TWI629729B - Chip positioning method and manufacturing equipment for use in fan-out process - Google Patents

Chip positioning method and manufacturing equipment for use in fan-out process Download PDF

Info

Publication number
TWI629729B
TWI629729B TW105141978A TW105141978A TWI629729B TW I629729 B TWI629729 B TW I629729B TW 105141978 A TW105141978 A TW 105141978A TW 105141978 A TW105141978 A TW 105141978A TW I629729 B TWI629729 B TW I629729B
Authority
TW
Taiwan
Prior art keywords
laser drilling
fan
out process
image information
ray
Prior art date
Application number
TW105141978A
Other languages
Chinese (zh)
Other versions
TW201824407A (en
Inventor
何毓民
Original Assignee
技鼎股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 技鼎股份有限公司 filed Critical 技鼎股份有限公司
Priority to TW105141978A priority Critical patent/TWI629729B/en
Publication of TW201824407A publication Critical patent/TW201824407A/en
Application granted granted Critical
Publication of TWI629729B publication Critical patent/TWI629729B/en

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本發明係提供一種應用在扇出製程的晶粒定位方法,該扇出製程係依序包括置晶步驟、量測步驟、灌膠步驟、雷射鑽孔步驟、電鍍步驟及電路曝顯步驟,該晶粒定位方法包含下列步驟:在灌膠步驟與雷射鑽孔步驟之間的X射線檢查步驟、影像分析步驟及重新定位步驟,於X射線檢查步驟執行X射線掃描而產生X射線掃描影像資訊,於影像分析步驟分析出各個晶粒的實際位置與預定位置之間的偏移狀態而得晶粒偏移狀態資訊,於重新定位步驟依據晶粒偏移狀態資訊而校正雷射鑽孔資料,於雷射鑽孔步驟依據經校正後的雷射鑽孔資料而執行。本發明並提供一種應用在扇出製程的生產設備。The present invention provides a grain positioning method applied to a fan-out process, which includes a seeding step, a measuring step, a potting step, a laser drilling step, a plating step, and a circuit exposure step, respectively. The die positioning method comprises the following steps: an X-ray inspection step, an image analysis step and a repositioning step between the filling step and the laser drilling step, and performing an X-ray scan on the X-ray inspection step to generate an X-ray scan image Information, in the image analysis step, analyzing the offset state between the actual position and the predetermined position of each die to obtain the grain offset state information, and correcting the laser drilling data according to the grain offset state information in the repositioning step The laser drilling step is performed in accordance with the corrected laser drilling data. The present invention also provides a production apparatus for use in a fan-out process.

Description

應用在扇出製程的晶粒定位方法及生產設備Grain positioning method and production equipment applied in fan-out process

本發明相關於一種晶粒定位方法及生產設備,特別是相關於一種應用在扇出製程的晶粒定位方法及生產設備。The invention relates to a grain positioning method and a production device, in particular to a grain positioning method and a production device applied in a fan-out process.

在半導體的扇出製程中,通常包括置晶步驟、灌膠步驟、雷射鑽孔步驟以及電路曝顯步驟。所謂置晶,係指將切割過的複數個晶粒置放於基板的預定位置,以進行後續的加工、封裝。灌膠步驟係指將絕緣膠披覆於基板及晶粒的上表面而形成一絕緣層,以封裝固定該些晶粒。待絕緣膠固著後,由雷射鑽孔設備依據雷射鑽孔資料(相關於晶粒的預定位置)執行雷射鑽孔,而形成穿透絕緣層及基板的穿孔。這些垂直基板及絕緣層的穿孔通常位於晶粒的外側,可供設置導線,以電連接晶粒的接點部及基板。In the fan-out process of a semiconductor, a crystallization step, a potting step, a laser drilling step, and a circuit exposure step are generally included. By crystallizing, a plurality of diced dies are placed on a predetermined position of a substrate for subsequent processing and packaging. The step of filling the glue means coating the insulating glue on the upper surface of the substrate and the die to form an insulating layer for encapsulating and fixing the crystal grains. After the insulating glue is fixed, the laser drilling device performs laser drilling according to the laser drilling data (related to the predetermined position of the die) to form a through hole penetrating the insulating layer and the substrate. The through holes of the vertical substrate and the insulating layer are usually located outside the die, and wires can be disposed to electrically connect the contact portions of the die and the substrate.

然而,固著前的膠係為流體,因此在灌膠步驟中,膠的流動可能使晶粒偏離預定位置,又或者是固著時來自各方向的應力使晶粒偏離。這種偏離狀況不僅是二維的,還可能是三維的。一旦晶粒被封埋於絕緣層中,其偏移的情況將難以被觀察到。若根據原有的雷射鑽孔資料執行雷射鑽孔,則可能因為晶粒偏離原本的預定位置的關係,而產生雷射光束誤傷晶粒、穿孔形成的位置無法對應晶粒等諸多問題,進而影響到後續的電鍍步驟以及電路曝顯步驟無法順利執行。如此一來,不僅生產良率大幅下降,也浪費時間及物料成本。However, the glue before the fixation is a fluid, so in the potting step, the flow of the glue may cause the crystal grains to deviate from the predetermined position, or the stress from each direction when the fixation is applied may cause the crystal grains to deviate. This deviation is not only two-dimensional, but also three-dimensional. Once the die is buried in the insulating layer, its offset will be difficult to observe. If the laser drilling is performed according to the original laser drilling data, the laser beam may be accidentally damaged due to the deviation of the crystal grain from the original predetermined position, and the position where the perforation is formed cannot correspond to the crystal grain and the like. This in turn affects the subsequent plating steps and the circuit exposure steps cannot be performed smoothly. As a result, not only the production yield is greatly reduced, but also time and material costs are wasted.

因此,為解決上述問題,本發明的目的即在提供一種應用在扇出製程的晶粒定位方法及生產設備。Therefore, in order to solve the above problems, an object of the present invention is to provide a die positioning method and a production apparatus which are applied to a fan-out process.

本發明為解決習知技術之問題所採用之技術手段係提供一種應用在扇出製程的晶粒定位方法,其中該扇出製程係依序包括一將複數個晶粒放置於一基板之預定位置的置晶步驟、一披覆一絕緣層於該複數個晶粒及該基板的上表面而與該基板形成一封裝結構的灌膠步驟、以及一依據一雷射鑽孔資料而執行雷射鑽孔的雷射鑽孔步驟,該晶粒定位方法包含下列步驟:一X射線檢查步驟,在該灌膠步驟與該雷射鑽孔步驟之間,由一X射線檢查機構對該封裝結構及該複數個晶粒執行X射線掃描而產生一X射線掃描影像資訊,該X射線掃描影像資訊係包括各個該複數個晶粒相對該基板的位置之平面影像資訊,以及於不同深度的各個該複數個晶粒在相對該封裝結構中的埋設狀態的深度影像資訊;一影像分析步驟,由一影像分析機構根據該X射線掃描影像資訊而分析出各個該複數個晶粒的實際位置與於該封裝結構的預定位置之間的偏移狀態而得一晶粒偏移狀態資訊;以及一重新定位步驟,由一重新定位機構依據該晶粒偏移狀態資訊而校正該雷射鑽孔資料,其中,該雷射鑽孔步驟係由該雷射鑽孔機構依據經校正後的該雷射鑽孔資料而執行,再於電路曝顯步驟依據經校正後的雷射鑽孔資料而執行。The technical means adopted by the present invention for solving the problems of the prior art provides a method for locating a grain in a fan-out process, wherein the fan-out process sequentially includes placing a plurality of dies on a predetermined position of a substrate. a seeding step, a potting step of coating a plurality of dies on the upper surface of the substrate and the substrate to form a package structure, and performing a laser drill according to a laser drilling material a laser drilling step of the hole, the grain positioning method comprising the following steps: an X-ray inspection step, between the potting step and the laser drilling step, the package structure and the X-ray inspection mechanism Performing an X-ray scan to generate an X-ray scan image information, the X-ray scan image information includes planar image information of positions of the plurality of crystal grains relative to the substrate, and each of the plurality of different depths Depth image information of the embedded state of the die in the package structure; an image analysis step, wherein the image analysis mechanism analyzes each of the X-ray scan image information a grain offset state information obtained by an offset position between the actual position of the plurality of dies and a predetermined position of the package structure; and a repositioning step by which a repositioning mechanism is based on the die offset state information And correcting the laser drilling data, wherein the laser drilling step is performed by the laser drilling mechanism according to the corrected laser drilling data, and then the corrected circuit step is based on the corrected Execution by laser drilling data.

在本發明的一實施例中係提供一種應用在扇出製程的晶粒定位方法,該影像分析步驟包括:根據該X射線掃描影像資訊的各個該複數個晶粒相對該基板的位置之平面影像資訊以分析各個該複數個晶粒的實際位置與該預定位置之間的X軸偏移距離、Y軸偏移距離、偏移旋轉角度。In an embodiment of the invention, a method for locating a grain in a fan-out process is provided. The image analysis step includes: displaying a planar image of the position of the plurality of dies relative to the substrate according to the X-ray scan image information. The information is used to analyze an X-axis offset distance, a Y-axis offset distance, and an offset rotation angle between an actual position of each of the plurality of crystal grains and the predetermined position.

在本發明的一實施例中係提供一種應用在扇出製程的晶粒定位方法,該影像分析步驟更包括根據該X射線掃描影像資訊以分析該封裝結構的翹曲狀態。In an embodiment of the invention, a method for positioning a grain in a fan-out process is provided. The image analysis step further includes scanning the image information according to the X-ray to analyze a warpage state of the package structure.

