-x o Using Equation 1, the refractive index n of a radial gradient lens having a focal length f and a thickness t was calculated and shown in Table 1 below, which was calculated with a focal length of 25 mm and a thickness of 7.5 mm. Where Δ n = n xo - n x ( n xo and n x are the refractive indices of x o and x positions, respectively), and Δ x = x - x o .

表1的欄包括△n、有效n、以及密度對半徑的百分比。在例示性實施中,表1假定第一介電材料(諸如塊體3D列印材料)的標稱相對介電常數為2.8。此外,表1假定第二介電材料(諸如真空)的標稱相對介電常數為0。在其他例示性實施中,第一介電材料(例如,塊體3D列印材料)的標稱相對介電常數為2.8,而第二介電材料(例如,空氣)的標稱相對介電常數為1。表中強調標示的項目為用於圖15中所繪示的階梯式介電常數GRIN透鏡模型之介電常 數,且模擬結果如下所示。在實務上,介電常數不需要階梯化,而是可用更連續的方式變化。 The columns of Table 1 include Δn, effective n, and the percentage of density to radius. In an exemplary implementation, Table 1 assumes that the first dielectric material (such as the bulk 3D print material) has a nominal relative dielectric constant of 2.8. Furthermore, Table 1 assumes that the nominal dielectric constant of the second dielectric material, such as vacuum, is zero. In other exemplary implementations, the first dielectric material (eg, bulk 3D printing material) has a nominal relative dielectric constant of 2.8 and the second dielectric material (eg, air) has a nominal relative dielectric constant. Is 1. The items highlighted in the table are the dielectrics used for the stepped dielectric constant GRIN lens model shown in Figure 15. The number and simulation results are as follows. In practice, the dielectric constant does not require stepping, but can be varied in a more continuous manner.

圖13A與圖13B為繪示所測得增益型樣之實例的圖表,該實例並非使用GRIN透鏡而是使用如圖10與圖11中所描述之GRINS透鏡。在圖13A與圖13B的實例中,圖表500及502包含所測得的增益型樣504及506。 13A and 13B are graphs showing an example of a measured gain pattern that does not use a GRIN lens but uses a GRINS lens as described in FIGS. 10 and 11. In the example of FIGS. 13A and 13B, charts 500 and 502 include measured gain patterns 504 and 506.

所測得的增益型樣504表示60GHz波的360°所測得增益型樣,該等波係從一波導(諸如圖3中所說明之波導54)的一凸緣輻射出來,而不使用GRIN透鏡來將60GHz波聚焦。所測得的增益型樣504係正規化為一(unity)。在一些實例中,波導(諸如波導52)的凸緣,可具有3.8mm乘1.9mm寬的開口。所測得的增益型樣506表示由一波導(諸如圖3中所說明之波導52)產生的60GHz波之360°所測得增益型樣,且使用依據本文中所述技術之GRIN透鏡來將60GHz波聚焦。此外,由於將依據本文中所述技術的GRIN透鏡置於波導前方,所測得的增益型樣506顯示高振幅、窄的、聚焦的波束輻射型樣。在圖13A的一些實例中,所測得的增益型樣506的振幅可比所測得的增益型樣504之振幅大21倍。在圖13A及圖13B的一些實例中,由於未將依據本文中所述技術的GRIN透鏡置於波導前方,所測得的增益型樣504可具有低振幅、寬的、未聚焦的波束輻射型樣。在圖13B的一些實例中,所測得的增益型樣504的振幅可為1。 The measured gain pattern 504 represents a measured gain profile of 360° of a 60 GHz wave radiated from a flange of a waveguide (such as waveguide 54 illustrated in Figure 3) without the use of GRIN. The lens is used to focus the 60 GHz wave. The measured gain pattern 504 is normalized to unity. In some examples, the flange of the waveguide, such as waveguide 52, can have an opening that is 3.8 mm by 1.9 mm wide. The measured gain pattern 506 represents a gain pattern measured by 360° of a 60 GHz wave generated by a waveguide (such as the waveguide 52 illustrated in Figure 3) and using a GRIN lens in accordance with the techniques described herein. 60 GHz wave focusing. Moreover, since a GRIN lens in accordance with the techniques described herein is placed in front of the waveguide, the measured gain pattern 506 exhibits a high amplitude, narrow, focused beam radiation pattern. In some examples of FIG. 13A, the amplitude of the measured gain pattern 506 can be 21 times greater than the amplitude of the measured gain pattern 504. In some examples of FIGS. 13A and 13B, since the GRIN lens in accordance with the techniques described herein is not placed in front of the waveguide, the measured gain pattern 504 can have a low amplitude, wide, unfocused beam radiation pattern. kind. In some examples of FIG. 13B, the measured gain pattern 504 may have an amplitude of one.

圖14為繪示具有一單一介電常數之一第一介電材料與具有一雙凸透鏡之一結構的聚焦效應之實例的概念圖600。在圖14的 實例中,概念圖600包含波604、一GRIN透鏡602、以及聚焦波606。 14 is a conceptual diagram 600 showing an example of a focusing effect of a first dielectric material having a single dielectric constant and a structure having a lenticular lens. In Figure 14 In the example, concept map 600 includes a wave 604, a GRIN lens 602, and a focused wave 606.

波604表示行進通過GRIN透鏡602的波。GRIN透鏡602雖表示為雙凸透鏡結構,但可不限於此結構。聚焦波606表示在波604行進通過GRIN透鏡(諸如GRIN透鏡602)後,對於波604的聚焦效應。在一例示性實施中,波604的頻率可為60GHz。在另一例示性實施中,GRIN透鏡602可具有一種介電材料,其形成雙凸透鏡形狀且其介電常數分佈提供近似於雙凸透鏡的透鏡功能性之透鏡功能性。 Wave 604 represents the wave traveling through GRIN lens 602. Although the GRIN lens 602 is shown as a lenticular lens structure, it is not limited to this structure. Focusing wave 606 represents the focusing effect on wave 604 after wave 604 travels through a GRIN lens, such as GRIN lens 602. In an exemplary implementation, the frequency of wave 604 can be 60 GHz. In another exemplary implementation, the GRIN lens 602 can have a dielectric material that forms a lenticular shape and whose dielectric constant distribution provides lens functionality that approximates the lens functionality of the lenticular lens.

圖15為繪示一階梯式GRIN透鏡610之實例的概念圖,該透鏡包含具有一階梯式介電常數分佈及類似於一雙凸透鏡的聚焦效應之兩種或更多種介電材料。在圖15的實例中,階梯式GRIN透鏡610包含複數個層,諸如層612A、612B、614A、614B、626A、626B。在一實例中,複數個層係橫跨u軸為對稱,以達到類似於雙凸透鏡的介電常數分佈及聚焦效應。在另一實例中,複數個層包含複數個立體像素(未顯示)。在一些實例中,各顏色代表與箱式介電常數相關聯的特定介電常數,如圖12的表1中所示及所述。 15 is a conceptual diagram showing an example of a stepped GRIN lens 610 comprising two or more dielectric materials having a stepped dielectric constant distribution and a focusing effect similar to that of a lenticular lens. In the example of FIG. 15, the stepped GRIN lens 610 includes a plurality of layers, such as layers 612A, 612B, 614A, 614B, 626A, 626B. In one example, the plurality of layers are symmetric across the u-axis to achieve a dielectric constant distribution and focusing effect similar to a lenticular lens. In another example, the plurality of layers comprise a plurality of voxels (not shown). In some examples, each color represents a particular dielectric constant associated with a box dielectric constant, as shown and described in Table 1 of FIG.

在一例示性實施中,各對稱的層(諸如層612A、612B)可具有類似的第一介電材料對第二介電材料比例。在另一例示性實施中,各對稱的層(諸如層612A、612B)可具有類似的連續變化之第一介電材料對第二介電材料比例(其由該複數個立體像素界定)。在一些實例中,因為有類似的第一介電材料對第二介電材料比 例,對稱的層612A、612B可具有類似的有效介電常數。在其他實例中,因為第一介電材料與第二介電材料之體積類似,對稱的層612A、612B可具有類似的有效介電常數。在另外其他實例中,因為在第一介電材料與第二介電材料之間有類似密度,對稱的層612A、612B可具有類似的有效介電常數。 In an exemplary implementation, each symmetrical layer (such as layers 612A, 612B) can have a similar ratio of first dielectric material to second dielectric material. In another exemplary implementation, each symmetrical layer (such as layers 612A, 612B) can have a similar continuously varying ratio of first dielectric material to second dielectric material (which is defined by the plurality of singular pixels). In some examples, because there is a similar ratio of the first dielectric material to the second dielectric material For example, symmetric layers 612A, 612B can have similar effective dielectric constants. In other examples, symmetric layers 612A, 612B may have similar effective dielectric constants because the first dielectric material is similar in volume to the second dielectric material. In still other examples, the symmetric layers 612A, 612B can have similar effective dielectric constants because of the similar density between the first dielectric material and the second dielectric material.

圖16為繪示兩種或更多種介電材料的聚焦效應之實例的概念圖630,該等介電材料係根據本文中所揭露之技術來形成階梯式介電常數分佈。在圖16的實例中,概念圖630包含波634、如圖15所說明之一階梯式GRIN透鏡610、以及聚焦波636。使用電腦模擬技術(CST)軟體,藉由將60GHz平面波導向階梯式GRIN透鏡610來進行透鏡模擬。該平面波源自正u方向並且在負u方向朝向透鏡行進。該平面波平行於vw平面。請注意,uvw直角座標系統類似於xyz直角座標系統。 16 is a conceptual diagram 630 illustrating an example of focusing effects of two or more dielectric materials that form a stepped dielectric constant distribution in accordance with the techniques disclosed herein. In the example of FIG. 16, conceptual diagram 630 includes a wave 634, a stepped GRIN lens 610 as illustrated in FIG. 15, and a focused wave 636. Lens simulation was performed by using a computer simulation technology (CST) software by a 60 GHz planar waveguide to a stepped GRIN lens 610. The plane wave originates from the positive u direction and travels toward the lens in the negative u direction. The plane wave is parallel to the vw plane. Please note that the uvw right angle coordinate system is similar to the xyz right angle coordinate system.

波634代表行進通過階梯式GRIN透鏡610的波。階梯式GRIN透鏡610係繪示為具有平坦側邊的GRIN透鏡,但可不限於此結構,且可為受到如圖1中所說明的AM裝置24限制之任何結構。聚焦波636表示波634在行進通過GRIN透鏡(諸如階梯式GRIN透鏡610或如圖14中所說明之GRIN透鏡602)之後,對於波634的聚焦效應。 Wave 634 represents the wave traveling through the stepped GRIN lens 610. The stepped GRIN lens 610 is illustrated as a GRIN lens having flat sides, but may not be limited to this configuration, and may be any structure that is limited by the AM device 24 as illustrated in FIG. Focusing wave 636 represents the focusing effect of wave 634 on wave 634 after traveling through a GRIN lens, such as stepped GRIN lens 610 or GRIN lens 602 as illustrated in FIG.

在一例示性實施中,波634的頻率可為60GHz。在另一例示性實施中,階梯式GRIN透鏡610可具有形成一介電常數分佈的兩種或更多種介電材料,該介電常數分佈提供近似成像透鏡(諸如 像圖14的GRIN透鏡602之固體雙凸透鏡)的透鏡功能性之透鏡功能性,並且不具有雙凸透鏡的形狀,如圖15中所說明。在一些實例中,聚焦波636可具有類似及/或近似於如圖14中所說明的聚焦波606之聚焦效應。 In an exemplary implementation, the frequency of wave 634 can be 60 GHz. In another exemplary implementation, the stepped GRIN lens 610 can have two or more dielectric materials that form a dielectric constant distribution that provides an approximate imaging lens (such as The lens functionality of a solid lenticular lens like the GRIN lens 602 of Figure 14 is functional and does not have the shape of a lenticular lens, as illustrated in Figure 15. In some examples, the focused wave 636 can have a focusing effect similar to and/or similar to the focused wave 606 as illustrated in FIG.

圖17為繪示兩種或更多種介電材料的聚焦效應之實例的概念圖,該等介電材料係根據本文中所揭露之技術來形成階梯式介電常數分佈。在圖17的實例中,概念圖640包含波644、一階梯式GRIN透鏡610、以及聚焦波646。使用CST軟體,藉由將60GHz平面波導向階梯式GRIN透鏡610來進行透鏡模擬。該平面波源自正u方向並在負u方向朝向透鏡行進。該平面波平行於vw平面。請注意,uvw直角座標系統類似於xyz直角座標系統。 17 is a conceptual diagram illustrating an example of focusing effects of two or more dielectric materials that form a stepped dielectric constant distribution in accordance with the techniques disclosed herein. In the example of FIG. 17, concept map 640 includes a wave 644, a stepped GRIN lens 610, and a focused wave 646. Lens simulation was performed using a CST software by directing a 60 GHz planar waveguide to a stepped GRIN lens 610. The plane wave originates from the positive u direction and travels toward the lens in the negative u direction. The plane wave is parallel to the vw plane. Please note that the uvw right angle coordinate system is similar to the xyz right angle coordinate system.

波644代表行進通過階梯式GRIN透鏡610的波。階梯式GRIN透鏡610在圖17中係繪示為具有平坦側邊的GRIN透鏡,但可不限於此結構,且可為受到如圖1中所說明的AM裝置24限制之任何結構。聚焦波646表示波644在行進通過GRIN透鏡(諸如階梯式GRIN透鏡610或如圖14中所說明之GRIN透鏡602)之後,對於波644的聚焦效應。 Wave 644 represents the wave traveling through the stepped GRIN lens 610. The stepped GRIN lens 610 is illustrated in FIG. 17 as a GRIN lens having flat sides, but may not be limited to this configuration, and may be any structure that is limited by the AM device 24 as illustrated in FIG. Focusing wave 646 represents the focusing effect of wave 644 on wave 644 after traveling through a GRIN lens, such as stepped GRIN lens 610 or GRIN lens 602 as illustrated in FIG.

在一例示性實施中,波644的頻率可為60GHz。在另一例示性實施中,階梯式GRIN透鏡610可具有形成一介電常數分佈的兩種或更多種介電材料,該介電常數分佈提供近似成像透鏡(諸如像圖14的GRIN透鏡602之固體雙凸透鏡)的透鏡功能性之透鏡功能性,並且不具有雙凸透鏡的形狀,如圖15中所說明。在一些實例中, 聚焦波646可具有類似及/或近似於如圖14中所說明的聚焦波606之聚焦效應。 In an exemplary implementation, the frequency of wave 644 can be 60 GHz. In another exemplary implementation, the stepped GRIN lens 610 can have two or more dielectric materials that form a dielectric constant distribution that provides an approximate imaging lens (such as, for example, the GRIN lens 602 of FIG. The lens of the solid lenticular lens has functional lens functionality and does not have the shape of a lenticular lens, as illustrated in FIG. In some instances, The focused wave 646 can have a focusing effect similar to and/or similar to the focused wave 606 as illustrated in FIG.

圖18繪示一具有兩種或更多種介電材料的非織結構700之實例,該實例係根據本文中所揭露之技術。在圖18的實例中,該非織結構包括GRIN透鏡702。GRIN透鏡702在圖18中係繪示為具有一平坦側邊且包括非織材料的GRIN透鏡。 18 illustrates an example of a nonwoven structure 700 having two or more dielectric materials, the examples being in accordance with the techniques disclosed herein. In the example of FIG. 18, the nonwoven structure includes a GRIN lens 702. The GRIN lens 702 is illustrated in Figure 18 as a GRIN lens having a flat side and comprising a nonwoven material.

在一例示性實施中,GRIN透鏡702可具有形成一介電常數分佈的兩種或更多種介電材料,該介電常數分佈提供近似成像透鏡(諸如像圖14的GRIN透鏡602之固體雙凸透鏡)的透鏡功能性之透鏡功能性,並且不具有雙凸透鏡的形狀,如圖15中所說明。在一些實例中,GRIN透鏡702可藉由如圖1中所說明的AM裝置24來形成,並且AM裝置24可產生經3D列印材料的隨機或偽隨機擠出路徑,其對應於兩種或更多種介電材料之間的已界定體積比。在圖18的實例中,GRIN透鏡702的有效介電常數係依據擠出材料的局部列印密度而變化。在一些實例中,GRIN透鏡702的非織結構可包含一或多個體積元素的配置,該一或多個體積元素具有由積層製程所形成的一或多個線條之配置。在其他實例中,各別體積元素中的第一介電材料對第二介電材料之體積比,係以藉由積層製程形成的第一介電材料之線寬來控制。在一些實例中,一或多個體積元素的配置可包含至少第一介電材料的隨機擠出路徑之一陣列。 In an exemplary implementation, the GRIN lens 702 can have two or more dielectric materials that form a dielectric constant distribution that provides an approximate imaging lens (such as a solid double like the GRIN lens 602 of FIG. The lens of the convex lens has functional lens functionality and does not have the shape of a lenticular lens, as illustrated in FIG. In some examples, GRIN lens 702 can be formed by AM device 24 as illustrated in FIG. 1, and AM device 24 can generate a random or pseudo-random extrusion path through the 3D printed material, which corresponds to two or A defined volume ratio between more dielectric materials. In the example of Figure 18, the effective dielectric constant of the GRIN lens 702 varies depending on the local printing density of the extruded material. In some examples, the nonwoven structure of the GRIN lens 702 can include a configuration of one or more volume elements having a configuration of one or more lines formed by a laminate process. In other examples, the volume ratio of the first dielectric material to the second dielectric material in the respective volume elements is controlled by the line width of the first dielectric material formed by the build-up process. In some examples, the configuration of one or more volume elements can comprise an array of at least one of the random extrusion paths of the first dielectric material.

圖19繪示另一具有兩種或更多種介電材料的非織結構710之實例,該實例係根據本文中所揭露之技術。在圖19的實例中, 非織結構包含GRIN透鏡712。GRIN透鏡712在圖19中係繪示為具有複數個輪輻且包括非織材料的GRIN透鏡。在一例示性實施中,GRIN透鏡712可具有形成一介電常數分佈的兩種或更多種介電材料,該介電常數分佈提供近似成像透鏡(諸如像圖14的GRIN透鏡602之固體雙凸透鏡)的透鏡功能性之透鏡功能性,並且不具有雙凸透鏡的形狀,如圖15中所說明。在一些實例中,GRIN透鏡712可藉由如圖1中所說明的AM裝置24來形成,並且AM裝置24可產生隨機的立體像素陣列,該陣列對應於兩種或更多種介電材料之間的已界定體積比。 19 illustrates another example of a nonwoven structure 710 having two or more dielectric materials, the examples being in accordance with the techniques disclosed herein. In the example of Figure 19, The nonwoven structure includes a GRIN lens 712. The GRIN lens 712 is illustrated in Figure 19 as a GRIN lens having a plurality of spokes and including a nonwoven material. In an exemplary implementation, the GRIN lens 712 can have two or more dielectric materials that form a dielectric constant distribution that provides an approximate imaging lens (such as a solid double like the GRIN lens 602 of FIG. The lens of the convex lens has functional lens functionality and does not have the shape of a lenticular lens, as illustrated in FIG. In some examples, GRIN lens 712 can be formed by AM device 24 as illustrated in FIG. 1, and AM device 24 can generate a random array of voxels corresponding to two or more dielectric materials. The defined volume ratio between the two.

圖20為繪示一積層製造裝置24的實例操作800之流程圖,該裝置依據本文中所揭露技術產生具有兩種或更多種介電材料的一3D GRIN透鏡。為舉例之目的,圖20將參照圖1的AM裝置24來說明。 20 is a flow chart showing an example operation 800 of a laminate manufacturing apparatus 24 that produces a 3D GRIN lens having two or more dielectric materials in accordance with the techniques disclosed herein. For purposes of example, FIG. 20 will be described with reference to AM device 24 of FIG.

起初,AM裝置24接收一包含指定複數個層的資料之模型,至少一層包含一或多個體積元素的一配置,該一或多個體積元素包含一第一介電材料及一第二介電材料(802)。例如,AM裝置24可為一具有一或多個處理器之製造裝置,其接收一包括指定複數個層的資料之模型,其中該複數個層的至少一層包括一或多個體積元素的一配置,該一或多個體積元素包括一第一介電材料與一第二介電材料,其中該複數個層的該至少一層具有一介電常數分佈,該分佈係由該層中的該等體積元素之複數個不同有效介電常數所構成。在一些實例中,各局部有效介電常數係依據下列而變化:各別該等體積元素中 的該第一介電材料對該第二介電材料之體積比、該第一介電材料的介電常數、及該第二介電材料的介電常數。在AM裝置24接收該模型之後,AM裝置24基於該模型藉由積層製程來產生一GRIN透鏡(804)。在一些實例中,該複數個層的該至少一層具有一介電常數分佈,該分佈係由該層中的該等體積元素之複數個不同有效介電常數所構成。 Initially, the AM device 24 receives a model containing data specifying a plurality of layers, at least one layer comprising a configuration of one or more volume elements, the one or more volume elements comprising a first dielectric material and a second dielectric Material (802). For example, the AM device 24 can be a manufacturing device having one or more processors that receive a model including data specifying a plurality of layers, wherein at least one of the plurality of layers includes a configuration of one or more volume elements The one or more volume elements include a first dielectric material and a second dielectric material, wherein the at least one layer of the plurality of layers has a dielectric constant distribution, the distribution being from the same volume in the layer A plurality of different effective dielectric constants of the elements. In some examples, each local effective dielectric constant varies according to the following: each of the volume elements The volume ratio of the first dielectric material to the second dielectric material, the dielectric constant of the first dielectric material, and the dielectric constant of the second dielectric material. After the AM device 24 receives the model, the AM device 24 generates a GRIN lens (804) by a lamination process based on the model. In some examples, the at least one layer of the plurality of layers has a dielectric constant distribution that is comprised of a plurality of different effective dielectric constants of the equal volume elements in the layer.

已說明本揭露的各種實例。這些與其他實例都在下列申請專利範圍的範疇之內。 Various examples of the disclosure have been described. These and other examples are within the scope of the following patent application.

Claims (36)

一種形成一用於傳播一電磁波的梯度折射率(gradient index;GRIN)透鏡的方法,該方法包括:藉由一具有一或多個處理器的製造裝置,接收一包含指定複數個層的資料之模型,其中該複數個層的至少一層包含一或多個體積元素(volume element)的一配置,該一或多個體積元素包含一第一介電材料與一第二介電材料,其中該複數個層的該至少一層具有一介電常數分佈,該介電常數分佈係由該層中的該等體積元素之複數個不同有效介電常數所構成;以及基於該模型,使用該製造裝置藉由一積層製程來產生該GRIN透鏡。 A method of forming a gradient index (GRIN) lens for propagating an electromagnetic wave, the method comprising: receiving, by a manufacturing device having one or more processors, a data comprising a specified plurality of layers a model, wherein at least one of the plurality of layers comprises a configuration of one or more volume elements, the one or more volume elements comprising a first dielectric material and a second dielectric material, wherein the plurality The at least one layer of the layers has a dielectric constant distribution consisting of a plurality of different effective dielectric constants of the equal volume elements in the layer; and based on the model, using the manufacturing apparatus A laminate process is used to produce the GRIN lens. 如請求項1之方法,其中該等局部有效介電常數之各者係依據下列而變化:各別該等體積元素中的該第一介電材料對該第二介電材料之體積比、該第一介電材料的介電常數、及該第二介電材料的介電常數。 The method of claim 1, wherein each of the local effective dielectric constants is changed according to a volume ratio of the first dielectric material to the second dielectric material in the respective volume elements, a dielectric constant of the first dielectric material and a dielectric constant of the second dielectric material. 如請求項1或2之方法,其中該複數個層之各者的厚度小於該電磁波的波長。 The method of claim 1 or 2, wherein each of the plurality of layers has a thickness less than a wavelength of the electromagnetic wave. 如請求項1或2之方法,其中該複數個層之各者的厚度係介於該電磁波之波長長度的十分之一與十五分之一之間。 The method of claim 1 or 2, wherein each of the plurality of layers has a thickness between one tenth and one fifteenth of a wavelength length of the electromagnetic wave. 如請求項1或2之方法,其中一或多個體積元素的該配置包含由該積層製程所形成的一或多個線條之一配置。 The method of claim 1 or 2, wherein the configuration of the one or more volume elements comprises one of one or more lines formed by the layering process. 如請求項1或2之方法,其中該複數個層中的一第一者內之一或多個線條係配置為一輪輻型樣,且其中該複數個層中的一第二者內之該一或多個線條係配置為一環狀型樣。 The method of claim 1 or 2, wherein one or more of the first ones of the plurality of layers are configured as a spoke type, and wherein the second one of the plurality of layers One or more of the lines are configured in a ring shape. 如請求項1或2之方法,其中該複數個層中的一第一者內的該一或多個線條係配置為一環狀型樣,且其中該複數個層中的一第二者內的該一或多個線條係配置為一輪輻型樣。 The method of claim 1 or 2, wherein the one or more line lines in a first one of the plurality of layers are configured as a ring pattern, and wherein a second one of the plurality of layers The one or more lines are configured as a spoke type. 如請求項1或2之方法,其中該複數個層中的一第一者內之該一或多個線條係配置為一網格型樣。 The method of claim 1 or 2, wherein the one or more line lines in a first one of the plurality of layers are configured as a grid pattern. 如請求項5之方法,其中各別該等體積元素中的該第一介電材料對該第二介電材料之該體積比係以藉由該積層製程形成的該第一介電材料之線寬來控制。 The method of claim 5, wherein the volume ratio of the first dielectric material to the second dielectric material in each of the volume elements is a line of the first dielectric material formed by the build-up process Wide to control. 如請求項1之方法,其中一或多個體積元素的該配置包含至少該第一介電材料的隨機擠出路徑之一陣列。 The method of claim 1, wherein the configuration of the one or more volume elements comprises an array of at least one of the random extrusion paths of the first dielectric material. 如請求項1之方法,其中該第一介電材料包含一第一光反應性樹脂或一第一熱塑性樹脂的至少一者,且其中該第二介電材料包含空氣。 The method of claim 1, wherein the first dielectric material comprises at least one of a first photoreactive resin or a first thermoplastic resin, and wherein the second dielectric material comprises air. 如請求項1之方法,其中該第一介電材料包含一第一光反應性樹脂或一第一熱塑性樹脂的至少一者,且其中該第二介電材料包含一第二光反應性樹脂或一第二熱塑性樹脂的至少一者。 The method of claim 1, wherein the first dielectric material comprises at least one of a first photoreactive resin or a first thermoplastic resin, and wherein the second dielectric material comprises a second photoreactive resin or At least one of a second thermoplastic resin. 如請求項1之方法,其中該積層製程包含三維(3D)列印製程。 The method of claim 1, wherein the layering process comprises a three-dimensional (3D) printing process. 如請求項1之方法,其中該積層製程包含雙光子光聚合製程。 The method of claim 1, wherein the build-up process comprises a two-photon photopolymerization process. 如請求項1之方法,其中該介電常數分佈係經選擇以使該GRIN透鏡能夠將該電磁波聚焦。 The method of claim 1, wherein the dielectric constant distribution is selected to enable the GRIN lens to focus the electromagnetic wave. 如請求項1之方法,其中該電磁波的頻率係在毫米波段內。 The method of claim 1, wherein the frequency of the electromagnetic wave is within a millimeter wave band. 如請求項1之方法,其中該電磁波的頻率為60GHz。 The method of claim 1, wherein the electromagnetic wave has a frequency of 60 GHz. 一種電腦系統,其經組態以執行如請求項1至17中任一項之方法。 A computer system configured to perform the method of any one of claims 1 to 17. 一種電腦可讀媒體,其包含用於致使一可程式化處理器執行如請求項1至17中任一項之方法的指令。 A computer readable medium, comprising instructions for causing a programmable processor to perform the method of any one of claims 1 to 17. 一種用於傳播一電磁波的梯度折射率(GRIN)透鏡,該透鏡包含:複數個層,其等經積層地形成以包含複數個體積元素,其中該複數個層的至少一層包含該一或多個體積元素的一配置,其中該等體積元素之各者包含一第一介電材料及一第二介電材料,其中該複數個層的該至少一層具有一介電常數分佈,該介電常數分佈係由該層中的該等體積元素之複數個不同有效介電常數所構成,且其中該等局部有效介電常數之各者係依據下列而變化:各別該等體積元素中的該第一介電材料對該第二介電材料之體積比、該第一介電材料的介電常數、及該第二介電材料的介電常數。 A gradient index (GRIN) lens for propagating an electromagnetic wave, the lens comprising: a plurality of layers formed to be laminated to include a plurality of volume elements, wherein at least one of the plurality of layers comprises the one or more An arrangement of volume elements, wherein each of the volume elements comprises a first dielectric material and a second dielectric material, wherein the at least one layer of the plurality of layers has a dielectric constant distribution, the dielectric constant distribution And consisting of a plurality of different effective dielectric constants of the equal volume elements in the layer, and wherein each of the local effective dielectric constants varies according to the following: each of the first of the volume elements a volume ratio of the dielectric material to the second dielectric material, a dielectric constant of the first dielectric material, and a dielectric constant of the second dielectric material. 如請求項20之用於傳播一電磁波的梯度折射率(GRIN)透鏡,其中該複數個層的各者之厚度係小於該電磁波的波長。 A gradient index (GRIN) lens for propagating an electromagnetic wave according to claim 20, wherein each of the plurality of layers has a thickness smaller than a wavelength of the electromagnetic wave. 如請求項20或21之用於傳播一電磁波的梯度折射率(GRIN)透鏡,其中該複數個層之各者的厚度係介於該電磁波之波長長度的十分之一與十五分之一之間。 A gradient index (GRIN) lens for propagating an electromagnetic wave according to claim 20 or 21, wherein a thickness of each of the plurality of layers is between one tenth and one fifteenth of a wavelength length of the electromagnetic wave between. 如請求項20或21之用於傳播一電磁波的梯度折射率(GRIN)透鏡,其中一或多個體積元素的該配置包含由該積層製程所形成的一或多個線條之一配置。 A gradient index (GRIN) lens for propagating an electromagnetic wave as claimed in claim 20 or 21, wherein the configuration of one or more volume elements comprises one of one or more lines formed by the layering process. 如請求項23之用於傳播一電磁波的梯度折射率(GRIN)透鏡,其中該複數個層中的一第一者內之一或多個線條係配置為一輪輻型樣,且其中該複數個層中的一第二者內之該一或多個線條係配置為一環狀型樣。 A gradient index (GRIN) lens for propagating an electromagnetic wave according to claim 23, wherein one or more of the first ones of the plurality of layers are configured as a spoke type, and wherein the plurality of The one or more lines within a second one of the layers are configured in a loop pattern. 如請求項23之用於傳播一電磁波的梯度折射率(GRIN)透鏡,其中該複數個層中的一第一者內之一或多個線條係配置為一環狀型樣,且其中該複數個層中的一第二者內之該一或多個線條係配置為一輪輻 型樣。 A gradient index (GRIN) lens for propagating an electromagnetic wave according to claim 23, wherein one or more of the first ones of the plurality of layers are configured as a ring pattern, and wherein the plurality One or more of the lines in a second of the layers are configured as a spoke Model. 如請求項23之用於傳播一電磁波的梯度折射率(GRIN)透鏡,其中該複數個層中的一第一者內之一或多個線條係配置為一網格型樣。 A gradient index (GRIN) lens for propagating an electromagnetic wave according to claim 23, wherein one or more of the first ones of the plurality of layers are configured as a grid pattern. 如請求項23之用於傳播一電磁波的梯度折射率(GRIN)透鏡,其中各別該等體積元素中的該第一介電材料對該第二介電材料之該體積比係以藉由該積層製程形成的該第一介電材料之線寬來控制。 A gradient index (GRIN) lens for propagating an electromagnetic wave according to claim 23, wherein the volume ratio of the first dielectric material of the respective volume elements to the second dielectric material is The line width of the first dielectric material formed by the build-up process is controlled. 如請求項20之用於傳播一電磁波的梯度折射率(GRIN)透鏡,其中一或多個體積元素的該配置包含至少該第一介電材料的隨機擠出路徑之一陣列。 A gradient index (GRIN) lens for propagating an electromagnetic wave of claim 20, wherein the configuration of the one or more volume elements comprises at least one of an array of random extrusion paths of the first dielectric material. 如請求項20之用於傳播一電磁波的梯度折射率(GRIN)透鏡,其中該第一介電材料包含一第一光反應性樹脂或一第一熱塑性樹脂的至少一者,且其中該第二介電材料包含空氣。 A gradient index (GRIN) lens for propagating an electromagnetic wave according to claim 20, wherein the first dielectric material comprises at least one of a first photoreactive resin or a first thermoplastic resin, and wherein the second The dielectric material contains air. 如請求項20之用於傳播一電磁波的梯度折射率(GRIN)透鏡,其中該第一介電材料包含一第一光反應性樹脂或一第一熱塑性樹脂的至少一者,且其中該第二介電材料包含一第二光反應性樹脂或一第二熱塑性樹脂的至少一者。 A gradient index (GRIN) lens for propagating an electromagnetic wave according to claim 20, wherein the first dielectric material comprises at least one of a first photoreactive resin or a first thermoplastic resin, and wherein the second The dielectric material comprises at least one of a second photoreactive resin or a second thermoplastic resin. 如請求項20之用於傳播一電磁波的梯度折射率(GRIN)透鏡,其中該積層製程包含三維(3D)列印製程。 A gradient index (GRIN) lens for propagating an electromagnetic wave as claimed in claim 20, wherein the build-up process comprises a three-dimensional (3D) printing process. 如請求項20之用於傳播一電磁波的梯度折射率(GRIN)透鏡,其中該積層製程包含雙光子光聚合製程。 A gradient index (GRIN) lens for propagating an electromagnetic wave according to claim 20, wherein the layering process comprises a two-photon photopolymerization process. 如請求項20之用於傳播一電磁波的梯度折射率(GRIN)透鏡,其中該介電常數分佈係經選擇以使該GRIN透鏡能夠將該電磁波聚焦。 A gradient index (GRIN) lens for propagating an electromagnetic wave as claimed in claim 20, wherein the dielectric constant distribution is selected to enable the GRIN lens to focus the electromagnetic wave. 如請求項20之用於傳播一電磁波的梯度折射率(GRIN)透鏡,其中該電磁波的頻率係在毫米波段內。 A gradient index (GRIN) lens for propagating an electromagnetic wave as claimed in claim 20, wherein the frequency of the electromagnetic wave is within a millimeter wave band. 如請求項20之用於傳播一電磁波的梯度折射率(GRIN)透鏡,其中該 電磁波的頻率為60GHz。 A gradient index (GRIN) lens for propagating an electromagnetic wave as claimed in claim 20, wherein The frequency of the electromagnetic wave is 60 GHz. 如請求項20之用於傳播一電磁波的梯度折射率(GRIN)透鏡,其中該等介電材料的至少一者提供一特定孔隙率以用於過濾一氣體或一液體的至少一者。 A gradient index (GRIN) lens for propagating an electromagnetic wave as claimed in claim 20, wherein at least one of the dielectric materials provides a specific porosity for filtering at least one of a gas or a liquid.
TW104101711A 2015-01-19 2015-01-19 Volume based gradient index lens by additive manufacturing TWI651548B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104101711A TWI651548B (en) 2015-01-19 2015-01-19 Volume based gradient index lens by additive manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104101711A TWI651548B (en) 2015-01-19 2015-01-19 Volume based gradient index lens by additive manufacturing

Publications (2)

Publication Number Publication Date
TW201627689A TW201627689A (en) 2016-08-01
TWI651548B true TWI651548B (en) 2019-02-21

Family

ID=57181758

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104101711A TWI651548B (en) 2015-01-19 2015-01-19 Volume based gradient index lens by additive manufacturing

Country Status (1)

Country Link
TW (1) TWI651548B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746903B2 (en) * 2017-09-20 2020-08-18 The Boeing Company Gradient index (GRIN) spoke lens and method of operation
TWI820237B (en) * 2018-10-18 2023-11-01 美商羅傑斯公司 Polymer structure, its stereolithography method of manufacture, and electronic device comprising same
WO2020117489A1 (en) * 2018-12-04 2020-06-11 Rogers Corporation Dielectric electromagnetic structure and method of making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104554A1 (en) * 2009-03-13 2010-09-16 Eastman Kodak Company Systems and methods of producing gradient index optics
CN101952754A (en) * 2008-02-29 2011-01-19 株式会社藤仓 Substrate-type optical waveguide device, wavelength dispersion compensation device and designing method thereof, light filter and designing method thereof, and optical resonator and designing method thereof
CN103995304A (en) * 2014-03-07 2014-08-20 西安交通大学 Preparation method of all-dielectricthree-dimensional broadband gradient refractive index lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101952754A (en) * 2008-02-29 2011-01-19 株式会社藤仓 Substrate-type optical waveguide device, wavelength dispersion compensation device and designing method thereof, light filter and designing method thereof, and optical resonator and designing method thereof
WO2010104554A1 (en) * 2009-03-13 2010-09-16 Eastman Kodak Company Systems and methods of producing gradient index optics
CN103995304A (en) * 2014-03-07 2014-08-20 西安交通大学 Preparation method of all-dielectricthree-dimensional broadband gradient refractive index lens

Also Published As

Publication number Publication date
TW201627689A (en) 2016-08-01

Similar Documents

Publication Publication Date Title
US11916306B2 (en) Volume based gradient index lens by additive manufacturing
Han et al. Numerical modeling of sub-wavelength anti-reflective structures for solar module applications
Zhan et al. Controlling three-dimensional optical fields via inverse Mie scattering
TWI651548B (en) Volume based gradient index lens by additive manufacturing
US11397331B2 (en) Color and multi-spectral image sensor based on 3D engineered material
Boriskin et al. Whispering-gallery and Luneburg-lens effects in a beam-fed circularly layered dielectric cylinder
CN103395205A (en) Method for making curved frequency selective surface by three-dimensional printing technology
TW201217844A (en) Design for reducing loss at intersection in optical waveguides
CN102480061A (en) Antenna based meta-material and method for generating working wavelengths of meta-material panel
US11239276B2 (en) CMOS color image sensors with metamaterial color splitting
Liu et al. Skeletonization accelerated MLFMA solution of volume integral equation for plasmonic structures
WO2021076154A1 (en) Cmos color image sensors with metamaterial color splitting
Jing et al. A deep neural network for general scattering matrix
Tzarouchis et al. Plasmonic properties and energy flow in rounded hexahedral and octahedral nanoparticles
Danilov Focusing DOEs (focusators): design and investigation
WO2023287484A2 (en) Apparatuses and methodology involving electromagnetic metamaterials
WO2021255337A1 (en) Gradient-index optics
Li et al. Stereolithography with variable resolutions using optical filter with high-contrast gratings
Liang et al. A novel method for fabricating curved frequency selective surface via 3D printing technology
Lininger et al. Machine learning to optimize additive manufacturing for visible photonics
Zouros et al. Fast solution of the electromagnetic scattering by composite spheroidal–spherical and spherical–spheroidal configurations
Yuan et al. Direct 3d printing system: from point cloud to additive manufacturing
WO2024049492A2 (en) Tunable system designs for dynamic metamaterial
Campbell et al. A toolkit for multiscale optical system inverse-design
Denisov et al. Creating a Luneburg Lens with a Variable Pitch 3D Printer