TWI612828B - System and method for detecting falling down in a predetermined living space - Google Patents

System and method for detecting falling down in a predetermined living space Download PDF

Info

Publication number
TWI612828B
TWI612828B TW106121425A TW106121425A TWI612828B TW I612828 B TWI612828 B TW I612828B TW 106121425 A TW106121425 A TW 106121425A TW 106121425 A TW106121425 A TW 106121425A TW I612828 B TWI612828 B TW I612828B
Authority
TW
Taiwan
Prior art keywords
fall
event
value
neural network
time
Prior art date
Application number
TW106121425A
Other languages
Chinese (zh)
Other versions
TW201906427A (en
Inventor
蔡旭昇
董信煌
Original Assignee
樹德科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 樹德科技大學 filed Critical 樹德科技大學
Priority to TW106121425A priority Critical patent/TWI612828B/en
Application granted granted Critical
Publication of TWI612828B publication Critical patent/TWI612828B/en
Publication of TW201906427A publication Critical patent/TW201906427A/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Alarm Systems (AREA)

Abstract

一種居家空間跌倒偵測系統,係包括一發射器、一接收器以及一資訊處理器。該發射器設置於一預設空間,該發射器發射複數無線網路封包,各該無線網路封包包括一訊號強度指標資訊。該接收器設置於該預設空間,接收各該無線網路封包。該資訊處理器與該接收器電訊連接,該資訊處理器包括一屬性萃取單元以及一自動編碼器類神經網路。本發明亦揭露一種居家空間跌倒偵測方法。藉由上述之系統及方法,本發明在不需人員攜帶特殊設備下,使用訊號強度指標資訊做跌倒偵測工作,具有便利性以及兼顧隱私之優點。A home space fall detection system includes a transmitter, a receiver and an information processor. The transmitter is disposed in a preset space, and the transmitter transmits a plurality of wireless network packets, each of the wireless network packets including a signal strength indicator information. The receiver is disposed in the preset space and receives each of the wireless network packets. The information processor is in telecommunication connection with the receiver. The information processor includes an attribute extraction unit and an automatic encoder-like neural network. The invention also discloses a home space fall detection method. With the above system and method, the present invention uses the signal strength indicator information to perform the fall detection work without the need for personnel to carry special equipment, and has the advantages of convenience and privacy.

Description

居家空間跌倒偵測系統及其方法Home space fall detection system and method thereof

本發明係為一種居家空間跌倒偵測系統及其方法,特別是一種 在不需人員攜帶特殊設備下,使用訊號強度指標資訊做跌倒偵測工作,具有便利性以及兼顧隱私之優點的居家空間跌倒偵測系統及其方法。The invention relates to a home space fall detection system and a method thereof, in particular to a home space falling down using a signal strength indicator information to perform a fall detection work without requiring a person to carry a special device, which has the convenience and the advantages of taking privacy into consideration. Detection system and method.

醫療技術的進步促成人類壽命增長,追隨歐美日先進國家,台灣也逐漸步入老年化社會,居家跌倒是威脅獨居老人最常見的意外。The advancement of medical technology has contributed to the growth of human life, following the advanced countries of Europe, America and Japan. Taiwan has gradually entered an aging society. Falling at home is the most common accident that threatens the elderly living alone.

跌倒是一種從站姿或坐姿突然改變身體為傾斜或平躺的姿勢變化,根據美國估計,在2000年,年長者跌倒事件共花了190億美元的醫療成本;這個數目在2010年成長為300億美元。長者跌倒若未被即時發現,將嚴重威脅長者的生命。醫療水準的進步延長人類壽命,但社會環境的改變也產生不少獨居老人,如何利用科技對這些長者提供舒適、安全兼具隱私保護的居家生活空間是許多已開發國家重要的施政目標。A fall is a change in posture from a standing or sitting posture that suddenly changes the body to tilt or lie flat. According to US estimates, in 2000, the elderly fell for a total of $19 billion in medical costs; this number grew to 300 in 2010. One hundred million U.S. dollars. If the elderly fall is not immediately discovered, it will seriously threaten the lives of the elderly. The advancement of medical standards has prolonged the life span of human beings, but the changes in the social environment have also produced many elderly people living alone. How to use technology to provide comfortable, safe and privacy-protected home living spaces for these elders is an important administrative goal for many developed countries.

已知跌倒事件的偵測技術大多必須使用特殊設備,如智慧型手機上的加速感測儀(accelerometer)、陀螺儀(gyroscope),這方面的技術利用App程式讀取感測儀數據,在數據值超過一門檻值時啟動跌倒後續處理工作。Most of the detection techniques for known fall events must use special equipment, such as accelerometers and gyroscopes on smart phones. This technology uses App to read sensor data in data. When the value exceeds a threshold, the fall subsequent processing is started.

中華民國專利公告第I391880號,揭露一種配戴式活動感測裝置及其方法,係包含有一腕錶及一感測元件,該腕錶及感測元件均設有三軸加速度感測器,得以測量身軀姿勢變換與活動加速度量值,當配戴者活動加速度超過跌倒閾值,且其姿勢偵察為躺姿,則判斷為跌倒,可發出警報及通知緊急救護,如為誤判配戴者可操作裝置自行取消警報,而在非睡眠時間偵察到身軀及腕部的活動量低於活動閾值並持續超過一段特定時間,則發出活動量過低預警,配戴者若有動作反應則取消警報,沒動作回應就發出警報及通知緊急救護,如為誤判配戴者亦可操作裝置自行取消警報。The Republic of China Patent Publication No. I391880 discloses a wearable motion sensing device and a method thereof, which include a wristwatch and a sensing component, the wristwatch and the sensing component are each provided with a three-axis acceleration sensor for measurement. Body posture change and active acceleration value, when the wearer's activity acceleration exceeds the fall threshold, and the posture is detected as a lying posture, it is judged to be a fall, and an alarm can be issued and an emergency ambulance can be notified, for example, the wearer can operate the device by mistake. Cancel the alarm, and when the amount of activity detected in the body and wrist during the non-sleep time is lower than the activity threshold and continues for more than a certain period of time, the activity is too low, and the wearer cancels the alarm if there is an action response, no action response In case of warning and notification of emergency ambulance, if the wearer is misjudged, the device can also be operated to cancel the alarm.

中華民國專利公告第M449320號,揭露一種智慧型行動電話之跌倒偵測與示警系統,主要係包含可攜帶之智慧型行動電話,以及置於智慧型行動電話可供偵測跌倒之感測模組。其中,置於該智慧型行動電話之感測模組,係為三軸加速度感測器及陀螺儀等,將智慧型行動電話由年長獨居者或需看護之獨居者攜帶使用。俾當使用者意外跌倒時,得以藉由感測模組判斷後,開啟智慧型行動電話傳送緊急訊息至相關醫護人員或連絡人,以供醫護人員或連絡人即時作處理,從而提高居家照護之安全性,防止因耽誤急救時間造成身體之傷害。The Republic of China Patent Bulletin No. M449320 discloses a fall detection and warning system for smart mobile phones, mainly comprising a portable smart phone and a sensing module for detecting a fall in a smart mobile phone. . Among them, the sensing module placed on the smart mobile phone is a three-axis acceleration sensor and a gyroscope, and the smart mobile phone is carried by an elderly person living alone or a caretaker. When the user accidentally falls, the sensor can be activated by the sensor module to send an emergency message to the relevant medical staff or contact person for immediate treatment by the medical staff or contact person, thereby improving home care. Safety to prevent physical injury caused by delay in emergency time.

上述專利需要使用者長期攜帶該設備,才能有效進行,若長者夜間起床忘記攜帶,則上述專利即無法實施。The above patents require the user to carry the equipment for a long time to be effective, and the above patent cannot be implemented if the elderly get up at night and forget to carry it.

中華民國專利公告第I275045號,揭露一種跌倒事件偵測方法,其利用人的跌倒時間區間、形心位置及垂直投影高度三特徵值於三種不同運動模式,在跌倒時間區間中,偵測觀察人的形心位置改變率及垂直投影改變率,當偵測有跌倒事件發生時,可透過監控裝置通知遠端家人,並即時進行醫療減低傷害,可應用於智慧型家庭監控。The Republic of China Patent Publication No. I275045 discloses a fall event detection method that utilizes three characteristic values of a person's fall time interval, centroid position, and vertical projection height in three different motion modes to detect an observer in a fall time interval. The rate of change of the centroid position and the rate of change of the vertical projection can be notified to the remote family through the monitoring device when the fall event is detected, and the medical damage can be immediately applied to the smart home monitoring.

上述專利使用攝影器材及影像處理的技術,雖然不需要人員佩戴設備,但上述專利需要特定的攝影設備,影像也必須在一定的光學環境之下才能進行分析;此外,長期進行影像追蹤也侵犯長者的隱私權,使技術推廣不易進行。The above patents use photographic equipment and image processing technology. Although there is no need for personnel to wear equipment, the above patents require specific photographic equipment, and images must be analyzed under a certain optical environment. In addition, long-term image tracking also infringes on the elderly. The privacy of the technology makes the promotion of technology difficult.

因此,如何設計出一不需要人員佩戴設備,便利且兼顧隱私權的居家空間跌倒偵測系統,即成為相關設備廠商以及研發人員所共同期待的目標。Therefore, how to design a home space fall detection system that does not require people to wear equipment, convenience and privacy, has become a common expectation of related equipment manufacturers and developers.

本案發明人有鑑於習知技術之跌倒偵測裝置需要人員佩戴設備以及侵犯隱私權之缺失,乃積極著手進行開發,以期可以改進上述既有之缺點,經過不斷地試驗及努力,終於開發出本發明。In view of the fact that the fall detection device of the prior art requires personnel to wear equipment and the lack of privacy infringement, the inventor of the present invention actively develops, in order to improve the above-mentioned shortcomings, and after continuous trial and effort, finally develops the present. invention.

本發明之第一目的,係提供一種不需要人員佩戴設備,便利且兼顧隱私權之居家空間跌倒偵測系統。The first object of the present invention is to provide a home space fall detection system that does not require a person to wear equipment, and which is convenient and takes privacy into consideration.

本發明之第二目的,係提供一種不需要人員佩戴設備,便利且兼顧隱私權之居家空間跌倒偵測方法。A second object of the present invention is to provide a home space fall detection method that does not require a person to wear equipment, and which is convenient and takes privacy into account.

為了達成上述之目的,本發明之居家空間跌倒偵測系統,係包括一發射器、一接收器以及一資訊處理器。In order to achieve the above object, the home space fall detection system of the present invention comprises a transmitter, a receiver and an information processor.

該發射器設置於一預設空間,該發射器發射複數無線網路封包,各該無線網路封包包括一訊號強度指標資訊。The transmitter is disposed in a preset space, and the transmitter transmits a plurality of wireless network packets, each of the wireless network packets including a signal strength indicator information.

該接收器設置於該預設空間,接收各該無線網路封包。The receiver is disposed in the preset space and receives each of the wireless network packets.

該資訊處理器與該接收器電訊連接,該資訊處理器包括一屬性萃取單元以及一自動編碼器類神經網路,該自動編碼器類神經網路包括複數去雜自動編碼器類神經網路層及一分類類神經網路層,各該去雜自動編碼器類神經網路層包括複數神經元,各該神經元與前一層以及下一層之神經元連結,同層神經元之間不連結,且各該神經元之連結各具有一連結權重。The information processor is in telecommunication connection with the receiver, the information processor includes an attribute extraction unit and an automatic encoder-like neural network, and the automatic encoder-like neural network includes a complex de-duplication automatic encoder-like neural network layer. And a classification-like neural network layer, each of the de-encoded automatic encoder-like neural network layers includes a plurality of neurons, each of which is connected with the neurons of the previous layer and the next layer, and the neurons of the same layer are not connected. And each of the neurons has a link weight.

其中,該接收器在一第一時間將複數個該無線網路封包傳送至該資訊處理器,該第一時間內一測試者在該預設空間發生複數個跌倒事件及複數個無跌倒事件,該接收器在一第二時間將複數個該無線網路封包傳送至該資訊處理器。The receiver transmits a plurality of the wireless network packets to the information processor at a first time. During the first time, a tester generates a plurality of fall events and a plurality of no fall events in the preset space. The receiver transmits a plurality of the wireless network packets to the information processor at a second time.

該屬性萃取單元計算出該第一時間的該訊號強度指標序列的複數第一導出資料,該屬性萃取單元計算出該第二時間的該訊號強度指標序列的一第二導出資料。The attribute extracting unit calculates a plurality of first derived data of the signal strength indicator sequence of the first time, and the attribute extracting unit calculates a second derived data of the signal strength indicator sequence of the second time.

該自動編碼器類神經網路根據該等第一導出資料以及各該連結權重,計算出複數第一事件計算值,該第一事件計算值包括該第一時間內在該預設空間的一跌倒機率值以及一無跌倒機率值,該自動編碼器類神經網路根據該等第一事件計算值與該第一時間的複數第一事件實際值調整各該聯結權重,使得該等第一事件計算值與該等第一事件實際值在一定誤差範圍內,該第一事件實際值為該第一時間內對應該第一事件計算值在該預設空間的事件實際值,該第一事件實際值包括一跌倒實際值以及一無跌倒實際值,該自動編碼器類神經網路根據該第二導出資料以及調整後之各該連結權重,計算出一第二事件計算值,該第二事件計算值包括一跌倒機率值與一無跌倒機率值,利用該跌倒機率值與該無跌倒機率值判斷該第二時間內在該預設空間是否發生跌倒事件。The automatic encoder-based neural network calculates a complex first event calculation value according to the first derived data and each of the connection weights, where the first event calculation value includes a fall probability in the preset space in the first time period. And the value of the first event is calculated by the automatic encoder-based neural network according to the first event calculation value and the first time event first event actual value of the first time, so that the first event calculation value And the actual value of the first event is within a certain error range, and the actual value of the first event is an actual value of the event corresponding to the first event calculated value in the preset space in the first time, and the actual value of the first event includes The automatic encoder-based neural network calculates a second event calculation value according to the second derived data and the adjusted connection weights, and the second event calculation value includes a fall event actual value and a fall-free actual value. A fall probability value and a no fall probability value, and determining whether a fall event occurs in the preset space in the second time by using the fall probability value and the no fall rate value.

為了達成上述之目的,本發明之居家空間跌倒偵測方法,包括步驟:In order to achieve the above object, the home space fall detection method of the present invention comprises the steps of:

步驟A:提供一發射器、一接收器以及一資訊處理器,該發射器設置於一預設空間,該接收器設置於該預設空間,該資訊處理器與該接收器電訊連接,且該資訊處理器包括一屬性萃取單元以及一自動編碼器類神經網路,該自動編碼器類神經網路與該屬性萃取單元電訊連接,該自動編碼器類神經網路包括複數去雜自動編碼器類神經網路層及一分類類神經網路層,各該去雜自動編碼器類神經網路層包括複數神經元,各該神經元與前一層以及下一層之神經元連結,同層神經元之間不連結,且各該神經元之連結各具有一連結權重。Step A: providing a transmitter, a receiver, and an information processor, the transmitter is disposed in a preset space, the receiver is disposed in the preset space, the information processor is electrically connected to the receiver, and the The information processor includes an attribute extraction unit and an automatic encoder-like neural network. The automatic encoder-like neural network is connected to the attribute extraction unit, and the automatic encoder-like neural network includes a complex de-duplication automatic encoder. a neural network layer and a classification neural network layer, each of the de-encoded automatic encoder-like neural network layers includes a plurality of neurons, each of which is connected with a neuron of the previous layer and the next layer, and the same layer of neurons They are not connected, and each of the neurons has a link weight.

步驟B:該發射器發射複數無線網路封包,各該無線網路封包包括一訊號強度指標資訊。Step B: The transmitter transmits a plurality of wireless network packets, and each of the wireless network packets includes a signal strength indicator information.

步驟C:該接收器接收各該無線網路封包。Step C: The receiver receives each of the wireless network packets.

步驟D:提供一測試者在一第一時間內在該預設空間發生複數個跌倒事件及複數個無跌倒事件,該接收器在該第一時間將複數個該無線網路封包傳送至該資訊處理器。Step D: providing a tester to generate a plurality of fall events and a plurality of no fall events in the preset space in a first time, the receiver transmitting a plurality of the wireless network packets to the information processing at the first time Device.

步驟E:該屬性萃取單元計算出該第一時間的該訊號強度指標序列的複數第一導出資料。Step E: The attribute extraction unit calculates a plurality of first derived data of the signal strength indicator sequence of the first time.

步驟F:該自動編碼器類神經網路根據該等第一導出資料以及各該連結權重,計算出複數第一事件計算值,該第一事件計算值包括該第一時間內在該預設空間的一跌倒機率值以及一無跌倒機率值。Step F: The automatic encoder-like neural network calculates a complex first event calculation value according to the first derived data and each of the connection weights, where the first event calculation value includes the first time in the preset space. A fall probability value and a no fall probability value.

