TWI627619B - Touch panel driving apparatus - Google Patents

Touch panel driving apparatus Download PDF

Info

Publication number
TWI627619B
TWI627619B TW106141402A TW106141402A TWI627619B TW I627619 B TWI627619 B TW I627619B TW 106141402 A TW106141402 A TW 106141402A TW 106141402 A TW106141402 A TW 106141402A TW I627619 B TWI627619 B TW I627619B
Authority
TW
Taiwan
Prior art keywords
terminal
switch
coupled
integration
signal
Prior art date
Application number
TW106141402A
Other languages
Chinese (zh)
Other versions
TW201926295A (en
Inventor
Heng-Yin Chen
陳恒殷
Yi-Chuan Lu
呂藝全
Chien-Ju Lee
李健儒
Chang-Po Chao
趙昌博
Guan-Jung Luo
羅冠鈞
Ying-Jia Lin
林映嘉
Original Assignee
Industrial Technology Research Institute
財團法人工業技術研究院
Intellectual Property Innovation Corporation
創智智權管理顧問股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute, 財團法人工業技術研究院, Intellectual Property Innovation Corporation, 創智智權管理顧問股份有限公司 filed Critical Industrial Technology Research Institute
Priority to TW106141402A priority Critical patent/TWI627619B/en
Priority to CN201711432793.4A priority patent/CN109840027B/en
Priority to US15/936,456 priority patent/US10606400B2/en
Application granted granted Critical
Publication of TWI627619B publication Critical patent/TWI627619B/en
Publication of TW201926295A publication Critical patent/TW201926295A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Electronic Switches (AREA)

Abstract

觸控面板驅動裝置產生差動信號,而此差動信號對應於觸控面板的偵測結果。所述觸控面板驅動裝置包括驅動電路、第一積分取樣電路以及第二積分取樣電路。第一積分取樣電路產生所述差動信號中的第一端信號。第二積分取樣電路產生所述差動信號中的第二端信號。當觸碰事件沒發生時,第一端信號的準位與第二端信號的準位落於差動信號的共模信號範圍。當發生觸碰事件時,第一積分取樣電路將此第一端信號的準位上拉至共模信號範圍外,而第二積分取樣電路將此第二端信號的準位下拉至共模信號範圍外。The touch panel driving device generates a differential signal, and the differential signal corresponds to a detection result of the touch panel. The touch panel driving device includes a driving circuit, a first integration sampling circuit and a second integration sampling circuit. The first integration sampling circuit generates a first-end signal in the differential signal. The second integration sampling circuit generates a second-end signal in the differential signal. When the touch event does not occur, the level of the first-end signal and the level of the second-end signal fall within the common-mode signal range of the differential signal. When a touch event occurs, the first integration sampling circuit pulls up the level of the first-end signal beyond the range of the common mode signal, and the second integration sampling circuit pulls down the level of the second-end signal to the common mode signal Out of range.

Description

觸控面板驅動裝置Touch panel driving device

本發明是有關於一種觸控面板驅動裝置。The invention relates to a driving device for a touch panel.

觸控面板之驅動裝置負責將觸控面板的電荷變化量轉換成電性信號。觸控面板驅動裝置可以將感測信號放大。經放大後的感測信號有利於後續運算電路進行處理。在「薄型化」的發展趨勢下,觸控面板往往被整合至顯示面板。觸控面板的電極與顯示面板的電極之間的距離越來越近,導致顯示面板所造成的干擾效應越來越嚴重。再者,觸控面板驅動裝置放大感測信號,然而雜訊也隨之提升。The driving device of the touch panel is responsible for converting the charge change amount of the touch panel into an electrical signal. The touch panel driving device can amplify the sensing signal. The amplified sensing signal is beneficial to subsequent processing circuits for processing. Under the development trend of "thinning", touch panels are often integrated into display panels. The distance between the electrodes of the touch panel and the electrodes of the display panel is getting closer and closer, resulting in more and more serious interference effects caused by the display panel. Furthermore, the touch panel driving device amplifies the sensing signal, but the noise also increases with it.

一般而言,觸控面板驅動裝置所輸出信號的訊雜比(Signal-to-noise ratio,SNR)越大越好。所述訊雜比為10log 10(S/N),其中S表示信號的擺動範圍,例如所述信號S可以是觸控面板發生觸碰事件時觸控面板驅動裝置所輸出信號的擺動範圍,而N表示雜訊的擺動範圍,例如所述雜訊N可以是觸控面板沒有發生觸碰事件時觸控面板驅動裝置所輸出信號的擺動範圍。當觸控面板驅動裝置所輸出信號的訊雜比越大時,後續運算電路越容易辨認信號與雜訊。若觸控面板驅動裝置可以產生高擺幅、高訊雜比的輸出信號,則後續運算電路可以更容易、更精確地處理感測信號。如何實現高擺幅、高訊雜比的觸控面板驅動裝置,乃為觸控裝置技術領域的重要課題。 Generally speaking, the larger the signal-to-noise ratio (SNR) of the signal output by the touch panel driving device, the better. The signal-to-noise ratio is 10 log 10 (S / N), where S represents a swing range of a signal. For example, the signal S may be a swing range of a signal output by a touch panel driving device when a touch event occurs on the touch panel, and N represents a swing range of noise. For example, the noise N may be a swing range of a signal output by the touch panel driving device when a touch event does not occur on the touch panel. When the signal-to-noise ratio of the signal output by the touch panel driving device is larger, the subsequent calculation circuit is easier to recognize the signal and noise. If the touch panel driving device can generate an output signal with a high swing and a high signal-to-noise ratio, subsequent calculation circuits can more easily and accurately process the sensing signal. How to realize a touch panel driving device with high swing and high signal-to-noise ratio is an important subject in the field of touch device technology.

本發明提供一種觸控面板驅動裝置,以依據觸控面板的偵測結果來產生高擺幅、高訊雜比的差動信號。The invention provides a touch panel driving device for generating a differential signal with a high amplitude and a high signal-to-noise ratio according to a detection result of the touch panel.

本發明的實施例提供一種觸控面板驅動裝置,用以驅動觸控面板而產生該觸控面板的偵測結果所對應的差動信號。所述觸控面板驅動裝置包括驅動電路、第一積分取樣電路以及第二積分取樣電路。於第一時脈期間,驅動電路可以提供第一驅動信號至觸控面板的驅動線,以及從觸控面板的感測線接收感測信號。於第二時脈期間,驅動電路可以提供第二驅動信號至觸控面板的驅動線,以及從觸控面板的感測線接收感測信號。第一積分取樣電路耦接至驅動電路,以於第一時脈期間接收感測信號。第一積分取樣電路可以產生所述差動信號中的第一端信號。當感測線的感測電極沒有偵測到觸碰事件時,此第一端信號的準位落於差動信號的共模信號範圍。當感測線的感測電極偵測到觸碰事件時,第一積分取樣電路依據感測信號而將此第一端信號的準位上拉至共模信號範圍外。第二積分取樣電路耦接至驅動電路,以於第二時脈期間接收感測信號。第二積分取樣電路可以產生所述差動信號中的第二端信號。當感測線的感測電極沒有偵測到觸碰事件時,此第二端信號的準位落於共模信號範圍。當感測線的感測電極偵測到觸碰事件時,第二積分取樣電路依據感測信號而將此第二端信號的準位下拉至共模信號範圍外。An embodiment of the present invention provides a touch panel driving device for driving a touch panel to generate a differential signal corresponding to a detection result of the touch panel. The touch panel driving device includes a driving circuit, a first integration sampling circuit and a second integration sampling circuit. During the first clock period, the driving circuit may provide a first driving signal to a driving line of the touch panel, and receive a sensing signal from a sensing line of the touch panel. During the second clock period, the driving circuit may provide a second driving signal to a driving line of the touch panel, and receive a sensing signal from a sensing line of the touch panel. The first integration sampling circuit is coupled to the driving circuit to receive the sensing signal during the first clock period. The first integration sampling circuit may generate a first-end signal in the differential signal. When the touch electrode of the sensing line does not detect a touch event, the level of the first end signal falls within the common mode signal range of the differential signal. When the touch electrode of the sensing line detects a touch event, the first integration sampling circuit pulls the level of the first end signal out of the common mode signal range according to the sensing signal. The second integration sampling circuit is coupled to the driving circuit to receive the sensing signal during the second clock period. The second integration sampling circuit may generate a second-end signal in the differential signal. When the touch electrode of the sensing line does not detect a touch event, the level of the second end signal falls within the range of the common mode signal. When the touch electrode of the sensing line detects a touch event, the second integration sampling circuit pulls the level of the second end signal out of the common mode signal range according to the sensing signal.

基於上述,本發明諸實施例所述觸控面板驅動裝置利用兩個積分取樣電路來讀取觸控面板的感測信號,進而分別產生差動信號中的第一端信號與第二端信號。當觸碰事件沒發生時,第一端信號與第二端信號的準位落於差動信號的共模信號範圍。當發生觸碰事件時,第一積分取樣電路可以將此第一端信號的準位上拉至共模信號範圍外,而第二積分取樣電路可以將此第二端信號的準位下拉至共模信號範圍外。因此,本發明諸實施例所述觸控面板驅動裝置可以依據觸控面板的偵測結果來對應產生高擺幅、高訊雜比的差動信號。Based on the above, the touch panel driving device according to the embodiments of the present invention uses two integration sampling circuits to read the sensing signals of the touch panel, and then generates the first end signal and the second end signal in the differential signal, respectively. When the touch event does not occur, the level of the first-end signal and the second-end signal falls within the common-mode signal range of the differential signal. When a touch event occurs, the first integration sampling circuit can pull up the level of this first-end signal beyond the common-mode signal range, and the second integration sampling circuit can pull down the level of this second-end signal to a common Modal signal range. Therefore, the touch panel driving device according to the embodiments of the present invention can correspondingly generate a differential signal with a high swing and a high signal-to-noise ratio according to the detection result of the touch panel.

為讓本發明更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.

在本案說明書全文(包括申請專利範圍)中所使用的「耦接(或連接)」一詞可指任何直接或間接的連接手段。舉例而言,若文中描述第一裝置耦接(或連接)於第二裝置,則應該被解釋成該第一裝置可以直接連接於該第二裝置,或者該第一裝置可以透過其他裝置或某種連接手段而間接地連接至該第二裝置。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟代表相同或類似部分。不同實施例中使用相同標號或使用相同用語的元件/構件/步驟可以相互參照相關說明。The term "coupling (or connection)" used throughout the specification of this case (including the scope of patent application) can refer to any direct or indirect means of connection. For example, if the first device is described as being coupled (or connected) to a second device, it should be interpreted that the first device can be directly connected to the second device, or the first device can be connected through another device or some This connection means is indirectly connected to the second device. In addition, wherever possible, the same reference numbers are used in the drawings and embodiments to represent the same or similar parts. Elements / components / steps using the same reference numerals or using the same terms in different embodiments may refer to related descriptions.

圖1是依照本發明的一實施例所繪示的一種觸控面板驅動裝置100的電路方塊(circuit block)示意圖。觸控面板驅動裝置100可以驅動觸控面板10,而產生觸控面板10的偵測結果所對應的差動信號Sdiff。所述觸控面板驅動裝置100包括驅動電路110、第一積分取樣電路120以及第二積分取樣電路130。FIG. 1 is a schematic diagram of a circuit block of a touch panel driving device 100 according to an embodiment of the present invention. The touch panel driving device 100 can drive the touch panel 10 and generate a differential signal Sdiff corresponding to a detection result of the touch panel 10. The touch panel driving device 100 includes a driving circuit 110, a first integration sampling circuit 120 and a second integration sampling circuit 130.

請參照圖1,觸控面板10配置有一個或多個觸控單元(例如觸控單元11),以便感測觸控面板10有無發生觸控事件。在不同的設計需求下,觸控單元11具有不同的布局結構設計。圖1繪示出觸控單元11的等效電路。觸控單元11具有第一電極與第二電極,其中所述第一電極與所述第二電極之間形成互電容(mutual capacitor)Cm。另外,所述第一電極與驅動線具有寄生電容Cs1,而所述第二電極與感測線具有寄生電容Cs2。所述寄生電容亦可稱為散失電容(stray capacitor)。依不同的設計需求,所述第一電極與所述第二電極可以是透明電極、半透明電極或不透明電極。例如,本實施例可以利用銦錫氧化物(indium tin oxide, ITO)實現所述第一電極與所述第二電極。Referring to FIG. 1, the touch panel 10 is configured with one or more touch units (such as the touch unit 11), so as to detect whether a touch event occurs in the touch panel 10. Under different design requirements, the touch unit 11 has different layout structure designs. FIG. 1 illustrates an equivalent circuit of the touch unit 11. The touch unit 11 has a first electrode and a second electrode, wherein a mutual capacitor Cm is formed between the first electrode and the second electrode. In addition, the first electrode and the driving line have a parasitic capacitance Cs1, and the second electrode and the sensing line have a parasitic capacitance Cs2. The parasitic capacitance may also be referred to as a stray capacitor. According to different design requirements, the first electrode and the second electrode may be transparent electrodes, translucent electrodes, or opaque electrodes. For example, in this embodiment, indium tin oxide (ITO) may be used to implement the first electrode and the second electrode.

觸控面板10配置有一條或多條驅動線。驅動電路110可以透過驅動線耦接至觸控單元11的第一電極,以提供驅動信號給觸控單元11的第一電極。驅動線具有寄生阻抗Rp1。觸控面板120還配置有一條或多條感測線。觸控單元11的第二電極耦接至感測線。感測線具有寄生阻抗Rp2。驅動電路110的感測端耦接至觸控面板10的感測線,以讀取觸控面板10中觸控單元11的觸碰資訊(感測信號)。依不同的設計需求,所述驅動線與所述感測線可以是透明導線、半透明導線或不透明導線。例如,本實施例可以利用ITO導線實現所述驅動線與所述感測線。The touch panel 10 is configured with one or more driving lines. The driving circuit 110 may be coupled to the first electrode of the touch unit 11 through a driving line to provide a driving signal to the first electrode of the touch unit 11. The driving line has a parasitic impedance Rp1. The touch panel 120 is also configured with one or more sensing lines. The second electrode of the touch unit 11 is coupled to the sensing line. The sense line has a parasitic impedance Rp2. The sensing terminal of the driving circuit 110 is coupled to the sensing line of the touch panel 10 to read the touch information (sensing signal) of the touch unit 11 in the touch panel 10. According to different design requirements, the driving line and the sensing line may be transparent wires, translucent wires or opaque wires. For example, in this embodiment, the driving line and the sensing line may be implemented by using ITO wires.

在觸控單元11的感測操作中,驅動電路110會透過驅動線提供驅動信號至觸控單元11的第一電極,而驅動電路110會同步地經由感測線接收觸控單元11的感測信號。第一積分取樣電路120耦接至驅動電路110,以接收感測信號。第二積分取樣電路130耦接至驅動電路110,以接收感測信號。舉例來說,於第一時脈期間,驅動電路110可以提供第一驅動信號至觸控面板10的驅動線,以及從觸控面板10的感測線接收感測信號,並將感測信號傳輸給第一積分取樣電路120。於第二時脈期間,驅動電路110可以提供第二驅動信號至觸控面板10的驅動線,以及從觸控面板10的感測線接收感測信號,並將感測信號傳輸給第二積分取樣電路130。於第三時脈期間,驅動電路110的操作可以參照所述第一時脈期間的相關說明。於第四時脈期間,驅動電路110的操作可以參照所述第二時脈期間的相關說明。其餘時脈期間的操作可以依此類推。In the sensing operation of the touch unit 11, the driving circuit 110 provides a driving signal to the first electrode of the touch unit 11 through a driving line, and the driving circuit 110 synchronously receives the sensing signal of the touch unit 11 through the sensing line. . The first integration sampling circuit 120 is coupled to the driving circuit 110 to receive a sensing signal. The second integration sampling circuit 130 is coupled to the driving circuit 110 to receive a sensing signal. For example, during the first clock period, the driving circuit 110 may provide a first driving signal to a driving line of the touch panel 10, receive a sensing signal from a sensing line of the touch panel 10, and transmit the sensing signal to First integration sampling circuit 120. During the second clock period, the driving circuit 110 may provide a second driving signal to a driving line of the touch panel 10, and receive a sensing signal from a sensing line of the touch panel 10, and transmit the sensing signal to a second integral sampling. Circuit 130. For the operation of the driving circuit 110 during the third clock period, refer to the related description of the first clock period. For the operation of the driving circuit 110 during the fourth clock period, refer to the related description of the second clock period. The operation during the rest of the clock can be deduced by analogy.

第一積分取樣電路120可以產生所述差動信號Sdiff中的第一端信號Sd1。第二積分取樣電路130可以產生所述差動信號Sdiff中的第二端信號Sd2。當感測線的感測電極(例如觸控單元11的電極)沒有偵測到觸碰事件時,此第一端信號Sd1的準位與第二端信號Sd2的準位落於差動信號Sdiff的共模信號範圍。舉例來說,假設在沒有環境干擾變動量的條件下,當沒有發生觸碰事件時,第一積分取樣電路120與第二積分取樣電路130可以分別將第一端信號Sd1的準位與第二端信號Sd2的準位保持於共同電壓Vref的附近。所述共同電壓Vref的準位可以依照設計需求來決定。舉例來說,所述共同電壓Vref的準位可以是1.65V或是其他電壓準位。在一些實施例中,共同電壓Vref可以是觸控面板10的電極訊號,或是觸控面板10的電極的共同參考電壓。The first integration sampling circuit 120 may generate a first end signal Sd1 in the differential signal Sdiff. The second integration sampling circuit 130 may generate a second terminal signal Sd2 in the differential signal Sdiff. When the touch electrode of the sensing line (for example, the electrode of the touch unit 11) does not detect a touch event, the level of the first end signal Sd1 and the level of the second end signal Sd2 fall within the range of the differential signal Sdiff. Common-mode signal range. For example, assuming that there is no fluctuation amount of environmental interference, when no touch event occurs, the first integration sampling circuit 120 and the second integration sampling circuit 130 may respectively separate the level of the first-end signal Sd1 from the second level The level of the end signal Sd2 is maintained near the common voltage Vref. The level of the common voltage Vref can be determined according to design requirements. For example, the level of the common voltage Vref may be 1.65V or other voltage levels. In some embodiments, the common voltage Vref may be an electrode signal of the touch panel 10 or a common reference voltage of the electrodes of the touch panel 10.

當感測線的感測電極(例如觸控單元11的電極)偵測到觸碰事件時,第一積分取樣電路120依據感測線的感測信號而將此第一端信號Sd1的準位上拉至共模信號範圍外,而第二積分取樣電路130依據感測線的感測信號而將此第二端信號Sd2的準位下拉至共模信號範圍外。舉例來說,當發生了觸碰事件時,第一積分取樣電路120對感測線的感測信號進行正向積分(向上積分)操作,因此在積分的過程中第一端信號Sd1的準位會從所述共同電壓Vref被逐步向上拉昇。類似地,當發生了觸碰事件時,第二積分取樣電路130對感測線的感測信號進行反向積分(向下積分)操作,因此在積分操作的過程中第二端信號Sd2的準位會從所述共同電壓Vref被逐步向下拉降。When the sensing event of the sensing line (such as the electrode of the touch unit 11) detects a touch event, the first integration sampling circuit 120 pulls up the level of the first end signal Sd1 according to the sensing signal of the sensing line. Outside the common-mode signal range, and the second integration sampling circuit 130 pulls down the level of the second-end signal Sd2 beyond the common-mode signal range according to the sensing signal of the sensing line. For example, when a touch event occurs, the first integration sampling circuit 120 performs a forward integration (upward integration) operation on the sensing signal of the sensing line. Therefore, during the integration process, the level of the first end signal Sd1 will be From the common voltage Vref is gradually pulled up. Similarly, when a touch event occurs, the second integration sampling circuit 130 performs an inverse integration (downward integration) operation on the sensing signal of the sensing line, so the level of the second end signal Sd2 during the integration operation Will be gradually pulled down from the common voltage Vref.

第一積分取樣電路120與第二積分取樣電路130的所述積分操作的重置(reset)週期可以依照設計需求(或應用需求)來動態調整。在一些實施例中,假使某些設計需求(或應用需求)需要高速操作,則所述積分操作的重置週期可以被動態調小(較早進行重置)。在另一些實施例中,當所述積分操作的重置週期被加大(較晚進行重置)時,第一端信號Sd1與第二端信號Sd2之間的壓差會變大,以便滿足高擺幅、高訊雜比(Signal-to-noise ratio,SNR)的設計需求(或應用需求)。因此,本實施例所述觸控面板驅動裝置100可以依據觸控面板10的偵測結果來對應產生高擺幅、高訊雜比的差動信號Sdiff。The reset period of the integration operation of the first integration sampling circuit 120 and the second integration sampling circuit 130 may be dynamically adjusted according to design requirements (or application requirements). In some embodiments, if certain design requirements (or application requirements) require high-speed operation, the reset period of the integration operation can be dynamically reduced (reset earlier). In other embodiments, when the reset period of the integration operation is increased (reset is performed later), the pressure difference between the first-end signal Sd1 and the second-end signal Sd2 will be increased in order to meet Design requirements (or application requirements) for high swing and high signal-to-noise ratio (SNR). Therefore, the touch panel driving device 100 according to this embodiment can correspondingly generate a differential signal Sdiff with a high swing and a high signal-to-noise ratio according to the detection result of the touch panel 10.

圖2是依照本發明實施例說明圖1所示觸控面板驅動裝置100的電路方塊示意圖。於圖2所示實施例中,驅動電路110包括第一開關SW11、第二開關SW12、第三開關SW13以及第四開關SW14。第一開關SW11的第一端耦接至第一驅動信號Vin。第一開關SW11的第二端耦接至觸控面板10的驅動線。第一開關SW11的控制端受控於時脈信號clk1。基於時脈信號clk1的控制,第一開關SW11可以於第一時脈期間將第一驅動信號Vin傳輸至觸控面板的該驅動線,以及於第二時脈期間不傳輸第一驅動信號Vin。第二開關SW12的第一端耦接至第二驅動信號,於圖2所示實施例將以觸控面板10的共同電壓Vref作為所述第二驅動信號。第二開關SW12的第二端耦接至觸控面板10的驅動線。第二開關SW12的控制端受控於時脈信號clk2。基於時脈信號clk2的控制,第二開關SW12可以於第二時脈期間將所述第二驅動信號(共同電壓Vref)傳輸至觸控面板10的驅動線,以及於第一時脈期間不傳輸所述第二驅動信號(共同電壓Vref)。所述第一驅動信號Vin與所述第二驅動信號(共同電壓Vref)的準位可以依照設計需求來決定。舉例來說,所述所述第一驅動信號Vin可以是一個固定電壓,且所述所述第一驅動信號Vin的準位可以大於所述第二驅動信號(共同電壓Vref)的準位。FIG. 2 is a schematic circuit block diagram illustrating the touch panel driving device 100 shown in FIG. 1 according to an embodiment of the present invention. In the embodiment shown in FIG. 2, the driving circuit 110 includes a first switch SW11, a second switch SW12, a third switch SW13, and a fourth switch SW14. A first terminal of the first switch SW11 is coupled to the first driving signal Vin. A second terminal of the first switch SW11 is coupled to a driving line of the touch panel 10. The control terminal of the first switch SW11 is controlled by the clock signal clk1. Based on the control of the clock signal clk1, the first switch SW11 can transmit the first driving signal Vin to the driving line of the touch panel during the first clock period, and not transmit the first driving signal Vin during the second clock period. The first terminal of the second switch SW12 is coupled to the second driving signal. In the embodiment shown in FIG. 2, the common voltage Vref of the touch panel 10 is used as the second driving signal. A second terminal of the second switch SW12 is coupled to a driving line of the touch panel 10. The control terminal of the second switch SW12 is controlled by the clock signal clk2. Based on the control of the clock signal clk2, the second switch SW12 can transmit the second driving signal (common voltage Vref) to the driving line of the touch panel 10 during the second clock period and not transmit during the first clock period. The second driving signal (common voltage Vref). The levels of the first driving signal Vin and the second driving signal (common voltage Vref) may be determined according to design requirements. For example, the first driving signal Vin may be a fixed voltage, and the level of the first driving signal Vin may be greater than the level of the second driving signal (common voltage Vref).

第三開關SW13的第一端耦接至第一積分取樣電路120。第三開關SW13的第二端耦接至觸控面板10的感測線。第三開關SW13的控制端受控於時脈信號clk1。基於時脈信號clk1的控制,第三開關SW13可以於第一時脈期間將觸控面板10的感測線的感測信號傳輸至第一積分取樣電路120,以及於第二時脈期間不傳輸觸控面板10的感測線的感測信號。第四開關SW14的第一端耦接至第二積分取樣電路130。第四開關SW14的第二端耦接至觸控面板10的感測線。第四開關SW14的控制端受控於時脈信號clk2。基於時脈信號clk2的控制,第四開關SW14可以於第二時脈期間將觸控面板10的感測線的感測信號傳輸至第二積分取樣電路130,以及於第一時脈期間不傳輸觸控面板10的感測線的感測信號。A first terminal of the third switch SW13 is coupled to the first integration sampling circuit 120. The second terminal of the third switch SW13 is coupled to the sensing line of the touch panel 10. The control terminal of the third switch SW13 is controlled by the clock signal clk1. Based on the control of the clock signal clk1, the third switch SW13 can transmit the sensing signal of the sensing line of the touch panel 10 to the first integration sampling circuit 120 during the first clock period, and not transmit the touch signal during the second clock period. A sensing signal of a sensing line of the control panel 10. A first terminal of the fourth switch SW14 is coupled to the second integration sampling circuit 130. The second terminal of the fourth switch SW14 is coupled to the sensing line of the touch panel 10. The control terminal of the fourth switch SW14 is controlled by the clock signal clk2. Based on the control of the clock signal clk2, the fourth switch SW14 can transmit the sensing signal of the sensing line of the touch panel 10 to the second integration sampling circuit 130 during the second clock period, and not transmit the touch signal during the first clock period. A sensing signal of a sensing line of the control panel 10.

圖3是依照本發明實施例說明當觸控面板10沒有發生觸碰事件時,圖2所示電路的信號時序示意圖。圖4是依照本發明實施例說明當觸控面板10發生了觸碰事件時,圖2所示電路的信號時序示意圖。於圖3與圖4中,橫軸表示時間,縱軸表示電壓。請參照圖2、圖3與圖4。時脈信號clk1的脈衝與時脈信號clk2的脈衝互不重疊。因此,於所述第一時脈期間,第一開關SW11與第三開關SW13為導通(turn on),而第二開關SW12與第四開關SW14為截止(turn off)。於所述第二時脈期間,第一開關SW11與第三開關SW13為截止,而第二開關SW12與第四開關SW14為導通。FIG. 3 is a schematic diagram illustrating a signal timing of the circuit shown in FIG. 2 when a touch event does not occur on the touch panel 10 according to an embodiment of the present invention. FIG. 4 is a schematic diagram illustrating signal timing of the circuit shown in FIG. 2 when a touch event occurs on the touch panel 10 according to an embodiment of the present invention. In FIGS. 3 and 4, the horizontal axis represents time, and the vertical axis represents voltage. Please refer to FIG. 2, FIG. 3 and FIG. 4. The pulses of the clock signal clk1 and the pulses of the clock signal clk2 do not overlap each other. Therefore, during the first clock period, the first switch SW11 and the third switch SW13 are turned on, and the second switch SW12 and the fourth switch SW14 are turned off. During the second clock period, the first switch SW11 and the third switch SW13 are turned off, and the second switch SW12 and the fourth switch SW14 are turned on.

第一積分取樣電路120包括反向積分電路121、增量相關雙採樣(delta-adding correlated double sampling, DCDS)電路122以及正向積分電路123。反向積分電路121耦接至第三開關SW13。當第三開關SW13導通時,反向積分電路121可以接收觸控面板10的感測線的感測信號。反向積分電路121可以對觸控面板10的感測線的感測信號進行反向積分操作,以輸出積分結果Vca1給增量相關雙採樣電路122。亦即,基於所述感測信號,所述積分結果Vca1的準位會在所述反向積分操作的過程中逐漸被拉低,直到所述積分結果Vca1被重置(如圖3與圖4所示)。因為發生了觸碰事件,所以圖4所示積分結果Vca1的下降幅度(經積分後的電壓準位)不同於圖3所示積分結果Vca1的下降幅度。The first integration sampling circuit 120 includes a reverse integration circuit 121, a delta-adding correlated double sampling (DCDS) circuit 122, and a forward integration circuit 123. The inverse integration circuit 121 is coupled to the third switch SW13. When the third switch SW13 is turned on, the inverse integration circuit 121 may receive a sensing signal of a sensing line of the touch panel 10. The inverse integration circuit 121 may perform an inverse integration operation on the sensing signals of the sensing lines of the touch panel 10 to output the integration result Vca1 to the incremental correlation double sampling circuit 122. That is, based on the sensing signal, the level of the integration result Vca1 will be gradually lowered during the inverse integration operation until the integration result Vca1 is reset (as shown in FIGS. 3 and 4). As shown). Because of the touch event, the decrease in the integration result Vca1 (the integrated voltage level) shown in FIG. 4 is different from the decrease in the integration result Vca1 shown in FIG. 3.

增量相關雙採樣電路122耦接至反向積分電路121的輸出端,以接收積分結果Vca1。增量相關雙採樣電路122受控於第一控制信號ϕ1與第二控制信號ϕ2。第一控制信號ϕ1與第二控制信號ϕ2的時序例示於圖3與圖4。第一控制信號ϕ1的脈衝寬度定義了增量相關雙採樣電路122的「採樣期間」,而第二控制信號ϕ2的脈衝寬度定義了增量相關雙採樣電路122的「輸出期間」。基於第一控制信號ϕ1的控制,增量相關雙採樣電路122可以在採樣期間採樣積分結果Vca1以獲得採樣結果。基於第二控制信號ϕ2的控制,增量相關雙採樣電路122可以在輸出期間使用參考電壓VL對此採樣結果進行泵送(pumping)處理而獲得泵送結果。在所述輸出期間結束後,反向積分電路121被重置。亦即,在第二控制信號ϕ2的脈衝結束後,重置信號Reset_CA會出現一個脈衝來重置反向積分電路121(如圖3與圖4所示)。其中,所述參考電壓VL的準位可以依照設計需求來決定。舉例來說,假設當觸控面板10的感測線的感測電極沒有偵測到觸碰事件時增量相關雙採樣電路122的採樣結果的準位為某一個「未觸碰準位」,則參考電壓VL的準位可以被設定為所述「未觸碰準位」。其中,參考電壓VL的準位可以低於共同電壓Vref的準位。當沒有發生觸碰事件時(如圖3所示),因為增量相關雙採樣電路122的採樣結果的準位相同於參考電壓VL的準位,因此增量相關雙採樣電路122沒有多餘電荷轉移給正向積分電路123。當發生了觸碰事件時(如圖4所示),因為增量相關雙採樣電路122的採樣結果的準位不同於參考電壓VL的準位,因此增量相關雙採樣電路122會將多餘電荷轉移給正向積分電路123。The incremental correlation double sampling circuit 122 is coupled to the output terminal of the inverse integration circuit 121 to receive the integration result Vca1. The incremental correlation double sampling circuit 122 is controlled by a first control signal ϕ1 and a second control signal ϕ2. Timing examples of the first control signal ϕ1 and the second control signal ϕ2 are shown in FIGS. 3 and 4. The pulse width of the first control signal ϕ1 defines the “sampling period” of the incremental correlation double sampling circuit 122, and the pulse width of the second control signal ϕ2 defines the “output period” of the incremental correlation double sampling circuit 122. Based on the control of the first control signal ϕ1, the incremental correlation double sampling circuit 122 may sample the integration result Vca1 during the sampling period to obtain the sampling result. Based on the control of the second control signal ϕ2, the incremental correlation double sampling circuit 122 can use the reference voltage VL to pump this sampling result during the output period to obtain a pumping result. After the output period ends, the inverse integration circuit 121 is reset. That is, after the pulse of the second control signal ϕ2 ends, a pulse appears in the reset signal Reset_CA to reset the inverse integration circuit 121 (as shown in FIGS. 3 and 4). The level of the reference voltage VL can be determined according to design requirements. For example, assuming that when the touch electrode of the sensing line of the touch panel 10 does not detect a touch event, the level of the sampling result of the delta-correlation double sampling circuit 122 is a certain “untouched level”, then The level of the reference voltage VL may be set as the "non-touch level". The level of the reference voltage VL may be lower than the level of the common voltage Vref. When no touch event occurs (as shown in FIG. 3), because the level of the sampling result of the incremental correlation double sampling circuit 122 is the same as the level of the reference voltage VL, the incremental correlation double sampling circuit 122 has no extra charge transfer. Give the forward integration circuit 123. When a touch event occurs (as shown in FIG. 4), because the level of the sampling result of the incremental correlation double sampling circuit 122 is different from the level of the reference voltage VL, the incremental correlation double sampling circuit 122 will remove the excess charge Transfer to the forward integration circuit 123.

正向積分電路123耦接至增量相關雙採樣電路122的輸出端,以接收所述泵送結果。正向積分電路123可以對所述泵送結果進行正向積分操作以輸出積分結果作為第一端信號Sd1。當發生了觸碰事件時,因為增量相關雙採樣電路122的泵送結果包含了電荷,所述第一端信號Sd1的準位會在所述正向積分操作的過程中逐漸被拉高,直到所述第一端信號Sd1被重置。重置信號Reset_Int的脈衝會重置正向積分電路123,進而重置所述第一端信號Sd1(如圖4所示)。當沒有發生觸碰事件時,增量相關雙採樣電路122沒有多餘電荷轉移給正向積分電路123,因此正向積分電路123可以將第一端信號Sd1的準位保持於差動信號Sdiff的共模信號範圍中。例如,正向積分電路123可以將第一端信號Sd1的準位保持於共同電壓Vref(如圖3所示)。The forward integration circuit 123 is coupled to the output of the incrementally correlated double sampling circuit 122 to receive the pumping result. The forward integration circuit 123 may perform a forward integration operation on the pumping result to output the integration result as the first end signal Sd1. When a touch event occurs, because the pumping result of the incrementally correlated double sampling circuit 122 includes a charge, the level of the first-end signal Sd1 will be gradually pulled up during the forward integration operation. Until the first-end signal Sd1 is reset. The pulse of the reset signal Reset_Int resets the forward integration circuit 123, thereby resetting the first-end signal Sd1 (as shown in FIG. 4). When no touch event occurs, the incremental correlation double sampling circuit 122 has no excess charge transferred to the forward integration circuit 123, so the forward integration circuit 123 can maintain the level of the first-end signal Sd1 to the common level of the differential signal Sdiff. Mode signal range. For example, the forward integration circuit 123 may maintain the level of the first-end signal Sd1 at a common voltage Vref (as shown in FIG. 3).

相類似於第一積分取樣電路120,第二積分取樣電路130包括正向積分電路131、增量相關雙採樣電路132以及反向積分電路133。正向積分電路131耦接至第四開關SW14。當第四開關SW14導通時,正向積分電路131可以接收觸控面板10的感測線的感測信號。正向積分電路131可以對此感測信號進行正向積分操作,以輸出積分結果Vca2給增量相關雙採樣電路122。亦即,基於所述感測信號,所述積分結果Vca2的準位會在所述正向積分操作的過程中逐漸被拉高,直到所述積分結果Vca2被重置(如圖3與圖4所示)。因為發生了觸碰事件,所以圖4所示積分結果Vca2的上升幅度(經積分後的電壓準位)不同於圖3所示積分結果Vca2的上升幅度。Similar to the first integration sampling circuit 120, the second integration sampling circuit 130 includes a forward integration circuit 131, an incremental correlation double sampling circuit 132, and a reverse integration circuit 133. The forward integration circuit 131 is coupled to the fourth switch SW14. When the fourth switch SW14 is turned on, the forward integration circuit 131 may receive a sensing signal of a sensing line of the touch panel 10. The forward integration circuit 131 may perform a forward integration operation on the sensing signal to output the integration result Vca2 to the incremental correlation double sampling circuit 122. That is, based on the sensing signal, the level of the integration result Vca2 will be gradually raised during the forward integration operation until the integration result Vca2 is reset (as shown in FIGS. 3 and 4). As shown). Because of the touch event, the rising range (integrated voltage level) of the integration result Vca2 shown in FIG. 4 is different from the rising range of the integration result Vca2 shown in FIG. 3.

增量相關雙採樣電路132耦接至正向積分電路131的輸出端,以接收積分結果Vca2。增量相關雙採樣電路132受控於第一控制信號ϕ1與第二控制信號ϕ2。基於第一控制信號ϕ1的控制,增量相關雙採樣電路132可以在採樣期間採樣積分結果Vca2以獲得採樣結果。基於第二控制信號ϕ2的控制,增量相關雙採樣電路132可以在輸出期間使用參考電壓VH對此採樣結果進行泵送處理而獲得泵送結果。在所述輸出期間結束後,正向積分電路131被重置(如圖3與圖4所示)。其中,所述參考電壓VH的準位可以依照設計需求來決定。舉例來說,假設當觸控面板10的感測線的感測電極沒有偵測到觸碰事件時增量相關雙採樣電路132的採樣結果的準位為某一個「未觸碰準位」,則參考電壓VH的準位可以被設定為所述「未觸碰準位」。其中,參考電壓VH的準位可以高於共同電壓Vref的準位。當沒有發生觸碰事件時,因為積分結果Vca2的準位相同於參考電壓VH的準位,因此增量相關雙採樣電路132沒有多餘電荷轉移給反向積分電路133。當發生了觸碰事件時,因為增量相關雙採樣電路132的採樣結果的準位不同於參考電壓VH的準位,因此增量相關雙採樣電路132會將多餘電荷轉移給反向積分電路133。The incremental correlation double sampling circuit 132 is coupled to the output terminal of the forward integration circuit 131 to receive the integration result Vca2. The incremental correlation double sampling circuit 132 is controlled by a first control signal ϕ1 and a second control signal ϕ2. Based on the control of the first control signal ϕ1, the incremental correlation double sampling circuit 132 may sample the integration result Vca2 during the sampling period to obtain the sampling result. Based on the control of the second control signal ϕ2, the incremental correlation double sampling circuit 132 may use the reference voltage VH to pump this sampling result during the output period to obtain a pumping result. After the output period ends, the forward integration circuit 131 is reset (as shown in FIGS. 3 and 4). The level of the reference voltage VH can be determined according to design requirements. For example, assuming that when the touch electrode of the sensing line of the touch panel 10 does not detect a touch event, the level of the sampling result of the incremental correlation double sampling circuit 132 is a certain “untouched level”, then The level of the reference voltage VH may be set as the "non-touch level". The level of the reference voltage VH may be higher than the level of the common voltage Vref. When the touch event does not occur, because the level of the integration result Vca2 is the same as the level of the reference voltage VH, the incremental correlation double sampling circuit 132 has no extra charge transferred to the inverse integration circuit 133. When a touch event occurs, because the level of the sampling result of the delta-correlation double sampling circuit 132 is different from the level of the reference voltage VH, the delta-correlation double sampling circuit 132 transfers the excess charge to the inverse integration circuit 133 .

反向積分電路133耦接至增量相關雙採樣電路132的輸出端,以接收所述泵送結果。反向積分電路133可以對所述泵送結果進行反向積分操作以輸出積分結果作為第二端信號Sd2。當發生了觸碰事件時,因為增量相關雙採樣電路132的泵送結果包含了電荷,所述第二端信號Sd2的準位會在所述反向積分操作的過程中逐漸被拉低,直到所述第二端信號Sd2被重置。重置信號Reset_Int的脈衝會重置反向積分電路133,進而重置所述第二端信號Sd2(如圖4所示)。當沒有發生觸碰事件時,增量相關雙採樣電路132沒有多餘電荷轉移給反向積分電路133,因此反向積分電路133可以將第二端信號Sd2的準位保持於差動信號Sdiff的共模信號範圍中。例如,反向積分電路133可以將第二端信號Sd2的準位保持於共同電壓Vref(如圖3所示)。The inverse integration circuit 133 is coupled to the output of the delta-correlation double sampling circuit 132 to receive the pumping result. The reverse integration circuit 133 may perform a reverse integration operation on the pumping result to output the integration result as the second end signal Sd2. When a touch event occurs, because the pumping result of the incremental correlation double sampling circuit 132 includes a charge, the level of the second-end signal Sd2 will be gradually lowered during the inverse integration operation. Until the second-end signal Sd2 is reset. The pulse of the reset signal Reset_Int resets the inverse integration circuit 133, thereby resetting the second-end signal Sd2 (as shown in FIG. 4). When no touch event occurs, the incremental correlation double sampling circuit 132 has no excess charge transferred to the inverse integration circuit 133, so the inverse integration circuit 133 can maintain the level of the second-end signal Sd2 to the common level of the differential signal Sdiff. Mode signal range. For example, the inverse integration circuit 133 may maintain the level of the second-end signal Sd2 at a common voltage Vref (as shown in FIG. 3).

於圖2所示實施例中,反向積分電路121包括運算放大器121a、回授電容121b以及重置開關121c。運算放大器121a的反相輸入端耦接至第三開關SW13,以接收觸控面板10的感測線的感測信號。運算放大器121a的非反相輸入端耦接至共同電壓Vref。運算放大器121a的輸出端耦接至增量相關雙採樣電路122,以提供所述積分結果Vca1。回授電容121b的第一端與第二端分別耦接至運算放大器121a的反相輸入端與運算放大器121a的輸出端。重置開關121c的第一端與第二端分別耦接至運算放大器121a的反相輸入端與運算放大器121a的輸出端。重置開關121c的控制端受控於重置信號Reset_CA。基於重置信號Reset_CA的控制,重置開關121c可以重置回授電容121b的電荷,也就是重置所述積分結果Vca1,如圖3與圖4所示。In the embodiment shown in FIG. 2, the inverse integration circuit 121 includes an operational amplifier 121 a, a feedback capacitor 121 b, and a reset switch 121 c. The inverting input terminal of the operational amplifier 121 a is coupled to the third switch SW13 to receive a sensing signal from a sensing line of the touch panel 10. The non-inverting input terminal of the operational amplifier 121a is coupled to a common voltage Vref. The output terminal of the operational amplifier 121a is coupled to the incremental correlation double sampling circuit 122 to provide the integration result Vca1. A first terminal and a second terminal of the feedback capacitor 121b are respectively coupled to an inverting input terminal of the operational amplifier 121a and an output terminal of the operational amplifier 121a. The first terminal and the second terminal of the reset switch 121c are respectively coupled to an inverting input terminal of the operational amplifier 121a and an output terminal of the operational amplifier 121a. The control terminal of the reset switch 121c is controlled by a reset signal Reset_CA. Based on the control of the reset signal Reset_CA, the reset switch 121c can reset the charge of the feedback capacitor 121b, that is, reset the integration result Vca1, as shown in FIGS. 3 and 4.

於圖2所示實施例中,增量相關雙採樣電路122包括開關122a、開關122b、開關122c、開關122d以及採樣電容122e。開關122a的第一端耦接至反向積分電路121的輸出端,以接收積分結果Vca1。開關122a的控制端受控於第一控制信號ϕ1。開關122b的第一端耦接至參考電壓VL。開關122b的控制端受控於第二控制信號ϕ2。採樣電容122e的第一端耦接至開關122a的第二端與開關122b的第二端。開關122c的第一端耦接至採樣電容122e的第二端。開關122c的第二端耦接至共同電壓Vref。開關122c的控制端受控於第一控制信號ϕ1。開關122d的第一端耦接至採樣電容122e的第二端,開關122d的第二端耦接至正向積分電路123,以提供泵送結果。開關122d的控制端受控於第二控制信號ϕ2。In the embodiment shown in FIG. 2, the incremental correlation double sampling circuit 122 includes a switch 122 a, a switch 122 b, a switch 122 c, a switch 122 d, and a sampling capacitor 122 e. The first terminal of the switch 122a is coupled to the output terminal of the inverse integration circuit 121 to receive the integration result Vca1. The control terminal of the switch 122a is controlled by the first control signal ϕ1. The first terminal of the switch 122b is coupled to the reference voltage VL. The control terminal of the switch 122b is controlled by the second control signal ϕ2. A first terminal of the sampling capacitor 122e is coupled to a second terminal of the switch 122a and a second terminal of the switch 122b. A first terminal of the switch 122c is coupled to a second terminal of the sampling capacitor 122e. The second terminal of the switch 122c is coupled to the common voltage Vref. The control terminal of the switch 122c is controlled by the first control signal ϕ1. A first terminal of the switch 122d is coupled to the second terminal of the sampling capacitor 122e, and a second terminal of the switch 122d is coupled to the forward integration circuit 123 to provide a pumping result. The control terminal of the switch 122d is controlled by the second control signal ϕ2.

基於第一控制信號ϕ1的控制,當開關122a與開關122c導通且開關122b與開關122d截止時(採樣期間),採樣電容122e可以採樣(儲存)積分結果Vca1,以獲得採樣結果。基於第二控制信號ϕ2的控制,當開關122b與開關122d導通且開關122a與開關122c截止時(輸出期間),增量相關雙採樣電路122可以使用參考電壓VL對此採樣結果進行泵送處理而獲得泵送結果。當沒有發生觸碰事件時(如圖3所示),因為採樣電容122e的第一端的準位相同於參考電壓VL的準位,因此在將採樣電容122e的第一端切換連接至參考電壓VL後,採樣電容122e沒有多餘電荷轉移給正向積分電路123。當發生了觸碰事件時(如圖4所示),因為採樣電容122e的第一端的準位大於參考電壓VL的準位,因此在將採樣電容122e的第一端切換連接至參考電壓VL後,採樣電容122e會將多餘電荷轉移給正向積分電路123。Based on the control of the first control signal ϕ1, when the switches 122a and 122c are turned on and the switches 122b and 122d are turned off (sampling period), the sampling capacitor 122e can sample (store) the integration result Vca1 to obtain the sampling result. Based on the control of the second control signal ϕ2, when the switches 122b and 122d are turned on and the switches 122a and 122c are turned off (during the output period), the incremental correlation double sampling circuit 122 can use the reference voltage VL to pump this sampling result and Get pumping results. When no touch event occurs (as shown in Figure 3), because the level of the first terminal of the sampling capacitor 122e is the same as the level of the reference voltage VL, the first terminal of the sampling capacitor 122e is switched to the reference voltage. After VL, no excess charge is transferred from the sampling capacitor 122e to the forward integration circuit 123. When a touch event occurs (as shown in FIG. 4), because the level of the first terminal of the sampling capacitor 122e is greater than the level of the reference voltage VL, the first terminal of the sampling capacitor 122e is switched to the reference voltage VL After that, the sampling capacitor 122e transfers the excess charge to the forward integration circuit 123.

於圖2所示實施例中,正向積分電路123包括運算放大器123a、回授電容123b以及重置開關123c。運算放大器123a的反相輸入端耦接至增量相關雙採樣電路122,以接收所述泵送結果。運算放大器123a的非反相輸入端耦接至共同電壓Vref。運算放大器123a的輸出端輸出積分結果作為第一端信號Sd1。回授電容123b的第一端與一第二端分別耦接至運算放大器123a的反相輸入端與運算放大器123a的輸出端。重置開關123c的第一端與一第二端分別耦接至運算放大器123a的反相輸入端與運算放大器123a的輸出端。當沒有發生觸碰事件時(如圖3所示),增量相關雙採樣電路122沒有多餘電荷轉移給回授電容123b,因此正向積分電路123可以將第一端信號Sd1的準位保持於差動信號Sdiff的共模信號範圍中。例如,正向積分電路123可以將第一端信號Sd1的準位保持於共同電壓Vref。當發生了觸碰事件時(如圖4所示),因為增量相關雙採樣電路122的泵送結果包含了電荷,因此所述第一端信號Sd1的準位會逐漸被拉高,直到所述第一端信號Sd1被重置。In the embodiment shown in FIG. 2, the forward integration circuit 123 includes an operational amplifier 123 a, a feedback capacitor 123 b, and a reset switch 123 c. The inverting input terminal of the operational amplifier 123a is coupled to the incremental correlation double sampling circuit 122 to receive the pumping result. The non-inverting input terminal of the operational amplifier 123a is coupled to a common voltage Vref. The output terminal of the operational amplifier 123a outputs an integration result as the first terminal signal Sd1. A first terminal and a second terminal of the feedback capacitor 123b are respectively coupled to an inverting input terminal of the operational amplifier 123a and an output terminal of the operational amplifier 123a. A first terminal and a second terminal of the reset switch 123c are respectively coupled to an inverting input terminal of the operational amplifier 123a and an output terminal of the operational amplifier 123a. When no touch event occurs (as shown in FIG. 3), the incremental correlation double sampling circuit 122 has no extra charge transferred to the feedback capacitor 123b, so the forward integration circuit 123 can maintain the level of the first-end signal Sd1 at The common-mode signal range of the differential signal Sdiff. For example, the forward integration circuit 123 may maintain the level of the first-end signal Sd1 at the common voltage Vref. When a touch event occurs (as shown in FIG. 4), because the pumping result of the incrementally correlated double sampling circuit 122 includes a charge, the level of the first-end signal Sd1 will gradually be pulled up until the The first-end signal Sd1 is reset.

於圖2所示實施例中,正向積分電路131包括運算放大器131a、回授電容131b以及重置開關131c。運算放大器131a的反相輸入端耦接至第四開關SW14,以接收觸控面板10的感測線的感測信號。運算放大器131a的非反相輸入端耦接至共同電壓Vref。運算放大器131a的輸出端耦接至增量相關雙採樣電路132,以提供積分結果Vca2。回授電容131b的第一端與第二端分別耦接至運算放大器131a的反相輸入端與運算放大器131a的輸出端。重置開關131c的第一端與一第二端分別耦接至運算放大器131a的反相輸入端與運算放大器131a的輸出端。重置開關131c的控制端受控於重置信號Reset_CA。基於重置信號Reset_CA的控制,重置開關131c可以重置回授電容131b的電荷,也就是重置所述積分結果Vca2。In the embodiment shown in FIG. 2, the forward integration circuit 131 includes an operational amplifier 131 a, a feedback capacitor 131 b, and a reset switch 131 c. The inverting input terminal of the operational amplifier 131 a is coupled to the fourth switch SW14 to receive a sensing signal from a sensing line of the touch panel 10. The non-inverting input terminal of the operational amplifier 131a is coupled to a common voltage Vref. An output terminal of the operational amplifier 131a is coupled to the incremental correlation double sampling circuit 132 to provide an integration result Vca2. A first terminal and a second terminal of the feedback capacitor 131b are respectively coupled to an inverting input terminal of the operational amplifier 131a and an output terminal of the operational amplifier 131a. A first terminal and a second terminal of the reset switch 131c are respectively coupled to an inverting input terminal of the operational amplifier 131a and an output terminal of the operational amplifier 131a. The control terminal of the reset switch 131c is controlled by a reset signal Reset_CA. Based on the control of the reset signal Reset_CA, the reset switch 131c can reset the charge of the feedback capacitor 131b, that is, reset the integration result Vca2.

於圖2所示實施例中,增量相關雙採樣電路132包括開關132a、開關132b、開關132c、開關132d以及採樣電容132e。開關132a的第一端耦接至正向積分電路131的輸出端,以接收積分結果Vca2。開關132a的控制端受控於第一控制信號ϕ1。開關132b的第一端耦接至參考電壓VH。開關132b的控制端受控於第二控制信號ϕ2。採樣電容132e的第一端耦接至開關132a的第二端與開關132b的第二端。開關132c的第一端耦接至採樣電容132e的第二端。開關132c的第二端耦接至共同電壓Vref。開關132c的控制端受控於第一控制信號ϕ1。開關132d的第一端耦接至採樣電容132e的第二端。開關132d的第二端耦接至反向積分電路133,以提供泵送結果。開關132d的控制端受控於第二控制信號ϕ2。In the embodiment shown in FIG. 2, the incremental correlation double sampling circuit 132 includes a switch 132a, a switch 132b, a switch 132c, a switch 132d, and a sampling capacitor 132e. The first terminal of the switch 132a is coupled to the output terminal of the forward integration circuit 131 to receive the integration result Vca2. The control terminal of the switch 132a is controlled by the first control signal ϕ1. The first terminal of the switch 132b is coupled to the reference voltage VH. The control terminal of the switch 132b is controlled by the second control signal ϕ2. A first terminal of the sampling capacitor 132e is coupled to a second terminal of the switch 132a and a second terminal of the switch 132b. A first terminal of the switch 132c is coupled to a second terminal of the sampling capacitor 132e. The second terminal of the switch 132c is coupled to the common voltage Vref. The control terminal of the switch 132c is controlled by the first control signal ϕ1. A first terminal of the switch 132d is coupled to a second terminal of the sampling capacitor 132e. The second terminal of the switch 132d is coupled to the inverse integration circuit 133 to provide a pumping result. The control terminal of the switch 132d is controlled by the second control signal ϕ2.

基於第一控制信號ϕ1的控制,當開關132a與開關132c導通且開關132b與開關132d截止時(採樣期間),採樣電容132e可以採樣(儲存)積分結果Vca2,以獲得採樣結果。基於第二控制信號ϕ2的控制,當開關132b與開關132d導通且開關132a與開關132c截止時(輸出期間),增量相關雙採樣電路132可以使用參考電壓VH對此採樣結果進行泵送處理而獲得泵送結果。當沒有發生觸碰事件時(如圖3所示),因為採樣電容132e的第一端的準位相同於參考電壓VH的準位,因此在將採樣電容132e的第一端切換連接至參考電壓VH後,採樣電容132e沒有多餘電荷轉移給反向積分電路133。當發生了觸碰事件時(如圖4所示),因為採樣電容132e的第一端的準位小於參考電壓VH的準位,因此在將採樣電容132e的第一端切換連接至參考電壓VH後,採樣電容132e會將多餘電荷轉移給反向積分電路133。Based on the control of the first control signal ϕ1, when the switches 132a and 132c are turned on and the switches 132b and 132d are turned off (during the sampling period), the sampling capacitor 132e can sample (store) the integration result Vca2 to obtain the sampling result. Based on the control of the second control signal ϕ2, when the switches 132b and 132d are turned on and the switches 132a and 132c are turned off (during the output period), the incremental correlation double sampling circuit 132 can use the reference voltage VH to pump this sampling result and Get pumping results. When no touch event occurs (as shown in Figure 3), because the level of the first end of the sampling capacitor 132e is the same as the level of the reference voltage VH, the first end of the sampling capacitor 132e is switched to the reference voltage. After VH, no excess charge is transferred from the sampling capacitor 132e to the inverse integration circuit 133. When a touch event occurs (as shown in FIG. 4), because the level of the first end of the sampling capacitor 132e is smaller than the level of the reference voltage VH, the first end of the sampling capacitor 132e is switched to the reference voltage VH After that, the sampling capacitor 132e transfers the excess charge to the inverse integration circuit 133.

於圖2所示實施例中,反向積分電路133包括運算放大器133a、回授電容133b以及重置開關133c。運算放大器133a的反相輸入端耦接至增量相關雙採樣電路132,以接收泵送結果。運算放大器133a的非反相輸入端耦接至共同電壓Vref。運算放大器133a的輸出端輸出積分結果作為第二端信號Sd2。回授電容133b的第一端與第二端分別耦接至運算放大器133a的反相輸入端與運算放大器133a的輸出端。重置開關133c的第一端與第二端分別耦接至運算放大器133a的反相輸入端與運算放大器133a的輸出端。當沒有發生觸碰事件時(如圖3所示),增量相關雙採樣電路132沒有多餘電荷轉移給回授電容133b,因此反向積分電路133可以將第二端信號Sd2的準位保持於差動信號Sdiff的共模信號範圍中。例如,反向積分電路133可以將第二端信號Sd2的準位保持於共同電壓Vref。當發生了觸碰事件時(如圖4所示),因為增量相關雙採樣電路132的泵送結果包含了電荷,因此所述第二端信號Sd2的準位會逐漸被拉低,直到所述第二端信號Sd2被重置。In the embodiment shown in FIG. 2, the inverse integration circuit 133 includes an operational amplifier 133a, a feedback capacitor 133b, and a reset switch 133c. The inverting input terminal of the operational amplifier 133a is coupled to the incremental correlation double sampling circuit 132 to receive the pumping result. The non-inverting input terminal of the operational amplifier 133a is coupled to a common voltage Vref. The output terminal of the operational amplifier 133a outputs an integration result as a second terminal signal Sd2. A first terminal and a second terminal of the feedback capacitor 133b are respectively coupled to an inverting input terminal of the operational amplifier 133a and an output terminal of the operational amplifier 133a. A first terminal and a second terminal of the reset switch 133c are respectively coupled to an inverting input terminal of the operational amplifier 133a and an output terminal of the operational amplifier 133a. When no touch event occurs (as shown in FIG. 3), the incremental correlation double sampling circuit 132 has no excess charge transferred to the feedback capacitor 133b, so the inverse integration circuit 133 can maintain the level of the second-end signal Sd2 at The common-mode signal range of the differential signal Sdiff. For example, the inverse integration circuit 133 may maintain the level of the second-end signal Sd2 at the common voltage Vref. When a touch event occurs (as shown in FIG. 4), because the pumping result of the incremental correlation double sampling circuit 132 includes a charge, the level of the second-end signal Sd2 will be gradually lowered until the The second-end signal Sd2 is reset.

重置開關123c的控制端與重置開關133c的控制端均受控於重置信號Reset_Int。基於重置信號Reset_Int的控制,重置開關123c可以重置回授電容123b的電荷,也就是重置所述第一端信號Sd1。基於重置信號Reset_Int的控制,重置開關133c可以重置回授電容133b的電荷,也就是重置所述第二端信號Sd2。重置信號Reset_Int的重置週期可以依照設計需求(或應用需求)來動態調整。在一些實施例中,假使某些設計需求(或應用需求)需要高速操作,則重置信號Reset_Int的重置週期可以被動態調小(較早進行重置)。在另一些實施例中,當重置信號Reset_Int的重置週期被加大(較晚進行重置)時,第一端信號Sd1與第二端信號Sd2之間的壓差會變大,以便滿足高擺幅、高訊雜比的設計需求(或應用需求)。因此,本實施例所述觸控面板驅動裝置100可以依據觸控面板10的偵測結果來對應產生高擺幅、高訊雜比的差動信號Sdiff。The control terminal of the reset switch 123c and the control terminal of the reset switch 133c are both controlled by the reset signal Reset_Int. Based on the control of the reset signal Reset_Int, the reset switch 123c can reset the charge of the feedback capacitor 123b, that is, reset the first-end signal Sd1. Based on the control of the reset signal Reset_Int, the reset switch 133c can reset the charge of the feedback capacitor 133b, that is, reset the second-end signal Sd2. The reset period of the reset signal Reset_Int can be dynamically adjusted according to design requirements (or application requirements). In some embodiments, if certain design requirements (or application requirements) require high-speed operation, the reset period of the reset signal Reset_Int can be dynamically reduced (reset earlier). In other embodiments, when the reset period of the reset signal Reset_Int is increased (reset is performed later), the pressure difference between the first-end signal Sd1 and the second-end signal Sd2 becomes larger, so as to meet Design requirements (or application requirements) for high swing and high signal-to-noise ratio. Therefore, the touch panel driving device 100 according to this embodiment can correspondingly generate a differential signal Sdiff with a high swing and a high signal-to-noise ratio according to the detection result of the touch panel 10.

圖5是依照本發明的另一實施例所繪示的一種觸控面板驅動裝置500的電路方塊示意圖。觸控面板驅動裝置500可以驅動觸控面板10,而產生觸控面板10的偵測結果所對應的差動信號Sdiff。所述觸控面板驅動裝置500包括驅動電路110、第一積分取樣電路120、第二積分取樣電路130以及電壓提供電路540。圖5所示觸控面板10、觸控面板驅動裝置500、驅動電路110、第一積分取樣電路120以及第二積分取樣電路130可以參照圖1至圖4所示觸控面板10、觸控面板驅動裝置100、驅動電路110、第一積分取樣電路120以及第二積分取樣電路130的相關說明來類推,故不再贅述。FIG. 5 is a schematic circuit block diagram of a touch panel driving device 500 according to another embodiment of the present invention. The touch panel driving device 500 can drive the touch panel 10 and generate a differential signal Sdiff corresponding to a detection result of the touch panel 10. The touch panel driving device 500 includes a driving circuit 110, a first integration sampling circuit 120, a second integration sampling circuit 130, and a voltage supply circuit 540. The touch panel 10, the touch panel driving device 500, the driving circuit 110, the first integration sampling circuit 120, and the second integration sampling circuit 130 shown in FIG. 5 can be referred to the touch panel 10 and the touch panel shown in FIGS. 1 to 4. Relevant descriptions of the driving device 100, the driving circuit 110, the first integration sampling circuit 120, and the second integration sampling circuit 130 are deduced by analogy, so they are not described again.

於圖5所示實施例中,電壓提供電路540耦接至第一積分取樣電路120,以接收第一代表電壓。電壓提供電路540耦接至第二積分取樣電路130,以接收第二代表電壓。依據所述第一代表電壓與所述第二代表電壓,電壓提供電路540可以對應產生參考電壓VL與參考電壓VH。參考電壓VL被提供給第一積分取樣電路120中的增量相關雙採樣電路。參考電壓VH被提供給第二積分取樣電路130中的增量相關雙採樣電路。In the embodiment shown in FIG. 5, the voltage providing circuit 540 is coupled to the first integration sampling circuit 120 to receive the first representative voltage. The voltage supply circuit 540 is coupled to the second integration sampling circuit 130 to receive a second representative voltage. According to the first representative voltage and the second representative voltage, the voltage providing circuit 540 may generate a reference voltage VL and a reference voltage VH correspondingly. The reference voltage VL is supplied to an incrementally correlated double sampling circuit in the first integration sampling circuit 120. The reference voltage VH is supplied to an incrementally correlated double sampling circuit in the second integration sampling circuit 130.

圖6是依照本發明一實施例說明圖5所示觸控面板驅動裝置500的電路方塊示意圖。於圖6所示實施例中,第一積分取樣電路120包括反向積分電路121、增量相關雙採樣電路122以及正向積分電路123。第二積分取樣電路130包括正向積分電路131、增量相關雙採樣電路132以及反向積分電路133。圖6所示反向積分電路121、增量相關雙採樣電路122、正向積分電路123、正向積分電路131、增量相關雙採樣電路132以及反向積分電路133可以參照圖1至圖4的相關說明來類推,故不再贅述。於圖6所示實施例中,如圖2中的第一端信號Sd1被拿來作為所述第一代表電壓,而如圖2中的第二端信號Sd2被拿來作為所述第二代表電壓。FIG. 6 is a schematic circuit block diagram illustrating the touch panel driving device 500 shown in FIG. 5 according to an embodiment of the present invention. In the embodiment shown in FIG. 6, the first integration sampling circuit 120 includes an inverse integration circuit 121, an incremental correlation double sampling circuit 122, and a forward integration circuit 123. The second integration sampling circuit 130 includes a forward integration circuit 131, an incremental correlation double sampling circuit 132, and a reverse integration circuit 133. The reverse integration circuit 121, the incremental correlation double sampling circuit 122, the forward integration circuit 123, the forward integration circuit 131, the incremental correlation double sampling circuit 132, and the reverse integration circuit 133 shown in FIG. 6 can be referred to FIGS. 1 to 4 The relevant descriptions are analogized, so they will not be repeated. In the embodiment shown in FIG. 6, the first terminal signal Sd1 as shown in FIG. 2 is used as the first representative voltage, and the second terminal signal Sd2 as shown in FIG. 2 is used as the second representative. Voltage.

於圖6所示實施例中,電壓提供電路540包括第一比較器541、第二比較器542、運算電路543、第一數位類比轉換器(digital analog converter, DAC)544以及第二數位類比轉換器545。第一比較器541的第一輸入端耦接至第一積分取樣電路120,以接收第一代表電壓(第一端信號Sd1)。第一比較器541的第二輸入端耦接至共同電壓Vref。第一比較器541可以比較第一端信號Sd1與共同電壓Vref,以獲得第一比較結果。第一比較器541的輸出端輸出第一比較結果。第二比較器542的第一輸入端耦接至第二積分取樣電路130,以接收第二代表電壓(第二端信號Sd2)。第二比較器542的第二輸入端耦接至共同電壓Vref。第二比較器542可以比較第二端信號Sd2與共同電壓Vref,以獲得第二比較結果。第二比較器542的輸出端輸出第二比較結果。In the embodiment shown in FIG. 6, the voltage supply circuit 540 includes a first comparator 541, a second comparator 542, an operation circuit 543, a first digital analog converter (DAC) 544, and a second digital analog converter.器 545. A first input terminal of the first comparator 541 is coupled to the first integration sampling circuit 120 to receive a first representative voltage (a first terminal signal Sd1). The second input terminal of the first comparator 541 is coupled to the common voltage Vref. The first comparator 541 may compare the first terminal signal Sd1 and the common voltage Vref to obtain a first comparison result. An output of the first comparator 541 outputs a first comparison result. A first input terminal of the second comparator 542 is coupled to the second integration sampling circuit 130 to receive a second representative voltage (a second terminal signal Sd2). The second input terminal of the second comparator 542 is coupled to the common voltage Vref. The second comparator 542 may compare the second terminal signal Sd2 and the common voltage Vref to obtain a second comparison result. An output of the second comparator 542 outputs a second comparison result.

運算電路543耦接至第一比較器541,以接收所述第一比較結果。運算電路543耦接至第二比較器542,以接收所述第二比較結果。在一些實施例中,運算電路543可以依據所述第一比較結果與所述第二比較結果來進行一個演算法,以計算出第一電壓值與第二電壓值。在另一些實施例中,運算電路543可以依據所述第一比較結果與所述第二比較結果來從一個查照表中找出第一電壓值與第二電壓值。所述演算法或所述查照表可以依照設計需求來設定。The operation circuit 543 is coupled to the first comparator 541 to receive the first comparison result. The operation circuit 543 is coupled to the second comparator 542 to receive the second comparison result. In some embodiments, the arithmetic circuit 543 may perform an algorithm according to the first comparison result and the second comparison result to calculate a first voltage value and a second voltage value. In other embodiments, the arithmetic circuit 543 may find the first voltage value and the second voltage value from a look-up table according to the first comparison result and the second comparison result. The algorithm or the lookup table can be set according to design requirements.

第一數位類比轉換器544耦接至運算電路543,以接收所述第一電壓值。第一數位類比轉換器544可以將所述第一電壓值轉換為參考電壓VL,以及將參考電壓VL輸出給第一積分取樣電路120中的增量相關雙採樣電路122。運算電路543可以將參考電壓VL設定為某一個「第一未觸碰準位」,使得當觸控面板10沒有發生觸碰事件時(如圖3所示),增量相關雙採樣電路122沒有多餘電荷轉移給正向積分電路123,進而使正向積分電路123所輸出的第一端信號Sd1的準位保持於差動信號Sdiff的共模信號範圍中(例如保持於共同電壓Vref)。第一比較器541可以維持參考電壓VL的穩定。The first digital-to-analog converter 544 is coupled to the operation circuit 543 to receive the first voltage value. The first digital-to-analog converter 544 may convert the first voltage value into a reference voltage VL, and output the reference voltage VL to the incremental correlation double sampling circuit 122 in the first integration sampling circuit 120. The arithmetic circuit 543 may set the reference voltage VL to a certain “first non-touch level”, so that when the touch event does not occur on the touch panel 10 (as shown in FIG. 3), the incremental correlation double sampling circuit 122 does not. The excess charge is transferred to the forward integration circuit 123, so that the level of the first-end signal Sd1 output by the forward integration circuit 123 is maintained within the common mode signal range of the differential signal Sdiff (for example, maintained at the common voltage Vref). The first comparator 541 can maintain the stability of the reference voltage VL.

第二數位類比轉換器545耦接至運算電路543,以接收所述第二電壓值。第二數位類比轉換器545可以將所述第二電壓值轉換為參考電壓VH,以及將參考電壓VH輸出給第二積分取樣電路130中的增量相關雙採樣電路132。運算電路543可以將參考電壓VH設定為某一個「第二未觸碰準位」,使得當觸控面板10沒有發生觸碰事件時(如圖3所示)增量相關雙採樣電路132沒有多餘電荷轉移給反向積分電路133,進而使反向積分電路133所輸出的第一端信號Sd1的準位保持於差動信號Sdiff的共模信號範圍中(例如保持於共同電壓Vref)。第二比較器542可以維持參考電壓VH的穩定。The second digital-to-analog converter 545 is coupled to the operation circuit 543 to receive the second voltage value. The second digital analog converter 545 may convert the second voltage value into a reference voltage VH, and output the reference voltage VH to the incremental correlation double sampling circuit 132 in the second integration sampling circuit 130. The arithmetic circuit 543 can set the reference voltage VH to a certain “second untouched level”, so that when the touch panel 10 does not touch the event (as shown in FIG. 3), the incremental correlation double sampling circuit 132 is not redundant. The charge is transferred to the inverse integration circuit 133, so that the level of the first-end signal Sd1 output by the inverse integration circuit 133 is maintained in the common mode signal range of the differential signal Sdiff (for example, the common voltage Vref). The second comparator 542 can maintain the stability of the reference voltage VH.

圖7是依照本發明另一實施例說明圖5所示觸控面板驅動裝置500的電路方塊示意圖。於圖7所示實施例中,第一積分取樣電路120包括反向積分電路121、增量相關雙採樣電路122以及正向積分電路123。第二積分取樣電路130包括正向積分電路131、增量相關雙採樣電路132以及反向積分電路133。圖7所示反向積分電路121、增量相關雙採樣電路122、正向積分電路123、正向積分電路131、增量相關雙採樣電路132以及反向積分電路133可以參照圖1至圖4的相關說明來類推,故不再贅述。於圖7所示實施例中,在第一積分取樣電路120中的反向積分電路121所輸出的積分結果Vca1被拿來作為第一積分取樣電路120的所述第一代表電壓,而在第二積分取樣電路130中的正向積分電路131所輸出的積分結果Vca2被拿來作為第二積分取樣電路130的所述第二代表電壓。FIG. 7 is a schematic circuit block diagram illustrating the touch panel driving device 500 shown in FIG. 5 according to another embodiment of the present invention. In the embodiment shown in FIG. 7, the first integration sampling circuit 120 includes a reverse integration circuit 121, an incremental correlation double sampling circuit 122, and a forward integration circuit 123. The second integration sampling circuit 130 includes a forward integration circuit 131, an incremental correlation double sampling circuit 132, and a reverse integration circuit 133. The reverse integration circuit 121, the delta correlation double sampling circuit 122, the forward integration circuit 123, the forward integration circuit 131, the delta correlation double sampling circuit 132, and the reverse integration circuit 133 shown in FIG. 7 can be referred to FIGS. 1 to 4 The relevant descriptions are analogized, so they will not be repeated. In the embodiment shown in FIG. 7, the integration result Vca1 output by the inverse integration circuit 121 in the first integration sampling circuit 120 is used as the first representative voltage of the first integration sampling circuit 120, and in the first The integration result Vca2 output by the forward integration circuit 131 in the two integration sampling circuit 130 is used as the second representative voltage of the second integration sampling circuit 130.

於圖7所示實施例中,電壓提供電路540包括第一類比數位轉換器(analog digital converter, ADC)546、第二類比數位轉換器547、運算電路543、第一數位類比轉換器544以及第二數位類比轉換器545。第一類比數位轉換器546的輸入端耦接至第一積分取樣電路120中的反向積分電路121的輸出端,以接收第一代表電壓(積分結果Vca1)。第一類比數位轉換器546的輸出端輸出第一電壓值。第二類比數位轉換器547的輸入端耦接至第二積分取樣電路130中的正向積分電路131的輸出端,以接收第二代表電壓(積分結果Vca2)。第二類比數位轉換器547的輸出端輸出第二電壓值。In the embodiment shown in FIG. 7, the voltage providing circuit 540 includes a first analog digital converter (ADC) 546, a second analog digital converter 547, an operation circuit 543, a first digital analog converter 544, and a first Two-digit analog converter 545. An input terminal of the first analog-to-digital converter 546 is coupled to an output terminal of the inverse integration circuit 121 in the first integration sampling circuit 120 to receive a first representative voltage (integration result Vca1). An output terminal of the first analog-to-digital converter 546 outputs a first voltage value. An input terminal of the second analog-to-digital converter 547 is coupled to an output terminal of the forward integration circuit 131 in the second integration sampling circuit 130 to receive a second representative voltage (integration result Vca2). An output terminal of the second analog-to-digital converter 547 outputs a second voltage value.

運算電路543耦接至第一類比數位轉換器546,以接收所述第一電壓值。運算電路543耦接至第二類比數位轉換器547,以接收所述第二電壓值。在一些實施例中,運算電路543可以依據所述第一電壓值與所述第二電壓值來進行一個演算法,以計算出第三電壓值與第四電壓值。在另一些實施例中,運算電路543可以依據所述第一電壓值與所述第二電壓值來從一個查照表中找出第三電壓值與第四電壓值。所述演算法或所述查照表可以依照設計需求來設定。The operation circuit 543 is coupled to the first analog-to-digital converter 546 to receive the first voltage value. The operation circuit 543 is coupled to the second analog-to-digital converter 547 to receive the second voltage value. In some embodiments, the arithmetic circuit 543 may perform an algorithm according to the first voltage value and the second voltage value to calculate a third voltage value and a fourth voltage value. In other embodiments, the arithmetic circuit 543 may find the third voltage value and the fourth voltage value from a look-up table according to the first voltage value and the second voltage value. The algorithm or the lookup table can be set according to design requirements.

第一數位類比轉換器544耦接至運算電路543,以接收所述第三電壓值。第一數位類比轉換器544可以將所述第三電壓值轉換為參考電壓VL,以及將參考電壓VL輸出給在第一積分取樣電路120中的增量相關雙採樣電路122。運算電路543可以將參考電壓VL設定為某一個「第一未觸碰準位」,使得當觸控面板10沒有發生觸碰事件時(如圖3所示),增量相關雙採樣電路122沒有多餘電荷轉移給正向積分電路123,進而使正向積分電路123所輸出的第一端信號Sd1的準位保持於差動信號Sdiff的共模信號範圍中(例如保持於共同電壓Vref)。電壓提供電路540可以回授方式維持參考電壓VL的穩定。The first digital-to-analog converter 544 is coupled to the operation circuit 543 to receive the third voltage value. The first digital analog converter 544 may convert the third voltage value into a reference voltage VL, and output the reference voltage VL to the incremental correlation double sampling circuit 122 in the first integration sampling circuit 120. The arithmetic circuit 543 may set the reference voltage VL to a certain “first non-touch level”, so that when the touch event does not occur on the touch panel 10 (as shown in FIG. 3), the incremental correlation double sampling circuit 122 does not. The excess charge is transferred to the forward integration circuit 123, so that the level of the first-end signal Sd1 output by the forward integration circuit 123 is maintained within the common mode signal range of the differential signal Sdiff (for example, maintained at the common voltage Vref). The voltage supply circuit 540 can maintain the stability of the reference voltage VL in a feedback manner.

第二數位類比轉換器545耦接至運算電路543,以接收所述第四電壓值。第二數位類比轉換器545可以將所述第四電壓值轉換為參考電壓VH,以及將參考電壓VH輸出給在第二積分取樣電路130中的增量相關雙採樣電路132。運算電路543可以將參考電壓VH設定為某一個「第二未觸碰準位」,使得當觸控面板10沒有發生觸碰事件時(如圖3所示)增量相關雙採樣電路132沒有多餘電荷轉移給反向積分電路133,進而使反向積分電路133所輸出的第一端信號Sd1的準位保持於差動信號Sdiff的共模信號範圍中(例如保持於共同電壓Vref)。電壓提供電路540可以回授方式維持參考電壓VH的穩定。The second digital-to-analog converter 545 is coupled to the operation circuit 543 to receive the fourth voltage value. The second digital analog converter 545 may convert the fourth voltage value into a reference voltage VH, and output the reference voltage VH to the incremental correlation double sampling circuit 132 in the second integration sampling circuit 130. The arithmetic circuit 543 can set the reference voltage VH to a certain “second untouched level”, so that when the touch panel 10 does not touch the event (as shown in FIG. 3), the incremental correlation double sampling circuit 132 is not redundant. The charge is transferred to the inverse integration circuit 133, so that the level of the first-end signal Sd1 output by the inverse integration circuit 133 is maintained in the common mode signal range of the differential signal Sdiff (for example, the common voltage Vref). The voltage supply circuit 540 can maintain the stability of the reference voltage VH in a feedback manner.

圖8是依照本發明又一實施例說明圖5所示觸控面板驅動裝置500的電路方塊示意圖。於圖8所示實施例中,第一積分取樣電路120包括反向積分電路121、增量相關雙採樣電路122以及正向積分電路123。第二積分取樣電路130包括正向積分電路131、增量相關雙採樣電路132以及反向積分電路133。圖8所示反向積分電路121、增量相關雙採樣電路122、正向積分電路123、正向積分電路131、增量相關雙採樣電路132以及反向積分電路133可以參照圖1至圖4的相關說明來類推,故不再贅述。於圖8所示實施例中,如圖2中的第一端信號Sd1被拿來作為所述第一代表電壓,而如圖2中的第二端信號Sd2被拿來作為所述第二代表電壓。FIG. 8 is a schematic circuit block diagram illustrating the touch panel driving device 500 shown in FIG. 5 according to another embodiment of the present invention. In the embodiment shown in FIG. 8, the first integration sampling circuit 120 includes a reverse integration circuit 121, an incremental correlation double sampling circuit 122, and a forward integration circuit 123. The second integration sampling circuit 130 includes a forward integration circuit 131, an incremental correlation double sampling circuit 132, and a reverse integration circuit 133. The reverse integration circuit 121, the incremental correlation double sampling circuit 122, the forward integration circuit 123, the forward integration circuit 131, the incremental correlation double sampling circuit 132, and the reverse integration circuit 133 shown in FIG. 8 can be referred to FIGS. 1 to 4 The relevant descriptions are analogized, so they will not be repeated. In the embodiment shown in FIG. 8, the first terminal signal Sd1 as shown in FIG. 2 is used as the first representative voltage, and the second terminal signal Sd2 as shown in FIG. 2 is used as the second representative. Voltage.

於圖8所示實施例中,電壓提供電路540包括類比數位轉換器841、運算電路842以及數位類比轉換器843。類比數位轉換器841耦接至第一積分取樣電路120,以接收第一代表電壓(第一端信號Sd1)。類比數位轉換器841耦接至第二積分取樣電路130,以接收第二代表電壓(第二端信號Sd2)。類比數位轉換器841可以將所述第一代表電壓(第一端信號Sd1)轉換為第一電壓值,以及將所述第二代表電壓(第二端信號Sd2)轉換為第二電壓值。In the embodiment shown in FIG. 8, the voltage supply circuit 540 includes an analog-to-digital converter 841, an operation circuit 842, and a digital-to-analog converter 843. The analog-to-digital converter 841 is coupled to the first integration sampling circuit 120 to receive a first representative voltage (a first-end signal Sd1). The analog-to-digital converter 841 is coupled to the second integration sampling circuit 130 to receive a second representative voltage (second end signal Sd2). The analog-to-digital converter 841 can convert the first representative voltage (the first terminal signal Sd1) into a first voltage value, and convert the second representative voltage (the second terminal signal Sd2) into a second voltage value.

運算電路842耦接至類比數位轉換器841,以接收所述第一電壓值與所述第二電壓值。在一些實施例中,運算電路842可以依據所述第一電壓值與所述第二電壓值來進行一個演算法,以計算出第三電壓值與第四電壓值。在另一些實施例中,運算電路842可以依據所述第一比較結果與所述第二比較結果來從一個查照表中找出所述第三電壓值與所述第四電壓值。所述演算法或所述查照表可以依照設計需求來設定。The operation circuit 842 is coupled to the analog-to-digital converter 841 to receive the first voltage value and the second voltage value. In some embodiments, the arithmetic circuit 842 may perform an algorithm according to the first voltage value and the second voltage value to calculate a third voltage value and a fourth voltage value. In other embodiments, the arithmetic circuit 842 may find the third voltage value and the fourth voltage value from a lookup table according to the first comparison result and the second comparison result. The algorithm or the lookup table can be set according to design requirements.

數位類比轉換器843耦接至運算電路842,以接收所述第三電壓值與所述第四電壓值。數位類比轉換器843可以將所述第三電壓值轉換為參考電壓VL,以及將參考電壓VL輸出給在第一積分取樣電路120中的增量相關雙採樣電路122。運算電路842可以將參考電壓VL設定為某一個「第一未觸碰準位」,使得當觸控面板10沒有發生觸碰事件時(如圖3所示),增量相關雙採樣電路122沒有多餘電荷轉移給正向積分電路123,進而使正向積分電路123所輸出的第一端信號Sd1的準位保持於差動信號Sdiff的共模信號範圍中(例如保持於共同電壓Vref)。電壓提供電路540可以回授方式維持參考電壓VL的穩定。The digital-to-analog converter 843 is coupled to the operation circuit 842 to receive the third voltage value and the fourth voltage value. The digital analog converter 843 may convert the third voltage value into a reference voltage VL, and output the reference voltage VL to the incremental correlation double sampling circuit 122 in the first integration sampling circuit 120. The arithmetic circuit 842 may set the reference voltage VL to a certain "first non-touch level", so that when the touch event does not occur on the touch panel 10 (as shown in FIG. 3), the incremental correlation double sampling circuit 122 does not. The excess charge is transferred to the forward integration circuit 123, so that the level of the first-end signal Sd1 output by the forward integration circuit 123 is maintained within the common-mode signal range of the differential signal Sdiff (for example, maintained at the common voltage Vref). The voltage supply circuit 540 can maintain the stability of the reference voltage VL in a feedback manner.

數位類比轉換器843還可以將所述第四電壓值轉換為參考電壓VH,以及將參考電壓VH輸出給在第二積分取樣電路130中的增量相關雙採樣電路132。運算電路842可以將參考電壓VH設定為某一個「第二未觸碰準位」,使得當觸控面板10沒有發生觸碰事件時(如圖3所示)增量相關雙採樣電路132沒有多餘電荷轉移給反向積分電路133,進而使反向積分電路133所輸出的第一端信號Sd1的準位保持於差動信號Sdiff的共模信號範圍中(例如保持於共同電壓Vref)。電壓提供電路540可以回授方式維持參考電壓VH的穩定。The digital analog converter 843 may further convert the fourth voltage value into a reference voltage VH, and output the reference voltage VH to the incremental correlation double sampling circuit 132 in the second integration sampling circuit 130. The arithmetic circuit 842 may set the reference voltage VH to a certain “second untouched level”, so that when the touch panel 10 does not touch the event (as shown in FIG. 3), the incremental correlation double sampling circuit 132 is not redundant. The charge is transferred to the inverse integration circuit 133, so that the level of the first-end signal Sd1 output by the inverse integration circuit 133 is maintained in the common mode signal range of the differential signal Sdiff (for example, the common voltage Vref). The voltage supply circuit 540 can maintain the stability of the reference voltage VH in a feedback manner.

圖9是依照本發明的又一實施例所繪示的一種觸控面板驅動裝置900的電路方塊示意圖。觸控面板驅動裝置900可以驅動觸控面板10,而產生觸控面板10的偵測結果所對應的差動信號Sdiff。所述觸控面板驅動裝置900包括驅動電路110、第一積分取樣電路120、第二積分取樣電路130、基線補償電路(baseline compensator circuit)950以及類比數位轉換器960。圖9所示觸控面板10、觸控面板驅動裝置900、驅動電路110、第一積分取樣電路120以及第二積分取樣電路130可以參照圖1至圖4所示觸控面板10、觸控面板驅動裝置100、驅動電路110、第一積分取樣電路120以及第二積分取樣電路130的相關說明來類推,故不再贅述。FIG. 9 is a schematic circuit block diagram of a touch panel driving device 900 according to another embodiment of the present invention. The touch panel driving device 900 can drive the touch panel 10 and generate a differential signal Sdiff corresponding to a detection result of the touch panel 10. The touch panel driving device 900 includes a driving circuit 110, a first integration sampling circuit 120, a second integration sampling circuit 130, a baseline compensator circuit 950, and an analog-to-digital converter 960. The touch panel 10, the touch panel driving device 900, the driving circuit 110, the first integration sampling circuit 120, and the second integration sampling circuit 130 shown in FIG. 9 can refer to the touch panel 10 and the touch panel shown in FIGS. 1 to 4. Relevant descriptions of the driving device 100, the driving circuit 110, the first integration sampling circuit 120, and the second integration sampling circuit 130 are deduced by analogy, so they are not described again.

於圖9所示實施例中,基線補償電路950具有差動輸入端對與差動輸出端對。基線補償電路950的差動輸入端對耦接至第一積分取樣電路120與第二積分取樣電路130,以接收差動信號Sdiff。類比數位轉換器960具有差動輸入端對。類比數位轉換器960的差動輸入端對耦接至基線補償電路950的差動輸出端對。In the embodiment shown in FIG. 9, the baseline compensation circuit 950 has a pair of differential input terminals and a pair of differential output terminals. The differential input terminal pair of the baseline compensation circuit 950 is coupled to the first integration sampling circuit 120 and the second integration sampling circuit 130 to receive the differential signal Sdiff. The analog-to-digital converter 960 has a differential input terminal pair. The differential input terminal pair of the analog-to-digital converter 960 is coupled to the differential output terminal pair of the baseline compensation circuit 950.

於圖9所示實施例中,基線補償電路950包括差動放大器Adiff、第一開關SW51、第二開關SW52、第三開關SW53、第四開關SW54、第五開關SW55、第六開關SW56、第七開關SW57、第八開關SW58、第九開關SW59、第十開關SW510、第十一開關SW511、第十二開關SW512、第一電容C51、第二電容C52、第三電容C53、第四電容C54、第五電容C55以及第六電容C56。差動放大器Adiff的反相輸出端與非反相輸出端作為基線補償電路950的差動輸出端對。In the embodiment shown in FIG. 9, the baseline compensation circuit 950 includes a differential amplifier Adiff, a first switch SW51, a second switch SW52, a third switch SW53, a fourth switch SW54, a fifth switch SW55, a sixth switch SW56, and a third switch. Seven switch SW57, eighth switch SW58, ninth switch SW59, tenth switch SW510, eleventh switch SW511, twelfth switch SW512, first capacitor C51, second capacitor C52, third capacitor C53, fourth capacitor C54 A fifth capacitor C55 and a sixth capacitor C56. The inverting output terminal and the non-inverting output terminal of the differential amplifier Adiff serve as a differential output terminal pair of the baseline compensation circuit 950.

第一開關SW51的第一端耦接至第一積分取樣電路120,以接收差動信號Sdiff中的第一端信號Sd1。第七開關SW57的第一端耦接至第二積分取樣電路130,以接收差動信號Sdiff中的第二端信號Sd2。第一開關SW51的控制端與第七開關SW57的控制端均受控於時脈信號clk2。第二開關SW52的控制端受控於時脈信號clk1。第一電容C51的第一端耦接至第一開關SW51的第二端。第一電容C51的第二端耦接至差動放大器Adiff的反相輸入端。第四電容C54的第一端耦接至第七開關SW57的第二端。第四電容C54的第二端耦接至差動放大器Adiff的非反相輸入端。The first terminal of the first switch SW51 is coupled to the first integration sampling circuit 120 to receive the first terminal signal Sd1 in the differential signal Sdiff. A first terminal of the seventh switch SW57 is coupled to the second integration sampling circuit 130 to receive a second terminal signal Sd2 in the differential signal Sdiff. The control terminal of the first switch SW51 and the control terminal of the seventh switch SW57 are both controlled by the clock signal clk2. The control terminal of the second switch SW52 is controlled by the clock signal clk1. A first terminal of the first capacitor C51 is coupled to a second terminal of the first switch SW51. The second terminal of the first capacitor C51 is coupled to the inverting input terminal of the differential amplifier Adiff. A first terminal of the fourth capacitor C54 is coupled to a second terminal of the seventh switch SW57. The second terminal of the fourth capacitor C54 is coupled to the non-inverting input terminal of the differential amplifier Adiff.

第二開關SW52的第一端耦接至第一開關SW51的第二端。第二開關SW52的第二端耦接至參考電壓(例如接地電壓)。第三開關SW53的第一端耦接至差動放大器Adiff的反相輸入端。第三開關的控制端受控於時脈信號clk2。第四開關SW54的第一端耦接至第三開關SW53的第二端。第四開關SW54的第二端耦接至參考電壓(例如接地電壓)。第四開關SW54的控制端受控於時脈信號clk1。第二電容C52的第一端耦接至第三開關SW53的第二端。第二電容C52的第二端耦接至差動放大器Adiff的非反相輸出端。第三電容C53的第一端耦接至差動放大器Adiff的反相輸入端。第五開關SW55的第一端耦接至第三電容C53的第二端。第五開關SW55的第二端耦接至參考電壓(例如接地電壓)。第五開關SW55的控制端受控於時脈信號clk2。第六開關SW56的第一端耦接至第三電容C53的第二端。第六開關SW56的第二端耦接至差動放大器Adiff的非反相輸出端。第六開關SW56的控制端受控於時脈信號clk1。A first terminal of the second switch SW52 is coupled to a second terminal of the first switch SW51. The second terminal of the second switch SW52 is coupled to a reference voltage (such as a ground voltage). The first terminal of the third switch SW53 is coupled to the inverting input terminal of the differential amplifier Adiff. The control terminal of the third switch is controlled by the clock signal clk2. A first terminal of the fourth switch SW54 is coupled to a second terminal of the third switch SW53. The second terminal of the fourth switch SW54 is coupled to a reference voltage (such as a ground voltage). The control terminal of the fourth switch SW54 is controlled by the clock signal clk1. A first terminal of the second capacitor C52 is coupled to a second terminal of the third switch SW53. The second terminal of the second capacitor C52 is coupled to the non-inverting output terminal of the differential amplifier Adiff. The first terminal of the third capacitor C53 is coupled to the inverting input terminal of the differential amplifier Adiff. A first terminal of the fifth switch SW55 is coupled to a second terminal of the third capacitor C53. The second terminal of the fifth switch SW55 is coupled to a reference voltage (such as a ground voltage). The control terminal of the fifth switch SW55 is controlled by the clock signal clk2. A first terminal of the sixth switch SW56 is coupled to a second terminal of the third capacitor C53. The second terminal of the sixth switch SW56 is coupled to the non-inverting output terminal of the differential amplifier Adiff. The control terminal of the sixth switch SW56 is controlled by the clock signal clk1.

第八開關SW58的第一端耦接至第七開關SW57的第二端。第八開關SW58的第二端耦接至參考電壓(例如接地電壓)。第八開關SW58的控制端受控於時脈信號clk1。第九開關SW59關的第一端耦接至差動放大器Adiff的非反相輸入端。第九開關SW59的控制端受控於時脈信號clk2。第十開關SW510的第一端耦接至第九開關SW59的第二端。第十開關SW510的第二端耦接至參考電壓(例如接地電壓)。第十開關SW510的控制端受控於時脈信號clk1。第五電容C55的該第一端耦接至該第九開關的該第二端。第五電容C55的第二端耦接至參考電壓(例如接地電壓)。第六電容C56的第一端耦接至差動放大器Adiff的非反相輸入端。第十一開關SW511的第一端耦接至第六電容C56的第二端。第十一開關SW511的第二端耦接至參考電壓(例如接地電壓)。第十一開關SW511的控制端受控於時脈信號clk2。第十二開關SW512的第一端耦接至第六電容C56的第二端。第十二開關SW512的第二端耦接至參考電壓(例如接地電壓)。第十二開關SW512的控制端受控於時脈信號clk1。A first terminal of the eighth switch SW58 is coupled to a second terminal of the seventh switch SW57. The second terminal of the eighth switch SW58 is coupled to a reference voltage (such as a ground voltage). The control terminal of the eighth switch SW58 is controlled by the clock signal clk1. The first terminal of the ninth switch SW59 is coupled to the non-inverting input terminal of the differential amplifier Adiff. The control terminal of the ninth switch SW59 is controlled by the clock signal clk2. A first terminal of the tenth switch SW510 is coupled to a second terminal of the ninth switch SW59. The second terminal of the tenth switch SW510 is coupled to a reference voltage (such as a ground voltage). The control terminal of the tenth switch SW510 is controlled by the clock signal clk1. The first terminal of the fifth capacitor C55 is coupled to the second terminal of the ninth switch. The second terminal of the fifth capacitor C55 is coupled to a reference voltage (such as a ground voltage). The first terminal of the sixth capacitor C56 is coupled to the non-inverting input terminal of the differential amplifier Adiff. The first terminal of the eleventh switch SW511 is coupled to the second terminal of the sixth capacitor C56. The second terminal of the eleventh switch SW511 is coupled to a reference voltage (such as a ground voltage). The control end of the eleventh switch SW511 is controlled by the clock signal clk2. The first terminal of the twelfth switch SW512 is coupled to the second terminal of the sixth capacitor C56. The second terminal of the twelfth switch SW512 is coupled to a reference voltage (such as a ground voltage). The control terminal of the twelfth switch SW512 is controlled by the clock signal clk1.

綜上所述,本發明諸實施例所述觸控面板驅動裝置100、500或900利用兩個積分取樣電路120與130來讀取觸控面板10的感測信號。積分取樣電路120與130分別產生差動信號Sdiff中的第一端信號Sd1與第二端信號Sd2。當觸控面板10沒發生觸碰事件時,第一端信號Sd1與第二端信號Sd2的準位落於差動信號Sdiff的共模信號範圍。舉例來說,第一端信號Sd1與第二端信號Sd2的準位可以被保持於共同電壓Vref。當觸控面板10發生觸碰事件時,第一積分取樣電路120可以將此第一端信號Sd1的準位上拉至共模信號範圍外,而第二積分取樣電路130可以將此第二端信號Sd2的準位下拉至共模信號範圍外。因此,本發明諸實施例所述觸控面板驅動裝置100、500或900可以依據觸控面板10的偵測結果來對應產生高擺幅、高訊雜比的差動信號Sdiff。基於高擺幅、高訊雜比的信號特性,本發明諸實施例所述觸控面板驅動裝置可以解決觸控面板10與下板(例如顯示面板)之間距過近而造成的干擾問題。In summary, the touch panel driving device 100, 500 or 900 according to the embodiments of the present invention uses two integration sampling circuits 120 and 130 to read the sensing signals of the touch panel 10. The integration sampling circuits 120 and 130 generate a first-end signal Sd1 and a second-end signal Sd2 in the differential signal Sdiff, respectively. When no touch event occurs on the touch panel 10, the level of the first-end signal Sd1 and the second-end signal Sd2 falls within the common-mode signal range of the differential signal Sdiff. For example, the levels of the first-end signal Sd1 and the second-end signal Sd2 may be maintained at a common voltage Vref. When a touch event occurs on the touch panel 10, the first integration sampling circuit 120 may pull up the level of the first-end signal Sd1 beyond the common-mode signal range, and the second integration sampling circuit 130 may connect the second end The level of the signal Sd2 is pulled out of the common-mode signal range. Therefore, the touch panel driving apparatus 100, 500, or 900 according to the embodiments of the present invention can correspondingly generate a differential signal Sdiff with a high swing and a high signal-to-noise ratio according to the detection result of the touch panel 10. Based on the signal characteristics of high swing and high signal-to-noise ratio, the touch panel driving device according to the embodiments of the present invention can solve the interference problem caused by the too close distance between the touch panel 10 and the lower panel (such as the display panel).

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.

10‧‧‧觸控面板
11‧‧‧觸控單元
100‧‧‧觸控面板驅動裝置
110‧‧‧驅動電路
120‧‧‧第一積分取樣電路
121‧‧‧反向積分電路
121a‧‧‧運算放大器
121b‧‧‧回授電容
121c‧‧‧重置開關
122‧‧‧增量相關雙採樣電路
122a、122b、122c、122d‧‧‧開關
122e‧‧‧採樣電容
123‧‧‧正向積分電路
123a‧‧‧運算放大器
123b‧‧‧回授電容
123c‧‧‧重置開關
130‧‧‧第二積分取樣電路
131‧‧‧正向積分電路
131a‧‧‧運算放大器
131b‧‧‧回授電容
131c‧‧‧重置開關
132‧‧‧增量相關雙採樣電路
132a、132b、132c、132d‧‧‧開關
132e‧‧‧採樣電容
133‧‧‧反向積分電路
133a‧‧‧運算放大器
133b‧‧‧回授電容
133c‧‧‧重置開關
500‧‧‧觸控面板驅動裝置
540‧‧‧電壓提供電路
541‧‧‧第一比較器
542‧‧‧第二比較器
543‧‧‧運算電路
544‧‧‧第一數位類比轉換器
545‧‧‧第二數位類比轉換器
546‧‧‧第一類比數位轉換器
547‧‧‧第二類比數位轉換器
841‧‧‧類比數位轉換器
842‧‧‧運算電路
843‧‧‧數位類比轉換器
900‧‧‧觸控面板驅動裝置
950‧‧‧基線補償電路
960‧‧‧類比數位轉換器
ϕ1‧‧‧第一控制信號
ϕ2‧‧‧第二控制信號
Adiff‧‧‧差動放大器
C51‧‧‧第一電容
C52‧‧‧第二電容
C53‧‧‧第三電容
C54‧‧‧第四電容
C55‧‧‧第五電容
C56‧‧‧第六電容
clk1、clk2‧‧‧時脈信號
Cm‧‧‧互電容
Cs1、Cs2‧‧‧寄生電容
Reset_CA‧‧‧重置信號
Reset_Int‧‧‧重置信號
Rp1、Rp2‧‧‧寄生阻抗
Sd1‧‧‧第一端信號
Sd2‧‧‧第二端信號
Sdiff‧‧‧差動信號
SW11‧‧‧第一開關
SW12‧‧‧第二開關
SW13‧‧‧第三開關
SW14‧‧‧第四開關
SW51‧‧‧第一開關
SW52‧‧‧第二開關
SW53‧‧‧第三開關
SW54‧‧‧第四開關
SW55‧‧‧第五開關
SW56‧‧‧第六開關
SW57‧‧‧第七開關
SW58‧‧‧第八開關
SW59‧‧‧第九開關
SW510‧‧‧第十開關
SW511‧‧‧第十一開關
SW512‧‧‧第十二開關
Vca1、Vca2‧‧‧積分結果
VH‧‧‧參考電壓
Vin‧‧‧第一驅動信號
VL‧‧‧參考電壓
Vref‧‧‧共同電壓
10‧‧‧Touch Panel
11‧‧‧Touch Unit
100‧‧‧touch panel driving device
110‧‧‧Drive circuit
120‧‧‧The first integration sampling circuit
121‧‧‧ Inverse Integrating Circuit
121a‧‧‧ Operational Amplifier
121b‧‧‧Feedback capacitor
121c‧‧‧Reset switch
122‧‧‧ Incremental Correlation Double Sampling Circuit
122a, 122b, 122c, 122d‧‧‧ Switches
122e‧‧‧sampling capacitor
123‧‧‧forward integration circuit
123a‧‧‧ Operational Amplifier
123b‧‧‧Feedback capacitor
123c‧‧‧Reset switch
130‧‧‧Second integration sampling circuit
131‧‧‧ Forward Integrating Circuit
131a‧‧‧ Operational Amplifier
131b‧‧‧Feedback capacitor
131c‧‧‧Reset switch
132‧‧‧ Incremental Correlation Double Sampling Circuit
132a, 132b, 132c, 132d‧‧‧ Switches
132e‧‧‧sampling capacitor
133‧‧‧ Inverse integration circuit
133a‧‧‧ Operational Amplifier
133b‧‧‧Feedback capacitor
133c‧‧‧Reset switch
500‧‧‧touch panel driving device
540‧‧‧voltage supply circuit
541‧‧‧first comparator
542‧‧‧Second Comparator
543‧‧‧ Operation Circuit
544‧‧‧The first digital analog converter
545‧‧‧ Second Digital Analog Converter
546‧‧‧The first analog digital converter
547‧‧‧Second Analog Digital Converter
841‧‧‧ Analog Digital Converter
842‧‧‧ Operation Circuit
843‧‧‧Digital Analog Converter
900‧‧‧ touch panel driving device
950‧‧‧baseline compensation circuit
960‧‧‧Analog digital converterϕ1‧‧‧First control signal
Adiff‧‧‧ Differential Amplifier
C51‧‧‧First capacitor
C52‧‧‧Second capacitor
C53‧‧‧Third capacitor
C54‧‧‧Fourth capacitor
C55‧‧‧Fifth capacitor
C56‧‧‧sixth capacitor
clk1, clk2‧‧‧ clock signal
Cm‧‧‧ Mutual capacitance
Cs1, Cs2‧‧‧parasitic capacitance
Reset_CA‧‧‧ reset signal
Reset_Int‧‧‧ reset signal
Rp1, Rp2‧‧‧parasitic impedance
Sd1‧‧‧First-end signal
Sd2‧‧‧ second-end signal
Sdiff‧‧‧ Differential Signal
SW11‧‧‧The first switch
SW12‧‧‧Second switch
SW13‧‧‧Third switch
SW14‧‧‧Fourth switch
SW51‧‧‧The first switch
SW52‧‧‧Second switch
SW53‧‧‧Third switch
SW54‧‧‧Fourth switch
SW55‧‧‧Fifth switch
SW56‧‧‧Sixth switch
SW57‧‧‧Seventh switch
SW58‧‧‧eighth switch
SW59‧‧‧Ninth Switch
SW510‧‧‧Tenth switch
SW511‧‧‧Eleventh Switch
SW512‧‧‧The twelfth switch
Vca1, Vca2‧‧‧point result
VH‧‧‧Reference voltage
Vin‧‧‧first drive signal
VL‧‧‧Reference voltage
Vref‧‧‧ common voltage

圖1是依照本發明的一實施例所繪示的一種觸控面板驅動裝置的電路方塊(circuit block)示意圖。 圖2是依照本發明實施例說明圖1所示觸控面板驅動裝置的電路方塊示意圖。 圖3是依照本發明實施例說明當觸控面板沒有發生觸碰事件時,圖2所示電路的信號時序示意圖。 圖4是依照本發明實施例說明當觸控面板發生了觸碰事件時,圖2所示電路的信號時序示意圖。 圖5是依照本發明的另一實施例所繪示的一種觸控面板驅動裝置的電路方塊示意圖。 圖6是依照本發明一實施例說明圖5所示觸控面板驅動裝置的電路方塊示意圖。 圖7是依照本發明另一實施例說明圖5所示觸控面板驅動裝置的電路方塊示意圖。 圖8是依照本發明又一實施例說明圖5所示觸控面板驅動裝置的電路方塊示意圖。 圖9是依照本發明的又一實施例所繪示的一種觸控面板驅動裝置的電路方塊示意圖。FIG. 1 is a schematic diagram of a circuit block of a touch panel driving device according to an embodiment of the present invention. FIG. 2 is a schematic circuit block diagram illustrating the touch panel driving device shown in FIG. 1 according to an embodiment of the present invention. FIG. 3 is a schematic diagram illustrating a signal timing of the circuit shown in FIG. 2 when no touch event occurs on the touch panel according to an embodiment of the present invention. FIG. 4 is a schematic diagram illustrating signal timing of the circuit shown in FIG. 2 when a touch event occurs on the touch panel according to an embodiment of the present invention. FIG. 5 is a schematic circuit block diagram of a touch panel driving device according to another embodiment of the present invention. FIG. 6 is a schematic circuit block diagram illustrating the touch panel driving device shown in FIG. 5 according to an embodiment of the present invention. FIG. 7 is a schematic circuit block diagram illustrating the touch panel driving device shown in FIG. 5 according to another embodiment of the present invention. FIG. 8 is a schematic circuit block diagram illustrating the touch panel driving device shown in FIG. 5 according to another embodiment of the present invention. FIG. 9 is a schematic circuit block diagram of a touch panel driving device according to another embodiment of the present invention.

Claims (20)

一種觸控面板驅動裝置,用以驅動一觸控面板而產生該觸控面板的偵測結果所對應的一差動信號,所述觸控面板驅動裝置包括: 一驅動電路,用以於一第一時脈期間提供一第一驅動信號至該觸控面板的一驅動線以及從該觸控面板的一感測線接收一感測信號,以及於一第二時脈期間提供一第二驅動信號至該驅動線以及從該感測線接收該感測信號; 一第一積分取樣電路,耦接至該驅動電路以於該第一時脈期間接收該感測信號,用以產生該差動信號中的一第一端信號,其中當該感測線的一感測電極沒有偵測到一觸碰事件時,該第一端信號的準位落於該差動信號的一共模信號範圍,以及當該感測線的該感測電極偵測到該觸碰事件時,該第一積分取樣電路依據該感測信號而將該第一端信號的準位上拉至該共模信號範圍外;以及 一第二積分取樣電路,耦接至該驅動電路以於該第二時脈期間接收該感測信號,用以產生該差動信號中的一第二端信號,其中當該感測線的該感測電極沒有偵測到該觸碰事件時,該第二端信號的準位落於該共模信號範圍,以及當該感測線的該感測電極偵測到該觸碰事件時,該第二積分取樣電路依據該感測信號而將該第二端信號的準位下拉至該共模信號範圍外。A touch panel driving device is used to drive a touch panel to generate a differential signal corresponding to the detection result of the touch panel. The touch panel driving device includes: a driving circuit for a first A first driving signal is provided to a driving line of the touch panel during a clock period, a sensing signal is received from a sensing line of the touch panel, and a second driving signal is provided to a second clock period. The driving line and the sensing signal are received from the sensing line; a first integration sampling circuit is coupled to the driving circuit to receive the sensing signal during the first clock period to generate the differential signal; A first-end signal, wherein when a touch event is not detected by a sensing electrode of the sensing line, the level of the first-end signal falls within a common-mode signal range of the differential signal, and when the sensing When the sensing electrode of the measuring line detects the touch event, the first integration sampling circuit pulls the level of the first end signal out of the common mode signal range according to the sensing signal; and a second Integral sampling circuit, coupled to The driving circuit is configured to receive the sensing signal during the second clock period to generate a second-end signal in the differential signal, wherein when the touch electrode of the sensing line does not detect the touch event The level of the second-end signal falls within the common-mode signal range, and when the touch event is detected by the sensing electrode of the sensing line, the second integration sampling circuit changes the signal according to the sensing signal. The level of the second-end signal is pulled out of the common-mode signal range. 如申請專利範圍第1項所述的觸控面板驅動裝置,其中該驅動電路包括: 一第一開關,用以於該第一時脈期間將該第一驅動信號傳輸至該觸控面板的該驅動線,以及於該第二時脈期間不傳輸該第一驅動信號; 一第二開關,用以於該第二時脈期間將該第二驅動信號傳輸至該觸控面板的該驅動線,以及於該第一時脈期間不傳輸該第二驅動信號; 一第三開關,耦接至該第一積分取樣電路,用以於該第一時脈期間將該觸控面板的該感測線的該感測信號傳輸至該第一積分取樣電路,以及於該第二時脈期間不傳輸該感測信號;以及 一第四開關,耦接至該第二積分取樣電路,用以於該第二時脈期間將該觸控面板的該感測線的該感測信號傳輸至該第二積分取樣電路,以及於該第一時脈期間不傳輸該感測信號。The touch panel driving device according to item 1 of the patent application scope, wherein the driving circuit includes: a first switch for transmitting the first driving signal to the touch panel during the first clock period; A driving line, and the first driving signal is not transmitted during the second clock period; a second switch for transmitting the second driving signal to the driving line of the touch panel during the second clock period, And the second driving signal is not transmitted during the first clock period; a third switch is coupled to the first integration sampling circuit, and is used for the sensing line of the touch panel during the first clock period The sensing signal is transmitted to the first integration sampling circuit, and the sensing signal is not transmitted during the second clock period; and a fourth switch is coupled to the second integration sampling circuit for the second integration sampling circuit. The sensing signal of the sensing line of the touch panel is transmitted to the second integration sampling circuit during a clock period, and the sensing signal is not transmitted during the first clock period. 如申請專利範圍第2項所述的觸控面板驅動裝置,其中該第一積分取樣電路包括: 一反向積分電路,耦接至該第三開關以接收該感測信號,用以對該感測信號進行一反向積分操作以輸出一第一積分結果; 一增量相關雙採樣電路,耦接至該反向積分電路的一輸出端以接收該第一積分結果,用以在一採樣期間採樣該第一積分結果以獲得一採樣結果,以及在一輸出期間使用一參考電壓對該採樣結果進行一泵送處理而獲得一泵送結果;以及 一正向積分電路,耦接至該增量相關雙採樣電路的一輸出端以接收該泵送結果,用以對該泵送結果進行一正向積分操作以輸出一第二積分結果作為該第一端信號。The touch panel driving device according to item 2 of the scope of patent application, wherein the first integration sampling circuit includes: an inverse integration circuit coupled to the third switch to receive the sensing signal for detecting the sensing signal. An inverse integration operation is performed on the measured signal to output a first integration result. An incremental correlation double sampling circuit is coupled to an output terminal of the inverse integration circuit to receive the first integration result for a sampling period. Sampling the first integration result to obtain a sampling result, and performing a pumping process on the sampling result using a reference voltage during an output period to obtain a pumping result; and a forward integration circuit coupled to the increment An output terminal of the correlated double sampling circuit receives the pumping result, and performs a forward integration operation on the pumping result to output a second integration result as the first terminal signal. 如申請專利範圍第3項所述的觸控面板驅動裝置,其中當該感測線的該感測電極沒有偵測到該觸碰事件時該採樣結果的準位為一未觸碰準位,以及該參考電壓的準位被設定為該未觸碰準位。The touch panel driving device according to item 3 of the scope of patent application, wherein when the sensing electrode of the sensing line does not detect the touch event, the level of the sampling result is an untouched level, and The level of the reference voltage is set to the untouched level. 如申請專利範圍第3項所述的觸控面板驅動裝置,其中該反向積分電路包括: 一運算放大器,具有一反相輸入端、一非反相輸入端與一輸出端,其中該反相輸入端耦接至該第三開關以接收該感測信號,該非反相輸入端耦接至一共同電壓,以及該運算放大器的該輸出端耦接至該增量相關雙採樣電路以提供該第一積分結果; 一回授電容,其一第一端與一第二端分別耦接至該反相輸入端與該運算放大器的該輸出端;以及 一重置開關,其一第一端與一第二端分別耦接至該反相輸入端與該運算放大器的該輸出端。The touch panel driving device according to item 3 of the scope of patent application, wherein the inverse integration circuit includes: an operational amplifier having an inverting input terminal, a non-inverting input terminal and an output terminal, wherein the inverting circuit An input terminal is coupled to the third switch to receive the sensing signal, the non-inverting input terminal is coupled to a common voltage, and the output terminal of the operational amplifier is coupled to the incremental correlation double sampling circuit to provide the first An integration result; a feedback capacitor, a first terminal and a second terminal of which are respectively coupled to the inverting input terminal and the output terminal of the operational amplifier; and a reset switch, which has a first terminal and a The second terminal is respectively coupled to the inverting input terminal and the output terminal of the operational amplifier. 如申請專利範圍第3項所述的觸控面板驅動裝置,其中該增量相關雙採樣電路包括: 一第五開關,具有一第一端、一第二端與一控制端,其中該第五開關的該第一端耦接至該反向積分電路的該輸出端以接收該第一積分結果,而該第五開關的該控制端受控於一第一控制信號; 一第六開關,具有一第一端、一第二端與一控制端,其中該第六開關的該第一端耦接至該參考電壓,而該第六開關的該控制端受控於一第二控制信號; 一採樣電容,其一第一端耦接至該第五開關的該第二端與該第六開關的該第二端; 一第七開關,具有一第一端、一第二端與一控制端,其中該第七開關的該第一端耦接至該採樣電容的一第二端,該第七開關的該第二端耦接至一共同電壓,而該第七開關的該控制端受控於該第一控制信號;以及 一第八開關,具有一第一端、一第二端與一控制端,其中該第八開關的該第一端耦接至該採樣電容的該第二端,該第八開關的該第二端耦接至該正向積分電路以提供該泵送結果,而該第八開關的該控制端受控於該第二控制信號。The touch panel driving device according to item 3 of the scope of patent application, wherein the incremental correlation double sampling circuit includes: a fifth switch having a first terminal, a second terminal, and a control terminal, wherein the fifth The first terminal of the switch is coupled to the output terminal of the inverse integration circuit to receive the first integration result, and the control terminal of the fifth switch is controlled by a first control signal; a sixth switch having A first terminal, a second terminal, and a control terminal, wherein the first terminal of the sixth switch is coupled to the reference voltage, and the control terminal of the sixth switch is controlled by a second control signal; A first terminal of the sampling capacitor is coupled to the second terminal of the fifth switch and the second terminal of the sixth switch; a seventh switch has a first terminal, a second terminal, and a control terminal Wherein the first terminal of the seventh switch is coupled to a second terminal of the sampling capacitor, the second terminal of the seventh switch is coupled to a common voltage, and the control terminal of the seventh switch is controlled To the first control signal; and an eighth switch having a first terminal, a second terminal and A control terminal, wherein the first terminal of the eighth switch is coupled to the second terminal of the sampling capacitor, the second terminal of the eighth switch is coupled to the forward integration circuit to provide the pumping result, and The control terminal of the eighth switch is controlled by the second control signal. 如申請專利範圍第3項所述的觸控面板驅動裝置,其中該正向積分電路包括: 一運算放大器,具有一反相輸入端、一非反相輸入端與一輸出端,其中該反相輸入端耦接至該增量相關雙採樣電路以接收該泵送結果,該非反相輸入端耦接至一共同電壓,以及該運算放大器的該輸出端輸出該第二積分結果作為該第一端信號; 一回授電容,其一第一端與一第二端分別耦接至該反相輸入端與該運算放大器的該輸出端;以及 一重置開關,其一第一端與一第二端分別耦接至該反相輸入端與該運算放大器的該輸出端。The touch panel driving device according to item 3 of the scope of patent application, wherein the forward integration circuit includes: an operational amplifier having an inverting input terminal, a non-inverting input terminal and an output terminal, wherein the inverting An input terminal is coupled to the incremental correlation double sampling circuit to receive the pumping result, the non-inverting input terminal is coupled to a common voltage, and the output terminal of the operational amplifier outputs the second integration result as the first terminal A signal; a feedback capacitor, a first terminal and a second terminal of which are respectively coupled to the inverting input terminal and the output terminal of the operational amplifier; and a reset switch, which has a first terminal and a second terminal The terminals are respectively coupled to the inverting input terminal and the output terminal of the operational amplifier. 如申請專利範圍第2項所述的觸控面板驅動裝置,其中該第二積分取樣電路包括: 一正向積分電路,耦接至該第四開關以接收該感測信號,用以對該感測信號進行一正向積分操作以輸出一第一積分結果; 一增量相關雙採樣電路,耦接至該正向積分電路的一輸出端以接收該第一積分結果,用以在一採樣期間採樣該第一積分結果以獲得一採樣結果,以及在一輸出期間使用一參考電壓對該採樣結果進行一泵送處理而獲得一泵送結果;以及 一反向積分電路,耦接至該增量相關雙採樣電路的一輸出端以接收該泵送結果,用以對該泵送結果進行一反向積分操作以輸出一第二積分結果作為該第二端信號。The touch panel driving device according to item 2 of the scope of patent application, wherein the second integration sampling circuit comprises: a forward integration circuit coupled to the fourth switch to receive the sensing signal for detecting the sensing signal; The measured signal performs a forward integration operation to output a first integration result. An incremental correlation double sampling circuit is coupled to an output of the forward integration circuit to receive the first integration result for a sampling period. Sampling the first integration result to obtain a sampling result, and performing a pumping process on the sampling result using a reference voltage during an output period to obtain a pumping result; and a reverse integration circuit coupled to the increment An output terminal of the correlated double sampling circuit receives the pumping result, and performs an inverse integration operation on the pumping result to output a second integration result as the second terminal signal. 如申請專利範圍第8項所述的觸控面板驅動裝置,其中當該感測線的該感測電極沒有偵測到該觸碰事件時該採樣結果的準位為一未觸碰準位,以及該參考電壓的準位被設定為該未觸碰準位。The touch panel driving device according to item 8 of the scope of patent application, wherein the level of the sampling result is an untouched level when the sensing electrode of the sensing line does not detect the touch event, and The level of the reference voltage is set to the untouched level. 如申請專利範圍第8項所述的觸控面板驅動裝置,其中該正向積分電路包括: 一運算放大器,具有一反相輸入端、一非反相輸入端與一輸出端,其中該反相輸入端耦接至該第四開關以接收該感測信號,該非反相輸入端耦接至一共同電壓,以及該運算放大器的該輸出端耦接至該增量相關雙採樣電路以提供該第一積分結果; 一回授電容,其一第一端與一第二端分別耦接至該反相輸入端與該運算放大器的該輸出端;以及 一重置開關,其一第一端與一第二端分別耦接至該反相輸入端與該運算放大器的該輸出端。The touch panel driving device according to item 8 of the scope of patent application, wherein the forward integration circuit includes: an operational amplifier having an inverting input terminal, a non-inverting input terminal and an output terminal, wherein the inverting An input terminal is coupled to the fourth switch to receive the sensing signal, the non-inverting input terminal is coupled to a common voltage, and the output terminal of the operational amplifier is coupled to the incremental correlation double sampling circuit to provide the first An integration result; a feedback capacitor, a first terminal and a second terminal of which are respectively coupled to the inverting input terminal and the output terminal of the operational amplifier; and a reset switch, which has a first terminal and a The second terminal is respectively coupled to the inverting input terminal and the output terminal of the operational amplifier. 如申請專利範圍第8項所述的觸控面板驅動裝置,其中該增量相關雙採樣電路包括: 一第五開關,具有一第一端、一第二端與一控制端,其中該第五開關的該第一端耦接至該正向積分電路的該輸出端以接收該第一積分結果,而該第五開關的該控制端受控於一第一控制信號; 一第六開關,具有一第一端、一第二端與一控制端,其中該第六開關的該第一端耦接至該參考電壓,而該第六開關的該控制端受控於一第二控制信號; 一採樣電容,其一第一端耦接至該第五開關的該第二端與該第六開關的該第二端; 一第七開關,具有一第一端、一第二端與一控制端,其中該第七開關的該第一端耦接至該採樣電容的一第二端,該第七開關的該第二端耦接至一共同電壓,而該第七開關的該控制端受控於該第一控制信號;以及 一第八開關,具有一第一端、一第二端與一控制端,其中該第八開關的該第一端耦接至該採樣電容的該第二端,該第八開關的該第二端耦接至該反向積分電路以提供該泵送結果,而該第八開關的該控制端受控於該第二控制信號。The touch panel driving device according to item 8 of the scope of patent application, wherein the incrementally correlated double sampling circuit includes: a fifth switch having a first terminal, a second terminal, and a control terminal, wherein the fifth The first terminal of the switch is coupled to the output terminal of the forward integration circuit to receive the first integration result, and the control terminal of the fifth switch is controlled by a first control signal; a sixth switch having A first terminal, a second terminal, and a control terminal, wherein the first terminal of the sixth switch is coupled to the reference voltage, and the control terminal of the sixth switch is controlled by a second control signal; A first terminal of the sampling capacitor is coupled to the second terminal of the fifth switch and the second terminal of the sixth switch; a seventh switch has a first terminal, a second terminal, and a control terminal Wherein the first terminal of the seventh switch is coupled to a second terminal of the sampling capacitor, the second terminal of the seventh switch is coupled to a common voltage, and the control terminal of the seventh switch is controlled To the first control signal; and an eighth switch having a first terminal, a second terminal and A control terminal, wherein the first terminal of the eighth switch is coupled to the second terminal of the sampling capacitor, the second terminal of the eighth switch is coupled to the inverse integration circuit to provide the pumping result, and The control terminal of the eighth switch is controlled by the second control signal. 如申請專利範圍第8項所述的觸控面板驅動裝置,其中該反向積分電路包括: 一運算放大器,具有一反相輸入端、一非反相輸入端與一輸出端,其中該反相輸入端耦接至該增量相關雙採樣電路以接收該泵送結果,該非反相輸入端耦接至一共同電壓,以及該運算放大器的該輸出端輸出該第二積分結果作為該第二端信號; 一回授電容,其一第一端與一第二端分別耦接至該反相輸入端與該運算放大器的該輸出端;以及 一重置開關,其一第一端與一第二端分別耦接至該反相輸入端與該運算放大器的該輸出端。The touch panel driving device according to item 8 of the scope of patent application, wherein the inverse integration circuit includes: an operational amplifier having an inverting input terminal, a non-inverting input terminal and an output terminal, wherein the inverting circuit An input terminal is coupled to the incremental correlation double sampling circuit to receive the pumping result, the non-inverting input terminal is coupled to a common voltage, and the output terminal of the operational amplifier outputs the second integration result as the second terminal A signal; a feedback capacitor, a first terminal and a second terminal of which are respectively coupled to the inverting input terminal and the output terminal of the operational amplifier; and a reset switch, which has a first terminal and a second terminal The terminals are respectively coupled to the inverting input terminal and the output terminal of the operational amplifier. 如申請專利範圍第1項所述的觸控面板驅動裝置,更包括: 一電壓提供電路,耦接至該第一積分取樣電路以接收一第一代表電壓,耦接至該第二積分取樣電路以接收一第二代表電壓,用以依據該第一代表電壓與該第二代表電壓來對應產生一第一參考電壓與一第二參考電壓,其中該第一參考電壓被提供給該第一積分取樣電路中的一第一增量相關雙採樣電路,該第二參考電壓被提供給該第二積分取樣電路中的一第二增量相關雙採樣電路。The touch panel driving device according to item 1 of the scope of patent application, further comprising: a voltage supply circuit coupled to the first integration sampling circuit to receive a first representative voltage and coupled to the second integration sampling circuit Receiving a second representative voltage for generating a first reference voltage and a second reference voltage corresponding to the first representative voltage and the second representative voltage, wherein the first reference voltage is provided to the first integral; A first incremental correlation double sampling circuit in the sampling circuit, and the second reference voltage is provided to a second incremental correlation double sampling circuit in the second integration sampling circuit. 如申請專利範圍第13項所述的觸控面板驅動裝置,其中該第一代表電壓為該第一端信號,而該第二代表電壓為該第二端信號。The touch panel driving device according to item 13 of the application, wherein the first representative voltage is the first terminal signal and the second representative voltage is the second terminal signal. 如申請專利範圍第14項所述的觸控面板驅動裝置,其中該電壓提供電路包括: 一第一比較器,具有一第一輸入端、一第二輸入端與一輸出端,其中該第一比較器的該第一輸入端耦接至該第一積分取樣電路以接收該第一代表電壓,該第一比較器的該第二輸入端耦接至一共同電壓,以及該第一比較器的該輸出端輸出一第一比較結果; 一第二比較器,具有一第一輸入端、一第二輸入端與一輸出端,其中該第二比較器的該第一輸入端耦接至該第二積分取樣電路以接收該第二代表電壓,該第二比較器的該第二輸入端耦接至該共同電壓,以及該第二比較器的該輸出端輸出一第二比較結果; 一運算電路,耦接至該第一比較器以接收該第一比較結果,耦接至該第二比較器以接收該第二比較結果,用以依據該第一比較結果與該第二比較結果來計算出一第一電壓值與一第二電壓值; 一第一數位類比轉換器,耦接至該運算電路以接收該第一電壓值,用以將該第一電壓值轉換為該第一參考電壓,以及將該第一參考電壓輸出給該第一積分取樣電路中的該第一增量相關雙採樣電路;以及 一第二數位類比轉換器,耦接至該運算電路以接收該第二電壓值,用以將該第二電壓值轉換為該第二參考電壓,以及將該第二參考電壓輸出給該第二積分取樣電路中的該第二增量相關雙採樣電路。The touch panel driving device according to item 14 of the patent application scope, wherein the voltage supply circuit includes: a first comparator having a first input terminal, a second input terminal and an output terminal, wherein the first The first input terminal of the comparator is coupled to the first integration sampling circuit to receive the first representative voltage, the second input terminal of the first comparator is coupled to a common voltage, and the first comparator The output terminal outputs a first comparison result. A second comparator has a first input terminal, a second input terminal, and an output terminal. The first input terminal of the second comparator is coupled to the first comparator. Two integration sampling circuits to receive the second representative voltage, the second input terminal of the second comparator is coupled to the common voltage, and the output terminal of the second comparator outputs a second comparison result; an operation circuit , Coupled to the first comparator to receive the first comparison result, coupled to the second comparator to receive the second comparison result, and used to calculate according to the first comparison result and the second comparison result -A first voltage value and A second voltage value; a first digital analog converter coupled to the arithmetic circuit to receive the first voltage value for converting the first voltage value into the first reference voltage and the first reference voltage Output to the first incremental correlation double sampling circuit in the first integration sampling circuit; and a second digital analog converter coupled to the operation circuit to receive the second voltage value for the second voltage The value is converted into the second reference voltage, and the second reference voltage is output to the second incremental correlation double sampling circuit in the second integration sampling circuit. 如申請專利範圍第14項所述的觸控面板驅動裝置,其中該電壓提供電路包括: 一類比數位轉換器,耦接至該第一積分取樣電路以接收該第一代表電壓,耦接至該第二積分取樣電路以接收該第二代表電壓,其中該類比數位轉換器將該第一代表電壓轉換為一第一電壓值,以及該類比數位轉換器將該第二代表電壓轉換為一第二電壓值; 一運算電路,耦接至該類比數位轉換器以接收該第一電壓值與該第二電壓值,用以依據該第一電壓值與該第二電壓值來計算出一第三電壓值與一第四電壓值;以及 一數位類比轉換器,耦接至該運算電路以接收該第三電壓值與該第四電壓值,用以將該第三電壓值轉換為該第一參考電壓,將該第一參考電壓輸出給該第一積分取樣電路中的該第一增量相關雙採樣電路,將該第四電壓值轉換為該第二參考電壓,以及將該第二參考電壓輸出給該第二積分取樣電路中的該第二增量相關雙採樣電路。The touch panel driving device according to item 14 of the scope of patent application, wherein the voltage supply circuit includes: an analog-to-digital converter coupled to the first integration sampling circuit to receive the first representative voltage and coupled to the The second integration sampling circuit receives the second representative voltage, wherein the analog-to-digital converter converts the first representative voltage to a first voltage value, and the analog-to-digital converter converts the second representative voltage to a second voltage. A voltage value; an arithmetic circuit coupled to the analog-to-digital converter to receive the first voltage value and the second voltage value for calculating a third voltage according to the first voltage value and the second voltage value Value and a fourth voltage value; and a digital analog converter coupled to the arithmetic circuit to receive the third voltage value and the fourth voltage value for converting the third voltage value to the first reference voltage , Outputting the first reference voltage to the first incremental correlation double sampling circuit in the first integration sampling circuit, converting the fourth voltage value to the second reference voltage, and the second reference voltage Output to the second sampling increment of the second integrator circuit correlated double sampling circuit. 如申請專利範圍第13項所述的觸控面板驅動裝置,其中該第一代表電壓為該第一積分取樣電路中的一反向積分電路所輸出的一第一積分結果,而該第二代表電壓為該第二積分取樣電路中的一正向積分電路所輸出的一第二積分結果。The touch panel driving device according to item 13 of the scope of patent application, wherein the first representative voltage is a first integration result output by an inverse integration circuit in the first integration sampling circuit, and the second representative The voltage is a second integration result output by a forward integration circuit in the second integration sampling circuit. 如申請專利範圍第17項所述的觸控面板驅動裝置,其中該電壓提供電路包括: 一第一類比數位轉換器,具有一輸入端與一輸出端,其中該第一類比數位轉換器的該輸入端耦接至該第一積分取樣電路中的該反向積分電路的一輸出端以接收該第一代表電壓,以及該第一類比數位轉換器的該輸出端輸出一第一電壓值; 一第二類比數位轉換器,具有一輸入端與一輸出端,其中該第二類比數位轉換器的該輸入端耦接至該第二積分取樣電路中的該正向積分電路的一輸出端以接收該第二代表電壓,以及該第二類比數位轉換器的該輸出端輸出一第二電壓值; 一運算電路,耦接至該第一類比數位轉換器以接收該第一電壓值,耦接至該第二類比數位轉換器以接收該第二電壓值,用以依據該第一電壓值與該第二電壓值來計算出一第三電壓值與一第四電壓值; 一第一數位類比轉換器,耦接至該運算電路以接收該第三電壓值,用以將該第三電壓值轉換為該第一參考電壓,以及將該第一參考電壓輸出給該第一積分取樣電路中的該第一增量相關雙採樣電路;以及 一第二數位類比轉換器,耦接至該運算電路以接收該第四電壓值,用以將該第四電壓值轉換為該第二參考電壓,以及將該第二參考電壓輸出給該第二積分取樣電路中的該第二增量相關雙採樣電路。The touch panel driving device according to item 17 of the patent application scope, wherein the voltage supply circuit includes: a first analog digital converter having an input terminal and an output terminal, wherein the first analog digital converter An input terminal is coupled to an output terminal of the inverse integration circuit in the first integration sampling circuit to receive the first representative voltage, and the output terminal of the first analog-to-digital converter outputs a first voltage value; The second analog-to-digital converter has an input terminal and an output terminal, wherein the input terminal of the second analog-to-digital converter is coupled to an output terminal of the forward integration circuit in the second integration sampling circuit for receiving. The second representative voltage, and the output terminal of the second analog digital converter outputs a second voltage value; an arithmetic circuit coupled to the first analog digital converter to receive the first voltage value, coupled to The second analog-to-digital converter receives the second voltage value to calculate a third voltage value and a fourth voltage value according to the first voltage value and the second voltage value; a first digital The ratio converter is coupled to the operation circuit to receive the third voltage value, to convert the third voltage value to the first reference voltage, and output the first reference voltage to the first integration sampling circuit. The first incremental correlation double sampling circuit; and a second digital analog converter coupled to the arithmetic circuit to receive the fourth voltage value for converting the fourth voltage value to the second reference voltage, And outputting the second reference voltage to the second incremental correlation double sampling circuit in the second integration sampling circuit. 如申請專利範圍第1項所述的觸控面板驅動裝置,更包括: 一基線補償電路,具有一差動輸入端對與一差動輸出端對,其中該基線補償電路的該差動輸入端對耦接至該第一積分取樣電路與該第二積分取樣電路以接收該差動信號;以及 一類比數位轉換器,具有一差動輸入端對,其中該類比數位轉換器的該差動輸入端對耦接至該基線補償電路的該差動輸出端對。The touch panel driving device according to item 1 of the scope of patent application, further comprising: a baseline compensation circuit having a differential input terminal pair and a differential output terminal pair, wherein the differential input terminal of the baseline compensation circuit A pair coupled to the first integration sampling circuit and the second integration sampling circuit to receive the differential signal; and an analog-to-digital converter having a differential input terminal pair, wherein the differential input of the analog-to-digital converter An end pair is coupled to the differential output end pair of the baseline compensation circuit. 如申請專利範圍第19項所述的觸控面板驅動裝置,其中該基線補償電路包括: 一第一開關,具有一第一端、一第二端與一控制端,其中該第一開關的該第一端耦接至該第一積分取樣電路以接收該差動信號中的該第一端信號,而該第一開關的該控制端受控於一第一時脈信號; 一第二開關,具有一第一端、一第二端與一控制端,其中該第二開關的該第一端耦接至該第一開關的該第二端,該第二開關的該第二端耦接至一參考電壓,而該第二開關的該控制端受控於一第二時脈信號; 一第一電容,具有一第一端與一第二端,其中該第一電容的該第一端耦接至該第一開關的該第二端; 一差動放大器,具有一反相輸入端、一非反相輸入端、一反相輸出端與一非反相輸出端,其中該差動放大器的該反相輸入端耦接至該第一電容的該第二端,而該差動放大器的該反相輸出端與該非反相輸出端作為該基線補償電路的該差動輸出端對; 一第三開關,具有一第一端、一第二端與一控制端,其中該第三開關的該第一端耦接至該差動放大器的該反相輸入端,而該第三開關的該控制端受控於該第一時脈信號; 一第四開關,具有一第一端、一第二端與一控制端,其中該第四開關的該第一端耦接至該第三開關的該第二端,該第四開關的該第二端耦接至該參考電壓,而該第四開關的該控制端受控於該第二時脈信號; 一第二電容,具有一第一端與一第二端,其中該第二電容的該第一端耦接至該第三開關的該第二端,而該第二電容的該第二端耦接至該差動放大器的該非反相輸出端; 一第三電容,具有一第一端與一第二端,其中該第三電容的該第一端耦接至該差動放大器的該反相輸入端; 一第五開關,具有一第一端、一第二端與一控制端,其中該第五開關的該第一端耦接至該第三電容的該第二端,該第五開關的該第二端耦接至該參考電壓,而該第五開關的該控制端受控於該第一時脈信號; 一第六開關,具有一第一端、一第二端與一控制端,其中該第六開關的該第一端耦接至該第三電容的該第二端,該第六開關的該第二端耦接至該差動放大器的該非反相輸出端,而該第六開關的該控制端受控於該第二時脈信號; 一第七開關,具有一第一端、一第二端與一控制端,其中該第七開關的該第一端耦接至該第二積分取樣電路以接收該差動信號中的該第二端信號,而該第七開關的該控制端受控於該第一時脈信號; 一第八開關,具有一第一端、一第二端與一控制端,其中該第八開關的該第一端耦接至該第七開關的該第二端,該第八開關的該第二端耦接至該參考電壓,而該第八開關的該控制端受控於該第二時脈信號; 一第四電容,具有一第一端與一第二端,其中該第四電容的該第一端耦接至該第七開關的該第二端,該第四電容的該第二端耦接至該差動放大器的該非反相輸入端; 一第九開關,具有一第一端、一第二端與一控制端,其中該第九開關的該第一端耦接至該差動放大器的該非反相輸入端,而該第九開關的該控制端受控於該第一時脈信號; 一第十開關,具有一第一端、一第二端與一控制端,其中該第十開關的該第一端耦接至該第九開關的該第二端,該第十開關的該第二端耦接至該參考電壓,而該第十開關的該控制端受控於該第二時脈信號; 一第五電容,具有一第一端與一第二端,其中該第五電容的該第一端耦接至該第九開關的該第二端,而該第五電容的該第二端耦接至該參考電壓; 一第六電容,具有一第一端與一第二端,其中該第六電容的該第一端耦接至該差動放大器的該非反相輸入端; 一第十一開關,具有一第一端、一第二端與一控制端,其中該第十一開關的該第一端耦接至該第六電容的該第二端,該第十一開關的該第二端耦接至該參考電壓,而該第十一開關的該控制端受控於該第一時脈信號;以及 一第十二開關,具有一第一端、一第二端與一控制端,其中該第十二開關的該第一端耦接至該第六電容的該第二端,該第十二開關的該第二端耦接至該參考電壓,而該第十二開關的該控制端受控於該第二時脈信號。The touch panel driving device according to item 19 of the scope of patent application, wherein the baseline compensation circuit includes: a first switch having a first terminal, a second terminal, and a control terminal, wherein the first switch The first terminal is coupled to the first integration sampling circuit to receive the first terminal signal in the differential signal, and the control terminal of the first switch is controlled by a first clock signal; a second switch, There is a first terminal, a second terminal, and a control terminal, wherein the first terminal of the second switch is coupled to the second terminal of the first switch, and the second terminal of the second switch is coupled to A reference voltage, and the control terminal of the second switch is controlled by a second clock signal; a first capacitor having a first terminal and a second terminal, wherein the first terminal of the first capacitor is coupled Connected to the second terminal of the first switch; a differential amplifier having an inverting input terminal, a non-inverting input terminal, an inverting output terminal and a non-inverting output terminal, wherein The inverting input terminal is coupled to the second terminal of the first capacitor, and the inverting terminal of the differential amplifier is The output terminal and the non-inverting output terminal are used as the differential output terminal pair of the baseline compensation circuit; a third switch having a first terminal, a second terminal and a control terminal, wherein the first of the third switch Terminal is coupled to the inverting input terminal of the differential amplifier, and the control terminal of the third switch is controlled by the first clock signal; a fourth switch has a first terminal, a second terminal and A control terminal, wherein the first terminal of the fourth switch is coupled to the second terminal of the third switch, the second terminal of the fourth switch is coupled to the reference voltage, and the The control terminal is controlled by the second clock signal; a second capacitor having a first terminal and a second terminal, wherein the first terminal of the second capacitor is coupled to the second terminal of the third switch And the second terminal of the second capacitor is coupled to the non-inverting output terminal of the differential amplifier; a third capacitor has a first terminal and a second terminal, wherein the first capacitor of the third capacitor A terminal is coupled to the inverting input terminal of the differential amplifier; a fifth switch having a first terminal, a second terminal and A control terminal, wherein the first terminal of the fifth switch is coupled to the second terminal of the third capacitor, the second terminal of the fifth switch is coupled to the reference voltage, and the fifth terminal of the fifth switch The control terminal is controlled by the first clock signal; a sixth switch having a first terminal, a second terminal, and a control terminal, wherein the first terminal of the sixth switch is coupled to the third capacitor; The second terminal, the second terminal of the sixth switch is coupled to the non-inverting output terminal of the differential amplifier, and the control terminal of the sixth switch is controlled by the second clock signal; a seventh The switch has a first terminal, a second terminal, and a control terminal, wherein the first terminal of the seventh switch is coupled to the second integration sampling circuit to receive the second terminal signal in the differential signal, The control terminal of the seventh switch is controlled by the first clock signal; an eighth switch has a first terminal, a second terminal, and a control terminal, wherein the first terminal of the eighth switch is coupled Connected to the second terminal of the seventh switch, the second terminal of the eighth switch is coupled to the reference voltage, and the The control terminal is controlled by the second clock signal. A fourth capacitor has a first terminal and a second terminal, wherein the first terminal of the fourth capacitor is coupled to the second terminal of the seventh switch. The second terminal of the fourth capacitor is coupled to the non-inverting input terminal of the differential amplifier; a ninth switch having a first terminal, a second terminal and a control terminal, wherein the ninth switch The first terminal is coupled to the non-inverting input terminal of the differential amplifier, and the control terminal of the ninth switch is controlled by the first clock signal; a tenth switch having a first terminal and a first terminal; Two terminals and a control terminal, wherein the first terminal of the tenth switch is coupled to the second terminal of the ninth switch, the second terminal of the tenth switch is coupled to the reference voltage, and the tenth The control terminal of the switch is controlled by the second clock signal; a fifth capacitor having a first terminal and a second terminal, wherein the first terminal of the fifth capacitor is coupled to the second switch of the ninth switch; A second terminal, and the second terminal of the fifth capacitor is coupled to the reference voltage; a sixth capacitor having a first terminal and a second terminal Terminal, wherein the first terminal of the sixth capacitor is coupled to the non-inverting input terminal of the differential amplifier; an eleventh switch having a first terminal, a second terminal, and a control terminal, wherein the first terminal The first terminal of the eleventh switch is coupled to the second terminal of the sixth capacitor, the second terminal of the eleventh switch is coupled to the reference voltage, and the control terminal of the eleventh switch is controlled At the first clock signal; and a twelfth switch having a first terminal, a second terminal, and a control terminal, wherein the first terminal of the twelfth switch is coupled to the sixth capacitor The second terminal, the second terminal of the twelfth switch is coupled to the reference voltage, and the control terminal of the twelfth switch is controlled by the second clock signal.
TW106141402A 2017-11-28 2017-11-28 Touch panel driving apparatus TWI627619B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW106141402A TWI627619B (en) 2017-11-28 2017-11-28 Touch panel driving apparatus
CN201711432793.4A CN109840027B (en) 2017-11-28 2017-12-26 Touch panel driving device
US15/936,456 US10606400B2 (en) 2017-11-28 2018-03-27 Touch panel driving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106141402A TWI627619B (en) 2017-11-28 2017-11-28 Touch panel driving apparatus

Publications (2)

Publication Number Publication Date
TWI627619B true TWI627619B (en) 2018-06-21
TW201926295A TW201926295A (en) 2019-07-01

Family

ID=63256167

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106141402A TWI627619B (en) 2017-11-28 2017-11-28 Touch panel driving apparatus

Country Status (3)

Country Link
US (1) US10606400B2 (en)
CN (1) CN109840027B (en)
TW (1) TWI627619B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200134091A (en) 2019-05-21 2020-12-01 삼성전자주식회사 Front-end circuit performing analog-to-digital conversion and touch processing circuit including the same
KR20220084786A (en) * 2020-12-14 2022-06-21 주식회사 엘엑스세미콘 Two levels coding/decoding based touch sensing apparatus and touch sensing method for mutual capacitance touch sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8890841B2 (en) * 2013-03-13 2014-11-18 3M Innovative Properties Company Capacitive-based touch apparatus and method therefor, with reduced interference
TWI466028B (en) * 2010-05-14 2014-12-21 Zinitix Co Ltd Integrator circuit with inverting integrator and non-inverting integrator
TWI527005B (en) * 2008-10-30 2016-03-21 三星電子股份有限公司 Touch controller having increased sensing sensitivity, and display driving circuit and display device and system having the touch controller
TWI569185B (en) * 2015-11-06 2017-02-01 財團法人工業技術研究院 Touch control apparatus and noise compensating circuit and method thereof

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420374B (en) 2008-09-08 2013-12-21 Innolux Corp Sensing circuit for capacitive touch panel and electronic device using the same
US8305360B2 (en) 2008-09-08 2012-11-06 Chimei Innolux Corporation Sensing circuit for capacitive touch panel
CN102063216B (en) 2009-10-09 2012-12-12 禾瑞亚科技股份有限公司 Device and method for parallel-scanning differential touch detection
US8411066B2 (en) 2010-01-05 2013-04-02 3M Innovative Properties Company High speed noise tolerant multi-touch touch device and controller therefor
US9244569B2 (en) 2010-03-31 2016-01-26 Stmicroelectronics Asia Pacific Pte Ltd Capacitive sensing analog front end
TWI402731B (en) 2010-12-14 2013-07-21 Au Optronics Corp Touch panel and method of reducing noise coupled by a common voltage of a touch panel
KR101202745B1 (en) * 2011-04-21 2012-11-19 주식회사 실리콘웍스 Touch sensing circuit
CN103138762B (en) 2011-11-30 2016-04-27 禾瑞亚科技股份有限公司 Multistage sample-and-hold circuit
CH705869A1 (en) 2011-12-02 2013-06-14 Advanced Silicon S A Interface and capacitive sensor reading method.
TWI463367B (en) 2012-01-10 2014-12-01 Chunghwa Picture Tubes Ltd Touch panel, anti-noise unit and noise treatment method thereof
KR20130099717A (en) 2012-02-29 2013-09-06 주식회사 팬택 Apparatus and method for providing user interface based on touch screen
KR101318447B1 (en) 2012-03-20 2013-10-16 엘지디스플레이 주식회사 Touch sensing apparatus and double sampling method thereof
US20130265242A1 (en) 2012-04-09 2013-10-10 Peter W. Richards Touch sensor common mode noise recovery
US20130282338A1 (en) 2012-04-19 2013-10-24 Microchip Technology Incorporated Method and System for Energy Efficient Measurement of Sensor Signals
CN103837163A (en) * 2012-11-26 2014-06-04 矽创电子股份有限公司 Capacitance sensing circuit
US8982093B2 (en) 2012-12-20 2015-03-17 Broadcom Corporation Capacitive touch sensing system with interference rejection
TW201433948A (en) 2013-02-20 2014-09-01 Novatek Microelectronics Corp Touch sensing apparatus and touch sensing method thereof
CN104156096B (en) 2013-05-14 2018-01-26 宸鸿光电科技股份有限公司 Touch screen control system and its signal processing circuit and method
EP3006913A4 (en) 2013-06-06 2016-07-13 Panasonic Ip Man Co Ltd Physical quantity sensor adjustment method, and physical quantity sensor
KR101514533B1 (en) * 2013-07-29 2015-04-22 삼성전기주식회사 Touch sensing apparatus and method capable of supporting hover sensing
TWI497390B (en) 2013-08-12 2015-08-21 Novatek Microelectronics Corp Touch display device and method for sensing capacitance thereof
TWI492137B (en) 2013-11-21 2015-07-11 Shanghai Sim Bcd Semiconductor Mfg Co Ltd Used in capacitive touch panel anti-noise circuit
CN104656466A (en) * 2013-11-21 2015-05-27 宸鸿科技(厦门)有限公司 Control system and device of touch control panel and detection method
JP2015194987A (en) 2014-03-25 2015-11-05 パナソニックIpマネジメント株式会社 Input device and display device
KR102249651B1 (en) 2014-07-23 2021-05-10 주식회사 실리콘웍스 Touch panel sensing apparatus and controlling apparatus thereof
KR102243635B1 (en) 2014-11-21 2021-04-26 엘지디스플레이 주식회사 Touch sensing circuit, display device using the touch sensor circuit, and touch sensing method
TWI550495B (en) * 2015-03-26 2016-09-21 原相科技股份有限公司 Capacitive touch device with high sensitivity and operating method thereof
KR20170005286A (en) * 2015-07-02 2017-01-12 삼성전자주식회사 Touch processor circuit and touch screen system performing digital-to-analog conversion of two steps
US9817509B2 (en) * 2015-10-30 2017-11-14 Solomon Systech Limited Methods and apparatuses for providing sensing signals for projected capacitive touch sensing using a differential current mode analog circuit
KR20180072313A (en) * 2016-12-21 2018-06-29 에스케이하이닉스 주식회사 Capacitance sensing circuits

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI527005B (en) * 2008-10-30 2016-03-21 三星電子股份有限公司 Touch controller having increased sensing sensitivity, and display driving circuit and display device and system having the touch controller
TWI466028B (en) * 2010-05-14 2014-12-21 Zinitix Co Ltd Integrator circuit with inverting integrator and non-inverting integrator
US8890841B2 (en) * 2013-03-13 2014-11-18 3M Innovative Properties Company Capacitive-based touch apparatus and method therefor, with reduced interference
TWI569185B (en) * 2015-11-06 2017-02-01 財團法人工業技術研究院 Touch control apparatus and noise compensating circuit and method thereof

Also Published As

Publication number Publication date
US20190163312A1 (en) 2019-05-30
TW201926295A (en) 2019-07-01
CN109840027B (en) 2022-04-15
US10606400B2 (en) 2020-03-31
CN109840027A (en) 2019-06-04

Similar Documents

Publication Publication Date Title
TWI433022B (en) Demodulated method and system of differential sensing capacitive touch panel with low power
US11340727B2 (en) Analog front end channel driver circuit
CN106598363B (en) The method and circuit of driving touch sensor and the display device using this circuit
KR101449490B1 (en) Sensing Apparatus
US20110068810A1 (en) Sensing method and driving circuit of capacitive touch screen
CN109976574B (en) Integrator, touch display device and driving method thereof
TWI627619B (en) Touch panel driving apparatus
CN206877306U (en) Inductance capacitance measurement apparatus
CN107092407A (en) Inductance capacitance measurement apparatus
WO2017113669A1 (en) Capacitive sensing circuit and touch panel
TWI433011B (en) Optical touch module and optical touch display panel
US20230297188A1 (en) Multichannel capacitive sensor device
US11216113B2 (en) Touch circuit
TWI439913B (en) Touch sensing apparatus
TWI439914B (en) Touch sensing apparatus
JP2011113188A (en) Signal processing circuit for capacitance type touch panel
JP2014206844A (en) Detection circuit, semiconductor integrated circuit device, and electronic apparatus
JP2019211898A (en) Touch detection circuit, input device and electronic apparatus
TWI411789B (en) Capacitance touch contorl element
TWI539341B (en) Control system, device and detection method for touch panel
KR102378085B1 (en) Variable-gain amplification circuit, touch input sensing apparatus and touchscreen apparatus
CN102904575A (en) Analog to digital converter (ADC) front-end circuit and method for measuring resistance through ADC front-end circuit
WO2022170542A1 (en) Apparatus for force sensing and electronic device
WO2022087974A1 (en) Capacitance measurement circuit, touch chip, and parameter adjustment method for capacitance measurement circuit
TW201315970A (en) Capacity measuring circuit