本發明為解決習知技術之問題所採用之技術手段係提供一種應用在扇出製程的生產設備,其中該扇出製程包括形成一封裝結構以及複數個埋設於該封裝結構的預定位置的晶粒,並依據該預定位置而形成一雷射鑽孔資料以及依據該雷射鑽孔資料而執行雷射鑽孔,再於電路曝顯步驟依據經校正後的雷射鑽孔資料而執行。該應用在扇出製程的生產設備包含:一X射線檢查機構,對該封裝結構及該複數個埋設於該封裝結構的晶粒執行X射線掃描而產生一X射線掃描影像資訊,該X射線掃描影像資訊係包括各個該複數個晶粒相對該基板的位置之平面影像資訊,以及於不同深度的各個該複數個晶粒在相對該封裝結構中的埋設狀態的深度影像資訊;一影像分析機構,訊號連接該X射線檢查機構,該影像分析機構根據該X射線掃描影像資訊而分析出各個該複數個晶粒的實際位置與於該封裝結構的預定位置之間的偏移狀態而得一晶粒偏移狀態資訊;以及一重新定位機構,訊號連接該影像分析機構,該重新定位機構依據該晶粒偏移狀態資訊而校正該雷射鑽孔資料。The technical means adopted by the present invention to solve the problems of the prior art provides a production apparatus for use in a fan-out process, wherein the fan-out process includes forming a package structure and a plurality of crystal grains embedded in predetermined positions of the package structure. And forming a laser drilling data according to the predetermined position and performing laser drilling according to the laser drilling data, and then performing the circuit exposure step according to the corrected laser drilling data. The production device for the fan-out process includes: an X-ray inspection mechanism, performing X-ray scanning on the package structure and the plurality of dies embedded in the package structure to generate an X-ray scan image information, the X-ray scan The image information includes the planar image information of the positions of the plurality of crystal grains relative to the substrate, and the depth image information of the embedded states of the plurality of crystal grains at different depths in the package structure; an image analysis mechanism, The signal is connected to the X-ray inspection mechanism, and the image analysis mechanism analyzes the offset position between the actual position of the plurality of crystal grains and the predetermined position of the package structure according to the X-ray scan image information to obtain a crystal grain. Offset status information; and a repositioning mechanism, the signal is connected to the image analysis mechanism, and the repositioning mechanism corrects the laser drilling data according to the grain offset state information.

在本發明的一實施例中係提供一種應用在扇出製程的生產設備,更包括一雷射鑽孔機構與雷射曝光機,訊號連接該重新定位機構,該雷射鑽孔機構依據經校正後的該雷射鑽孔資料而執行雷射鑽孔再由該雷射曝光機於電路曝顯步驟依據經校正後的資料而執行電路曝顯。In an embodiment of the invention, there is provided a production apparatus for use in a fan-out process, further comprising a laser drilling mechanism and a laser exposure machine, wherein the signal is connected to the repositioning mechanism, and the laser drilling mechanism is corrected according to The laser drilling material is then subjected to laser drilling, and the laser exposure is performed by the laser exposure machine in accordance with the corrected data.

在本發明的一實施例中係提供一種應用在扇出製程的生產設備,該X射線檢查機構係為3DX射線檢查機構。In an embodiment of the invention, a production apparatus for use in a fan-out process is provided, the X-ray inspection mechanism being a 3DX ray inspection mechanism.

在本發明的一實施例中係提供一種應用在扇出製程的生產設備,該X射線檢查機構包括一數位微型反射鏡元件。In one embodiment of the invention, a production apparatus for use in a fan-out process is provided, the X-ray inspection mechanism including a digital micro mirror element.

經由本發明所採用之技術手段,可分析出各個晶粒的實際位置與預定位置之間的偏移狀態而得晶粒偏移狀態資訊,而依據該晶粒偏移狀態資訊精準地重新定位該些晶粒而校正雷射鑽孔資料,使得雷射鑽孔形成的穿孔能對應位置偏移的晶粒,進而提高生產良率、降低成本。除此之外,藉由X射線檢查步驟產生的X射線掃描影像資訊,其包含不同深度的各個複數個晶粒的埋設狀態,因此可據以分析封裝結構的翹曲狀態,有利於提高後續的加工、封裝製程的精準度。Through the technical means adopted by the present invention, the offset state between the actual position and the predetermined position of each die can be analyzed to obtain the grain offset state information, and the information is accurately repositioned according to the die offset state information. These grains are used to correct the laser drilling data, so that the perforations formed by the laser drilling can correspond to the positionally displaced crystal grains, thereby improving the production yield and reducing the cost. In addition, the X-ray scanning image information generated by the X-ray inspection step includes the buried state of each of the plurality of crystal grains at different depths, so that the warpage state of the package structure can be analyzed, thereby facilitating the improvement of the subsequent Precision of processing and packaging processes.

本發明所採用的具體實施例,將藉由以下之實施例及附呈圖式作進一步之說明。The specific embodiments of the present invention will be further described by the following examples and the accompanying drawings.

以下根據第1圖至第14圖,而說明本發明的實施方式。該說明並非為限制本發明的實施方式,而為本發明之實施例的一種。Hereinafter, embodiments of the present invention will be described with reference to Figs. 1 to 14 . This description is not intended to limit the embodiments of the invention, but is an embodiment of the invention.

在說明本發明之前,需先理解何謂半導體封裝的扇出製程。扇出製程係依序包括置晶步驟、量測步驟、灌膠步驟、雷射鑽孔步驟、電鍍步驟以及電路曝顯步驟。Before describing the present invention, it is necessary to understand what a fan-out process of a semiconductor package is. The fan-out process includes a crystallization step, a measuring step, a potting step, a laser drilling step, a plating step, and a circuit exposure step.

如第1圖所示,在置晶步驟中,將複數個晶粒D放置於一基板B之預定位置。As shown in FIG. 1, in the seeding step, a plurality of crystal grains D are placed at a predetermined position of a substrate B.

接著如第2圖所示,在灌膠步驟中,披覆一絕緣層G於複數個晶粒D及基板B的上表面,絕緣層G與基板B形成一封裝結構而將複數個晶粒D封埋,僅露出晶粒D的接點部。Then, as shown in FIG. 2, in the step of filling the glue, an insulating layer G is coated on the upper surfaces of the plurality of crystal grains D and the substrate B, and the insulating layer G and the substrate B form a package structure to form a plurality of crystal grains D. It is buried and only the contact portion of the die D is exposed.

如第3圖所示,在雷射鑽孔步驟前,先於絕緣層G的表面鍍上電連接晶粒D的接點部的導線。As shown in Fig. 3, before the laser drilling step, the surface of the insulating layer G is plated with a wire electrically connecting the contact portion of the die D.

再如第4圖所示,在雷射鑽孔步驟中,依據一雷射鑽孔資料(相關於基板B、晶粒D的配置)而執行雷射鑽孔,意即以雷射光集中的能量在封裝結構中的特定位置打孔,以供後續的電鍍步驟以及電路曝顯步驟繼續鍍上導線而使晶粒D透過接點部、導線而電連接基板B。As shown in FIG. 4, in the laser drilling step, laser drilling is performed according to a laser drilling data (related to the arrangement of the substrate B and the die D), that is, the energy concentrated by the laser light A hole is punched at a specific position in the package structure for the subsequent plating step and the circuit exposure step to continue plating the wire so that the die D is electrically connected to the substrate B through the contact portion and the wire.

請配合參閱第5圖及第6圖,而本發明之一實施例之晶粒定位方法及生產設備為應用在該應用在扇出製程。晶粒定位方法包含下列步驟:一X射線檢查步驟S101、一影像分析步驟S102、及一重新定位步驟S103。而本發明之一實施例之應用在扇出製程的生產設備100,包括一X射線檢查機構1、一影像分析機構2、及一重新定位機構3。影像分析機構2訊號連接X射線檢查機構1及重新定位機構3。生產設備100更包括一訊號連接重新定位機構3的雷射鑽孔機構4與雷射曝光機構5。Please refer to FIG. 5 and FIG. 6 together, and the die positioning method and the production device according to an embodiment of the present invention are applied to the fan-out process in the application. The grain positioning method includes the following steps: an X-ray inspection step S101, an image analysis step S102, and a repositioning step S103. The production device 100 for use in the fan-out process of an embodiment of the present invention includes an X-ray inspection mechanism 1, an image analysis mechanism 2, and a repositioning mechanism 3. The image analysis mechanism 2 is connected to the X-ray inspection mechanism 1 and the repositioning mechanism 3. The production apparatus 100 further includes a laser drilling mechanism 4 and a laser exposure mechanism 5 connected to the repositioning mechanism 3.

X射線檢查步驟S101在該灌膠步驟與該雷射鑽孔步驟之間,由X射線檢查機構1對該封裝結構及複數個埋設於該封裝結構的晶粒D執行X射線掃描而產生一X射線掃描影像資訊T1。由於絕緣層G幾乎不會反射及吸收X射線(即絕緣層G對X射線幾乎不造成穿透阻礙,故不會在X射線掃描影像資訊T1中被照出),而晶粒D與基板B對X射線的吸收、反射程度亦不相同,故利用X射線可輕易分辨出埋設於絕緣層G中的複數個晶粒D(如第12圖及第13圖的照片所示),因此可得知各個晶粒D與基板B在空間中的相對位置關係以達到精準的定位。In the X-ray inspection step S101, between the potting step and the laser drilling step, the X-ray inspection mechanism 1 performs X-ray scanning on the package structure and a plurality of crystal grains D embedded in the package structure to generate an X. Radiographic image information T1. Since the insulating layer G hardly reflects and absorbs X-rays (that is, the insulating layer G hardly causes penetration of X-rays, it is not exposed in the X-ray scanning image information T1), and the crystal grains D and the substrate B The degree of absorption and reflection of X-rays is also different, so that a plurality of crystal grains D embedded in the insulating layer G can be easily distinguished by X-rays (as shown in the photographs of FIGS. 12 and 13), and thus The relative positional relationship between the individual crystal grains D and the substrate B in space is known to achieve accurate positioning.

X射線掃描影像資訊T1係包括各個複數個晶粒D相對基板B的位置之平面影像資訊,以及於不同深度的各個複數個晶粒D在相對該封裝結構中的埋設狀態的深度影像資訊。平面影像資訊係指複數個晶粒D投影在基板B的上表面的影像資訊。而利用設定X射線在各個不同深度的平面成像,可得複數個晶粒D在相對該封裝結構中的埋設狀態的深度影像資訊。The X-ray scan image information T1 includes planar image information of the positions of the plurality of crystal grains D with respect to the substrate B, and depth image information of the buried state of each of the plurality of crystal grains D at different depths with respect to the package structure. The planar image information refers to image information in which a plurality of crystal grains D are projected on the upper surface of the substrate B. By using the set X-rays to image at different depths, the depth image information of the plurality of crystal grains D in the buried state relative to the package structure can be obtained.

接著在影像分析步驟S102中,由影像分析機構2根據X射線掃描影像資訊T1而分析出各個複數個晶粒D的實際位置與於該封裝結構的預定位置之間的偏移狀態而得一晶粒偏移狀態資訊T2。在本實施例中,影像分析步驟S102包括:根據X射線掃描影像資訊T1的各個複數個晶粒D相對基板B的位置之平面影像資訊以分析各個複數個晶粒D的實際位置與該預定位置之間的X軸偏移距離、Y軸偏移距離、及偏移旋轉角度。如第7圖所示,各個複數個晶粒D的實際位置與該預定位置之間為無偏移。如第8圖所示,各個複數個晶粒D的實際位置與該預定位置之間有一X軸偏移距離。如第9圖所示,各個複數個晶粒D的實際位置與該預定位置之間有一Y軸偏移距離。如第10圖所示,各個複數個晶粒D的實際位置與該預定位置之間有一偏移旋轉角度。如第11圖所示,各個複數個晶粒D的實際位置與該預定位置之間有X軸及Y軸的偏移距離。除此之外,一個基板B上的複數個晶粒D各自的偏移程度、偏移趨勢也不盡相同,也可能同時存在未偏移的晶粒D和有偏移的晶粒D,總總複雜的偏移程度而形成如第12圖所示的偏移狀態。因此影像分析機構2會分析各個晶粒D各自的偏移狀態。詳細來說,影像分析機構2根據X射線掃描影像資訊T1可判斷部分晶粒D係為未偏移,其他晶粒D皆各自偏移原先的預定位置,且偏離的狀態、程度有個體的差異,則影像分析機構2計算該些偏移的晶粒D的實際位置與原先預定位置的偏移距離、角度的精確數值以此得到晶粒偏移狀態資訊T2。Next, in the image analysis step S102, the image analysis mechanism 2 analyzes the offset position between the actual position of each of the plurality of crystal grains D and the predetermined position of the package structure based on the X-ray scan image information T1. Grain offset status information T2. In this embodiment, the image analyzing step S102 includes: analyzing the actual position of each of the plurality of crystal grains D and the predetermined position according to the planar image information of the positions of the plurality of crystal grains D relative to the substrate B of the X-ray scanning image information T1. The X-axis offset distance, the Y-axis offset distance, and the offset rotation angle. As shown in Fig. 7, there is no offset between the actual position of each of the plurality of crystal grains D and the predetermined position. As shown in Fig. 8, there is an X-axis offset distance between the actual position of each of the plurality of crystal grains D and the predetermined position. As shown in Fig. 9, there is a Y-axis offset distance between the actual position of each of the plurality of crystal grains D and the predetermined position. As shown in Fig. 10, there is an offset rotation angle between the actual position of each of the plurality of crystal grains D and the predetermined position. As shown in Fig. 11, the actual position of each of the plurality of crystal grains D and the predetermined position have an offset distance between the X-axis and the Y-axis. In addition, the degree of offset and offset of each of the plurality of crystal grains D on one substrate B are also different, and there may be both unshifted crystal grains D and offset crystal grains D. The offset state as shown in Fig. 12 is formed by the total complexity of the degree of offset. Therefore, the image analysis mechanism 2 analyzes the respective offset states of the respective crystal grains D. In detail, the image analysis mechanism 2 can determine that part of the crystal grain D is not offset according to the X-ray scan image information T1, and the other crystal grains D are each shifted from the original predetermined position, and the state and extent of the deviation are individual differences. Then, the image analysis mechanism 2 calculates the exact distance between the actual position of the offset die D and the original predetermined position, and the angle is obtained to obtain the die offset state information T2.

接著,於重新定位步驟S103,由重新定位機構3依據晶粒偏移狀態資訊T2而校正前述的雷射鑽孔資料。詳細來說,由晶粒偏移狀態資訊T2得知特定的部分晶粒D係為未偏移,因此重新定位機構3在該些未偏移的晶粒D所對應的預定穿孔位置予以保留;而依據晶粒偏移狀態資訊T2得知其他的偏移的晶粒D各自的實際位置與原先預定位置的偏移距離、角度的精確數值,以此重新計算、決定那些偏移的晶粒D所對應的各個穿孔位置。重新定位機構3最後依據上述的計算而校正原有的雷射鑽孔資料。Next, in the repositioning step S103, the re-positioning mechanism 3 corrects the aforementioned laser drilling data according to the grain offset state information T2. In detail, the specific partial grain D is not offset by the grain offset state information T2, so the repositioning mechanism 3 is retained at a predetermined perforation position corresponding to the unshifted crystal grains D; According to the grain offset state information T2, the exact distance between the actual position of the other offset crystal grains D and the original predetermined position and the exact value of the angle are known, thereby recalculating and determining those offset grains D. Corresponding individual perforation locations. The repositioning mechanism 3 finally corrects the original laser drilling data according to the above calculation.

於雷射鑽孔步驟S104,係由雷射鑽孔機構4依據經校正後的雷射鑽孔資料T3而執行雷射鑽孔。因此,雷射鑽孔形成的穿孔即能對應位置各個晶粒D,使得後續的電鍍步驟S105以及電路曝顯步驟S106能順利進行,因而提高生產良率並降低生產成本。In the laser drilling step S104, the laser drilling is performed by the laser drilling mechanism 4 in accordance with the corrected laser drilling data T3. Therefore, the perforations formed by the laser drilling can correspond to the respective crystal grains D, so that the subsequent electroplating step S105 and the circuit exposure step S106 can be smoothly performed, thereby improving the production yield and reducing the production cost.

進一步地,於電鍍步驟S105對該封裝結構進行電鍍後,雷射曝光機構5對該封裝結構依據經校正後的雷射鑽孔資料T3執行電路曝顯步驟S106。Further, after the package structure is plated in the plating step S105, the laser exposure mechanism 5 performs a circuit exposure step S106 on the package structure according to the corrected laser drilling data T3.

在本實施例中,X射線檢查機構1係為3DX射線檢查機構,包括一數位微型反射鏡元件(Digital Micro mirror Device, DMD),可供快速地掃描成像。因此,在影像分析步驟S102中,更包括根據X射線掃描影像資訊T1的不同深度的各個複數個晶粒D在相對該封裝結構中的埋設狀態的深度影像資訊,以分析該封裝結構的翹曲狀態。In the present embodiment, the X-ray inspection mechanism 1 is a 3DX ray inspection mechanism including a digital micro mirror device (DMD) for rapid scanning imaging. Therefore, in the image analysis step S102, the depth image information of the embedded state of each of the plurality of crystal grains D in the package structure according to different depths of the X-ray scan image information T1 is further included to analyze the warpage of the package structure. status.

綜上所述,本發明的應用在扇出製程的晶粒定位方法及生產設備,可解決先前技術的諸多問題,提高半導體扇出製程的生產良率,並降低成本。In summary, the present invention is applied to a die positioning process for grain positioning and production equipment, which can solve many problems of the prior art, improve the production yield of the semiconductor fan-out process, and reduce the cost.

以上之敘述以及說明僅為本發明之較佳實施例之說明,對於此項技術具有通常知識者當可依據以下所界定申請專利範圍以及上述之說明而作其他之修改,惟此些修改仍應是為本發明之發明精神而在本發明之權利範圍中。The above description and description are only illustrative of the preferred embodiments of the present invention, and those of ordinary skill in the art can make other modifications in accordance with the scope of the invention as defined below and the description above, but such modifications should still be It is within the scope of the invention to the invention of the invention.

<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 100 </td><td> 應用在扇出製程的生產設備 </td></tr><tr><td> 1 </td><td> X射線檢查機構 </td></tr><tr><td> 2 </td><td> 影像分析機構 </td></tr><tr><td> 3 </td><td> 重新定位機構 </td></tr><tr><td> 4 </td><td> 雷射鑽孔機構 </td></tr><tr><td> 5 </td><td> 雷射曝光機構 </td></tr><tr><td> B </td><td> 基板 </td></tr><tr><td> D </td><td> 晶粒 </td></tr><tr><td> G </td><td> 絕緣層 </td></tr><tr><td> S101 </td><td> X射線檢查步驟 </td></tr><tr><td> S102 </td><td> 影像分析步驟 </td></tr><tr><td> S103 </td><td> 重新定位步驟 </td></tr><tr><td> S104 </td><td> 雷射鑽孔步驟 </td></tr><tr><td> S105 </td><td> 電鍍步驟 </td></tr><tr><td> S106 </td><td> 電路曝顯步驟 </td></tr><tr><td> T1 </td><td> X射線掃描影像資訊 </td></tr><tr><td> T2 </td><td> 晶粒偏移狀態資訊 </td></tr><tr><td> T3 </td><td> 經校正後的雷射鑽孔資料 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 100 </td><td> Production equipment for fan-out process</td>< /tr><tr><td> 1 </td><td> X-ray inspection agency</td></tr><tr><td> 2 </td><td> Image analysis agency</td> </tr><tr><td> 3 </td><td> Repositioning Mechanism</td></tr><tr><td> 4 </td><td> Laser Drilling Mechanism</ Td></tr><tr><td> 5 </td><td> laser exposure mechanism</td></tr><tr><td> B </td><td> substrate</td ></tr><tr><td> D </td><td> grain </td></tr><tr><td> G </td><td> insulating layer </td>< /tr><tr><td> S101 </td><td> X-ray inspection steps</td></tr><tr><td> S102 </td><td> Image analysis steps</td> </tr><tr><td> S103 </td><td> Repositioning Steps</td></tr><tr><td> S104 </td><td> Laser Drilling Steps</ Td></tr><tr><td> S105 </td><td> Plating Steps</td></tr><tr><td> S106 </td><td> Circuit Exposure Steps </ Td></tr><tr><td> T1 </td><td> X-ray scan image information</td></tr><tr><td> T2 </td><td> Shift status information</td></tr><tr><td> T3 </td><td> Corrected laser drilling data</td></tr></TBODY>< /TABLE>

第1圖為顯示扇出製程之置晶步驟示意圖。 第2圖為顯示扇出製程之灌膠步驟示意圖。 第3圖為顯示扇出製程之鍍線步驟示意圖。 第4圖為顯示扇出製程之雷射鑽孔步驟示意圖。 第5圖為顯示根據本發明一實施例的應用在扇出製程的晶粒定位方法之流程圖。 第6圖為顯示根據本發明的實施例的應用在扇出製程的的生產設備之示意圖。 第7圖至第11圖為顯示各個晶粒的實際位置與預定位置之間的偏移狀態之示意圖。 第12圖為顯示各個晶粒在基板上的偏移狀態之示意圖。 第13圖及第14圖為顯示X射線掃描影像資訊之示意圖。Figure 1 is a schematic diagram showing the step of crystallizing the fan-out process. Figure 2 is a schematic diagram showing the steps of the potting process of the fan-out process. Figure 3 is a schematic diagram showing the plating steps of the fan-out process. Figure 4 is a schematic diagram showing the laser drilling steps of the fan-out process. FIG. 5 is a flow chart showing a method of locating a die applied in a fan-out process according to an embodiment of the invention. Fig. 6 is a schematic view showing a production apparatus applied to a fan-out process according to an embodiment of the present invention. 7 to 11 are views showing an offset state between the actual position and the predetermined position of each of the crystal grains. Fig. 12 is a view showing the state of displacement of each of the crystal grains on the substrate. Figures 13 and 14 are schematic views showing information of X-ray scanned images.

Claims (9)

一種應用在扇出製程的晶粒定位方法,其中該扇出製程係依序包括一將複數個晶粒放置於一基板之預定位置的置晶步驟、一披覆一絕緣層於該複數個晶粒及該基板的上表面而與該基板形成一封裝結構的灌膠步驟、以及一依據一雷射鑽孔資料而執行雷射鑽孔的雷射鑽孔步驟,該晶粒定位方法包含下列步驟: 一X射線檢查步驟,在該灌膠步驟與該雷射鑽孔步驟之間,由一X射線檢查機構對該封裝結構及該複數個晶粒執行X射線掃描而產生一X射線掃描影像資訊,該X射線掃描影像資訊係包括各個該複數個晶粒相對該基板的位置之平面影像資訊,以及於不同深度的各個該複數個晶粒在相對該封裝結構中的埋設狀態的深度影像資訊; 一影像分析步驟,由一影像分析機構根據該X射線掃描影像資訊而分析出各個該複數個晶粒的實際位置與於該封裝結構的預定位置之間的偏移狀態而得一晶粒偏移狀態資訊;以及 一重新定位步驟,由一重新定位機構依據該晶粒偏移狀態資訊而校正該雷射鑽孔資料, 其中,該雷射鑽孔步驟係由該雷射鑽孔機構依據經校正後的該雷射鑽孔資料而執行。A method for locating a grain in a fan-out process, wherein the fan-out process sequentially includes a crystallization step of placing a plurality of dies on a predetermined position of a substrate, and coating an insulating layer on the plurality of crystals a filling step of forming a package structure with the upper surface of the substrate and the substrate, and a laser drilling step of performing laser drilling according to a laser drilling material, the grain positioning method comprising the following steps An X-ray inspection step, between the potting step and the laser drilling step, an X-ray inspection mechanism performs X-ray scanning on the package structure and the plurality of crystal grains to generate an X-ray scan image information The X-ray scanning image information includes planar image information of positions of the plurality of crystal grains relative to the substrate, and depth image information of the embedded states of the plurality of crystal grains at different depths in the package structure; An image analysis step of analyzing, by an image analysis mechanism, the actual position of each of the plurality of dies and the predetermined position of the package structure according to the X-ray scan image information The offset state obtains a die offset state information; and a repositioning step of correcting the laser drilling data by a repositioning mechanism according to the die offset state information, wherein the laser drilling step The laser drilling mechanism is executed by the laser drilling data according to the calibration. 如請求項1所述之應用在扇出製程的晶粒定位方法,其中該影像分析步驟包括:根據該X射線掃描影像資訊的各個該複數個晶粒相對該基板的位置之平面影像資訊以分析各個該複數個晶粒的實際位置與該預定位置之間的X軸偏移距離、Y軸偏移距離、偏移旋轉角度。The method for locating a grain in a fan-out process according to claim 1, wherein the image analyzing step comprises: analyzing, according to the image information of each of the plurality of dies relative to the position of the substrate according to the X-ray scanning image information; An X-axis offset distance, a Y-axis offset distance, and an offset rotation angle between an actual position of each of the plurality of crystal grains and the predetermined position. 如請求項1所述之應用在扇出製程的晶粒定位方法,其中該影像分析步驟更包括根據該X射線掃描影像資訊以分析該封裝結構的翹曲狀態。The method for processing a grain in a fan-out process according to claim 1, wherein the image analyzing step further comprises: scanning the image information according to the X-ray to analyze a warpage state of the package structure. 如請求項1所述之應用在扇出製程的晶粒定位方法,其中於該雷射鑽孔步驟後,更包括一電鍍步驟及一電路曝顯步驟。The method for locating a grain in a fan-out process according to claim 1, wherein after the laser drilling step, a plating step and a circuit exposure step are further included. 一種應用在扇出製程的生產設備,其中該扇出製程包括形成一封裝結構以及複數個埋設於該封裝結構的預定位置的晶粒,並依據該預定位置而形成一雷射鑽孔資料以及依據該雷射鑽孔資料而執行雷射鑽孔,該應用在扇出製程的生產設備包含: 一X射線檢查機構,對該封裝結構及該複數個埋設於該封裝結構的晶粒執行X射線掃描而產生一X射線掃描影像資訊,該X射線掃描影像資訊係包括各個該複數個晶粒相對該基板的位置之平面影像資訊,以及於不同深度的各個該複數個晶粒在相對該封裝結構中的埋設狀態的深度影像資訊; 一影像分析機構,訊號連接該X射線檢查機構,該影像分析機構根據該X射線掃描影像資訊而分析出各個該複數個晶粒的實際位置與於該封裝結構的預定位置之間的偏移狀態而得一晶粒偏移狀態資訊;以及 一重新定位機構,訊號連接該影像分析機構,該重新定位機構依據該晶粒偏移狀態資訊而校正該雷射鑽孔資料。A production device for use in a fan-out process, wherein the fan-out process includes forming a package structure and a plurality of die embedded in a predetermined position of the package structure, and forming a laser drilling data according to the predetermined position and The laser drilling apparatus performs laser drilling, and the application device for the fan-out process comprises: an X-ray inspection mechanism, performing X-ray scanning on the package structure and the plurality of crystal grains embedded in the package structure And generating an X-ray scan image information, wherein the X-ray scan image information includes planar image information of positions of the plurality of crystal grains relative to the substrate, and each of the plurality of crystal grains at different depths is opposite to the package structure The depth image information of the embedded state; an image analysis mechanism, the signal is connected to the X-ray inspection mechanism, and the image analysis mechanism analyzes the actual position of each of the plurality of crystal grains and the package structure according to the X-ray scan image information a state of offset between the predetermined positions to obtain a grain offset state information; and a repositioning mechanism, the signal is connected to the Like analysts, the re-positioning mechanism according to the state grain information and offset correction of the laser drilling data. 如請求項5所述之應用在扇出製程的生產設備,更包括一雷射鑽孔機構,訊號連接該重新定位機構,該雷射鑽孔機構依據經校正後的該雷射鑽孔資料而執行雷射鑽孔。The production device for use in a fan-out process as claimed in claim 5, further comprising a laser drilling mechanism, wherein the signal is connected to the repositioning mechanism, and the laser drilling mechanism is based on the corrected laser drilling data. Perform laser drilling. 如請求項6所述之應用在扇出製程的生產設備,更包括一雷射曝光機構,訊號連接該重新定位機構。The production device applied in the fan-out process as claimed in claim 6 further includes a laser exposure mechanism, and the signal is connected to the repositioning mechanism. 如請求項5所述之應用在扇出製程的生產設備,其中該X射線檢查機構係為3DX射線檢查機構。The production apparatus for use in a fan-out process as claimed in claim 5, wherein the X-ray inspection mechanism is a 3DX ray inspection mechanism. 如請求項8所述之應用在扇出製程的生產設備,其中該X射線檢查機構包括一數位微型反射鏡元件。A production apparatus for use in a fan-out process as claimed in claim 8, wherein the X-ray inspection mechanism comprises a digital micro mirror element.
TW105141978A 2016-12-19 2016-12-19 Chip positioning method and manufacturing equipment for use in fan-out process TWI629729B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105141978A TWI629729B (en) 2016-12-19 2016-12-19 Chip positioning method and manufacturing equipment for use in fan-out process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105141978A TWI629729B (en) 2016-12-19 2016-12-19 Chip positioning method and manufacturing equipment for use in fan-out process

Publications (2)

Publication Number Publication Date
TW201824407A TW201824407A (en) 2018-07-01
TWI629729B true TWI629729B (en) 2018-07-11

Family

ID=63639751

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105141978A TWI629729B (en) 2016-12-19 2016-12-19 Chip positioning method and manufacturing equipment for use in fan-out process

Country Status (1)

Country Link
TW (1) TWI629729B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835561A (en) * 1993-01-25 1998-11-10 Cardiac Mariners, Incorporated Scanning beam x-ray imaging system
TW575485B (en) * 2000-10-11 2004-02-11 Matsushita Electric Ind Co Ltd Method of manufacturing circuit board and data for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835561A (en) * 1993-01-25 1998-11-10 Cardiac Mariners, Incorporated Scanning beam x-ray imaging system
TW575485B (en) * 2000-10-11 2004-02-11 Matsushita Electric Ind Co Ltd Method of manufacturing circuit board and data for producing the same

Also Published As

Publication number Publication date
TW201824407A (en) 2018-07-01

Similar Documents

Publication Publication Date Title
EP2617053B1 (en) Apparatus and method for generating patterns on workpieces
US20120024089A1 (en) Methods of teaching bonding locations and inspecting wire loops on a wire bonding machine, and apparatuses for performing the same
JP6282194B2 (en) Wafer processing method
JP4910378B2 (en) X-ray inspection apparatus and X-ray inspection method
US20110213479A1 (en) Method and apparatus for performing pattern alignment to die
US20210291376A1 (en) System and method for three-dimensional calibration of a vision system
TW201523755A (en) Systems and methods for determining and adjusting a level of parallelism related to bonding of semiconductor elements
TWI772829B (en) Method of correcting wiring of semiconductor package
CN108206154B (en) Grain positioning method and production equipment applied to fan-out process
TWI629729B (en) Chip positioning method and manufacturing equipment for use in fan-out process
JP6153117B2 (en) Process substrate with crystal orientation mark, crystal orientation detection method, and crystal orientation mark readout device
TW202018851A (en) Adaptive routing for correcting die placement errors
PT2011139061W (en) Method for aligning semiconductor materials
KR20110043593A (en) A method and means for measuring positions of contact elements of an electronic components
JP2014062828A (en) Pattern matching method and semiconductor device manufacturing method
JP5896752B2 (en) Semiconductor package and manufacturing method thereof
KR101354729B1 (en) Misalignment value measuring method of semiconductor device and semiconductor device adapted the same
JP2019168328A (en) Method for inspecting semiconductor device and method for manufacturing semiconductor device
JP2011181675A (en) Mounting device for circuit component
TWI244737B (en) Apparatus and method for mounting or wiring semiconductor chips
JP2008171864A (en) Manufacturing method of semiconductor device and substrate for semiconductor device
JP7336814B1 (en) Inspection device, mounting device, inspection method, and program
JPH05315215A (en) Semiconductor manufacturing apparatus
JPH1187278A (en) Dicing method for semiconductor substrate
JP2007278929A (en) Method and apparatus for measuring crystal orientation

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees