TWI610851B - A multi-axes unmanned aerial vehicle and the flying method thereof - Google Patents

A multi-axes unmanned aerial vehicle and the flying method thereof Download PDF

Info

Publication number
TWI610851B
TWI610851B TW105119109A TW105119109A TWI610851B TW I610851 B TWI610851 B TW I610851B TW 105119109 A TW105119109 A TW 105119109A TW 105119109 A TW105119109 A TW 105119109A TW I610851 B TWI610851 B TW I610851B
Authority
TW
Taiwan
Prior art keywords
flight
cantilever
axis drone
parameter
axis
Prior art date
Application number
TW105119109A
Other languages
Chinese (zh)
Other versions
TW201736201A (en
Inventor
黃致華
Original Assignee
英華達股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英華達股份有限公司 filed Critical 英華達股份有限公司
Publication of TW201736201A publication Critical patent/TW201736201A/en
Application granted granted Critical
Publication of TWI610851B publication Critical patent/TWI610851B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)

Abstract

一種多軸無人機與其飛行方法,多軸無人機包含有:N支懸臂、M個懸臂接口、一飛行控制模組、以及一運算模組,每一懸臂包含有一動力元件。多軸無人機飛行方法包含步驟:偵測懸臂接口是否連接有懸臂;計算多軸無人機的總重;判斷多軸無人機是否能夠飛行;以及若多軸無人機能夠飛行,則發出一准予飛行訊息。其中N與M皆為自然數,M≧N≧3,而多軸無人機是否能夠飛行的判斷根據係為動力元件之最大總輸出功率與多軸無人機之總重。相較於習知技術,本發明可自由改變飛行懸臂數量以形成多種多軸無人機的配置。 A multi-axis drone and a flying method thereof. The multi-axis drone includes: N cantilevers, M cantilever interfaces, a flight control module, and an arithmetic module, and each cantilever includes a power element. The multi-axis drone flight method includes the steps of detecting whether a cantilever interface is connected to a cantilever; calculating the total weight of the multi-axis drone; determining whether the multi-axis drone can fly; and if the multi-axis drone can fly, issuing a permission to fly message. Among them, N and M are natural numbers, M ≧ N ≧ 3, and whether the multi-axis drone can fly is determined by the maximum total output power of the power components and the total weight of the multi-axis drone. Compared with the conventional technology, the present invention can freely change the number of flying cantilevers to form a variety of multi-axis drone configurations.

Description

多軸無人機與其飛行方法 Multi-axis drone and its flying method

本發明係關於一種多軸無人機與其飛行方法,更明確地說,係關於一種能自由變換懸臂數量與懸臂配置方式的多軸無人機與其飛行方法。 The present invention relates to a multi-axis unmanned aerial vehicle and a flying method thereof. More specifically, the present invention relates to a multi-axis unmanned aerial vehicle capable of freely changing the number of cantilever and a configuration manner of the cantilever and a flying method thereof.

目前市面上已有許多不同大小、不同軸數以及不同應用層面的多軸飛行器在販售。有的是需由使用者遙控的,有的是可程式編程進行自律飛行的,有的小到如玩具一般,也有的大到能掛載攝影機進行空中攝影或是載貨飛行。 Many multi-axis aircraft with different sizes, different number of axes, and different application levels are currently on the market. Some are remotely controlled by the user, some are programmable for autonomous flight, some are as small as toys, and some are large enough to mount cameras for aerial photography or cargo flight.

但目前市面上的多軸飛行器多是固定軸數的飛行器,亦即懸臂的數量是固定的,而且馬達的輸出功率也是固定的,若是將這類的多軸飛行器應用在載貨運輸上,馬達的輸出功率將無法根據承載貨物重量做出調整,以達到輸出功率最佳化以及電量控制之平衡。 However, the current multi-axis aircraft on the market are mostly fixed-axis aircraft, that is, the number of cantilevers is fixed, and the output power of the motor is also fixed. If this type of multi-axis aircraft is used for cargo transportation, the motor's The output power cannot be adjusted according to the weight of the cargo to achieve the balance between the optimization of output power and power control.

因應前述問題,本發明之一範疇在於提供一種多軸無人機,可依照使用者需求改變懸臂的數量,並根據懸臂的數量與安裝位置判斷多軸無人機是否能夠飛行,並進一步藉由飛行參數的輸入與設定,來達到飛行距離最佳化、飛行時間最佳化以及根據承載貨物重量來調整馬達輸出功 率。 In response to the foregoing problems, one category of the present invention is to provide a multi-axis drone, which can change the number of cantilevers according to user needs, and determine whether the multi-axis drone can fly according to the number of cantilever and installation position, and further use flight parameters Inputs and settings to optimize flight distance, flight time, and adjust motor output power based on the weight of the cargo rate.

本發明提供的一種多軸無人機,包含有:N支懸臂、M個懸臂接口、一飛行控制模組、以及一運算模組。 A multi-axis drone provided by the present invention includes: N cantilever arms, M cantilever interfaces, a flight control module, and a computing module.

其中每一懸臂包含有一動力元件,懸臂透過該等懸臂接口與多軸無人機可拆卸式地連接;飛行控制模組與該等懸臂接口及動力元件電性連接,用以控制動力元件的輸出功率;運算模組與該等懸臂接口電性連接,用以偵測該等懸臂接口是否連接有懸臂,並根據動力元件之最大總輸出功率與懸臂與多軸無人機之總重來判斷多軸無人機是否能夠飛行;飛行控制模組依據該運算模組的判斷結果,發出一飛行訊息;N與M皆為自然數,M≧N≧3。 Each of the cantilevers includes a power element, and the cantilever is detachably connected to the multi-axis drone through the cantilever interfaces; the flight control module is electrically connected to the cantilever interfaces and the power elements to control the output power of the power elements ; The computing module is electrically connected to the cantilever interfaces to detect whether there is a cantilever connected to the cantilever interfaces, and to judge the multi-axis unmanned according to the maximum total output power of the power components and the total weight of the cantilever and the multi-axis drone. Whether the aircraft can fly; the flight control module sends a flight message according to the judgment result of the computing module; N and M are natural numbers, and M ≧ N ≧ 3.

於本發明之一具體實施例中,其中多軸無人機進一步包含一顯示元件,顯示元件飛行控制模組電性連接,當飛行控制模組判斷懸臂於該本體之配置方式可以飛行時,飛行控制模組將發出一飛行訊息顯示於顯示元件上;於本發明之一具體實施例中,當飛行控制模組判斷懸臂於本體的配置方式無法飛行時,飛行控制模組將發出一無法飛行訊息顯示於顯示元件上。 In a specific embodiment of the present invention, the multi-axis drone further includes a display element, and the flight control module of the display element is electrically connected. When the flight control module determines that the configuration of the cantilever on the body can fly, the flight control The module will send a flight message to display on the display element. In a specific embodiment of the present invention, when the flight control module judges that the cantilever-on-body configuration is unable to fly, the flight control module will send a flightless message display On the display element.

於本發明之一具體實施例中,多軸無人機包含一承載結構,用以承載一貨品。 In a specific embodiment of the present invention, the multi-axis drone includes a bearing structure for carrying a product.

於本發明之一具體實施例中,其中運算模組進一步根據連接有懸臂之該等懸臂接口位置、多軸無人機含貨品的總重以及動力元件的最大總輸出功率來判斷多軸無人機是否能夠飛行。 In a specific embodiment of the present invention, the computing module further determines whether the multi-axis drone is based on the positions of the cantilever interfaces connected to the cantilever, the total weight of the multi-axis drone and the maximum total output power of the power components. Able to fly.

於本發明之一具體實施例中,其中多軸無人機進一步包含一輸入介面,一使用者得利用輸入介面輸入一第一飛行參數與一第三飛行參數,運算模組得根據第一飛行參數與第三飛行參數,運算出一第二飛行參數、一第四與一第五飛行參數,而飛行控制模組將根據第一至第五飛行參數、控制該多軸無人機的飛行。 In a specific embodiment of the present invention, the multi-axis drone further includes an input interface, a user may use the input interface to input a first flight parameter and a third flight parameter, and the computing module may obtain the first flight parameter according to the first flight parameter. A second flight parameter, a fourth and a fifth flight parameter are calculated with the third flight parameter, and the flight control module will control the flight of the multi-axis drone according to the first to fifth flight parameters.

於本發明之一具體實施例中,其中第一飛行參數得為一飛行速度或一載重量,第二飛行參數為該等懸臂之一最小配置數、第三飛行參數得為飛行距離或飛行時間、第四飛行參數得為載重量或飛行速度、第五飛行參數得為飛行時間或飛行距離,而第一與第四飛行參數之間;第三與第五飛行參數之間互不重複。 In a specific embodiment of the present invention, the first flight parameter is a flight speed or a dead weight, the second flight parameter is a minimum configuration number of the cantilevers, and the third flight parameter is a flight distance or a flight time. 4. The fourth flight parameter must be the payload or flight speed, the fifth flight parameter must be the flight time or flight distance, and there is no overlap between the first and fourth flight parameters; the third and fifth flight parameters do not overlap with each other.

於本發明之一具體實施例中,飛行控制模組包含一無線通訊單元,一使用者得利用一可攜式電子裝置與無線通訊單元建立一無線連線,並輸入一第一飛行參數與一第三飛行參數,運算模組根據第一飛行參數與第三飛行參數,運算出一第二飛行參數、一第四與一第五飛行參數,而飛行控制模組將根據第一至第五飛行參數控制多軸無人機的飛行。 In a specific embodiment of the present invention, the flight control module includes a wireless communication unit. A user may use a portable electronic device to establish a wireless connection with the wireless communication unit, and enter a first flight parameter and a For the third flight parameter, the calculation module calculates a second flight parameter, a fourth and a fifth flight parameter according to the first flight parameter and the third flight parameter, and the flight control module will calculate the first to fifth flight parameters. The parameters control the flight of the multi-axis drone.

於本發明之一具體實施例中,飛行控制模組包含一資料接口,一使用者得利用一可攜式電子裝置與資料接口建立一有線連線,並輸入一第一飛行參數與一第三飛行參數,運算模組根據第一飛行參數與第三飛行參數,運算出一第二飛行參數、一第四與一第五飛行參數,而飛行控制模組將根據第一至第五飛行參數控制多軸無人機的飛行。 In a specific embodiment of the present invention, the flight control module includes a data interface, and a user may use a portable electronic device to establish a wired connection with the data interface, and enter a first flight parameter and a third Flight parameters, the calculation module calculates a second flight parameter, a fourth and a fifth flight parameter according to the first flight parameter and a third flight parameter, and the flight control module will control according to the first to fifth flight parameters Flight of a multi-axis drone.

本發明之另一範疇在於提供一種多軸無人機之飛行方法,用以控制多軸無人機之飛行,多軸無人機包含N支懸臂,以及M個懸臂接口, 每一懸臂包含一動力元件,包含以下步驟:S1:偵測該等懸臂接口是否連接有該等懸臂:S3:計算該等懸臂與該本體的總重;S4:判斷該多軸無人機是否能夠飛行;以及S6:若該多軸無人機能夠飛行,則發出一准予飛行訊息;其中N與M皆為自然數,M≧N≧3,而多軸無人機是否能夠飛行的判斷根據係為該等動力元件之最大總輸出功率與多軸無人機之總重。 Another aspect of the present invention is to provide a multi-axis drone flight method for controlling the flight of the multi-axis drone. The multi-axis drone includes N cantilevers and M cantilever interfaces. Each cantilever contains a power element, including the following steps: S1: detecting whether the cantilever interface is connected to the cantilever: S3: calculating the total weight of the cantilever and the body; S4: judging whether the multi-axis drone can Flight; and S6: if the multi-axis drone is capable of flying, a flight permission message is issued; where N and M are natural numbers, M ≧ N ≧ 3, and the judgment of whether the multi-axis drone can fly is based on the The maximum total output power of the isokinetic components and the total weight of the multi-axis drone.

於本發明之另一具體實施例中,進一步包含步驟S5:若多軸無人機無法飛行,則發出一無法飛行訊息。 In another specific embodiment of the present invention, step S5 is further included: if the multi-axis drone is unable to fly, a non-flying message is sent.

於本發明之另一具體實施例中,多軸無人機之飛行方法另包含有以下步驟:一使用者輸入一第一飛行參數與一第三飛行參數;根據第一飛行參數與第三飛行參數,運算出一第二、一第四與一第五飛行參數;以及根據第一至第五飛行參數控制該多軸無人機的飛行。 In another embodiment of the present invention, the multi-axis drone flight method further includes the following steps: a user inputs a first flight parameter and a third flight parameter; according to the first flight parameter and the third flight parameter , Calculating a second, a fourth, and a fifth flight parameter; and controlling the flight of the multi-axis drone according to the first to fifth flight parameters.

於本發明之另一具體實施例中,其中第一飛行參數得為一飛行速度或一載重量,第二飛行參數為該等懸臂之一最小配置數、第三飛行參數得為飛行距離或飛行時間、第四飛行參數得為載重量或飛行速度、第五飛行參數得為飛行時間或飛行距離,而第一與第四飛行參數之間;第三與第五飛行參數之間互不重複。 In another specific embodiment of the present invention, the first flight parameter may be a flight speed or a dead weight, the second flight parameter may be a minimum configuration number of one of the cantilevers, and the third flight parameter may be a flight distance or a flight. Time, the fourth flight parameter must be the dead weight or flight speed, the fifth flight parameter must be the flight time or flight distance, and there is no overlap between the first and fourth flight parameters, and between the third and fifth flight parameters.

相較於習知技術,本發明藉由複數個懸臂接口以及複數支飛行懸臂的組合,來達到可自由改變飛行懸臂數量與多種多軸無人機的配置。 Compared with the conventional technology, the present invention uses a combination of a plurality of cantilever interfaces and a plurality of flying cantilevers to achieve freely changing the number of flying cantilevers and the configuration of multiple multi-axis drones.

1‧‧‧多軸無人機 1‧‧‧Multi-axis drone

10‧‧‧本體 10‧‧‧ Ontology

102‧‧‧外殼 102‧‧‧Shell

104‧‧‧懸臂接口 104‧‧‧ cantilever interface

106‧‧‧運算模組 106‧‧‧ Computing Module

108‧‧‧飛行控制模組 108‧‧‧ Flight Control Module

1082‧‧‧電流控制單元 1082‧‧‧Current Control Unit

1084‧‧‧機身控制單元 1084‧‧‧Airframe Control Unit

1086‧‧‧電量量測單元 1086‧‧‧ Electricity measuring unit

1088‧‧‧無線通訊單元 1088‧‧‧Wireless communication unit

110‧‧‧顯示元件 110‧‧‧Display element

114‧‧‧開關 114‧‧‧Switch

11‧‧‧RC遙控模組 11‧‧‧RC remote control module

12‧‧‧懸臂 12‧‧‧ cantilever

122‧‧‧動力元件 122‧‧‧ Power Elements

13‧‧‧資料接口 13‧‧‧Data Interface

14‧‧‧承載結構 14‧‧‧ load bearing structure

15‧‧‧記憶媒體 15‧‧‧Memory media

16‧‧‧電池 16‧‧‧ Battery

17‧‧‧輸入介面 17‧‧‧ input interface

18‧‧‧衛星定位模組 18‧‧‧ satellite positioning module

2‧‧‧多軸無人機飛行方法 2‧‧‧Multi-axis drone flight method

C1~C3、E0~E6、S0~S10‧‧‧步驟 C1 ~ C3, E0 ~ E6, S0 ~ S10‧‧‧step

D‧‧‧飛行距離 D‧‧‧ Flight distance

T‧‧‧飛行時間 T‧‧‧ flight time

X‧‧‧最小該等懸臂12的配置數 X‧‧‧Minimum number of configuration of such cantilever 12

V‧‧‧最高飛行速度 V‧‧‧ Maximum flight speed

圖一繪示了根據本發明之一具體實施例之多軸無人機上視圖。 FIG. 1 is a top view of a multi-axis drone according to a specific embodiment of the present invention.

圖二繪示了根據本發明之一具體實施例之多軸無人機側視 圖。 FIG. 2 is a side view of a multi-axis drone according to a specific embodiment of the present invention. Illustration.

圖三繪示了根據本發明之一具體實施例之多軸無人機功能方塊圖。 FIG. 3 is a functional block diagram of a multi-axis drone according to a specific embodiment of the present invention.

圖四繪示了根據本發明之一具體實施例之顯示元件顯示之使用者介面示意圖。 FIG. 4 is a schematic diagram of a user interface of a display element display according to a specific embodiment of the present invention.

圖五繪示了根據本發明之一具體實施例之多軸無人機飛行方法流程圖。 FIG. 5 is a flowchart of a multi-axis drone flying method according to a specific embodiment of the present invention.

圖六繪示了根據本發明之另一具體實施例之多軸無人機飛行方法流程圖。 FIG. 6 is a flowchart of a multi-axis drone flying method according to another embodiment of the present invention.

本發明之一範疇係提供一種多軸無人機1,可依照使用者需求改變懸臂的數量,並根據懸臂的數量與安裝位置判斷多軸無人機是否能夠飛行,並進一步藉由飛行參數的輸入與設定,來達到飛行距離最佳化、飛行時間最佳化以及根據承載貨物重量來調整馬達輸出功率。 One category of the present invention is to provide a multi-axis drone 1, which can change the number of cantilevers according to the needs of users, and determine whether the multi-axis drone can fly according to the number of cantilever and installation position, and further through the input of flight parameters and Set to optimize flight distance, flight time, and adjust motor output power based on the weight of the cargo.

請參閱圖一至圖三,圖一繪示了根據本發明之一具體實施例之多軸無人機上視圖。圖二繪示了根據本發明之一具體實施例之多軸無人機側視圖。圖三繪示了根據本發明之一具體實施例之多軸無人機功能方塊圖。 Please refer to FIGS. 1 to 3. FIG. 1 illustrates a top view of a multi-axis drone according to a specific embodiment of the present invention. FIG. 2 illustrates a side view of a multi-axis drone according to a specific embodiment of the present invention. FIG. 3 is a functional block diagram of a multi-axis drone according to a specific embodiment of the present invention.

本發明的多軸無人機1包含有:一本體10以及N支懸臂12,每一該等懸臂12包含有一動力元件122,動力元件122得為一馬達。本體10包含有一外殼102、M個懸臂接口104、一運算模組106、一飛行控制模組108、一顯示元件110、一輸入介面17以及一開關114;其中N與M皆為自然數, M≧N≧3,而於本實施例中,M=8,而N至少為4。 The multi-axis drone 1 of the present invention includes: a body 10 and N cantilever 12, each of which cantilever 12 includes a power element 122, which can be a motor. The body 10 includes a housing 102, M cantilever interfaces 104, a computing module 106, a flight control module 108, a display element 110, an input interface 17, and a switch 114. N and M are natural numbers. M ≧ N ≧ 3, and in this embodiment, M = 8, and N is at least 4.

其中,M個懸臂接口104露出於外殼102的一側表面,該等懸臂12透過該等懸臂接口104與多軸無人機1可拆卸式地連接。外殼102具有一可拆卸式的承載結構14,用以承載一貨品,但承載結構不限定為可拆卸式,也可為無人機本體結構的設計。外殼102內可容納有運算模組106以及飛行控制模組108,但不以此為設限。飛行控制模組108連接M個懸臂接口104與動力元件122,用以控制動力元件122的輸出功率。運算模組106與M個懸臂接口104、飛行控制模組108以及顯示元件110電性連接。顯示元件110、輸入介面17以及電源開關114皆設置於外殼102的一上表面,而輸入介面17與飛行控制模組108電性連接。 Among them, M cantilever interfaces 104 are exposed on one side surface of the housing 102, and the cantilevers 12 are detachably connected to the multi-axis drone 1 through the cantilever interfaces 104. The housing 102 has a detachable load-bearing structure 14 for carrying a product, but the load-bearing structure is not limited to a detachable type, and may also be a design of a drone body structure. The housing 102 can accommodate a computing module 106 and a flight control module 108, but it is not limited thereto. The flight control module 108 connects the M cantilever interfaces 104 and the power element 122 to control the output power of the power element 122. The computing module 106 is electrically connected to the M cantilever interfaces 104, the flight control module 108 and the display element 110. The display element 110, the input interface 17 and the power switch 114 are all disposed on an upper surface of the housing 102, and the input interface 17 is electrically connected to the flight control module 108.

運算模組106用以偵測M個懸臂接口104中哪些接口連接有該等懸臂12,並根據連接有該等懸臂12的該等懸臂接口104位置、動力元件122之最大總輸出功率與多軸無人機1之總重來判斷多軸無人機1是否能夠飛行。若外殼102上安裝有承載結構14時,運算模組106則進一步根據連接有該等懸臂12的該等懸臂接口104位置、動力元件122之最大總輸出功率與多軸無人機1與貨品之總重來判斷多軸無人機1是否能夠飛行。而當運算模組106在判斷完多軸無人機1能夠飛行之後,將發出一准予飛行訊息至顯示元件110,並將准予飛行訊息顯示於顯示元件110上,而當運算模組106在判斷完多軸無人機1不能夠飛行之後,將發出一無法飛行訊息至顯示元件110,並將無法飛行訊息顯示於顯示元件110上。 The computing module 106 is used to detect which of the M cantilever interfaces 104 are connected to the cantilever 12, and according to the positions of the cantilever interfaces 104 connected to the cantilever 12, the maximum total output power of the power element 122 and the multi-axis The total weight of the drone 1 determines whether the multi-axis drone 1 can fly. If the load bearing structure 14 is installed on the housing 102, the computing module 106 is further based on the positions of the cantilever interfaces 104 connected to the cantilever 12, the maximum total output power of the power element 122, and the total of the multi-axis drone 1 and the goods. Let's judge again whether the multi-axis drone 1 can fly. After the computing module 106 judges that the multi-axis drone 1 can fly, it will send a flight permission message to the display element 110, and display the flight permission message on the display element 110. After the multi-axis drone 1 is unable to fly, a non-flying message will be sent to the display element 110, and the non-flying message will be displayed on the display element 110.

其中顯示元件110得為一發光二極體(LED),而准予飛行訊息與無法飛行訊息得個別以不同顏色的可見光訊號來表示,例如以亮綠燈 表示准予飛行訊息;以亮紅燈表示無法飛行訊息。顯示元件110亦得為一液晶螢幕,而准予飛行訊息與無法飛行訊息亦得個別以一文字訊息顯示於液晶螢幕上。而運算模組106與飛行控制模組108得為相互獨立的積體電路或單晶片,或是整合成一塊積體電路或單晶片,本發明對此不加以設限。 The display element 110 may be a light-emitting diode (LED), and the flight-permitted information and the flight-incapable information may be individually represented by visible light signals of different colors, such as a bright green light. Indicates that the flight message is approved; a red light indicates that the flight message is not available. The display element 110 may also be a liquid crystal screen, and the flight permission and non-flying information may be displayed on the liquid crystal screen as a text message. The computing module 106 and the flight control module 108 may be integrated circuits or single chips that are independent of each other, or integrated into one integrated circuit or single chip, which is not limited in the present invention.

於本實施例中,顯示元件110係設置於本體10的一上表面,但本發明並不以此為限制,顯示元件110亦得與本體10,以及運算模組106之間以一無線網路連接,此時顯示元件110得為多軸無人機1之一遙控器上的一指示燈,或是一可攜式電子裝置上的顯示螢幕或觸控螢幕等。 In this embodiment, the display element 110 is disposed on an upper surface of the body 10, but the present invention is not limited thereto. The display element 110 may also be connected to the body 10 and the computing module 106 by a wireless network. At this time, the display element 110 may be an indicator light on a remote controller of the multi-axis drone 1, or a display screen or a touch screen on a portable electronic device.

接著請參閱圖三,在N支懸臂12經由M個懸臂接口接上本體10之後,而運算模組106也根據N支懸臂12的動力元件122之最大總輸出功率,以及多軸無人機1與貨品的總重判斷多軸無人機1可以飛行之後,飛行控制模組108則藉由控制動力元件122的輸出功率來進行多軸無人機1的飛行控制。 Please refer to FIG. 3, after the N cantilever 12 is connected to the body 10 through M cantilever interfaces, the computing module 106 is also based on the maximum total output power of the power element 122 of the N cantilever 12 and the multi-axis drone 1 and After the total weight of the goods determines that the multi-axis drone 1 can fly, the flight control module 108 performs flight control of the multi-axis drone 1 by controlling the output power of the power element 122.

飛行控制模組108包含有一電流控制單元1082、一機身控制單元1084、一電量量測單元1086以及一無線通訊單元1088。於本實施例中,飛行控制模組108與一電池16、一RC遙控模組11、一記憶媒體15、一衛星定位模組18連接,而記憶媒體15與一資料接口13以及輸入介面17連接。各組件的功能將詳述於以下段落。 The flight control module 108 includes a current control unit 1082, a fuselage control unit 1084, a power measurement unit 1086, and a wireless communication unit 1088. In this embodiment, the flight control module 108 is connected to a battery 16, an RC remote control module 11, a memory medium 15, and a satellite positioning module 18, and the memory medium 15 is connected to a data interface 13 and an input interface 17 . The functions of each component are detailed in the following paragraphs.

電池16用以提供多軸無人機1電力,電量量測單元1086用以測量電池16的電量。RC遙控模組11係用以使多軸無人機1能接收一遙控訊號,以使多軸無人機1能向習知的遙控玩具一般,由一使用者操作飛行。衛星定位模組18用以使多軸無人機1能夠自行感測本身的所在位置。 The battery 16 is used to provide the power of the multi-axis drone 1, and the power measurement unit 1086 is used to measure the power of the battery 16. The RC remote control module 11 is used to enable the multi-axis drone 1 to receive a remote control signal so that the multi-axis drone 1 can fly to a conventional remote-control toy and be operated by a user. The satellite positioning module 18 is used to enable the multi-axis drone 1 to sense its own position by itself.

請同時參閱圖一與圖三,如圖一所示,輸入介面17設置於本體10的上表面,用以提供一使用者利用輸入介面17輸入一第一飛行參數與一第三飛行參數,而輸入的第一與第三飛行參數將被儲存於記憶媒體15中,再經由飛行控制模組108被傳輸至運算模組106中,而運算模組106根據輸入的第一飛行參數,以一第一運算式運算出一第二飛行參數;運算模組106再根據第二飛行參數指定出一第四飛行參數;最後運算模組106以第三飛行參數與第四飛行參數以第二運算式算得一第五飛行參數。在算得第一至第五飛行參數之後,使用者得根據該些飛行參數,在本體10上裝上懸臂12,而飛行控制模組108將根據該些飛行參數控制多軸無人機1的飛行。其中,第一運算式與第二運算式如下: Please refer to FIG. 1 and FIG. 3 at the same time. As shown in FIG. 1, the input interface 17 is disposed on the upper surface of the body 10 to provide a user to input a first flight parameter and a third flight parameter using the input interface 17, and The input first and third flight parameters will be stored in the memory medium 15 and then transmitted to the computing module 106 via the flight control module 108, and the computing module 106 uses a first A calculation formula calculates a second flight parameter; the calculation module 106 designates a fourth flight parameter according to the second flight parameter; and finally, the calculation module 106 calculates the third flight parameter and the fourth flight parameter by a second calculation formula. A fifth flight parameter. After calculating the first to fifth flight parameters, the user must install a cantilever 12 on the body 10 according to the flight parameters, and the flight control module 108 will control the flight of the multi-axis drone 1 according to the flight parameters. The first and second expressions are as follows:

第一運算式:本體重+(懸臂重*X)+載重量≦(500*X) The first calculation formula: this weight + (cantilever weight * X) + load capacity ≦ (500 * X)

第二運算式:V≦D* T Second expression: V ≦ D * T

其中於本實施例中。第一飛行參數為載重量(g)、第二飛行參數為最小該等懸臂12的配置數X、第三飛行參數為飛行距離D(Km),第四飛行參數為最高飛行速度V(Km/Hr)、第五飛行參數為飛行時間T(Hr)。 Among them in this embodiment. The first flight parameter is the payload (g), the second flight parameter is the minimum number of configurations of the cantilever 12, the third flight parameter is the flight distance D (Km), and the fourth flight parameter is the maximum flight speed V (Km / Hr), the fifth flight parameter is the flight time T (Hr).

本體重為本體10的重量,而懸臂重即為單一該等懸臂12的重量,單位皆為公克,第一運算式中的500是單一動力元件122在最大輸出功率下的載重量,單位亦為公克,其中本體重、單一懸臂重以及單一動力元件122在最大輸出功率下的載重量會事先設定於運算模組106內,若是以後使用者購買了出力較高的懸臂12套件時,使用者亦可對動力元件122載重量的數據進行修改。 The body weight is the weight of the body 10, and the cantilever weight is the weight of a single such cantilever 12, in grams. The 500 in the first calculation formula is the load capacity of a single power element 122 at the maximum output power. The unit is also Grams, of which the weight, the weight of a single cantilever and the load capacity of a single power element 122 under the maximum output power will be set in the computing module 106 in advance. If the user later purchases a cantilever 12 kit with a higher output, the user will also The load data of the power element 122 can be modified.

首先,多軸無人機1的最高飛行速度V與懸臂12的總數X成正 相關。例如多軸無人機1配置有三支懸臂12時,最高飛行速度為3km/hr,多軸無人機1配置有四支懸臂12時,最高飛行速度為5km/hr,配置有六支懸臂12時,最高飛行速度為6km/hr,配置有八支懸臂12時,最高飛行速度為10km/hr,如以下表一所示,其中此處所指的最高飛行速度係指所有懸臂12以最大功率輸出時的飛行速度。這些飛行速度-懸臂數量的對應關係會記錄於運算單元106內。而在輸入了所欲的飛行距離與飛行時間後,算得了滿足前述飛行距離與飛行時間所需的最高飛行速度V,而運算單元106此時會從前述的飛行速度-懸臂數量對應關係中選擇一適合的懸臂12配置數X,並顯示於顯示面板110上。 First, the maximum flight speed V of the multi-axis drone 1 is positively related to the total number X of the booms 12 Related. For example, when multi-axis drone 1 is equipped with three cantilever 12, the maximum flight speed is 3km / hr, when multi-axis drone 1 is equipped with four cantilever 12, the maximum flight speed is 5km / hr, and when six cantilever 12 is configured, The maximum flight speed is 6km / hr. When eight cantilevers 12 are configured, the maximum flight speed is 10km / hr, as shown in Table 1 below, where the highest flight speed refers to the maximum output of all cantilevers 12 at the maximum power output. Flying speed. These correspondences between the flying speed and the number of cantilevers are recorded in the computing unit 106. After inputting the desired flight distance and flight time, the maximum flight speed V required to satisfy the foregoing flight distance and flight time is calculated, and the computing unit 106 then selects from the foregoing flight speed-cantilever correspondence relationship. A suitable cantilever 12 is provided with a number X and displayed on the display panel 110.

Figure TWI610851BD00001
Figure TWI610851BD00001

使用者藉由輸入載重量作為第一飛行參數,帶入第一運算式後算得第二飛行參數的最小該等懸臂12的配置數X(以下簡稱為懸臂配置數X),再根據表一內容查表以確知第四飛行參數的最高飛行速度V。而使用者輸入飛行時間T(或飛行距離D)以作為第三飛行參數,配合第四飛行參數的最高飛行速度V以第二運算式算出飛行距離D(或飛行時間T)以作為第五飛行參數。若使用者輸入的載重量超過在完整配置動力元件122下(取決於懸臂接口104數量),最大輸出功率下的載重量,運算模組106將傳送一無法飛行訊息至顯示元件110,並顯示於顯示元件110上 By inputting the load capacity as the first flight parameter, the user calculates the minimum number of configuration X of the cantilever 12 (hereinafter referred to as the number of cantilever configuration X) of the second flight parameter after bringing in the first calculation formula, and then according to Table 1 Look up the table to determine the maximum flight speed V of the fourth flight parameter. The user inputs the flight time T (or flight distance D) as the third flight parameter, and calculates the flight distance D (or flight time T) as the fifth flight in accordance with the maximum flight speed V of the fourth flight parameter in the second calculation formula. parameter. If the load capacity input by the user exceeds the load capacity under the fully configured power element 122 (depending on the number of cantilever interfaces 104) and the maximum output power, the computing module 106 will send a non-flying message to the display element 110 and display it on Display element 110

前述的實施例,係先輸入載重量與飛行時間T或飛行距離D等飛行參數上進行討論,其中以載重量為決定懸臂最小配置數X的核心參數。然而本發明於此提出另一種實施例,使用者得先指定多軸無人機1的最高飛行速度V作為第一飛行參數,再從表一所示的對應關係找出對應的懸臂配置數X以作為第二飛行參數後,本發明再根據第一運算式,來算得在指定的第一飛行參數(最高飛行速度V)之下,多軸無人機1的載重量(第四飛行參數),而使用者再輸入飛行時間T(或飛行距離D)作為第三飛行參數,由第二運算式搭配第一飛行參數(最高飛行速度V)來算出飛行距離D(或飛行時間T)以作為第五飛行參數。 The foregoing embodiments are discussed by first inputting a load capacity and flight parameters such as a flight time T or a flight distance D. The load capacity is a core parameter that determines the minimum number X of the cantilever. However, the present invention proposes another embodiment here. The user must first specify the maximum flight speed V of the multi-axis drone 1 as the first flight parameter, and then find the corresponding number of cantilever configurations X from the corresponding relationship shown in Table 1. As the second flight parameter, the present invention calculates the payload of the multi-axis drone 1 (the fourth flight parameter) under the specified first flight parameter (the maximum flight speed V) according to the first calculation formula, and The user then inputs the flight time T (or flight distance D) as the third flight parameter, and calculates the flight distance D (or flight time T) as the fifth by the second calculation formula and the first flight parameter (the maximum flight speed V). Flight parameters.

於此實施例中,運算模組106會先對使用者輸入的第一飛行參數,亦即最高飛行速度V進行判斷。若使用者輸入的最高飛行速度V超過了表一所列的最高速度範圍,運算模組106將傳送一無法飛行訊息至顯示元件110,並顯示於顯示元件110上;而若使用者輸入的最高飛行速度V雖未超過表一所列的最高速度範圍,但在表一中未有一直接對應的飛行速度數值時(例如輸入5.5Km/Hr時),運算模組106會選擇最接近又大於該輸入數值的對應速度(亦即6Km/Hr),再將該速度所對應的懸臂配置數X顯示於顯示元件110上。 In this embodiment, the computing module 106 first determines the first flight parameter input by the user, that is, the maximum flight speed V. If the maximum flight speed V input by the user exceeds the maximum speed range listed in Table 1, the computing module 106 will send a non-flying message to the display element 110 and display it on the display element 110; Although the flying speed V does not exceed the maximum speed range listed in Table 1, but when there is no direct corresponding flying speed value in Table 1 (for example, when 5.5Km / Hr is input), the computing module 106 will choose the closest and larger than that. Enter the corresponding speed of the value (that is, 6Km / Hr), and then display the number X of the cantilever corresponding to the speed on the display element 110.

需要知道的是,以上的實施例說明係以運算模組106先根據多軸無人機1已連接的懸臂12數量,判斷多軸無人機1是否能夠飛行,而後再根據使用者所輸入的飛行參數,進一步修正多軸無人機1應連接的懸臂12數量來依照使用者輸人的飛行參數飛行。但本發明並不以此為限,本發明亦可在多軸無人機1開機後,由使用者直接輸入前述的飛行參數,再由運算 模組106根據第一與第二運算式算出多軸無人機1應連接的懸臂12數量,亦即懸臂配置數X,來依照使用者輸入的飛行參數飛行。 It should be known that the above embodiment description is based on the calculation module 106 firstly determining whether the multi-axis drone 1 can fly according to the number of cantilever 12 connected to the multi-axis drone 1, and then according to the flight parameters input by the user , Further modify the number of cantilever 12 to which the multi-axis drone 1 should be connected to fly according to the flight parameters input by the user. However, the present invention is not limited to this. The present invention can also directly input the aforementioned flight parameters by the user after the multi-axis drone 1 is turned on, and then calculate the The module 106 calculates the number of cantilevers 12 to which the multi-axis drone 1 should be connected according to the first and second calculation formulas, that is, the number of cantilever configurations X, to fly according to the flight parameters input by the user.

記憶媒體15得為一硬碟、動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)、靜態隨機存取記憶體(Static Random Access Memory,SRAM)。 The storage medium 15 may be a hard disk, a dynamic random access memory (DRAM), and a static random access memory (SRAM).

但本發明在輸入各參數的方式並不以前述的輸入介面17為限,於其他實施例中,亦得藉由無線通訊單元1088與一可攜式電子裝置建立一無線網路連接,再藉由可攜式電子裝置來輸入第一與第二飛行參數。亦或是藉由資料接口13與一可攜式電子裝置建立一有線連接,再藉由可攜式電子裝置來輸入第一與第二飛行參數。於本實施例中,輸入各飛行參數時的顯示元件110的顯示介面如圖四所示,圖四繪示了根據本發明之一具體實施例之顯示元件顯示之使用者介面示意圖。 However, the method of inputting various parameters of the present invention is not limited to the aforementioned input interface 17. In other embodiments, a wireless network connection with a portable electronic device must be established through the wireless communication unit 1088, and then borrowed. The portable electronic device is used to input the first and second flight parameters. Alternatively, a wired connection is established with a portable electronic device through the data interface 13, and the first and second flight parameters are input through the portable electronic device. In this embodiment, the display interface of the display element 110 when each flight parameter is input is shown in FIG. 4. FIG. 4 is a schematic diagram of a user interface of the display element display according to a specific embodiment of the present invention.

為了讓本發明的多軸無人機1能自律飛行,使用者得利用可攜式電子裝置或定置型電子裝置,藉由無線通訊單元1088、或資料接口13來將規劃好的多軸無人機1飛行路徑輸入至記憶媒體15中,再由衛星定位模組18進行導航,並由飛行控制模組108內的機身控制單元1084保持機身平衡以及飛行方向的控制,再由電流控制單元1082控制該等懸臂12的動力元件122的輸出功率,來調整多軸無人機的飛行速度與姿勢。 In order to allow the multi-axis drone 1 of the present invention to fly autonomously, the user must use a portable electronic device or a fixed-type electronic device to plan the planned multi-axis drone 1 through a wireless communication unit 1088 or a data interface 13. The flight path is input into the storage medium 15, and then the satellite positioning module 18 is used for navigation. The fuselage control unit 1084 in the flight control module 108 maintains the balance of the fuselage and the control of the flight direction, and then is controlled by the current control unit 1082. The output power of the power elements 122 of the cantilevers 12 is used to adjust the flight speed and attitude of the multi-axis drone.

請參閱圖五,圖五繪示了根據本發明之一具體實施例之多軸無人機飛行方法流程圖。本發明的另一範疇在於提供一種多軸無人機之飛行方法2,用以控制多軸無人機之飛行,多軸無人機包含N支懸臂,以及M個懸臂接口,每一懸臂包含一動力元件,包含以下步驟:S1:偵測該等懸 臂接口是否連接有該等懸臂;S3:計算該等懸臂與該本體的總重;S4:判斷該多軸無人機是否能夠飛行;以及S6:若該多軸無人機能夠飛行,則發出一准予飛行訊息;其中N與M皆為自然數,M≧N≧3,而多軸無人機是否能夠飛行的判斷根據係為該等動力元件之最大總輸出功率與多軸無人機之總重。 Please refer to FIG. 5, which illustrates a flowchart of a multi-axis drone flying method according to a specific embodiment of the present invention. Another category of the present invention is to provide a multi-axis drone flight method 2 for controlling the flight of a multi-axis drone. The multi-axis drone includes N cantilevers and M cantilever interfaces, and each cantilever contains a power element. , Including the following steps: S1: Detect the suspension Whether the boom interface is connected to the cantilever; S3: Calculate the total weight of the cantilever and the body; S4: Determine whether the multi-axis drone can fly; and S6: If the multi-axis drone can fly, issue an approval Flight information; where N and M are natural numbers, M ≧ N ≧ 3, and whether the multi-axis drone can fly is determined by the maximum total output power of these power components and the total weight of the multi-axis drone.

更詳細地說,本發明提供的一種多軸無人機之飛行方法包含步驟S0~S10,以下搭配圖一、圖二與圖五進行詳細說明。首先,先執行步驟S0,按下開關114以啟動多軸無人機1,接著,運算模組106偵測M個懸臂接口104中哪些接口連接有該等懸臂12。若在一預設時間,例如三分鐘內,運算模組106都偵測不到有至少一支懸臂12被接入任一懸臂接口104時,運算模組106將執行步驟S2:一預設時間後本體自動關機,使本體10自動關機來節省電力。 In more detail, a multi-axis drone flying method provided by the present invention includes steps S0 to S10, which will be described in detail below with reference to FIGS. 1, 2 and 5. First, step S0 is executed, and the switch 114 is pressed to start the multi-axis drone 1. Then, the computing module 106 detects which of the M cantilever interfaces 104 are connected to the cantilevers 12. If the computing module 106 does not detect that at least one cantilever 12 is connected to any of the cantilever interfaces 104 within a preset time, such as three minutes, the computing module 106 will execute step S2: a preset time The rear body is automatically turned off, so that the body 10 is automatically turned off to save power.

若運算模組106有偵測到至少一支懸臂12被接入任一懸臂接口104時,運算模組106將執行步驟S3:計算懸臂與本體之總重。接著進入步驟S4:判斷多軸無人機是否能夠飛行。由於單一動力元件122的載重量、本體重與單一懸臂重皆為已知,故運算模組106即可先根據前述的第一運算式與第二運算式,算出最小該等懸臂12的配置數X,並檢測目前多軸無人機1上所連接的該等懸臂12是否大於或等於X,若否,則進入步驟S5:運算模組發出無法飛行訊息,而一無法飛行訊息將被發送至顯示元件110而被顯示。若是,則進入步驟S6:運算模組發出准予飛行訊息,而一准予飛行訊息將被發送至顯示元件110而被顯示,其中,飛行訊息更包含建議懸臂配置數訊息。 If the computing module 106 detects that at least one cantilever 12 is connected to any of the cantilever interfaces 104, the computing module 106 will execute step S3: calculate the total weight of the cantilever and the body. Then proceed to step S4: determine whether the multi-axis drone can fly. Since the load capacity of the single power element 122, its own weight, and the weight of a single cantilever are all known, the calculation module 106 can first calculate the minimum number of such cantilever 12 configurations according to the aforementioned first and second calculation formulas. X, and detect whether the cantilever 12 connected to the multi-axis drone 1 is greater than or equal to X, if not, proceed to step S5: the computing module sends a flight incapability message, and a flight incapability message will be sent to the display Element 110 is displayed. If yes, proceed to step S6: the computing module sends a flight approval message, and a flight approval message will be sent to the display element 110 to be displayed, wherein the flight message further includes a message of the number of proposed cantilever configurations.

接下來進入步驟S7:判斷多軸無人機是否設為自律飛行。由於本發明的多軸無人機1亦可以RC遙控方式操作,故於此步驟中,由飛行控制模組108檢測是否接收有來自RC遙控模組的控制訊號,若否,表示多軸無人機1將不進行自律飛行,即進入步驟S8:RC遙控模組控制多軸無人機飛行。若是,表示多軸無人機1將進行自律飛行,而進入步驟S9:飛行控制模組載入飛行參數與飛行路徑,其中,步驟S7~S8得為選擇性實施,於另一實施例中,步驟S7~S8得被省略。於本實施例中,飛行參數與飛行路徑藉由輸入介面17與無線通訊單元1088被輸入至飛行控制模組108中。而在飛行參數輸入之後,將先從步驟S9跳回步驟S4,再一次進行多軸無入機1是否能根據輸入的飛行參數進行飛行的判斷。因為有當前多軸無人機1的性能達不到輸入飛行參數的要求之可能,例如目前多軸無人機1已連接有3支懸臂12,最高速度3Km/Hr的配置下,輸入的飛行參數卻要求以飛行速度6Km/Hr飛行。另一實施例為使用者已輸入有載重量的飛行參數,但目前多軸無人機1的懸臂12配置不足以承載該載重量,故經由步驟S4的再次檢視,使用者可根據回傳的飛行訊息來更新輸入的飛行參數要求或改變多軸無人機1的懸臂12配置。 Then proceed to step S7: determine whether the multi-axis drone is set to autonomous flight. Since the multi-axis drone 1 of the present invention can also be operated by RC remote control, in this step, the flight control module 108 detects whether a control signal is received from the RC remote control module. If not, it indicates that the multi-axis drone 1 No autonomous flight will be performed, that is, step S8: the RC remote control module controls the multi-axis drone flight. If yes, it indicates that the multi-axis drone 1 will perform autonomous flight, and it proceeds to step S9: the flight control module loads flight parameters and flight paths, wherein steps S7 to S8 must be implemented selectively. In another embodiment, the steps S7 ~ S8 must be omitted. In this embodiment, the flight parameters and flight path are input into the flight control module 108 through the input interface 17 and the wireless communication unit 1088. After the flight parameters are entered, the process will first jump from step S9 to step S4, and once again make a judgment as to whether the multi-axis non-entry machine 1 can fly according to the input flight parameters. Because it is possible that the performance of the current multi-axis drone 1 cannot meet the requirements for input flight parameters, for example, the current configuration of the multi-axis drone 1 has 3 cantilever 12 connected to it, and the maximum speed is 3 Km / Hr. Requires a flight speed of 6Km / Hr. Another embodiment is that the user has entered the flight parameters of the payload, but the cantilever 12 of the multi-axis drone 1 is currently not configured to carry the payload. Therefore, after re-examination in step S4, the user can perform the flight according to the return flight. The message to update the input flight parameters requires or change the configuration of the cantilever 12 of the multi-axis drone 1.

而從步驟S9跳回步驟S4,再順著步驟S5至S7回到步驟S9時,若此時已符合當前多軸無人機1的性能,則進行步驟510:多軸無人機進行自律飛行。但若此時要更新飛行參數,則再次跳回步驟S4,再一次進行多軸無人機1是否能根據輸入的飛行參數進行飛行的判斷。以此類推。 When jumping from step S9 back to step S4 and then following steps S5 to S7 to step S9, if the performance of the current multi-axis drone 1 is already met at this time, proceed to step 510: the multi-axis drone performs autonomous flight. However, if the flight parameters are to be updated at this time, skip back to step S4 again, and judge again whether the multi-axis drone 1 can fly according to the input flight parameters. And so on.

多軸無人機之飛行方法2進一步包含以下步驟:步驟C1:一使用者輸入一第一飛行參數與一第三飛行參數;步驟C2:根據該第一飛行 參數與該第三飛行參數,運算出一第二、一第四與一第五飛行參數;以及步驟C3:根據該第一至該第五飛行參數控制該多軸無人機的飛行。 Multi-axis drone flight method 2 further includes the following steps: Step C1: a user inputs a first flight parameter and a third flight parameter; step C2: according to the first flight Parameters and the third flight parameter to calculate a second, a fourth and a fifth flight parameter; and step C3: controlling the flight of the multi-axis drone according to the first to the fifth flight parameter.

其中第一飛行參數得為飛行速度或載重量,第二飛行參數為懸臂配置數、第三飛行參數得為飛行距離或飛行時間、第四飛行參數得為載重量或飛行速度、第五飛行參數得為飛行時間或飛行距離,而第一與第四飛行參數之間;第三與第五飛行參數之間互不重複。 The first flight parameter is a flight speed or a dead weight, the second flight parameter is a cantilever configuration number, the third flight parameter is a flight distance or flight time, the fourth flight parameter is a dead weight or flight speed, and the fifth flight parameter It must be flight time or flight distance, and there is no overlap between the first and fourth flight parameters; the third and fifth flight parameters.

而於步驟C1中,使用者得利用設置於外殼102上的輸入介面17,或是藉由可攜式電子裝置,以有線連接或無線連接的方式將第一與第三飛行參數輸入至多軸無人機1內,並由記憶媒體15加以記錄。而輸入的第一與第三飛行參數再經由飛行控制模組108被傳輸至運算模組106中,進行步驟C2:運算模組106根據輸入的第一飛行參數,以第一運算式運算出第二飛行參數;再根據第二飛行參數參照表一內容指定出一第四飛行參數。接著再根據使用者輸入的第三飛行參數與之前算得的第四飛行參數,以第二運算式運算出第五飛行參數;最後進行步驟C3:飛行控制模組108再根據第一至該第五飛行參數控制多軸無人機1的飛行。 In step C1, the user must use the input interface 17 provided on the housing 102, or use a portable electronic device to input the first and third flight parameters to the multi-axis unmanned by a wired connection or a wireless connection. In the machine 1 and recorded by the storage medium 15. The input first and third flight parameters are transmitted to the calculation module 106 through the flight control module 108, and step C2 is performed: the calculation module 106 calculates the first Two flight parameters; and a fourth flight parameter is specified according to the second flight parameter reference table 1. Then, according to the third flight parameter input by the user and the previously calculated fourth flight parameter, the fifth flight parameter is calculated by the second calculation formula; finally, step C3 is performed: the flight control module 108 performs the first to the fifth flight parameters. Flight parameters control the flight of the multi-axis drone 1.

需要知道的是,以上的方法實施例說明係以運算模組106先根據多軸無人機1已連接的懸臂12數量,判斷多軸無人機1是否能夠飛行,而後再根據使用者所輸入的飛行參數,進一步修正多軸無人機1應連接的懸臂12數量來依照使用者輸入的飛行參數飛行。但本發明並不以此為限,本發明亦可在多軸無人機1開機後,由使用者直接輸入前述的飛行參數,再由運算模組106根據第一與第二運算式算出多軸無人機1應連接的懸臂12數量,亦即懸臂配置數X、來依照使用者輸入的飛行參數飛行。其方法實施例 詳細說明如下。 What needs to be known is that the above method embodiment description is based on the calculation module 106 firstly determining whether the multi-axis drone 1 can fly according to the number of cantilever 12 connected to the multi-axis drone 1, and then according to the flight input by the user Parameters to further modify the number of cantilevers 12 to which the multi-axis drone 1 should be connected to fly in accordance with the flight parameters entered by the user. However, the present invention is not limited to this. The present invention can also directly input the aforementioned flight parameters by the user after the multi-axis drone 1 is turned on, and then the arithmetic module 106 calculates the multi-axes according to the first and second calculation formulas. The number of cantilevers 12 to which the drone 1 should be connected, that is, the number of cantilever configurations X, to fly according to the flight parameters input by the user. The method embodiment The details are as follows.

請參閱圖六,圖六繪示了根據本發明之另一具體實施例之多軸無人機飛行方法流程圖。本發明的另提供一種多軸無人機之飛行方法3,用以控制多軸無人機之飛行,多軸無人機包含N支懸臂,以及M個懸臂接口,每一懸臂包含一動力元件,包含以下步驟:步驟E1:使用者輸入第一與第三飛行參數以及飛行路徑;步驟E2:計算第二、第四以及第五飛行參數;步驟E3:根據第一至第五飛行參數,輸出一所需懸臂配置數訊息;步驟E4:判斷多軸無人機是否設為自律飛行;若否,則進行步驟E5:多軸無人機根據該第一至該第五飛行參數進行遙控飛行;若是,則進行步驟E6:多軸無人機根據該第一至該第五飛行參數,以及飛行路徑進行自律飛行。 Please refer to FIG. 6, which illustrates a flowchart of a multi-axis drone flying method according to another embodiment of the present invention. The invention also provides a multi-axis drone flight method 3 for controlling the flight of the multi-axis drone. The multi-axis drone includes N cantilever arms and M cantilever interfaces. Each cantilever contains a power element, including the following: Step: Step E1: The user inputs the first and third flight parameters and the flight path; Step E2: Calculates the second, fourth, and fifth flight parameters; Step E3: Outputs a required one according to the first to fifth flight parameters Cantilever configuration number information; Step E4: Determine whether the multi-axis drone is set to autonomous flight; if not, proceed to step E5: The multi-axis drone performs remote control flight according to the first to fifth flight parameters; if yes, proceed to step E6: The multi-axis drone performs autonomous flight according to the first to the fifth flight parameters and the flight path.

以下將詳細說明多軸無人機之飛行方法3。請再參閱圖六,首先,先執行步驟S0,按下開關114以啟動多軸無人機1,此時多軸無人機1尚未連接任何懸臂12。接著於步驟E1中,使用者先輸入兩個飛行參數,分別以第一與第三代稱,第一飛行參數得為飛行速度或載重量,第三飛行參數得為飛行距離或飛行時間。飛行參數輸入之後即進行步驟E2,由運算模組106根據第一飛行參數與第三飛行參數,以前述的第一運算式與第二運算式算出第二、第四與第五飛行參數。第二飛行參數為懸臂配置數、第四飛行參數得為載重量或飛行速度、第五飛行參數得為飛行時間或飛行距離,而第一與第四飛行參數之間;第三與第五飛行參數之間互不重複。 The flight method 3 of the multi-axis drone will be described in detail below. Please refer to FIG. 6 again. First, step S0 is performed first, and the switch 114 is pressed to start the multi-axis drone 1. At this time, the multi-axis drone 1 is not connected to any cantilever 12. Then in step E1, the user first inputs two flight parameters, which are called the first and third generations respectively. The first flight parameter must be a flight speed or a payload, and the third flight parameter must be a flight distance or a flight time. After the flight parameters are input, step E2 is performed, and the calculation module 106 calculates the second, fourth, and fifth flight parameters according to the first and third flight parameters by using the foregoing first and second calculation formulas. The second flight parameter is the number of cantilever configurations, the fourth flight parameter is the load capacity or flight speed, the fifth flight parameter is the flight time or flight distance, and between the first and fourth flight parameters; the third and fifth flight The parameters do not overlap with each other.

而在運算模組106算得所有飛行參數之後,進行步驟E3,根據第一至第五飛行參數,輸出一建議懸臂配置數X訊息,以使使用者能得知需要安裝多少懸臂12至多軸無人機1的本體10。而前述的所需懸臂配置數X 訊息得被輸出至顯示元件110供使用者判讀,或是經由無線通訊單元1088輸出至使用者的可攜式電子裝置供使用者判讀。 After all the flight parameters are calculated by the operation module 106, step E3 is performed. According to the first to fifth flight parameters, a recommended X number of cantilever configurations is output, so that the user can know how many cantilever 12 to multi-axis drones need to be installed 1 of the body 10. And the aforementioned number of required cantilever configurations X The message may be output to the display element 110 for the user to read, or output to the user's portable electronic device via the wireless communication unit 1088 for the user to read.

當使用者已依照所需懸臂配置數X,將相當於X的懸臂12數量安裝至本體10之後,進行步驟E4,判斷多軸無人機是否設為自律飛行。由於本發明的多軸無人機1亦可以RC遙控方式操作,故於步驟E4中,由飛行控制模組108檢測是否接收有來自RC遙控模組的控制訊號,若有,表示多軸無人機1將不進行自律飛行,即進入步驟E5:多軸無人機根據該第一至該第五飛行參數進行遙控飛行。若無,表示多軸無人機1將進行自律飛行,則進行步驟E6:多軸無人機根據該第一至該第五飛行參數,以及飛行路徑進行自律飛行。 After the user has installed the number of cantilever 12 corresponding to X to the body 10 according to the required number of cantilever configuration X, proceed to step E4 to determine whether the multi-axis drone is set to autonomous flight. Since the multi-axis drone 1 of the present invention can also be operated by RC remote control, in step E4, the flight control module 108 detects whether a control signal is received from the RC remote control module. If so, it indicates that the multi-axis drone 1 No autonomous flight will be performed, that is, step E5 is performed: the multi-axis drone performs remote control flight according to the first to the fifth flight parameters. If not, it indicates that the multi-axis drone 1 will perform autonomous flight, then proceed to step E6: the multi-axis drone performs autonomous flight according to the first to the fifth flight parameters and the flight path.

綜上所述,本發明提供一種多軸無人機,具有複數個懸臂接口以及複數支附有動力元件的懸臂,亦即飛行懸臂,一運算模組與一飛行控制模組。本發明可自由改變飛行所需的附有動力元件的懸臂數量,並由運算模組根據設置的懸臂數量、機體重量以及動力元件輸出功率來判斷多軸無人機是否能夠飛行,再輸入包含飛行時間、飛行距離與載重量或飛行速度等飛行參數至運算模組後,由飛行控制模組控制多軸無人機的飛行。另提供一種多軸無人機的飛行方法,先判斷無人機本體是否安裝有飛行用懸臂,並根據飛行懸臂的安裝位置、飛行懸臂的輸出功率與全機總重判斷是否能夠飛行,再藉由輸入的飛行參數實現所需的飛行計畫要求。 In summary, the present invention provides a multi-axis unmanned aerial vehicle, which has a plurality of cantilever interfaces and a plurality of cantilever attached with power components, that is, a flying cantilever, an operation module and a flight control module. The invention can freely change the number of cantilever with power elements required for flight, and the computing module can determine whether the multi-axis drone can fly according to the number of cantilever provided, body weight and power element output power, and then input including flight time After the flight parameters such as flight distance and payload or flight speed are sent to the calculation module, the flight control module controls the flight of the multi-axis drone. Another method is to provide a multi-axis drone flight method. First, determine whether the drone body is equipped with a flying cantilever, and determine whether it can fly based on the installation position of the flying cantilever, the output power of the flying cantilever, and the total weight of the whole aircraft. Flight parameters to achieve the required flight plan requirements.

相較於習知技術,本發明藉由複數個懸臂接口以及複數支飛行懸臂的組合,來達到可自由改變飛行懸臂數量與多種多軸無人機的配置。 Compared with the conventional technology, the present invention uses a combination of a plurality of cantilever interfaces and a plurality of flying cantilevers to achieve freely changing the number of flying cantilevers and the configuration of multiple multi-axis drones.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本 發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。因此,本發明所申請之專利範圍的範疇應該根據上述的說明作最寬廣的解釋,以致使其涵蓋所有可能的改變以及具相等性的安排。 With the detailed description of the above preferred embodiments, it is hoped that the present invention can be more clearly described The features and spirit of the invention do not limit the scope of the invention with the preferred embodiments disclosed above. On the contrary, the intention is to cover various changes and equivalent arrangements within the scope of the patents to be applied for in the present invention. Therefore, the scope of the patent scope of the present invention should be interpreted in the broadest sense according to the above description, so that it covers all possible changes and equal arrangements.

1‧‧‧多軸無人機 1‧‧‧Multi-axis drone

10‧‧‧本體 10‧‧‧ Ontology

102‧‧‧外殼 102‧‧‧Shell

110‧‧‧顯示元件 110‧‧‧Display element

114‧‧‧開關 114‧‧‧Switch

12‧‧‧懸臂 12‧‧‧ cantilever

122‧‧‧動力元件 122‧‧‧ Power Elements

14‧‧‧承載結構 14‧‧‧ load bearing structure

17‧‧‧輸入介面 17‧‧‧ input interface

Claims (14)

一種多軸無人機,包含有:N支懸臂,每一該等懸臂包含一動力元件;M個懸臂接口,該等懸臂透過該等懸臂接口與該多軸無人機可拆卸式地連接;一飛行控制模組,連接該等懸臂接口與該等動力元件,用以控制該等動力元件輸出功率;以及一運算模組,與該等懸臂接口電性連接,並根據所連接之該等懸臂之最大總輸出功率與該多軸無人機之總重來判斷該多軸無人機是否能夠飛行;其中,該飛行控制模組依據該運算模組的判斷結果,發出一飛行訊息;N與M皆為自然數,M≧N≧3。 A multi-axis drone includes: N cantilevers, each of which includes a power element; M cantilever interfaces, and the cantilevers are detachably connected to the multi-axis drone through the cantilever interfaces; a flight A control module connected to the cantilever interfaces and the power components for controlling the power output of the power components; and a computing module electrically connected to the cantilever interfaces and based on the maximum of the cantilever connected The total output power and the total weight of the multi-axis drone determine whether the multi-axis drone is capable of flying; wherein the flight control module sends a flight message based on the judgment result of the computing module; N and M are both natural Number, M ≧ N ≧ 3. 如申請專利範圍第1項所述的多軸無人機,進一步包含一顯示元件,用以顯示該飛行訊息。 The multi-axis drone according to item 1 of the patent application scope further includes a display element for displaying the flight information. 如申請專利範圍第1項所述的多軸無人機,其中,該飛行訊息包含一建議懸臂配置數訊息。 The multi-axis drone according to item 1 of the scope of patent application, wherein the flight information includes a suggested number of cantilever configurations. 如申請專利範圍第1項所述的多軸無人機,其中該多軸無人機包含一承載結構,用以承載一貨品。 The multi-axis drone according to item 1 of the scope of patent application, wherein the multi-axis drone includes a bearing structure for carrying a product. 如申請專利範圍第4項所述的多軸無人機,其中該運算模組進一步根據連接有該等懸臂之該等懸臂接口位置、該多軸無人機含該貨品之總重以及該等動力元件的最大總輸出功率來判斷該多軸無人機是否能夠飛行。 The multi-axis drone described in item 4 of the scope of patent application, wherein the computing module is further based on the positions of the cantilever interfaces to which the cantilevers are connected, the total weight of the multi-axis drone containing the product, and the power components. To determine whether the multi-axis drone can fly. 如申請專利範圍第1項所述的多軸無人機,其中,該飛行控制模組得接 收一使用者輸入一第一飛行參數與一第三飛行參數。 The multi-axis drone according to item 1 of the scope of patent application, wherein the flight control module can be accessed A user inputs a first flight parameter and a third flight parameter. 如申請專利範圍第6項所述的多軸無人機,其中該運算模組得根據該第一飛行參數與該第三飛行參數,運算出一第二飛行參數、一第四與一第五飛行參數,而該飛行控制模組將根據該第一至該第五飛行參數控制該多軸無人機的飛行。 The multi-axis drone according to item 6 of the scope of patent application, wherein the computing module must calculate a second flight parameter, a fourth and a fifth flight according to the first flight parameter and the third flight parameter. Parameters, and the flight control module will control the flight of the multi-axis drone according to the first to the fifth flight parameters. 如申請專利範圍第7項所述的多軸無人機,其中該第一飛行參數得為一飛行速度或一載重量,該第二飛行參數為該等懸臂之一最小配置數、該第三飛行參數得為一飛行距離或一飛行時間、該第四飛行參數得為該載重量或該飛行速度、該第五飛行參數得為該飛行時間或該飛行距離,而該第一與該第四飛行參數之間;該第三與該第五飛行參數之間互不重複。 The multi-axis drone according to item 7 of the scope of patent application, wherein the first flight parameter is a flight speed or a dead weight, the second flight parameter is a minimum configuration number of the cantilevers, and the third flight The parameter may be a flight distance or a flight time, the fourth flight parameter may be the dead weight or the flight speed, the fifth flight parameter may be the flight time or the flight distance, and the first and fourth flight Parameters; the third and the fifth flight parameters do not overlap with each other. 如申請專利範圍第7項所述的多軸無人機,其中該飛行控制模組包含一無線通訊單元,該無線通訊單元得與一可攜式電子裝置建立一無線連線,並藉由該可攜式電子裝置輸入該第一飛行參數與該第三飛行參數。 The multi-axis drone according to item 7 of the scope of patent application, wherein the flight control module includes a wireless communication unit, and the wireless communication unit may establish a wireless connection with a portable electronic device, and use the The portable electronic device inputs the first flight parameter and the third flight parameter. 如申請專利範圍第7項所述的多軸無人機,其中該飛行控制模組包含一資料接口,一使用者得利用一可攜式電子裝置與該資料接口建立一有線連線,並輸入該第一飛行參數與該第三飛行參數。 According to the multi-axis drone described in item 7 of the patent application scope, wherein the flight control module includes a data interface, a user may use a portable electronic device to establish a wired connection with the data interface and enter the data interface. The first flight parameter and the third flight parameter. 一種多軸無人機之飛行方法,該多軸無人機包含N支懸臂,以及M個懸臂接口,每一懸臂包含一動力元件,該飛行方法包含以下步驟:偵測該等懸臂接口是否連接有該等懸臂;計算所連接之該等懸臂與該多軸無人機的總重;判斷該多軸無人機是否能夠飛行;以及 依據判斷結果,則發出一飛行訊息;其中N與M皆為自然數,M≧N≧3,而該多軸無人機是否能夠飛行的判斷根據係為該等動力元件之最大總輸出功率與該多軸無人機之總重。 A flying method for a multi-axis drone. The multi-axis drone includes N cantilevers and M cantilever interfaces, and each cantilever contains a power element. The flying method includes the following steps: detecting whether the cantilever interfaces are connected to the Waiting for the cantilever; calculating the total weight of the connected cantilever and the multi-axis drone; judging whether the multi-axis drone can fly; and According to the judgment result, a flight message is issued; where N and M are natural numbers, M ≧ N ≧ 3, and whether the multi-axis drone can fly is judged based on the maximum total output power of the power components and the The total weight of the multi-axis drone. 如申請專利範圍第11項所述的多軸無人機之飛行方法另包含有以下步驟:輸入一第一飛行參數與一第三飛行參數;根據該第一飛行參數與該第三飛行參數,運算出一第二、一第四與一第五飛行參數;以及根據該第一至該第五飛行參數控制該多軸無人機的飛行。 The flight method of the multi-axis drone according to item 11 of the scope of the patent application further includes the following steps: inputting a first flight parameter and a third flight parameter; calculating according to the first flight parameter and the third flight parameter A second, a fourth, and a fifth flight parameter; and controlling the flight of the multi-axis drone according to the first to the fifth flight parameters. 如申請專利範圍第12項所述的多軸無人機之飛行方法,其中該第一飛行參數得為一飛行速度或一載重量,該第二飛行參數為該等懸臂之一最小配置數、該第三飛行參數得為一飛行距離或一飛行時間、該第四飛行參數得為該載重量或該飛行速度、該第五飛行參數得為該飛行時間或該飛行距離,而該第一與該第四飛行參數之間;該第三與該第五飛行參數之間互不重複。 The flight method of the multi-axis drone according to item 12 of the scope of the patent application, wherein the first flight parameter is a flight speed or a dead weight, and the second flight parameter is a minimum configuration number of one of the cantilevers, the The third flight parameter may be a flight distance or a flight time, the fourth flight parameter may be the dead weight or the flight speed, the fifth flight parameter may be the flight time or the flight distance, and the first and the Between the fourth flight parameters; the third and the fifth flight parameters do not overlap with each other. 一種多軸無人機之飛行方法,該多軸無人機包含N支懸臂,以及M個懸臂接口,每一懸臂包含一動力元件,該飛行方法包含以下步驟:一使用者輸入一第一飛行參數與一第三飛行參數;根據該第一飛行參數與該第三飛行參數,運算出一第二、一第四與一第五飛行參數;根據該第一至該第五飛行參數,輸出一建議懸臂配置數訊息;以及 根據該第一至該第五飛行參數控制該多軸無人機的飛行;其中N與M皆為自然數,M≧N≧3。 A flying method for a multi-axis drone. The multi-axis drone includes N cantilevers and M cantilever interfaces, and each cantilever contains a power element. The flying method includes the following steps: a user inputs a first flight parameter and A third flight parameter; calculating a second, a fourth and a fifth flight parameter according to the first flight parameter and the third flight parameter; and outputting a recommended cantilever according to the first to the fifth flight parameter Configuration number information; and The flight of the multi-axis drone is controlled according to the first to the fifth flight parameters; wherein N and M are natural numbers, and M ≧ N ≧ 3.
TW105119109A 2016-03-31 2016-06-17 A multi-axes unmanned aerial vehicle and the flying method thereof TWI610851B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??201610196203.1 2016-03-31
CN201610196203.1A CN105857587B (en) 2016-03-31 2016-03-31 Multiaxis unmanned plane and its flying method

Publications (2)

Publication Number Publication Date
TW201736201A TW201736201A (en) 2017-10-16
TWI610851B true TWI610851B (en) 2018-01-11

Family

ID=56627636

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105119109A TWI610851B (en) 2016-03-31 2016-06-17 A multi-axes unmanned aerial vehicle and the flying method thereof

Country Status (2)

Country Link
CN (1) CN105857587B (en)
TW (1) TWI610851B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018094701A1 (en) * 2016-11-25 2018-05-31 深圳市杏桉科技有限公司 Unmanned aerial vehicle navigation system and navigation method
CN107010217B (en) * 2017-05-16 2023-07-25 上海未来伙伴机器人有限公司 Screen turning device and aircraft
CN107972862B (en) * 2017-11-21 2020-11-17 歌尔科技有限公司 Load control method and device based on unmanned aerial vehicle and unmanned aerial vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW517715U (en) * 2002-01-22 2003-01-11 Jin-Shiung Shr Motorcycle lifting machine
US8774982B2 (en) * 2010-08-26 2014-07-08 Leptron Industrial Robotic Helicopters, Inc. Helicopter with multi-rotors and wireless capability
US8794566B2 (en) * 2012-08-02 2014-08-05 Neurosciences Research Foundation, Inc. Vehicle capable of stabilizing a payload when in motion
TWM489676U (en) * 2014-06-27 2014-11-11 Da-Sen Du Quantity-changeable multi-rotor aircraft structure
TW201613800A (en) * 2014-10-03 2016-04-16 Max Yu-Fu Su Booster propulsion device of multi-axis helicopter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202966657U (en) * 2012-10-24 2013-06-05 北京中科飞鸿科技有限公司 Multi-rotor craft capable of changing rotors
CN203593161U (en) * 2013-09-29 2014-05-14 山西省电力公司太原供电分公司 Variable multi-rotor UAV (unmanned aerial vehicle)
CN104787321A (en) * 2015-04-23 2015-07-22 张�杰 Rotor wing replaceable portable four-rotor wing aircraft
CN105346709B (en) * 2015-11-05 2018-06-26 广州地理研究所 A kind of multi-rotor aerocraft of deformable combination

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW517715U (en) * 2002-01-22 2003-01-11 Jin-Shiung Shr Motorcycle lifting machine
US8774982B2 (en) * 2010-08-26 2014-07-08 Leptron Industrial Robotic Helicopters, Inc. Helicopter with multi-rotors and wireless capability
US8794566B2 (en) * 2012-08-02 2014-08-05 Neurosciences Research Foundation, Inc. Vehicle capable of stabilizing a payload when in motion
TWM489676U (en) * 2014-06-27 2014-11-11 Da-Sen Du Quantity-changeable multi-rotor aircraft structure
TW201613800A (en) * 2014-10-03 2016-04-16 Max Yu-Fu Su Booster propulsion device of multi-axis helicopter

Also Published As

Publication number Publication date
CN105857587A (en) 2016-08-17
CN105857587B (en) 2018-10-12
TW201736201A (en) 2017-10-16

Similar Documents

Publication Publication Date Title
JP7225443B2 (en) Flight route generation method and program
TWI610851B (en) A multi-axes unmanned aerial vehicle and the flying method thereof
JP6786667B2 (en) Display of terrain along the flight path
CN104115081B (en) Wind calculation system using constant bank angle turn
JP5345495B2 (en) Modular software architecture for unmanned aerial vehicles
CN207133659U (en) A kind of unmanned vehicle tele-control system
WO2016050099A1 (en) System and method for supporting simulated movement
CN111694376B (en) Flight simulation method and device, electronic equipment and unmanned aerial vehicle
CN103344250B (en) The flight householder method and device of unmanned vehicle
CN109491399A (en) Automatic flight control system and method
CN104977912A (en) Ethernet-exchange-bus-based unmanned plane flight control system and method
CN107203219A (en) The flight assisting system and method for unmanned vehicle
CN106796481A (en) Control method, control device and electronic installation
CN107256030A (en) Remote terminal, flight assisting system and the method for unmanned vehicle
JP5997910B2 (en) Vehicle instrument system
US20230280763A1 (en) Method for protection unmanned aerial vehicle and unmanned aerial vehicle
CN106716281A (en) Controlling method, controlling device and unmanned aerial vehicle
CN105588579A (en) Flight state information displaying method and device of unmanned aerial vehicle
CN101488029A (en) Ground measurement and control station real-time information monitoring system for coaxial unmanned helicopter
CN206057971U (en) A kind of low latitude unmanned plane balance system
CN207351974U (en) A kind of unmanned plane air quality detection system
CN106571022B (en) A kind of four-axle aircraft control system and method based on μ C/OS-III
Zhao et al. Optimal trajectory planning of drones for 3D mobile sensing
CN105628303B (en) Cube centroid of satellite measurement method
TW201715489A (en) Reality operating emulation system