TWI614527B - Compact head-mounted display system having uniform image - Google Patents

Compact head-mounted display system having uniform image Download PDF

Info

Publication number
TWI614527B
TWI614527B TW105126434A TW105126434A TWI614527B TW I614527 B TWI614527 B TW I614527B TW 105126434 A TW105126434 A TW 105126434A TW 105126434 A TW105126434 A TW 105126434A TW I614527 B TWI614527 B TW I614527B
Authority
TW
Taiwan
Prior art keywords
light
optical device
substrate
transparent plate
incident angle
Prior art date
Application number
TW105126434A
Other languages
Chinese (zh)
Other versions
TW201809798A (en
Inventor
亞柯夫 艾米塔
Original Assignee
盧姆斯有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 盧姆斯有限公司 filed Critical 盧姆斯有限公司
Priority to TW105126434A priority Critical patent/TWI614527B/en
Application granted granted Critical
Publication of TWI614527B publication Critical patent/TWI614527B/en
Publication of TW201809798A publication Critical patent/TW201809798A/en

Links

Abstract

於此揭示一種光學裝置,包含一光傳送基材具有一輸入孔、一輸出孔、至少二主表面及邊緣,一光學元件用於將光波以全內反射耦合進入該基材,至少一部分反射表面位於該光傳送基材的該二主表面之間,以便將光波部分反射出該基材,一第一透明板具有至少二主表面,該透明板的該主表面之一係光學地貼附於該光傳送基材的一主表面以界定一交界平面,及一分光覆層佈設於該基材及該透明板之間的該交界平面,其中耦合於該光傳送基材內部的光波係由該交界平面部分反射並部分穿過該交界平面。 An optical device includes an optical transmission substrate having an input aperture, an output aperture, at least two major surfaces, and an edge, and an optical component for coupling light waves into the substrate with total internal reflection, at least a portion of the reflective surface Located between the two major surfaces of the light transmitting substrate to partially reflect light waves out of the substrate, a first transparent plate having at least two major surfaces, one of the major surfaces of the transparent plate being optically attached a main surface of the light transmitting substrate to define an interface plane, and a light-shielding layer disposed on the interface plane between the substrate and the transparent plate, wherein the light wave system coupled to the interior of the light transmitting substrate is The interface plane partially reflects and partially passes through the interface plane.

Description

具有一致影像之小型頭戴式顯示系統 Small head-mounted display system with consistent image

本發明係關於一種以基材導向之光學裝置,尤其是包含由一共同光傳導基材所承載之數個反射表面的裝置,其亦被稱為光導光學元件(light-guide optical element,LOE)。 The present invention relates to a substrate-oriented optical device, and more particularly to a device comprising a plurality of reflective surfaces carried by a common light-conducting substrate, also referred to as a light-guide optical element (LOE). .

本發明可被實現於多種影像應用,例如頭戴式顯示器及抬頭顯示器、行動電話、小型顯示器、立體(3-D)顯示器、小型擴束器,以及非影像應用,例如平板指示器、小型照明器及掃描器。 The invention can be implemented in a variety of imaging applications, such as head-mounted displays and heads-up displays, mobile phones, small displays, stereo (3-D) displays, small beam expanders, and non-image applications such as flat panel indicators, small lighting And scanner.

實施於小型光學元件的一種重要應用係為頭戴式顯示器,在其中一光學模組係作為一影像鏡組及一連結器,在其內一二維顯示係成像於無窮遠並反射至一觀看者的眼睛。該顯示可直接得自一空間光調變器(spatial light modulator,SLM),例如一陰極射線管(cathode ray tube,CRT)、一液晶顯示器(liquid crystal display,LCD)、一有機發光二極體陣列(organic light emitting diode array,OLED)或一掃描源及相似裝置,或藉由一中繼透鏡或一光纖束而間接取得。該顯示包含一元件陣列(畫素)以一準直鏡成像於無窮遠,並藉由一反射或部分反射表面傳送入該觀看者的眼睛,該反射或部分反射表面係分別做為不可透視或可透視應用之連結器。通常係使用習知的自由空間光學模組(free-space optical module)以達上述目的。然而,當該系統的需求視野(field-of-view,FOV)增加,此類習知光學模組變得過 大且過重,因此即使是性能適中的裝置也無法實現。這是所有類型之顯示器的主要缺點,尤其是在頭戴式的應用上,此系統必須盡可能的呈輕量化及小型化。 An important application for small optical components is a head-mounted display, in which an optical module is used as an image mirror and a connector, in which a two-dimensional display is imaged at infinity and reflected to a viewing. The eyes of the person. The display can be directly obtained from a spatial light modulator (SLM), such as a cathode ray tube (CRT), a liquid crystal display (LCD), an organic light emitting diode. An organic light emitting diode array (OLED) or a scanning source and the like are indirectly obtained by a relay lens or a fiber bundle. The display includes an array of elements (pixels) imaged at infinity by a collimating mirror and transmitted into the viewer's eye by a reflective or partially reflective surface, the reflective or partially reflective surface being either non-perspective or The connector of the application can be seen through. A conventional free-space optical module is usually used to achieve the above object. However, when the field-of-view (FOV) of the system increases, such conventional optical modules have become Large and too heavy, so even a moderately priced device can't. This is a major drawback of all types of displays, especially in head-mounted applications where the system must be as lightweight and compact as possible.

為小型化而作的努力已獲致一些不同的複雜光學解決方案,所有這些方案,一方面對多數的實際應用而言仍不夠小型,而另一方面必須承擔可製作性上的主要障礙。此外,從這些設計所取得的光學視角之眼部運動箱(eye-motion-box,EMB)通常都非常小一通常小於8mm。因此,即使是光學系統在相對於觀看者的眼部而言僅屬微小的移動,光學系統的性能仍極為敏感,且亦不容許為了自該顯示方便地閱讀文字所進行之足夠的瞳孔運動。 Efforts to miniaturize have resulted in a number of different complex optical solutions, all of which, on the one hand, are still not small enough for most practical applications, and on the other hand have to bear major obstacles in terms of manufacturability. In addition, the eye-motion-box (EMB) of the optical viewing angles obtained from these designs is typically very small, typically less than 8 mm. Thus, even if the optical system is only slightly moving relative to the viewer's eye, the performance of the optical system is extremely sensitive and does not allow for sufficient pupil movement for reading text conveniently from the display.

涵蓋於PCT專利公開號WO01/95027、WO03/081320、WO2005/024485、WO2005/024491、WO2005/024969、WO2005/124427、WO2006/013565、WO2006/085309、WO2006/085310、WO2006/087709、WO2007/054928、WO2007/093983、WO2008/023367、WO2008/129539、WO2008/149339、WO2013/175465及以色列專利公開號IL 232197、IL 235642、IL 236490及IL 236491之教示內容,均係為本案申請人之名義,且於本案中引用。 Included in PCT Patent Publication No. WO01/95027, WO03/081320, WO2005/024485, WO2005/024491, WO2005/024969, WO2005/124427, WO2006/013565, WO2006/085309, WO2006/085310, WO2006/087709, WO2007/054928, The teachings of WO2007/093983, WO2008/023367, WO2008/129539, WO2008/149339, WO2013/175465, and Israel Patent Publication Nos. IL 232197, IL 235642, IL 236490, and IL 236491 are all in the name of the applicant and Quoted in this case.

本發明使非常小型的光導光學元件的結構和製作變得容易,這種光波導光學單元,除其他應用外,尤其用於頭戴顯示器。本發明實現了相對寬的視野及相對大的眼部運動箱數值。所得到的光學系統係提供一大的高品質影像,且亦顧及了眼部的大移動。本發明所提供的光學系統係特別有利,因為其係實質地較現有技術方案顯著地更小型,而且它甚至能輕易地併入具有專門配置的光學系統。 The present invention facilitates the construction and fabrication of very small lightguide optical elements, particularly for head mounted displays, among other applications. The present invention achieves a relatively wide field of view and a relatively large eye movement box value. The resulting optical system provides a large, high-quality image and also allows for large movements of the eye. The optical system provided by the present invention is particularly advantageous because it is substantially smaller than the prior art solutions, and it can even be easily incorporated into a specially configured optical system.

本發明的進一步應用係為行動手持裝置(例如行動電話)提供 廣的視野。在現今的無線網際網路接入(wireless internet-access)市場,有足夠的頻寬以供全視訊傳輸。限制因素仍在於終端使用者裝置中的顯示品質。移動性的需求限制了顯示器的物理大小,其結果便是具有不良影像觀看品質的直接顯示。本發明實現了具有非常大的虛擬影像但物理上非常小型的顯示器。這是移動通信中的關鍵特徵,特別是對移動網際網路接入,係解決其實際實施方案的主要限制之一。因此,本發明能在小的手持裝置(例如行動電話)實現觀看全部格式網際網路之網頁的數位內容。 Further applications of the present invention are provided for mobile handheld devices, such as mobile phones Wide field of vision. In today's wireless internet-access market, there is enough bandwidth for full video transmission. The limiting factor still lies in the display quality in the end user device. The need for mobility limits the physical size of the display, and the result is a direct display with poor image viewing quality. The present invention implements a display that has a very large virtual image but is physically very small. This is a key feature in mobile communications, especially for mobile Internet access, one of the main limitations of its practical implementation. Thus, the present invention enables digital content viewing of web pages of all formatted Internet sites in small handheld devices, such as mobile phones.

因此,本發明的主要目標,是減輕現有技術小型光學顯示裝置的缺點,並按照具體需求提供具有改良性能的其他光學元件及系統。 Accordingly, a primary object of the present invention is to alleviate the shortcomings of prior art small optical display devices and to provide other optical components and systems with improved performance in accordance with specific needs.

為此,根據本發明,係提供一種光學裝置,包含一光傳送基材具有一輸入孔、一輸出孔、至少二主表面及邊緣,一光學元件用於將光波以全內反射耦合進入該基材,至少一部分反射表面位於該光傳送基材的該二主表面之間,以便將光波部分反射出該基材,一第一透明板具有至少二主表面,該透明板的該主表面之一係光學地貼附於該光傳送基材的一主表面以界定一交界平面,及一分光覆層佈設於該基材及該透明板之間的該交界平面,其中耦合於該光傳送基材內部的光波係由該交界平面部分反射並部分穿過該交界平面。 To this end, in accordance with the present invention, there is provided an optical device comprising a light transmitting substrate having an input aperture, an output aperture, at least two major surfaces and an edge, an optical component for coupling light waves into the base with total internal reflection a material, at least a portion of the reflective surface being located between the two major surfaces of the light transmitting substrate to reflect a portion of the light wave out of the substrate, a first transparent plate having at least two major surfaces, one of the major surfaces of the transparent plate Optically attached to a major surface of the light-transmitting substrate to define an interface plane, and a light-spreading layer disposed on the interface between the substrate and the transparent plate, wherein the light-transmitting substrate is coupled The internal light wave is partially reflected by the interface plane and partially passes through the interface plane.

〔本發明〕 〔this invention〕

16‧‧‧第一反射表面 16‧‧‧First reflective surface

18‧‧‧準直顯示 18‧‧‧ Collimation display

20‧‧‧平面基材 20‧‧‧ planar substrate

20’‧‧‧基材 20'‧‧‧Substrate

22‧‧‧部分反射表面 22‧‧‧Partial reflective surface

22a‧‧‧部分反射表面 22a‧‧‧Partial reflective surface

22b‧‧‧部分反射表面 22b‧‧‧Partial reflective surface

22c‧‧‧部分反射表面 22c‧‧‧Partial reflective surface

22n‧‧‧反射表面 22n‧‧‧reflective surface

24‧‧‧眼睛 24‧‧‧ eyes

25‧‧‧瞳孔 25‧‧‧瞳孔

26‧‧‧下表面 26‧‧‧ Lower surface

27‧‧‧上表面 27‧‧‧ upper surface

28‧‧‧方向 28‧‧‧ Direction

30‧‧‧方向 30‧‧‧ Direction

80‧‧‧光線 80‧‧‧Light

82‧‧‧點 82‧‧‧ points

84‧‧‧點 84‧‧ points

86‧‧‧點 86‧‧‧ points

88‧‧‧光線 88‧‧‧Light

90‧‧‧反射 90‧‧‧Reflection

100‧‧‧線 100‧‧‧ line

102‧‧‧點 102‧‧‧ points

104‧‧‧光線 104‧‧‧Light

106‧‧‧點 106‧‧‧ points

108‧‧‧光線 108‧‧‧Light

110‧‧‧點 110‧‧‧ points

112‧‧‧單一平面光波 112‧‧‧ single plane light waves

114‧‧‧特定觀視角 114‧‧‧Special perspective

120‧‧‧透明板 120‧‧‧Transparent board

120’‧‧‧透明插入板 120’‧‧‧Transparent insert

122‧‧‧光線 122‧‧‧Light

124‧‧‧光線 124‧‧‧Light

126‧‧‧點 126‧‧ points

128‧‧‧點 128‧‧‧ points

132‧‧‧點 132‧‧‧ points

134‧‧‧點 134‧‧ points

136‧‧‧光線 136‧‧‧Light

140‧‧‧光線 140‧‧‧Light

142‧‧‧光線 142‧‧‧Light

144‧‧‧反射光線 144‧‧‧Reflected light

146‧‧‧反射光線 146‧‧‧reflected light

148‧‧‧點 148‧‧ points

150‧‧‧點 150‧‧ points

152‧‧‧光線 152‧‧‧ rays

154‧‧‧光線 154‧‧‧Light

156‧‧‧平面波 156‧‧‧ plane wave

158‧‧‧交界線 158‧‧ ‧ boundary line

160‧‧‧出射光線 160‧‧‧Out of light

162‧‧‧出射光線 162‧‧‧Out of the light

164‧‧‧光線 164‧‧‧Light

165‧‧‧光線 165‧‧‧Light

166‧‧‧分光覆層 166‧‧‧Spectral coating

167‧‧‧交界平面 167‧‧‧Intersection plane

168‧‧‧光線 168‧‧‧Light

170‧‧‧光線 170‧‧‧Light

172‧‧‧點 172‧‧ points

174‧‧‧點 174‧‧ points

176‧‧‧出射光線 176‧‧‧Out of the light

178‧‧‧出射光線 178‧‧‧Out of the light

180‧‧‧交界點 180‧‧ ‧ junction point

182‧‧‧交界點 182‧‧ ‧ junction point

184‧‧‧反射光線 184‧‧‧reflecting light

186‧‧‧反射光線 186‧‧‧ Reflected light

188‧‧‧光線 188‧‧‧Light

190‧‧‧光線 190‧‧‧Light

192‧‧‧點 192‧‧ points

194‧‧‧點 194‧‧ points

196‧‧‧點 196‧‧ points

198‧‧‧點 198‧‧ points

200‧‧‧光線 200‧‧‧Light

202‧‧‧光線 202‧‧‧Light

204‧‧‧光線 204‧‧‧Light

206‧‧‧光線 206‧‧‧Light

208‧‧‧透明板 208‧‧‧Transparent board

210‧‧‧交界平面 210‧‧‧Intersection plane

212‧‧‧光線 212‧‧‧Light

214‧‧‧光線 214‧‧‧Light

215‧‧‧點 215‧‧ points

216‧‧‧點 216‧‧ points

217‧‧‧點 217‧‧ points

218‧‧‧反射光線 218‧‧‧reflecting light

220‧‧‧反射光線 220‧‧‧reflected light

222a‧‧‧部分反射表面 222a‧‧‧Partial reflective surface

222b‧‧‧部分反射表面 222b‧‧‧Partial reflective surface

230‧‧‧繞射元件 230‧‧‧diffractive components

232‧‧‧繞射元件 232‧‧‧Diffractive components

234‧‧‧光線 234‧‧‧Light

236‧‧‧光線 236‧‧‧Light

238‧‧‧基材 238‧‧‧Substrate

240‧‧‧右邊緣 240‧‧‧Right edge

242‧‧‧透明板 242‧‧‧Transparent board

244‧‧‧上表面 244‧‧‧ upper surface

246‧‧‧交界表面 246‧‧‧ Junction surface

α in ‧‧‧落入角 In in ‧‧‧ falls into the corner

D n ‧‧‧亮孔 D n ‧‧‧ bright hole

T‧‧‧厚度 T‧‧‧ thickness

本發明係結合一些較佳實施例描述,並參照以下說明圖示以便其可被更完整的瞭解。 The present invention has been described in connection with the preferred embodiments of the invention, and the description

針對詳細地特定參照的圖,應當注意所顯示的細節係為舉例並僅以本發明較佳實施例之說明性討論為目的,並且基於提供據信為最有用且易於了解本發明之原理及概念的說明。就此而言,除了對本發明的基本理解所需,不試圖更詳盡地表示本發明的結構細節。結合圖所作的描述係做為本領域熟習該項技藝者了解本發明的數種形式如何實際實施的導 引。 For the detailed description of the specific reference figures, it should be noted that the details are shown by way of example only and for the purpose of the illustrative discussion of the preferred embodiments of the invention, instruction of. In this regard, the structural details of the present invention are not intended to be exhaustive. The description made in conjunction with the figures is intended to be a guide for those skilled in the art to understand how the several forms of the invention are actually implemented. lead.

於圖式中:第1圖:一示範的先前技術之光導光學元件的側視圖;第2A及2B圖:一選擇反射表面之示範陣列的詳細剖視圖;第3圖:根據本發明具有二相異照射光線之反射表面的簡略剖視圖;第4圖:一透明板貼附於該基材邊緣處之選擇反射表面之示範陣列的剖視圖;第5圖:根據本發明之反射表面的簡略剖視圖,係繪示該表面的實際有效孔;第6圖:針對一示範光導光學元件繪示該反射表面做為該佈光角之函數的有效孔尺寸;第7圖:針對三個相異視角繪示來自一選擇反射表面之示範陣列之反射率的詳細剖視圖;第8圖:針對一示範光導光學元件繪示二相鄰反射表面之間做為該佈光角之函數的需求距離;第9圖:根據本發明之具有二相異照射光線之反射表面的另一簡略剖視圖;第10圖:具有一插入的透明板貼附於該基材邊緣的選擇反射表面之示範陣列之剖視圖;第11圖:根據本發明之具有二相異照射光線之反射表面的另一簡略剖視圖,其中該二光線係由二部分反射表面所反射;第12圖:根據本發明之具有二相異照射光線之反射表面的又一簡略剖視圖,其中該二光線係相距遠地耦合入該光導光學元件且相距近地耦合出該光導光學元件; 第13A及13B圖:埋設於一光導光學元件內的一分光表面之簡略剖視圖;第14圖:針對一示範角度敏感覆層及S偏振光波,一分光表面作為入射角之函數的反射率曲線圖;第15圖:針對一示範角度敏感覆層及S偏振光波,一分光表面作為入射角之函數的另一反射率曲線圖;第16圖:埋設於一光導光學元件內的二相異分光表面之簡略剖視圖;第17圖:埋設於一光導光學元件內的一分光表面之另一簡略剖視圖,其中部分反射表面係形成於該透明貼附板的內部;及第18A及18B圖:埋設於一光導光學元件內的一分光表面之實施例的又一簡略剖視圖,其中該耦合進入及該耦合射出元件為繞射光學元件。 In the drawings: FIG. 1 is a side view of an exemplary prior art light guiding optical element; FIGS. 2A and 2B are detailed cross-sectional views of an exemplary array of selective reflective surfaces; FIG. 3: Dimorphism according to the present invention A simplified cross-sectional view of a reflective surface that illuminates the light; FIG. 4 is a cross-sectional view of an exemplary array of selective reflective surfaces attached to the edge of the substrate; FIG. 5 is a simplified cross-sectional view of the reflective surface in accordance with the present invention Showing the actual effective aperture of the surface; Figure 6: showing the effective aperture size of the reflective surface as a function of the angle of illumination for an exemplary lightguide optical element; Figure 7: depicting one from three different viewing angles A detailed cross-sectional view of the reflectivity of an exemplary array of reflective surfaces is selected; FIG. 8 is a diagram showing the required distance between two adjacent reflective surfaces as a function of the angle of illumination for an exemplary lightguide optical element; Figure 9: Another simplified cross-sectional view of a reflective surface of the invention having diffracted illumination; FIG. 10: a cross-sectional view of an exemplary array of selective reflective surfaces having an interposed transparent plate attached to the edge of the substrate Figure 11 is another schematic cross-sectional view of a reflective surface having dichromatic illumination rays in accordance with the present invention, wherein the two illuminations are reflected by a two-part reflective surface; Figure 12: Dichoelectric illumination according to the present invention A further simplified cross-sectional view of the reflective surface of the light, wherein the two light rays are remotely coupled into the light guiding optical element and coupled to the light guiding optical element at close distances; 13A and 13B are schematic cross-sectional views of a spectroscopic surface embedded in a light guiding optical element; Fig. 14 is a graph showing the reflectance of a spectroscopic surface as a function of incident angle for a representative angle sensitive coating and S polarized light waves. Figure 15: Another reflectivity plot for a representative angle sensitive coating and S-polarized light, a split surface as a function of angle of incidence; Figure 16: Two-phase split-beam surface embedded in a light-guide optical element BRIEF DESCRIPTION OF THE DRAWINGS FIG. 17 is another schematic cross-sectional view of a light splitting surface embedded in a light guiding optical element, wherein a partially reflective surface is formed inside the transparent attaching plate; and FIGS. 18A and 18B are embedded in a Yet another simplified cross-sectional view of an embodiment of a light splitting surface within a light directing optical element, wherein the coupling into and the coupling emitting element is a diffractive optical element.

第1圖係繪示本發明之光導光學元件(LOE)的剖視圖。該第一反射表面16係受到來自一光源(未繪示)之準直顯示18照射,該光源係位於該裝置後方。該反射表面16反射來自該光源的入射光,以便該光線以全內反射落入一平面基材20中。經過該基材之表面26、27的幾次反射之後,該落入之光波係抵達由部分反射表面22構成之陣列,其係自該基材耦合出光線而進入一觀看者具有一瞳孔25的眼睛24。在此,該光導光學元件之輸入表面將定義為該輸入光波藉以進入該光導光學元件的表面,而該光導光學元件之輸出表面將定義為該落入之光波藉以離開該光導光學元件的表面。此外,將提及之該光導光學元件之輸入孔係為該輸入光波在進入該光導光學元件時藉以實際通過該輸入表面的部分,而將提及之該光導光學元件之輸出孔係為該輸出光波在離開該光導光學元件時藉以實際通過該輸出表面的部分。在第1圖所繪示之光導光學元件的實施例中,該輸入及 輸出表面均與該下表面26重疊,惟該輸入及成像光波位於該基材之相對側或在該光導光學元件的邊緣之一等其他配置亦可理解。若該光源之中央光波係沿與該基材表面26垂直的方向耦合出該基材20,該部分反射表面22為平面,且該基材20內之耦合光波的離軸角(off-axis angle)為α in ,則該反射表面及該基材板之法線之間的角度為: Figure 1 is a cross-sectional view showing a light guiding optical element (LOE) of the present invention. The first reflective surface 16 is illuminated by a collimated display 18 from a light source (not shown) that is located behind the device. The reflective surface 16 reflects incident light from the source such that the light falls into a planar substrate 20 with total internal reflection. After several reflections of the surfaces 26, 27 of the substrate, the falling light waves reach an array of partially reflective surfaces 22 that couple light from the substrate into a viewer having a bore 25. Eye 24. Here, the input surface of the light guiding optical element will be defined as the surface into which the input light wave enters, and the output surface of the light guiding optical element will be defined as the surface from which the falling light wave exits the light guiding optical element. In addition, the input aperture of the light guiding optical element to be mentioned is the portion through which the input light wave actually passes through the input surface when entering the light guiding optical element, and the output aperture of the optical guiding optical element mentioned is referred to as the output. Light waves are passed through the portion of the output surface as they exit the lightguide optical element. In the embodiment of the light guiding optical element illustrated in FIG. 1, the input and output surfaces both overlap the lower surface 26, but the input and imaging light waves are located on opposite sides of the substrate or at the edge of the light guiding optical element. One of the other configurations can also be understood. If the central light wave of the light source is coupled out of the substrate 20 in a direction perpendicular to the surface 26 of the substrate, the partially reflective surface 22 is planar, and the off-axis angle of the coupled light wave within the substrate 20 ) is α in , then the angle between the reflective surface and the normal to the substrate plate is:

如第1圖所示,該落入之光線由二相異方向28、30到達該反射表面。在本實施例中,該落入之光線沿這些方向28之一自該基材表面26、27經過偶數次反射之後到達該部分反射表面22,其中介於該落入之光線及該反射表面之法線之間的入射角β ref 為: As shown in Fig. 1, the falling light reaches the reflecting surface by two distinct directions 28,30. In this embodiment, the falling light reaches the partially reflective surface 22 after an even number of reflections from the substrate surface 26, 27 along one of the directions 28, wherein the falling light and the reflective surface The incident angle β ref between the normals is:

該落入之光線沿該第二方向30自該基材表面26、27經過奇數次反射之後到達該反射表面,其中該離軸角為α' in =180°-α in ,且介於該落入之光線及該反射表面之法線之間的入射角為: 其中該負號表示該落入之光線照射於該部分反射表面22的背面。 The falling light reaches the reflective surface after the odd-numbered reflections from the substrate surface 26, 27 in the second direction 30, wherein the off-axis angle is α' in = 180° in and is between The angle of incidence between the incoming light and the normal to the reflective surface is: The negative sign indicates that the falling light is incident on the back surface of the partially reflective surface 22.

如第一圖所示,對各反射表面,各光線首先沿該方向30到達該表面,其中一些該光線係沿方向28再次照射於該表面。為避免不需要的反射及重影,將沿該第二方向28照射於該表面之光線的反射率忽略係為重要。 As shown in the first figure, for each reflective surface, each ray first reaches the surface in that direction 30, some of which illuminate the surface again in direction 28. In order to avoid unwanted reflections and ghosting, it is important to ignore the reflectance of the light that illuminates the surface along the second direction 28.

各反射表面的實際有效區域係為必須考慮的一個重要議題。在成像上的潛在非一致性可能因為到達各選擇反射表面的相異光線之不同反射順序而發生:某些光線未與選擇反射表面進行前置的交互作用即到達;其他的光線在經過一或多次部分反射後到達。此效應係繪示於第2A 圖中。例如,假設α in =50°,該光線80與該第一部分反射表面22相交於點82。該光線的入射角為25°,且該光線之能量的一部分係耦合出該基材。該光線隨後以75°的入射角與相同的選擇部分反射表面相交於點84且無明顯的反射,其後並以25°的入射角再次相交於點86,此時該光線之能量的另一部分係耦合出該基材。相反地,第2B圖所繪示的光線88僅會在同一表面經過一次反射90。進一步的複數次反射係發生於其他的部分反射表面。 The actual effective area of each reflective surface is an important issue that must be considered. The potential inconsistency in imaging may occur due to the different reflection order of the distinct rays reaching each of the selective reflecting surfaces: some rays do not reach the pre-positional interaction with the selective reflecting surface; other rays pass through one or Arrived after multiple partial reflections. This effect is shown in Figure 2A. For example, assuming α in = 50°, the ray 80 intersects the first partially reflective surface 22 at point 82. The angle of incidence of the light is 25° and a portion of the energy of the light is coupled out of the substrate. The ray then intersects the same selected partial reflective surface at an incident angle of 75° at point 84 with no significant reflection, and thereafter intersects again at point 86 at an angle of incidence of 25°, at which point the other portion of the energy of the ray The substrate is coupled out. Conversely, the ray 88 depicted in FIG. 2B will only undergo a single reflection 90 on the same surface. Further multiple reflections occur on other partially reflective surfaces.

第3圖係以該部分反射表面22的細部剖視圖繪示此非一致現象,其係耦合出落於該基材內的光線且進入一觀看者隻眼睛24的光線。誠如所見,該光線80由該上表面27緊鄰該線100反射出來,該線100係該反射表面22與該上表面27的相交處。由於此光線並未照射於該反射表面22,其亮度仍維持相同,且其係在二外表面經過兩次反射之後,首次入射至該表面22於該點102。在此點,該光波係部分反射,且該光線104係耦合出該基材20。關於其他光線,例如光線88(其係恰位於光線80下方)在到達該上表面27之前首次入射至表面22於點106,其中該光波於點106部分反射且該光線108耦合出該基材。因此,當其由外表面26、27經過二次反射之後再次照射於表面22之點110,該耦合出射光線的亮度係低於相鄰的光線104。因此,所有與光線80具有相同的耦合入射角的光線,即到達表面22時位於點102之左側者,係具有較低的亮度。因此,對於此特定的耦合入射角,自表面22的反射率在該點102之左側處確實較暗。 Figure 3 illustrates this non-uniformity in a detailed cross-sectional view of the partially reflective surface 22 that couples light that exits the substrate and enters a viewer's eye 24. As can be seen, the ray 80 is reflected by the upper surface 27 adjacent the line 100, which line 100 is the intersection of the reflective surface 22 and the upper surface 27. Since the light does not illuminate the reflective surface 22, its brightness remains the same, and it is incident on the surface 22 for the first time after the two outer surfaces have been reflected twice. At this point, the lightwave is partially reflected and the light 104 is coupled out of the substrate 20. With respect to other light rays, such as light 88 (which is just below light 80), it is first incident on surface 22 at point 106 before reaching the upper surface 27, wherein the light wave is partially reflected at point 106 and the light 108 is coupled out of the substrate. Thus, when it is again reflected by the outer surface 26, 27 after secondary reflection at the point 110 of the surface 22, the brightness of the coupled exit light is lower than the adjacent light 104. Thus, all rays that have the same coupling angle of incidence as the ray 80, i.e., to the left of the point 102 when the surface 22 is reached, have a lower brightness. Thus, for this particular coupled incident angle, the reflectivity from surface 22 is indeed darker at the left side of point 102.

多路交叉效應的上述差異係難以完全補償,然而,實際上人類的眼睛會容許亮度上的明顯變化,因此仍可維持不被察覺。針對近眼顯示,眼睛會將出現自單一視角的光線合併,並將其聚焦於視網膜的一點上。由於眼睛的反應曲線為對數曲線,故若在顯示之亮度上有任何小變化亦將不會被注意到。因此,即使是在該顯示內中等程度的亮度非一致情況,人類的眼睛感受到的會是一高品質影像。所需求的中等非一致情況已可由第 1圖所繪示的元件獲得。針對具有大視野及需要大眼部運動箱的系統,需要相對較大量的部分反射表面,以獲得所要的輸出孔。因此,肇因於該大量部分反射表面之多路交叉的非一致性變得更為顯著,尤其是位在距離眼睛一段距離的顯示(例如抬頭顯示)而使該非一致性無法被接受。在這些情況下,需要一個更系統化的方法以克服該非一致性。 The above differences in multipath crossover effects are difficult to fully compensate, however, in fact, the human eye will allow significant changes in brightness and thus remain undetected. For near-eye display, the eye combines light from a single perspective and focuses it on a point on the retina. Since the response curve of the eye is a logarithmic curve, any small changes in the brightness of the display will not be noticed. Therefore, even if the brightness is not uniform in the display, the human eye will feel a high quality image. The medium non-coherent situation required is already The components shown in Figure 1 are obtained. For systems with large fields of view and requiring large eye movement boxes, a relatively large amount of partially reflective surface is required to achieve the desired output aperture. Therefore, the non-uniformity of the multi-way intersection due to the large number of partially reflective surfaces becomes more pronounced, especially at a distance from the eye (e.g., head-up display) such that the inconsistency is unacceptable. In these cases, a more systematic approach is needed to overcome this inconsistency.

由於該部分反射表面22的「較暗」部位對於將該落入的光波耦合出該基材較無貢獻,其對該光導光學元件之光學性能的影響僅能是負面的,亦即該系統的輸出孔將有較暗部位,且暗紋將出現於影像中。然而,各該反射表面針對來自該外部畫面之光波的透明度並不一致。因此,若在反射表面之間設置重疊以補償該輸出孔的較暗部位,則由該輸出畫面穿過這些重疊區域的光線將承受兩倍的衰減,且暗紋將呈現於該外部畫面中。此現象係顯著地降低了不僅在於離眼睛有一段距離的顯示(例如抬頭顯示)之效果,也在於近眼顯示的效果,因此其係無法供使用。 Since the "dark" portion of the partially reflective surface 22 has less contribution to coupling the falling light waves out of the substrate, its effect on the optical properties of the light guiding optical element can only be negative, ie, the system The output hole will have a darker portion and dark lines will appear in the image. However, each of the reflective surfaces does not coincide with the transparency of the light waves from the external picture. Thus, if an overlap is provided between the reflective surfaces to compensate for the darker portions of the output aperture, the light passing through the overlapping regions of the output image will experience twice the attenuation and the dark lines will appear in the external image. This phenomenon significantly reduces the effect of not only the display that is at a distance from the eye (for example, the head-up display) but also the effect of the near-eye display, so that it cannot be used.

第4圖係繪示解決此問題的實施例。僅有該部分反射表面22a、22b及22c的「明亮」部分埋設於該基材中,亦即該反射表面22a、22b及22c不再與該下主表面26相交,而是在未達此表面即終止。由於該反射表面的末端在該光導光學元件的長度中一個接著一個的相鄰,該被投射的影像中將不會有間隙,且既然該表面不重疊,該外部視景中將不會有間隙。建構此光導光學元件的方法有數種,其一係將具有一厚度T的一透明板120較佳藉由光學膠合(optical cementing)貼附於該基材的有效區域。為求以正確的方法僅利用該反射表面22的有效區域,計算各個部分反射表面的實際有效區域及該板120之需求厚度T係屬重要。 Fig. 4 is a diagram showing an embodiment for solving this problem. Only the "bright" portions of the partially reflective surfaces 22a, 22b, and 22c are embedded in the substrate, that is, the reflective surfaces 22a, 22b, and 22c no longer intersect the lower major surface 26, but are not at the surface. That is to terminate. Since the ends of the reflective surface are adjacent one after another in the length of the light guiding optical element, there will be no gap in the projected image, and since the surface does not overlap, there will be no gap in the external view. . There are several methods for constructing the light guiding optical element. A transparent plate 120 having a thickness T is preferably attached to the effective area of the substrate by optical cementing. In order to utilize only the effective area of the reflective surface 22 in the correct manner, it is important to calculate the actual effective area of each partially reflective surface and the desired thickness T of the plate 120.

如第5圖所示,該反射表面22n在該外表面26之平面中之亮孔D n (以該耦合進入角α in 之函數表示)為: As shown in FIG. 5, in the plane of the reflecting surface 22n of the outer surface 26 of light holes in the D n (in angle α in the coupled into the function shown) as:

由於該落入角α in 可做為該視野之函數進行變化,則各反射表面22n與哪個角度有關聯係屬重要,以便計算其有效孔。 Since the fall angle α in can be varied as a function of the field of view, it is important to correlate which angle each reflective surface 22n is associated with in order to calculate its effective aperture.

第6圖係繪示該有效孔在下列系統參數之下做為該佈光角(field angle)之函數:基材厚度d=2mm,基材折射率v=1.51及部分反射表面角α sur =64°。在考慮觀視角的情況下,應注意該成像之相異部位係源自該部分反射表面的相異部位。 Figure 6 shows the effective hole as a function of the field angle under the following system parameters: substrate thickness d = 2 mm, substrate refractive index v = 1.51 and partial reflection surface angle α sur = 64°. In the case of considering the viewing angle, it should be noted that the different portions of the image are derived from the distinct portions of the partially reflective surface.

第7圖係繪示此效應,其係為基於所提出之結構的小型光導光學元件顯示系統之剖視圖。在此,表示一特定觀視角114的一單一平面光波112僅照射部分反射表面22a、22b及22c構成之所有陣列的部分。因此,針對該部分反射表面上的每一點均定義一名義上的觀視角,且該反射表面所需要的有效區域即根據此角度計算。該各個部分反射表面之有效區域的精確詳細設計係執行如下:針對各特定表面,一光線係由該表面之左側緣至所標示的眼睛瞳孔25進行劃分(由於司乃耳定律(Snell's law),將折射列入考慮)。所計算得之方向即設為該名義上的入射方向,且該特定有效區域係根據此方向計算。 Figure 7 illustrates this effect as a cross-sectional view of a miniature lightguide optical element display system based on the proposed structure. Here, a single planar light wave 112 representing a particular viewing angle 114 illuminates only portions of all of the arrays formed by the partially reflective surfaces 22a, 22b, and 22c. Thus, a nominal viewing angle is defined for each point on the partially reflective surface, and the effective area required for the reflective surface is calculated from this angle. The precise detailed design of the effective area of each of the partially reflective surfaces is performed as follows: for each particular surface, a ray is divided by the left edge of the surface to the indicated eye pupil 25 (due to Snell's law, Take the refraction into consideration). The calculated direction is set to the nominal incident direction, and the particular effective area is calculated from this direction.

如第5圖所示,該反射表面有效區域之精確值可用於判斷各反射表面22n之明亮部位及該下表面26之間的不同距離T。一較大的有效區域即需要一較小的表面間距離。此距離代表應貼附於該光導光學元件之下表面之該板120(第7圖)的厚度。如第5圖所示,該距離T做為該耦合進入角α in 之函數係為:T=d-D n .cot(α sur) (5) As shown in Fig. 5, the exact value of the effective area of the reflective surface can be used to determine the different distances T between the bright portions of each reflective surface 22n and the lower surface 26. A larger effective area requires a smaller inter-surface distance. This distance represents the thickness of the plate 120 (Fig. 7) that should be attached to the lower surface of the light guiding optical element. As shown in Fig. 5, the distance T as a function of the coupling entry angle α in is: T = d - D n . Cot( α sur ) (5)

第8圖係繪示該板120之所需厚度T在參考第6圖中設定之相同參數之下做為該佈光角之函數。將該厚度T設定為該最大計算值以確 保該影像可避免暗紋效應是值得的。設定過厚的板120將導致相反的效果,即在影像中之亮紋的出現。 Figure 8 illustrates the desired thickness T of the panel 120 as a function of the angle of illumination under the same parameters set forth in reference to Figure 6. Set the thickness T to the maximum calculated value to confirm It is worthwhile to protect the image to avoid the effect of dark lines. Setting the plate 120 that is too thick will result in the opposite effect, namely the appearance of bright lines in the image.

如第9圖所示,二光線122、124係於該基材20內部耦合。該二光線係分別自表面22a的點126、128部分反射。然而,只有光線122照射於第二表面22b的點130並於此處部分反射,而光線124掠過表面22b而無任何反射率。因此,照射於表面22c之點134之光線124的亮度係高於光線122在點132的亮度。所以由點138之該耦合射出光線138的亮度係高於由點132所耦合射出之光線136的亮度,且量紋將於影像中出現。引此,應選擇該厚度T為一精確值以避免影像中的暗紋及亮紋。 As shown in FIG. 9, the two rays 122, 124 are coupled inside the substrate 20. The two rays are partially reflected from points 126, 128 of surface 22a, respectively. However, only the ray 122 illuminates the point 130 of the second surface 22b and is partially reflected there, while the ray 124 sweeps across the surface 22b without any reflectivity. Thus, the brightness of the light 124 that illuminates the point 134 of the surface 22c is higher than the brightness of the light 122 at the point 132. Therefore, the brightness of the coupled ray 138 from point 138 is higher than the brightness of ray 136 that is coupled by point 132, and the sizing appears in the image. Therefore, the thickness T should be selected to an exact value to avoid dark lines and bright lines in the image.

如第10圖所示,用於獲致所需結構的可能實施例係建構一插入的基材20’,其中該板120之厚度T係依據該視角,且該二主要基材不平行。一互補的透明插入板120’較佳藉由光學膠以該結合基材形成一完全的直角平行六面體的方式貼附於該基材,例如該最終光導光學元件的二外側主要表面為互相平行。然而,此方法存在一些缺點。首先,該插入的光導光學元件之製造程序較該平行光導光學元件之製造程序更為複雜且難處理。此外,此方案對具有小眼部運動箱的系統有效,其係於該視角及該基材板上的側邊位置之間具有相稱的匹配。然而,對於具有大眼部運動箱的系統(即眼睛可顯著地沿該側軸移動)而言,在該視角及該板120’之實際厚度之間將不存在好的調校。因此,可能於影像中察覺暗紋或亮紋。 As shown in Fig. 10, a possible embodiment for obtaining the desired structure is to construct an interposed substrate 20' wherein the thickness T of the plate 120 is based on the viewing angle and the two main substrates are not parallel. A complementary transparent insertion plate 120' is preferably attached to the substrate by optical glue in such a manner that the bonded substrate forms a complete rectangular parallelepiped, for example, the two outer major surfaces of the final light guiding optical element are mutually parallel. However, this method has some drawbacks. First, the manufacturing procedure of the inserted light guiding optical element is more complicated and difficult to handle than the manufacturing procedure of the parallel light guiding optical element. Moreover, this solution is effective for systems with small eye movement boxes that have a commensurate match between the viewing angle and the side positions on the substrate sheet. However, for systems with large eye sports boxes (i.e., the eye can move significantly along the side axis), there will be no good adjustment between the viewing angle and the actual thickness of the plate 120'. Therefore, it is possible to detect dark lines or bright lines in the image.

此暗紋或亮紋的發生係導因於該光導光學元件中的部分反射表面非僅限於形成此效應的表面。參照如第3圖所示,由表面22a反射兩次的該耦合光線88在點110處的亮度係低於僅由表面22a反射一次的光線80在點102的亮度。因此,該反射波112的亮度低於該相鄰的光線104的亮度。然而,如第11圖所示,不僅是來自表面22a的反射波之亮度不同,所傳輸的光線140及142之亮度也不同。因此,來自表面22b之反射光線 144及146分別在點148及150處的亮度將以相同的方式呈現相異,而一暗紋亦將在該影像的此區域中出現。自然地,該光線之間的此差異將繼續於該光導光學元件中擴及下一個部分反射表面。因此,由於各部分反射表面依照精確的入射角產生各自的暗紋及亮紋,則對於具有大量部分反射表面的光導光學元件而言,大量的暗紋及亮紋將累積於該光導光學元件之輸出孔的遠端緣,且因此該影像品質將嚴重地惡化。 This occurrence of dark lines or bright lines is caused by the fact that the partially reflective surface in the light guiding optical element is not limited to the surface forming this effect. Referring to Figure 3, the brightness of the coupled ray 88 reflected twice by the surface 22a at point 110 is lower than the brightness of the ray 80 reflected only once by the surface 22a at point 102. Therefore, the brightness of the reflected wave 112 is lower than the brightness of the adjacent light ray 104. However, as shown in Fig. 11, not only the brightness of the reflected wave from the surface 22a is different, but also the brightness of the transmitted light rays 140 and 142 is different. Therefore, the reflected light from the surface 22b The brightness at 144 and 146 at points 148 and 150, respectively, will appear different in the same manner, and a dark line will also appear in this region of the image. Naturally, this difference between the rays will continue to extend into the next partially reflective surface of the lightguide optical element. Therefore, since each of the partially reflective surfaces produces respective dark lines and bright lines according to a precise incident angle, a large amount of dark lines and bright lines will accumulate in the light guiding optical element for a light guiding optical element having a large number of partially reflecting surfaces. The distal edge of the aperture is output, and thus the image quality will be severely degraded.

該影像之非均勻性的來源可為耦合入該光導光學元件之影像波的非一致性。通常,當一光源的二側具有些微的強度差異,其將難以被觀看者注意。對於耦合於一基材內(即如在該光導光學元件內)且逐漸耦合輸出的影像,情況會完全不同。如第12圖所示,二光線152及154係位於該平面波156的邊緣,其係源自該顯示源(未繪示)中的同一點。假設光線152因為不完美的影像系統造成其亮度低於光線154的亮度,則由於該光線間的遠距,此品質之不足將難以由直接觀看該平面波156而察覺。然而,在耦合入該光導光學元件20之後,此狀況會改變。當該光線154照射在恰位於該反射表面16及該下主表面26間的交界線156之右側的反射表面16,該右側光線152係自表面16反射,由該上表面27全反射,且隨後照射於恰位於該交界線158左側的下表面26。因此,在該光導光學元件20內傳導的該光線152及154係相鄰。分別源自於光線152及154且由表面22a反射的該二出射光線160及162因此具有相異的亮度。然而,不像該輸入光波156,該二相異的光線係相鄰近,且此差異係於該影像中成為暗紋而被察覺。此二光線164、165將繼續互相鄰近地一同在該光導光學元件中傳導,且將在每一個他們將一起耦合出射的位置形成一暗紋。自然地,避免此非一致性的最佳方法係確保所有耦合入該光導光學元件的光波在整個視野的整個輸入孔具有一致的亮度。此需求對具有大視野及寬輸入孔的系統而言可能極難以履行。 The source of non-uniformity of the image may be a non-uniformity of image waves coupled into the lightguide optical element. Generally, when there are slight differences in intensity on both sides of a light source, it will be difficult for the viewer to notice. The situation is completely different for images that are coupled into a substrate (ie, as in the lightguide optical element) and are gradually coupled out. As shown in Fig. 12, two rays 152 and 154 are located at the edge of the plane wave 156, which originates from the same point in the display source (not shown). Assuming that the ray 152 is less bright than the ray 154 due to an imperfect imaging system, this lack of quality will be difficult to detect by directly viewing the plane wave 156 due to the distance between the rays. However, this condition changes after being coupled into the light guiding optical element 20. When the ray 154 illuminates a reflective surface 16 that is just to the right of the boundary 156 between the reflective surface 16 and the lower major surface 26, the right ray 152 is reflected from the surface 16 and is totally reflected by the upper surface 27, and subsequently The lower surface 26 is located just to the left of the boundary line 158. Therefore, the light rays 152 and 154 conducted in the light guiding optical element 20 are adjacent. The two outgoing rays 160 and 162, which are derived from rays 152 and 154, respectively, and are reflected by surface 22a, thus have distinct brightness. However, unlike the input light wave 156, the two distinct light rays are adjacent, and the difference is perceived as dark lines in the image. The two rays 164, 165 will continue to conduct in the lightguide optical element alongside each other and will form a dark line at each of the locations where they will be coupled together. Naturally, the best way to avoid this inconsistency is to ensure that all light waves coupled into the lightguide optical element have consistent brightness throughout the input aperture of the entire field of view. This requirement can be extremely difficult to perform for systems with large fields of view and wide input holes.

如第13A及13B圖所示,如前面參照第4圖所述者,此非一致問題可能藉由貼附一透明板至該光導光學元件的主要表面之一予以解決。然而,在此實施例中,一分光覆層(beam splitting coating)166係佈設於該光導光學元件20及該透明板120之間的交界平面167。如第13A圖所示,二光線168及170係耦合於該基材20內。僅有光線168照射於該第一部分反射表面22a的點172且在此處部分反射,且光線170係掠過表面22a而無任何反射率。因此,假設該二光線在耦合進入該光導光學元件時具有相同亮度,則由該下主表面26向上反射之光線170具有高於由該上表面27向下反射之光線168的亮度。此二光線係相交於位在交界平面167的點174。由於佈設於其上的分光覆層,各該二相交光線係部分反射且部分穿過該覆層。隨後,該二光線互換能量,且來自該相交點174的該出射光線176及178具有相近的亮度,其實質上係為該二入射光線168及170的平均亮度。此外,該光線係在交界點180及182與二其他光線(未繪示)交換能量。導因於此能量交換,來自表面22b的該二反射光線184及186將具有實質相似的亮度,且該亮紋效應將被顯著地改善。 As shown in Figures 13A and 13B, as previously described with reference to Figure 4, this non-uniform problem may be solved by attaching a transparent plate to one of the major surfaces of the lightguide optical element. However, in this embodiment, a beam splitting coating 166 is disposed on the interface plane 167 between the light guiding optical element 20 and the transparent plate 120. As shown in FIG. 13A, two rays 168 and 170 are coupled within the substrate 20. Only light 168 illuminates the point 172 of the first partially reflective surface 22a and is partially reflected there, and the ray 170 sweeps across the surface 22a without any reflectivity. Thus, assuming that the two rays have the same brightness when coupled into the lightguide optical element, the light 170 that is reflected upward by the lower major surface 26 has a higher brightness than the light 168 that is reflected downward by the upper surface 27. The two ray rays intersect at a point 174 at the interface plane 167. Each of the two intersecting light rays is partially reflected and partially passes through the cladding layer due to the spectral coating disposed thereon. Subsequently, the two rays exchange energy, and the exit rays 176 and 178 from the intersection 174 have similar brightness, which is substantially the average brightness of the two incident rays 168 and 170. In addition, the light is exchanged at two junctions 180 and 182 with two other rays (not shown). Due to this energy exchange, the two reflected rays 184 and 186 from surface 22b will have substantially similar brightness and the brightening effect will be significantly improved.

相似地,如第13B圖所示,二光線188及190係耦合於該基材20內部。然而,僅有光線188照射於該第一部分反射表面22a的點192,且在被該上表面27反射之前於該處部分反射。因此,假設該二光線在耦合進入該光導光學元件時具有相同亮度,則由該上主表面27向下反射之光線190係具有較光線188高的亮度。然而,此二光線相交於位在該交界平面167之點194,並在此交換能量。此外,該二光線在位於該分光表面167之點196及198與其他光線相交。因此,反射自表面22a之光線200及202以及反射至表面22b之光線204及206將具有實質相同的亮度,且因此該暗紋效應將顯著地降低。這個亮度的一致性改善效應亦可針對該光導光學元件之輸入孔的非一致照明所引起的暗紋及亮紋實現。因此,落於該光導 光學元件內部的光波之亮度分布,實質上在該光導光學元件之輸出孔處係較該輸入孔處更為一致。 Similarly, as shown in FIG. 13B, two rays 188 and 190 are coupled to the interior of the substrate 20. However, only light 188 illuminates the point 192 of the first partially reflective surface 22a and is partially reflected there before being reflected by the upper surface 27. Thus, assuming that the two rays have the same brightness when coupled into the lightguide optical element, the light 190 reflected downward by the upper major surface 27 has a higher brightness than the light 188. However, the two rays intersect at a point 194 at the interface plane 167 where energy is exchanged. In addition, the two rays intersect at other points 196 and 198 at the beam splitting surface 167 with other rays. Thus, the rays 200 and 202 reflected from the surface 22a and the rays 204 and 206 reflected to the surface 22b will have substantially the same brightness, and thus the shading effect will be significantly reduced. This brightness uniformity improvement effect can also be achieved for dark lines and bright lines caused by non-uniform illumination of the input aperture of the light guiding optical element. Therefore, falling on the light guide The brightness distribution of the light waves inside the optical element is substantially more uniform at the output aperture of the light guiding optical element than at the input aperture.

如第13A圖所示,由表面22a所反射的光線184、186在耦合出該光導光學元件之前與該分光表面167相交。因此,由於表面167對於離開該基材20的光線而言必須呈現透明,且對於透視情況下來自外部畫面的光波(即以小入射角通過平面167且以更高入射角部分反射的光波)亦呈透明,因此一簡單的反射覆層無法輕易的施用於此表面。通常地,該通過入射角介於0°及15°之間,而該部分反射入射角介於40°及65°之間。此外,由於光線在該光導光學元件內部傳送時多次穿過該交界表面167,應忽略該覆層的吸收。因此,無法使用一簡單的金屬覆層,而必須使用具有高透明度的介電薄膜覆層(dielectric thin-film coating)。 As shown in Fig. 13A, the light rays 184, 186 reflected by the surface 22a intersect the beam splitting surface 167 before being coupled out of the light guiding optical element. Therefore, since the surface 167 must be transparent to the light leaving the substrate 20, and for light waves from the external picture in perspective (i.e., light waves that are partially reflected at a small angle of incidence through the plane 167 and at a higher angle of incidence) It is transparent, so a simple reflective coating cannot be easily applied to this surface. Typically, the passing incident angle is between 0° and 15°, and the partially reflected incident angle is between 40° and 65°. In addition, the absorption of the coating should be ignored as the light passes through the interface surface 167 multiple times as it travels inside the lightguide optical element. Therefore, a simple metal coating cannot be used, and a dielectric thin-film coating having high transparency must be used.

第14圖繪示在明視區域中的三個代表性波長:470nm、550nm及630nm之下,做為該入射角之函數的S偏振(s-polarization)反射率曲線。如所繪示,對於S偏振光波,獲得所需之介於40及65的大入射角部分反射率(介於45%至55%)及小入射角低反射率(低於5%)的行為係屬可能。對於P偏振光波,由於鄰近極化角(Brewster angle,布魯斯特角),在介於40及65的入射角不可能獲得實質的反射率。既然常使用在以光導光學元件為基礎之影像系統的偏振為S偏振,可極輕易的實施所需要的該分光件。然而,針對以低入射角照射於該交界表面且實質無偏振之來自外部畫面的光波而言,由於該分光覆層必須實質呈透明,該覆層對於P偏振光波應該亦具有小入射角低反射率(低於5%)。 Figure 14 depicts the S-polarization reflectance curves as a function of the angle of incidence for three representative wavelengths in the bright-field region: 470 nm, 550 nm, and 630 nm. As shown, for S-polarized light waves, the required partial reflectance (between 45% and 55%) and small incident angle low reflectance (less than 5%) at 40 and 65 are obtained. It is possible. For P-polarized light waves, it is impossible to obtain substantial reflectance at incident angles of 40 and 65 due to the proximity angle (Brewster angle). Since the polarization of an image system based on a light-guide optical element is often S-polarized, the required beam splitter can be easily implemented. However, for a light wave from an external picture that is irradiated to the interface surface at a low incident angle and substantially unpolarized, since the spectral coating must be substantially transparent, the coating should also have a small incident angle and low reflection for the P-polarized light wave. Rate (less than 5%).

該光導光學元件20由數個不同元件組合仍會造成難題。由於製造程序通常涉及黏固光學元件,且所需要的該角度敏感反射覆層僅於該光導光學元件20的本體完成後才佈設於該光導表面,因此不可能使用可能損傷該黏固區域的習知熱塗佈製程。新的薄膜技術及離子輔助塗佈 (ion-assisted coating)程序亦可用於冷製程。消除加熱部件的需求可使黏固部件被安全的佈設。另一選擇係使用習知的熱塗佈程序將所需覆層簡單的佈設於鄰接該光導光學元件20的透明基板120,然後將其黏固於適當位置。顯然地,此另一方法僅適用於該透明基板120並非太薄時,否則可能在該塗佈製程的過程中變形。 The combination of several different component components of the lightguide optical element 20 still poses a problem. Since the manufacturing process generally involves a bonded optical component, and the required angle sensitive reflective coating is disposed on the surface of the lightguide only after the body of the lightguide optical component 20 is completed, it is impossible to use a habit that may damage the bonded region. Know the thermal coating process. New thin film technology and ion assisted coating The (ion-assisted coating) procedure can also be used for cold processes. Eliminating the need for heating components allows the cemented components to be safely routed. Another option is to simply lay the desired coating on the transparent substrate 120 adjacent the lightguide optical element 20 using a conventional thermal coating procedure and then adhere it to the appropriate location. Obviously, this other method is only applicable when the transparent substrate 120 is not too thin, otherwise it may be deformed during the coating process.

當設計如上述之分光機構時,有些議題應納入考量: When designing a splitting mechanism as described above, some issues should be considered:

a.由於落入該光導光學元件內的光線不僅完全由該主表面26及27且亦由該內部部分反射交界平面167反射,因此所有的這三個平面將互相平行係屬重要,以以確保被耦合的光線將在該光導光學元件內部維持其原始的耦合進入方向。 a. since the light falling within the light-guide optical element is not only completely reflected by the major surfaces 26 and 27 but also by the internal partial reflection interface plane 167, all three planes will be parallel to each other to ensure The coupled light will maintain its original coupling entry direction inside the lightguide optical element.

b.如第13A及13B圖所示,該透明板120較該原始光導光學元件20薄。不像關於第7至10圖中的無塗覆板所予以考慮的(其中對於一致性最佳化而言,板120的厚度係為重要),在此該覆板的厚度可依據其他考量做選擇。一方面,較厚的板較易於製造、佈設及黏固。另一方面,藉由較薄的板,對已給定的基材厚度而言,該光導光學元件20實際耦合射出該基材之光波的有效體積會較高。此外,在該板120及該光導光學元件20的厚度之間的比值可能影響該基材內的能量互換過程。 b. As shown in Figures 13A and 13B, the transparent plate 120 is thinner than the original light guiding optical element 20. Unlike the uncoated panels in Figures 7 through 10 (where the thickness of the panel 120 is important for consistency optimization), the thickness of the panel can be based on other considerations. select. On the one hand, thicker panels are easier to manufacture, lay and adhere. On the other hand, with a thinner plate, the effective volume of the light wave that the light guiding optical element 20 actually couples to emit the substrate will be higher for a given substrate thickness. Moreover, the ratio between the thickness of the plate 120 and the lightguide optical element 20 may affect the energy exchange process within the substrate.

c.通常地,對於就全彩影像所設計的分光器而言,整個明視區域的該反射率曲線應該盡可能的一致,以便消彌色效應(chromatic effects)。然而,在本發明中所說明的結構中,由於各種光線在耦合出該光導光學元件20之前多次相交,此需求已不再必要。自然地,該分光覆層應該將該耦合影像的整個波長頻譜納入考量,但該部分反射曲線的色平坦度(chromatic flatness)可依據該系統的多個參數而容受。 c. Generally, for a spectroscope designed for full color images, the reflectance curve for the entire brightfield region should be as uniform as possible to eliminate chromatic effects. However, in the structure illustrated in the present invention, since various rays intersect multiple times before being coupled out of the light guiding optical element 20, this need is no longer necessary. Naturally, the spectroscopic coating should take into account the entire wavelength spectrum of the coupled image, but the chromatic flatness of the partially reflective curve can be accommodated in accordance with various parameters of the system.

d.該分光覆層的反射率-透射率比例不必須為50%-50%。可使用其他比率以便達到在該較暗及較亮光線之間所需要的能量交換。此外,如第15圖所示,可使用較簡單的分光覆層,其中該反射率係由40°入射角為35%漸增至65°入射角為60%。 d. The reflectance-transmittance ratio of the spectral coating layer is not necessarily 50% to 50%. Other ratios can be used to achieve the energy exchange required between the darker and brighter rays. Furthermore, as shown in Fig. 15, a simpler spectral coating can be used, wherein the reflectance is increased from 40% incident angle of 35% to 65° incident angle of 60%.

e.新增至該光導光學元件之分光表面的數量並不僅限於一個。如第16圖所示,另一透明板208可黏固於該光導光學元件之上表面,其中一相似的分光覆層係佈設於該光導光學元件20及該上板208之間的交界平面210上,以形成具有二分光表面的一光學裝置。在此,該二不相等的光線212及214於該佈設的交界平面210之點215相交,並伴隨著與其他光線在點216及217處的其他交會。此係在該下分光交界平面167上的交會之外。因此,可預期該反射光線218及220的一致性將甚至較第13A及13B圖者佳。 自然地,具有二分光交界平面之光導光學元件的製造方法係較僅具有單一平面者複雜。因此,僅需要在非一致問題甚為嚴重的系統予以考慮。如前所述,所有的四個反射表面及平面26、27、167及210應該互相平行。 e. The number of splitting surfaces added to the light guiding optical element is not limited to one. As shown in FIG. 16, another transparent plate 208 can be adhered to the upper surface of the light guiding optical element, wherein a similar spectral coating is disposed on the interface plane 210 between the light guiding optical element 20 and the upper plate 208. Upper to form an optical device having a dichroic surface. Here, the two unequal rays 212 and 214 intersect at a point 215 of the disposed interface plane 210, along with other intersections with other rays at points 216 and 217. This is outside the intersection on the lower beam splitting plane 167. Therefore, it is expected that the uniformity of the reflected rays 218 and 220 will be even better than those of Figures 13A and 13B. Naturally, the manufacturing method of a light guiding optical element having a dichroic interface plane is more complicated than having only a single plane. Therefore, it is only necessary to consider the system where the non-conformity problem is very serious. As previously mentioned, all four reflective surfaces and planes 26, 27, 167 and 210 should be parallel to each other.

f.該透明板120不需要使用與該光導光學元件20相同的光學材料製造。此外,該光導光學元件可由矽酸材料製造,而為達眼部安全之目的,該透明層可由一聚合物材料製造。自然地,必須特加注意以確保該外部表面的光學品質並避免該透明板的形變。 f. The transparent plate 120 need not be fabricated using the same optical material as the lightguide optical element 20. In addition, the light-guiding optical element can be made of a tannic acid material for the purpose of eye safety, and the transparent layer can be made of a polymer material. Naturally, special care must be taken to ensure the optical quality of the outer surface and to avoid deformation of the transparent sheet.

g.至此均假設該透明板為全空的。然而,如第17圖所示,部分反射表面222a及222b可製造於該板120的內部,以便增加該光導光學元件的可用體積。這些表面應完全地平行於該出射表面22a及22b,並確實地朝向相同方向。 g. At this point it is assumed that the transparent plate is completely empty. However, as shown in Fig. 17, partially reflective surfaces 222a and 222b can be fabricated inside the panel 120 to increase the available volume of the lightguide optical element. These surfaces should be completely parallel to the exit surfaces 22a and 22b and indeed face the same direction.

上述實施例的所有不同變數(例如該板120的厚度及光學材 料、該分光覆層的確切本質、該分光表面的數量及該光導光學元件內部之部分反射表面的位置)可具有很多不同的可能值。這些變數的確切數值係根據該光學系統的不同參數,以及光學品質與製造成本的特殊需求而決定。 All the different variables of the above embodiment (for example, the thickness and optical material of the plate 120) The exact nature of the spectroscopic coating, the number of spectroscopic surfaces, and the location of the partially reflective surface within the lightguide optical element can have many different possible values. The exact values of these variables are determined by the different parameters of the optical system, as well as the particular requirements of optical quality and manufacturing cost.

至此,係假設該光波藉由相對於該主表面呈一傾斜角為方向且通常覆蓋一介電覆層的該部分反射表面,自該基材耦合射出。然而,如第18A圖所示,有系統使用繞射元件230及232分別耦合進入及耦合射出該基材。於前討論的相同一致性議題亦應該與本結構相關。如所繪示者,來自該顯示源之相同點的該二光線234及236係於該耦合進入元件230的二邊緣相遠離地耦合入該基材238。該光線係藉由該耦合射出元件232互相鄰近地耦合射出。因此,該光線之間的任何差異將於該耦合射出波中輕易地察覺。此外,為求獲得一致的耦合射出影像,該耦合射出元件232的繞射效應係逐漸增加。因此,來自相同點元的相異光線可能在耦合射出該元件之前通過該元件232的相異位置,且因此將在該影像中具有相異的亮度。該非均勻性的另一來源係可導因於該光線234在該格柵232之右邊緣240部分繞射出該基材,而光線236照射於恰位於該格柵之左方的該下表面而未於此繞射的事實。因此,對於該二鄰近光線234及236之所有該格柵232內的耦合射出位置,光線236將具有較高亮度,且此差異將易於察覺。 Thus far, it is assumed that the light wave is coupled out from the substrate by being oriented at an oblique angle with respect to the major surface and generally covering the partially reflective surface of a dielectric coating. However, as shown in Fig. 18A, a system uses diffractive elements 230 and 232 to couple into and out of the substrate, respectively. The same issue of consistency discussed earlier should also be relevant to this structure. As illustrated, the two rays 234 and 236 from the same point of the display source are coupled into the substrate 238 away from the two edges of the coupling entry element 230. The light rays are coupled out of each other by the coupling injection elements 232. Therefore, any difference between the rays will be easily perceived in the coupled exit wave. In addition, in order to obtain a consistent coupled emission image, the diffraction effect of the coupling ejection element 232 is gradually increased. Thus, distinct rays from the same point element may pass through the distinct locations of the element 232 before coupling out of the element, and thus will have different brightness in the image. Another source of non-uniformity can be caused by the ray 234 being partially circulated out of the substrate at the right edge 240 of the grid 232, and the ray 236 is incident on the lower surface just to the left of the grid. The fact of this diffraction. Thus, for all of the coupled exit locations within the grid 232 of the two adjacent rays 234 and 236, the ray 236 will have a higher brightness and the difference will be readily detectable.

第18B圖係繪示解決這些議題的一相似方法。如所繪示者,一透明板242係黏固於該基材238的上表面244,其中該交界表面246係覆蓋相似於上述覆層的一分光覆層。 Figure 18B depicts a similar approach to solving these issues. As shown, a transparent plate 242 is adhered to the upper surface 244 of the substrate 238, wherein the interface surface 246 covers a beam splitting layer similar to the coating described above.

18‧‧‧準直顯示 18‧‧‧ Collimation display

20‧‧‧平面基材 20‧‧‧ planar substrate

22a‧‧‧部分反射表面 22a‧‧‧Partial reflective surface

22b‧‧‧部分反射表面 22b‧‧‧Partial reflective surface

22c‧‧‧部分反射表面 22c‧‧‧Partial reflective surface

26‧‧‧下表面 26‧‧‧ Lower surface

120‧‧‧透明板 120‧‧‧Transparent board

T‧‧‧厚度 T‧‧‧ thickness

Claims (25)

一種光學裝置,包含:一光傳送基材,係具有一輸入孔、一輸出孔、至少二主表面及邊緣;一光學元件,用於將光波以全內反射耦合進入該基材;至少一部分反射表面,係位於該光傳送基材的該二主表面之間,以便將光波部分反射出該基材;一第一透明板,具有至少二主表面,該透明板的該主表面之一係光學地貼附於該光傳送基材的一主表面以界定一交界平面;及一分光覆層,係佈設於該基材及該透明板之間的該交界平面,其中耦合於該光傳送基材內部的光波係由該交界平面部分反射並部分穿過該交界平面;其中藉由該部分反射表面耦合出該基材的光波,係實質上無任何顯著反射率地穿過該交界表面。 An optical device comprising: an optical transmission substrate having an input aperture, an output aperture, at least two major surfaces and an edge; an optical component for coupling light waves into the substrate with total internal reflection; at least a portion of the reflection a surface between the two major surfaces of the light transmitting substrate to reflect light waves out of the substrate; a first transparent plate having at least two major surfaces, one of the major surfaces of the transparent plate being optical Attached to a major surface of the light-transmitting substrate to define an interface plane; and a light-distributing layer disposed on the interface between the substrate and the transparent plate, wherein the light-transmitting substrate is coupled An internal light wave is partially reflected by the interface plane and partially passes through the interface plane; wherein the light wave coupled to the substrate by the partially reflective surface passes through the interface surface substantially without any significant reflectivity. 如申請專利範圍第1項所述之光學裝置,其中該光傳送基材的該主表面係與該第一透明板的該主表面平行。 The optical device of claim 1, wherein the major surface of the light transmitting substrate is parallel to the major surface of the first transparent plate. 如申請專利範圍第1項所述之光學裝置,其中該分光覆層在大入射角具有實質反射率,而在小入射角具有低反射率。 The optical device of claim 1, wherein the spectral coating has a substantial reflectance at a large incident angle and a low reflectance at a small incident angle. 如申請專利範圍第3項所述之光學裝置,其中該分光覆層在介於0°及15°之間的入射角具有低反射率,而在高於40°的入射角具有實質反射率。 The optical device of claim 3, wherein the spectral coating has a low reflectance at an incident angle between 0° and 15° and a substantial reflectance at an incident angle greater than 40°. 如申請專利範圍第3項所述之光學裝置,其中該分光覆層在高於40°的入射角具有高於35%的反射率,而在低於15°的入射角為低於10%的反射率。 The optical device of claim 3, wherein the spectral coating has a reflectivity higher than 35% at an incident angle higher than 40° and less than 10% at an incident angle lower than 15°. Reflectivity. 如申請專利範圍第1項所述之光學裝置,其中該分光覆層係佈設於該光傳送基材的一主表面。 The optical device of claim 1, wherein the spectral coating is disposed on a major surface of the light transmitting substrate. 如申請專利範圍第6項所述之光學裝置,其中該分光覆層係使用冷塗佈製程佈設。 The optical device of claim 6, wherein the spectral coating is disposed using a cold coating process. 如申請專利範圍第1項所述之光學裝置,其中該分光塗層佈設於該第一透明板的表面之一。 The optical device of claim 1, wherein the spectroscopic coating is disposed on one of the surfaces of the first transparent plate. 如申請專利範圍第3項所述之光學裝置,其中該分光塗層的反射率在入射角高於40°及低於60°處係實質呈定值。 The optical device of claim 3, wherein the reflectance of the spectroscopic coating is substantially constant at an incident angle of more than 40° and less than 60°. 如申請專利範圍第3項所述之光學裝置,其中該分光塗層的反射率在入射角高於40°處係實質呈非定值。 The optical device of claim 3, wherein the reflectance of the spectral coating is substantially non-determined at an incident angle greater than 40°. 如申請專利範圍第10項所述之光學裝置,其中該分光塗層的反射率在入射角高於40°處係以一函數增加。 The optical device of claim 10, wherein the reflectance of the spectral coating increases by a function at an incident angle greater than 40°. 如申請專利範圍第3項所述之光學裝置,其中,對於整個明視區域,該分光塗層的反射率在大入射角處係實質一致。 The optical device of claim 3, wherein the reflectance of the spectroscopic coating is substantially uniform at a large incident angle for the entire bright-view region. 如申請專利範圍第1項所述之光學裝置,其中該透明板較該光傳送基材薄。 The optical device of claim 1, wherein the transparent plate is thinner than the light transmitting substrate. 如申請專利範圍第1項所述之光學裝置,另包含一第二透明板光學地貼附於該光傳送基材的另一主表面,以界定一第二交界平面。 The optical device of claim 1, further comprising a second transparent plate optically attached to the other major surface of the light transmitting substrate to define a second interface plane. 如申請專利範圍第14項所述之光學裝置,其中一分光覆層係佈設於該第二交界平面。 The optical device of claim 14, wherein a light-splitting layer is disposed on the second interface plane. 如申請專利範圍第15項所述之光學裝置,其中該分光覆層在大入射角具有實質反射率,而在小入射角具有低反射率。 The optical device of claim 15, wherein the spectral coating has a substantial reflectance at a large incident angle and a low reflectance at a small incident angle. 如申請專利範圍第1項所述之光學裝置,其中該光傳送基材及該透明板係以相同的光學材料製成。 The optical device of claim 1, wherein the light transmitting substrate and the transparent plate are made of the same optical material. 如申請專利範圍第1項所述之光學裝置,其中該光傳送基材及該透明板係以二種相異的光學材料製成。 The optical device of claim 1, wherein the light transmitting substrate and the transparent plate are made of two different optical materials. 如申請專利範圍第1項所述之光學裝置,其中該透明板係以一矽酸材料 製成。 The optical device of claim 1, wherein the transparent plate is made of a tannic acid material. production. 如申請專利範圍第1項所述之光學裝置,其中用於耦合光波進入該基材的該光學元件係為一繞射元件。 The optical device of claim 1, wherein the optical component for coupling light waves into the substrate is a diffractive component. 如申請專利範圍第1項所述之光學裝置,其中位於該光傳送基材之該二主表面之間的至少一部分反射表面係為一繞射元件。 The optical device of claim 1, wherein at least a portion of the reflective surface between the two major surfaces of the light transmitting substrate is a diffractive element. 如申請專利範圍第1項所述之光學裝置,其中位於該光傳送基材之該二主表面之間的至少一部分反射表面係相對於該主表面呈一傾斜角為方向。 The optical device of claim 1, wherein at least a portion of the reflective surface between the two major surfaces of the light transmitting substrate is oriented at an oblique angle relative to the major surface. 如申請專利範圍第22項所述之光學裝置,其中該至少一部分反射表面係覆蓋一介電覆層。 The optical device of claim 22, wherein the at least a portion of the reflective surface is covered by a dielectric coating. 如申請專利範圍第1項所述之光學裝置,係包含位於該光傳送基材之該二主表面之間的數個部分反射表面,其中該部分反射表面係互相平行。 The optical device of claim 1, comprising a plurality of partially reflective surfaces between the two major surfaces of the light transmitting substrate, wherein the partially reflective surfaces are parallel to each other. 如申請專利範圍第1項所述之光學裝置,其中耦合於該基材內部的光波之亮度分布在該基材之輸出孔處係較該輸入孔處均勻。 The optical device of claim 1, wherein the light distribution of the light wave coupled to the interior of the substrate is uniform at the output aperture of the substrate than the input aperture.
TW105126434A 2016-08-18 2016-08-18 Compact head-mounted display system having uniform image TWI614527B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105126434A TWI614527B (en) 2016-08-18 2016-08-18 Compact head-mounted display system having uniform image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105126434A TWI614527B (en) 2016-08-18 2016-08-18 Compact head-mounted display system having uniform image

Publications (2)

Publication Number Publication Date
TWI614527B true TWI614527B (en) 2018-02-11
TW201809798A TW201809798A (en) 2018-03-16

Family

ID=62014702

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105126434A TWI614527B (en) 2016-08-18 2016-08-18 Compact head-mounted display system having uniform image

Country Status (1)

Country Link
TW (1) TWI614527B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10073264B2 (en) 2007-08-03 2018-09-11 Lumus Ltd. Substrate-guide optical device
US10048499B2 (en) 2005-11-08 2018-08-14 Lumus Ltd. Polarizing optical system
IL232197B (en) 2014-04-23 2018-04-30 Lumus Ltd Compact head-mounted display system
IL235642B (en) 2014-11-11 2021-08-31 Lumus Ltd Compact head-mounted display system protected by a hyperfine structure
CA2992213C (en) 2016-10-09 2023-08-29 Yochay Danziger Aperture multiplier using a rectangular waveguide
KR20230084335A (en) 2016-11-08 2023-06-12 루머스 리미티드 Light-guide device with optical cutoff edge and corresponding production methods
EP3397998A4 (en) 2017-02-22 2019-04-17 Lumus Ltd. Light guide optical assembly
KR20230025946A (en) 2017-03-22 2023-02-23 루머스 리미티드 Overlapping facets
IL251645B (en) 2017-04-06 2018-08-30 Lumus Ltd Light-guide optical element and method of its manufacture
KR102537642B1 (en) 2017-07-19 2023-05-26 루머스 리미티드 LCOS lighting via LOE
US10551544B2 (en) 2018-01-21 2020-02-04 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
IL259518B2 (en) 2018-05-22 2023-04-01 Lumus Ltd Optical system and method for improvement of light field uniformity
TWI813691B (en) 2018-05-23 2023-09-01 以色列商魯姆斯有限公司 Optical system including light-guide optical element with partially-reflective internal surfaces
US11415812B2 (en) 2018-06-26 2022-08-16 Lumus Ltd. Compact collimating optical device and system
US10983264B2 (en) 2019-01-24 2021-04-20 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
JP7398131B2 (en) 2019-03-12 2023-12-14 ルムス エルティーディー. image projector
CA3137994A1 (en) 2019-06-27 2020-12-30 Lumus Ltd Apparatus and methods for eye tracking based on eye imaging via a light-guide optical element
EP4162314A4 (en) 2021-02-25 2023-11-22 Lumus Ltd. Optical aperture multipliers having a rectangular waveguide
KR20230156802A (en) 2021-07-04 2023-11-14 루머스 리미티드 Display with stacked light guiding elements providing different parts of the field of view

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8189263B1 (en) * 2011-04-01 2012-05-29 Google Inc. Image waveguide with mirror arrays
TW201314263A (en) * 2011-09-26 2013-04-01 Microsoft Corp Integrated eye tracking and display system
CN104536138A (en) * 2015-01-25 2015-04-22 上海理湃光晶技术有限公司 Planar waveguide binocular optical display device with saw-toothed sandwich structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8189263B1 (en) * 2011-04-01 2012-05-29 Google Inc. Image waveguide with mirror arrays
TW201314263A (en) * 2011-09-26 2013-04-01 Microsoft Corp Integrated eye tracking and display system
CN104536138A (en) * 2015-01-25 2015-04-22 上海理湃光晶技术有限公司 Planar waveguide binocular optical display device with saw-toothed sandwich structure

Also Published As

Publication number Publication date
TW201809798A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
TWI614527B (en) Compact head-mounted display system having uniform image
CN107430275B (en) Compact head-mounted display system with uniform image
JP4508655B2 (en) Light guide optical device
US7724443B2 (en) Substrate-guided optical device utilizing thin transparent layer
US11982811B2 (en) Compact display system having uniform image
US20190041646A1 (en) Compact beam expanding system
TWI669530B (en) Compact head-mounted display system having uniform image