TWI579015B - Cardiac pacemaker and regulating method thereof - Google Patents

Cardiac pacemaker and regulating method thereof Download PDF

Info

Publication number
TWI579015B
TWI579015B TW104114161A TW104114161A TWI579015B TW I579015 B TWI579015 B TW I579015B TW 104114161 A TW104114161 A TW 104114161A TW 104114161 A TW104114161 A TW 104114161A TW I579015 B TWI579015 B TW I579015B
Authority
TW
Taiwan
Prior art keywords
rhythm
blood pulse
heart
signal
heart rate
Prior art date
Application number
TW104114161A
Other languages
Chinese (zh)
Other versions
TW201639611A (en
Inventor
張家齊
蕭子健
許弘毅
Original Assignee
國立交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立交通大學 filed Critical 國立交通大學
Priority to TW104114161A priority Critical patent/TWI579015B/en
Priority to US14/751,156 priority patent/US20160325102A1/en
Publication of TW201639611A publication Critical patent/TW201639611A/en
Application granted granted Critical
Publication of TWI579015B publication Critical patent/TWI579015B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36514Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
    • A61N1/36564Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/686Permanently implanted devices, e.g. pacemakers, other stimulators, biochips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • A61N1/3702Physiological parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02028Determining haemodynamic parameters not otherwise provided for, e.g. cardiac contractility or left ventricular ejection fraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02116Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physiology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

心律調節裝置及其調節方法 Heart rhythm adjustment device and adjustment method thereof

本揭示內容是有關於一種心律調節裝置及其調節方法,且特別是有關於一種根據血液脈波訊號調節的心律調節裝置及其調節方法。 The present disclosure relates to a heart rhythm adjusting device and a regulating method thereof, and more particularly to a heart rhythm adjusting device adjusted according to a blood pulse signal and a regulating method thereof.

現有的心律調節器(Pacemaker)為開放式系統(Open-loop),即為無感測、回饋控制的機能,通常是經過一段時間對病患的評估後,在心律調節器設定對病患而言最佳的心律後植入病患體內。植入體內後,此心律調節器便以相同的節拍進行心肌節律的刺激。 The existing Pacemaker is an Open-loop system, which is a function of non-sensing and feedback control. Usually, after a period of evaluation of the patient, the heart rhythm regulator is set to the patient. The best heart rhythm is implanted in the patient. After implantation in the body, the heart rhythm regulator stimulates the myocardial rhythm with the same beat.

然而固定的心律卻會衍伸其他生理上的影響,例如血壓過低時無法透過心跳加快來恢復,進而導致暫時性缺氧。又例如運動時,無法透過心跳加快來提升運動機能,亦無法透過心跳減慢來減緩運動狀態。 However, a fixed heart rhythm will extend other physiological effects. For example, if the blood pressure is too low, it cannot be recovered by the heartbeat, which leads to temporary hypoxia. For example, when exercising, it is impossible to improve the motor function through the acceleration of the heartbeat, and it is not possible to slow down the movement state by slowing the heartbeat.

此類生理上的影響會進一步造成生理結構的損傷,例如長期漸歇性缺氧進而影響意識與智力、長期血壓的失控導致的心血管病變像是血管壁損傷、瓣膜受損、肌肉缺氧、血液壓力不平衡。 Such physiological effects may further cause damage to physiological structures, such as long-term gradual hypoxia and thus affect consciousness and intelligence, and cardiovascular diseases such as blood vessel wall damage, valve damage, muscle hypoxia, Blood pressure is not balanced.

目前評估自律神經活性的方式,除了直接在自 律神經上設置感測回路外,就是透過心律變異(Heart Rate Variability,HRV)相關參數來評估調節的狀態,然而由於心臟的跳動頻率為心律調節器所固定的節律,所以無心律變異度,故無法從心律變異度上評估調節的變化,亦即此方式在安裝心律調節器的病人身上完全無法採用。目前技術最大的困難在於如何在固定的節律條件下,取得調節的參數。 Current methods for assessing autonomic nervous activity, except directly at Outside the sensing circuit, the state of the adjustment is evaluated by the Heart Rate Variability (HRV) related parameters. However, since the beating frequency of the heart is the rhythm fixed by the heart rate regulator, there is no rhythm variability. It is not possible to assess the change in regulation from the rhythm variability, ie this method is completely unusable in patients with a rhythm regulator. The biggest difficulty of the current technology is how to obtain the adjusted parameters under fixed rhythm conditions.

本揭示內容之一態樣是在提供一種心律調節裝置其包含控制單元、感測單元以及分析單元。控制單元用以輸出心律控制訊號對應心臟的跳動頻率。感測單元用以擷取血液脈波訊號。當心律控制訊號具有第一固定節律時,分析單元分析血液脈波訊號的振幅以及血液脈波訊號的反彈波時間,並據以輸出一調節參數,控制單元用以根據調節參數將心律控制訊號由第一固定節律調整至相異的第二固定節律。 One aspect of the present disclosure is to provide a heart rate adjustment device including a control unit, a sensing unit, and an analysis unit. The control unit is configured to output a heartbeat control signal corresponding to the beating frequency of the heart. The sensing unit is used to extract blood pulse signals. When the heart rate control signal has the first fixed rhythm, the analyzing unit analyzes the amplitude of the blood pulse signal and the rebound wave time of the blood pulse signal, and outputs an adjustment parameter, and the control unit uses the heart rate control signal according to the adjustment parameter. The first fixed rhythm is adjusted to a different second fixed rhythm.

本揭示內容之次一態樣是在提供一種心律調節方法其包含:輸出心律控制訊號對應心臟的跳動頻率;擷取血液脈波訊號;當心律控制訊號具有第一固定節律時,分析血液脈波訊號的振幅以及血液脈波訊號的反彈波時間時間;根據血液脈波訊號的振幅以及血液脈波訊號的反彈波時間輸出調節參數;以及根據調節參數將心律控制訊號由第一固定節律調整至相異的第二固定節律。 A second aspect of the present disclosure is to provide a heart rhythm adjustment method comprising: outputting a beat rate of a heart rhythm control signal corresponding to a heart; extracting a blood pulse wave signal; and analyzing a blood pulse wave when the heart rate control signal has a first fixed rhythm The amplitude of the signal and the rebound time of the blood pulse signal; the adjustment parameter is output according to the amplitude of the blood pulse signal and the rebound wave time of the blood pulse signal; and the heart rhythm control signal is adjusted from the first fixed rhythm to the phase according to the adjustment parameter The second fixed rhythm of the difference.

300‧‧‧心律調節裝置 300‧‧‧heart rate adjustment device

310‧‧‧感測單元 310‧‧‧Sensor unit

320‧‧‧分析單元 320‧‧‧Analysis unit

330‧‧‧控制單元 330‧‧‧Control unit

A1,A2,A3‧‧‧振幅 A1, A2, A3‧‧‧ amplitude

T1,T2,T11,T12‧‧‧時間 T1, T2, T11, T12‧‧ ‧ time

Vpul‧‧‧血液脈波訊號 Vpul‧‧‧ blood pulse signal

Vpar‧‧‧調節參數 Vpar‧‧‧ adjustment parameters

Vcon‧‧‧心律控制訊號 Vcon‧‧‧ heart rate control signal

ft‧‧‧預設值 Ft‧‧‧Preset

500‧‧‧心律調節方法 500‧‧‧ Heart rate adjustment method

S510~S550‧‧‧步驟 S510~S550‧‧‧Steps

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下。然而,應瞭解到,為符合在產業中實務利用的情況,許多的特徵並未符合比例繪示。實際上,為了闡述以下的討論,許多特徵的尺寸可能被任意地增加或縮減。 The above and other objects, features, advantages and embodiments of the present invention will become more apparent. However, it should be understood that many features are not shown to scale in order to comply with the actual use of the industry. In fact, the dimensions of many of the features may be arbitrarily increased or decreased in order to clarify the following discussion.

〔第1圖〕繪示人體內之血液脈波訊號之示意圖;〔第2圖〕繪示根據本揭示之一實施例中血液脈波訊號的振幅以及其反彈波時間之示意圖;〔第3圖〕繪示根據本揭示之一實施例中一種心律調節裝置之示意圖;〔第4圖〕繪示根據本揭示之一實施例中頻譜數值之示意圖;以及〔第5圖〕繪示根據本揭示之一實施例中一種心律調節方法之示意圖。 [Fig. 1] is a schematic diagram showing a blood pulse wave signal in a human body; [Fig. 2] is a schematic view showing an amplitude of a blood pulse wave signal and a rebound wave time thereof according to an embodiment of the present disclosure; [Fig. 3] A schematic diagram of a heart rhythm adjustment apparatus according to an embodiment of the present disclosure; [Fig. 4] is a schematic diagram showing spectral values in accordance with an embodiment of the present disclosure; and [Fig. 5] illustrates one of the present disclosures. A schematic diagram of a heart rhythm adjustment method in an embodiment.

以下揭示提供許多不同實施例或例證用以實施本發明的不同特徵。特殊例證中的元件及配置在以下討論中被用來簡化本揭示。所討論的任何例證只用來作解說的用途,並不會以任何方式限制本發明或其例證之範圍和意義。此外,本揭示在不同例證中可能重複引用數字符號且/或字母,這些重複皆為了簡化及闡述,其本身並未指定以下討論 中不同實施例且/或配置之間的關係。 The following disclosure provides many different embodiments or illustrations for implementing different features of the invention. The elements and configurations of the specific illustrations are used in the following discussion to simplify the disclosure. Any examples discussed are for illustrative purposes only and are not intended to limit the scope and meaning of the invention or its examples. In addition, the present disclosure may repeatedly recite numerical symbols and/or letters in different examples, and these repetitions are for simplicity and elaboration, and the following discussion is not specified by itself. Relationship between different embodiments and/or configurations.

關於本文中所使用之『耦接』或『連接』,均 可指二或多個元件相互直接作實體或電性接觸,或是相互間接作實體或電性接觸,而『耦接』或『連接』還可指二或多個元件元件相互操作或動作。在本文中,使用第一、第二與第三等等之詞彙,是用於描述各種元件、組件、區域、層與/或區塊是可以被理解的。但是這些元件、組件、區域、層與/或區塊不應該被這些術語所限制。這些詞彙只限於用來辨別單一元件、組件、區域、層與/或區塊。因此,在下文中的一第一元件、組件、區域、層與/或區塊也可被稱為第二元件、組件、區域、層與/或區塊,而不脫離本發明的本意。如本文所用,詞彙『與/或』包含了列出的關聯項目中的一個或多個的任何組合。 Regarding the "coupling" or "connection" used in this article, It can be noted that two or more elements are directly in physical or electrical contact with each other, or indirectly in physical or electrical contact with each other, and "coupled" or "connected" may also mean that two or more element elements operate or act in each other. The use of the terms first, second, and third, etc., is used to describe various elements, components, regions, layers and/or blocks. However, these elements, components, regions, layers and/or blocks should not be limited by these terms. These terms are only used to identify a single element, component, region, layer, and/or block. Thus, a singular element, component, region, layer and/or block may be referred to as a second element, component, region, layer and/or block, without departing from the spirit of the invention. As used herein, the term "and/or" encompasses any combination of one or more of the listed associated items.

請參閱第1圖,其繪示人體內之血液脈波訊號之 示意圖。一般來說,人體內心臟的跳動頻率為一固定節律(如每秒70~80次),可透過量測脈診、血壓或血容積來取得血液脈波訊號。第1圖所示為動脈血壓(arterial blood pressure,ABP)之訊號,可以看到隨著心臟的跳動頻率為一固定節律,動脈血壓亦呈現周期性變化,其中一個周期內最高與最低的血壓之壓差即為振幅A1。然而節律並非不會更動,心臟會隨著生理需求而調整節律。 Please refer to Figure 1 for the blood pulse signal in the human body. schematic diagram. Generally speaking, the beating frequency of the heart in the human body is a fixed rhythm (for example, 70 to 80 times per second), and blood pulse signals can be obtained by measuring pulse diagnosis, blood pressure or blood volume. Figure 1 shows the arterial blood pressure (ABP) signal. It can be seen that as the beating frequency of the heart is a fixed rhythm, the arterial blood pressure also changes periodically, with the highest and lowest blood pressure in one cycle. The pressure difference is the amplitude A1. However, the rhythm does not change, and the heart adjusts the rhythm with physiological needs.

舉例來說,運動的時候身體快速地消耗氧氣, 一方面透過刺激自律神經(亦即交感神經與副交感神經,在此為交感神經)使支氣管肌肉放鬆,一方面為了使氧氣可以 快速地傳遞至身體各處,自律神經的刺激亦使心臟的跳動頻率升高。又例如射血容積率(ejection fraction)過低時,亦即心臟送出的血量過低時亦需透過刺激自律神經(在此為交感神經)使心臟的跳動頻率升高進而提高射血容積率。 For example, when exercising, the body quickly consumes oxygen, On the one hand, by stimulating the autonomic nerves (that is, the sympathetic and parasympathetic nerves, here the sympathetic nerves), the bronchial muscles are relaxed, on the one hand, in order to make oxygen Rapidly transmitted to the body, the stimulation of the autonomic nerves also increases the frequency of the heart's beating. For example, when the ejection fraction is too low, that is, when the blood volume of the heart is too low, it is necessary to increase the beating frequency of the heart by stimulating the autonomic nerve (here, the sympathetic nerve) to increase the ejection volume rate. .

因此,在植入心律調節器的病患身上,若是能 夠取得自律神經是否受到刺激的資訊,則可進一步據以調整心律控制訊號的節律。例如當交感神經授到刺激時,則提高節律,當副交感神經授到刺激時,則降低節律。然而量測交感神經與副交感神經受到刺激與否的方式目前只能直接在自律神經上設置感測回路,而此方式需要侵入式(開刀)的診療才能達成。 Therefore, if the patient is implanted with a heart rhythm regulator, The information on whether the autonomic nerve is stimulated can be further adjusted to adjust the rhythm of the heart rate control signal. For example, when the sympathetic nerve is given a stimulus, the rhythm is increased, and when the parasympathetic nerve is given a stimulus, the rhythm is lowered. However, the way to measure whether the sympathetic and parasympathetic nerves are stimulated or not can only be set directly on the autonomic nerve, and this method requires invasive (opening) diagnosis and treatment.

在此本揭示提出了非侵入式地分析交感神經與 副交感神經的方式,請參閱第2圖,其繪示根據本揭示之一實施例中血液脈波訊號的振幅以及其反彈波的時間之示意圖。在此實施例中,人體在時段T1時間內接受伐氏操作(Valsalva maneuver),亦即持續的閉氣用力,其為日常生活中時常可見的動作,例如:咳嗽、嘔吐、提舉重物、用力排便等。在此僅為說明舉例的方便,實際上本實施例的應用並不限於伐氏操作。 This disclosure proposes a non-invasive analysis of sympathetic nerves For a parasympathetic manner, please refer to FIG. 2, which is a schematic diagram showing the amplitude of a blood pulse wave signal and the time of its rebound wave according to an embodiment of the present disclosure. In this embodiment, the human body undergoes a Valsalva maneuver during the time period T1, that is, a sustained air-closing force, which is a movement that is often seen in daily life, such as coughing, vomiting, lifting heavy objects, and defecation. Wait. Here, for convenience only, the application of the embodiment is not limited to the Vaughan operation.

如第2圖所示,在最初的T11時間內動脈血壓仍 保持穩定地周期性起伏,亦即維持振幅A1。須注意的是血液脈波訊號中的每一脈波在血管中傳遞時皆可視為由心臟端傳往血管末端(如手腕、頸部、腳踝等)的行進波(未繪示於圖中)以及由血管末端(如手腕、頸部、腳踝等)反彈回心 臟的反彈波(未繪示於圖中)所組成,故第2圖中所繪示的反彈波時間即為血液脈波訊號的反彈波時間變化之曲線。 As shown in Figure 2, the arterial blood pressure is still within the initial T11 time. The periodic fluctuations are maintained stably, that is, the amplitude A1 is maintained. It should be noted that each pulse in the blood pulse signal can be regarded as a traveling wave from the heart end to the end of the blood vessel (such as wrist, neck, ankle, etc.) (not shown in the figure). And bounce back to the heart from the end of the blood vessels (such as wrists, neck, ankles, etc.) The dirty rebound wave (not shown in the figure) is composed, so the rebound wave time shown in Fig. 2 is the curve of the rebound wave time of the blood pulse signal.

須補充的是,血液脈波訊號的振幅可以表示射 血容積率的大小。舉例來說,當血液脈波訊號的振幅變小時,代表射血容積率變小,亦即心臟送出的血量過低。反之,當血液脈波訊號的振幅變大時,代表射血容積率變大,亦即心臟送出的血量過高。另外,血液脈波訊號的反彈波時間多寡可以表示交感神經與副交感神經的狀態。舉例來說,當血液脈波訊號的反彈波時間變小時,代表交感神經受到刺激。 反之,當血液脈波訊號的反彈波時間變大時,代表副交感神經受到刺激。 It must be added that the amplitude of the blood pulse signal can be expressed The size of the blood volume ratio. For example, when the amplitude of the blood pulse signal becomes small, the volume ratio of the ejection blood volume becomes small, that is, the blood volume sent by the heart is too low. On the other hand, when the amplitude of the blood pulse signal becomes large, the volume ratio of the ejection blood volume becomes large, that is, the blood volume sent by the heart is too high. In addition, the amount of rebound wave time of the blood pulse signal can indicate the state of the sympathetic nerve and the parasympathetic nerve. For example, when the rebound wave time of the blood pulse signal becomes small, it means that the sympathetic nerve is stimulated. Conversely, when the rebound wave time of the blood pulse signal becomes large, it represents that the parasympathetic nerve is stimulated.

如第2圖所示,在接續T11時間後的T12時間內 可以看到的是血液脈波訊號的振幅由原先的振幅A1縮小為振幅A2,且血液脈波訊號的反彈波時間亦逐漸變小。也就是說,在T12的時間內射血容積率變小且交感神經受到刺激。在接續T12時間後的T2時間內可以看到的是由於閉氣用力的結束,血液脈波訊號的振幅由原先的振幅A2變大為振幅A3,且血液脈波訊號的反彈波時間亦逐漸變大。也就是說,在T2時間內射血容積率變大且副交感神經受到刺激,故本揭示文件第3圖中的心律調節裝置300即擷取血液脈波訊號的振幅以及其反彈波時間來判斷射血容積率、自律神經(交感神經及副交感神經)的資訊。 As shown in Figure 2, within the T12 time after the T11 time It can be seen that the amplitude of the blood pulse signal is reduced from the original amplitude A1 to the amplitude A2, and the rebound wave time of the blood pulse signal is gradually reduced. That is to say, the ejection volume ratio becomes small and the sympathetic nerve is stimulated during the time T12. It can be seen in the T2 time after the T12 time that the amplitude of the blood pulse signal is increased from the original amplitude A2 to the amplitude A3 due to the end of the air-tightening force, and the rebound wave time of the blood pulse signal is gradually increased. . That is, the ejection volume rate becomes large and the parasympathetic nerve is stimulated during the T2 time, so the heart rate adjusting device 300 in Fig. 3 of the present disclosure captures the amplitude of the blood pulse wave signal and the rebound wave time thereof to determine the ejection. Information on volumetric ratio, autonomic nerves (sympathetic and parasympathetic).

請參閱第3圖,其繪示根據本揭示之一實施例中 一種心律調節裝置300之示意圖。心律調節裝置300包含感 測單元310、分析單元320以及控制單元330。控制單元330用以輸出心律控制訊號Vcontrol對應心臟的跳動頻率,亦即在此實施例中心律調節裝置300設置於人(病患)體內用以協助心臟的穩定跳動。心律控制訊號Vcontrol具有一初始設定之第一固定節律(例如每秒80次),當設置於人體後即以此第一固定節律來刺激心臟跳動。 Please refer to FIG. 3, which illustrates an embodiment in accordance with the present disclosure. A schematic diagram of a heart rate adjustment device 300. Heart rhythm adjustment device 300 includes a sense The measuring unit 310, the analyzing unit 320 and the control unit 330. The control unit 330 is configured to output the beat frequency of the heart corresponding to the heart rate control signal Vcontrol, that is, in this embodiment, the central adjustment device 300 is disposed in the human (patient) body to assist the stable beating of the heart. The heart rate control signal Vcontrol has an initial fixed rhythm (eg, 80 times per second) that is stimulated by the first fixed rhythm when placed in the human body.

如第3圖所示,感測單元310用以擷取如第1圖 所示的血液脈波訊號Vpul。感測單元310可以是光電感測器(如紅光、紅外光發射接收器)、壓電感測器以及任何可以擷取到血液脈波訊號Vpul的感測器。感測單元310亦可為侵入式感測器或非侵入式感測器,本案不以此為限。 As shown in FIG. 3, the sensing unit 310 is used to capture the first image. The blood pulse signal Vpul is shown. The sensing unit 310 can be a photo-sensing device (such as a red light, an infrared light emitting receiver), a piezoelectric sensor, and any sensor that can capture the blood pulse signal Vpul. The sensing unit 310 can also be an intrusive sensor or a non-intrusive sensor, and the present invention is not limited thereto.

當心律控制訊號Vcon具有第一固定節律時,分 析單元320用以分析如第2圖所示的血液脈波訊號Vpul的振幅以及血液脈波訊號Vpul的反彈波時間。並據以輸出調節參數Vpar,控制單元330用以根據調節參數Vpar將心律控制訊號Vcon由第一固定節律調整至相異的第二固定節律。舉例來說,請一併參閱第2圖,在T12時間內,當分析單元320接收到血液脈波訊號Vpul的振幅由原先的振幅A1縮小為振幅A2時,也就是說分析單元320取得射血容積率變小的資訊後輸出調節參數Vpar,其中調節參數Vpar的內容可能為每秒加5次或每秒加10次,但不以此為限。故當控制單元330接收到調節參數Vpar後則會將原先心律控制訊號Vcon的第一固定節律(每秒80次)提高為第二固定節律(每秒85次或每秒90次)。又例如,在T2時間內,當分析單元320 接收到血液脈波訊號Vpul的振幅由原先的振幅A2變大為振幅A3時,也就是說分析單元320取得射血容積率變大的資訊後輸出調節參數Vpar,其中調節參數Vpar的內容可能為每秒減5次或每秒減10次,但不以此為限。故當控制單元330接收到調節參數Vpar後則會將原先心律控制訊號Vcon的第一固定節律(每秒90次)降低為第二固定節律(每秒85次或每秒80次)。須注意的是,T2時間內的第一固定節律為前一T12時間調整後的第二固定節律,但本揭示並不以此為限,可以將每一時刻調整後的第二固定節律做為下一時刻的第一固定節律。 When the heart rate control signal Vcon has the first fixed rhythm, The analyzing unit 320 is configured to analyze the amplitude of the blood pulse wave signal Vpul and the rebound wave time of the blood pulse wave signal Vpul as shown in FIG. 2 . And according to the output adjustment parameter Vpar, the control unit 330 is configured to adjust the heart rate control signal Vcon from the first fixed rhythm to the different second fixed rhythm according to the adjustment parameter Vpar. For example, please refer to FIG. 2 together. When the analyzing unit 320 receives the amplitude of the blood pulse wave signal Vpul from the original amplitude A1 to the amplitude A2 during the time T12, that is, the analyzing unit 320 obtains the ejection. After the information of the volume ratio becomes smaller, the adjustment parameter Vpar is output, and the content of the adjustment parameter Vpar may be added 5 times per second or 10 times per second, but not limited thereto. Therefore, when the control unit 330 receives the adjustment parameter Vpar, the first fixed rhythm (80 times per second) of the original heart rate control signal Vcon is increased to a second fixed rhythm (85 times per second or 90 times per second). For another example, during the T2 time, when the analyzing unit 320 When the amplitude of the blood pulse signal Vpul is increased from the original amplitude A2 to the amplitude A3, that is, the analyzing unit 320 obtains the information that the ejection volume ratio becomes large, and outputs the adjustment parameter Vpar, wherein the content of the adjustment parameter Vpar may be 5 times per second or 10 times per second, but not limited to this. Therefore, when the control unit 330 receives the adjustment parameter Vpar, the first fixed rhythm (90 times per second) of the original heart rate control signal Vcon is reduced to a second fixed rhythm (85 times per second or 80 times per second). It should be noted that the first fixed rhythm in the T2 time is the second fixed rhythm after the previous T12 time adjustment, but the disclosure is not limited thereto, and the second fixed rhythm adjusted at each moment can be used as The first fixed rhythm of the next moment.

另外,在T12時間內,當分析單元320接收到的 血液脈波訊號Vpul的反彈波時間逐漸變小,也就是說分析單元320取得交感神經受到刺激的資訊後輸出調節參數Vpar,其中調節參數Vpar的內容可能為每秒加5次或每秒加10次,但不以此為限。故當控制單元330接收到調節參數Vpar後則會將原先心律控制訊號Vcon的第一固定節律(每秒80次)提高為第二固定節律(每秒85次或每秒90次)。又例如,當分析單元320接收到的血液脈波訊號Vpul的反彈波時間逐漸變大,也就是說分析單元320取得副交感神經受到刺激的資訊後輸出調節參數Vpar,其中調節參數Vpar的內容可能為每秒減5次或每秒減10次,但不以此為限。故當控制單元330接收到調節參數Vpar後則會將原先心律控制訊號Vcon的第一固定節律(每秒90次))降低為第二固定節律(每秒85次或每秒80次)。同樣地,在此T2時間內的第一固定節 律為前一T12時間調整後的第二固定節律,但本揭示並不以此為限,可以將每一時刻調整後的第二固定節律做為下一時刻的第一固定節律。須補充的是,上述血液脈波訊號Vpul的振幅以及反彈波時間皆可分別影響分析單元320所輸出的調節參數Vpar,亦即分析單元320可根據兩者中任一(振幅或反彈波時間)來輸出調節參數Vpar或同時根據兩者來輸出調節參數Vpar。 In addition, during the time T12, when the analysis unit 320 receives The rebound wave time of the blood pulse signal Vpul gradually becomes smaller, that is, the analysis unit 320 outputs the adjustment parameter Vpar after obtaining the information that the sympathetic nerve is stimulated, wherein the content of the adjustment parameter Vpar may be 5 times per second or 10 times per second. Times, but not limited to this. Therefore, when the control unit 330 receives the adjustment parameter Vpar, the first fixed rhythm (80 times per second) of the original heart rate control signal Vcon is increased to a second fixed rhythm (85 times per second or 90 times per second). For example, when the rebound wave time of the blood pulse signal Vpul received by the analyzing unit 320 gradually becomes larger, that is, the analyzing unit 320 obtains the information that the parasympathetic nerve is stimulated, and outputs the adjustment parameter Vpar, wherein the content of the adjustment parameter Vpar may be 5 times per second or 10 times per second, but not limited to this. Therefore, when the control unit 330 receives the adjustment parameter Vpar, the first fixed rhythm (90 times per second) of the original heart rate control signal Vcon is reduced to a second fixed rhythm (85 times per second or 80 times per second). Similarly, the first fixed section in this T2 time The law is the second fixed rhythm after the previous T12 time adjustment, but the disclosure is not limited thereto, and the second fixed rhythm adjusted at each time can be used as the first fixed rhythm of the next moment. It should be added that the amplitude of the blood pulse signal Vpul and the rebound wave time can respectively affect the adjustment parameter Vpar output by the analysis unit 320, that is, the analysis unit 320 can be based on either of the two (amplitude or rebound wave time). To output the adjustment parameter Vpar or to output the adjustment parameter Vpar according to both.

須補充的是,在一些實施例中,分析單元320 更包含頻譜分析模組(圖式中未繪示)用以分析血液脈波訊號Vpul在頻譜上的數值,當血液脈波訊號Vpul起伏變化緩慢時,則頻譜數值皆落在低頻的位置,如第4圖上方波形,可以看到頻譜數值皆落在預設值ft以下。然而當血液脈波訊號Vpul起伏變化快速時,則頻譜數值將有部分落在高頻的位置,如第4圖下方波形,可以看到部分頻譜數值落在預設值ft以上,部分頻譜數值落在預設值ft以下。血液脈波訊號Vpul的起伏變化實際上即造成調節參數Vpar的變化,也就是說當血液脈波訊號Vpul起伏變化快速時,將造成調節參數Vpar的變化快速,亦即分析單元320所取得的頻譜數值亦可視為調節參數Vpar的變化。 It should be added that in some embodiments, the analysis unit 320 Further, the spectrum analysis module (not shown) is used to analyze the value of the blood pulse signal Vpul in the spectrum. When the blood pulse signal Vpul changes slowly, the spectrum values fall at the low frequency position, such as In the waveform above the fourth graph, you can see that the spectrum values fall below the preset value ft. However, when the fluctuation of the blood pulse signal Vpul is fast, the spectral value will partially fall at the high frequency position. As shown in the waveform below the fourth picture, it can be seen that part of the spectrum value falls above the preset value ft, and part of the spectrum value falls. Below the preset value ft. The fluctuation of the blood pulse signal Vpul actually causes a change in the adjustment parameter Vpar, that is to say, when the fluctuation of the blood pulse signal Vpul is fast, the change of the adjustment parameter Vpar will be fast, that is, the spectrum obtained by the analysis unit 320. The value can also be regarded as a change in the adjustment parameter Vpar.

為了避免在人體中對於心臟跳動頻率的快速調 節,當血液脈波訊號Vpul在頻譜上的頻譜數值大於一預設值ft時,控制單元330將會降低心律控制訊號Vcon的節律變化。舉例來說,當血液脈波訊號Vpul在頻譜上的頻譜數值大於預設值ft(例如0.3Hz)時,控制單元330判定原先所接 收到的調節參數Vpar(例如每秒加20次)變化過於快速,亦即可能由前一時刻的每秒減20次突然更動為每秒加20次,因此控制單元330將會降低心律控制訊號Vcon的節律變化,例如限制節律變化為50%,則控制單元330會限制原先所接收到的調節參數Vpar(每秒加20次)為50%(每秒加10次),故將原先心律控制訊號Vcon的第一固定節律(每秒80次)增加為第二固定節律(每秒90次)。 In order to avoid rapid adjustment of the heart beat frequency in the human body In the section, when the spectral value of the blood pulse signal Vpul in the spectrum is greater than a predetermined value ft, the control unit 330 will decrease the rhythm change of the heart rate control signal Vcon. For example, when the spectral value of the blood pulse signal Vpul in the spectrum is greater than a preset value ft (for example, 0.3 Hz), the control unit 330 determines that the original connection is The received adjustment parameter Vpar (for example, 20 times per second) changes too fast, that is, it may be reduced by 20 times per second from the previous moment to 20 times per second, so the control unit 330 will lower the heart rate control signal. Vcon's rhythm change, such as limiting the rhythm change to 50%, the control unit 330 will limit the previously received adjustment parameter Vpar (20 times per second) to 50% (plus 10 times per second), so the original heart rate control The first fixed rhythm of the signal Vcon (80 times per second) is increased to a second fixed rhythm (90 times per second).

須補充的是,當血液脈波訊號Vpul在頻譜上的 頻譜數值皆小於預設值ft(例如0.3Hz)時,則控制單元330則會恢復心律控制訊號Vcon的節律變化,亦即不限制心律控制訊號Vcon的節律變化。 It must be added that when the blood pulse signal Vpul is in the spectrum When the spectral values are less than the preset value ft (for example, 0.3 Hz), the control unit 330 restores the rhythm change of the heart rate control signal Vcon, that is, does not limit the rhythm change of the heart rate control signal Vcon.

接著,請參閱第5圖,繪示根據本揭示之一實施 例中一種心律調節方法500之示意圖。於此實施例中的心律調節方法500可配合用於先前實施例中的心律調節裝置300上,但不僅以此為限,亦可用於具相等性的其他電子裝置上。 Next, please refer to FIG. 5, which illustrates an implementation according to one embodiment of the present disclosure. A schematic diagram of a heart rhythm adjustment method 500 in an example. The heart rhythm adjustment method 500 in this embodiment can be used in the previous embodiment of the heart rhythm adjustment device 300, but not limited thereto, and can also be used on other electronic devices having the same.

如第5圖所示,此實施例中的心律調節方法500 首先執行步驟S510,輸出心律控制訊號對應心臟的跳動頻率。 As shown in FIG. 5, the heart rate adjustment method 500 in this embodiment First, step S510 is executed to output a heartbeat control signal corresponding to the beat frequency of the heart.

接著,執行步驟S520,擷取血液脈波訊號。 Then, step S520 is performed to extract the blood pulse signal.

接著,執行步驟S530,當心律控制訊號具有第一固定節律時,分析血液脈波訊號的振幅以及血液脈波訊號的反彈波時間時間。 Next, step S530 is performed to analyze the amplitude of the blood pulse wave signal and the rebound wave time time of the blood pulse wave signal when the heart rate control signal has the first fixed rhythm.

接著,執行步驟S540,根據血液脈波訊號的振幅以及血液脈波訊號的反彈波時間輸出調節參數。 Next, in step S540, the adjustment parameter is output according to the amplitude of the blood pulse signal and the rebound wave time of the blood pulse signal.

接著,執行步驟S550,以及根據調節參數將心 律控制訊號由第一固定節律調整至相異的第二固定節律。 Then, step S550 is performed, and the heart is adjusted according to the adjustment parameter. The law control signal is adjusted from the first fixed rhythm to a different second fixed rhythm.

綜上所述,本揭示文件提供一種根據血液脈波 訊號調節的心律調節裝置及其調節方法。透過血液脈波訊號的振幅以及反彈波時間達到非侵入式地分析射血容積率及自律神經,因此在不同的生理情況下可依此調整心律控制訊號。 In summary, the present disclosure provides a blood pulse based on blood Signal-regulated heart rhythm adjustment device and its adjustment method. Through the amplitude of the blood pulse signal and the rebound wave time, the ejection volume rate and the autonomic nerve are analyzed non-invasively, so the heart rate control signal can be adjusted according to different physiological conditions.

雖然本揭示內容已以實施方式揭露如上,然其並非用以限定本揭示內容,任何熟習此技藝者,在不脫離本揭示內容之精神和範圍內,當可作各種之更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為準。 The present disclosure has been disclosed in the above embodiments, but it is not intended to limit the disclosure, and any person skilled in the art can make various changes and refinements without departing from the spirit and scope of the disclosure. The scope of protection of the disclosure is subject to the definition of the scope of the patent application.

300‧‧‧心律調節裝置 300‧‧‧heart rate adjustment device

310‧‧‧感測單元 310‧‧‧Sensor unit

320‧‧‧分析單元 320‧‧‧Analysis unit

330‧‧‧控制單元 330‧‧‧Control unit

Vpul‧‧‧血液脈波訊號 Vpul‧‧‧ blood pulse signal

Vpar‧‧‧調節參數 Vpar‧‧‧ adjustment parameters

Vcon‧‧‧心律控制訊號 Vcon‧‧‧ heart rate control signal

Claims (10)

一種心律調節裝置,包含:一控制單元,用以輸出一心律控制訊號對應一心臟的跳動頻率;一感測單元,用以擷取一血液脈波訊號;以及一分析單元,當該心律控制訊號具有一第一固定節律時,該分析單元分析該血液脈波訊號的振幅以及該血液脈波訊號的反彈波時間,並據以輸出一調節參數,該控制單元用以根據該調節參數將該心律控制訊號由該第一固定節律調整至相異的一第二固定節律。 A heart rate adjusting device comprises: a control unit for outputting a heartbeat control signal corresponding to a beat frequency of a heart; a sensing unit for capturing a blood pulse signal; and an analyzing unit for the heart rate control signal When the first fixed rhythm is present, the analyzing unit analyzes the amplitude of the blood pulse signal and the rebound wave time of the blood pulse signal, and outputs an adjustment parameter, and the control unit is configured to use the heart rate according to the adjustment parameter. The control signal is adjusted by the first fixed rhythm to a different second fixed rhythm. 如申請專利範圍第1項所述之心律調節裝置,其中該分析單元更包含一頻譜分析模組,該頻譜分析模組用以分析該血液脈波訊號在頻譜上的一頻譜數值,該控制單元用以根據該調節參數及該頻譜數值將該心律控制訊號由該第一固定節律調整至該第二固定節律。 The heart rate adjusting device of claim 1, wherein the analyzing unit further comprises a spectrum analyzing module, wherein the spectrum analyzing module is configured to analyze a spectral value of the blood pulse signal in the spectrum, the control unit And adjusting the heart rhythm control signal to the second fixed rhythm according to the adjustment parameter and the spectral value. 如申請專利範圍第1項所述之心律調節裝置,其中當該血液脈波訊號的振幅或該血液脈波訊號的反彈波時間變小時該分析單元提高該調節參數。 The heart rate adjusting device according to claim 1, wherein the analyzing unit increases the adjusting parameter when an amplitude of the blood pulse wave signal or a rebound wave time of the blood pulse wave signal becomes small. 如申請專利範圍第1項所述之心律調節裝置,其中當該血液脈波訊號的振幅或該血液脈波訊號的反彈波時間變大時該分析單元降低該調節參數。 The heart rate adjusting device according to claim 1, wherein the analyzing unit decreases the adjusting parameter when an amplitude of the blood pulse wave signal or a rebound wave time of the blood pulse wave signal becomes large. 如申請專利範圍第2項所述之心律調節裝置,其中當該頻譜數值大於一預設值,該控制單元降低該心律控制訊號的節律變化。 The heart rate adjusting device of claim 2, wherein the control unit reduces a rhythm change of the heart rate control signal when the spectral value is greater than a predetermined value. 一種心律調節方法,包含:藉由一控制單元輸出一心律控制訊號對應一心臟的跳動頻率;藉由該控制單元擷取一血液脈波訊號;當該心律控制訊號具有一第一固定節律時,藉由一分析單元分析該血液脈波訊號的振幅以及該血液脈波訊號的反彈波時間;藉由該分析單元根據該血液脈波訊號的振幅以及該血液脈波訊號的反彈波時間輸出一調節參數;以及藉由該控制單元根據該調節參數將該心律控制訊號由該第一固定節律調整至相異的一第二固定節律。 A heart rate adjustment method includes: outputting, by a control unit, a heart rate control signal corresponding to a beat frequency of a heart; and obtaining, by the control unit, a blood pulse signal; when the heart rate control signal has a first fixed rhythm, The amplitude of the blood pulse wave signal and the rebound wave time of the blood pulse wave signal are analyzed by an analyzing unit; and the analyzing unit outputs an adjustment according to the amplitude of the blood pulse wave signal and the rebound wave time of the blood pulse wave signal. And adjusting, by the control unit, the heart rhythm control signal from the first fixed rhythm to the different second fixed rhythm according to the adjustment parameter. 如申請專利範圍第6項所述之心律調節方法,其中藉由該分析單元中的一頻譜分析模組分析該血液脈波訊號在頻譜上的一頻譜數值,該心律調節方法更包含藉由該控制單元根據該調節參數及該頻譜數值將該心律控制訊號由該第一固定節律調整至該第二固定節律。 The heart rhythm adjustment method according to claim 6, wherein a spectrum analysis module of the blood pulse signal is analyzed by a spectrum analysis module in the analysis unit, and the heart rate adjustment method further comprises The control unit adjusts the heart rhythm control signal from the first fixed rhythm to the second fixed rhythm according to the adjustment parameter and the spectral value. 如申請專利範圍第6項所述之心律調節方法更 包含藉由該分析單元當該血液脈波訊號的振幅或該血液脈波訊號的反彈波時間變小時提高該調節參數。 The method of heart rate adjustment as described in item 6 of the patent application scope is more The adjusting parameter is included by the analyzing unit when the amplitude of the blood pulse signal or the rebound wave time of the blood pulse signal becomes small. 如申請專利範圍第6項所述之心律調節方法更包含當該血液脈波訊號的振幅或該血液脈波訊號的反彈波時間變大時,藉由該分析單元降低該調節參數。 The heart rhythm adjustment method according to claim 6 further includes the step of reducing the adjustment parameter by the analyzing unit when the amplitude of the blood pulse signal or the rebound wave time of the blood pulse signal becomes larger. 如申請專利範圍第7項所述之心律調節方法更包含當該頻譜數值大於一預設值,藉由該控制單元降低該心律控制訊號的節律變化。 The heart rhythm adjustment method according to claim 7 further includes: when the spectral value is greater than a preset value, the control unit decreases the rhythm change of the heart rhythm control signal.
TW104114161A 2015-05-04 2015-05-04 Cardiac pacemaker and regulating method thereof TWI579015B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104114161A TWI579015B (en) 2015-05-04 2015-05-04 Cardiac pacemaker and regulating method thereof
US14/751,156 US20160325102A1 (en) 2015-05-04 2015-06-26 Cardiac regulating apparatus and regulating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104114161A TWI579015B (en) 2015-05-04 2015-05-04 Cardiac pacemaker and regulating method thereof

Publications (2)

Publication Number Publication Date
TW201639611A TW201639611A (en) 2016-11-16
TWI579015B true TWI579015B (en) 2017-04-21

Family

ID=57222172

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104114161A TWI579015B (en) 2015-05-04 2015-05-04 Cardiac pacemaker and regulating method thereof

Country Status (2)

Country Link
US (1) US20160325102A1 (en)
TW (1) TWI579015B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW522004B (en) * 1998-05-28 2003-03-01 Microlife Systems Ag A method and a device for non-invasive measurement of the blood pressure and for detection of arrhythmia
US8249706B2 (en) * 2010-01-26 2012-08-21 Pacesetter, Inc. Adaptive rate programming control in implantable medical devices using ventricular-arterial coupling surrogates

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480733B1 (en) * 1999-11-10 2002-11-12 Pacesetter, Inc. Method for monitoring heart failure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW522004B (en) * 1998-05-28 2003-03-01 Microlife Systems Ag A method and a device for non-invasive measurement of the blood pressure and for detection of arrhythmia
US8249706B2 (en) * 2010-01-26 2012-08-21 Pacesetter, Inc. Adaptive rate programming control in implantable medical devices using ventricular-arterial coupling surrogates

Also Published As

Publication number Publication date
TW201639611A (en) 2016-11-16
US20160325102A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
US8934970B2 (en) Physiological vibration detection in an implanted medical device
US9333351B2 (en) Neurostimulation method and system to treat apnea
JP5624619B2 (en) Remote sensing in implantable medical devices
US8700146B2 (en) Remote pace detection in an implantable medical device
US10849568B2 (en) Systems and methods for syncope detection and classification
US7079887B2 (en) Method and apparatus for gauging cardiac status using post premature heart rate turbulence
JP2022542580A (en) Sleep detection for sleep-disordered breathing (SDB) care
US8688215B2 (en) Apparatus and method for programming a pacemaker
EP2285441B1 (en) System for inducing a subject to fall asleep
JP2019513491A (en) Accelerometer-based sensing for the care of sleep disordered breathing (SDB)
US9403007B2 (en) Systems and methods to reduce syncope risk during neural stimulation therapy
US20080051669A1 (en) Diagnosis of sleep apnea
US20160325100A1 (en) Apparatus and method for spinal cord stimulation to treat pain
JPH06500247A (en) Optimization of rate-responsive cardiac pacemakers
AU2018302101B2 (en) Slow wave activity optimization based on dominant peripheral nervous system oscillations
JP4642752B2 (en) Method and apparatus for evaluating ventricular contraction state
TWI604837B (en) Intelligent physiological response feedback control system and method
US20200306496A1 (en) Method and system for delivering sensory simulation to a user
US9782117B2 (en) System with kinesthetic stimulation medical device for the non-invasive assessment of the sympathovagal balance of a patient
US20240091542A1 (en) Controller for a pacing device
TWI579015B (en) Cardiac pacemaker and regulating method thereof
US8958874B2 (en) Measuring autonomic tone using atrioventricular delay
TWI555551B (en) Closed-loop stimulating apparatus and stimulating method thereof
Choi et al. Computer model study of regulatory mechanisms during airway obstruction