步驟G:該自動編碼器類神經網路根據該等第一事件計算值與該第一時間的複數第一事件實際值調整各該聯結權重,該第一事件實際值為該第一時間內對應該第一事件計算值在該預設空間的事件實際值,該第一事件實際值包括一跌倒實際值以及一無跌倒實際值。Step G: The automatic encoder-like neural network adjusts each of the connection weights according to the first event calculation value and the first time event first event actual value of the first time, and the first event actual value is the first time pair The first event should be calculated as the actual value of the event in the preset space, the first event actual value including a fall actual value and a no fall actual value.

步驟H:判斷該等第一事件計算值及該等第一事件實際值之一差值是否在一誤差百分比內,若該差值在該誤差百分比內,則執行下一步驟,若該差值在該誤差百分比外,則執行該步驟F至該步驟G。Step H: determining whether the difference between the first event calculation value and the actual value of the first event is within an error percentage. If the difference is within the error percentage, performing the next step, if the difference In addition to the error percentage, step F to step G is performed.

步驟I:該接收器在一第二時間將複數個該無線網路封包傳送至該資訊處理器。Step I: The receiver transmits a plurality of the wireless network packets to the information processor at a second time.

步驟J:該屬性萃取單元計算出該第二時間的該訊號強度指標序列的一第二導出資料。Step J: The attribute extraction unit calculates a second derived data of the signal strength indicator sequence of the second time.

步驟K:該自動編碼器類神經網路根據該第二導出資料以及調整後之各該連結權重,計算出一第二事件計算值,該第二事件計算值包括一跌倒機率值與一無跌倒機率值,利用該跌倒機率值與該無跌倒機率值判斷該第二時間內在該預設空間是否發生跌倒事件。Step K: The automatic encoder-like neural network calculates a second event calculation value according to the second derived data and the adjusted connection weights, and the second event calculation value includes a fall probability value and a fall-free value. The probability value is used to determine whether a fall event occurs in the preset space in the second time by using the fall probability value and the no fall probability value.

藉由上述之系統及方法,本發明在不需人員攜帶特殊設備下,使用訊號強度指標資訊做跌倒偵測工作,具有便利性以及兼顧隱私之優點。With the above system and method, the present invention uses the signal strength indicator information to perform the fall detection work without the need for personnel to carry special equipment, and has the advantages of convenience and privacy.

為使熟悉該項技藝人士瞭解本發明之目的,兹配合圖式將本發明之較佳實施例詳細說明如下。The preferred embodiments of the present invention are described in detail below with reference to the drawings.

請參考圖1至圖2所示,本發明之居家空間跌倒偵測系統(1),係包括一發射器(10)、一接收器(11)以及一資訊處理器(12)。Referring to FIG. 1 to FIG. 2, the home space fall detection system (1) of the present invention comprises a transmitter (10), a receiver (11) and an information processor (12).

該發射器(10)設置於一預設空間,該發射器(10)發射複數無線網路封包(2),各該無線網路封包(2)包括一訊號強度指標資訊。The transmitter (10) is disposed in a predetermined space, the transmitter (10) transmits a plurality of wireless network packets (2), and each of the wireless network packets (2) includes a signal strength indicator information.

該接收器(11)設置於該預設空間,接收各該無線網路封包(2)。The receiver (11) is disposed in the preset space and receives each of the wireless network packets (2).

該資訊處理器(12)與該接收器(11)電訊連接,該資訊處理器(12)包括一屬性萃取單元(120)以及一自動編碼器類神經網路(121),該自動編碼器類神經網路(121)包括複數去雜自動編碼器類神經網路層及一分類類神經網路層,各該去雜自動編碼器類神經網路層包括複數神經元(1210),各該神經元(1210)與前一層以及下一層之神經元(1210)連結,同層神經元(1210)之間不連結,且各該神經元(1210)之連結各具有一連結權重(W)。The information processor (12) is telecommunicationally connected to the receiver (11). The information processor (12) includes an attribute extraction unit (120) and an automatic encoder-like neural network (121). The automatic encoder class The neural network (121) includes a complex de-internal automatic encoder-like neural network layer and a classification-like neural network layer, and each of the de-encoded automatic encoder-like neural network layers includes a plurality of neurons (1210), each of which The element (1210) is connected to the neurons of the previous layer and the next layer (1210), and the neurons of the same layer (1210) are not connected, and each of the neurons (1210) has a link weight (W).

其中,該接收器(11)在一第一時間將複數個該無線網路封包(2)傳送至該資訊處理器(12),該第一時間內一測試者在該預設空間發生複數個跌倒事件及複數個無跌倒事件,該接收器(11)在一第二時間將複數個該無線網路封包(2)傳送至該資訊處理器(12)。The receiver (11) transmits a plurality of the wireless network packets (2) to the information processor (12) at a first time, and a tester generates a plurality of the preset spaces in the first time. In the event of a fall and a plurality of no-fall events, the receiver (11) transmits a plurality of the wireless network packets (2) to the information processor (12) at a second time.

該屬性萃取單元(120)計算出該第一時間的該訊號強度指標序列的複數第一導出資料,該屬性萃取單元(120)計算出該第二時間的該訊號強度指標序列的一第二導出資料。The attribute extraction unit (120) calculates a plurality of first derived data of the signal strength indicator sequence at the first time, and the attribute extraction unit (120) calculates a second derivative of the signal strength indicator sequence at the second time. data.

該自動編碼器類神經網路(121)根據該等第一導出資料以及各該連結權重,計算出複數第一事件計算值,該第一事件計算值包括該第一時間內在該預設空間的一跌倒機率值以及一無跌倒機率值。The automatic encoder-like neural network (121) calculates a plurality of first event calculation values according to the first derived data and each of the connection weights, where the first event calculation value includes the first time in the preset space. A fall probability value and a no fall probability value.

該自動編碼器類神經網路(121)根據該等第一事件計算值與該第一時間的複數第一事件實際值,調整各該連結權重,使得該等第一事件計算值與該等第一事件實際值誤差在一定範圍內,該第一事件實際值為該第一時間內對應該第一事件計算值在該預設空間的事件實際值,該第一事件實際值包括一跌倒實際值以及一無跌倒實際值。The automatic encoder-like neural network (121) adjusts each of the connection weights according to the first event calculation value and the first first event actual value of the first time, so that the first event calculation value and the first The actual value of the event is within a certain range, and the actual value of the first event is the actual value of the event corresponding to the calculated value of the first event in the preset space in the first time, and the actual value of the first event includes a fall actual value. And the actual value of no fall.

在本發明之一較佳實施例中,該第一事件實際值之該跌倒實際值為1,以及該無跌倒實際值為0,代表發生跌倒事件,在本發明之另一較佳實施例中,該第一事件實際值之該跌倒實際值為0,以及該無跌倒實際值為1,代表未發生跌倒事件。In a preferred embodiment of the present invention, the actual value of the fall of the first event actual value is 1, and the actual value of the no fall is 0, indicating that a fall event occurs, in another preferred embodiment of the present invention. The actual value of the fall of the first event is 0, and the actual value of the no fall is 1, indicating that no fall event occurred.

該自動編碼器類神經網路(121)根據該第二導出資料以及調整後之各該連結權重,計算出一第二事件計算值,該第二事件計算值包括一跌倒機率值與一無跌倒機率值,利用該跌倒機率值與該無跌倒機率值判斷該第二時間內在該預設空間是否發生跌倒事件。The automatic encoder-like neural network (121) calculates a second event calculation value according to the second derived data and the adjusted connection weights, and the second event calculation value includes a fall probability value and a fall-free value. The probability value is used to determine whether a fall event occurs in the preset space in the second time by using the fall probability value and the no fall probability value.

在本發明之一較佳實施例中,該第二事件計算值之該跌倒機率值大於該無跌倒機率值,代表判斷該第二時間內在該預設空間發生跌倒事件,在本發明之另一較佳實施例中,該第二事件計算值之該跌倒機率值小於該無跌倒機率值,代表判斷該第二時間內在該預設空間未發生跌倒事件。In a preferred embodiment of the present invention, the fall probability value of the second event calculation value is greater than the no-fall probability value, and it is determined that the fall event occurs in the preset space in the second time, in another In a preferred embodiment, the fall probability value of the second event calculation value is less than the no-fall probability value, and it is determined that the fall event does not occur in the preset space in the second time.

在本發明之一較佳實施例中,該發射器(10)為WiFi分享器。該接收器(11)為可接收WiFi訊號的無線設備,包括如樹莓派(Raspberry Pi)等單晶片系統。In a preferred embodiment of the invention, the transmitter (10) is a WiFi sharer. The receiver (11) is a wireless device that can receive WiFi signals, including a single-chip system such as a Raspberry Pi.

在本發明之另一較佳實施例中,該第一導出資料包括平均值、標準差、瞬間頻率以及瞬間相位,該第二導出資料包括平均值、標準差、瞬間頻率以及瞬間相位。In another preferred embodiment of the present invention, the first derived data includes an average value, a standard deviation, an instantaneous frequency, and an instantaneous phase, and the second derived data includes an average value, a standard deviation, an instantaneous frequency, and an instantaneous phase.

在本發明之又一較佳實施例中,該屬性萃取單元(120)使用經驗模態分解(Empirical Mode Decomposition, EMD)將該訊號強度指標序列分解成複數個本質模態函數(Instrinsic Mode Function,IMF),並利用希爾伯特-黃轉換(Hilbert-Huang Transform)計算出該複數個本質模態函數的瞬間頻率以及瞬間相位,進而得到該第一導出資料及該第二導出資料之瞬間頻率以及瞬間相位。In another preferred embodiment of the present invention, the attribute extraction unit (120) uses an Empirical Mode Decomposition (EMD) to decompose the signal strength indicator sequence into a plurality of Intrinsic Mode Functions (Instrinsic Mode Function, IMF), and using Hilbert-Huang Transform to calculate the instantaneous frequency and instantaneous phase of the complex essential mode function, and then obtain the instantaneous frequency of the first derived data and the second derived data. And the instantaneous phase.

請一併參考圖3所示,本發明之居家空間跌倒偵測方法(3),包括步驟:Please refer to FIG. 3 together, the home space fall detection method (3) of the present invention includes the following steps:

步驟300:提供一發射器(10)、一接收器(11)以及一資訊處理器(12),該發射器(10)設置於一預設空間,該接收器(11)設置於該預設空間,該資訊處理器(12)與該接收器(11)電訊連接,且該資訊處理器(12)包括一屬性萃取單元(120)以及一自動編碼器類神經網路(121),該自動編碼器類神經網路(121)與該屬性萃取單元(120)電訊連接,該自動編碼器類神經網路(121)包括複數去雜自動編碼器類神經網路層及一分類類神經網路層,各該去雜自動編碼器類神經網路層包括複數神經元(1210),各該神經元(1210)與前一層以及下一層之神經元(1210)連結,同層神經元(1210)之間不連結,且各該神經元(1210)之連結各具有一連結權重(W)。Step 300: providing a transmitter (10), a receiver (11), and an information processor (12), the transmitter (10) is disposed in a preset space, and the receiver (11) is set in the preset Space, the information processor (12) is telecommunicationally connected to the receiver (11), and the information processor (12) includes an attribute extraction unit (120) and an automatic encoder-like neural network (121), the automatic The encoder-like neural network (121) is telecommunicationally connected to the attribute extraction unit (120), and the automatic encoder-like neural network (121) includes a complex de-noising automatic encoder-like neural network layer and a classification-like neural network. The layer, each of the de-encoded autoencoder-like neural network layers includes a plurality of neurons (1210), each of which is connected to the neurons of the previous layer and the next layer (1210), and the neurons of the same layer (1210) There is no connection between them, and each of the neurons (1210) has a connection weight (W).

步驟301:該發射器(10)發射複數無線網路封包(2),各該無線網路封包(2)包括一訊號強度指標資訊。Step 301: The transmitter (10) transmits a plurality of wireless network packets (2), and each of the wireless network packets (2) includes a signal strength indicator information.

步驟302:該接收器(11)接收各該無線網路封包(2)。Step 302: The receiver (11) receives each of the wireless network packets (2).

步驟303:提供一測試者在一第一時間內在該預設空間發生複數個跌倒事件及複數個無跌倒事件,該接收器(11)在該第一時間將複數個該無線網路封包(2)傳送至該資訊處理器(12)。Step 303: Providing a tester to generate a plurality of fall events and a plurality of no fall events in the preset space in a first time, and the receiver (11) encapsulates the plurality of wireless network packets at the first time (2) Transfer to the information processor (12).

步驟304:該屬性萃取單元(120)計算出該第一時間的該訊號強度指標序列的複數第一導出資料。Step 304: The attribute extraction unit (120) calculates a plurality of first derived data of the signal strength indicator sequence of the first time.

步驟305:該自動編碼器類神經網路(121)根據該等第一導出資料以及各該連結權重,計算出複數第一事件計算值,該第一事件計算值包括該第一時間內在該預設空間的一跌倒機率值以及一無跌倒機率值。Step 305: The auto-encoder-like neural network (121) calculates a complex first event calculation value according to the first derivation data and each of the connection weights, where the first event calculation value includes the pre-time in the first time Set a fall probability value for the space and a drop-free probability value.

步驟306:該自動編碼器類神經網路(121)根據該等第一事件計算值與該第一時間的複數第一事件實際值,調整各該連結權重,該第一事件實際值為該第一時間內對應該第一事件計算值在該預設空間的事件實際值,該第一事件實際值包括一跌倒實際值以及一無跌倒實際值。Step 306: The auto-encoder-like neural network (121) adjusts each of the connection weights according to the first event calculation value and the first-time complex first event actual value, and the first event actual value is the first The actual value of the event in the preset space is calculated corresponding to the first event in a time, and the actual value of the first event includes a fall actual value and a fall-free actual value.

步驟307:判斷該等第一事件計算值及該等第一事件實際值之一差值是否在一誤差百分比內,若該差值在該誤差百分比內,則執行下一步驟,若該差值在該誤差百分比外,則執行該步驟305至該步驟306。Step 307: Determine whether the difference between the first event calculation value and the actual value of the first event is within an error percentage. If the difference is within the error percentage, perform the next step, if the difference In addition to the error percentage, step 305 to step 306 are performed.

步驟308:該接收器(11)在一第二時間將複數個該無線網路封包(2)傳送至該資訊處理器(12)。Step 308: The receiver (11) transmits a plurality of the wireless network packets (2) to the information processor (12) at a second time.

步驟309:該屬性萃取單元(120)計算出該第二時間的該訊號強度指標序列的一第二導出資料。Step 309: The attribute extraction unit (120) calculates a second derived data of the signal strength indicator sequence of the second time.

步驟310:該自動編碼器類神經網路(121)根據該第二導出資料以及調整後之各該連結權重,計算出一第二事件計算值,該第二事件計算值包括一跌倒機率值與一無跌倒機率值,利用該跌倒機率值與該無跌倒機率值判斷該第二時間內在該預設空間是否發生跌倒事件。Step 310: The auto-encoder-like neural network (121) calculates a second event calculation value according to the second derivation data and each of the adjusted connection weights, where the second event calculation value includes a fall probability value and A fall-free probability value is used to determine whether a fall event occurs in the preset space in the second time by using the fall probability value and the no-fall probability value.

在本發明之一較佳實施例中,該步驟300中的該發射器(10)為WiFi分享器。該步驟300中的該接收器(11)為可接收WiFi訊號的無線設備,包括如樹莓派(Raspberry Pi)等單晶片系統。In a preferred embodiment of the present invention, the transmitter (10) in the step 300 is a WiFi sharer. The receiver (11) in this step 300 is a wireless device that can receive WiFi signals, including a single-chip system such as a Raspberry Pi.

在本發明之另一較佳實施例中,該步驟304中的該第一導出資料包括平均值、標準差、瞬間頻率以及瞬間相位,該步驟309中的該第二導出資料包括平均值、標準差、瞬間頻率以及瞬間相位。In another preferred embodiment of the present invention, the first derived data in the step 304 includes an average value, a standard deviation, an instantaneous frequency, and an instantaneous phase. The second derived data in the step 309 includes an average value and a standard. Difference, instantaneous frequency and instantaneous phase.

在本發明之又一較佳實施例中,該屬性萃取單元(120)使用經驗模態分解(Empirical Mode Decomposition, EMD)將該訊號強度指標序列分解成複數個本質模態函數(Instrinsic Mode Function,IMF),並利用希爾伯特-黃轉換(Hilbert-Huang Transform)計算出該複數個本質模態函數的瞬間頻率以及瞬間相位,進而得到該第一導出資料及該第二導出資料之瞬間頻率以及瞬間相位。In another preferred embodiment of the present invention, the attribute extraction unit (120) uses an Empirical Mode Decomposition (EMD) to decompose the signal strength indicator sequence into a plurality of Intrinsic Mode Functions (Instrinsic Mode Function, IMF), and using Hilbert-Huang Transform to calculate the instantaneous frequency and instantaneous phase of the complex essential mode function, and then obtain the instantaneous frequency of the first derived data and the second derived data. And the instantaneous phase.

本發明是利用無線網路環境受到居家空間因跌倒事件影響產生之訊號強度指標瞬間變化特徵為屬性,輔以機器學習演算法訓練一個跌倒偵測模式。The invention utilizes a wireless network environment to be characterized by an instantaneous change characteristic of a signal strength indicator caused by a fall event in a home space, and is supplemented by a machine learning algorithm to train a fall detection mode.

為了使偵測範圍擴大,該發射器(10)與該接收器(11)可安裝在該預設空間對角的位置;若單一該接收器(11)不能涵蓋整個該預設空間,可安裝第二或第三個該接收器(11),所有該接收器(11)都接收該發射器(10)的各該無線網路封包(2)。該發射器(10)發送的各該無線網路封包(2)被該接收器(11)接收後都可計算該無線網路封包(2)的訊號強度指標資訊,然而,跌倒動作是一個時間上連續的事件,不能使用單一無線網路封包(2)之訊號強度指標資訊來判斷,因此,該接收器(11)必須接收一段連續的訊號強度指標序列之後再做分析。In order to expand the detection range, the transmitter (10) and the receiver (11) can be installed at a diagonal position of the preset space; if the single receiver (11) cannot cover the entire preset space, it can be installed. The second or third receiver (11), all of the receivers (11) receive the respective wireless network packets (2) of the transmitter (10). The wireless network packet (2) sent by the transmitter (10) can be calculated by the receiver (11) to calculate the signal strength indicator information of the wireless network packet (2), however, the fall action is a time The consecutive events cannot be judged by the signal strength indicator information of the single wireless network packet (2). Therefore, the receiver (11) must receive a continuous sequence of signal strength indicators before analyzing.

該屬性萃取單元(120)從收到的一連續訊號強度指標序列萃取包含平均值、標準差及由希爾伯特-黃轉換計算的波動振幅與相位特徵。最後則是利用已訓練的該自動編碼器類神經網路(121)依據所收集之訊號強度指標瞬間變化特徵做跌倒事件判斷。The attribute extraction unit (120) extracts the fluctuation amplitude and phase characteristics calculated from the Hilbert-Yellow transformation from the received sequence of continuous signal strength indicators. Finally, the trained automatic encoder-like neural network (121) is used to make a fall event judgment based on the instantaneous change characteristics of the collected signal strength indicators.

希爾伯特-黃轉換計算包括兩個步驟:The Hilbert-Yellow conversion calculation consists of two steps:

(1)經驗模態分解(Empirical Mode Decomposition,EMD)將訊號強度指標資訊序列分解成本質模態函數(Intrinsic Mode Function,IMF)之和;以及(1) Empirical Mode Decomposition (EMD) decomposes the signal strength indicator information sequence into the sum of the Intrinsic Mode Function (IMF);

(2)使用希爾伯特-黃轉換計算每個本質模態函數的瞬間振幅與相位。(2) Calculate the instantaneous amplitude and phase of each essential mode function using a Hilbert-Huang transform.

假設該接收器(11)接收一訊號強度指標序列x 1, x 2, …, x n, x n=x(t n), n=1,2,...,N, t n為時間序列,經驗模態分解將訊號強度指標序列分解成複數個本質模態函數及一個殘差函數之和。 Suppose the receiver (11) receives a sequence of signal strength indicators x 1 , x 2 , ..., x n , x n = x(t n ), n = 1, 2, ..., N, t n is a time series The empirical mode decomposition decomposes the signal strength indicator sequence into a sum of a plurality of essential modal functions and a residual function.

如方程式(1)所示,c j(t)為第j個本質模態函數,殘差函數r(t)是一個波動特徵非常簡單的函數。 As shown in equation (1), c j (t) is the jth intrinsic mode function, and the residual function r(t) is a very simple function of the wave characteristic.

Figure TWI612828BD00001
(1)
Figure TWI612828BD00001
(1)

所謂的本質模態函數是指一個在所考慮的時間範圍內,區域極值(local extremes)的個數與零值(zero crossings)的個數相同或差1,且區域極大值所形成的上包絡線(Envelope)與區域極小值所形成的下包絡線之平均值為0。經驗模態分解取得本質模態函數的方法是由已廣為人知的過濾(sifting)步驟所達成。足標越小的本質模態函數抓取了原始序列中波動較為快速的特徵,足標越大則抓取波動較為緩慢的特徵。之後,可以對每個本質模態函數使用方程式(2)的希爾伯特-黃轉換。The so-called intrinsic mode function means that the number of local extremes is the same as or different from the number of zero crossings in the time range considered, and the regional maximum is formed. The average of the lower envelope formed by the envelope and the region minima is zero. The empirical mode decomposition method for obtaining the intrinsic mode function is achieved by the well-known sifting step. The intrinsic modal function with smaller foot size captures the characteristics of the volatility in the original sequence, and the larger the foot, the more slowly volatility. The Hilbert-Yellow transformation of equation (2) can then be used for each essential mode function.

Figure TWI612828BD00002
(2)
Figure TWI612828BD00002
(2)

合併本質模態函數與其希爾伯特-黃轉換可得一解析函數,因此可表示成瞬間振幅a j(t)(instantaneous amplitude)以及瞬間相位ψ j(t)(instantaneous phase),如方程式(3)所示: The combined intrinsic mode function and its Hilbert-yellow conversion can obtain an analytic function, so it can be expressed as instantaneous amplitude a j (t) (instantaneous amplitude) and instantaneous phase ψ j (t) (instantaneous phase), such as equation ( 3) shown:

Figure TWI612828BD00003
(3)
Figure TWI612828BD00003
(3)

其中

Figure TWI612828BD00004
,瞬間頻率則定義為瞬間相位的微分
Figure TWI612828BD00005
。 among them
Figure TWI612828BD00004
Instantaneous frequency is defined as the differentiation of instantaneous phase
Figure TWI612828BD00005
.

每一個本質模態函數可產生一個瞬間振幅序列a j(t n), n=1,…,N以及一個瞬間相位序列ψ j(t n), n=1,2,...,N。 Each intrinsic mode function produces a sequence of instantaneous amplitudes a j (t n ), n = 1, ..., N and an instantaneous phase sequence ψ j (t n ), n = 1, 2, ..., N.

假設該發射器(10)以0.1 kHz的速度發送封包,則1秒可產生長度為N=100的訊號強度指標序列。這樣一個訊號強度指標序列可產生log 2(N) – 1 ≒ 6個本質模態函數,因此,希爾伯特-黃轉換萃取的訊號強度指標序列波動特徵共有600個瞬間振幅a j(t n),n=1,...,100, j=1,..., 6以及600個瞬間相位ψ j(t n), n=1,2,...,100, j=1,2,...,6。 Assuming that the transmitter (10) transmits the packet at a rate of 0.1 kHz, a sequence of signal strength indices of length N = 100 can be generated in one second. Such a signal strength indicator sequence can generate log 2 (N) – 1 ≒ 6 intrinsic mode functions. Therefore, the Hilbert-Yellow transform extracts the signal strength index sequence fluctuation feature with a total of 600 instantaneous amplitudes a j (t n ), n=1,...,100, j=1,...,6 and 600 instantaneous phases ψ j (t n ), n=1,2,...,100, j=1,2 ,...,6.

由式(3)得知這1200個數據完全描述了原始訊號強度指標序列的波動特徵,因此,萃取的訊號強度指標瞬間變化特徵共有1202個維度:It is known from equation (3) that the 1200 data completely describe the fluctuation characteristics of the original signal strength index sequence. Therefore, the instantaneous variation characteristics of the extracted signal strength indicators have a total of 1202 dimensions:

(µ, σ, a 1(t 1)),…,a 6(t 100),ψ 1(t 1),…, ψ 6(t 100))。 (μ, σ, a 1 (t 1 )), ..., a 6 (t 100 ), ψ 1 (t 1 ), ..., ψ 6 (t 100 )).

其中µ是訊號強度指標序列的平均數、σ是標準差。面對這麼高維度的屬性,必須使用特殊的機器學習演算法來學習屬性與跌倒事件之間的關係。Where μ is the average of the sequence of signal strength indicators and σ is the standard deviation. Faced with such high-dimensional attributes, special machine learning algorithms must be used to learn the relationship between attributes and fall events.

請參考圖2所示,該自動編碼器類神經網路(121)處理這種高維度資料對應關係的學習頗有成效,本發明使用該自動編碼器類神經網路(121)內部的堆疊去雜自動編碼器(Stacked Denoising Autoencoder,SdA)預處理高維度資料,輔以上層習知的分類類神經網路建立該訊號強度指標瞬間變動特徵與跌倒事件之間的對應關係。堆疊去雜自動編碼器是一個多層自動編碼器疊在一起的非監督式學習機制。如圖2所示為一個去雜自動編碼器,該編碼器第一層是輸入層(I),輸入值為上面1202維度的該訊號強度指標瞬間變動特徵,其上一層是隱藏的編碼層(H),隱藏層(H)的該神經元(1210)個數可以適度的從輸入層(I)之該神經元(1210)個數下降,最上面一層則是解碼的輸出層(O),自動編碼器的目的為使用對稱且經訓練的連結權重(W),使得輸出層(O)越能複製輸入層(I)的值越好。在訓練連結權重(W)時,可以導入部分的雜訊到輸入層(I)的資料,來達到去雜自動編碼器的目的。Referring to FIG. 2, the automatic encoder-like neural network (121) is effective in processing the correspondence of such high-dimensional data. The present invention uses the internal stacking of the automatic encoder-like neural network (121). The Stacked Denoising Autoencoder (SdA) preprocesses the high-dimensional data, and the classification neural network of the above-mentioned layer is used to establish the correspondence between the instantaneous variation characteristics of the signal strength indicator and the fall event. The stacked de-duplication autoencoder is an unsupervised learning mechanism in which multi-layer auto-encoders are stacked together. As shown in FIG. 2, a de-internal automatic encoder is used. The first layer of the encoder is an input layer (I), and the input value is an instantaneous variation characteristic of the signal strength indicator in the above 1202 dimension, and the upper layer is a hidden coding layer ( H), the number of neurons (1210) of the hidden layer (H) may be moderately decreased from the number of neurons (1210) of the input layer (I), and the uppermost layer is the decoded output layer (O), The purpose of the autoencoder is to use symmetric and trained link weights (W) so that the more the output layer (O) can replicate the value of the input layer (I). When training the link weight (W), part of the noise can be imported to the input layer (I) to achieve the purpose of the de-embedded auto-encoder.

去雜自動編碼器可以多個疊在一起,形成堆疊去雜自動編碼器,以達到萃取原始輸入資料之不同層次摘要特徵的目的,堆疊去雜自動編碼器在訓練時採用分層處理的方式,避免傳統多層次類神經網路訓練的困難點。也就是說,第一個自動編碼器先訓練好之後,將其隱藏層(H)的計算結果當作輸入,訓練第二個去雜自動編碼器,如此重複進行可得到一個堆疊去雜自動編碼器,最後在其上加上一個習知的分類類神經網路做類別(即跌倒事件)判斷。當這樣的深度神經網路做訓練學習時,其下幾層的自動編碼器之初始連結權重(W)可以設定為先前已各自訓練的自動編碼器之權重,如此可達到更快速收斂與一般化效果更佳的類神經網路。The de-duplication auto-encoder can be stacked together to form a stacked de-duplication auto-encoder to achieve the purpose of extracting different levels of abstract features of the original input data, and the stacked de-duplication auto-encoder adopts a layered processing method during training. Avoid the difficulties of traditional multi-level neural network training. That is to say, after the first automatic encoder is trained, the calculation result of the hidden layer (H) is taken as an input, and the second de-duplication automatic encoder is trained, so that a stacking and de-duplication automatic coding can be obtained. Finally, a conventional classification-like neural network is added to it to make a category (ie, a fall event) judgment. When such a deep neural network is used for training learning, the initial link weight (W) of the next few layers of the automatic encoder can be set to the weight of the previously trained auto-encoder, so that faster convergence and generalization can be achieved. A more effective neural network.

無線網路訊號在受到含有70%水分的人體干擾時會產生變動,跌倒事件形成快速的空間環境變化,干擾無線訊號傳遞的程度更是劇烈。因此,若能以電波接收訊號強度指標(Received Signal Strength Indicator, RSSI)為基礎,試著去建立跌倒事件與訊號強度指標變化之間的模式,則可依據此模式去做後續的自動跌倒偵測,使用此技術必須先克服跌倒事件導致訊號強度指標瞬間變化的特徵萃取問題。The wireless network signal will change when it is disturbed by the human body containing 70% of water. The fall event will form a rapid spatial environment change, and the degree of interference with wireless signal transmission will be more severe. Therefore, if you can try to establish the mode between the fall event and the change of the signal strength indicator based on the Received Signal Strength Indicator (RSI), you can follow the mode to do the subsequent automatic fall detection. The use of this technique must first overcome the feature extraction problem that causes the signal strength indicator to change instantaneously due to a fall event.

無線網路訊號在空間中採用多路徑方式傳遞,即使沒有任何的人員或物體移動,訊號強度指標也不是完全靜止不變的,它會隨著時間進行小範圍的波動變化。一旦有人員移動,尤其是跌倒等瞬間的環境變化,接收器所收到的訊號強度指標會產生更強烈的變化。據此,利用訊號強度指標瞬間變化的特徵來反推人員移動事件,將可達到自動化偵測跌倒事件的目的。The wireless network signal is transmitted in multi-path mode in space. Even if there is no person or object moving, the signal strength index is not completely static, and it will change in a small range with time. Once there is a person moving, especially an environmental change such as a fall, the signal strength indicator received by the receiver will produce a more intense change. Accordingly, by using the characteristics of the instantaneous change of the signal strength indicator to reverse the personnel movement event, the purpose of automatically detecting the fall event can be achieved.

基於訊號強度指標變化的人員移動偵測技術,現今大多是以序列的平均值與標準差為事件推論的依據,然而這兩個屬性並不能充分描述訊號強度指標序列的波動特徵,例如,任意調整序列的元素順序並不會改變其平均值與標準差,但卻可改變其波動現象。因此,本發明使用希爾伯特-黃轉換萃取訊號強度指標序列波動特徵,以彌補平均值與標準差之不足。希爾伯特-黃是分析時間序列的重要工具之一,具有資料適性化的特質,可分析非穩態、非線性的時間序列,且能做到時間-頻率-振幅的三維度精緻分析。The motion detection technology based on the change of signal strength index is mostly based on the average and standard deviation of the sequence. However, these two attributes cannot fully describe the fluctuation characteristics of the signal strength indicator sequence, for example, any adjustment. The order of the elements of the sequence does not change its mean and standard deviation, but it can change its fluctuations. Therefore, the present invention uses the Hilbert-Huang transform to extract the fluctuation characteristics of the signal intensity index sequence to compensate for the lack of the mean and standard deviation. Hilbert-Huang is one of the important tools for analyzing time series. It has the characteristics of data adaptability, can analyze non-steady-state, non-linear time series, and can perform time-frequency-amplitude three-dimensional refined analysis.

藉由上述之結構,本發明使用訊號強度指標資訊做跌倒偵測工作,不但不需要使用者攜帶任何特殊設備,亦未對使用者進行影像追蹤,而具有便利性以及兼顧隱私之優點。再者,其結構型態並非所屬技術領域中之人士所能輕易思及而達成者,實具有新穎性以及進步性無疑。With the above structure, the present invention uses the signal strength indicator information to perform the fall detection work, which not only does not require the user to carry any special equipment, nor does it perform image tracking on the user, but has the advantages of convenience and privacy. Moreover, its structural form is not easily reached by those skilled in the art, and it is novel and progressive.

透過上述之詳細說明,即可充分顯示本發明之目的及功效上均具有實施之進步性,極具產業之利用性價值,且為目前市面上前所未見之新發明,完全符合發明專利要件,爰依法提出申請。唯以上所述著僅為本發明之較佳實施例而已,當不能用以限定本發明所實施之範圍。即凡依本發明專利範圍所作之均等變化與修飾,皆應屬於本發明專利涵蓋之範圍內,謹請 貴審查委員明鑑,並祈惠准,是所至禱。Through the above detailed description, it can fully demonstrate that the object and effect of the present invention are both progressive in implementation, highly industrially usable, and are new inventions not previously seen on the market, and fully comply with the invention patent requirements. , 提出 apply in accordance with the law. The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the invention. All changes and modifications made in accordance with the scope of the invention shall fall within the scope covered by the patent of the invention. I would like to ask your review committee to give a clear explanation and pray for it.

(1)‧‧‧居家空間跌倒偵測系統
(10)‧‧‧發射器
(11)‧‧‧接收器
(12)‧‧‧資訊處理器
(120)‧‧‧屬性萃取單元
(121)‧‧‧自動編碼器類神經網路
(1210)‧‧‧神經元
(2)‧‧‧無線網路封包
(3)‧‧‧居家空間跌倒偵測方法
(W)‧‧‧連結權重
(I)‧‧‧輸入層
(O)‧‧‧輸出層
(H)‧‧‧隱藏層
步驟300~步驟318
(1) ‧‧‧Home Space Fall Detection System
(10)‧‧‧transmitters
(11)‧‧‧ Receiver
(12)‧‧‧Information Processor
(120)‧‧‧Attribute extraction unit
(121)‧‧‧Automatic encoder-like neural networks
(1210) ‧‧‧ neurons
(2) ‧‧‧Wireless network packets
(3) ‧ ‧ home space fall detection method
(W) ‧ ‧ link weights
(I) ‧‧‧Input layer
(O)‧‧‧ Output layer
(H)‧‧‧Hidden Layer Steps 300~Step 318

圖1係本發明之居家空間跌倒偵測系統之示意圖; 圖2係本發明之自動編碼器類神經網路之示意圖;以及 圖3係本發明之居家空間跌倒偵測方法之方法流程圖。1 is a schematic diagram of a home space fall detection system of the present invention; FIG. 2 is a schematic diagram of an automatic encoder-like neural network of the present invention; and FIG. 3 is a flow chart of a method for detecting a home space fall detection according to the present invention.

(1)‧‧‧居家空間跌倒偵測系統 (1) ‧‧‧Home Space Fall Detection System

(10)‧‧‧發射器 (10)‧‧‧transmitters

(11)‧‧‧接收器 (11)‧‧‧ Receiver

(12)‧‧‧資訊處理器 (12)‧‧‧Information Processor

(120)‧‧‧屬性萃取單元 (120)‧‧‧Attribute extraction unit

(121)‧‧‧自動編碼器類神經網路 (121)‧‧‧Automatic encoder-like neural networks

(2)‧‧‧無線網路封包 (2) ‧‧‧Wireless network packets

Claims (8)

一種居家空間跌倒偵測系統,包括: 一發射器,設置於一預設空間,該發射器發射複數無線網路封包,各該無線網路封包包括一訊號強度指標資訊; 一接收器,設置於該預設空間,接收各該無線網路封包;以及 一資訊處理器,與該接收器電訊連接,該資訊處理器包括一屬性萃取單元以及一自動編碼器類神經網路,該自動編碼器類神經網路包括複數去雜自動編碼器類神經網路層及一分類類神經網路層,各該去雜自動編碼器類神經網路層包括複數神經元,各該神經元與前一層以及下一層之神經元連結,同層神經元之間不連結,且各該神經元之連結各具有一連結權重; 其中,該接收器在一第一時間將複數個該無線網路封包傳送至該資訊處理器,該第一時間內一測試者在該預設空間發生複數個跌倒事件與複數個無跌倒事件,該接收器在一第二時間將複數個該無線網路封包傳送至該資訊處理器; 該屬性萃取單元計算出該第一時間的該訊號強度指標序列的複數第一導出資料,該屬性萃取單元計算出該第二時間的該訊號強度指標序列的一第二導出資料; 該自動編碼器類神經網路根據該等第一導出資料以及各該連結權重,計算出複數第一事件計算值,該第一事件計算值包括該第一時間內在該預設空間的一跌倒機率值以及一無跌倒機率值,該自動編碼器類神經網路根據該等第一事件計算值與該第一時間的複數第一事件實際值調整各該聯結權重,使得該等第一事件計算值與該等第一事件實際值在一定誤差範圍內,該第一事件實際值為該第一時間內對應該第一事件計算值在該預設空間的事件實際值,該第一事件實際值包括一跌倒實際值以及一無跌倒實際值,該自動編碼器類神經網路根據該第二導出資料以及調整後之各該連結權重,計算出一第二事件計算值,該第二事件計算值包括一跌倒機率值與一無跌倒機率值,利用該跌倒機率值與該無跌倒機率值判斷該第二時間內在該預設空間是否發生跌倒事件。A home space fall detection system includes: a transmitter disposed in a predetermined space, the transmitter transmitting a plurality of wireless network packets, each of the wireless network packets including a signal strength indicator information; a receiver disposed on the The preset space receives each of the wireless network packets; and an information processor is electrically connected to the receiver, the information processor includes an attribute extraction unit and an automatic encoder-like neural network, the automatic encoder class The neural network includes a complex de-encoded automatic encoder-like neural network layer and a classification-like neural network layer, each of the de-encoded automatic encoder-like neural network layers including a plurality of neurons, each of the neurons and the previous layer and the lower a layer of neurons is connected, the same layer of neurons are not connected, and each of the neurons has a link weight; wherein the receiver transmits a plurality of the wireless network packets to the information at a first time a processor, in the first time, a tester generates a plurality of fall events and a plurality of no fall events in the preset space, and the receiver will plural in a second time Transmitting the wireless network packet to the information processor; the attribute extracting unit calculates a plurality of first derived data of the signal strength indicator sequence at the first time, and the attribute extracting unit calculates the signal strength of the second time a second derived data of the indicator sequence; the automatic encoder-like neural network calculates a complex first event calculation value according to the first derived data and each of the connection weights, and the first event calculation value includes the first time Incorporating a fall probability value and a fall-free probability value of the preset space, the auto-encoder-like neural network adjusts each of the association weights according to the first event calculation value and the first-time complex first event actual value of the first time So that the first event calculation value and the first event actual value are within a certain error range, and the first event actual value is the event corresponding to the first event calculation value in the preset space in the first time. a value, the first event actual value includes a fall actual value and a no fall actual value, and the automatic encoder-like neural network is based on the second derived data and Calculating a second event calculation value, the second event calculation value includes a fall probability value and a no-fall probability value, and determining the second by using the fall probability value and the no-fall probability value Whether a fall event occurs in the preset space during the time. 如申請專利範圍第1項所述之居家空間跌倒偵測系統,其中該發射器為為可接收WiFi訊號的無線設備。The home space fall detection system of claim 1, wherein the transmitter is a wireless device capable of receiving a WiFi signal. 如申請專利範圍第1項所述之居家空間跌倒偵測系統,其中該第一導出資料包括平均值、標準差、瞬間頻率以及瞬間相位,該第二導出資料包括平均值、標準差、瞬間頻率以及瞬間相位。The home space fall detection system according to claim 1, wherein the first derived data includes an average value, a standard deviation, an instantaneous frequency, and an instantaneous phase, and the second derived data includes an average value, a standard deviation, and an instantaneous frequency. And the instantaneous phase. 如申請專利範圍第3項所述之居家空間跌倒偵測系統,其中該屬性萃取單元使用經驗模態分解(Empirical Mode Decomposition, EMD)將該訊號強度指標序列分解成複數個本質模態函數(Instrinsic Mode Function,IMF),並利用希爾伯特-黃轉換(Hilbert-Huang Transform)計算出該複數個本質模態函數的瞬間頻率以及瞬間相位,進而得到該第一導出資料及該第二導出資料之瞬間頻率以及瞬間相位。For example, the home space fall detection system described in claim 3, wherein the attribute extraction unit uses the Empirical Mode Decomposition (EMD) to decompose the signal strength index sequence into a plurality of essential mode functions (Instrinsic Mode Function (IMF), and using the Hilbert-Huang Transform to calculate the instantaneous frequency and instantaneous phase of the complex modal function, and then obtain the first derived data and the second derived data. Instantaneous frequency and instantaneous phase. 一種居家空間跌倒偵測方法,包括步驟: 步驟A:提供一發射器、一接收器以及一資訊處理器,該發射器設置於一預設空間,該接收器設置於該預設空間,該資訊處理器與該接收器電訊連接,且該資訊處理器包括一屬性萃取單元以及一自動編碼器類神經網路,該自動編碼器類神經網路與該屬性萃取單元電訊連接,該自動編碼器類神經網路包括複數去雜自動編碼器類神經網路層及一分類類神經網路層,各該去雜自動編碼器類神經網路層包括複數神經元,各該神經元與前一層以及下一層之神經元連結,同層神經元之間不連結,且各該神經元之連結各具有一連結權重; 步驟B:該發射器發射複數無線網路封包,各該無線網路封包包括一訊號強度指標資訊; 步驟C:該接收器接收各該無線網路封包; 步驟D:提供一測試者在一第一時間內在該預設空間發生複數個跌倒事件及複數個無跌倒事件,該接收器在該第一時間將複數個該無線網路封包傳送至該資訊處理器; 步驟E:該屬性萃取單元計算出該第一時間的該訊號強度指標序列的複數第一導出資料; 步驟F:該自動編碼器類神經網路根據該等第一導出資料以及各該連結權重,計算出複數第一事件計算值,該第一事件計算值包括該第一時間內在該預設空間的一跌倒機率值以及一無跌倒機率值; 步驟G:該自動編碼器類神經網路根據該等第一事件計算值與該第一時間的複數第一事件實際值調整各該聯結權重,該第一事件實際值為該第一時間內對應該第一事件計算值在該預設空間的事件實際值,該第一事件實際值包括一跌倒實際值以及一無跌倒實際值; 步驟H:判斷該等第一事件計算值及該等第一事件實際值之一差值是否在一誤差百分比內,若該差值在該誤差百分比內,則執行下一步驟,若該差值在該誤差百分比外,則執行該步驟F至該步驟G; 步驟I:該接收器在一第二時間將複數個該無線網路封包傳送至該資訊處理器; 步驟J:該屬性萃取單元計算出該第二時間的該訊號強度指標序列的一第二導出資料;以及 步驟K:該自動編碼器類神經網路根據該第二導出資料以及調整後之各該連結權重,計算出一第二事件計算值,該第二事件計算值包括一跌倒機率值與一無跌倒機率值,利用該跌倒機率值與該無跌倒機率值判斷該第二時間內在該預設空間是否發生跌倒事件。A home space fall detection method includes the following steps: Step A: providing a transmitter, a receiver, and an information processor, the transmitter is disposed in a preset space, and the receiver is disposed in the preset space, the information is The processor is in telecommunication connection with the receiver, and the information processor includes an attribute extraction unit and an automatic encoder-like neural network, and the automatic encoder-like neural network is connected to the attribute extraction unit by a telecommunication device. The neural network includes a complex de-encoded automatic encoder-like neural network layer and a classification-like neural network layer, each of the de-encoded automatic encoder-like neural network layers including a plurality of neurons, each of the neurons and the previous layer and the lower One layer of neurons is connected, the same layer of neurons are not connected, and each of the neurons has a link weight; Step B: The transmitter transmits a plurality of wireless network packets, each of the wireless network packets including a signal Strength indicator information; Step C: The receiver receives each of the wireless network packets; Step D: provides a tester in the first time in the first Setting a plurality of fall events and a plurality of no fall events in the space, the receiver transmits a plurality of the wireless network packets to the information processor at the first time; Step E: the attribute extracting unit calculates the first time a plurality of first derived data of the signal strength indicator sequence; Step F: the automatic encoder-like neural network calculates a complex first event calculation value according to the first derived data and each of the connection weights, the first event The calculated value includes a fall probability value and a no fall probability value in the preset space in the first time period; Step G: the automatic encoder-like neural network calculates the value according to the first event and the plural number of the first time The first event actual value adjusts each of the connection weights, and the first event actual value is an event actual value corresponding to the first event calculation value in the preset space in the first time, and the first event actual value includes a fall actual Value and a no fall actual value; Step H: determining whether the difference between the first event calculated value and the actual value of the first events is an error Within the fractional ratio, if the difference is within the error percentage, the next step is performed, and if the difference is outside the error percentage, then the step F is performed to the step G; Step I: the receiver is in the second Transmitting a plurality of the wireless network packets to the information processor; Step J: the attribute extraction unit calculates a second derived data of the signal strength indicator sequence at the second time; and step K: the automatic encoder The neural network calculates a second event calculation value according to the second derived data and the adjusted connection weights, and the second event calculation value includes a fall probability value and a no fall rate value, and the fall probability is utilized. The value and the no-fall probability value determine whether a fall event occurs in the preset space during the second time. 如申請專利範圍第5項所述之居家空間跌倒偵測方法,其中該步驟A中的該發射器為可接收WiFi訊號的無線設備。The method for detecting a home space fall as described in claim 5, wherein the transmitter in the step A is a wireless device capable of receiving a WiFi signal. 如申請專利範圍第5項所述之居家空間跌倒偵測方法,其中該步驟E中的該第一導出資料包括平均值、標準差、瞬間頻率以及瞬間相位,該步驟J中的該第二導出資料包括平均值、標準差、瞬間頻率以及瞬間相位。The home space fall detection method according to claim 5, wherein the first derived data in the step E includes an average value, a standard deviation, an instantaneous frequency, and an instantaneous phase, and the second export in the step J The data includes the mean, standard deviation, instantaneous frequency, and instantaneous phase. 如申請專利範圍第7項所述之居家空間跌倒偵測方法,其中該屬性萃取單元使用經驗模態分解(Empirical Mode Decomposition, EMD)將該訊號強度指標序列分解成複數個本質模態函數(Instrinsic Mode Function,IMF),並利用希爾伯特-黃轉換(Hilbert-Huang Transform)計算出該複數個本質模態函數的瞬間頻率以及瞬間相位,進而得到該第一導出資料及該第二導出資料之瞬間頻率以及瞬間相位。For example, in the home space fall detection method described in claim 7, wherein the attribute extraction unit uses the Empirical Mode Decomposition (EMD) to decompose the signal strength index sequence into a plurality of essential mode functions (Instrinsic Mode Function (IMF), and using the Hilbert-Huang Transform to calculate the instantaneous frequency and instantaneous phase of the complex modal function, and then obtain the first derived data and the second derived data. Instantaneous frequency and instantaneous phase.
TW106121425A 2017-06-27 2017-06-27 System and method for detecting falling down in a predetermined living space TWI612828B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106121425A TWI612828B (en) 2017-06-27 2017-06-27 System and method for detecting falling down in a predetermined living space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106121425A TWI612828B (en) 2017-06-27 2017-06-27 System and method for detecting falling down in a predetermined living space

Publications (2)

Publication Number Publication Date
TWI612828B true TWI612828B (en) 2018-01-21
TW201906427A TW201906427A (en) 2019-02-01

Family

ID=61728462

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106121425A TWI612828B (en) 2017-06-27 2017-06-27 System and method for detecting falling down in a predetermined living space

Country Status (1)

Country Link
TW (1) TWI612828B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200933538A (en) * 2008-01-31 2009-08-01 Univ Nat Chiao Tung Nursing system
TW201308254A (en) * 2011-08-10 2013-02-16 Univ Nat Taipei Technology Motion detection method for comples scenes
US20130176161A1 (en) * 2010-09-13 2013-07-11 France Telecom Object detection method, device and system
CN104951757A (en) * 2015-06-10 2015-09-30 南京大学 Action detecting and identifying method based on radio signals
CN105933080A (en) * 2016-01-20 2016-09-07 北京大学 Fall-down detection method and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200933538A (en) * 2008-01-31 2009-08-01 Univ Nat Chiao Tung Nursing system
US20130176161A1 (en) * 2010-09-13 2013-07-11 France Telecom Object detection method, device and system
TW201308254A (en) * 2011-08-10 2013-02-16 Univ Nat Taipei Technology Motion detection method for comples scenes
CN104951757A (en) * 2015-06-10 2015-09-30 南京大学 Action detecting and identifying method based on radio signals
CN105933080A (en) * 2016-01-20 2016-09-07 北京大学 Fall-down detection method and system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chenshu Wu et al, "Non-Invasive Detection of Moving and Stationary Human With WiFi", IEEE JOURNAL ON SELECTEDAREAS IN COMMUNICATIONS, VOL. 33, NO. 11, NOVEMBER 2015 *

Also Published As

Publication number Publication date
TW201906427A (en) 2019-02-01

Similar Documents

Publication Publication Date Title
Erden et al. Sensors in assisted living: A survey of signal and image processing methods
Bagala et al. Evaluation of accelerometer-based fall detection algorithms on real-world falls
Wang et al. An enhanced fall detection system for elderly person monitoring using consumer home networks
CN103270522B (en) For monitoring the ability of posture control of vital sign
Lim et al. Fall‐detection algorithm using 3‐axis acceleration: combination with simple threshold and hidden Markov model
Li et al. A microphone array system for automatic fall detection
Bai et al. Design and implementation of a fall monitor system by using a 3-axis accelerometer in a smart phone
Rastogi et al. A systematic review on machine learning for fall detection system
CN105118236A (en) Paralysis falling detection and prevention device and processing method thereof
CN103211599A (en) Method and device for monitoring tumble
CN111568437B (en) Non-contact type bed leaving real-time monitoring method
CN103337132A (en) Tumble detection method for human body based on three-axis acceleration sensor
Ye et al. A falling detection system with wireless sensor for the elderly people based on ergnomics
Shi et al. Fall Detection Algorithm Based on Triaxial Accelerometer and Magnetometer.
Li et al. Grammar-based, posture-and context-cognitive detection for falls with different activity levels
CN107411753A (en) A kind of wearable device for identifying gait
Chen et al. A wireless real-time fall detecting system based on barometer and accelerometer
CN110675596A (en) Fall detection method applied to wearable terminal
Kostopoulos et al. Increased Fall Detection Accuracy in an Accelerometer-based Algorithm Considering Residual Movement.
Yang et al. Fall detection system based on infrared array sensor and multi-dimensional feature fusion
Ren et al. Low-power fall detection in home-based environments
Medrano et al. Personalizable smartphone application for detecting falls
Wu et al. Toward Device-free and User-independent Fall Detection Using Floor Vibration
Chiu et al. A convolutional neural networks approach with infrared array sensor for bed-exit detection
TWI612828B (en) System and method for detecting falling down in a predetermined living space

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees