TWI576084B - Intraoral scanning device and scanning method thereof - Google Patents

Intraoral scanning device and scanning method thereof Download PDF

Info

Publication number
TWI576084B
TWI576084B TW104140962A TW104140962A TWI576084B TW I576084 B TWI576084 B TW I576084B TW 104140962 A TW104140962 A TW 104140962A TW 104140962 A TW104140962 A TW 104140962A TW I576084 B TWI576084 B TW I576084B
Authority
TW
Taiwan
Prior art keywords
module
line
scanning device
image sensor
projection source
Prior art date
Application number
TW104140962A
Other languages
Chinese (zh)
Other versions
TW201720363A (en
Inventor
胡博期
薛光宏
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW104140962A priority Critical patent/TWI576084B/en
Priority to CN201610816553.3A priority patent/CN106821307B/en
Application granted granted Critical
Publication of TWI576084B publication Critical patent/TWI576084B/en
Publication of TW201720363A publication Critical patent/TW201720363A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0088Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for oral or dental tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0064Body surface scanning

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Dentistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Description

口內掃描裝置與掃描方法 Intraoral scanning device and scanning method

本發明是有關於一種口內掃描裝置,且特別是有關於一種線雷射口內掃描裝置,用以建立立體齒模。 BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an intraoral scanning device, and more particularly to a line laser intraoral scanning device for establishing a three-dimensional tooth mold.

口內掃描器是一種漸漸受到牙科界重視的設備,被視為是數位牙體(digital dentistry)的重要關鍵。此設備主要是由牙醫師操作,直接於病患口中取得牙齒的數位模型。口內掃描器依照其光源與取像方法分為數種類型,例如採用結構光、雷射光、或者使用影像進行辨識及建模等數種系統。然而,因為需要在口腔內對牙齒進行多角度的拍攝,因此取像模組(例如,影像感測器)通常需要旋轉或移動,這也增加了裝置的體積或是重量。因此,如何解決此問題,為此領域技術人員所關心的議題。 Intraoral scanners are a device that is increasingly valued by the dental community and are considered to be an important key to digital dentistry. This device is primarily operated by a dentist and takes a digital model of the tooth directly into the patient's mouth. Intraoral scanners are classified into several types according to their light source and imaging method, such as structured light, laser light, or the use of images for identification and modeling. However, because of the need to multi-angle the teeth in the oral cavity, the image capture module (eg, image sensor) typically needs to be rotated or moved, which also increases the size or weight of the device. Therefore, how to solve this problem is a topic of concern to those skilled in the field.

本發明的實施例提出一種口內掃描裝置,包括投射源、立分光模組、反射模組、影像感測器與處理器。投射源用以投射出線雷射。立分光模組設置在投射源的投射路 徑上。反射模組設置在立分光模組相對於投射源的另一側,且在投射源的投射路徑上,用以將線雷射反射至物體。上述的物體位於影像感測器的影像感測路徑上,影像感測器用以擷取對應物體的影像。處理器用以根據影像建立對應物體的立體齒模。 Embodiments of the present invention provide an intraoral scanning device including a projection source, a stereo splitting module, a reflective module, an image sensor, and a processor. The projection source is used to project a line of lasers. The vertical splitting module is set on the projection path of the projection source On the path. The reflection module is disposed on the other side of the vertical splitting module relative to the projection source, and is disposed on the projection path of the projection source to reflect the line laser to the object. The object is located on the image sensing path of the image sensor, and the image sensor is used to capture an image of the corresponding object. The processor is configured to establish a stereo tooth model of the corresponding object according to the image.

在一些實施例中,立分光模組包括三菱鏡。此三菱鏡具有第一側邊,第二側邊與一對邊,第一側邊與對邊設置於投射源的投射路徑上,第二側邊與對邊設置於影像感測路徑上。在一些實施例中,投射源與三菱鏡的第一側邊相對設置,影像感測器與三菱鏡的第二側邊相對設置。 In some embodiments, the stereo splitting module includes a Mitsubishi mirror. The Mitsubishi mirror has a first side, a second side and a pair of sides, the first side and the opposite side are disposed on the projection path of the projection source, and the second side and the opposite side are disposed on the image sensing path. In some embodiments, the projection source is disposed opposite the first side of the Mitsubishi mirror, and the image sensor is disposed opposite the second side of the Mitsubishi mirror.

在一些實施例中,上述的口內掃描裝置包括主體,具有延伸部與握持部。反射模組設置於延伸部中相對於握持部的一側;投射源、立分光模組與影像感測器則設置於握持部中。 In some embodiments, the intraoral scanning device described above includes a body having an extension and a grip. The reflective module is disposed on a side of the extending portion relative to the grip portion; the projection source, the vertical splitting module, and the image sensor are disposed in the grip portion.

本發明的實施例提出一種口內掃描裝置,包括投射源、旋轉模組、影像感測器與處理器。投射源用以投射出線雷射。第一反射模組設置於投射源的投射路徑上,用以反射線雷射至物體。旋轉模組耦接至第一反射模組,而上述的物體是位於影像感測器的影像感測路徑上。當旋轉模組旋轉第一反射模組時,影像感測器用以取得對應物體的多個影像,處理器用以根據影像建立對應物體的立體齒模。 Embodiments of the present invention provide an intraoral scanning device including a projection source, a rotation module, an image sensor, and a processor. The projection source is used to project a line of lasers. The first reflection module is disposed on the projection path of the projection source for reflecting the line laser to the object. The rotating module is coupled to the first reflective module, and the object is located on the image sensing path of the image sensor. When the rotating module rotates the first reflective module, the image sensor is used to obtain multiple images of the corresponding object, and the processor is configured to establish a stereo tooth model of the corresponding object according to the image.

在一些實施例中,上述的口內掃描裝置更包括主體,具有延伸部與握持部。第一反射模組與旋轉模組設置於延伸部的一端,投射源與影像感測器設置於握持部。 In some embodiments, the intra-oral scanning device further includes a body having an extension and a grip. The first reflection module and the rotation module are disposed at one end of the extension portion, and the projection source and the image sensor are disposed at the grip portion.

在一些實施例中,口內掃描裝置更包括第二反射模組,設置於第一反射模組與投射源之間,第二反射模組在影像感測路徑上,且不在投射路徑上。 In some embodiments, the intraoral scanning device further includes a second reflective module disposed between the first reflective module and the projection source, and the second reflective module is on the image sensing path and not on the projection path.

本發明的實施例提出一種口內掃描方法,適用於口內掃描裝置。此口內掃描裝置包括投射源以投射出線雷射至物體。此方法包括以下步驟。首先,取得對應物體的影像。接著,在影像上取得對應線雷射的多個特徵點,此步驟包括以下三個子步驟:取得對應線雷射的一線寬的多個像素;根據濾波器計算出像素之間的多個虛擬像素;以及從虛擬像素中取得灰階值最大的虛擬像素作為其中一個特徵點。最後,根據特徵點執行總數最小平方特徵點取樣法以計算出線段。 Embodiments of the present invention provide an intraoral scanning method suitable for use in an intraoral scanning device. The intraoral scanning device includes a projection source to project a line of laser light onto the object. This method includes the following steps. First, an image of the corresponding object is obtained. Then, a plurality of feature points corresponding to the line laser are obtained on the image, and the step includes the following three sub-steps: obtaining a plurality of pixels of a line width corresponding to the line laser; and calculating a plurality of virtual pixels between the pixels according to the filter And obtaining the virtual pixel having the largest grayscale value from the virtual pixel as one of the feature points. Finally, the total least squares feature point sampling method is performed according to the feature points to calculate the line segment.

在上述提出的口內掃描裝置中,由於旋轉模組與立分光模組的設置,使得可以減少口內掃描裝置的體積與重量。 In the above-described intraoral scanning device, the volume and weight of the intraoral scanning device can be reduced due to the arrangement of the rotation module and the standing beam module.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧口內掃描裝置 100‧‧‧ intraoral scanning device

110‧‧‧主體 110‧‧‧ Subject

112‧‧‧握持部 112‧‧‧ grips

114‧‧‧延伸部 114‧‧‧Extension

120‧‧‧投射源 120‧‧‧Projection source

122‧‧‧線雷射 122‧‧‧ line laser

130‧‧‧反射模組 130‧‧‧Reflective Module

132‧‧‧物體 132‧‧‧ objects

140‧‧‧旋轉模組 140‧‧‧Rotary Module

150‧‧‧影像感測器 150‧‧‧Image sensor

152‧‧‧反射模組 152‧‧‧Reflective Module

160‧‧‧處理器 160‧‧‧ processor

200‧‧‧口內掃描裝置 200‧‧‧ intraoral scanning device

210‧‧‧主體 210‧‧‧ Subject

212‧‧‧握持部 212‧‧‧ grip

214‧‧‧延伸部 214‧‧‧Extension

220‧‧‧投射源 220‧‧‧Projection source

230‧‧‧立分光模組 230‧‧‧立分光模块

231‧‧‧三菱鏡 231‧‧‧Mitsubishi mirror

231a、231b‧‧‧側邊 231a, 231b‧‧‧ side

231c‧‧‧對邊 231c‧‧‧ opposite

240‧‧‧反射模組 240‧‧‧Reflective Module

242‧‧‧物體 242‧‧‧ objects

250‧‧‧影像感測器 250‧‧‧Image Sensor

260‧‧‧處理器 260‧‧‧ processor

310‧‧‧投射源 310‧‧‧Projection source

311‧‧‧線雷射 311‧‧‧ line laser

320‧‧‧物體 320‧‧‧ objects

321、331‧‧‧線段 321, 331‧‧ ‧ line segments

322、332‧‧‧端點 322, 332‧‧‧ endpoints

330‧‧‧影像 330‧‧‧ images

340‧‧‧影像感測器 340‧‧‧Image sensor

410‧‧‧標準物件 410‧‧‧Standard objects

511~514‧‧‧端點 511~514‧‧‧Endpoint

601~607‧‧‧像素 601~607‧‧‧ pixels

611‧‧‧虛擬像素 611‧‧‧virtual pixels

701~704、721~724‧‧‧特徵點 701~704, 721~724‧‧‧ feature points

710、730‧‧‧線段 710, 730‧‧ ‧ line segments

S801~S810、S901~S907、S1010、S1020~1023、S1030‧‧‧步驟 S801~S810, S901~S907, S1010, S1020~1023, S1030‧‧‧ steps

[圖1]是根據第一實施例繪示口內掃描裝置的配置示意圖。 1 is a schematic view showing the configuration of an intra-oral scanning device according to a first embodiment.

[圖2]是根據第二實施例所繪示的口內掃描裝置的配置示意圖。 FIG. 2 is a schematic configuration diagram of an intra-oral scanning device according to a second embodiment.

[圖3]是根據第三實施例繪示了根據線雷射計算三維座標的示意圖。 FIG. 3 is a schematic view showing calculation of a three-dimensional coordinate according to a line laser according to a third embodiment.

[圖4]是根據第三實施例繪示執行校正程序時的示意圖。 FIG. 4 is a schematic diagram showing a case where a correction program is executed according to the third embodiment.

[圖5A]是根據第三實施例繪示標準物件的俯視圖。 Fig. 5A is a plan view showing a standard article according to a third embodiment.

[圖5B]是根據第三實施例繪示標準物件的側視圖。 Fig. 5B is a side view showing a standard article according to a third embodiment.

[圖6]是根據第三實施例繪示取得特徵點的示意圖。 Fig. 6 is a schematic view showing the acquisition of feature points according to the third embodiment.

[圖7]是根據第三實施例繪示根據不同方法計算出線段的示意圖。 FIG. 7 is a schematic diagram showing calculation of a line segment according to different methods according to a third embodiment.

[圖8]是根據第三實施例繪示粗掃階段的流程圖。 FIG. 8 is a flow chart showing a coarse sweep phase according to a third embodiment.

[圖9]是根據第三實施例繪示細掃階段的流程圖。 Fig. 9 is a flow chart showing a fine sweeping stage according to a third embodiment.

[圖10]是根據第三實施例繪示口內掃描方法的流程圖。 FIG. 10 is a flow chart showing a method of scanning in the mouth according to the third embodiment.

關於本文中所使用之『第一』、『第二』、…等,並非特別指次序或順位的意思,其僅為了區別以相同技術用語描述的元件或操作。另外,關於本文中所使用之「耦接」,可指二個元件直接地或間接地作電性連接。也就是說,當以下描述「第一物件耦接至第二物件」時,第一物件與第二物件之間還可設置其他的物件。 The terms "first", "second", "etc." used in this document are not intended to mean the order or the order, and are merely to distinguish between elements or operations described in the same technical terms. In addition, as used herein, "coupled" may mean that two elements are electrically connected, either directly or indirectly. That is, when the following description "the first object is coupled to the second object", other items may be disposed between the first object and the second object.

[第一實施例] [First Embodiment]

圖1是根據第一實施例繪示口內掃描裝置的配置示意圖。請參照圖1,口內掃描裝置100包括一個主體110,在主體110內設置有投射源120、反射模組130(亦稱 第一反射模組)、影像感測器150與處理器160。在此實施例中,主體110包含有握持部112與延伸部114,使用者可握著握持部112,並將延伸部114伸入至患者的口腔內。然而,本發明並不限制握持部112與延伸部114的具體形狀與材料。在一些實施例中,主體110也可以由多個不同的零件組合而成。 1 is a schematic view showing the configuration of an intra-oral scanning device according to a first embodiment. Referring to FIG. 1 , the intraoral scanning device 100 includes a main body 110 . The main body 110 is provided with a projection source 120 and a reflection module 130 (also referred to as a reflection module 130 ). The first reflection module), the image sensor 150 and the processor 160. In this embodiment, the body 110 includes a grip portion 112 and an extension portion 114, and the user can hold the grip portion 112 and extend the extension portion 114 into the oral cavity of the patient. However, the present invention does not limit the specific shape and material of the grip portion 112 and the extension portion 114. In some embodiments, the body 110 can also be assembled from a plurality of different parts.

投射源120是用以投射出線雷射122。在一些實施例,投射源120所投射出的是短波長(例如小於460奈米)的單波長光源,此光源可有效降低唾液的反射,並且一般的互補式金氧半(Complementary Metal Oxide Semiconductor,CMOS)感測器對此波段有較強的能量敏感度,有助於取得較精細的影像。 Projection source 120 is used to project line laser 122. In some embodiments, the projection source 120 projects a single wavelength source of short wavelength (eg, less than 460 nm) that effectively reduces the reflection of saliva, and is generally a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) sensors have strong energy sensitivity to this band, helping to achieve finer images.

反射模組130是設置在投射源120的投射路徑上,用以將線雷射122反射至物體132(例如為牙齒)。此反射模組130可以為主動元件或是被動元件,主動元件例如為雷射投影模組(laser light source projector),用以將投射至反射模組130表面的光源轉換成特定線型圖形,並將這些線型圖形反射至物體132表面,如此一來便不需要機械式的傳動元件。 The reflection module 130 is disposed on a projection path of the projection source 120 for reflecting the line laser 122 to the object 132 (eg, a tooth). The reflective module 130 can be an active component or a passive component, such as a laser light source projector, for converting a light source projected onto the surface of the reflective module 130 into a specific linear pattern, and These line patterns are reflected to the surface of the object 132 so that no mechanical transmission elements are required.

若反射模組130被實作為被動元件(例如鏡子),則可以搭配旋轉模組140一起使用。旋轉模組140是耦接至反射模組130,用以旋轉反射模組130。旋轉模組140可以為壓電馬達(piezoelectric motor)或是其他適合形式的馬達。根據實際上的需要,旋轉模組140可以具有任意的 旋轉角度與旋轉方向,本發明並不在此限。 If the reflection module 130 is implemented as a passive component (for example, a mirror), it can be used together with the rotation module 140. The rotating module 140 is coupled to the reflective module 130 for rotating the reflective module 130. The rotary module 140 can be a piezoelectric motor or other suitable form of motor. According to actual needs, the rotation module 140 can have any The rotation angle and the direction of rotation are not limited thereto.

影像感測器150是用以根據所感測到的光來產生數位影像,其中物體132是在影像感測器150的影像感測路徑上。例如,口內掃描裝置100還可包括一反射模組152(亦稱為第二反射模組),反射模組152是設置於反射模組130與投射源120之間,反射模組152是位於上述的影像感測路徑上,但不在投射路徑上。線雷射在物體132上的反射會透過反射模組152而進入影像感測器150。然而,本領域具有通常知識者當可設計出其他的投射路徑與影像感測路徑,例如設置更多的反射模組或透鏡,本發明並不在此限。 The image sensor 150 is configured to generate a digital image according to the sensed light, wherein the object 132 is on the image sensing path of the image sensor 150. For example, the intra-oral scanning device 100 may further include a reflective module 152 (also referred to as a second reflective module). The reflective module 152 is disposed between the reflective module 130 and the projection source 120. The reflective module 152 is located. The image sensing path described above is not on the projection path. The reflection of the line laser on the object 132 passes through the reflection module 152 and enters the image sensor 150. However, those skilled in the art can design other projection paths and image sensing paths, for example, more reflective modules or lenses, and the present invention is not limited thereto.

處理器160是電性耦接至投射源120與影像感測器150,例如為微處理器或是任意型式的可程式化電路。當反射模組130將線雷射反射至物體132時,即旋轉模組140旋轉反射模組130時,影像感測器150會取得對應物體132的多個影像。處理器160會取得這些影像,並且根據這些影像建立對應物體132的立體齒模。然而,本領域具有通常知識者當可理解,當線雷射所屬的平面方程式與影像感測器150的內部參數都為已知時,可以根據二維影像中的像素來計算出物體132上對應的點的三維座標。本發明並不限制處理器160根據什麼演算法來建立立體齒模。 The processor 160 is electrically coupled to the projection source 120 and the image sensor 150, such as a microprocessor or any type of programmable circuit. When the reflection module 130 reflects the line laser to the object 132, that is, when the rotation module 140 rotates the reflection module 130, the image sensor 150 acquires multiple images of the corresponding object 132. The processor 160 will take these images and create a stereo model corresponding to the object 132 based on the images. However, it is understood by those skilled in the art that when the plane equation to which the line laser belongs and the internal parameters of the image sensor 150 are both known, the correspondence on the object 132 can be calculated from the pixels in the two-dimensional image. The three-dimensional coordinates of the point. The present invention does not limit the processor 160 to establish a stereo tooth profile based on what algorithm.

在此實施例中,投射源120、影像感測器150與處理器160是設置在握持部112當中,而反射模組130、152與旋轉模組140是設置在延伸部114當中。然而在其他實施例中這些元件也可以根據實際上的需要而設置在不同 的位置,本發明並不在此限。 In this embodiment, the projection source 120, the image sensor 150 and the processor 160 are disposed in the grip portion 112, and the reflection modules 130, 152 and the rotation module 140 are disposed in the extension portion 114. However, in other embodiments these elements may also be arranged differently depending on the actual needs. The location of the invention is not limited thereto.

[第二實施例] [Second embodiment]

圖2是根據第二實施例所繪示的口內掃描裝置的配置示意圖。在第二實施例中,口內掃描裝置200包括主體210,主體210具有握持部212與延伸部214。口內掃描裝置200包括投射源220、立分光模組(cube beam splitting module)230、反射模組240、影像感測器250與處理器260。 FIG. 2 is a schematic diagram showing the configuration of an intra-oral scanning device according to a second embodiment. In the second embodiment, the intra-oral scanning device 200 includes a body 210 having a grip portion 212 and an extension portion 214. The intraoral scanning device 200 includes a projection source 220, a cube beam splitting module 230, a reflection module 240, an image sensor 250, and a processor 260.

投射源220用以投射出線雷射,立分光模組230則設置在投射源220的投射路徑上,用以分裂(split)線雷射。舉例來說,立分光模組230包括了三菱鏡231,在穿越三菱鏡231之後便會產生多個線雷射。在一些實施例中,立分光模組230中還包括一或多個透鏡,但本發明並不在此限。立分光模組230具有兩側,投射源220位於其中的一側,而反射模組240是設置在相對於投射源220的另一側。反射模組240位於投射源220的投射路徑上,用以將分裂後的線雷射反射至物體242。特別的是,從物體242上反射的光線也會被反射模組240所反射,進而透過立分光模組230而進入影像感測器250。因此,物體242會在影像感測器250的影像感測路徑上,影像感測器250會擷取對應物體242的影像,而處理器260會根據這些影像來建立對應物體242的立體齒模。在圖2的設置中,投射路徑與影像感測路徑是部分地重疊,此形成了同軸光路架構,可以減少口內掃描裝置200的體積。更具體來說,三菱鏡231具有第一側邊231a、第二側邊231b與對邊231c。投射源220與第一側邊231a是 相對設置,影像感測器250與第二側邊231b相對設置,也就是說,第一側邊231a與對邊231c是設置於投射源220的投射路徑上,而第二側邊231b與對邊231c則是設置於影像感測路徑上。 The projection source 220 is used to project a line laser, and the vertical beam splitting module 230 is disposed on a projection path of the projection source 220 for splitting the line laser. For example, the stereo splitting module 230 includes a Mitsubishi mirror 231 that generates a plurality of line lasers after passing through the Mitsubishi mirror 231. In some embodiments, the vertical splitting module 230 further includes one or more lenses, but the invention is not limited thereto. The vertical splitting module 230 has two sides, the projection source 220 is located on one side thereof, and the reflection module 240 is disposed on the other side with respect to the projection source 220. The reflection module 240 is located on the projection path of the projection source 220 for reflecting the split line laser to the object 242. In particular, the light reflected from the object 242 is also reflected by the reflection module 240 and then enters the image sensor 250 through the vertical light module 230. Therefore, the object 242 will be in the image sensing path of the image sensor 250, and the image sensor 250 will capture the image of the corresponding object 242, and the processor 260 will establish a stereo tooth model corresponding to the object 242 according to the images. In the arrangement of FIG. 2, the projection path and the image sensing path are partially overlapped, which forms a coaxial optical path architecture, which can reduce the volume of the intra-oral scanning device 200. More specifically, the Mitsubishi mirror 231 has a first side 231a, a second side 231b, and a opposite side 231c. The projection source 220 and the first side 231a are Oppositely, the image sensor 250 is disposed opposite to the second side 231b, that is, the first side 231a and the opposite side 231c are disposed on the projection path of the projection source 220, and the second side 231b and the opposite side The 231c is placed on the image sensing path.

在此實施例中,反射模組240是設置於延伸部214中相對於握持部212的一側;而其餘的元件,如投射源220、立分光模組230、影像感測器250與處理器260則是設置於握持部212中。然而,圖2中各元件的設置位置僅是範例,本發明不應以此為限。 In this embodiment, the reflective module 240 is disposed on the side of the extending portion 214 relative to the grip portion 212; and the remaining components, such as the projection source 220, the vertical splitting module 230, the image sensor 250, and the processing The device 260 is disposed in the grip portion 212. However, the positions of the components in FIG. 2 are merely examples, and the present invention should not be limited thereto.

[第三實施例] [Third embodiment]

本揭露在第三實施例中提出了一種掃描方法與校正方法,可用於第一實施例或是第二實施例中的口內掃描裝置。圖3是根據第三實施例繪示了根據線雷射計算三維座標的示意圖。在圖3的範例中,投射源310投射了線雷射311至球型的物體320,並在物體320上形成了線段321。影像感測器340會擷取物體320的影像330,而線段321是對應至影像330上的線段331,其中端點322是對應至端點332。根據影像感測器340的模型與不同的演算法,可以有許多計算三維座標的方式,以下僅以最簡單的方式來說明。假設影像感測器340的模型為針孔成像(pinhole),以影像感測器340為原點,在真實世界座標中端點322的座標為(X,Y,Z)。另外,在影像座標中端點332的座標為(x,y)。影像330與影像感測器340之間的距離便是影像感測器340的焦距(以下標記為f)。根據上述設定,會滿足以下方程式(1)、(2)。 The present disclosure proposes a scanning method and a correction method in the third embodiment, which can be used in the intraoral scanning device in the first embodiment or the second embodiment. 3 is a schematic diagram of calculating a three-dimensional coordinate from a line laser according to a third embodiment. In the example of FIG. 3, projection source 310 projects line laser 311 to spherical object 320 and forms line segment 321 on object 320. The image sensor 340 captures the image 330 of the object 320, and the line segment 321 corresponds to the line segment 331 on the image 330, wherein the endpoint 322 corresponds to the endpoint 332. Depending on the model of the image sensor 340 and the different algorithms, there are many ways to calculate the three-dimensional coordinates, which are described below in the simplest manner. It is assumed that the model of the image sensor 340 is a pinhole, with the image sensor 340 as the origin, and the coordinates of the end point 322 in the real world coordinates are (X, Y, Z). In addition, the coordinates of the endpoint 332 in the image coordinates are (x, y). The distance between the image 330 and the image sensor 340 is the focal length of the image sensor 340 (hereinafter referred to as f). According to the above settings, the following equations (1) and (2) are satisfied.

另一方面,線雷射311所形成的平面的方程式可以表示為AX+BY+CZ+D=0,其中A、B、C、D為實數。將方程式(1)、(2)代入至上述的平面方程式,便可以得到以下方程式(3)。 On the other hand, the equation of the plane formed by the line laser 311 can be expressed as AX+BY+CZ+D=0, where A, B, C, and D are real numbers. Substituting equations (1) and (2) into the above plane equation, the following equation (3) can be obtained.

換言之,根據座標(x,y)、焦距f與平面方程式便可以計算出景深Z,再代回方程式(1)、(2)便可以得到座標X、Y。在上述計算中,焦距f是一個必要的參數,必須要透過校正的方式來取得。當影像感測器340的模型較為複雜時,所需的參數也會更多。以通用的情況來說,若以同質座標(homogeneous coordinate)的方式來表示,則影像330上一個點的座標會具有三個維度,而真實世界座標上一個點的座標會具有四個維度,透過相機矩陣(camera matrix)便可以將四維的座標轉換為三維的座標。因此,此相機矩陣的大小便是3x4,共有12個變數。如果端點322與端點332的座標與對應關係是已知,則可以提供3個解(solution),因此要得到相機矩陣中的12個變數便需要4組已知的對應。 In other words, according to the coordinates (x, y), the focal length f and the plane equation, the depth of field Z can be calculated, and the equations (1) and (2) can be substituted to obtain the coordinates X and Y. In the above calculation, the focal length f is a necessary parameter and must be obtained by means of correction. When the model of the image sensor 340 is more complicated, more parameters are required. In the general case, if represented by a homogeneous coordinate, the coordinates of a point on the image 330 will have three dimensions, and the coordinates of a point on the real world coordinate will have four dimensions. The camera matrix converts four-dimensional coordinates into three-dimensional coordinates. Therefore, the size of this camera matrix is 3x4, with a total of 12 variables. If the coordinates and correspondence of endpoints 322 and endpoints 332 are known, then three solutions can be provided, so that four sets of known correspondences are needed to obtain the 12 variables in the camera matrix.

圖4是根據第三實施例繪示執行校正程序時的示意圖。圖5A是根據第三實施例繪示標準物件的俯視圖。圖5B是根據第三實施例繪示標準物件的側視圖。請參照圖 4、圖5A與圖5B,在此實施例中是已標準物件410來執行參數的校正。當線雷射投射在標準物件410時,在端點511~514會產生折線,由於標準物件410的體積、大小為已知,因此透過影像處理的方式可以得到端點511~514在真實世界座標上的位置。如上所述,在得到4組已知的對應以後便可以計算出相機矩陣中的變數。在一些實施例中,也可以投射多於一條線雷射在標準物件410上,得到超過4個對應。在得到這些對應以後,可以執行一最佳化演算法來計算相機矩陣中的變數。然而,上述的標準物件410的形狀只是範例,本領域具有通常知識者當可設計出其他形狀的標準物件,本發明並不在此限。值得注意的是,在圖4中是以第二實施例中的口內掃描裝置作為範例,當標準物件410也可以搭配第一實施例中的口內掃描裝置使用。 FIG. 4 is a schematic diagram showing the execution of a correction procedure according to the third embodiment. Fig. 5A is a plan view showing a standard article according to a third embodiment. Fig. 5B is a side view showing a standard article according to a third embodiment. Please refer to the figure 4. Figures 5A and 5B, in this embodiment, the standard object 410 is used to perform the correction of the parameters. When the line laser is projected on the standard object 410, a polygonal line is generated at the end points 511 to 514. Since the size and size of the standard object 410 are known, the end points 511 to 514 can be obtained at the real world coordinates by image processing. The location on the top. As described above, the variables in the camera matrix can be calculated after four sets of known correspondences are obtained. In some embodiments, more than one line of laser light can also be projected onto the standard object 410, resulting in more than four correspondences. After obtaining these correspondences, an optimization algorithm can be performed to calculate the variables in the camera matrix. However, the shape of the above-described standard object 410 is merely an example, and those skilled in the art have a standard object that can design other shapes, and the present invention is not limited thereto. It is to be noted that, in FIG. 4, the intraoral scanning device in the second embodiment is taken as an example, and the standard object 410 can also be used in conjunction with the intraoral scanning device in the first embodiment.

從以上討論可得知,不論在掃描程序或者是校正程序中,都需要在影像中取得特定的一個點。然而,請參照回圖3,當把線雷射311投射在物體320上時,在影像330中所呈現的線段331會具有一定的寬度,以下將說明如何從具有寬度的線段中取得一個點(亦稱為特徵點)。 As can be seen from the above discussion, it is necessary to obtain a specific point in the image whether in the scanning program or the calibration program. However, referring back to FIG. 3, when the line laser 311 is projected onto the object 320, the line segment 331 presented in the image 330 will have a certain width, and how to take a point from the line segment having the width will be explained below ( Also known as feature points).

圖6是根據第三實施例繪示取得特徵點的示意圖。請參照圖6,坐標軸上的橫軸代表像素的位置,從左到右為像素601~607,這些像素例如是橫跨了圖3的線段331;縱軸則代表這些像素601~607的灰階值。在此實施例中,目標是要取得灰階值最大(即最亮)的點作為特徵點,從圖中可以看出像素603、604的灰階值最大。但由於解析度 的關係,在像素603、604之間灰階值最大的部分不見得有對應的像素,因此可以使用濾波器來內插出像素603、604之間的虛擬像素。例如,在一些實施例中可以使用Remez有限脈衝響應濾波方法來計算出虛擬像素,但在其他實施例中也可以使用其他類型的濾波器,但本發明並不限制濾波器的類型與係數。接下來,可以從這些虛擬像素中取得灰階值最大的一個(即虛擬像素611)作為特徵點。 FIG. 6 is a schematic diagram showing the acquisition of feature points according to the third embodiment. Referring to FIG. 6, the horizontal axis on the coordinate axis represents the position of the pixel, and the pixels 601 to 607 are from left to right. These pixels are, for example, across the line segment 331 of FIG. 3; the vertical axis represents the gray of the pixels 601-607. Order value. In this embodiment, the goal is to obtain the point with the largest grayscale value (ie, the brightest) as the feature point, and it can be seen from the figure that the grayscale values of the pixels 603, 604 are the largest. But because of the resolution The relationship between the pixels 603, 604 having the largest gray scale value does not necessarily have corresponding pixels, so a filter can be used to interpolate the virtual pixels between the pixels 603, 604. For example, the Remez finite impulse response filtering method may be used in some embodiments to calculate virtual pixels, although other types of filters may be used in other embodiments, although the invention does not limit the type and coefficients of the filters. Next, one of the virtual pixels having the largest grayscale value (ie, the virtual pixel 611) can be obtained as a feature point.

上述的做法可以解決線段331寬度的問題,然而在線段331上取得多個特徵點以後會發現這些特徵點不見得是連成一條線,以下會再根據總數最小平方(total least square,TLS)特徵點取樣法來解決此問題。請參照圖7,圖7左側是根據總數最小平方特徵點取樣法所繪示出的曲線,圖7右側是根據代數最小平方(algebraic least square,ALS)特徵點取樣法所繪示出的曲線。從圖7可以看出,總數最小平方特徵點取樣法所計算的是特徵點701~706等與線段710之間的垂直距離,而代數最小平方特徵點取樣法所計算的是特徵點721~724等與線段730之間Y軸上的距離(為簡化起見,並未標示所有特徵點)。從實驗結果可以得知,總數最小平方特徵點取樣法的結果會比較好。具體來說,可將線段710的方程式的係數設定為變數,將特徵點701~704與線段710之間的垂直距離設定為目標函數,接下來執行最佳化演算法便可以得到線段710的係數。 The above method can solve the problem of the width of the line segment 331. However, after obtaining a plurality of feature points on the line segment 331, it is found that these feature points are not necessarily connected in a line, and the following will be based on the total least square (TLS) feature. Point sampling is used to solve this problem. Please refer to FIG. 7. The left side of FIG. 7 is a curve drawn according to the total least squares feature point sampling method, and the right side of FIG. 7 is a curve drawn according to the algebraic least square (ALS) feature point sampling method. It can be seen from Fig. 7 that the total least squares feature point sampling method calculates the vertical distance between the feature points 701~706 and the like and the line segment 710, and the algebra least squares feature point sampling method calculates the feature points 721~724. The distance on the Y-axis between line segments 730 (for simplicity, not all feature points are indicated). It can be known from the experimental results that the results of the total least squares feature point sampling method will be better. Specifically, the coefficient of the equation of the line segment 710 can be set as a variable, and the vertical distance between the feature points 701-704 and the line segment 710 can be set as the objective function, and then the coefficient of the line segment 710 can be obtained by performing the optimization algorithm. .

以下將詳細說明掃描程序的步驟,在此實施例中掃描程序被分為粗掃階段與細掃階段。圖8是根據第三實 施例繪示粗掃階段的流程圖,請先參照圖8。在步驟S801中先進行初始程序,將圖1的旋轉模組140的角度調整至一初始角度,以確保每次掃描的基準點均一致。在步驟S802中,判斷是否進行校正程序。如果口內掃描裝置沒有準確地進行旋轉或是受到外力衝擊,會導致原先校正位置有所偏移,因此若此情況發生,必須進行校正程序。 The steps of the scanning procedure will be described in detail below, in which the scanning procedure is divided into a coarse sweep phase and a fine sweep phase. Figure 8 is based on the third real The embodiment shows a flow chart of the rough sweep phase, please refer to FIG. 8 first. In step S801, an initial procedure is first performed to adjust the angle of the rotation module 140 of FIG. 1 to an initial angle to ensure that the reference points of each scan are consistent. In step S802, it is determined whether or not the correction procedure is performed. If the intraoral scanning device does not rotate accurately or is subjected to an external force, the original calibration position will be shifted. Therefore, if this happens, a calibration procedure must be performed.

若步驟S802的結果為是,則進行校正程序(步驟S803~S805)。在步驟S803中,從影像中擷取標準物件上四個特徵點的二維座標。在步驟S804中,取得這些特徵點在真實世界座標上的三維座標。在步驟S805中,根據上述的二維座標與三維座標計算出偏差值,此偏差值可用來修正相機矩陣中的變數。在一些實施例中,在步驟S805中也會計算平均經度資訊、標準校準點資訊以及模式取向差資訊。平均精度資訊是用以重建三維座標系中Y軸與Z軸的平均錯誤上的度量校率點,標準校準點資訊是用以重建三維座標系中Y軸與Z軸的標準校準點的標準偏差錯誤,模式取向差資訊是用以測量校準模式與三維座標系中Y軸和Z軸的運動方向之間的取向差的像素。 If the result of step S802 is YES, a correction procedure is performed (steps S803 to S805). In step S803, two-dimensional coordinates of four feature points on the standard object are extracted from the image. In step S804, three-dimensional coordinates of these feature points on real world coordinates are obtained. In step S805, a deviation value is calculated according to the two-dimensional coordinates and the three-dimensional coordinates described above, and the deviation value can be used to correct the variable in the camera matrix. In some embodiments, the average longitude information, the standard calibration point information, and the mode orientation difference information are also calculated in step S805. The average accuracy information is used to reconstruct the average error rate of the Y-axis and the Z-axis in the three-dimensional coordinate system. The standard calibration point information is used to reconstruct the standard deviation of the standard calibration points of the Y-axis and the Z-axis in the three-dimensional coordinate system. The error, the mode orientation difference information is a pixel for measuring the difference in orientation between the calibration mode and the moving direction of the Y-axis and the Z-axis in the three-dimensional coordinate system.

在步驟S806中,確認掃描範圍,並規劃掃描路徑。具體來說,系統會匯入一立體範圍的初始牙模體積檔案以規劃掃描路徑,此初始牙模體積檔案是以100立方釐米來限制掃描範圍的邊界,並進行各種不同方向路徑規劃,例如包括偏航(yaw)、俯仰(pitch)、翻滾(roll)等旋轉方向與X軸上的移動方向。 In step S806, the scan range is confirmed, and the scan path is planned. Specifically, the system will import a stereoscopic range of initial model volume files to plan the scan path. This initial model volume file limits the boundaries of the scan range by 100 cubic centimeters and performs various path planning for different directions, including The direction of rotation such as yaw, pitch, and roll, and the direction of movement on the X-axis.

在步驟S807中,對於不同的面向開始掃描,此步驟的掃描會被分為三個面向,分別為咬合、舌側與頰側,而在每一個面向會每隔30度就掃描一次(共四次)。因此,總共會產生12個面向的掃描檔案。在步驟S808中,產生這12個面向的掃描檔案。例如,此檔案為OBJ檔,但本發明並不在此限。 In step S807, for different faces to start scanning, the scanning of this step will be divided into three faces, namely, occlusion, lingual and buccal side, and each face will be scanned every 30 degrees (four in total) Times). Therefore, a total of 12 scan files are generated. In step S808, the 12 oriented scan files are generated. For example, this file is an OBJ file, but the invention is not limited thereto.

在步驟S809中,對這些OBJ掃描檔案進行網格化,並進行自動貼合修整程序。在步驟S810中,將上述12個OBJ掃描檔案整合成一個OBJ檔案,再轉換成STL檔案以在後續進行瀏覽的動作。 In step S809, these OBJ scan files are meshed and an automatic fit trimming process is performed. In step S810, the above 12 OBJ scan files are integrated into one OBJ file, and then converted into STL files for subsequent browsing.

請參照圖9,圖9是根據第三實施例繪示細掃階段的流程圖。在步驟S901中,確認牙體位置,牙醫師可以選取預修整建立的牙體位置。在步驟S902中,對牙體的一剖面進行取樣並計算出二維向量,詳細來說,由於在步驟S902是針對一個剖面,因此牙體上各點的座標表示會從三維降低為二維。在步驟S903中,對二維向量與偏差值進行比較,若有需要則進行修正。在步驟S904中,計算出三維座標,並產出雲點(cloud of points)。在步驟S905中,貼合雲點並進行模型重整。在步驟S906中,將雲點轉換成STL檔案並且預覽。以上步驟S901~S906便完成一牙體的掃描,若要繼續掃描下一個牙體則可回到步驟S901。最後,在步驟S907中可以將STL檔案匯出並進行編輯。 Please refer to FIG. 9. FIG. 9 is a flow chart showing a fine sweeping stage according to a third embodiment. In step S901, the position of the tooth is confirmed, and the dentist can select the position of the tooth that is pre-finished. In step S902, a section of the tooth is sampled and a two-dimensional vector is calculated. In detail, since the step S902 is for one section, the coordinate representation of each point on the tooth body is reduced from three dimensions to two dimensions. In step S903, the two-dimensional vector is compared with the deviation value, and if necessary, the correction is performed. In step S904, three-dimensional coordinates are calculated and cloud of points are generated. In step S905, the cloud point is pasted and the model is reformed. In step S906, the cloud point is converted into an STL file and previewed. The above steps S901 to S906 complete the scanning of a tooth, and if the scanning of the next tooth is continued, the process returns to step S901. Finally, the STL file can be exported and edited in step S907.

圖10是根據第三實施例繪示口內掃描方法的流程圖,此口內掃描方法可適用於上述的口內掃描裝置,其 至少包括投射源來投射出線雷射至一物體。請參照圖10,在步驟S1010中,取得對應物體的影像。在步驟S1020中,在影像上取得對應線雷射的多個特徵點,此步驟還包括步驟S1021~1023。在步驟S1021中,取得對應線雷射的線寬的多個像素。在步驟S1022中,根據濾波器計算出這些像素之間的虛擬像素。在步驟S1023中,從這些虛擬像素中取得灰階值最大的虛擬像素作為其中一個特徵點。在步驟S1030中,根據特徵點執行總數最小平方特徵點取樣法以計算出線段。然而,圖10中各步驟已詳細說明如上,在此便不再贅述。值得注意的是,圖10中各步驟可以實作為多個程式碼或是電路,本發明並不在此限。此外,圖10的方法可以搭配以上實施例使用,也可以單獨使用。換言之,圖10的各步驟之間也可以加入其他的步驟。 FIG. 10 is a flow chart showing a method of scanning in the mouth according to the third embodiment, and the intraoral scanning method is applicable to the above-described intraoral scanning device. At least a projection source is included to project a line of laser light onto an object. Referring to FIG. 10, in step S1010, an image of the corresponding object is acquired. In step S1020, a plurality of feature points corresponding to the line laser are acquired on the image, and the step further includes steps S1021 to 1023. In step S1021, a plurality of pixels corresponding to the line width of the line laser are acquired. In step S1022, virtual pixels between the pixels are calculated based on the filter. In step S1023, the virtual pixel having the largest grayscale value is obtained as one of the feature points from the virtual pixels. In step S1030, the total least squares feature point sampling method is performed based on the feature points to calculate the line segment. However, the steps in FIG. 10 have been described in detail above, and will not be described again here. It should be noted that the steps in FIG. 10 can be implemented as multiple codes or circuits, and the present invention is not limited thereto. In addition, the method of FIG. 10 can be used in conjunction with the above embodiments, or can be used alone. In other words, other steps can be added between the steps of FIG.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧口內掃描裝置 100‧‧‧ intraoral scanning device

110‧‧‧主體 110‧‧‧ Subject

112‧‧‧握持部 112‧‧‧ grips

114‧‧‧延伸部 114‧‧‧Extension

120‧‧‧投射源 120‧‧‧Projection source

122‧‧‧線雷射 122‧‧‧ line laser

130‧‧‧反射模組 130‧‧‧Reflective Module

132‧‧‧物體 132‧‧‧ objects

140‧‧‧旋轉模組 140‧‧‧Rotary Module

150‧‧‧影像感測器 150‧‧‧Image sensor

152‧‧‧反射模組 152‧‧‧Reflective Module

160‧‧‧處理器 160‧‧‧ processor

Claims (4)

一種口內掃描裝置,包括:一投射源,用以投射出一線雷射;一第一反射模組,設置於該投射源的一投射路徑上,用以反射該線雷射至一物體;一旋轉模組,耦接至該第一反射模組,用以旋轉該第一反射模組以改變該線雷射相對於該第一反射模組的入射角;一影像感測器,其中該物體位於該影像感測器的一影像感測路徑上;以及一處理器,其中該旋轉模組旋轉該第一反射模組時,該影像感測器用以取得對應該物體的多個影像,該處理器用以根據該些影像建立對應該物體的一立體齒模。 An intraoral scanning device includes: a projection source for projecting a line of laser; a first reflection module disposed on a projection path of the projection source for reflecting the line of the laser to an object; a rotating module coupled to the first reflective module for rotating the first reflective module to change an incident angle of the line laser relative to the first reflective module; an image sensor, wherein the object An image sensing path of the image sensor; and a processor, wherein the image sensor is configured to obtain a plurality of images corresponding to the object when the rotating module rotates the first reflective module, the processing The device is configured to establish a stereo tooth model corresponding to the object according to the images. 如申請專利範圍第1項所述之口內掃描裝置,更包括:一主體,具有一延伸部與一握持部,該第一反射模組與該旋轉模組設置於該延伸部的一端,該投射源與該影像感測器設置於該握持部。 The in-oral scanning device of claim 1, further comprising: a main body having an extension portion and a grip portion, wherein the first reflection module and the rotation module are disposed at one end of the extension portion, The projection source and the image sensor are disposed on the grip portion. 如申請專利範圍第1項所述之口內掃描裝置,更包括一第二反射模組,設置於該第一反射模組與該投射源之間,該第二反射模組在該影像感測路徑上,且不 在該投射路徑上。 The intraoral scanning device of claim 1, further comprising a second reflective module disposed between the first reflective module and the projection source, wherein the second reflective module senses the image On the path, and not On the projection path. 一種口內掃描方法,適用於一口內掃描裝置,該口內掃描裝置包括一投射源以投射出一線雷射至一物體,該口內掃描方法包括:取得對應該物體的一影像;在該影像上取得對應該線雷射的多個特徵點,此步驟包括:取得對應該線雷射的一線寬的多個像素;根據一濾波器計算出該些像素之間的多個虛擬像素;以及從該些虛擬像素中取得灰階值最大的虛擬像素作為該些特徵點的其中之一;以及根據該些特徵點執行一總數最小平方特徵點取樣法以計算出一線段。 An intraoral scanning method is suitable for an intraoral scanning device, the intraoral scanning device comprising a projection source for projecting a line of laser light to an object, the intraoral scanning method comprising: obtaining an image corresponding to the object; Obtaining a plurality of feature points corresponding to the line laser, the step comprising: obtaining a plurality of pixels corresponding to a line width of the line laser; calculating a plurality of virtual pixels between the pixels according to a filter; The virtual pixels having the largest grayscale value are obtained as one of the feature points; and a total least squares feature point sampling method is performed according to the feature points to calculate a line segment.
TW104140962A 2015-12-07 2015-12-07 Intraoral scanning device and scanning method thereof TWI576084B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104140962A TWI576084B (en) 2015-12-07 2015-12-07 Intraoral scanning device and scanning method thereof
CN201610816553.3A CN106821307B (en) 2015-12-07 2016-09-12 Intraoral scanning device and scanning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104140962A TWI576084B (en) 2015-12-07 2015-12-07 Intraoral scanning device and scanning method thereof

Publications (2)

Publication Number Publication Date
TWI576084B true TWI576084B (en) 2017-04-01
TW201720363A TW201720363A (en) 2017-06-16

Family

ID=59146218

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104140962A TWI576084B (en) 2015-12-07 2015-12-07 Intraoral scanning device and scanning method thereof

Country Status (2)

Country Link
CN (1) CN106821307B (en)
TW (1) TWI576084B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI704907B (en) * 2018-11-29 2020-09-21 財團法人金屬工業研究發展中心 Dental modeling device and dental modeling method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060154198A1 (en) * 2005-01-11 2006-07-13 Duane Durbin 3D dental scanner
CN202355396U (en) * 2011-11-04 2012-08-01 深圳大学 Scanner in digital impression opening based on grating projection and profile reconstruction system
TW201500727A (en) * 2013-06-27 2015-01-01 Univ China Medical System and method for analyzing tissue cells using hyperspectral imaging
US20150018613A1 (en) * 2012-03-09 2015-01-15 3Shape A/S 3d scanner with steam autoclavable tip containing a heated optical element
CN104780830A (en) * 2012-06-27 2015-07-15 3形状股份有限公司 3d intraoral scanner measuring fluorescence

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011024797A (en) * 2009-07-27 2011-02-10 Panasonic Corp Intraoral imaging device
JP2011055858A (en) * 2009-09-07 2011-03-24 Panasonic Corp Intraoral measuring instrument
CN201899476U (en) * 2010-10-29 2011-07-20 深圳大学 Digital impression intraoral scanner and intraoral surface morphology image real-time reconstruction system
KR101457108B1 (en) * 2012-09-25 2014-10-31 데오덴탈 주식회사 Scanner for oral cavity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060154198A1 (en) * 2005-01-11 2006-07-13 Duane Durbin 3D dental scanner
CN202355396U (en) * 2011-11-04 2012-08-01 深圳大学 Scanner in digital impression opening based on grating projection and profile reconstruction system
US20150018613A1 (en) * 2012-03-09 2015-01-15 3Shape A/S 3d scanner with steam autoclavable tip containing a heated optical element
CN104780830A (en) * 2012-06-27 2015-07-15 3形状股份有限公司 3d intraoral scanner measuring fluorescence
TW201500727A (en) * 2013-06-27 2015-01-01 Univ China Medical System and method for analyzing tissue cells using hyperspectral imaging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI704907B (en) * 2018-11-29 2020-09-21 財團法人金屬工業研究發展中心 Dental modeling device and dental modeling method

Also Published As

Publication number Publication date
CN106821307B (en) 2020-10-30
TW201720363A (en) 2017-06-16
CN106821307A (en) 2017-06-13

Similar Documents

Publication Publication Date Title
US10586388B2 (en) Real-time detail highlighting on 3D models
JP6007178B2 (en) 3D imaging system
EP3531066B1 (en) Three-dimensional scanning method including a plurality of lasers with different wavelengths, and scanner
CA2900268C (en) Intra-oral scanning device with illumination frames interspersed with image frames
US7259871B2 (en) Apparatus and method for rapid and precise scanning of three-dimensional occlusal profile of dental cast
CA3163084A1 (en) Digital 3d models of dental arches with accurate arch width
US8134719B2 (en) 3-D imaging using telecentric defocus
CN104776815B (en) A kind of color three dimension contour outline measuring set and method based on Darman raster
EP2439697A2 (en) Method for refining the calibration of an imaging system
JP2005099022A (en) Three-dimensional detection method of object, and surrounding scanner for three-dimensional detection of object
KR101662566B1 (en) Intraoral scanner altering scanning area and scanning detail by changing optical unit
CN107303204A (en) A kind of hand held oral three-dimensional scanner and control method
TWI576084B (en) Intraoral scanning device and scanning method thereof
WO2019091010A1 (en) Three-dimensional scanning method, apparatus and system, storage medium and processor
JP6282157B2 (en) Shape recognition device
Hasanuddin et al. 3D scanner for orthodontic using triangulation method
TWI571806B (en) Tooth body image joining method
WO2016047739A1 (en) Device for measuring three-dimensional shape of inside of oral cavity
Agarwal et al. Three dimensional image reconstruction using interpolation of distance and image registration
EP2950745B1 (en) Intra-oral scanning device with illumination frames interspersed with image frames
Zhang et al. A 3-dimensional vision system for dental applications
TWI704907B (en) Dental modeling device and dental modeling method
Ullah et al. Collimating illumination and piezoelectric transducer based 3D intraoral scanner
Wang et al. An application study of DPSSL multi-line scanning on teeth model
WO2023277789A1 (en) Calibration method