TWI613899B - A method of quantum encryption and decryption - Google Patents

A method of quantum encryption and decryption Download PDF

Info

Publication number
TWI613899B
TWI613899B TW105123333A TW105123333A TWI613899B TW I613899 B TWI613899 B TW I613899B TW 105123333 A TW105123333 A TW 105123333A TW 105123333 A TW105123333 A TW 105123333A TW I613899 B TWI613899 B TW I613899B
Authority
TW
Taiwan
Prior art keywords
quantum
ciphertext
key
message
random number
Prior art date
Application number
TW105123333A
Other languages
Chinese (zh)
Other versions
TW201804758A (en
Inventor
黃宗立
羅翊萍
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Priority to TW105123333A priority Critical patent/TWI613899B/en
Application granted granted Critical
Publication of TWI613899B publication Critical patent/TWI613899B/en
Publication of TW201804758A publication Critical patent/TW201804758A/en

Links

Landscapes

  • Storage Device Security (AREA)

Abstract

本發明有關於一種量子加密及解密方法,其加密方法為先產生一亂數,藉著轉換函數轉換成量子亂數,再由第一么正運算子依據長金鑰加密後得到第一密文;以及將第一么正運算子與第二么正運算子依據共享金鑰對量子訊息|P〉進行加密以得到第二密文,將第一密文及第二密文合併後即獲得主要密文;解密之方法即為反向操作,利用壓縮函數、么正運算子以及量測函數對密文運算後即可得到原本之訊息P。藉此,能夠成為一種通訊協定的基礎,並對訊息進行有效的加密保護。 The invention relates to a quantum encryption and decryption method, wherein the encryption method first generates a random number, converts into a quantum random number by a conversion function, and then obtains the first ciphertext by the first positive operator according to the long key encryption. And encrypting the first positive operator and the second positive operator according to the shared key to obtain the second ciphertext, and combining the first ciphertext and the second ciphertext to obtain the main The ciphertext; the decryption method is the reverse operation, and the original message P can be obtained by using the compression function, the positive operator and the measurement function to operate the ciphertext. In this way, it can become the basis of a communication protocol and effectively encrypt and protect the message.

Description

一種量子加密及解密方法 A method of quantum encryption and decryption

本發明係有關於一種量子加密技術,尤其係指一種量子加密及解密方法,藉由壓縮函數(Compression function)及么正運算子(Unitary operation)作訊息的加密及解密,使其能夠成為通訊協定之基礎,免除量子電腦之威脅;並可以結合現有認證方法,進一步地提供量子認證式加密技術。 The invention relates to a quantum cryptography technology, in particular to a quantum encryption and decryption method, which can be used as a communication protocol by encrypting and decrypting a message by a compression function and a unitary operation. The basis is to eliminate the threat of quantum computers; and can further provide quantum authentication encryption technology in combination with existing authentication methods.

按,加密技術係廣泛應用於訊息的交換上,特別在網路中有著許多不安全的通訊管道,更需要藉著加密技術來傳遞私人或機密之訊息,使不相關的人或非預定傳送之目標不能閱讀訊息中的內容。一般加密技術分為「對稱金鑰加密技術」以及「非對稱金鑰加密技術」兩種;對稱金鑰加密技術意指使用對稱的金鑰經由複雜的計算過程來進行加密及解密的動作,通常以混淆函數(confusion)或擴散函數(diffusion)作為計算的基礎,例如有資料加密標準(Data Encryption Standard,DES)以及高級加密標準(Advanced Encryption Standard,AES)等方法;非對稱金鑰加密技術則反之,其用來加密及解密的金鑰不相同,係為不對稱之金鑰,通常藉由因數分解或離散對數等演算方式作為加密技術的基礎,例如衍生出有RSA加密演算法或ElGamal加密演算法等。 According to the encryption technology, it is widely used in the exchange of information. In particular, there are many insecure communication channels in the network. It is also necessary to transmit private or confidential information through encryption technology to make unrelated people or unscheduled transmission. The target cannot read the content in the message. The general encryption technology is divided into two types: "symmetric key encryption technology" and "asymmetric key encryption technology"; symmetric key encryption technology refers to the operation of encrypting and decrypting through a complicated calculation process using a symmetric key, usually Confusion or diffusion is used as the basis for calculation, such as Data Encryption Standard (DES) and Advanced Encryption Standard (AES); asymmetric key encryption On the contrary, the keys used for encryption and decryption are different. They are asymmetric keys. They are usually used as the basis of encryption technology by factorization or discrete logarithm. For example, RSA encryption algorithm or ElGamal encryption is derived. Algorithms, etc.

由於加密技術對於秘密通訊有顯著的幫助,係已經廣泛 被應用於各種通訊管道及網路中。然而,近年量子電腦及量子計算的迅速發展,使加密的數學計算過程更容易被破解,欲保護的訊息則將不再具有安全性及隱密性;因此,則有量子加密技術被提出,係建立於量子力學的基礎上,以作到加密之動作,目前已經有多種加密方法被提出,例如有量子金鑰分配協定(Quantum Key Distribution Protocols)、量子直接通訊協定(Quantum Direct Communication Protocols)、量子對話協定(Quantum Dialogue Protocols)以及量子簽章協定(Quantum Signature Protocols)等,被統稱為量子加密協定,亦衍生有認證加密的技術,雖然能再次提升訊息的安全性,但加密技術需要藉由傳統的通訊管道來公開討論(public discussion),所以仍會衍生出相當多的問題,在量子電腦發展迅速的現今,其具有被攻擊、破解的缺失。 Since encryption technology has been significantly helpful for secret communication, it has been widely It is used in various communication pipes and networks. However, the rapid development of quantum computers and quantum computing in recent years has made the mathematical process of encryption more susceptible to cracking. The information to be protected will no longer be secure and hidden. Therefore, quantum encryption technology has been proposed. Based on quantum mechanics, in order to encrypt, many encryption methods have been proposed, such as Quantum Key Distribution Protocols, Quantum Direct Communication Protocols, and Quantum. Quantum Dialogue Protocols and Quantum Signature Protocols are collectively referred to as Quantum Encryption Protocols. They also derive authentication encryption technology. Although it can enhance the security of information again, encryption technology needs to be traditional. The communication pipeline is open to public discussion, so there will still be quite a lot of problems. In the rapid development of quantum computers, it has the lack of attack and crack.

中華民國專利公告號TW I487308 B「量子通訊方法」則揭露了一種訊息加密及來源認證功能的方法,藉由發送端及接收端共享基底金鑰及數值金鑰,且公開約定了合併規則及雜湊函數,使發送端與接收端之間僅需傳輸一次量子,就可以於通訊過程中兼具訊息加密及認證功能,解決了先前通訊資料無法兼具加密及認證功能之問題。然,目前的量子加密技術儘管更加便利及高效率,也要藉著傳統的通訊管道來傳遞訊息,在安全性上仍顯不足,因此,研發一種新的量子加密技術讓被加密之訊息更能抵禦量子電腦的攻擊,提升訊息的安全性及隱密性,則成為發明人所鑽研之方向。 The Republic of China Patent Bulletin No. TW I487308 B "Quantum Communication Method" discloses a method of message encryption and source authentication function, which shares the base key and the numerical key by the sender and the receiver, and publicly agrees on the merge rule and the hash. The function enables the transmitter and the receiver to transmit only one quantum, which can combine the message encryption and authentication functions in the communication process, and solves the problem that the previous communication data cannot have both encryption and authentication functions. However, although the current quantum cryptography technology is more convenient and efficient, it has to transmit information through traditional communication channels, and it is still insufficient in security. Therefore, research and development of a new quantum cryptography technology can make encrypted messages more capable. Resisting the attacks of quantum computers and improving the security and privacy of information has become the direction that inventors have studied.

今,發明人即是鑑於上述現有之量子加密技術於實際實施使用時仍具有多處缺失,於是乃一本孜孜不倦之精神,並藉 由其豐富專業知識及多年之實務經驗所輔佐,而加以改善,並據此研創出本發明。 Nowadays, the inventor is that in view of the above-mentioned existing quantum cryptography technology, there are still many defects in the actual implementation, so it is a tireless spirit, and borrowed It is improved by its extensive professional knowledge and years of practical experience, and the present invention has been developed based on this.

本發明主要目的為提供一種量子加密及解密方法,其藉由壓縮函數、么正運算子以及量測函數作訊息的加密及解密,在通訊技術上,其可以作為一種新的量子加密協定,且加密及解密所使用的金鑰能夠重複使用,在訊息加密上更有效率,通訊上的負擔更低;並具有訊息不可區分性(Indistinguishable)以及無條件安全(Unconditionally Security),對於量子電腦之攻擊有更好的抵禦能力。 The main object of the present invention is to provide a quantum encryption and decryption method, which uses a compression function, a positive operator and a measurement function to encrypt and decrypt a message, and can be used as a new quantum encryption protocol in communication technology. The keys used for encryption and decryption can be reused, more efficient in message encryption, and less burdensome on communication; and have Indistinguishable and Unconditionally Security, which are attacks on quantum computers. Better resistance.

為了達到上述實施目的,本發明一種量子加密方法,其加密步驟包括有:步驟一:產生一亂數r,並代入一轉換函數,使亂數r轉換成一量子亂數|r〉,再由一第一么正運算子U1依據一長金鑰(Long-term secret key)K0加密後得到一第一密文|C1〉;步驟二:利用一壓縮函數(Compression function)代入亂數r運算後得到一共享金鑰(Session key)K1,並再以轉換函數將訊息P轉換成一量子訊息|P〉;以及步驟三:將第一么正運算子U1與一第二么正運算子U2,依據共享金鑰K1對量子訊息|P〉進行加密以得到一第二密文|C2〉,將第一密文|C1〉及第二密文|C2〉合併後即獲得主要密文|C〉。 In order to achieve the above-mentioned implementation, the present invention provides a quantum encryption method, and the encryption step includes the following steps: Step 1: generate a random number r, and substitute a conversion function to convert the random number r into a quantum random number |r>, and then The first positive operator U 1 is encrypted according to a long-term secret key K 0 to obtain a first ciphertext | C 1 〉; Step 2: using a compression function (Compression function) to enter a random number r After the operation, a shared key K 1 is obtained , and then the conversion function converts the message P into a quantum message |P>; and step 3: the first positive operator U 1 and a second positive operation Sub-U 2 , encrypting the quantum message |P> according to the shared key K 1 to obtain a second ciphertext |C 2 〉, combining the first ciphertext|C 1 〉 and the second ciphertext|C 2 〉 That is, the main ciphertext|C> is obtained.

於本發明之一實施例中,轉換函數係為Z基底的量子位元,表示為Genz(.),其中Z={|0〉,|1〉}。 In one embodiment of the invention, the transfer function is a Z-substrate qubit represented as Gen z (.), where Z = {|0>, |1>}.

本發明之另一目的為提供一種量子解密方法,其解密步驟包含有:步驟一:將一量測函數依據一長金鑰K0對一第一密文|C1〉進行量測及解密,以獲得一亂數r;步驟二:利用一壓縮函數代入亂數r運算後得到一共享金鑰K1;以及步驟三:使用一第一么正運算子U1以及一第二么正運算子U2依據共享金鑰 K1對一第二密文|C2〉解密,以得到一量子訊息|P〉,經由量測函數計算後,即可得到未加密之訊息P。 Another object of the present invention is to provide a quantum decryption method, the decrypting step comprising: Step 1: measuring and decrypting a first ciphertext|C 1 〉 according to a long key K 0 according to a measurement function. Obtaining a random number r; Step 2: using a compression function to substitute a random number r operation to obtain a shared key K 1 ; and step 3: using a first positive operator U 1 and a second positive operator U 2 decrypts a second ciphertext|C 2 〉 according to the shared key K 1 to obtain a quantum message |P>, and after calculation by the measurement function, an unencrypted message P can be obtained.

於本發明之一實施例中,量測函數係表示為M(.),並依據長金鑰K0的值或共享金鑰K1的值,以Z基底或X基底進行量測,其中Z={|0〉,|1〉},X={|+〉,|-〉}。 In an embodiment of the present invention, the measurement function is expressed as M(.), and is measured on a Z-substrate or an X-substrate according to the value of the long key K 0 or the value of the shared key K 1 , where Z ={|0>,|1>}, X={|+〉,|-〉}.

於本發明之一實施例中,第一么正運算子U1係屬於I或H其中之一,表示為U1

Figure TWI613899BD00001
{I,H},其係依據長金鑰K0或共享金鑰K1的值,選擇使用I或H,且其中I=|0〉〈0|+|1〉〈1|,
Figure TWI613899BD00002
In an embodiment of the present invention, the first normal operator U 1 belongs to one of I or H, and is represented as U 1
Figure TWI613899BD00001
{I,H}, which is based on the value of the long key K 0 or the shared key K 1 , and optionally uses I or H, and wherein I=|0><0|+|1><1|,
Figure TWI613899BD00002

於本發明之一實施例中,第二么正運算子U2係屬於I或i σ y其中之一,表示為U2

Figure TWI613899BD00003
{I,iσ y },其係依據長金鑰K0或共享金鑰K1的值,選擇使用I或i σ y,且其中I=|0〉〈0|+|1〉〈1|,iσ y =|0〉〈1|-|1〉〈0|。 In an embodiment of the present invention, the second positive operator U 2 belongs to one of I or i σ y and is represented as U 2 .
Figure TWI613899BD00003
{I, iσ y }, which is based on the value of the long key K 0 or the shared key K 1 , and optionally uses I or i σ y , where I=|0><0|+|1><1|, Iσ y =|0><1|-|1><0|.

於本發明之一實施例中,壓縮函數係表示為f(.),係壓縮亂數r。 In an embodiment of the invention, the compression function is expressed as f(.), which is a compression number r.

(ES1)‧‧‧步驟一 (ES1)‧‧‧Step 1

(ES2)‧‧‧步驟二 (ES2)‧‧‧Step 2

(ES3)‧‧‧步驟三 (ES3)‧‧‧Step three

(DS1)‧‧‧步驟一 (DS1) ‧ ‧ Step 1

(DS2)‧‧‧步驟二 (DS2)‧‧‧Step 2

(DS3)‧‧‧步驟三 (DS3)‧‧‧Step three

第一圖:本發明其較佳實施例之加密示意圖 First figure: an encryption diagram of a preferred embodiment of the present invention

第二圖:本發明其較佳實施例之解密示意圖 Second figure: a schematic diagram of decryption of a preferred embodiment of the present invention

本發明之目的及其結構功能上的優點,將依據以下圖面所示之結構,配合具體實施例予以說明,俾使審查委員能對本發明有更深入且具體之瞭解。 The object of the present invention and its structural and functional advantages will be explained in conjunction with the specific embodiments according to the structure shown in the following drawings, so that the reviewing committee can have a more in-depth and specific understanding of the present invention.

請參閱第一圖,本發明一種量子加密方法,其加密步驟包括有步驟一(ES1):產生一亂數r,並代入一轉換函數,其係為Z基底的量子位元,表示為Genz(.),其中Z={|0〉,|1〉},使亂數r轉換成一量子亂數|r〉,再由一第一么正運算子U1依據一 長金鑰K0加密後得到一第一密文|C1〉;步驟二(ES2):利用一壓縮函數f(.)代入亂數r,壓縮運算後得到一共享金鑰K1,並再以轉換函數將訊息P轉換成一量子訊息|P〉;以及步驟三(ES3):將第一么正運算子U1與一第二么正運算子U2,依據共享金鑰K1對量子訊息|P〉進行加密以得到一第二密文|C2〉,將第一密文|C1〉及第二密文|C2〉合併後即獲得主要密文|C〉。 Referring to the first figure, a quantum encryption method of the present invention, the encrypting step includes the step 1 (ES1): generating a random number r, and substituting a conversion function, which is a Z-based quantum bit, denoted as Gen z after r>, then U by a first unitary operator 1 in accordance with a long key K 0 encrypted |, where Z = (.) {| 0 >, | 1>}, that the random number r is converted into a quantum random number Obtain a first ciphertext|C 1 〉; Step 2 (ES2): substitute a random function f(.) into the random number r, obtain a shared key K 1 after the compression operation, and then convert the message P by a conversion function. Forming a quantum message|P>; and step three (ES3): encrypting the first positive operator U 1 and a second positive operator U 2 according to the shared key K 1 to obtain the quantum message |P> A second ciphertext|C 2 〉, the first ciphertext|C 1 〉 and the second ciphertext|C 2 〉 are combined to obtain the main ciphertext|C>.

請參閱第二圖,本發明一種量子解密方法,其解密步驟包括有步驟一(DS1):將一量測函數M(.)依據一長金鑰K0,並以Z基底或X基底對一第一密文|C1〉進行量測及解密,以獲得一亂數r,其中Z={|0〉,|1〉},X={|+〉,|-〉};步驟二(DS2):利用一壓縮函數f(.)代入亂數r,壓縮運算後得到一共享金鑰K1;以及步驟三(DS3):使用一第一么正運算子U1以及一第二么正運算子U2依據共享金鑰K1對一第二密文|C2〉解密,以得到一量子訊息|P〉,經由量測函數計算後,即可得到未加密之訊息P;此量子解密方法係為量子加密方法的反向操作。 Referring to the second figure, a quantum decryption method of the present invention, the decrypting step includes the step 1 (DS1): a measurement function M(.) is based on a long key K 0 and is aligned with a Z base or an X base. The first ciphertext|C 1 〉 is measured and decrypted to obtain a random number r, where Z={|0>, |1>}, X={|+>, |->}; Step 2 (DS2) ): using a compression function f(.) to substitute the random number r, the compression operation to obtain a shared key K 1 ; and the third step (DS3): using a first positive operator U 1 and a second positive operation Sub-U 2 decrypts a second ciphertext|C 2 〉 according to the shared key K 1 to obtain a quantum message |P>, and after calculating by the measurement function, an unencrypted message P can be obtained; the quantum decryption method It is the reverse operation of the quantum encryption method.

其中,加密方法及解密方法的第一么正運算子U1係屬於I或H其中之一,表示為U1

Figure TWI613899BD00004
{I,H},其係依據長金鑰K0或共享金鑰K1的值,選擇使用I或H,且其中I=|0〉〈0|+|1〉〈1|,
Figure TWI613899BD00005
;第二么正運算子U2係屬於I或i σ y其中之一,表示為U2
Figure TWI613899BD00006
{I,iσ y },其係依據長金鑰K0或共享金鑰K1的值,選擇使用I或i σ y,且其中I=|0〉〈0|+|1〉〈1|,iσ y =|0〉〈1|-|1〉〈0|。 Wherein, the first positive operator U 1 of the encryption method and the decryption method belongs to one of I or H, and is expressed as U 1
Figure TWI613899BD00004
{I,H}, which is based on the value of the long key K 0 or the shared key K 1 , and optionally uses I or H, and wherein I=|0><0|+|1><1|,
Figure TWI613899BD00005
The second positive operator U 2 is one of I or i σ y , expressed as U 2
Figure TWI613899BD00006
{I, iσ y }, which is based on the value of the long key K 0 or the shared key K 1 , and optionally uses I or i σ y , where I=|0><0|+|1><1|, Iσ y =|0><1|-|1><0|.

此外,藉由下述具體實施例,可進一步證明本發明可實際應用之範圍,但不意欲以任何形式限制本發明之範圍。 In addition, the scope of the invention may be further exemplified by the following specific examples, which are not intended to limit the scope of the invention.

請繼續參考第一圖及第二圖,本發明一種量子加密及解密方法,又可稱為機率型量子加密技術(Probabilistic Quantum Encryption),係將一亂數r與所欲傳輸的訊息以機率量子的方式加密後,再合併成主要之密文,能夠提升訊息破解的難度。在量子力學中常用狄拉克符號(Dirac notation)來表示量子態之態向量的存在,狄拉克符號又分為括量(ket)「|〉」以及包量(bra)「〈|」,包量為相對應於括量的共軛轉置,係代表著在希爾伯特空間(Hilbert Space)中的態向量,可以代表為一個矩陣,而量子力學中的量子態又具有不確定性(uncertainty)之特性,因此,本發明即係利用多個量子態的混合態(mixed state)形式,研發出一種機率型量子加密技術,使攻擊端無法簡單計算出一個準確值來破解加密之訊息。 Please continue to refer to the first figure and the second figure. The quantum encryption and decryption method of the present invention can also be called probabilistic Quantum (Probabilistic Quantum). Encryption) encrypts a random number r and the desired message by probability quantum, and then merges it into the main ciphertext, which can improve the difficulty of message cracking. In quantum mechanics, Dirac notation is often used to represent the existence of state vectors of quantum states. Dirac symbols are further divided into ket "|>" and "bra" (<|". For the corresponding conjugate transpose, it represents the state vector in Hilbert Space, which can be represented as a matrix, and the quantum state in quantum mechanics has uncertainty (uncertainty Therefore, the present invention develops a probabilistic quantum cryptography technique by using a mixed state of a plurality of quantum states, so that the attacker cannot simply calculate an accurate value to crack the encrypted message.

量子加密方法:Quantum encryption method:

首先,定義傳送端與接收端互相傳輸的訊息為P,即為明文(Plain-text),傳送端需要將傳輸之訊息P加密時,要先取亂數r,與訊息P配合能夠具有不可區分性之特性,並以轉換函數Genz(.)將亂數r代入,Genz(r)轉換後,亂數r會變為一個量子亂數,表示為|r〉,其中轉換函數Genz(.)代表一個Z基底的量子位元轉換函數,能夠將一般資訊轉換成量子態之態向量,而Z係能夠為|0〉或|1〉;|r〉係為一矩陣,因此以么正運算子(Unitary Operation)作矩陣的計算,取第一么正運算子U1根據長金鑰K0對量子亂數|r〉進行加密,會成為第一密文|C1〉,長金鑰K0係為傳送端與接收端預先分享的金鑰,據此,則完成亂數r的加密。 First, the message that is transmitted between the transmitting end and the receiving end is defined as P, which is Plain-text. When the transmitting end needs to encrypt the transmitted message P, it must first take the number r, and the information P can be indistinguishable. The characteristic, and the random number r is substituted by the transfer function Gen z (.). After the Gen z (r) conversion, the random number r becomes a quantum random number, expressed as |r>, where the transfer function Gen z (. ) represents a Z-substrate qubit transfer function that converts general information into a state vector of quantum states, and the Z-system can be |0> or |1>;|r> is a matrix, so the positive operation The unitary operation is used to calculate the matrix. The first positive operator U 1 encrypts the quantum random number |r> according to the long key K 0 , and becomes the first ciphertext|C 1 〉, the long key K 0 is a key shared in advance by the transmitting end and the receiving end, and according to this, the encryption of the random number r is completed.

再者,進行訊息P之加密,利用壓縮函數f(.)代入亂數r,f(r)壓縮運算後,得到一共享金鑰K1,此壓縮運算所產生的共享金鑰K1可以提高訊息的安全性至無條件安全的程度,再將訊息P以轉換函數Genz(.)轉換成量子訊息|P〉,第一么正運算 子U1與第二么正運算子U2,依據共享金鑰K1對量子訊息|P〉進行加密以得到第二密文|C2〉,最後將第一密文|C1〉及第二密文|C2〉合併後即獲得主要密文|C〉,完成訊息P之加密後,即將主要密文|C〉傳送至接收端。 Furthermore, the encryption of the message P is performed, and the compression function f(.) is substituted into the random number r, and the f(r) compression operation is performed to obtain a shared key K 1 , and the shared key K 1 generated by the compression operation can be improved. The security of the message to the extent of unconditional security, and then the message P is converted into a quantum message |P> by the conversion function Gen z (.), the first positive operator U 1 and the second positive operator U 2 , according to the sharing The key K 1 encrypts the quantum message |P> to obtain the second ciphertext|C 2 〉, and finally the first ciphertext|C 1 〉 and the second ciphertext|C 2 〉 are combined to obtain the main ciphertext| C>, after the encryption of the message P is completed, the main ciphertext|C> is transmitted to the receiving end.

量子解密方法:Quantum decryption method:

接收端欲讀取主要密文|C〉之內容時,係必須取一量測函數M(.)依據長金鑰K0,並以Z基底或X基底對第一密文|C1〉進行量測及解密,以

Figure TWI613899BD00007
(|C1〉)解密後,能獲得亂數r,其中Z={|0〉,|1〉},X={|+〉,|-〉},而使用Z基底或X基底的時機係取決於長金鑰K0之數值,當K0=0時,使用Z基底,K0=1時,則使用X基底作計算;與加密方法相同,接收端亦需要利用壓縮函數f(.)代入亂數r,藉著f(r)壓縮運算後,得到共享金鑰K1,再將第一么正運算子U1以及第二么正運算子U2依據共享金鑰K1對第二密文|C2〉解密,能得到量子訊息|P〉;最後再將量子訊息|P〉代入量測函數M(.),以M0(|P〉)量測計算後,則可以得到原始之訊息P,接收端能夠讀取到正確之訊息。此量子解密方法使用與加密方法同樣的長金鑰K0以及共享金鑰K1,並利用反向操作的方式進行解密。 When the receiving end wants to read the content of the main ciphertext|C>, it is necessary to take a measurement function M(.) according to the long key K 0 and perform the first ciphertext|C 1 〉 on the Z base or the X base. Measurement and decryption,
Figure TWI613899BD00007
(|C 1 〉) After decryption, the random number r can be obtained, where Z={|0>, |1>}, X={|+〉, |->}, and the timing of the Z-base or X-base is used. Depending on the value of the long key K 0 , when K 0 =0, the Z base is used, and when K 0 =1, the X base is used for calculation; as with the encryption method, the receiving end also needs to utilize the compression function f(.) Substituting the random number r, after the f(r) compression operation, the shared key K 1 is obtained , and then the first positive operator U 1 and the second positive operator U 2 are paired according to the shared key K 1 to the second Ciphertext|C 2 〉Decryption, can get the quantum message|P>; finally, the quantum message|P> is substituted into the measurement function M(.), and the measurement is calculated by M 0 (|P>), then the original can be obtained. Message P, the receiver can read the correct message. This quantum decryption method uses the same long key K 0 and shared key K 1 as the encryption method, and decrypts by means of reverse operation.

其中,第一么正運算子U1

Figure TWI613899BD00008
{I,H},第二么正運算子U2
Figure TWI613899BD00009
{I,iσ y },其係根據長金鑰K0或共享金鑰K1的值作選擇。因此,以上術之量子加密方法為例,第一么正運算子U1根據長金鑰K0對量子亂數|r〉進行加密成第一密文|C1〉,其過程之關係可如表一所示。 Among them, the first positive operator U 1
Figure TWI613899BD00008
{I,H}, the second positive operator U 2
Figure TWI613899BD00009
{I, iσ y }, which is selected based on the value of the long key K 0 or the shared key K 1 . Therefore, the quantum encryption method of the above is taken as an example. The first positive operator U 1 encrypts the quantum random number |r> into the first ciphertext|C 1 〉 according to the long key K 0 , and the relationship between the processes is as follows. Table 1 shows.

Figure TWI613899BD00010
Figure TWI613899BD00010
Figure TWI613899BD00011
Figure TWI613899BD00011

由表一可知,當長金鑰K0為0時,第一么正運算子U1取I,第一密文|C1〉運算之方程式表示為|C1〉=I.|r〉;當長金鑰K0為1時,第一么正運算子U1取H,第一密文|C1〉運算之方程式則表示為|C1〉=H.|r〉。 It can be seen from Table 1 that when the long key K 0 is 0, the first positive operator U 1 takes I, and the equation of the first ciphertext|C 1 〉 operation is expressed as |C 1 〉=I. |r>; When the long key K 0 is 1, the first positive operator U 1 takes H, and the equation of the first ciphertext|C 1 〉 operation is expressed as |C 1 〉=H. |r〉.

再者,第一么正運算子U1與第二么正運算子U2,各自依據共享金鑰K1對量子訊息|P〉進行加密能夠得到第二密文|C2〉,其過程之關係可如表二所示。 Furthermore, the first positive operator U 1 and the second positive operator U 2 each encrypt the quantum message |P> according to the shared key K 1 to obtain the second ciphertext |C 2 〉, the process of which The relationship can be as shown in Table 2.

Figure TWI613899BD00012
Figure TWI613899BD00012

由表二可知,共享金鑰K1應用於第一么正運算子U1與第二么正運算子U2時,共有四種組合,當K1皆為0時,第一么正運算子U1與第二么正運算子U2皆取I,第二密文|C2〉運算之方程式表示為|C2〉=I.|P〉;當K1分別為1跟0時,第一么正運算子U1與第二么正運算子U2分別取H及I,第二密文|C2〉運算之方程式表示為|C2〉=H.|P〉;當K1分別為0跟1時,第一么正運算子U1與第二么正運算子U2分別取I及i σ y,第二密文|C2〉運算之方程式表示為|C2〉=i σ y.|P〉;當K1皆為1時,第一么正運算子U1與第二么正運算子U2分別取H及i σ y,第二密文|C2〉運算之方程式則表示為|C2〉=H.i σ y.|P〉。 It can be seen from Table 2 that when the shared key K 1 is applied to the first positive operator U 1 and the second positive operator U 2 , there are four combinations. When K 1 is 0, the first positive operator U 1 and the second positive operator U 2 take I, and the equation of the second ciphertext|C 2 〉 operation is expressed as |C 2 〉=I. |P>; When K 1 is 1 and 0 respectively, the first positive operator U 1 and the second positive operator U 2 take H and I respectively, and the equation of the second ciphertext|C 2 〉 operation is expressed as |C 2 〉=H. |P>; When K 1 is 0 and 1 , respectively, the first positive operator U 1 and the second positive operator U 2 take I and i σ y , respectively, and the second ciphertext | C 2 〉 equation Expressed as |C 2 〉=i σ y . |P>; When K 1 is 1, the first positive operator U 1 and the second positive operator U 2 take H and i σ y respectively , and the second ciphertext|C 2 〉 equation is expressed Is |C 2 〉=H. i σ y . |P〉.

藉此,本發明提供一種新的量子加密及解密方法,能夠使傳送端與接收端所欲傳送之訊息P達到加密之目的,在接收 端亦能進行解密之動作,以順利讀取訊息P,並且傳送過程中能夠有效地抵擋量子電腦的攻擊,增加訊息傳送的隱密性及安全性。 Therefore, the present invention provides a new quantum encryption and decryption method, which enables the message P to be transmitted by the transmitting end and the receiving end to achieve the purpose of encryption, and is received. The terminal can also perform the decryption action to smoothly read the message P, and can effectively resist the attack of the quantum computer during the transmission process, thereby increasing the confidentiality and security of the message transmission.

由上述之實施說明可知,本發明與現有技術相較之下,本發明具有以下優點: It can be seen from the above description that the present invention has the following advantages compared with the prior art:

1.本發明提供一種量子加密及解密方法,其藉由壓縮函數、么正運算子以及量測函數等計算過程,使傳送端與接收端所欲交換的傳統訊息或量子訊息都能得到保護,即便使用傳統的通訊管道傳送,亦能有良好的安全性及隱密性,且本發明可作為量子通訊協定之基礎,對於未來量子通訊的發展,有極大之幫助。 1. The present invention provides a quantum encryption and decryption method, which can protect a traditional message or a quantum message to be exchanged between a transmitting end and a receiving end by a calculation process such as a compression function, a positive operation operator, and a measurement function. Even with traditional communication pipeline transmission, it can have good security and privacy, and the invention can be used as the basis of quantum communication protocol, which is of great help to the development of quantum communication in the future.

2.本發明一種量子加密及解密方法藉由亂數與所欲傳送之訊息互相搭配,使傳送之密文具有不可區分性,在其他的量子電腦嘗試竊取密文當中的訊息時,無法正確量測出所需的值,並且在長金鑰以及共享金鑰尚未洩漏時,能夠在下次的訊息傳送時再次使用,使訊息加密及解密上更有效率,通訊上的負擔更低。 2. The quantum encryption and decryption method of the present invention makes the transmitted ciphertext indistinguishable by the mismatching of the random number and the message to be transmitted, and cannot be correctly calculated when other quantum computers try to steal the message in the ciphertext. The required value is measured, and when the long key and the shared key have not been leaked, it can be used again at the next message transmission, making the message encryption and decryption more efficient, and the communication burden is lower.

3.本發明一種量子加密及解密方法藉由壓縮函數以產生共享金鑰,能夠提高訊息的安全性至無條件安全的程度,降低訊息的洩漏可能性,與先前所使用的量子加密技術相比,本發明之量子加密技術更難以被破解。 3. A quantum encryption and decryption method of the present invention can generate a shared key by compressing a function, thereby improving the security of the message to an unconditional security level and reducing the possibility of message leakage, compared with the previously used quantum encryption technology. The quantum cryptography of the present invention is more difficult to crack.

4.本發明一種量子加密及解密方法非僅能單純進行量子加密及解密,亦能結合現有的認證方法,進一步地提供量子認證式加密技術,兼具加密及認證之功效,於使用上更為方便。 4. The quantum encryption and decryption method of the invention can not only perform quantum encryption and decryption, but also can combine the existing authentication methods to further provide quantum authentication encryption technology, which has the functions of encryption and authentication, and is more effective in use. Convenience.

綜上所述,本發明之一種量子加密及解密方法,的確能藉由上述所揭露之實施例,達到所預期之使用功效,且本發明 亦未曾公開於申請前,誠已完全符合專利法之規定與要求。爰依法提出發明專利之申請,懇請惠予審查,並賜准專利,則實感德便。 In summary, a quantum encryption and decryption method of the present invention can achieve the intended use efficiency by the above disclosed embodiments, and the present invention It has not been disclosed before the application, and Cheng has fully complied with the requirements and requirements of the Patent Law.爰Issuing an application for a patent for invention in accordance with the law, and asking for a review, and granting a patent, is truly sensible.

惟,上述所揭之圖示及說明,僅為本發明之較佳實施例,非為限定本發明之保護範圍;大凡熟悉該項技藝之人士,其所依本發明之特徵範疇,所作之其它等效變化或修飾,皆應視為不脫離本發明之設計範疇。 The illustrations and descriptions of the present invention are merely preferred embodiments of the present invention, and are not intended to limit the scope of the present invention; those skilled in the art, which are characterized by the scope of the present invention, Equivalent variations or modifications are considered to be within the scope of the design of the invention.

(ES1)‧‧‧步驟一 (ES1)‧‧‧Step 1

(ES2)‧‧‧步驟二 (ES2)‧‧‧Step 2

(ES3)‧‧‧步驟三 (ES3)‧‧‧Step three

(DS1)‧‧‧步驟一 (DS1) ‧ ‧ Step 1

(DS2)‧‧‧步驟二 (DS2)‧‧‧Step 2

(DS3)‧‧‧步驟三 (DS3)‧‧‧Step three

Claims (10)

一種量子加密方法,其步驟包括有:步驟一:產生一亂數r,並代入一轉換函數,使該亂數r轉換成一量子亂數|r〉,再由一第一么正運算子U1依據一長金鑰(Long-term secret key)K0加密後得到一第一密文|C1〉;步驟二:利用一壓縮函數(Compression function)代入該亂數r運算後得到一共享金鑰(Session key)K1,並再以該轉換函數將訊息P轉換成一量子訊息|P〉;以及步驟三:將該第一么正運算子U1與一第二么正運算子U2,依據該共享金鑰K1對該量子訊息|P〉進行加密以得到一第二密文|C2〉,將該第一密文|C1〉及該第二密文|C2〉合併後即獲得主要密文|C〉。 A quantum encryption method, the steps comprising: Step one: generating a random number r, and substituted into a transfer function, so that the random number r is converted into a quantum random number | r>, then by a first unitary operator U 1 According to a long-term secret key K 0 encryption, a first ciphertext|C 1 〉 is obtained; Step 2: using a compression function to substitute the random number r operation to obtain a shared key (Session key) K 1 , and then convert the message P into a quantum message |P> by the conversion function; and step 3: the first positive operator U 1 and a second positive operator U 2 , according to The shared key K 1 encrypts the quantum message |P> to obtain a second ciphertext|C 2 〉, and the first ciphertext|C 1 〉 and the second ciphertext|C 2 〉 are combined Obtain the main ciphertext|C>. 如申請專利範圍第1項所述量子加密方法,其中該轉換函數係為Z基底的量子位元,表示為Genz(.),其中Z={|0〉,|1〉}。 The quantum encryption method according to claim 1, wherein the conversion function is a Z-substrate qubit represented by Gen z (.), wherein Z={|0>, |1>}. 如申請專利範圍第1項所述量子加密方法,其中該第一么正運算子U1係屬於I或H其中之一,數學式表示為U1 {I,H},其係依據該長金鑰K0或該共享金鑰K1的值,選擇使用I或H,且其中I=|0〉〈0|+|1〉〈1|,The quantum encryption method according to claim 1, wherein the first positive operator U 1 is one of I or H, and the mathematical expression is U 1 {I, H}, which selects to use I or H according to the value of the long key K 0 or the shared key K 1 , and wherein I=|0><0|+|1><1|, . 如申請專利範圍第1項所述量子加密方法,其中該第二么正運算 子U2係屬於I或i σ y其中之一,數學式表示為U2 {I,iσ y },其係依據該長金鑰K0或該共享金鑰K1的值,選擇使用I或i σ y,且其中I=|0〉〈0|+|1〉〈1|,iσ y =|0〉〈1|-|1〉〈0|。 The quantum encryption method according to claim 1, wherein the second positive operator U 2 belongs to one of I or i σ y , and the mathematical expression is expressed as U 2 {I, iσ y }, which is selected according to the value of the long key K 0 or the shared key K 1 , using I or i σ y , and wherein I=|0><0|+|1><1 |,iσ y =|0><1|-|1><0|. 如申請專利範圍第1項所述量子加密方法,其中該壓縮函數係表示為f(.),係壓縮該亂數r。 The quantum encryption method according to claim 1, wherein the compression function is expressed as f(.), and the random number r is compressed. 一種量子解密方法,其步驟包括有:步驟一:將一量測函數依據一長金鑰(Long-term secret key)K0對一第一密文|C1〉進行量測及解密,以獲得一亂數r;步驟二:利用一壓縮函數(Compression function)代入該亂數r運算後得到一共享金鑰(Session key)K1;以及步驟三:使用一第一么正運算子U1以及一第二么正運算子U2依據該共享金鑰K1對一第二密文|C2〉解密,以得到一量子訊息|P〉,經由該量測函數計算後,即得到未加密之訊息P。 A quantum decryption method includes the following steps: Step 1: measuring and decrypting a first ciphertext|C 1 〉 according to a long-term secret key K 0 to obtain a quantum function. a random number r; step two: using a compression function (Compression function) to enter the random number r operation to obtain a shared key (Session key) K 1 ; and step three: using a first positive operator U 1 and A second positive operator U 2 decrypts a second ciphertext|C 2 〉 according to the shared key K 1 to obtain a quantum message |P>, and after being calculated by the measurement function, the unencrypted is obtained. Message P. 如申請專利範圍第6項所述量子解密方法,其中該量測函數係表示為M(.),並依據該長金鑰K0的值或該共享金鑰K1的值,以Z基底或X基底進行量測,其中Z={|0〉,|1〉},X={|+〉,|-〉}。 The method for quantum decryption according to claim 6, wherein the measurement function is expressed as M(.), and according to the value of the long key K 0 or the value of the shared key K 1 , The X substrate was measured, where Z = {|0>, |1>}, X = {|+>, |->}. 如申請專利範圍第6項所述量子解密方法,其中該第一么正運算子U1係屬於I或H其中之一,表示為U1 {I,H},其係依據該長金鑰K0或該共享金鑰K1的值,選擇使用I或H,且其中I=|0〉〈0|+|1〉〈1|,The method of claim 6, wherein the first positive operator U 1 is one of I or H, represented as U 1 {I, H}, which selects to use I or H according to the value of the long key K 0 or the shared key K 1 , and wherein I=|0><0|+|1><1|, . 如申請專利範圍第6項所述量子解密方法,其中該第二么正運算子U2係屬於I或i σ y其中之一,表示為U2 {I,iσ y },其係依據該長金鑰K0或該共享金鑰K1的值,選擇使用I或i σ y,且其中I=|0〉〈0|+|1〉〈1|,iσ y =|0〉〈1|-|1〉〈0|。 The method of quantum decryption according to claim 6, wherein the second positive operator U 2 belongs to one of I or i σ y and is represented as U 2 {I, iσ y }, which is selected according to the value of the long key K 0 or the shared key K 1 , using I or i σ y , and wherein I=|0><0|+|1><1 |,iσ y =|0><1|-|1><0|. 如申請專利範圍第6項所述量子解密方法,其中該壓縮函數係表示為f(.),係壓縮該亂數r。 The method of quantum decryption according to claim 6, wherein the compression function is expressed as f(.), and the random number r is compressed.
TW105123333A 2016-07-22 2016-07-22 A method of quantum encryption and decryption TWI613899B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105123333A TWI613899B (en) 2016-07-22 2016-07-22 A method of quantum encryption and decryption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105123333A TWI613899B (en) 2016-07-22 2016-07-22 A method of quantum encryption and decryption

Publications (2)

Publication Number Publication Date
TWI613899B true TWI613899B (en) 2018-02-01
TW201804758A TW201804758A (en) 2018-02-01

Family

ID=62013952

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105123333A TWI613899B (en) 2016-07-22 2016-07-22 A method of quantum encryption and decryption

Country Status (1)

Country Link
TW (1) TWI613899B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808317B (en) * 2020-04-01 2023-07-11 阿證科技股份有限公司 Quantum Resistant System for Key Management Mechanism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7653199B2 (en) * 2004-07-29 2010-01-26 Stc. Unm Quantum key distribution
CN102104479A (en) * 2009-12-16 2011-06-22 索尼公司 Quantum public key encryption system, key generation method, encryption method, and decryption method
US20140133001A1 (en) * 2012-10-05 2014-05-15 Raytheon Bbn Technologies Corp. Device and method for optimally distinguishing among an arbitrary set of coherent states of light
US8897449B1 (en) * 2011-09-12 2014-11-25 Quantum Valley Investment Fund LP Quantum computing on encrypted data
TW201602830A (en) * 2014-07-02 2016-01-16 柯呈翰 A method and system for adding dynamic labels to a file and encrypting the file

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7653199B2 (en) * 2004-07-29 2010-01-26 Stc. Unm Quantum key distribution
CN102104479A (en) * 2009-12-16 2011-06-22 索尼公司 Quantum public key encryption system, key generation method, encryption method, and decryption method
US8897449B1 (en) * 2011-09-12 2014-11-25 Quantum Valley Investment Fund LP Quantum computing on encrypted data
US20140133001A1 (en) * 2012-10-05 2014-05-15 Raytheon Bbn Technologies Corp. Device and method for optimally distinguishing among an arbitrary set of coherent states of light
TW201602830A (en) * 2014-07-02 2016-01-16 柯呈翰 A method and system for adding dynamic labels to a file and encrypting the file

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808317B (en) * 2020-04-01 2023-07-11 阿證科技股份有限公司 Quantum Resistant System for Key Management Mechanism

Also Published As

Publication number Publication date
TW201804758A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
TW201817193A (en) Data transmission method, device and system
WO2007011897A2 (en) Cryptographic authentication, and/or establishment of shared cryptographic keys, using a signing key encrypted with a non-one-time-pad encryption, including (but not limited to) techniques with improved security against malleability attacks
CN104253694A (en) Encrypting method for network data transmission
WO2018127118A1 (en) Identity authentication method and device
JP5047638B2 (en) Ciphertext decryption right delegation system
CN114268439B (en) Identity-based authentication key negotiation method based on grid
TWI760546B (en) Computer-implemented system and method for highly secure, high speed encryption and transmission of data
CN104270242A (en) Encryption and decryption device used for network data encryption transmission
CN204180095U (en) A kind of ciphering and deciphering device for network data encryption transmission
Idrizi et al. Analyzing the speed of combined cryptographic algorithms with secret and public key
CN111490875B (en) Cloud data semi-quantum secure sharing method and system based on proxy re-encryption
US20200235915A1 (en) Computer-implemented system and method for highly secure, high speed encryption and transmission of data
CN109104278A (en) A kind of encrypting and decrypting method
CN110519226B (en) Quantum communication server secret communication method and system based on asymmetric key pool and implicit certificate
Olumide et al. A hybrid encryption model for secure cloud computing
WO2020042023A1 (en) Instant messaging data encryption method and apparatus
Schmidt Requirements for password-authenticated key agreement (PAKE) schemes
TW201445902A (en) Method for quantum communication
Adedeji Kazeem et al. A new hybrid data encryption and decryption technique to enhance data security in communication networks: algorithm development
TWI613899B (en) A method of quantum encryption and decryption
CN108092772A (en) A kind of quantum commission combined calculation method of two client
CN116436593A (en) TEE federal learning privacy protection method based on proxy re-encryption
CN110321722B (en) DNA sequence similarity safe calculation method and system
Sharma et al. A performance test on symmetric encryption algorithms-RC2 Vs rijndael
KR20200055672A (en) Encryption systems and method using permutaion group based cryptographic techniques