TWI622279B - Communication device and method for beamforming - Google Patents

Communication device and method for beamforming Download PDF

Info

Publication number
TWI622279B
TWI622279B TW106114511A TW106114511A TWI622279B TW I622279 B TWI622279 B TW I622279B TW 106114511 A TW106114511 A TW 106114511A TW 106114511 A TW106114511 A TW 106114511A TW I622279 B TWI622279 B TW I622279B
Authority
TW
Taiwan
Prior art keywords
precoder matrix
baseband
communication device
matrix
radio frequency
Prior art date
Application number
TW106114511A
Other languages
Chinese (zh)
Other versions
TW201843947A (en
Inventor
陳榮杰
Original Assignee
國立高雄師範大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立高雄師範大學 filed Critical 國立高雄師範大學
Priority to TW106114511A priority Critical patent/TWI622279B/en
Application granted granted Critical
Publication of TWI622279B publication Critical patent/TWI622279B/en
Publication of TW201843947A publication Critical patent/TW201843947A/en

Links

Abstract

一種用於波束成形的方法,包含下列步驟。決定通訊設備的最佳全數位預編碼器矩陣,並固定射頻預編碼器矩陣。使用最小平方法對最佳全數位預編碼器矩陣、基頻預編碼陣列和射頻預編碼陣列進行運算,以得到最佳化基頻預編碼器矩陣,並以此最佳化基頻預編碼器矩陣更新基頻預編碼器矩陣。固定基頻預編碼器矩陣。對最佳全數位預編碼器矩陣、基頻預編碼陣列和射頻預編碼陣列進行迭代運算,以得到最佳化射頻預編碼器矩陣,並以此最佳化射頻預編碼器矩陣更新射頻預編碼器矩陣,使得波束成形器依據此更新後的射頻預編碼器矩陣來對此些射頻訊號進行處理。 A method for beamforming comprising the following steps. Determine the optimal full-digital precoder matrix for the communication device and fix the RF precoder matrix. The best all-bit precoder matrix, the baseband precoding array, and the RF precoding array are operated using a least squares method to obtain an optimized baseband precoder matrix, and the fundamental frequency precoder is optimized The matrix updates the fundamental frequency precoder matrix. Fixed baseband precoder matrix. Iteratively computes the best all-digital precoder matrix, the fundamental precoding array, and the RF precoding array to obtain an optimized RF precoder matrix, and optimizes the RF precoder matrix to update the RF precoding. The matrix is such that the beamformer processes the RF signals based on the updated RF precoder matrix.

Description

通訊設備及用於波束成形之方法 Communication device and method for beamforming

本發明是有關於一種通訊設備及用於波束成形的方法,且特別是有關於一種適用於毫米波通訊的通訊設備及應用於此通訊設備之用於波束成形的方法。 The present invention relates to a communication device and a method for beamforming, and more particularly to a communication device suitable for millimeter wave communication and a method for beamforming applied to the communication device.

隨著無線通訊技術的發展,現今的無線通訊系統已可實現高傳輸速率的需求。然而,商用頻譜資源為有限資源,且隨著行動終端及其對於傳輸資料量的需求增加,商用頻譜資源吃緊的問題逐漸浮現。因應商用頻譜資源吃緊的問題,業界已提出對應的解決方案,其中之一為毫米波大規模多輸入多輸出(multi-input multi-output;MIMO)通訊技術,其係利用多天線之天線陣列傳送及接收毫米波射頻訊號。然而,傳輸毫米波射頻訊號的頻帶與習知無線通訊系統(例如進階長期演進技術(Long Term Evolution Advanced;LTE-A)、無線區域網路通訊系統等)的頻帶不同,且通道特性亦有差異,故毫米波傳輸系統的設計有別於習知無線通訊系統的設計。另一方面,習知大規模多輸入多輸出通訊的架構仍受限於所需的龐大運算量。 With the development of wireless communication technology, today's wireless communication systems have been able to achieve high transmission rate requirements. However, commercial spectrum resources are limited resources, and as mobile terminals and their demand for data transmission increase, the problem of tight commercial spectrum resources is gradually emerging. In response to the problem of tight commercial spectrum resources, the industry has proposed corresponding solutions, one of which is millimeter-wave large-scale multi-input multi-output (MIMO) communication technology, which uses multi-antenna antenna array transmission. And receiving millimeter wave RF signals. However, the frequency band for transmitting the millimeter-wave RF signal is different from that of the conventional wireless communication system (for example, Long Term Evolution Advanced (LTE-A), wireless local area network communication system, etc.), and the channel characteristics are also The difference is that the design of the millimeter wave transmission system is different from the design of the conventional wireless communication system. On the other hand, the architecture of large-scale multi-input and multi-output communication is still limited by the huge amount of computation required.

本發明的目的是在於提供一種通訊設備及用於波束成形的方法,其可有效降低運算複雜度、增快取得相移器單元的特定值的速度且可保持高頻譜效率和低殘餘誤差。 It is an object of the present invention to provide a communication device and a method for beamforming that can effectively reduce computational complexity, increase the speed at which a particular value of a phase shifter unit is obtained, and maintain high spectral efficiency and low residual error.

本發明之一態樣是在提供一種通訊設備,此通訊設備適於進行毫米波大規模多輸入多輸出(multi-input multi-output;MIMO)通訊,且此通訊設備包含收發器單元和處理單元。收發器單元用以與遠端實體進行無線通訊,此收發器單元包含基頻處理電路、多個射頻鏈路、波束成形器和天線陣列。基頻處理電路用以對多個資料串流進行處理,以將此些資料串流轉換為多個基頻訊號,此基頻處理電路係對應基頻預編碼器矩陣。此些射頻鏈路耦接基頻處理電路,其用以將基頻處理電路輸出之基頻訊號轉換為多個射頻訊號。波束成形器耦接此些射頻鏈路,其用以調整此些射頻訊號之相位,此波束成形器係對應射頻預編碼器矩陣。天線陣列用以發射此些射頻訊號。處理單元用以進行下列操作:決定通訊設備的最佳全數位預編碼器矩陣,並固定射頻預編碼器矩陣;使用最小平方法對最佳全數位預編碼器矩陣、基頻預編碼陣列和射頻預編碼陣列進行運算,以得到最佳化基頻預編碼器矩陣,並以此最佳化基頻預編碼器矩陣更新基頻預編碼器矩陣;固定基頻預編碼器矩陣;以及對最佳全數位預編碼器矩陣、基頻預編碼陣列和射頻預編碼陣列進行迭代運算,以得到最佳化射頻預編碼器矩陣,並以此最佳化射頻預編碼器矩陣更新射頻預編碼器矩陣,使得波束成形 器依據此更新後的射頻預編碼器矩陣來對此些射頻訊號進行處理。 One aspect of the present invention is to provide a communication device suitable for performing millimeter-wave large-scale multi-input multi-output (MIMO) communication, and the communication device includes a transceiver unit and a processing unit . The transceiver unit is configured to wirelessly communicate with a remote entity, the transceiver unit including a baseband processing circuit, a plurality of radio frequency links, a beamformer, and an antenna array. The baseband processing circuit is configured to process the plurality of data streams to convert the data stream into a plurality of baseband signals, the baseband processing circuit corresponding to the baseband precoder matrix. The RF link is coupled to the baseband processing circuit for converting the baseband signal output by the baseband processing circuit into a plurality of RF signals. The beamformer is coupled to the RF link for adjusting the phase of the RF signals. The beamformer corresponds to the RF precoder matrix. The antenna array is used to transmit the RF signals. The processing unit is configured to: determine an optimal full-digital precoder matrix of the communication device, and fix the RF precoder matrix; use the least squares method for the best all-digital precoder matrix, the baseband precoding array, and the RF The precoding array is operated to obtain an optimized baseband precoder matrix, and the baseband precoder matrix is updated to optimize the baseband precoder matrix; the fixed fundamental precoder matrix; and the best The full-digit precoder matrix, the baseband precoding array, and the RF precoding array are iteratively operated to obtain an optimized RF precoder matrix, and the RF precoder matrix is updated to update the RF precoder matrix. Beamforming The RF signals are processed according to the updated RF precoder matrix.

依據本發明的一實施例,上述處理單元對該最佳全數位預編碼器矩陣、該基頻預編碼陣列和該射頻預編碼陣列進行迭代運算的迭代次數小於或等於5。 According to an embodiment of the invention, the processing unit performs an iterative operation on the optimal all-digital precoder matrix, the fundamental precoding array, and the radio frequency precoding array by an iteration of less than or equal to 5.

依據本發明的又一實施例,上述波束成形器包含多個相移器單元組和多個結合器單元。此些相移器單元組用以分別依據多個相位值來調整此些射頻訊號的相位。此些結合器單元耦接此些相移器單元組,其分別用以對此些相移器單元組輸出的射頻訊號進行結合處理。 According to a further embodiment of the invention, the beamformer comprises a plurality of phase shifter unit groups and a plurality of combiner units. The phase shifter unit groups are used to adjust the phases of the RF signals according to the plurality of phase values. The combiner unit is coupled to the phase shifter unit groups for combining the RF signals output by the phase shifter unit groups.

依據本發明的又一實施例,上述此些相位值的解析度位元數小於或等於5。 According to still another embodiment of the present invention, the number of resolution bits of the phase values is less than or equal to 5.

依據本發明的又一實施例,上述此些資料串流的個數小於或等於上述此些射頻鏈路的個數,且上述此些射頻鏈路的個數小於上述天線陣列中的天線個數。 According to a further embodiment of the present invention, the number of the data streams is less than or equal to the number of the radio frequency links, and the number of the radio frequency links is smaller than the number of antennas in the antenna array. .

依據本發明的又一實施例,上述此些射頻鏈路係依據載波訊號分別對此些基頻訊號進行升頻處理,此載波訊號的頻率範圍介於10GHz與300GHz之間。 According to still another embodiment of the present invention, the radio frequency links are up-converted according to the carrier signals, and the frequency range of the carrier signals is between 10 GHz and 300 GHz.

依據本發明的又一實施例,上述天線陣列係均勻平面天線陣列。 According to still another embodiment of the present invention, the antenna array is a uniform planar antenna array.

本發明之另一態樣是在提供一種用於波束成形(bcamforming)的方法,此方法係於通訊設備中進行,此通訊設備適於進行毫米波大規模多輸入多輸出通訊且具有基頻處理電路和波束成形器,此基頻處理電路和此波束成 形器分別對應基頻預編碼器矩陣和射頻預編碼器矩陣,此方法包含:決定通訊設備的最佳全數位預編碼器矩陣,並固定射頻預編碼器矩陣;使用最小平方法對最佳全數位預編碼器矩陣、基頻預編碼陣列和射頻預編碼陣列進行運算,以得到最佳化基頻預編碼器矩陣,並以此最佳化基頻預編碼器矩陣更新基頻預編碼器矩陣;固定基頻預編碼器矩陣;以及對最佳全數位預編碼器矩陣、基頻預編碼陣列和射頻預編碼陣列進行迭代運算,以得到最佳化射頻預編碼器矩陣,並以此最佳化射頻預編碼器矩陣更新射頻預編碼器矩陣,使得波束成形器依據此更新後的射頻預編碼器矩陣來對此些射頻訊號進行處理。 Another aspect of the present invention is to provide a method for beamforming, which is performed in a communication device suitable for millimeter wave large-scale multi-input multi-output communication and having a fundamental frequency processing Circuit and beamformer, the baseband processing circuit and the beam The device respectively corresponds to the baseband precoder matrix and the radio frequency precoder matrix, and the method comprises: determining an optimal full digital precoder matrix of the communication device, and fixing the RF precoder matrix; using the least square method to optimize the total The digital precoder matrix, the baseband precoding array and the RF precoding array are operated to obtain an optimized baseband precoder matrix, and the fundamental frequency precoder matrix is optimized to update the fundamental frequency precoder matrix. a fixed baseband precoder matrix; and iterative operations on the best all-digital precoder matrix, the baseband precoding array, and the RF precoding array to obtain an optimized RF precoder matrix, which is optimal The RF precoder matrix updates the RF precoder matrix such that the beamformer processes the RF signals based on the updated RF precoder matrix.

依據本發明的一實施例,上述對最佳全數位預編碼器矩陣、基頻預編碼陣列和射頻預編碼陣列進行迭代運算的迭代次數小於或等於5。 According to an embodiment of the invention, the number of iterations of performing the iterative operation on the optimal all-digital precoder matrix, the baseband precoding array and the radio frequency precoding array is less than or equal to 5.

依據本發明的又一實施例,上述方法更包含:產生多個相位值,使得波束成形器依據此些相位值來調整此些射頻訊號的相位,其中此些相位值的解析度位元數小於或等於5。 According to still another embodiment of the present invention, the method further includes: generating a plurality of phase values, such that the beamformer adjusts the phases of the RF signals according to the phase values, wherein the number of resolution bits of the phase values is less than Or equal to 5.

100‧‧‧無線通訊系統 100‧‧‧Wireless communication system

110、120、200、300、700‧‧‧通訊設備 110, 120, 200, 300, 700‧‧‧ communication equipment

130‧‧‧無線通道 130‧‧‧Wireless channel

210、340‧‧‧基頻處理電路 210, 340‧‧‧ fundamental frequency processing circuit

220(1)~220(M)、330(1)~330(N)‧‧‧射頻鏈路 220(1)~220(M), 330(1)~330(N)‧‧‧RF link

230、320‧‧‧波束成形器 230, 320‧‧‧ Beamformer

232(1)~232(M)、322(1)~322(N)‧‧‧相移器單元組 232(1)~232(M), 322(1)~322(N)‧‧‧ phase shifter unit

234(1)~234(M')、324(1)~324(N)‧‧‧結合器單元 234(1)~234(M ' ), 324(1)~324(N)‧‧‧ combiner unit

240、310‧‧‧天線陣列 240, 310‧‧‧ antenna array

242(1)~242(M')、312(1)~312(N')‧‧‧天線 242(1)~242(M ' ), 312(1)~312(N ' )‧‧‧ antenna

400‧‧‧方法 400‧‧‧ method

402、404、406、408、410、412、414、416‧‧‧步驟 402, 404, 406, 408, 410, 412, 414, 416‧ ‧ steps

710‧‧‧處理單元 710‧‧‧Processing unit

720‧‧‧記憶體單元 720‧‧‧ memory unit

730‧‧‧收發器單元 730‧‧‧ transceiver unit

為了更完整了解實施例及其優點,現參照結合所附圖式所做之下列描述,其中:〔圖1〕為依據本發明實施例之通訊系統的示意圖; 〔圖2〕為依據本發明實施例之通訊設備的示意圖;〔圖3〕為依據本發明實施例之通訊設備的示意圖;〔圖4〕為依據本發明實施例之用於波束成形之方法的流程圖;〔圖5〕為本發明實施例和比較例之訊噪比與頻譜效率之關係的模擬結果;〔圖6〕為本發明實施例和比較例之迭代次數與平均殘餘誤差之關係的模擬結果;以及〔圖7〕為依據本發明實施例之通訊設備的示意圖。 For a more complete understanding of the embodiments and the advantages thereof, reference is made to the following description in conjunction with the drawings in which: FIG. 1 is a schematic diagram of a communication system in accordance with an embodiment of the present invention; 2 is a schematic diagram of a communication device according to an embodiment of the present invention; [FIG. 3] is a schematic diagram of a communication device according to an embodiment of the present invention; [FIG. 4] is a method for beamforming according to an embodiment of the present invention. [Fig. 5] is a simulation result of the relationship between the signal-to-noise ratio and the spectral efficiency of the embodiment and the comparative example of the present invention; [Fig. 6] is the relationship between the iteration number and the average residual error of the embodiment and the comparative example of the present invention. The simulation results; and [Fig. 7] are schematic views of a communication device in accordance with an embodiment of the present invention.

以下仔細討論本發明的實施例。然而,可以理解的是,實施例提供許多可應用的概念,其可實施於各式各樣的特定內容中。所討論、揭示之實施例僅供說明,並非用以限定本發明之範圍。 Embodiments of the invention are discussed in detail below. However, it will be appreciated that the embodiments provide many applicable concepts that can be implemented in a wide variety of specific content. The examples discussed and disclosed are illustrative only and are not intended to limit the scope of the invention.

在以下說明中,分別代表實數和複數的集合,{.}代表期望值運算子,(.)T、(.)H、(.)*、(.)分別代表轉置(transpose)矩陣、共軛轉置(Hermitian transpose)矩陣、複數共軛(complex conjugate)數和擬反(pseudo inverse)矩陣,和∥.∥ F 分別代表克洛涅克乘積(Kronecker product)運算和弗羅賓尼斯範數(Frobenius norm),minimize f(.)為使f(.)函數的值最小的解,「subject to」A代表「受限於」條件A,而「for μ=1,...,U」代表μ為1至U之任一正整數的情形。此外,代表大小為N S×N S的單位矩陣 (identity matrix),[.] m,n 代表矩陣中的第m列第n行元素,vec(.)表示矩陣的向量化,Re(.)為複數的實部,arg(.)為複數 的主幅角(principal argument),代表變異值為 σ2且平均值為0的複數高斯分佈(complex Gaussian distribution),且j定義為In the following description, , Representing a collection of real and plural numbers, respectively. {. } represents the expectation operator, (.) T , (.) H , (.) * , (.) represent transpose matrix, conjugate transposed matrix, complex conjugate (complex conjugate) Number and pseudo inverse matrix, And ∥. ∥ F represents the Kronecker product operation and the Frobenius norm, respectively, and minimize f (.) is the solution that minimizes the value of the f (.) function. "subject to" A stands for "Restricted by" condition A, and "for μ =1 ,...,U " represents a case where μ is any positive integer from 1 to U. In addition, Represents an identity matrix of size N S × N S , [. m,n represents the nth row element of the mth column in the matrix, vec(.) represents the vectorization of the matrix, Re (.) is the real part of the complex number, and arg(.) is the principal argument of the complex number. , Represents a complex Gaussian distribution with a variance value of σ 2 and an average of 0, and j is defined as .

請參照圖1,圖1繪示依據本發明一些實施例之通訊系統100的示意圖。通訊系統100為毫米波大規模多輸入多輸出(multi-input multi-output;MIMO)通訊系統,其包含通訊設備110、120和無線通道130,且通訊設備110、120經由無線通道130通訊連接。每一通訊設備110、120可作為訊號傳輸端、訊號接收端或為訊號傳輸/接收端。在本文中,通訊設備(例如通訊設備110、120)可表示多種不同的實施方式,其包含但不限於例如用戶設備(user equipment;UE)、行動站(mobile station;MS)、筆記型電腦、行動電話等行動裝置和基站(base station;BS)、演進式基地台(evolved NodeB;eNB)、計算機設備、伺服器設備、工作站等固定裝置。此外,通訊設備可在移動環境下或在固定環境下與遠端實體進行無線通訊。在一些實施例中,通訊系統100支援其他通訊技術,例如進階長期演進技術(Long-term Evolution Advanced;LTE-Advanced)、無線區域網路(wireless local area network;WLAN)通訊技術和/或其他相似的無線通訊技術。 Please refer to FIG. 1. FIG. 1 is a schematic diagram of a communication system 100 in accordance with some embodiments of the present invention. The communication system 100 is a millimeter wave large-scale multi-input multi-output (MIMO) communication system including communication devices 110, 120 and a wireless channel 130, and the communication devices 110, 120 are communicatively connected via a wireless channel 130. Each communication device 110, 120 can be used as a signal transmission end, a signal receiving end or a signal transmission/reception end. Herein, a communication device (eg, communication device 110, 120) may represent a variety of different implementations including, but not limited to, for example, user equipment (UE), mobile station (MS), notebook computer, A mobile device such as a mobile phone and a fixed device such as a base station (BS), an evolved base station (evolved NodeB; eNB), a computer device, a server device, and a workstation. In addition, the communication device can communicate wirelessly with the remote entity in a mobile environment or in a fixed environment. In some embodiments, communication system 100 supports other communication technologies, such as Long-term Evolution Advanced (LTE-Advanced), wireless local area network (WLAN) communication technologies, and/or the like. Similar wireless communication technology.

圖2繪示依序本發明實施例之通訊設備200的示意圖。通訊設備200至少具備毫米波大規模多輸入多輸出通訊功能,其可以是圖1之通訊設備110、120或其他適用於毫米波訊號傳輸之通訊設備。如圖2所示,通訊設備200包含基頻處理電路210、射頻鏈路220(1)~220(M)、波束成形器230和天線陣列240,但不限於此。在一些實施例中,通訊設備200亦具備射頻訊號接收功能。 2 is a schematic diagram of a communication device 200 in accordance with an embodiment of the present invention. The communication device 200 has at least a millimeter wave large-scale multi-input multi-output communication function, which may be the communication device 110, 120 of FIG. 1 or other communication device suitable for millimeter wave signal transmission. As shown in FIG. 2, the communication device 200 includes a baseband processing circuit 210, radio frequency links 220(1) to 220(M), a beamformer 230, and an antenna array 240, but is not limited thereto. In some embodiments, the communication device 200 also has an RF signal receiving function.

基頻處理電路210用以對資料串流進行處理,例如通道編碼、資料符元映射(symbol mapping)、插入循環冗餘碼(cyclic prefix)和/或其他處理,以將資料串流轉換為基頻訊號並分別將基頻訊號送至對應的射頻鏈路220(1)~220(M)。基頻處理電路210亦包含數位類比轉換器(digital-to-analog converter;DAC),其用以將數位格式的基頻訊號轉換為類比格式的基頻訊號。在一些實施例中,射頻鏈路220(1)~220(M)的個數M大於或等於資料串流的個數。 The baseband processing circuit 210 is configured to process the data stream, such as channel coding, symbol mapping, cyclic prefix, and/or other processing to convert the data stream into a base stream. The frequency signal is sent to the corresponding RF link 220(1)~220(M) respectively. The baseband processing circuit 210 also includes a digital-to-analog converter (DAC) for converting the baseband signal of the digital format to the fundamental frequency signal of the analog format. In some embodiments, the number M of radio frequency links 220(1)~220(M) is greater than or equal to the number of data streams.

射頻鏈路220(1)~220(M)分別用以對基頻訊號進行升頻處理,以將基頻訊號轉換為射頻訊號。每一射頻鏈路220(1)~220(M)包含振盪器和混頻器,其中振盪器用以產生載波訊號,而混頻器用以將基頻訊號和載波訊號混合為射頻訊號。振盪器產生之載波訊號的頻率範圍可介於10GHz與300GHz之間,但不限於此。在一些實施例中,射頻鏈路220(1)~220(M)共用同一振盪器。此外,每一射頻 鏈路220(1)~220(M)的兩端可包含濾波器,其分別用以限制特定頻率成份的基頻訊號和射頻訊號通過。 The RF links 220(1) to 220(M) are respectively used for up-converting the baseband signal to convert the baseband signal into an RF signal. Each of the RF links 220(1)-220(M) includes an oscillator and a mixer, wherein the oscillator is used to generate a carrier signal, and the mixer is used to mix the baseband signal and the carrier signal into an RF signal. The frequency range of the carrier signal generated by the oscillator may be between 10 GHz and 300 GHz, but is not limited thereto. In some embodiments, the radio frequency links 220(1)-220(M) share the same oscillator. In addition, each RF Both ends of the links 220(1) to 220(M) may include filters for limiting the transmission of the fundamental frequency signals and the RF signals of the specific frequency components.

波束成形器230用以對射頻訊號進行波束成形處理。如圖2所示,波束成形器230包含相移器單元組232(1)~232(M)和結合器單元234(1)~234(M'),其中相移器單元組232(1)~232(M)分別用以基於多個相位值來調整射頻訊號的相位,即對射頻鏈路220(1)~220(M)所輸出的射頻訊號提供所需的相位差,進而得到相移射頻訊號,而每一結合器單元234(1)~234(M')用以對相移器單元組232(1)~232(M)輸出的相移射頻訊號進行結合處理,且同一相移器單元組232(1)~232(M)輸出的射頻訊號會分別由結合器單元234(1)~234(M')來進行結合處理。此外,波束成形器230另可包含多個功率放大器,其分別用以增加相移射頻訊號的強度。 The beamformer 230 is configured to perform beamforming processing on the RF signal. As shown in FIG. 2, the beamformer 230 includes phase shifter unit groups 232(1) to 232(M) and combiner units 234(1) to 234(M ' ), wherein the phase shifter unit group 232(1) ~232(M) is used to adjust the phase of the RF signal based on a plurality of phase values, that is, to provide a desired phase difference to the RF signal outputted by the RF link 220(1)~220(M), thereby obtaining a phase shift. RF signal, and each combiner unit 234(1)~234(M ' ) is used to combine the phase shift RF signals output by the phase shifter unit group 232(1)~232(M), and the same phase shift The RF signals output by the unit groups 232(1) to 232(M) are combined by the combiner units 234(1) to 234(M ' ), respectively. In addition, the beamformer 230 may further include a plurality of power amplifiers for increasing the intensity of the phase-shifted RF signals, respectively.

天線陣列240包含天線242(1)~242(M'),其用以發射出相移射頻訊號。天線陣列240可以是可調式天線陣列,且波束成形器230可依據天線陣列240的配置來對應調整波束場型和相位。也就是說,天線242(1)~242(M')可藉由操作波束成形器230而在各方向上或以各場型來產生多個波束。在一些實施例中,天線242(1)~242(M')的個數M'大於射頻鏈路220(1)~220(M)的個數M。 The antenna array 240 includes antennas 242(1)-242(M ' ) for transmitting phase-shifted RF signals. The antenna array 240 can be a tunable antenna array, and the beamformer 230 can adjust the beam pattern and phase accordingly depending on the configuration of the antenna array 240. That is, the antennas 242(1)-242(M ' ) can generate multiple beams in all directions or in various field types by operating the beamformer 230. In some embodiments, the number M ' of antennas 242(1)-242(M ' ) is greater than the number M of radio frequency links 220(1)-220(M).

圖3繪示依序本發明實施例之通訊設備300的示意圖。通訊設備300至少具備毫米波大規模多輸入多輸出通訊功能,其可以是圖1之通訊設備110、120或其他適用於 毫米波訊號傳輸之通訊設備。如圖3所示,通訊設備300包含天線陣列310、波束成形器320、射頻鏈路330(1)~330(N)和基頻處理電路340,但不限於此。在一些實施例中,通訊設備300亦具備射頻訊號傳輸功能。 FIG. 3 is a schematic diagram of a communication device 300 in accordance with an embodiment of the present invention. The communication device 300 has at least a millimeter wave large-scale multi-input multi-output communication function, which may be the communication device 110, 120 of FIG. 1 or other suitable for Communication equipment for millimeter wave signal transmission. As shown in FIG. 3, the communication device 300 includes an antenna array 310, a beamformer 320, radio frequency links 330(1)-330(N), and a baseband processing circuit 340, but is not limited thereto. In some embodiments, the communication device 300 also has an RF signal transmission function.

天線陣列310包含天線312(1)~312(N'),其用以接收射頻訊號。天線陣列310可以是可調式天線陣列,且在天線陣列310中的天線312(1)~312(N')可藉由操作波束成形器230而在各方向上或以各場型來產生多個波束。天線陣列310可用以接收頻率範圍介於10GHz與300GHz之間的毫米波訊號。 The antenna array 310 includes antennas 312(1)-312(N ' ) for receiving radio frequency signals. The antenna array 310 can be a tunable antenna array, and the antennas 312(1)-312(N ' ) in the antenna array 310 can be generated in multiple directions or in various field types by operating the beamformer 230. Beam. The antenna array 310 can be used to receive millimeter wave signals having a frequency range between 10 GHz and 300 GHz.

波束成形器320用以依據天線陣列310的配置來對應調整波束場型和相位。如圖3所示,波束成形器320包含相移器單元組322(1)~322(N')和結合器單元324(1)~324(N),其中相移器單元組322(1)~322(N')分別用以基於多個相位值來還原射頻訊號的相位,即對天線陣列310所收到的射頻訊號提供所需的解相位差,進而得到相移射頻訊號,而每一結合器單元324(1)~324(N)用以對相移器單元組322(1)~322(N')輸出的解相移射頻訊號進行結合處理,且同一相移器單元組322(1)~322(N')輸出的射頻訊號會分別由結合器單元324(1)~324(N)來進行結合處理。此外,波束成形器320另可包含多個功率放大器,其分別用以增加天線陣列310接收之射頻訊號的強度。 The beamformer 320 is configured to adjust the beam pattern and phase according to the configuration of the antenna array 310. As shown in FIG. 3, beamformer 320 includes phase shifter unit groups 322(1)-322(N ' ) and combiner units 324(1)-324(N), wherein phase shifter unit group 322(1) ~322(N ' ) is used to restore the phase of the RF signal based on the plurality of phase values, that is, to provide the required phase difference of the RF signal received by the antenna array 310, thereby obtaining a phase-shifted RF signal, and each The combiner units 324(1)-324(N) are used to combine the phase-shifted RF signals output by the phase shifter unit groups 322(1)-322(N ' ), and the same phase shifter unit group 322 ( 1) The RF signals outputted by ~322(N ' ) are combined by the combiner units 324(1)~324(N). In addition, the beamformer 320 can further include a plurality of power amplifiers for increasing the strength of the RF signals received by the antenna array 310, respectively.

射頻鏈路330(1)~330(N)分別用以對基頻訊號進行降頻處理,以將射頻訊號轉換為基頻訊號。每一射頻 鏈路330(1)~330(N)包含振盪器和混頻器,其中振盪器用以產生載波訊號,而混頻器用以混合射頻訊號和載波訊號。振盪器產生之載波訊號的頻率範圍可介於10GHz與300GHz之間,但不限於此。在一些實施例中,射頻鏈路330(1)~330(N)共用同一振盪器。經由混頻器所得到的訊號可再進行低通濾波處理,以將混頻器輸出之訊號的高頻成份去除,而未去除的訊號成份即為基頻訊號。此外,每一射頻鏈路330(1)~330(N)的輸入端可包含濾波器,其用以限制特定頻率成份的射頻訊號通過。在一些實施例中,射頻鏈路330(1)~330(N)的個數N小於天線312(1)~312(N')的個數N'The RF links 330(1) to 330(N) are respectively used for down-converting the baseband signal to convert the RF signal into a baseband signal. Each of the RF links 330(1)-330(N) includes an oscillator and a mixer, wherein the oscillator is used to generate a carrier signal, and the mixer is used to mix the RF signal and the carrier signal. The frequency range of the carrier signal generated by the oscillator may be between 10 GHz and 300 GHz, but is not limited thereto. In some embodiments, the radio frequency links 330(1)-330(N) share the same oscillator. The signal obtained by the mixer can be subjected to low-pass filtering to remove the high-frequency components of the signal output by the mixer, and the unremoved signal component is the fundamental frequency signal. In addition, the input of each of the RF links 330(1)-330(N) may include a filter for limiting the passage of RF signals of specific frequency components. In some embodiments, the number N of radio frequency links 330(1)-330(N) is less than the number N ' of antennas 312(1)-312(N ' ).

基頻處理電路340用以對射頻鏈路330(1)~330(N)輸出的基頻訊號進行處理,例如時序調整、頻率補償、通道估測、基頻訊號等化、基頻訊號接合和/或其他合適的處理,以將基頻訊號轉換為資料串流。基頻處理電路340亦包含類比數位轉換器(analog-to-digital converter;ADC),其用以將類比格式的基頻訊號轉換為數位格式的基頻訊號。在一些實施例中,基頻處理電路340所得到之資料串流的個數小於或等於射頻鏈路330(1)~330(N)的個數N。 The baseband processing circuit 340 is configured to process the baseband signals output by the RF links 330(1)-330(N), such as timing adjustment, frequency compensation, channel estimation, baseband signal equalization, baseband signal bonding, and / or other suitable processing to convert the baseband signal into a stream of data. The baseband processing circuit 340 also includes an analog-to-digital converter (ADC) for converting the fundamental frequency signal of the analog format into a baseband signal of the digital format. In some embodiments, the number of data streams obtained by the baseband processing circuit 340 is less than or equal to the number N of radio links 330(1)-330(N).

以下段落係以用於包含圖2之通訊設備200和圖3之通訊設備300的通訊系統為例來說明波束成形。首先定義通訊設備200、300的相關組態。通訊設備200處理之資料串流數與通訊設備300所得到之資料串流數為N S,射頻 鏈路220(1)~220(M)和射頻鏈路330(1)~330(N)的個數分 別為,且天線242(1)~242(M')和天線 312(1)~312(N')的個數分別為N tN r,其中N s <N tN S <N r。在通訊設備200中,資料串流以向量s表示 (s),,波束成形器230的權重矩陣為 ,其中F D 弋表基頻處理電路210的 基頻預編碼器矩陣,F RF 代表波束成形器230的射頻 預編碼器矩陣。如此一來,通訊設備200所發射出之射頻訊 號可以向量x表示為。此外,通訊設備200的 正規化傳輸功率限制表示為。而在通訊設備 300中,波束成形器320的權重矩陣為, 其中W D 代表基頻處理電路340的基頻結合器矩 陣,W RF 代表波束成形器320的射頻結合器矩陣。 由通訊設備200發射的射頻訊號經由區塊衰減通道大規模MIMO通道傳輸至通訊設備300,則經由通訊設備300之基頻處理電路340所得到的資料串流向量y表示為: 其中ρ為平均接收功率,H 為區塊衰減通道大規模 MIMO通道係數矩陣,z為加成性白高斯雜訊(additive white Gaussian noise;AWGN)向量,而在z中的所有元 素為獨立且相同分佈且均為平均值為0和變異數為的複數 常態分佈。 The following paragraphs illustrate beamforming using the communication system for the communication device 200 of FIG. 2 and the communication device 300 of FIG. 3 as an example. The relevant configuration of the communication devices 200, 300 is first defined. The number of data streams processed by the communication device 200 and the number of data streams obtained by the communication device 300 are N S , and the RF links 220 (1) to 220 (M) and the RF links 330 (1) to 330 (N) The number is with And the number of antennas 242(1)~242(M ' ) and antennas 312(1)~312(N ' ) are N t and N r , respectively, where N s < N t and N S < N r . In the communication device 200, the data stream is represented by a vector s (s ), The weight matrix of beamformer 230 is , where F D The fundamental frequency precoder matrix of the fundamental frequency processing circuit 210, F RF A matrix of radio frequency precoders representing beamformer 230. In this way, the RF signal transmitted by the communication device 200 can be expressed as a vector x. . In addition, the normalized transmission power limit of the communication device 200 is expressed as . In the communication device 300, the weight matrix of the beamformer 320 is , where W D Group represents a baseband processing circuit 340 frequency-binding matrix, W RF A matrix of RF combiners representing beamformer 320. The RF signal transmitted by the communication device 200 is transmitted to the communication device 300 via the block attenuation channel massive MIMO channel, and the data stream vector y obtained by the baseband processing circuit 340 of the communication device 300 is expressed as: Where ρ is the average received power, H For the block attenuation channel large-scale MIMO channel coefficient matrix, z is an additive white Gaussian noise (AWGN) vector, and all elements in z are independent and identically distributed and have an average value of 0. And the number of variations is The plural normal distribution.

接著,採用SV通道(Saleh-Valenzuela channel)模型,將通道係數矩陣H表示為: 其中N cl為叢集個數,每一叢集均具有N ray個傳導路徑,a r(.)、 a t(.)分別為接收和傳輸陣列響應向量,β il 分別 表示為在第i個叢集之第l個傳導路徑的複數增益、正方位(azimuthal)抵達角度(angle of arrival;AOA)、正視(elevational)抵達角度、正方位離開角度(angle of departure;AOD)和正視離開角度。此外,複數增益β il 以 平均值為0和變異數為的複數常態分佈為模型,其中為 第i個叢集的平均功率,且為用以確保的 正規化向量。對於在水平方向上具有N h個天線和在垂直方向 上具有N v個天線均勻平面陣列而言,陣列響應向量 (τ {t,r};即接收陣列響應向量或傳輸陣列響應向 量可表示如下: 其中λd分別代表射頻訊號的波長和天線間隔,且1 α N h以及1β N vNext, using the SV channel (Saleh-Valenzuela channel) model, the channel coefficient matrix H is expressed as: Where N cl is the number of clusters, each cluster has N ray conduction paths, and a r (.), a t (.) are the receive and transmit array response vectors, respectively, β il , , , , Represented as the complex gain, the azimuthal arrival angle (AOA), the elevational arrival angle, and the angle of departure (AOD) of the lth conduction path in the i- th cluster, respectively. ) and face the angle of departure. In addition, the complex gain β il has an average of 0 and a variance of The complex normal distribution is a model, where Is the average power of the ith cluster, and To ensure Normalized vector. Array response vector for N h antennas in the horizontal direction and N v antenna uniform planar arrays in the vertical direction ( τ {t , r}; that is, receive array response vector Or transmission array response vector Can be expressed as follows: Where λ and d represent the wavelength and antenna spacing of the RF signal, respectively, and 1 α N h and 1 β N v .

在給定的通道係數矩陣H下,本文考量用於最大化頻譜效率之混合式波束成形設計的問題。天線效率係以下式表示: 其中基頻預編碼器矩陣F D和基頻結合器矩陣W D的振幅和相位均可調整,但對射頻預編碼器矩陣F RF和射頻結合器矩陣 W RF而言,僅可改變相位值。此外,每一相移器單元的值可 被量化為屬於集合的某一元素,其中 B為相移器單元的解析度位元數,且為相移器單元的均 勻量化步階。因此,射頻預編碼器矩陣F RF和射頻結合器矩陣W RF的元素選擇均受到限制,即[F RF] m,n F且[W RF] m,n F, 其中,ω=e j。在使用有限解析度的 相移器單元以及傳輸端總功率限制的條件下,此混合式波束成形設計的問題可表示如下: Given a given channel coefficient matrix H, this paper considers the problem of hybrid beamforming designs for maximizing spectral efficiency. The antenna efficiency is expressed by the following formula: The amplitude and phase of the fundamental precoder matrix F D and the baseband combiner matrix W D can be adjusted, but only the phase values can be changed for the RF precoder matrix F RF and the RF combiner matrix W RF . In addition, the value of each phase shifter unit can be quantized to belong to the set An element, where B is the number of resolution bits of the phase shifter unit, and A uniform quantization step for the phase shifter unit. Therefore, the element selection of the RF precoder matrix F RF and the RF combiner matrix W RF is limited, ie [ F RF ] m,n F and [ W RF ] m,n F , where , ω = e j . Under the condition of using a finite resolution phase shifter unit and the total power limit of the transmission, the problem of this hybrid beamforming design can be expressed as follows:

然而,問題P1牽涉到四個矩陣變數(即F RFF DW RFW D)的聯合運算與式(5c)、(5d)所示之射頻預編碼器矩陣F RF和射頻結合器矩陣W RF之元素的非凸限制(non-convex constraint),故直接解決問題P1過於困難且複雜。為了解決此困難,問題P1可分為兩個最佳化問題,即分別為混合式預編碼問題和混合式結合問題,以簡化聯合混合式預編碼與結合設計。一般而言,混合式預編碼問題與混合式結合問題的數學形式相似,而混合式預編碼問題另包含功率限制的考量,故本文聚焦於解決混合式預編碼問題,其解決方法亦可應用於解決混合式結合問題。 However, the problem P 1 involves the joint operation of four matrix variables (ie, F RF , F D , W RF , and W D ) and the RF precoder matrix F RF and RF combination shown in equations (5c) and (5d). The non-convex constraint of the elements of the matrix W RF , it is too difficult and complicated to directly solve the problem P 1 . In order to solve this difficulty, the problem P 1 can be divided into two optimization problems, namely, a hybrid precoding problem and a hybrid combining problem, respectively, to simplify the joint hybrid precoding and combining design. In general, the hybrid precoding problem is similar to the mathematical form of the hybrid combining problem, and the hybrid precoding problem also includes power limitation considerations. Therefore, this paper focuses on solving the hybrid precoding problem, and the solution can also be applied. Solve the problem of hybrid integration.

上述混合式預編碼問題可表示如下: 其中F opt為最佳化全數位預編碼器矩陣,其包含矩陣V的前N s行,矩陣V可藉由通道係數矩陣H的奇異值分解(singular value decomposition),即矩陣V與通道係數矩陣H的關係為H=UΣV H。然而,問題P2仍牽涉到兩個矩陣變數(即F RFF D)的聯合運算與式(5c)所示之射頻預編碼器矩陣F RF之元素的非凸限制,故直接解決問題P2仍過於困難且複雜。 The above hybrid precoding problem can be expressed as follows: Wherein F opt is the optimal bit full precoder matrix, N s front row comprising matrix V, the matrix V may be by channel coefficient matrix H is singular value decomposition (singular value decomposition), i.e. channel coefficient matrix and the matrix V relationship between H is H = UΣV H. However, the problem P 2 still involves the joint operation of two matrix variables (ie, F RF and F D ) and the non-convex limitation of the elements of the RF precoder matrix F RF shown in equation (5c), so the problem P is directly solved. 2 is still too difficult and complicated.

問題P2牽涉到基頻預編碼器矩陣F D和射頻預編碼器矩陣F RF,故可利用基於交替最小化運算的二階迭代步驟來同時得到基頻預編碼器矩陣F D和射頻預編碼器矩陣F RFProblem P 2 involves the fundamental precoder matrix F D and the RF precoder matrix F RF , so the second frequency iterative step based on the alternating minimization operation can be used to simultaneously obtain the fundamental precoder matrix F D and the RF precoder Matrix F RF .

詳細而言,在第一階段中,以固定的射頻預編碼器矩陣F RF來得到最佳的基頻預編碼器矩陣F D。在不考量式(5b)所示的限制下,問題P2可進一步簡化為: 其變為線性最小平方問題,且最佳的基頻預編碼器矩陣F D In detail, in the first phase, the optimal baseband precoder matrix F D is obtained with a fixed RF precoder matrix F RF . Without considering the limitation shown in (5b), the problem P 2 can be further simplified as: It becomes a linear least squares problem, and the optimal fundamental precoder matrix F D is

接著,在第二階段中,假設基頻預編碼器矩陣F D為固定,則射頻預編碼器矩陣F RF可藉由解決問題P4得到: Then, in the second stage, assuming that the fundamental precoder matrix F D is fixed, the radio frequency precoder matrix F RF can be obtained by solving the problem P 4 :

然而,在上述基於交替最小化運算的二階迭代步驟中,迭代更新射頻預編碼器矩陣F RF的組合複雜度(combinatorial complexity)為主要的障礙。詳細而言, 在給定的有限集合F下,所有可能的射頻波束成形的集合亦為有限的,因此可利用竭盡搜尋(exhaustive search)法來對所有可能的組合進行運算來得到問題P4的最佳解。然 而,問題P4牽涉到在個可能的組合中的搜尋,其所 需的運算量仍過於龐大。 However, in the above-described second-order iterative step based on the alternating minimization operation, iteratively updating the combinatorial complexity of the radio frequency precoder matrix F RF is a major obstacle. In detail, under a given finite set F , the set of all possible RF beamforming is also limited, so all possible combinations can be computed using the exhaustive search method to get the problem P 4 The best solution. However, question P 4 is involved in The search for a possible combination is still too large.

有鑑於此,本文另提出一種迭代方法來解決問題P4,其說明如以下段落中所述。 In view of this, an iterative method is proposed to solve the problem P 4, which is described in the following paragraphs.

在開始說明迭代方法之前,首先定義向量 、向量函數 以及矩陣 ,其中K=N t×N s,且為射頻預 編碼器矩陣F RF中的元素個數。式(8)之目標函數可表示為 ,且問題P4可等效如下: Before starting to explain the iterative method, first define the vector Vector function And matrix ,among them , K = N t × N s , and The number of elements in the RF precoder matrix F RF . The objective function of equation (8) can be expressed as And the problem P 4 can be equivalent as follows:

應注意的是,問題P5為多變數(即~)的離散最佳化問題,故仍需要龐大的運算量。針對問題P5,可藉由解決一連串的單一變數最佳化問題來完成。具體而言,在進行迭代運算中,先固定變數~中的(U-1)個變數,而僅對剩下的一個變數進行最佳化運算。也就是說,在每一次的迭代運算中,藉由解決以下問題來循環來更新角度 It should be noted that the problem P 5 is a multivariate (ie ~ The discrete optimization problem, so it still requires a huge amount of computation. For problem P5 , this can be done by solving a series of single variable optimization problems. Specifically, in the iterative operation, the variable is fixed first. ~ ( U -1) variables in the middle, and only optimize the remaining one. That is to say, in each iterative operation, the angle is updated by solving the following problem. :

上述方法可單調遞減目標函數。雖然式(10b)所示之非凸限制仍對解決問題P6造成困難,但此困難可利用竭盡搜尋法對變數進行最佳化來降低。同時,若式(10b)所示之非凸限制可忽略,則問題P6的解可採用特殊形式來解析得到,此特殊形式為:在給定向量 的條件下,最小化之 變數的最佳值為 The above method can monotonically decrement the objective function. Although non-convex limiting formula (10b) as shown in the still to solve the problem P 6 cause difficulties, but this can be difficult to optimize variables do to reduce the use of search method. Meanwhile, if the non-convex limit shown by equation (10b) is negligible, the solution of the problem P 6 can be parsed by a special form: in a given vector Minimize Variable The best value

應注意的是,藉由式(11)所得到的最佳值並 不能保證屬於集合B。因此,需要再對最佳值進行量化處 理,如下式所示: 其中為量化過的最佳值,且Q(.)為量化函數,其使變數等 於集合B中數值最接近的元素。換句話說,最佳量化係數可 依據下式選擇: It should be noted that the optimum value obtained by equation (11) It is not guaranteed to belong to set B. Therefore, you need to re-optimize the value Quantize processing as shown below: among them The quantized optimal value, and Q (.) is a quantization function that makes the variable equal to the element with the closest value in set B. In other words, the best quantization coefficient Can be selected according to the following formula:

以上迭代方法另以本發明實施例之用於波束成形的方法400來說明。如圖4所示,方法400包含步驟402、404、406、408、410、412、414、416。在步驟402中,輸入最佳化全數位預編碼器矩陣F opt和基頻預編碼器矩陣F D。在步驟404中,將最佳化全數位預編碼器矩陣F opt向量化 為,定義為矩陣G=[G ],且初始化變數 以及初始化變數μ,q=1。 The above iterative method is further illustrated by the method 400 for beamforming in accordance with an embodiment of the present invention. As shown in FIG. 4, method 400 includes steps 402, 404, 406, 408, 410, 412, 414, 416. In step 402, the optimized full digital precoder matrix F opt and the base frequency precoder matrix F D are input. In step 404, the optimized full digit precoder matrix F opt is vectorized into ,definition For the matrix G = [ G ], and initialize the variables And the initialization variable μ, q =1.

在步驟406中,依據式(11)決定最佳值,且 依據式(12)量化最佳值為量化過的最佳值,並以量化 過的最佳值來更新最佳值In step 406, the optimal value is determined according to equation (11). And quantify the optimal value according to equation (12) Optimum value for quantification And quantify the best value To update the best value .

在步驟408中,判別變數μ是否大於或等於U。 若否,則進行步驟410;若是,則進行步驟412。 In step 408, it is determined whether the variable μ is greater than or equal to U. If no, proceed to step 410; if yes, proceed to step 412.

在步驟410中,將變數μ加1,即使μ=μ+1。步驟410結束後,回到步驟406。 In step 410, the variable μ is incremented by 1, even if μ = μ +1. After step 410 ends, return to step 406.

在步驟412中,判別變數q是否大於或等於Q。若否,則進行步驟414;若是,則進行步驟416。 In step 412, it is determined whether the variable q is greater than or equal to Q. If no, proceed to step 414; if yes, proceed to step 416.

在步驟414中,將變數q加1,且將變數μ初始化為1,即使q=q+1且使μ=μ+1。步驟414結束後,回到步驟406。 In step 414, the variable q is incremented by 1, and the variable μ is initialized to 1, even if q = q +1 and μ = μ +1. After the end of step 414, the process returns to step 406.

在步驟416中,使用得到的變數來建立 射頻預編碼器矩陣F RF並輸出射頻預編碼器矩陣F RFIn step 416, the resulting variable is used. To establish the RF precoder matrix F RF and output the RF precoder matrix F RF .

方法400可有效降低運算複雜度。詳細而言,方法400在每一次的相位值更新中牽涉到KU次複數乘法運算,故方法400整體需要進行KU 2次複數乘法運算。相較之下,若是使用竭盡搜尋法和MO-交替最小化(MO-AltMin)演算法來解決問題P4,則分別需要2 KU (K+1)U次和(4KU+10U)T次複數乘法運算,其中T為MO-交替最小化法到達停止條件時所需迭代次數。 Method 400 can effectively reduce computational complexity. In detail, the method 400 involves a KU complex multiplication operation in each phase value update, so the method 400 requires a KU 2 complex multiplication operation as a whole. In contrast, if you use the exhaustive search method and the MO-AltMin algorithm to solve the problem P 4, you need 2 KU ( K +1) U times and (4 KU +10 U ) T respectively. Sub-multiple multiplication, where T is the number of iterations required for the MO-alternating minimization method to reach the stop condition.

圖5為本發明實施例和比較例(包含MO-AltMin演算法和正交匹配追蹤(orthogonal matching pursuit;OMP)演算法)之訊噪比 (signal-to-noise ratio;SNR ratio)與頻譜效率之關係的模擬結果,其模擬環境為毫米波大規模MIMO通訊系統,其中N rN tN s分別為36、144、3、3、3,叢集個數N cl為5,傳輸端和接收端均為天線間隔為半波長的均勻方形平面陣列(即N h=N v),每一叢集的傳導路徑個數N ray為10,每一叢集的平均功率為1,正方位抵達角度、正視抵達角度、正方位離開角度和正視離開角度均為具有均勻分佈平角度且角度擴散(angular spread;AS)為10°的拉普拉斯分佈(Laplacian distribution)。本發明實施例與各比較例均包含在相移器單元的解析度位元數B分別為2、3、5時的模擬結果,而比較例還包含在相移器單元的解析度位元數B為∞(無窮大)時的模擬結果,其每一射頻波束成形相位均依據式(13)來量化。此外,圖5更具有最佳數位解,以利於本發明實施例與各比較例的比較。每一模擬結果均為超過1000次獨立通道實現的平均。 FIG. 5 is a signal-to-noise ratio (SNR ratio) and spectral efficiency of an embodiment and a comparative example (including an MO-AltMin algorithm and an orthogonal matching pursuit (OMP) algorithm) according to the present invention. The simulation result of the relationship is that the simulation environment is a millimeter-wave massive MIMO communication system, where N r , N t , , , N s are 36, 144, 3, 3, 3 respectively, and the number of clusters N cl is 5, and both the transmitting end and the receiving end are uniform square planar arrays with antenna spacing of half wavelength (ie, N h = N v ), each The number of conduction paths of a cluster is N ray is 10, and the average power of each cluster For 1, the positive azimuth arrival angle, the positive azimuth arrival angle, the positive azimuth departure angle, and the frontal exit angle are all Laplacian distributions having a uniformly distributed flat angle and an angular spread (AS) of 10°. The embodiment of the present invention and each of the comparative examples include the simulation results when the resolution bit number B of the phase shifter unit is 2, 3, and 5, respectively, and the comparative example further includes the resolution bit number of the phase shifter unit. The simulation result when B is ∞ (infinity), and each RF beamforming phase is quantized according to equation (13). In addition, FIG. 5 has an optimum digital solution to facilitate comparison between the embodiment of the present invention and each comparative example. Each simulation result is an average of more than 1000 independent channel implementations.

在圖5中,訊噪比定義為ρ/。由圖5可知,當 在相同相移器單元的解析度位元數B和訊噪比為相同的情形下,本發明實施例之頻譜效率較各比較例明顯為高。此外,本發明實施例在相移器單元的解析度位元數B僅為2時的頻譜效率便相當於OMP演算法在相移器單元的解析度位元數B為∞時的頻譜效率,且本發明實施例在相移器單元的解析度位元數B為5時的頻譜效率接近未量化之MO-AltMin演算法(相移器單元的解析度位元數B為∞)的頻譜效率。 In Figure 5, the signal-to-noise ratio is defined as ρ/ . As can be seen from FIG. 5, when the resolution bit number B and the signal-to-noise ratio of the same phase shifter unit are the same, the spectral efficiency of the embodiment of the present invention is significantly higher than that of the comparative examples. In addition, in the embodiment of the present invention, the spectral efficiency when the resolution bit number B of the phase shifter unit is only 2 is equivalent to the spectral efficiency of the OMP algorithm when the resolution bit number B of the phase shifter unit is ,. In the embodiment of the present invention, the spectral efficiency when the resolution bit number B of the phase shifter unit is 5 is close to the spectral efficiency of the unquantized MO-AltMin algorithm (the number of resolution bits of the phase shifter unit B is ∞) .

進一步地,圖6為本發明實施例在相移器單元的解析度位元數B分別為2、3、5時以及MO-AltMin演算法在相移器單元的解析度位元數B為∞時之迭代次數與平均殘餘誤差(residual error)之關係的模擬結果,其中殘餘誤差為∥F opt-F RF F D2和∥W opt-W RF W D2。由圖6可知,本發明實施例在相移器單元的解析度位元數B增大時的平均殘餘誤差降低。特別的,在解析度位元數B為5時,本發明實施例的平均殘餘誤差收斂至大約為0.52,其接近接近未量化之MO-AltMin演算法(相移器單元的解析度位元數B為∞)的平均殘餘誤差。此外,無論解析度位元數B的大小為何,本發明實施例在不超過第5次的迭代運算下便可得到相移器單元的特定值。 Further, FIG. 6 in the present embodiment of the invention the phase shifter unit resolution the number of bits B are 3, 5 and MO-AltMin algorithm when the phase shifter unit B is the number of bits of resolution ∞ The simulation results of the relationship between the number of iterations and the average residual error, where the residual errors are ∥ F opt - F RF F D2 and ∥ W opt - W RF W D2 . As can be seen from FIG. 6, the embodiment of the present invention reduces the average residual error when the resolution bit number B of the phase shifter unit increases. In particular, when the resolution bit number B is 5, the average residual error of the embodiment of the present invention converges to approximately 0.52, which is close to the unquantized MO-AltMin algorithm (the number of resolution bits of the phase shifter unit) B is the average residual error of ∞). Moreover, regardless of the size of the resolution bit number B , the embodiment of the present invention can obtain a specific value of the phase shifter unit without exceeding the fifth iteration operation.

由上述本發明實施例與比較例的頻譜效率比較可知,本發明實施例在使用有限的解析度位元數B下的頻譜效率相當於比較例在使用無窮大的解析度位元數B下的頻譜效率,且本發明實施例可快速收斂殘餘誤差。因此,本發明實施例可有效降低運算複雜度、增快取得相移器單元的特定值的速度且可保持高頻譜效率和低殘餘誤差。 It can be seen from the comparison of the spectral efficiency of the above embodiments of the present invention and the comparative example that the spectral efficiency of the embodiment of the present invention using the limited number of resolution bits B is equivalent to the spectrum of the comparative example using the infinite number of resolution bits B. Efficiency, and embodiments of the present invention can quickly converge residual errors. Therefore, the embodiment of the present invention can effectively reduce the computational complexity, increase the speed of obtaining a specific value of the phase shifter unit, and maintain high spectral efficiency and low residual error.

請參照圖7,圖7係繪示依據本發明實施例之通訊設備700的示意圖。通訊設備700可以是圖1之無線通訊系統中的通訊設備110、120、圖2之通訊設備200或圖3之通訊設備300,其可用以進行方法400。通訊設備700包含處理單元710、記憶體單元720和收發器單元730。處理單元710可以是例如常規處理器(conventional processor)、 數位訊號處理器(digital signal processor;DSP)、微處理器(microprocessor)、特殊應用積體電路(application-specific integrated circuit;ASIC)等,但不限於此。方法400可編輯為程式碼,且此經編輯的程式碼可儲存於記憶體單元720中。當通訊設備700與遠端實體通訊連接時,處理單元710可藉由讀取及執行儲存於記憶體單元720中的程式碼來進行對應的操作,包含進行方法400。 Please refer to FIG. 7. FIG. 7 is a schematic diagram of a communication device 700 according to an embodiment of the present invention. The communication device 700 can be the communication device 110, 120 in the wireless communication system of FIG. 1, the communication device 200 of FIG. 2, or the communication device 300 of FIG. 3, which can be used to perform the method 400. The communication device 700 includes a processing unit 710, a memory unit 720, and a transceiver unit 730. The processing unit 710 can be, for example, a conventional processor, A digital signal processor (DSP), a microprocessor, an application-specific integrated circuit (ASIC), etc., but is not limited thereto. Method 400 can be edited as a code, and the edited code can be stored in memory unit 720. When the communication device 700 is in communication with the remote entity, the processing unit 710 can perform a corresponding operation by reading and executing the code stored in the memory unit 720, including performing the method 400.

記憶體單元720可以是任意的資料儲存裝置,其可透過處理裝置710讀取以及執行。記憶體單元720可以是例如用戶識別模組(subscriber identity module;SIM)、唯讀式記憶體(read-only memory;ROM)、可抹除可程式唯讀記憶體(EPROM)、電子可抹除可程式唯讀記憶體(EEPROM)、隨機存取記憶體(random access memory;RAM)、光碟唯讀記憶體(CD-ROM)、磁帶(magnetic tape)、硬碟(hard disk)、固態硬碟(solid state disk;SSD)、快閃記憶體或其他適於儲存程式碼的資料儲存裝置,但不限於此。收發器單元730可以是無線收發器,其根據處理單元710的運算結果而與遠端實體進行無線通訊。舉例而言,若通訊設備700作為通訊系統的傳輸端,則收發器單元730可包含如圖2所示之基頻處理電路210、射頻鏈路220(1)~220(M)、波束成形器230和天線陣列240;若通訊設備700作為通訊系統的接收端,則收發器單元730可包含如圖3所示之天線陣列310、波束成形器320、射頻鏈路330(1)~330(N)和基頻處理電路340。 The memory unit 720 can be any data storage device that can be read and executed by the processing device 710. The memory unit 720 can be, for example, a subscriber identity module (SIM), a read-only memory (ROM), an erasable programmable read only memory (EPROM), and an electronic erasable memory. Programmable read-only memory (EEPROM), random access memory (RAM), CD-ROM, magnetic tape, hard disk, solid state drive (solid state disk; SSD), flash memory or other data storage device suitable for storing code, but not limited to this. The transceiver unit 730 can be a wireless transceiver that wirelessly communicates with the remote entity based on the results of the processing by the processing unit 710. For example, if the communication device 700 is the transmission end of the communication system, the transceiver unit 730 may include the baseband processing circuit 210, the RF link 220(1)~220(M), and the beamformer as shown in FIG. 2. 230 and the antenna array 240; if the communication device 700 is the receiving end of the communication system, the transceiver unit 730 may include the antenna array 310, the beamformer 320, and the radio frequency links 330(1)-330 (N) as shown in FIG. And a baseband processing circuit 340.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

Claims (10)

一種通訊設備,適於進行毫米波大規模多輸入多輸出(multi-input multi-output;MIMO)通訊,該通訊設備包含:一收發器單元,用以與一遠端實體進行無線通訊,該收發器單元包含:一基頻處理電路,用以對複數個資料串流進行處理,以將該些資料串流轉換為複數個基頻訊號,該基頻處理電路係對應一基頻預編碼器矩陣;複數個射頻鏈路,耦接該基頻處理電路,該些射頻鏈路用以將該基頻處理電路輸出之基頻訊號轉換為複數個射頻訊號;一波束成形器,耦接該些射頻鏈路,該波束成形器用以調整該些射頻訊號之相位,該波束成形器係對應一射頻預編碼器矩陣;以及一天線陣列,用以發射該些射頻訊號;以及一處理單元,用以進行下列操作:決定該通訊設備之一最佳全數位預編碼器矩陣,並固定該射頻預編碼器矩陣;使用最小平方法對該最佳全數位預編碼器矩陣、該基頻預編碼陣列和該射頻預編碼陣列進行運算,以得到一最佳化基頻預編碼器矩陣,並以該最佳化基頻預編碼器矩陣更新該基頻預編碼器矩陣;固定該基頻預編碼器矩陣;以及 對該最佳全數位預編碼器矩陣、該基頻預編碼陣列和該射頻預編碼陣列進行迭代運算,以得到一最佳化射頻預編碼器矩陣,並以該最佳化射頻預編碼器矩陣更新該射頻預編碼器矩陣,使得該波束成形器依據該更新後的射頻預編碼器矩陣來對該些射頻訊號進行處理。 A communication device suitable for performing millimeter-wave large-scale multi-input multi-output (MIMO) communication, the communication device comprising: a transceiver unit for wirelessly communicating with a remote entity, the transceiver The unit includes: a baseband processing circuit for processing the plurality of data streams to convert the data streams into a plurality of baseband signals, wherein the baseband processing circuit corresponds to a baseband precoder matrix The plurality of radio frequency links are coupled to the baseband processing circuit, wherein the radio frequency links are used to convert the baseband signals output by the baseband processing circuit into a plurality of radio frequency signals; and a beamformer coupled to the radio frequency signals a beamformer for adjusting a phase of the RF signals, the beamformer corresponding to a matrix of RF precoders, and an antenna array for transmitting the RF signals; and a processing unit for performing The following operations: determining one of the best all-digital precoder matrix of the communication device, and fixing the RF precoder matrix; using the least squares method for the best all-digital precoder Array, the baseband precoding array and the radio frequency precoding array perform operations to obtain an optimized baseband precoder matrix, and update the baseband precoder matrix with the optimized baseband precoder matrix Fixing the baseband precoder matrix; Performing an iterative operation on the optimal all-digital precoder matrix, the baseband precoding array, and the RF precoding array to obtain an optimized RF precoder matrix, and optimizing the RF precoder matrix The RF precoder matrix is updated such that the beamformer processes the RF signals according to the updated RF precoder matrix. 如申請專利範圍第1項所述之通訊設備,其中該處理單元對該最佳全數位預編碼器矩陣、該基頻預編碼陣列和該射頻預編碼陣列進行迭代運算的迭代次數小於或等於5。 The communication device of claim 1, wherein the processing unit performs an iterative operation on the optimal all-digital precoder matrix, the fundamental precoding array, and the radio frequency precoding array by an iteration of less than or equal to 5 . 如申請專利範圍第1項所述之通訊設備,其中該波束成形器包含:複數個相移器單元組,用以分別依據複數個相位值來調整該些射頻訊號的相位;以及複數個結合器單元,耦接該些相移器單元組,該些結合器單元分別用以對該些相移器單元組輸出之射頻訊號進行結合處理。 The communication device of claim 1, wherein the beamformer comprises: a plurality of phase shifter unit groups for adjusting phases of the RF signals according to a plurality of phase values; and a plurality of combiners The unit is coupled to the phase shifter unit groups, and the combiner units are respectively configured to combine the RF signals output by the phase shifter unit groups. 如申請專利範圍第3項所述之通訊設備,其中該些相位值之解析度位元數小於或等於5。 The communication device of claim 3, wherein the number of resolution bits of the phase values is less than or equal to 5. 如申請專利範圍第1項所述之通訊設備,其中該些資料串流之個數小於或等於該些射頻鏈路之個數,且該些射頻鏈路之個數小於該天線陣列中之天線個數。 The communication device of claim 1, wherein the number of the data streams is less than or equal to the number of the radio frequency links, and the number of the radio frequency links is smaller than the antenna in the antenna array. Number. 如申請專利範圍第1項所述之通訊設備,其中該些射頻鏈路係依據一載波訊號分別對該些基頻訊號進行升頻處理,該載波訊號之頻率範圍介於10GHz與300GHz之間。 The communication device of claim 1, wherein the radio frequency links respectively upconvert the baseband signals according to a carrier signal, and the carrier signals have a frequency range between 10 GHz and 300 GHz. 如申請專利範圍第1項所述之通訊設備,其中該天線陣列係一均勻平面天線陣列。 The communication device of claim 1, wherein the antenna array is a uniform planar antenna array. 一種用於波束成形(beamforming)之方法,係於一通訊設備中進行,該通訊設備適於進行毫米波大規模多輸入多輸出通訊且具有一基頻處理電路及一波束成形器,該基頻處理電路及該波束成形器分別對應一基頻預編碼器矩陣及一射頻預編碼器矩陣,該方法包含:決定該通訊設備之一最佳全數位預編碼器矩陣,並固定該射頻預編碼器矩陣;使用最小平方法對該最佳全數位預編碼器矩陣、該基頻預編碼陣列和該射頻預編碼陣列進行運算,以得到一最佳化基頻預編碼器矩陣,並以該最佳化基頻預編碼器矩陣更新該基頻預編碼器矩陣;固定該基頻預編碼器矩陣;以及 對該最佳全數位預編碼器矩陣、該基頻預編碼陣列和該射頻預編碼陣列進行迭代運算,以得到一最佳化射頻預編碼器矩陣,並以該最佳化射頻預編碼器矩陣更新該射頻預編碼器矩陣,使得該波束成形器依據該更新後的射頻預編碼器矩陣來對該些射頻訊號進行處理。 A method for beamforming is performed in a communication device suitable for performing millimeter-wave large-scale multi-input multi-output communication and having a fundamental frequency processing circuit and a beamformer, the fundamental frequency The processing circuit and the beamformer respectively correspond to a baseband precoder matrix and a radio frequency precoder matrix, the method comprising: determining an optimal full digital precoder matrix of the communication device, and fixing the RF precoder a matrix; the best all-bit precoder matrix, the baseband precoding array, and the radio frequency precoding array are operated using a least squares method to obtain an optimized fundamental frequency precoder matrix, and the best Updating the baseband precoder matrix by the baseband precoder matrix; fixing the baseband precoder matrix; Performing an iterative operation on the optimal all-digital precoder matrix, the baseband precoding array, and the RF precoding array to obtain an optimized RF precoder matrix, and optimizing the RF precoder matrix The RF precoder matrix is updated such that the beamformer processes the RF signals according to the updated RF precoder matrix. 如申請專利範圍第8項所述之方法,其中對該最佳全數位預編碼器矩陣、該基頻預編碼陣列和該射頻預編碼陣列進行迭代運算的迭代次數小於或等於5。 The method of claim 8, wherein the iterative operation of the optimal all-digital precoder matrix, the fundamental precoding array, and the radio frequency precoding array is less than or equal to five. 如申請專利範圍第8項所述之方法,更包含:產生複數個相位值,使得該波束成形器依據該些相位值來調整該些射頻訊號的相位,其中該些相位值之解析度位元數小於或等於5。 The method of claim 8, further comprising: generating a plurality of phase values, so that the beamformer adjusts phases of the RF signals according to the phase values, wherein the phase values of the phase values are resolved. The number is less than or equal to 5.
TW106114511A 2017-05-02 2017-05-02 Communication device and method for beamforming TWI622279B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106114511A TWI622279B (en) 2017-05-02 2017-05-02 Communication device and method for beamforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106114511A TWI622279B (en) 2017-05-02 2017-05-02 Communication device and method for beamforming

Publications (2)

Publication Number Publication Date
TWI622279B true TWI622279B (en) 2018-04-21
TW201843947A TW201843947A (en) 2018-12-16

Family

ID=62640015

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106114511A TWI622279B (en) 2017-05-02 2017-05-02 Communication device and method for beamforming

Country Status (1)

Country Link
TW (1) TWI622279B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201228306A (en) * 2010-09-30 2012-07-01 Sony Corp Wired communications system using beamforming and transmitting communication device
US20120270535A1 (en) * 2009-12-17 2012-10-25 Texas Instruments Incorporated Implicit CSI Feedback for DL Multiuser MIMO Transmission
TW201251358A (en) * 2011-06-01 2012-12-16 Ind Tech Res Inst Beam-former searching method and central unit using the method
US20130259151A1 (en) * 2012-03-30 2013-10-03 Nokia Siemens Networks Oy Codebook Feedback Method for Per-User Elevation Beamforming
CN106253956A (en) * 2016-08-24 2016-12-21 东南大学 Modulus mixing method for precoding based on code book

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120270535A1 (en) * 2009-12-17 2012-10-25 Texas Instruments Incorporated Implicit CSI Feedback for DL Multiuser MIMO Transmission
TW201228306A (en) * 2010-09-30 2012-07-01 Sony Corp Wired communications system using beamforming and transmitting communication device
TW201251358A (en) * 2011-06-01 2012-12-16 Ind Tech Res Inst Beam-former searching method and central unit using the method
US20130259151A1 (en) * 2012-03-30 2013-10-03 Nokia Siemens Networks Oy Codebook Feedback Method for Per-User Elevation Beamforming
CN106253956A (en) * 2016-08-24 2016-12-21 东南大学 Modulus mixing method for precoding based on code book

Also Published As

Publication number Publication date
TW201843947A (en) 2018-12-16

Similar Documents

Publication Publication Date Title
Chen Hybrid beamforming with discrete phase shifters for millimeter-wave massive MIMO systems
US10069547B2 (en) Beamforming based communications method and apparatus
Sohrabi et al. Hybrid digital and analog beamforming design for large-scale antenna arrays
US11152984B2 (en) Receiver, communication system, and method implemented by computer for enabling both analog and digital beamforming in communication system
Zhou et al. Efficient codebook-based MIMO beamforming for millimeter-wave WLANs
De Donno et al. Millimeter-wave beam training acceleration through low-complexity hybrid transceivers
US8140024B2 (en) Fast convergence to optimal beam patterns
EP2253077B1 (en) Mmwave wpan communication system with fast adaptive beam tracking
CN111049557B (en) Millimeter wave MIMO system hybrid precoding method based on statistical channel information
Song et al. Codebook design for hybrid beamforming in millimeter wave systems
US10205491B2 (en) System and method for large scale multiple input multiple output communications
Kaushik et al. Joint bit allocation and hybrid beamforming optimization for energy efficient millimeter wave MIMO systems
CN107809275B (en) Finite feedback hybrid precoding method based on millimeter wave MIMO system
CN113824478B (en) Broadband millimeter wave multi-user large-scale MIMO uplink spectrum efficiency optimization method assisted by discrete lens antenna array
CN114268350A (en) Robust beam forming design method under non-ideal channel in intelligent reflector auxiliary communication
CN113852402B (en) IRS (intelligent communications system) -assisted NOMA-MIMO (non-multiple input multiple output) high-capacity access method
CN107104719B (en) Millimeter wave digital-analog hybrid precoding design method based on geometric construction
Cavalcante et al. Efficient hybrid A/D beamforming for millimeter-wave systems using butler matrices
CN108923833B (en) Transmitting end beam precoding method for antenna cross coupling effect suppression
TWI622279B (en) Communication device and method for beamforming
Hadji et al. Channel estimation based on low‐complexity hierarchical codebook design for millimeter‐wave MIMO systems
KR101748814B1 (en) Apparatus and method for signal trransmitting and receiviing with hibrid beamforming
Vlachos et al. Robust estimator for lens-based hybrid MIMO with low-resolution sampling
Chiang et al. Hybrid beamforming strategy for wideband millimeter wave channel models
Wong et al. Two-step codebook-assisted alternating minimization (ca-altmin) for low-complexity hybrid beamforming design

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees