TWI577570B - Three-dimensional printing apparatus - Google Patents

Three-dimensional printing apparatus Download PDF

Info

Publication number
TWI577570B
TWI577570B TW102140000A TW102140000A TWI577570B TW I577570 B TWI577570 B TW I577570B TW 102140000 A TW102140000 A TW 102140000A TW 102140000 A TW102140000 A TW 102140000A TW I577570 B TWI577570 B TW I577570B
Authority
TW
Taiwan
Prior art keywords
ultraviolet
light source
dimensional printing
molding material
electron beam
Prior art date
Application number
TW102140000A
Other languages
Chinese (zh)
Other versions
TW201518122A (en
Inventor
丁明雄
Original Assignee
三緯國際立體列印科技股份有限公司
金寶電子工業股份有限公司
泰金寶電通股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三緯國際立體列印科技股份有限公司, 金寶電子工業股份有限公司, 泰金寶電通股份有限公司 filed Critical 三緯國際立體列印科技股份有限公司
Priority to TW102140000A priority Critical patent/TWI577570B/en
Priority to CN201310636730.6A priority patent/CN104608378B/en
Publication of TW201518122A publication Critical patent/TW201518122A/en
Application granted granted Critical
Publication of TWI577570B publication Critical patent/TWI577570B/en

Links

Description

立體列印裝置 Three-dimensional printing device

本發明是有關於一種列印裝置,且特別是有關於一種立體列印裝置。 The present invention relates to a printing apparatus, and more particularly to a three-dimensional printing apparatus.

隨著科技的日益發展,許多利用逐層建構模型等加成式製造技術(additive manufacturing technology)來建造物理三維(three-dimensional,3-D)模型的不同方法已紛紛被提出。一般而言,加成式製造技術是將利用電腦輔助設計(computer-aided design,CAD)等軟體建構的3-D模型的設計資料轉換為連續堆疊的多個薄(准二維)橫截面層。 With the development of technology, many different methods of constructing three-dimensional (3-D) models using additive manufacturing techniques such as layer-by-layer construction models have been proposed. In general, additive manufacturing technology converts design data of a 3-D model constructed using software such as computer-aided design (CAD) into a plurality of thin (quasi-two-dimensional) cross-section layers that are continuously stacked. .

目前已發展出許多可以形成多個薄橫截面層的方式。舉例來說,列印頭通常可依據3-D模型的設計資料建構的X-Y-Z座標在基座上方沿著X-Y座標移動,從而將建構材料噴塗出正確的橫截面層形狀。所沉積的材料可隨後自然硬化或透過例如強光源而被固化,從而形成所要的橫截面層,並在逐層固化的狀態下進而形成立體物件。 A number of ways have been developed to form multiple thin cross-section layers. For example, the print head can typically be moved along the X-Y coordinate above the pedestal in accordance with the design data of the 3-D model, thereby spraying the construction material into the correct cross-sectional layer shape. The deposited material can then be naturally hardened or cured by, for example, a strong light source to form the desired cross-sectional layer and, in a layer-by-layer cured state, a three-dimensional object.

然而,在目前所用以固化材料的光源方面,多以雷射光源為主,但受雷射光源所需對應的光學構件限制,雷射光源仍須存在一定焦距,亦即光源與成型材料之間仍須保持固定的距離,因此所形成的立體物件較大,且亦因此而使成像速度較慢。因此,對於現有光源予以進一步改良,以能提高立體列印之速度與品質,仍是本領域開發人員的主要課題。 However, in the current light source for curing materials, laser light sources are mostly used, but limited by the corresponding optical components required for the laser light source, the laser light source must still have a certain focal length, that is, between the light source and the molding material. It is still necessary to maintain a fixed distance, so that the formed three-dimensional object is large, and thus the imaging speed is slow. Therefore, further improvement of existing light sources to improve the speed and quality of three-dimensional printing is still a major issue for developers in the field.

本發明提供一種立體列印裝置,其光源具有較快速的成像速度與較佳的成像品質。 The invention provides a three-dimensional printing device, the light source of which has a relatively fast imaging speed and better imaging quality.

本發明的立體列印裝置,包括光源、移動平台、盛槽以及控制單元。光源用以提供平面光。光源包括電子槍、偏向件與屏幕。電子槍用以產生電子束。偏向件設置在電子束行經路徑旁。屏幕具有紫外光螢光粉層。電子束穿過偏向件而投射至屏幕上的紫外光螢光粉層,以激發出平面光。在紫外光螢光粉層中,任意兩個相接的紫外光螢光粉形成一相接區域,且相接區域的鄰接邊長大於或等於各紫外光螢光粉在相接區域處的邊長在一平面上的正投影尺寸,其中兩個紫外光螢光粉的連接方向為該平面的法線方向。盛槽用以盛裝液態成型材。移動平台的局部浸於液態成型材中。控制單元電性連接移動平台與光源。隨著移動平台在液態成型材中移動,控制單元控制電子束投射至屏幕上的至少一位置,使光源產生不同的平面光,以逐層固化被照射的液態成型材, 而形成立體物件。移動平台的移動方向垂直平面光。 The three-dimensional printing device of the invention comprises a light source, a moving platform, a tank and a control unit. The light source is used to provide planar light. The light source includes an electron gun, a deflecting member, and a screen. An electron gun is used to generate an electron beam. The deflecting member is disposed beside the electron beam path. The screen has an ultraviolet phosphor layer. The electron beam passes through the deflecting member and is projected onto the ultraviolet phosphor powder layer on the screen to excite the planar light. In the ultraviolet fluorescent powder layer, any two adjacent ultraviolet fluorescent powders form an adjacent region, and the adjacent side length of the adjacent region is greater than or equal to the edge of each ultraviolet fluorescent powder at the junction region The orthographic projection size on a plane, wherein the connection direction of the two ultraviolet fluorescent powders is the normal direction of the plane. The tank is used to hold liquid molding materials. The mobile platform is partially immersed in a liquid molding material. The control unit is electrically connected to the mobile platform and the light source. As the mobile platform moves in the liquid molding material, the control unit controls the electron beam to be projected onto at least one position on the screen, so that the light source generates different planar light to solidify the irradiated liquid molding material layer by layer. And a three-dimensional object is formed. The moving direction of the mobile platform is vertical plane light.

在本發明的一實施例中,上述的光源還包括聚焦件。設置在電子束行經路徑旁以聚焦電子束。 In an embodiment of the invention, the light source further includes a focusing member. Set along the electron beam path to focus the electron beam.

在本發明的一實施例中,上述的紫外光螢光粉層呈六方堆積結構。 In an embodiment of the invention, the ultraviolet phosphor powder layer has a hexagonal stacked structure.

在本發明的一實施例中,上述的紫外光螢光粉層呈四方堆積結構。 In an embodiment of the invention, the ultraviolet phosphor powder layer has a tetragonal stacked structure.

在本發明的一實施例中,上述的紫外光螢光粉層呈局部重疊的堆積結構。 In an embodiment of the invention, the ultraviolet phosphor powder layer has a partially overlapping buildup structure.

在本發明的一實施例中,上述的相接區域為紫外光螢光粉的重疊區域,鄰接邊長為環繞重疊區域的邊長。 In an embodiment of the invention, the contact area is an overlapping area of the ultraviolet luminescent powder, and the adjacent side length is a side length surrounding the overlapping area.

在本發明的一實施例中,上述相接的兩個紫外光螢光粉的形狀中心的間距,小於各紫外光螢光粉的邊長之和。 In an embodiment of the invention, the pitch of the center of the shape of the two adjacent ultraviolet phosphors is smaller than the sum of the sides of the ultraviolet phosphors.

在本發明的一實施例中,上述相接的兩個紫外光螢光粉的鄰接邊長,大於各紫外光螢光粉的其中一邊長於平面上的正投影尺寸。 In an embodiment of the invention, the adjacent side edges of the two adjacent ultraviolet light phosphors are larger than one of the ultraviolet light phosphors and have an orthographic projection size longer than a plane.

在本發明的一實施例中,上述的液態成型材為光敏樹脂。 In an embodiment of the invention, the liquid molding material is a photosensitive resin.

基於上述,在本發明的上述實施例中,藉由將能提供平面光的光源作為液態成型材的固化光源,因此能有效縮減現有雷射光源聚焦成像以及掃描的時間,因而能使立體列印裝置的列印效率提高。再者,光源所提供的平面光能由控制單元決定其輪廓,而產生一次性的照射便能完成習知雷射光源逐一掃描方能完成的 區域,因而能提高液態成型材的固化效率,且無須另行控制光線掃描的區域範圍,因此簡化現有的立體列印程序。 Based on the above, in the above embodiment of the present invention, by using a light source capable of providing planar light as a solidified light source of the liquid molding material, the time for focusing imaging and scanning of the existing laser light source can be effectively reduced, thereby enabling stereo printing The printing efficiency of the device is improved. Furthermore, the planar light energy provided by the light source can be determined by the control unit, and a one-time illumination can be completed to complete the scanning of the conventional laser light source one by one. The area, thus improving the curing efficiency of the liquid molding material, does not require additional control over the area of the light scanning area, thus simplifying the existing three-dimensional printing process.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧立體列印裝置 100‧‧‧Three-dimensional printing device

110‧‧‧光源 110‧‧‧Light source

112‧‧‧電子槍 112‧‧‧Electronic gun

112a‧‧‧電子束 112a‧‧‧Electron beam

113a、113b‧‧‧聚焦件 113a, 113b‧‧‧Focus

114a、114b‧‧‧偏向件 114a, 114b‧‧‧ deflecting parts

115‧‧‧屏幕 115‧‧‧ screen

116‧‧‧紫外光螢光粉層 116‧‧‧UV phosphor powder layer

116a、116b‧‧‧紫外光螢光粉 116a, 116b‧‧‧ UV phosphor powder

117‧‧‧陽極板 117‧‧‧Anode plate

120‧‧‧移動平台 120‧‧‧Mobile platform

130‧‧‧控制單元 130‧‧‧Control unit

140‧‧‧盛槽 140‧‧‧

200‧‧‧液態成型材 200‧‧‧Liquid molding materials

210‧‧‧立體物件 210‧‧‧Three-dimensional objects

111‧‧‧外殼 111‧‧‧Shell

a11、a12、a3、a51~a55‧‧‧鄰接邊長 A11, a12, a3, a51~a55‧‧‧ adjacent side length

a2、a4、a6‧‧‧正投影尺寸 A2, a4, a6‧‧‧ orthographic dimensions

A1、A3、A5‧‧‧平面 A1, A3, A5‧‧ plane

A2、A4、A6‧‧‧連接方向 A2, A4, A6‧‧‧ connection direction

R1、R2、R3‧‧‧相接區域 R1, R2, R3‧‧‧ connected areas

d1‧‧‧間距 D1‧‧‧ spacing

d2、d3‧‧‧邊長 D2, d3‧‧‧

圖1是依照本發明一實施例的一種立體列印裝置的示意圖。 1 is a schematic view of a three-dimensional printing apparatus in accordance with an embodiment of the present invention.

圖2是圖1的立體列印裝置中光源的示意圖。 2 is a schematic view of a light source in the three-dimensional printing apparatus of FIG. 1.

圖3是圖2的光源中位於屏幕上紫外光螢光粉層的排列結構示意圖。 3 is a schematic view showing the arrangement of the ultraviolet light phosphor layer on the screen in the light source of FIG. 2.

圖4是圖3的紫外光螢光粉層的局部放大圖。 4 is a partial enlarged view of the ultraviolet phosphor powder layer of FIG. 3.

圖5是本發明另一實施例的一種紫外光螢光粉層的結構示意圖。 FIG. 5 is a schematic structural view of an ultraviolet phosphor powder layer according to another embodiment of the present invention.

圖6是本發明另一實施例的一種紫外光螢光粉層的結構示意圖。 FIG. 6 is a schematic structural view of an ultraviolet phosphor powder layer according to another embodiment of the present invention.

圖1是依照本發明一實施例的一種立體列印裝置的示意圖。請參考圖1,在本實施例中,立體列印裝置100適於從一立體模型(未繪示)而製造出一立體物體,其中立體模型可例如透過電腦輔助設計(CAD)或動畫建模軟體等建構而成,並將立體模 型橫切為多個橫截面以供立體列印裝置100讀取此立體模型,並依據此立體模型的橫截面製造立體物體。 1 is a schematic view of a three-dimensional printing apparatus in accordance with an embodiment of the present invention. Referring to FIG. 1, in the embodiment, the three-dimensional printing apparatus 100 is adapted to manufacture a solid object from a three-dimensional model (not shown), wherein the three-dimensional model can be modeled, for example, by computer aided design (CAD) or animation. Software, etc. The shape is transversely cut into a plurality of cross sections for the stereoscopic printing apparatus 100 to read the three-dimensional model, and a three-dimensional object is manufactured according to the cross section of the three-dimensional model.

進一步地說,本實施例的立體列印裝置100包括光源110、移動平台120、控制單元130以及盛槽140。在此同時提供直角座標系以便於描述相關構件及其運動狀態。盛槽140用以盛裝液態成型材200,且移動平台120的局部浸於液態成型材200中。光源110用以提供平面光投射至液態成型材200。控制單元130電性連接光源110與移動平台120,以使移動平台120的局部在液態成型材200中移動的同時,驅動光源110產生不同的平面光而投射至液態成型材200,進而逐層地固化被照射的液態成型材200,以形成立體物件210。在此,液態成型材200例如是光敏樹脂,而光源110則提供包括紫外線的平面光,以對所照射之液態成型材200進行光固化。 Further, the three-dimensional printing apparatus 100 of the present embodiment includes a light source 110, a moving platform 120, a control unit 130, and a tank 140. At the same time, a right angle coordinate system is provided to facilitate the description of the relevant components and their motion state. The tank 140 is for holding the liquid molding material 200, and a part of the moving platform 120 is immersed in the liquid molding material 200. The light source 110 is used to provide planar light projection to the liquid molding material 200. The control unit 130 is electrically connected to the light source 110 and the moving platform 120 to drive the light source 110 to generate different planar light and to project to the liquid molding material 200 while moving part of the moving platform 120 in the liquid molding material 200, thereby layer by layer The irradiated liquid molding material 200 is cured to form a three-dimensional object 210. Here, the liquid molding material 200 is, for example, a photosensitive resin, and the light source 110 provides planar light including ultraviolet rays to photocure the irradiated liquid molding material 200.

如圖1所示,移動平台120會沿Z軸而使其局部在液態成型材200中移動,因此每當移動平台120移動至Z軸上的一位置時,光源110所產生的平面光便會投射至位於該位置的液態成型材200而使之固化。如此一來,隨著移動平台120沿Z軸逐層移動,其所經位置的液態成型材200便能逐層地被固化,最終形成完整的立體物件210。 As shown in FIG. 1, the mobile platform 120 is partially moved along the Z-axis in the liquid molding material 200, so that whenever the moving platform 120 moves to a position on the Z-axis, the planar light generated by the light source 110 will The liquid molding material 200 located at this position is projected to be solidified. As a result, as the mobile platform 120 moves layer by layer along the Z axis, the liquid molding material 200 at its position can be solidified layer by layer, eventually forming a complete three-dimensional object 210.

基於上述,由於光源110所產生的平面光,其所在平面垂直於移動平台120的移動方向(亦即如圖1所示,光源110實質上是產生平行X-Y平面的平面光,而移動平台120是沿Z軸移 動),故而能搭配移動平台120的移動模式而完成立體物件210的列印動作。 Based on the above, the planar light generated by the light source 110 is perpendicular to the moving direction of the moving platform 120 (that is, as shown in FIG. 1 , the light source 110 is substantially planar light that generates parallel XY planes, and the mobile platform 120 is Moving along the Z axis Therefore, the printing operation of the three-dimensional object 210 can be completed in conjunction with the movement mode of the mobile platform 120.

圖2是圖1的立體列印裝置中光源的示意圖。請同時參考圖1與圖2,詳細而言,本實施例的光源110包括外殼111與容置其內的電子槍112、聚焦件113a、113b、偏向件114a、114b、陽極板117以及屏幕115,其中電子槍112與屏幕115位於外殼111的相對兩側。電子槍112為陰極電子槍,其用以產生電子束112a,並使電子束112a在呈高壓狀態的陽極板117間行進以投射至屏幕115,聚焦件113a、113b與偏向件114a、114b分別設置在電子束112a的行經路徑旁,用以控制電子束112a的尺寸大小與投射至屏幕115上的位置。再者,屏幕115朝向電子槍112處具有紫外光螢光粉層116。據此,電子槍112所產生的電子束122a投射至屏幕115上的紫外光螢光粉層116,進而撞擊紫外光螢光粉層116而激發出紫外光。在此,電子束122a以掃描方式逐一撞擊紫外光螢光粉層116的各個紫外光螢光粉,且經撞擊後的紫外光螢光粉其所產生的紫外光會延續一段時間。據此,藉由調整電子束112a的掃描時間,且由於屏幕115是屬二維結構,故而能使紫外光螢光粉層116在特定的一段時間內同時均產生紫外光,而光源110便能順利地產生上述的平面光。 2 is a schematic view of a light source in the three-dimensional printing apparatus of FIG. 1. Referring to FIG. 1 and FIG. 2 simultaneously, in detail, the light source 110 of the present embodiment includes a housing 111 and an electron gun 112, focusing members 113a, 113b, deflecting members 114a, 114b, an anode plate 117, and a screen 115. The electron gun 112 and the screen 115 are located on opposite sides of the outer casing 111. The electron gun 112 is a cathode electron gun for generating an electron beam 112a, and causes the electron beam 112a to travel between the anode plates 117 in a high pressure state to be projected onto the screen 115, and the focusing members 113a, 113b and the deflecting members 114a, 114b are respectively disposed on the electrons. Next to the path of the beam 112a is used to control the size of the electron beam 112a and the position projected onto the screen 115. Furthermore, the screen 115 has an ultraviolet phosphor layer 116 toward the electron gun 112. Accordingly, the electron beam 122a generated by the electron gun 112 is projected onto the ultraviolet phosphor powder layer 116 on the screen 115, thereby impinging on the ultraviolet phosphor powder layer 116 to excite ultraviolet light. Here, the electron beam 122a strikes each of the ultraviolet fluorescent powders of the ultraviolet fluorescent powder layer 116 one by one in a scanning manner, and the ultraviolet light generated by the impacted ultraviolet fluorescent powder continues for a while. Accordingly, by adjusting the scanning time of the electron beam 112a, and since the screen 115 is of a two-dimensional structure, the ultraviolet fluorescent powder layer 116 can simultaneously generate ultraviolet light for a certain period of time, and the light source 110 can The above plane light is smoothly generated.

在本實施例中,由於控制單元130能隨著移動平台120在Z軸上的移動位置而控制光源110產生不同的平面光,亦即控制單元130能藉由控制電子束112a投射在屏幕115上的不同位置 而產生不同圖案的平面光,因此立體列印裝置100無須以習知雷射光源逐一在X-Y平面上逐個掃描液態成型材200而使其固化。換句話說,光源110藉由前述結構所產生的平面光,相較於習知雷射光源,僅以產生一次性的照射便能完成固化該層液態成型材200的效果,因此能有效簡短光源110照射液態成型材200的時間。 In the present embodiment, since the control unit 130 can control the light source 110 to generate different planar light according to the moving position of the moving platform 120 on the Z axis, that is, the control unit 130 can project on the screen 115 by controlling the electron beam 112a. Different locations The planar light of different patterns is generated, so that the three-dimensional printing apparatus 100 does not need to scan the liquid molding material 200 one by one on the X-Y plane by a conventional laser light source to cure it. In other words, the planar light generated by the light source 110 by the foregoing structure can complete the effect of curing the liquid layer of the liquid layer 200 only by generating a single-time illumination compared to the conventional laser light source, thereby effectively shortening the light source. 110 The time at which the liquid molding material 200 is irradiated.

另一方面,圖3是圖2的光源中位於屏幕上紫外光螢光粉層的排列結構示意圖。圖4是圖3的紫外光螢光粉層的局部放大圖。請同時參考圖3與圖4,在本實施例中,為提高列印出立體物件210的解析度,因此需以不同排列方式配置紫外光螢光粉層的結構配置。如圖3所示,本實施例的紫外光螢光粉層是由多個同樣大小的紫外光螢光粉組成且呈六方堆積結構,尤其是呈局部重疊的堆積結構狀態,以藉此提高單位面積內的紫外光螢光粉數量。 On the other hand, FIG. 3 is a schematic view showing the arrangement structure of the ultraviolet fluorescent powder layer on the screen in the light source of FIG. 2. 4 is a partial enlarged view of the ultraviolet phosphor powder layer of FIG. 3. Please refer to FIG. 3 and FIG. 4 at the same time. In this embodiment, in order to improve the resolution of the printed three-dimensional object 210, the structural configuration of the ultraviolet fluorescent powder layer needs to be configured in different arrangements. As shown in FIG. 3, the ultraviolet fluorescent powder layer of the present embodiment is composed of a plurality of ultraviolet luminescent powders of the same size and has a hexagonal stacked structure, especially a partially overlapping stacked structure state, thereby increasing the unit. The amount of UV phosphor in the area.

如圖4所示,以二維平面上的多個紫外光螢光粉為例,任意兩個相接的紫外光螢光粉116a與116b形成相接區域R1(即在紙面形成重疊的二維區域,在此以剖面線繪示之,其由紫外光螢光粉116a與116b的部分邊長所構成平行四邊形的區域),且同一紫外光螢光粉116a於相接區域R1處的鄰接邊長a11、a12之和,大於紫外光螢光粉116a與116b於相接區域R1處的鄰接邊長在平面A1上的最大正投影尺寸a2(前述呈平行四邊形的相接區域R1,其兩個對角的相對距離在平面A1上的最大投影尺寸是a2)。在此,鄰接邊長所指為環繞重疊區域的多個邊長,且該兩個紫外光 螢光粉116a與116b的連接方向A2為所述平面A1的法線方向。同樣地,於平面A1另一側的紫外光螢光粉116b亦具相同對應關係,在此不贅述。 As shown in FIG. 4, taking a plurality of ultraviolet luminescent powders on a two-dimensional plane as an example, any two adjacent ultraviolet luminescent phosphors 116a and 116b form an interface region R1 (ie, two-dimensionally overlapping on the paper surface) The area, here shown by hatching, is a region of a parallelogram formed by the partial side lengths of the ultraviolet luminescent phosphors 116a and 116b, and the adjacent side of the same ultraviolet luminescent powder 116a at the contiguous region R1 The sum of a11 and a12 is larger than the maximum orthographic projection size a2 of the adjacent side length of the ultraviolet fluorescent powders 116a and 116b at the contact region R1 on the plane A1 (the aforementioned parallel region R1, two pairs thereof) The maximum projection size of the relative distance of the angle on the plane A1 is a2). Here, the adjacent side length is referred to as a plurality of side lengths surrounding the overlapping area, and the two ultraviolet light The connection direction A2 of the phosphors 116a and 116b is the normal direction of the plane A1. Similarly, the ultraviolet luminescent powder 116b on the other side of the plane A1 has the same correspondence relationship, and will not be described herein.

換句話說,圖3與圖4的實施例所述紫外光螢光粉116為局部重疊的結構,即任意相接(重疊)的兩個紫外光螢光粉(如前述116a與116b),其形狀中心的間距d1是小於該兩個紫外光螢光粉116a與116b的邊長d2、d3之和,因此造成兩個紫外光螢光粉116a與116b能相互局部重疊的狀態。 In other words, the ultraviolet ray phosphors 116 of the embodiment of FIG. 3 and FIG. 4 are partially overlapped structures, that is, any two adjacent ultraviolet fluoresce powders (such as the aforementioned 116a and 116b), The pitch d1 of the center of the shape is smaller than the sum of the side lengths d2 and d3 of the two ultraviolet fluorescent powders 116a and 116b, thereby causing the two ultraviolet fluorescent powders 116a and 116b to partially overlap each other.

圖5是本發明另一實施例的一種紫外光螢光粉層的結構示意圖。請參考圖5,與上述不同的是,本實施例改以四方堆積結構且彼此鄰接,同樣能達到提高紫外光螢光粉層之結構密度的效果。在本實施例中,任意兩個相接的紫外光螢光粉形成相接區域R2(即形成在紙面上一維線段),其中相接區域的鄰接邊長a3等於各紫外光螢光粉在相接區域處的邊長在平面A3上的正投影尺寸a4,其中這兩個紫外光螢光粉的連接方向A4為平面A3的法線方向。 FIG. 5 is a schematic structural view of an ultraviolet phosphor powder layer according to another embodiment of the present invention. Referring to FIG. 5, the difference from the above is that the present embodiment is modified by a tetragonal stacked structure and adjacent to each other, and the effect of increasing the structural density of the ultraviolet fluorescent powder layer can be achieved. In this embodiment, any two adjacent ultraviolet fluorescent powders form an interface region R2 (ie, formed on a one-dimensional line segment on the paper surface), wherein the adjacent side length a3 of the contact region is equal to each ultraviolet light phosphor powder. The orthographic projection dimension a4 of the side length at the intersection area on the plane A3, wherein the connection direction A4 of the two ultraviolet light phosphors is the normal direction of the plane A3.

圖6是本發明另一實施例的一種紫外光螢光粉層的結構示意圖。請參考圖6,與上述不同的是,本實施例的紫外光螢光粉層的結構是呈現單側多邊接觸的模式予以堆積鄰接,亦即在任兩個相鄰的螢光粉之間是非直線邊界而相互鄰接,且所鄰接的邊界長度大於螢光粉於該側的投影長度。換句話說,本實施例的兩個相接的紫外光螢光粉形成相接區域R3(即在紙面形成彎折狀的一 維線段),且相接區域的鄰接邊長a51~a55之和(即前述彎折線段的長度總和)大於各紫外光螢光粉於相接區域處的邊長在平面A5上的正投影尺寸a6,且該兩個紫外光螢光粉的連接方向A6為所述平面A5的法線方向。如此,藉由增加螢光粉之間的接觸部分,因而使投射出的平面光的單位面積的能量能有效提高,進而使液態成型材於固化後的結構能更加穩固。 FIG. 6 is a schematic structural view of an ultraviolet phosphor powder layer according to another embodiment of the present invention. Referring to FIG. 6, the difference from the above is that the structure of the ultraviolet phosphor powder layer of the present embodiment is a mode in which a single-sided polygonal contact is applied to be stacked adjacent, that is, a non-linear line between any two adjacent phosphors. The boundaries are adjacent to each other, and the length of the adjacent boundary is greater than the projected length of the phosphor on the side. In other words, the two adjacent ultraviolet phosphors of the embodiment form the junction region R3 (ie, a bent one on the paper surface) The dimension line segment), and the sum of the adjacent side lengths a51~a55 of the adjacent area (ie, the sum of the lengths of the aforementioned bending line segments) is larger than the orthographic projection size of the side length of each ultraviolet light phosphor at the joint area on the plane A5 A6, and the connecting direction A6 of the two ultraviolet fluorescent powders is the normal direction of the plane A5. In this way, by increasing the contact portion between the phosphors, the energy per unit area of the projected planar light can be effectively increased, and the structure of the liquid molded material after curing can be further stabilized.

綜上所述,在本發明的上述實施例中,立體列印裝置將能提供平面光的光源作為液態成型材的固化光源,因此能有效縮減現有雷射光源聚焦成像以及掃描的時間,因而能使立體列印裝置的列印效率提高。再者,光源所提供的平面光能由控制單元決定其輪廓,而產生一次性的照射便能完成習知雷射光源逐一掃描方能完成的區域,因而能提高液態成型材的固化效率,且無須另行控制光線掃描的區域範圍,因此簡化現有的立體列印程序。此外,立體列印裝置尚藉由改變屏幕上紫外光螢光粉層的結構配置,而提高其結構密度,進而能提高平面光照射於液態成型材而將其固化後的解析度與精細程度。 In summary, in the above embodiment of the present invention, the three-dimensional printing device uses a light source capable of providing planar light as a curing light source of the liquid molding material, thereby effectively reducing the time for focusing imaging and scanning of the existing laser light source, thereby enabling The printing efficiency of the three-dimensional printing device is improved. Furthermore, the planar light energy provided by the light source can be determined by the control unit, and the one-time illumination can complete the area where the conventional laser light source can be scanned one by one, thereby improving the curing efficiency of the liquid molding material, and There is no need to control the area of the light scanning area, thus simplifying the existing three-dimensional printing process. In addition, the three-dimensional printing device further increases the structural density by changing the structural configuration of the ultraviolet light phosphor layer on the screen, thereby improving the resolution and fineness of the planar light after being cured by the liquid molding material.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧立體列印裝置 100‧‧‧Three-dimensional printing device

110‧‧‧光源 110‧‧‧Light source

120‧‧‧移動平台 120‧‧‧Mobile platform

130‧‧‧控制單元 130‧‧‧Control unit

140‧‧‧盛槽 140‧‧‧

200‧‧‧液態成型材 200‧‧‧Liquid molding materials

210‧‧‧立體物件 210‧‧‧Three-dimensional objects

Claims (6)

一種立體列印裝置,包括:一光源,用以提供一平面光,該光源包括:一電子槍,用以產生電子束;一偏向件,設置在電子束行經路徑旁;一屏幕,具有一紫外光螢光粉層,電子束穿過該偏向件而投射至該屏幕上的該紫外光螢光粉層,以激發出該平面光,在該紫外光螢光粉層中,任意兩個相接的紫外光螢光粉形成一相接區域,該相接區域的鄰接邊長大於或等於各該紫外光螢光粉在該相接區域處的邊長在一平面上的正投影尺寸,其中該兩個紫外光螢光粉的連接方向為該平面的法線方向,且該兩個紫外光螢光粉的該相接區域的鄰接邊長等於各該紫外光螢光粉的任一邊長;一移動平台;一盛槽,用以盛裝一液態成型材,該移動平台的局部浸於該液態成型材中;以及一控制單元,電性連接該移動平台與該光源,其中隨著該移動平台在該液態成型材中移動,該控制單元控制電子束投射至該屏幕上的至少一位置,使該光源產生不同的平面光,以逐層固化被照射的液態成型材,而形成一立體物件,且該移動平台的移動方向垂直該平面光。 A three-dimensional printing device comprises: a light source for providing a planar light, the light source comprising: an electron gun for generating an electron beam; a deflecting member disposed beside the electron beam path; and a screen having an ultraviolet light a layer of phosphor powder, the electron beam is projected through the deflecting member to the ultraviolet phosphor powder layer on the screen to excite the planar light, and any two of the ultraviolet phosphor powder layers are connected The ultraviolet luminescent powder forms an contiguous region, and the adjacent side length of the contiguous region is greater than or equal to the orthographic projection size of each side of the ultraviolet luminescent phosphor at the contiguous region on a plane, wherein the two The connecting direction of the ultraviolet fluorescent powder is the normal direction of the plane, and the adjacent side length of the connecting region of the two ultraviolet fluorescent powders is equal to either side of each of the ultraviolet fluorescent powders; a platform; a tank for holding a liquid molding material, the mobile platform partially immersed in the liquid molding material; and a control unit electrically connecting the moving platform and the light source, wherein the mobile platform is Moving in a liquid molding material, The control unit controls the electron beam to be projected onto at least one position on the screen, so that the light source generates different planar light to solidify the irradiated liquid molding material layer by layer to form a three-dimensional object, and the moving direction of the moving platform is perpendicular to the Plane light. 如申請專利範圍第1項所述的立體列印裝置,其中該光源還包括: 一聚焦件,設置該電子槍與該偏向件之間且位在電子束行經路徑旁以聚焦電子束。 The three-dimensional printing device of claim 1, wherein the light source further comprises: A focusing member is disposed between the electron gun and the deflecting member and positioned beside the electron beam path to focus the electron beam. 如申請專利範圍第1項所述的立體列印裝置,其中該紫外光螢光粉層呈六方堆積結構。 The three-dimensional printing device according to claim 1, wherein the ultraviolet fluorescent powder layer has a hexagonal stacked structure. 如申請專利範圍第1項所述的立體列印裝置,其中該紫外光螢光粉層呈四方堆積結構。 The three-dimensional printing apparatus according to claim 1, wherein the ultraviolet fluorescent powder layer has a tetragonal stacked structure. 如申請專利範圍第1項所述的立體列印裝置,其中相接的兩個紫外光螢光粉的鄰接邊長,大於各該紫外光螢光粉的其中一邊長於該平面上的正投影尺寸。 The three-dimensional printing device according to claim 1, wherein the adjacent side edges of the two adjacent ultraviolet phosphors are larger than the orthographic projections of one side of each of the ultraviolet phosphors being longer than the plane. . 如申請專利範圍第1項所述的立體列印裝置,其中該液態成型材為光敏樹脂。 The three-dimensional printing apparatus according to claim 1, wherein the liquid molding material is a photosensitive resin.
TW102140000A 2013-11-04 2013-11-04 Three-dimensional printing apparatus TWI577570B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW102140000A TWI577570B (en) 2013-11-04 2013-11-04 Three-dimensional printing apparatus
CN201310636730.6A CN104608378B (en) 2013-11-04 2013-12-02 Three-dimensional line printing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102140000A TWI577570B (en) 2013-11-04 2013-11-04 Three-dimensional printing apparatus

Publications (2)

Publication Number Publication Date
TW201518122A TW201518122A (en) 2015-05-16
TWI577570B true TWI577570B (en) 2017-04-11

Family

ID=53143135

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102140000A TWI577570B (en) 2013-11-04 2013-11-04 Three-dimensional printing apparatus

Country Status (2)

Country Link
CN (1) CN104608378B (en)
TW (1) TWI577570B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106393671A (en) * 2015-07-28 2017-02-15 优克材料科技股份有限公司 Photocurable material and three-dimensional printing method
US11161296B2 (en) 2016-09-26 2021-11-02 Formlabs, Inc. Techniques for reducing differential cure artifacts for additive fabrication and related systems and methods
US11945155B2 (en) 2020-09-21 2024-04-02 Formlabs, Inc. Techniques for reducing peel forces in additive fabrication and related systems and methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745398A (en) * 1969-07-04 1973-07-10 Hitachi Ltd Cathode ray tube screen having contiguous,overlapping color areas
US4575330A (en) * 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07290578A (en) * 1994-04-26 1995-11-07 Japan Synthetic Rubber Co Ltd Optical shaping apparatus
DE102012200160A1 (en) * 2012-01-06 2013-07-11 Evonik Industries Ag Device for the layered production of three-dimensional objects by means of a rotating application
CN102692721B (en) * 2012-05-07 2014-09-10 上海交通大学 2D/3D (two-dimensional/three-dimensional) switchable autostereoscopic display device and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745398A (en) * 1969-07-04 1973-07-10 Hitachi Ltd Cathode ray tube screen having contiguous,overlapping color areas
US4575330A (en) * 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
US4575330B1 (en) * 1984-08-08 1989-12-19

Also Published As

Publication number Publication date
CN104608378A (en) 2015-05-13
TW201518122A (en) 2015-05-16
CN104608378B (en) 2017-05-24

Similar Documents

Publication Publication Date Title
TWI548533B (en) Three-dimensional printing apparatus
JP6449465B2 (en) Surface exposure rapid prototyping method and apparatus using enhanced digital light processing technology
KR101428620B1 (en) Electron beam writing apparatus and electron beam writing method
JP4525424B2 (en) Stereolithography method
US7670541B2 (en) Optical shaping apparatus and optical shaping method
US20160200042A1 (en) Method of stereolithography fabrication and photo-curing photosensitive resin
US20190152135A1 (en) Techniques for application of light in additive fabrication and related systems and methods
TWI566918B (en) Three dimensional printing system
TWI577570B (en) Three-dimensional printing apparatus
CN105014963A (en) Three-dimensional printing device
US11353845B2 (en) Model-adaptive multi-source large-scale mask projection 3D printing system
JP2009132127A (en) Optical shaping apparatus and optical shaping method
JPH08192469A (en) Photo-setting resin curing method
CN109968661A (en) Light-cured type 3 D-printing method and equipment
JP2010089364A (en) Three-dimensional shaping apparatus
JP6797155B2 (en) 3D printing system
US20170028647A1 (en) Three dimensional printing system
CN109968662B (en) Light source device and 3D printing system
JP2019072996A (en) 3d printer
JP2010072593A (en) Layout display apparatus and layout display method
JP2015050439A (en) Method for correcting drawing data, drawing method, and method for manufacturing mask or template for lithography
CN110370627B (en) 3D photocuring method and 3D photocuring equipment
CN117048049A (en) Photo-curing type 3D printing equipment and imaging system thereof
JP4503404B2 (en) Stereolithography apparatus and stereolithography method
US11433610B1 (en) 3D printing using microLED array coupled with voice coil

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees