TWI572173B - Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit - Google Patents

Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit Download PDF

Info

Publication number
TWI572173B
TWI572173B TW104106272A TW104106272A TWI572173B TW I572173 B TWI572173 B TW I572173B TW 104106272 A TW104106272 A TW 104106272A TW 104106272 A TW104106272 A TW 104106272A TW I572173 B TWI572173 B TW I572173B
Authority
TW
Taiwan
Prior art keywords
subcarriers
ofdma
bandwidth
mhz
station
Prior art date
Application number
TW104106272A
Other languages
Chinese (zh)
Other versions
TW201540029A (en
Inventor
夏爾納茲 阿吉佶
艾爾戴德 佩瑞希亞
湯瑪斯J 肯尼
Original Assignee
英特爾Ip公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/447,254 external-priority patent/US20150139118A1/en
Application filed by 英特爾Ip公司 filed Critical 英特爾Ip公司
Publication of TW201540029A publication Critical patent/TW201540029A/en
Application granted granted Critical
Publication of TWI572173B publication Critical patent/TWI572173B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Description

用於以最小正交分頻多重存取(OFDMA)頻寬單元進行高效能 WI-FI(HEW)通訊之主站及方法 For high performance with minimum orthogonal frequency division multiple access (OFDMA) bandwidth units Main station and method of WI-FI (HEW) communication 優先權主張 Priority claim

本申請案主張2014年7月30日提交的美國專利申請案序列號第14/447,254號之優先權權益,該專利申請案主張以下美國臨時專利申請案之優先權權益:序列號第61/906,059號,2013年11月19日提交,序列號第61/973,376號,2014年4月1日提交,序列號第61/976,951號,2014年4月8日提交,序列號第61/986,256號,2014年4月30日提交,序列號第61/986,250號,2014年4月30日提交,序列號第61/991,730號,2014年5月12日提交,序列號第62/013,869號,2014年6月18日提交,以及序列號第62/024,801號,2014年7月15日提交其全部以全文引用方式併入本文。 The present application claims the benefit of priority to U.S. Patent Application Serial No. 14/447,254, filed on Jul. 30, 2014, which is hereby incorporated herein in No., dated November 19, 2013, serial number 61/973, 376, submitted on April 1, 2014, serial number 61/976,951, submitted on April 8, 2014, serial number 61/986, 256, Submitted on April 30, 2014, serial number 61/986, 250, submitted on April 30, 2014, serial number 61/991, 730, submitted on May 12, 2014, serial number 62/013, 869, 2014 Submitted on June 18, and Serial No. 62/024, 801, filed on Jul. 15, 2014, the entire disclosure of which is incorporated herein by reference.

發明領域 Field of invention

實施例係關於無線網路。一些實施例係關於無線區域網路(WLAN)、Wi-Fi網路及根據IEEE 802.11標準之一 操作的網路,該等標準諸如IEEE 802.11ac標準或IEEE 802.11ax SIG(稱為DensiFi)。一些實施例係關於高效能無線或高效能WLAN(HEW)通訊。 Embodiments relate to wireless networks. Some embodiments relate to wireless local area networks (WLANs), Wi-Fi networks, and one of the IEEE 802.11 standards. Operating networks such as the IEEE 802.11ac standard or the IEEE 802.11ax SIG (referred to as DensiFi). Some embodiments relate to high performance wireless or high performance WLAN (HEW) communications.

發明背景 Background of the invention

Wi-Fi通訊已朝向不斷增加的資料速率演進(例如,自IEEE 802.11a/g至IEEE 802.11n至IEEE 802.11ac)。即將出現的用於HEW之IEEE 802.11ax任務群為此等標準之下一演化標準。HEW欲用以提供資料容量之增加同時維持與舊式系統之相容性。存在對達成資料容量之增加同時維持與舊式系統之相容性的一般需要。 Wi-Fi communication has evolved towards increasing data rates (eg, from IEEE 802.11a/g to IEEE 802.11n to IEEE 802.11ac). The upcoming IEEE 802.11ax task group for HEW is an evolutionary standard for this standard. HEW intends to provide an increase in data capacity while maintaining compatibility with legacy systems. There is a general need to achieve an increase in data capacity while maintaining compatibility with legacy systems.

依據本發明之一實施例,係特地提出一種主站,其包含硬體處理電路,該硬體處理電路包括實體層電路及媒體存取控制層電路,且組配來在一Wi-Fi網路中通訊,該硬體處理電路組配來進行下列動作:在一正交分頻多重存取(OFDMA)控制週期期間,在包含使用多個最小OFDMA頻寬單元之一或多個通道的一頻寬內與排程站通訊,在該OFDMA控制週期期間,該主站具有對於一無線媒體之專用控制,其中每一最小OFDMA頻寬單元包含一預定數量之副載波,其不包括該通道之防護副載波。 According to an embodiment of the present invention, a primary station is specifically provided, which includes a hardware processing circuit including a physical layer circuit and a medium access control layer circuit, and is configured to be combined in a Wi-Fi network. Medium communication, the hardware processing circuit is configured to perform the following actions: during an orthogonal frequency division multiple access (OFDMA) control period, including a frequency using one or more channels of multiple minimum OFDMA bandwidth units Widely communicating with the scheduling station, during the OFDMA control period, the primary station has dedicated control for a wireless medium, wherein each minimum OFDMA bandwidth unit includes a predetermined number of subcarriers, which does not include protection of the channel Subcarrier.

100‧‧‧HEW網路 100‧‧‧HEW Network

102‧‧‧主站 102‧‧‧Main station

104‧‧‧HEW站/排程站/高效能無線(HEW)站 104‧‧‧HEW station/schedule station/high efficiency wireless (HEW) station

106‧‧‧舊式站 106‧‧‧Old station

202‧‧‧5MHz頻帶分配段 202‧‧5MHz band allocation segment

202A~202D‧‧‧5MHz頻帶分配段 202A~202D‧‧‧5MHz band allocation segment

204‧‧‧防護副載波/頻帶邊緣 204‧‧‧Protected subcarrier/band edge

401‧‧‧頻寬 401‧‧‧ bandwidth

402‧‧‧OFDMA頻寬單元/最小OFDMA頻寬單元 402‧‧‧OFDMA bandwidth unit/minimum OFDMA bandwidth unit

404‧‧‧頻帶邊緣 404‧‧‧ Band edge

501‧‧‧頻寬/寬頻頻寬 501‧‧‧Bandwidth/Broadband Bandwidth

504‧‧‧頻帶邊緣 504‧‧‧ Band edge

600‧‧‧HEW裝置 600‧‧‧HEW device

602‧‧‧實體層(PHY)電路/PHY 602‧‧‧Physical Layer (PHY) Circuit/PHY

604‧‧‧媒體存取控制層電路(MAC)/MAC 604‧‧‧Media Access Control Layer Circuit (MAC)/MAC

606‧‧‧處理電路 606‧‧‧Processing Circuit

608‧‧‧記憶體 608‧‧‧ memory

圖1例示根據一些實施例之HEW網路; 圖2例示組配有5MHz子通道之20MHz通道之副載波組態;圖3例示用於20MHz、40MHz、80MHz及160MHz通道之副載波組態;圖4例示根據一些實施例的組配有OFDMA最小頻寬單元子通道之20MHz通道;圖5例示根據一些實施例的組配有OFDMA最小頻寬單元子通道之寬頻通道;以及圖6例示根據一些實施例之HEW通訊裝置。 Figure 1 illustrates an HEW network in accordance with some embodiments; 2 illustrates a subcarrier configuration of a 20 MHz channel grouped with a 5 MHz subchannel; FIG. 3 illustrates a subcarrier configuration for 20 MHz, 40 MHz, 80 MHz, and 160 MHz channels; FIG. 4 illustrates a minimum OFDMA configuration for a group according to some embodiments. 20 MHz channel of the bandwidth unit subchannel; FIG. 5 illustrates a wideband channel grouped with an OFDMA minimum bandwidth unit subchannel in accordance with some embodiments; and FIG. 6 illustrates a HEW communication device in accordance with some embodiments.

較佳實施例之詳細說明 Detailed description of the preferred embodiment

以下描述及圖式充分地說明特定實施例以使熟習此項技術者能夠實踐該等實施例。其他實施例可併入結構變化、邏輯變化、電氣變化、過程變化及其他變化。一些實施例之部分及特徵可包括於其他實施例之彼等部分及特徵中,或者代替其他實施例之彼等部分及特徵。在申請專利範圍中闡述之實施例涵蓋彼等申請專利範圍之所有可利用的等效物。 The description and drawings are to be considered as illustrative of the embodiments Other embodiments may incorporate structural changes, logic changes, electrical changes, process variations, and other changes. Portions and features of some embodiments may be included in, or substituted for, other parts and features of other embodiments. The embodiments set forth in the scope of the patent application cover all available equivalents of the scope of the claims.

圖1例示根據一些實施例之HEW網路。HEW網路100可包括主站(STA)102、複數個HEW站104(亦即,HEW裝置)及複數個舊式站106(舊式裝置)。主站102可佈置來根據IEEE 802.11標準之一或多者與HEW站104及舊式站106通訊。在一些實施例中,主站102可佈置來根據用於HEW之IEEE 802.11ax標準與HEW站104通訊。在一些實施例中,主站102可為存取點(AP),儘管此態樣中實施例之範疇不受 限制。 FIG. 1 illustrates a HEW network in accordance with some embodiments. The HEW network 100 can include a primary station (STA) 102, a plurality of HEW stations 104 (i.e., HEW devices), and a plurality of legacy stations 106 (legacy devices). The primary station 102 can be arranged to communicate with the HEW station 104 and the legacy station 106 in accordance with one or more of the IEEE 802.11 standards. In some embodiments, the primary station 102 can be arranged to communicate with the HEW station 104 in accordance with the IEEE 802.11ax standard for HEW. In some embodiments, the primary station 102 can be an access point (AP), although the scope of the embodiments in this aspect is not limit.

根據實施例,主站102可包括實體層(PHY)及媒體存取控制層(MAC)電路,其可佈置來爭奪無線媒體(例如,在爭奪週期期間)以接收對媒體之專用控制歷時HEW控制週期(亦即,傳輸機會(TXOP))。主站102可在HEW控制週期開始時傳輸HEW主同步傳輸。在HEW控制週期期間,HEW站104可根據基於非爭奪的排程多重存取技術來與主站102通訊。此不同於習知Wi-Fi通訊,在該習知Wi-Fi通訊中,裝置根據基於爭奪之通訊技術來通訊,而不是根據非爭奪多重存取技術來通訊。在HEW控制期期間,舊式站106避免通訊。在一些實施例中,主同步傳輸可稱為HEW控制及排程傳輸。 According to an embodiment, the primary station 102 can include a physical layer (PHY) and medium access control layer (MAC) circuitry that can be arranged to compete for wireless media (eg, during a contention period) to receive dedicated control duration HEW control of the media Cycle (ie, Transmission Opportunity (TXOP)). The primary station 102 can transmit the HEW primary synchronization transmission at the beginning of the HEW control period. During the HEW control period, the HEW station 104 can communicate with the primary station 102 in accordance with a non-contention based scheduling multiple access technique. This is different from conventional Wi-Fi communication, in which devices communicate according to contention-based communication technologies rather than non-contention multiple access technologies. The legacy station 106 avoids communication during the HEW control period. In some embodiments, the primary synchronous transmission may be referred to as HEW control and scheduled transmission.

根據實施例,主同步傳輸可包括多裝置HEW前文,其佈置來傳信並識別複數個排程式HEW站104之資料欄位。主站102可進一步佈置來在HEW控制期期間傳輸(在下行鏈路方向)及/或接收(在上行鏈路方向)往/來於排程HEW站104的資料欄位之一或多者。在此等實施例中,主站102可包括多裝置HEW前文中之訓練欄位,以允許排程HEW站104中之每一者進行同步及初始通道估計。 According to an embodiment, the primary synchronization transmission may include a multi-device HEW preamble arranged to signal and identify the data fields of the plurality of programming HEW stations 104. The primary station 102 can be further arranged to transmit (in the downlink direction) and/or receive (in the uplink direction) one or more of the data fields to/from the scheduled HEW station 104 during the HEW control period. In such embodiments, the primary station 102 can include training fields in the multi-device HEW preamble to allow for synchronization and initial channel estimation for each of the scheduled HEW stations 104.

根據一些實施例,HEW站104可為Wi-Fi或IEEE 802.11組配站(STA),其進一步組配來用於HEW操作(例如,根據IEEE 802.11ax)。HEW站104可組配來在HEW控制期期間,根據諸如排程正交分頻多重存取(OFDMA)技術的基於非爭奪的多重存取技術與主站102通訊,且可組配來接 收及解碼HEW訊框之多裝置HEW前文。HEW站104亦可組配來在HEW控制期期間解碼藉由主站102接收的指示資料欄位。 According to some embodiments, the HEW station 104 may be a Wi-Fi or IEEE 802.11 group of stations (STAs) that are further assembled for HEW operation (eg, according to IEEE 802.11ax). The HEW station 104 can be configured to communicate with the primary station 102 in accordance with a non-contention-based multiple access technique, such as scheduled orthogonal frequency division multiple access (OFDMA) technology, during the HEW control period, and can be configured to interface Receive and decode the HEW pre-multiple device of the HEW frame. The HEW station 104 can also be configured to decode the indicated data fields received by the primary station 102 during the HEW control period.

根據一些實施例,主站102可組配來在OFDMA控制週期期間,在包含使用多個最小OFDMA頻寬單元之一或多個通道的頻寬內與排程站104通訊,在該OFDMA控制週期期間,主站102具有對無線媒體之專用控制。在此等實施例中,每一最小OFDMA頻寬單元包含預定數量之副載波,其不包括通道之防護副載波。在此等實施例中,防護副載波係提供在頻寬之頻帶邊緣處,且除最小OFDMA頻寬單元中之每一者的副載波之外另有防護副載波。在此等實施例中,無需在通道之最小OFDMA頻寬單元之間提供防護副載波。以下更詳細地描述此等實施例。 According to some embodiments, the primary station 102 can be configured to communicate with the scheduling station 104 during the OFDMA control period, including the bandwidth using one or more of the plurality of minimum OFDMA bandwidth units, during the OFDMA control period. During this time, the primary station 102 has dedicated control of the wireless medium. In these embodiments, each minimum OFDMA bandwidth unit includes a predetermined number of subcarriers that do not include the guard subcarriers of the channel. In such embodiments, the guard subcarriers are provided at the edge of the band of the bandwidth and have guard subcarriers in addition to the subcarriers of each of the smallest OFDMA bandwidth units. In such embodiments, there is no need to provide guard subcarriers between the smallest OFDMA bandwidth units of the channel. These embodiments are described in more detail below.

本文揭示的實施例提供用於HEW之OFDMA設計,其為向後相容的且可與舊式Wi-Fi共存。此等實施例以盡可能大的程度用於舊式通道化(channelization)。此等實施例提供最小OFDMA頻寬單元,其與舊式OFDM結構充分對準。除以下更詳細地論述的新穎OFDMA分配外,本文揭示的實施例進一步提供與包括舊式IEEE 802.11ac標準之舊式IEEE 802.11標準的共存性。高效能WLAN研究群(HEW SG)(現為IEEE 802.11ax任務群)已開始自802.11ac/ah建議標準演進Wi-Fi。作為目標使用狀況之一,此研究群具有高密度部署情形,諸如運動場、熱點以及蜂巢式卸載。此新群組之一主要使用狀況係用於緻密部署及蜂巢式卸載。本文揭 示的最小OFDMA頻寬單元分配提供對稱子通道化,且可改良整體系統頻譜利用度,進而改良整體系統效能,尤其在此等使用狀況情形中如此。 The embodiments disclosed herein provide an OFDMA design for HEW that is backward compatible and can coexist with legacy Wi-Fi. These embodiments are used for the oldest channelization to the greatest extent possible. These embodiments provide a minimum OFDMA bandwidth unit that is sufficiently aligned with legacy OFDM structures. In addition to the novel OFDMA allocations discussed in more detail below, the embodiments disclosed herein further provide for coexistence with legacy IEEE 802.11 standards including the legacy IEEE 802.11ac standard. The High Efficiency WLAN Research Group (HEW SG) (now the IEEE 802.11ax Mission Group) has evolved Wi-Fi from the 802.11ac/ah Recommendation. As one of the target usage scenarios, this research group has high-density deployment scenarios such as sports fields, hotspots, and cellular offloading. One of the main uses of this new group is for dense deployment and cellular offloading. This article reveals The illustrated minimum OFDMA bandwidth unit allocation provides symmetric sub-channelization and can improve overall system spectrum utilization, thereby improving overall system performance, especially in such use cases.

因為HEW中之一個主要使用狀況為利用試圖以中等資料速率存取媒體的許多裝置來進行緻密部署,所以可能需要允許更加同時存取之方法。當前IEEE 802.11ac規範允許達160MHz之頻寬與八個同時MIMO串流。對HEW之關注在於使用肥管線(fat pipe)(寬的頻寬)來提供使用OFDMA對許多裝置之存取。根據一些實施例,定義最小ODFMA頻寬單元,其與舊式通道化對準。在802.11 HEW之前,OFDMA並未用作Wi-Fi中之存取機構。本文揭示的實施例試圖盡可能重複使用用於實行IEEE 802.11 Wi-Fi標準之先前發佈版本的基本實體層區塊。 Because one of the primary use cases in HEW is for dense deployment with many devices that attempt to access media at medium data rates, methods that allow for more simultaneous access may be needed. The current IEEE 802.11ac specification allows for bandwidths up to 160 MHz and eight simultaneous MIMO streams. The focus on HEW is the use of fat pipes (wide bandwidth) to provide access to many devices using OFDMA. According to some embodiments, a minimum ODFMA bandwidth unit is defined that is aligned with the old channelization. Prior to 802.11 HEW, OFDMA was not used as an access mechanism in Wi-Fi. The embodiments disclosed herein attempt to reuse as much as possible the basic physical layer blocks used to implement previous releases of the IEEE 802.11 Wi-Fi standard.

根據實施例,最小OFDMA頻寬單元係組配來允許有效及可擴展的OFDMA組態。在一些實施例中,提供4.375MHz之最小頻寬大小。在此等實施例中,頻寬之分配可以一方式進行,該方式亦允許其與舊式裝置向後相容,因為用於所揭示子通道之波形將允許在用於舊式裝置(例如,符號時間可對準)之OFDMA傳輸中程中進行CCA偵測。因此,提供保護機構,其使得此方法較其他方法更具吸引力。 According to an embodiment, the minimum OFDMA bandwidth units are assembled to allow efficient and scalable OFDMA configuration. In some embodiments, a minimum bandwidth size of 4.375 MHz is provided. In such embodiments, the allocation of bandwidth can be done in a manner that also allows for backward compatibility with legacy devices, as the waveforms for the disclosed subchannels will allow for use in legacy devices (eg, symbol time can be CCA detection is performed in the mid-range of the OFDMA transmission. Therefore, a protection mechanism is provided which makes this method more attractive than other methods.

迄今為止,此等其他接近不解決頻帶邊緣中之不對稱性,其中提供防護音調來避免相鄰干擾且限制頻譜遮罩。本文揭示的定義用於子通道化之最小OFDMA頻寬單元 的實施例更為有效,且提供頻譜之對稱分配,以及提供與11n/ac通道化之對準及與舊式系統之向後相容性。 To date, these other approaches have not resolved the asymmetry in the band edges, where guard tones are provided to avoid adjacent interference and to limit spectral masking. The minimum OFDMA bandwidth unit defined for subchannelization disclosed herein The embodiments are more efficient and provide symmetric distribution of the spectrum, as well as providing alignment with 11n/ac channelization and backward compatibility with legacy systems.

圖2例示組配有5MHz子通道之20MHz通道之副載波組態。如圖2所例示,副載波之總數為56個,其中52個為資料副載波且4個為導頻。對於20MHz通道而言,導頻副載波可位於相對於頻帶中心處之DC副載波的位置-21、-7、7及21處。如圖所示,在四個防護副載波204(左側)處存在空位且在三個防護副載波204(右側)處存在空位,從而提供防護頻帶。此等防護頻帶用於舊式通訊,以限制相鄰通道之干擾位準,且提供足夠邊際來負責功率放大器後移及濾波。如圖2所繪示,將20MHz通道分成5MHz頻帶分配段202引起不對稱性,因為在任一邊緣處之可用頻寬小於中間頻帶(亦即,並非每一5MHz分配段之所有副載波皆可使用)。 Figure 2 illustrates a subcarrier configuration of a 20 MHz channel with a 5 MHz subchannel. As illustrated in FIG. 2, the total number of subcarriers is 56, of which 52 are data subcarriers and 4 are pilots. For a 20 MHz channel, the pilot subcarriers can be located at positions -21, -7, 7, and 21 of the DC subcarrier relative to the center of the band. As shown, there are vacancies at the four guard subcarriers 204 (left side) and vacancies at the three guard subcarriers 204 (right side) to provide a guard band. These guard bands are used for legacy communications to limit the interference level of adjacent channels and provide sufficient margin for power amplifier back-off and filtering. As shown in FIG. 2, dividing the 20 MHz channel into 5 MHz band allocation segments 202 causes asymmetry because the available bandwidth at either edge is less than the intermediate band (ie, not all subcarriers of each 5 MHz allocation segment are available). ).

圖3例示用於20MHz、40MHz、80MHz及160MHz通道之副載波組態。如圖3所例示,如相對於圖2之5MHz分配段所描述,在40、80及160MHz通道中存在類似的不對稱性。對於40MHz、80MHz及160MHz通道而言,防護頻帶可較寬(例如,每一邊緣上具有6個及5個副載波分配段)。 Figure 3 illustrates a subcarrier configuration for 20MHz, 40MHz, 80MHz, and 160MHz channels. As illustrated in Figure 3, similar asymmetry exists in the 40, 80, and 160 MHz channels as described with respect to the 5 MHz allocation segment of Figure 2. For 40MHz, 80MHz, and 160MHz channels, the guard band can be wide (eg, there are 6 and 5 subcarrier allocation segments on each edge).

圖4例示根據一些實施例的組配有OFDMA最小頻寬單元子通道之20MHz通道。為避免相對於圖2及3所描述的不對稱性,本文揭示的實施例基於每一單元中副載波之數量來定義OFDMA頻寬單元402。在一些實施例中,最 小OFDMA頻寬單元可為14個副載波,在一些實施例中,使用與舊式系統中定義相同的FFT大小的情況下,其可等於14 x 312.5KHz=4.375MHz。詳言之,為允許舊式共存性,可使用相同的FFT大小,且因此符號持續時間及防護間隔將允許在用於舊式裝置106(圖1)之OFDMA傳輸之任何部分期間進行CCA偵測。若舊式裝置106在OFDMA傳輸期間喚醒,則此將允許舊式裝置106進行防護間隔偵測且延緩使用與舊式規範中所概述者相同機構的傳輸。因此,舊式裝置106將正確地延緩達成舊式共存性。 4 illustrates a 20 MHz channel grouped with an OFDMA minimum bandwidth unit subchannel, in accordance with some embodiments. To avoid the asymmetry described with respect to Figures 2 and 3, the embodiments disclosed herein define OFDMA bandwidth unit 402 based on the number of subcarriers in each unit. In some embodiments, the most The small OFDMA bandwidth unit can be 14 subcarriers, which in some embodiments can be equal to 14 x 312.5 KHz = 4.375 MHz, using the same FFT size as defined in the legacy system. In particular, to allow legacy coexistence, the same FFT size can be used, and thus the symbol duration and guard interval will allow for CCA detection during any portion of the OFDMA transmission used for the legacy device 106 (FIG. 1). If the legacy device 106 wakes up during OFDMA transmission, this would allow the legacy device 106 to perform guard interval detection and delay the transmission of the same mechanism as those outlined in the old specification. Therefore, the legacy device 106 will correctly delay the achievement of the old coexistence.

在一些實施例中,若決定增加FFT大小及進而增加符號持續時間及防護間隔之改變(例如,以支援戶外通道),則OFDMA頻寬單位之副載波之數量可以相同比率增加,因為FFT大小獲增加同時4.375MHz之最小頻帶分配段可保持恆定。例如,若對20MHz操作而言,FFT大小自舊式64-點FFT增加至128-點FFT,則可存在14 x 128/64=28個副載波,具有20MHz/128=156.25KHz之減小的副載波間隔,從而得到28 x副載波間隔=4.375MHz之最小OFDMA單元。 In some embodiments, if it is decided to increase the FFT size and thereby increase the symbol duration and the guard interval change (eg, to support the outdoor channel), the number of subcarriers in the OFDMA bandwidth unit can be increased by the same ratio because the FFT size is obtained. Increasing the minimum band allocation segment of 4.375 MHz at the same time can be kept constant. For example, if the FFT size is increased from the old 64-point FFT to the 128-point FFT for 20 MHz operation, there may be 14 x 128/64 = 28 subcarriers with a reduced pair of 20 MHz/128 = 156.25 KHz. Carrier spacing, resulting in a minimum OFDMA unit with 28 x subcarrier spacing = 4.375 MHz.

以下表1概述根據一些實施例的在每一20、40、80及160MHz操作模式中OFDMA子通道之數量及副載波設計。如以下更詳細所述,對80MHz及160MHz而言,OFDMA子通道之數量分別增加至17個及36個(與在5MHz用作最小OFDMA單元時不對稱子通道分配的16個及32個(分別對80及160MHz而言)相對比)。因此,本文揭示的實施例提供具 有最小OFDMA單元之對稱OFDMA結構,其允許供更多使用者同時存取且因此允許頻譜之更好利用度。 Table 1 below summarizes the number and subcarrier design of OFDMA subchannels in each of the 20, 40, 80, and 160 MHz modes of operation in accordance with some embodiments. As described in more detail below, for 80 MHz and 160 MHz, the number of OFDMA subchannels is increased to 17 and 36, respectively (compared to 16 and 32 asymmetric subchannel allocations when used as the minimum OFDMA unit at 5 MHz (respectively For 80 and 160 MHz) relative ratio). Accordingly, the embodiments disclosed herein provide A symmetric OFDMA structure with the smallest OFDMA unit allows for simultaneous access by more users and thus allows for better utilization of the spectrum.

根據實施例,每一OFDMA子通道中之調變及編碼方案(MCS)之對映得以簡化,因為本文揭示的OFDMA頻寬單元為對稱的。如例如圖2及3所示的不對稱結構可需要在子通道中於任一邊緣上相對於在子通道中於頻帶中間的不同MCS對映,因為該等子通道將利用不同的數量之副載波。 According to an embodiment, the mapping of the modulation and coding scheme (MCS) in each OFDMA subchannel is simplified because the OFDMA bandwidth units disclosed herein are symmetric. An asymmetrical structure such as that shown in Figures 2 and 3 may require different MCS mappings on either edge in the subchannel relative to the middle of the frequency band in the subchannel, since the subchannels will utilize different numbers of pairs. Carrier.

根據實施例,主站102可組配來在OFDMA控制週期期間,在包含使用多個最小OFDMA頻寬單元402之一或多個通道的頻寬401內與排程站104通訊,在該OFDMA控制週期期間,主站102具有對無線媒體之專用控制。每一最小OFDMA頻寬單元402可包含預定數量之副載波,其不包括通道之防護副載波。在此等實施例中,防護副載波提供在頻寬401之頻帶邊緣404處。除最小OFDMA頻寬單元402中之每一者的副載波之外另有防護副載波,且防護副載波無需提供在通道之最小OFDMA頻寬單元402之間。 According to an embodiment, the primary station 102 can be configured to communicate with the scheduling station 104 within a bandwidth 401 comprising one or more channels using a plurality of minimum OFDMA bandwidth units 402 during an OFDMA control period, where the OFDMA control During the period, the primary station 102 has dedicated control over the wireless medium. Each minimum OFDMA bandwidth unit 402 can include a predetermined number of subcarriers that do not include the guard subcarriers of the channel. In such embodiments, the guard subcarriers are provided at the band edge 404 of the bandwidth 401. In addition to the subcarriers of each of the minimum OFDMA bandwidth units 402, guard subcarriers are provided, and the guard subcarriers need not be provided between the smallest OFDMA bandwidth units 402 of the channel.

在一些實施例中,表1識別的額外的空副載波可用作防護副載波,且可提供於在最小OFDMA頻寬單元之間,儘管在此態樣中實施例之範疇不受限制。此等實施例將放寬對分配有最小OFDMA頻寬單元之每一使用者之頻率精確度的要求,因為頻率不精確度可引起載波間干擾ICI)。 In some embodiments, the additional null subcarriers identified by Table 1 may be used as guard subcarriers and may be provided between the minimum OFDMA bandwidth units, although the scope of the embodiments is not limited in this aspect. These embodiments will relax the requirement for frequency accuracy for each user assigned the smallest OFDMA bandwidth unit because frequency inaccuracy can cause inter-carrier interference ICI).

在一些實施例中,對處理具有64-點FFT之20MHz通道之信號而言,每一最小OFDMA頻寬單元402之資料及導頻副載波之預定數量為十四(14)個,其中副載波間隔為312.5KHz,且每一最小OFDMA頻寬單元402佔據4.375MHz之頻寬。在此等實施例中,主站102可使用多個4.375MHz子通道與排程站104通訊,其中每一4.375MHz子通道對應於最小OFDMA頻寬單元402。 In some embodiments, for processing a signal having a 20-MHz channel with a 64-point FFT, the predetermined number of data and pilot subcarriers per minimum OFDMA bandwidth unit 402 is fourteen (14), with subcarriers The interval is 312.5 KHz, and each minimum OFDMA bandwidth unit 402 occupies a bandwidth of 4.375 MHz. In such embodiments, the primary station 102 can communicate with the scheduling station 104 using a plurality of 4.375 MHz sub-channels, with each 4.375 MHz sub-channel corresponding to the smallest OFDMA bandwidth unit 402.

在此等實施例中,可使用與舊式IEEE 802.11系統一致(例如,312.5KHz)的副載波間隔。對最小OFDMA頻寬單元402使用十四個資料副載波提供對稱的頻帶分配,因為不包括防護副載波。此不同於圖2所例示的5MHz頻帶分配段202,其為不對稱分配段,因為頻帶邊緣204處之5MHz頻帶分配段202A及202D將需要包括防護副載波(將不使用)。因此,5MHz頻帶分配段202A及202D將利用比接近通道中心之5MHz頻帶分配段202B及202C更少的副載波。因此,頻帶邊緣204處之5MHz頻帶分配段202A及202D可具有比接近通道中心之5MHz頻帶分配段202B及202C更小的資料處置容量(以及更小的MCS)。此不對稱性可產生增加的實 行方案複雜性以及其他缺點。根據此等實施例,藉由最小OFDMA頻寬單元402提供對稱性,因為該等最小OFDMA頻寬單元使用相同預定數量之副載波,且副載波中無一者為防護副載波。 In such embodiments, subcarrier spacing consistent with legacy IEEE 802.11 systems (e.g., 312.5 KHz) may be used. The use of fourteen data subcarriers for the minimum OFDMA bandwidth unit 402 provides symmetric frequency band allocation because the guard subcarriers are not included. This differs from the 5 MHz band allocation segment 202 illustrated in Figure 2 as an asymmetric allocation segment because the 5 MHz band allocation segments 202A and 202D at the band edge 204 would need to include guard subcarriers (will not be used). Thus, the 5 MHz band allocation segments 202A and 202D will utilize fewer subcarriers than the 5 MHz band allocation segments 202B and 202C near the center of the channel. Thus, the 5 MHz band allocation segments 202A and 202D at the band edge 204 can have a smaller data handling capacity (and a smaller MCS) than the 5 MHz band allocation segments 202B and 202C near the center of the channel. This asymmetry can result in increased real Line solution complexity and other shortcomings. According to such embodiments, symmetry is provided by the minimum OFDMA bandwidth unit 402 because the minimum OFDMA bandwidth units use the same predetermined number of subcarriers, and none of the subcarriers are guard subcarriers.

圖5例示根據一些實施例的組配有OFDMA最小頻寬單元子通道之寬頻通道。在此等實施例中,主站102(圖1)可組配來在OFDMA控制週期期間,在包含使用多個最小OFDMA頻寬單元402之一或多個通道的頻寬501內與排程站104通訊,在該OFDMA控制週期期間,主站102具有對無線媒體之專用控制。每一最小OFDMA頻寬單元402包含預定數量之副載波,其不包括通道之防護副載波。在此等實施例中,寬頻通道之每一通道可為20MHz通道,且當通道為寬頻通道501且包含兩個或兩個以上相鄰20MHz通道時,在兩個或兩個以上相鄰20MHz通道之至少一些相鄰最小OFDMA頻寬單元402之間不提供防護副載波,儘管在此態樣中實施例之範疇不受限制。在一些其他實施例中,防護副載波可提供在頻帶邊緣404(圖4)處之每一相鄰20MHz通道之間。 FIG. 5 illustrates a wideband channel grouped with an OFDMA minimum bandwidth unit subchannel, in accordance with some embodiments. In such embodiments, the primary station 102 (FIG. 1) can be configured to schedule and schedule stations within a bandwidth 501 that includes one or more channels using a plurality of minimum OFDMA bandwidth units 402 during an OFDMA control period. 104 communications, during which the primary station 102 has dedicated control of the wireless medium. Each minimum OFDMA bandwidth unit 402 includes a predetermined number of subcarriers that do not include the guard subcarriers of the channel. In these embodiments, each channel of the wideband channel can be a 20 MHz channel, and when the channel is a wideband channel 501 and contains two or more adjacent 20 MHz channels, in two or more adjacent 20 MHz channels No guard subcarriers are provided between at least some of the adjacent minimum OFDMA bandwidth units 402, although the scope of the embodiments is not limited in this aspect. In some other embodiments, guard subcarriers may be provided between each adjacent 20 MHz channel at band edge 404 (Fig. 4).

一些替代實施例可使用不同的FFT大小,且可提供較小最小OFDMA頻寬單元。例如,對以具有256-點FFT之20MHz通道進行處理而言,用於每一最小OFDMA頻寬單元402之資料及導頻副載波之預定數量可為十四個。在此等實施例中,每一最小OFDMA頻寬單元可佔據1.09375MHz之頻寬。在此等實施例中,十六個最小OFDMA頻寬單 元可佔據20MHz通道,而非圖4所例示之四個。在使用較大FFT大小(例如,對20MHz通道而言使用128個、256個或512個)的此等實施例中,副載波可佔據較小頻寬(亦即,頻寬可按比例縮小FFT大小之比率(亦即,對128-點FFT而言128/64,對256-點FFT而言256/64且對512-點FFT而言512/64)。例如,對256-點FFT而言,副載波可佔據4.375/(256/64)=1.09375MHz。不同的FFT大小亦可用於寬頻通道。 Some alternative embodiments may use different FFT sizes and may provide smaller minimum OFDMA bandwidth units. For example, for processing with a 20 MHz channel having a 256-point FFT, the predetermined number of data and pilot subcarriers for each minimum OFDMA bandwidth unit 402 can be fourteen. In such embodiments, each minimum OFDMA bandwidth unit can occupy a bandwidth of 1.09375 MHz. In these embodiments, sixteen minimum OFDMA bandwidths The element can occupy a 20 MHz channel instead of the four illustrated in Figure 4. In such embodiments that use a larger FFT size (eg, 128, 256, or 512 for a 20 MHz channel), the subcarriers can occupy a smaller bandwidth (ie, the bandwidth can be scaled down by FFT). The ratio of size (ie 128/64 for a 128-point FFT, 256/64 for a 256-point FFT and 512/64 for a 512-point FFT). For example, for a 256-point FFT The subcarrier can occupy 4.375/(256/64)=1.09375MHz. Different FFT sizes can also be used for the wideband channel.

在一些實施例中,可提供較大最小OFDMA頻寬單元。例如,對處理具有64-點FFT之20MHz通道之信號而言,每一最小OFDMA頻寬單元之資料及導頻副載波之預定數量為二十八(28)個,其中副載波間隔為312.5KHz。在此等實施例中,每一最小OFDMA頻寬單元可佔據8.75MHz之頻寬。在此等實施例中,兩個最小OFDMA頻寬單元可佔據的20MHz通道,而非圖所例示之四個。 In some embodiments, a larger minimum OFDMA bandwidth unit may be provided. For example, for a signal processing a 20 MHz channel with a 64-point FFT, the predetermined number of data and pilot subcarriers per minimum OFDMA bandwidth unit is twenty-eight (28), with a subcarrier spacing of 312.5 kHz. . In these embodiments, each minimum OFDMA bandwidth unit can occupy a bandwidth of 8.75 MHz. In these embodiments, the two smallest OFDMA bandwidth units can occupy 20 MHz channels instead of the four illustrated in the figure.

在一些實施例中,對處理具有128-點FFT之20MHz通道之信號而言,每一最小OFDMA頻寬單元之資料及導頻副載波之預定數量可為二十八(28)個,其中副載波間隔為156.25KHz。在此等實施例中,每一最小OFDMA頻寬單元可佔據4.375MHz之頻寬。在此示例性實施例中,四個具有28個副載波之最小OFDMA頻寬單元可各自佔據20MHz通道。此等實施例可例如用於支援戶外通道,儘管在此態樣中實施例之範疇不受限制。 In some embodiments, for processing a signal of a 20 MHz channel having a 128-point FFT, the predetermined number of data and pilot subcarriers per minimum OFDMA bandwidth unit may be twenty eight (28), with The carrier spacing is 156.25 KHz. In such embodiments, each minimum OFDMA bandwidth unit can occupy a bandwidth of 4.375 MHz. In this exemplary embodiment, four minimum OFDMA bandwidth units with 28 subcarriers may each occupy a 20 MHz channel. Such embodiments may be used, for example, to support outdoor passages, although the scope of the embodiments in this aspect is not limited.

在一些實施例中,每一通道可為20MHz通道, 其包含四個最小OFDMA頻寬單元402,且在OFDMA控制週期期間藉由主站102利用來與排程站104通訊的通道包含一或多個相鄰20MHz通道。在一些實施例中,對在OFDMA控制週期期間使用包含單一20MHz通道之通道(亦即,具有20MHz頻寬)來與排程站104通訊而言,單一20MHz通道可提供四個最小OFDMA頻寬單元402,除一個DC副載波及頻帶邊緣404處之7個防護副載波之外總共56個資料副載波(參見表1)。在圖4所例示的實例中,一個頻帶邊緣可具有三個防護副載波,而另一頻帶邊緣可具有四個防護副載波。在圖4所例示的實例中,在通道之最小OFDMA頻寬單元402之間不提供防護副載波。 In some embodiments, each channel can be a 20 MHz channel. It includes four minimum OFDMA bandwidth units 402, and the channels utilized by the primary station 102 to communicate with the scheduling station 104 during the OFDMA control period include one or more adjacent 20 MHz channels. In some embodiments, a single 20 MHz channel can provide four minimum OFDMA bandwidth units for communicating with the scheduling station 104 using a channel comprising a single 20 MHz channel during the OFDMA control period (ie, having a 20 MHz bandwidth). 402, a total of 56 data subcarriers in addition to one DC subcarrier and seven guard subcarriers at band edge 404 (see Table 1). In the example illustrated in FIG. 4, one band edge may have three guard subcarriers and the other band edge may have four guard subcarriers. In the example illustrated in FIG. 4, no guard subcarriers are provided between the smallest OFDMA bandwidth units 402 of the channel.

在一些實施例中,對在OFDMA控制週期期間使用包含兩個或兩個以上相鄰20MHz通道之寬頻通道(亦即,對40MHz、80MHz及160MHz而言的頻寬)來與排程站104通訊而言,主站102可分配具有兩個或兩個以上相鄰20MHz通道而其之間無防護副載波的最小OFDMA頻寬單元402,儘管在此態樣中實施例之範疇不受限制,因為防護副載波可提供在頻帶邊緣404處之每一20MHz通道之間。在一些此等實施例中,由於OFDMA通訊中固有的頻譜對準(亦即,OFDMA信號可在功率、頻率及時間上對準),可無需在具有兩個或兩個以上相鄰20MHz通道之最小OFDMA頻寬單元402之間提供防護副載波。此不同於在每一20MHz通道內的舊式IEEE 802.11通訊。在此等實施例中,相鄰通道中先前為防護副載波之副載波可用於傳達資料。 In some embodiments, communication with the scheduling station 104 is used for wideband channels (ie, bandwidths for 40 MHz, 80 MHz, and 160 MHz) that include two or more adjacent 20 MHz channels during the OFDMA control period. In this regard, the primary station 102 can allocate a minimum OFDMA bandwidth unit 402 having two or more adjacent 20 MHz channels with no guard subcarriers therebetween, although in this aspect the scope of the embodiments is not limited because The guard subcarriers can be provided between each 20 MHz channel at the band edge 404. In some such embodiments, due to the spectral alignment inherent in OFDMA communication (ie, the OFDMA signal can be aligned in power, frequency, and time), there may be no need to have two or more adjacent 20 MHz channels. A guard subcarrier is provided between the minimum OFDMA bandwidth units 402. This is different from legacy IEEE 802.11 communication in every 20 MHz channel. In such embodiments, subcarriers in the adjacent channel that were previously guard subcarriers may be used to convey the data.

在一些實施例中,對在OFDMA控制週期期間、針對40MHz之頻寬使用包含兩個相連或相鄰20MHz通道之寬頻頻寬501(例如,寬頻通道)來與排程站104通訊而言,主站102可分配達八個各自具有十四(14)個副載波之最小OFDMA頻寬單元402,總共112個資料及導頻副載波、一個DC副載波及在頻帶邊緣504處之七(7)個防護副載波(參見表1)。此等實施例可使用64-點FFT。當使用256-點FFT時,分配數量可至少按比例擴大256/64之比率。在圖5所例示的實例中,寬頻頻寬501之一個頻帶邊緣可具有三個防護副載波,而另一頻帶邊緣可具有四個防護副載波。在此等40MHz實施例中,當在40MHz寬頻通道之相鄰20MHz通道之間不提供防護副載波時,可存在若干(例如,八個)可保持不使用的額外的或空副載波。在一些實施例中,額外的或空副載波可用作最小OFDMA頻寬單元之間的防護副載波,以放寬硬體實現方式,諸如每一使用者裝置中之局部振盪器精確度。 In some embodiments, for communicating with the scheduling station 104 using a wideband bandwidth 501 (eg, a wideband channel) comprising two connected or adjacent 20 MHz channels for a bandwidth of 40 MHz during an OFDMA control period, the primary Station 102 can allocate up to eight minimum OFDMA bandwidth units 402 each having fourteen (14) subcarriers, a total of 112 data and pilot subcarriers, one DC subcarrier, and seven at band edge 504 (7) Protective subcarriers (see Table 1). These embodiments may use a 64-point FFT. When a 256-point FFT is used, the number of allocations can be scaled at least 256/64 proportionally. In the example illustrated in FIG. 5, one band edge of the wideband bandwidth 501 may have three guard subcarriers and the other band edge may have four guard subcarriers. In such 40 MHz embodiments, when no guard subcarriers are provided between adjacent 20 MHz channels of a 40 MHz wideband channel, there may be several (eg, eight) additional or empty subcarriers that may remain unused. In some embodiments, additional or null subcarriers may be used as guard subcarriers between the smallest OFDMA bandwidth units to relax hardware implementations, such as local oscillator accuracy in each user device.

在一些實施例中,額外的空副載波可在40MHz之兩個頻帶邊緣處增加至防護副載波、指定在兩個20MHz子通道之間、指定在最小OFDMA單元之間及/或指定在DC周圍(例如,以放寬對DC偏移之要求)。 In some embodiments, additional null subcarriers may be added to guard subcarriers at two band edges of 40 MHz, specified between two 20 MHz subchannels, specified between minimum OFDMA units, and/or designated around DC (For example, to relax the requirement for DC offset).

在一些實施例中,對在OFDMA控制週期期間、針對80MHz之頻寬使用包含四個相連20MHz通道之寬頻通道來與排程站104通訊而言,主站102可分配達十七(17)個各自具有十四(14)個副載波之最小OFDMA頻寬單元,總 共達238個資料及導頻副載波、一個DC副載波及在頻帶邊緣504處之七(7)個防護副載波(參見表1)。此等實施例可使用64-點FFT。當使用256-點FFT時,分配數量可至少按比例擴大256/64之比率。在提供達17個最小OFDMA頻寬單元502之此等80MHz實施例中,當在80MHz寬頻通道之相鄰20MHz通道之間不提供防護副載波時,可存在若干(例如,十個)可保持不使用的額外的或空副載波。在一些實施例中,額外的或空副載波可用作最小OFDMA頻寬單元之間的防護副載波。在此等80MHz實施例中,藉由消除相鄰20MHz通道之間的防護副載波,可分配另一最小OFDMA頻寬單元(亦即,17個各自具有14個副載波之最小OFDMA頻寬單元替代16個最小OFDMA頻寬單元)。注意,消除各個20MHz之間的7個防護副載波將產生3x7=21個額外的空副載波。80MHz通道在每一頻帶邊緣具有6個及5個防護段替代對20MHz而言的4個及3個,且具有在DC處及DC周圍的3個。此等空位之結構之改變可提供另一最小OFDMA單元加額外的空位,如表1所述。 In some embodiments, the master station 102 can be allocated up to seventeen (17) for communicating with the scheduling station 104 using a wide frequency channel comprising four connected 20 MHz channels for an 80 MHz bandwidth during the OFDMA control period. Minimum OFDMA bandwidth units each having fourteen (14) subcarriers, total A total of 238 data and pilot subcarriers, one DC subcarrier, and seven (7) guard subcarriers at band edge 504 (see Table 1). These embodiments may use a 64-point FFT. When a 256-point FFT is used, the number of allocations can be scaled at least 256/64 proportionally. In such 80 MHz embodiments that provide up to 17 minimum OFDMA bandwidth units 502, when no guard subcarriers are provided between adjacent 20 MHz channels of an 80 MHz wideband channel, there may be several (eg, ten) that may remain un Additional or empty subcarriers used. In some embodiments, additional or null subcarriers may be used as guard subcarriers between the smallest OFDMA bandwidth units. In these 80 MHz embodiments, another minimum OFDMA bandwidth unit can be allocated by eliminating guard subcarriers between adjacent 20 MHz channels (ie, 17 minimum OFDMA bandwidth units each having 14 subcarriers) 16 minimum OFDMA bandwidth units). Note that eliminating 7 guard subcarriers between each 20 MHz will result in 3x7 = 21 additional null subcarriers. The 80 MHz channel has 6 and 5 guard segments at the edge of each band instead of 4 and 3 for 20 MHz, and has 3 at DC and around DC. The change in the structure of these vacancies may provide another minimum OFDMA unit plus additional vacancies, as described in Table 1.

在一些實施例中,對在OFDMA控制週期期間、針對160MHz之頻寬使用包含具有八個相連20MHz通道之頻寬的寬頻通道來與排程站104通訊而言,主站102可分配達三十六(36)個各自具有十四(14)個副載波之最小OFDMA頻寬單元,總共達504個資料及導頻副載波、一個DC副載波及在頻帶邊緣504處之七(7)個防護副載波。此等實施例可使用64-點FFT。當使用256-點FFT時,分配數量可至少按比 例擴大256/64之比率。在此等160MHz實施例中,大多數或所有防護副載波將習知地已提供於可用於通訊的相鄰20MHz通道之間。在此等160MHz實施例中,藉由消除相鄰20MHz通道之間的防護副載波,可分配若干(例如,至多四個)另外的最小OFDMA頻寬單元(亦即,至多36個各自具有14個副載波之最小OFDMA頻寬單元替代32個最小OFDMA頻寬單元)。 In some embodiments, the primary station 102 can be allocated up to thirty for communicating with the scheduling station 104 using a wide frequency channel having a bandwidth of eight connected 20 MHz channels during the OFDMA control period for a bandwidth of 160 MHz. Six (36) minimum OFDMA bandwidth units each having fourteen (14) subcarriers, for a total of 504 data and pilot subcarriers, one DC subcarrier, and seven (7) guards at band edge 504 Subcarrier. These embodiments may use a 64-point FFT. When using a 256-point FFT, the number of allocations can be at least The example expands the ratio of 256/64. In these 160 MHz embodiments, most or all of the guard subcarriers will conventionally be provided between adjacent 20 MHz channels available for communication. In such 160 MHz embodiments, by eliminating guard subcarriers between adjacent 20 MHz channels, a number (e.g., up to four) of additional minimum OFDMA bandwidth units can be allocated (i.e., up to 36 each having 14) The minimum OFDMA bandwidth unit of the subcarrier replaces the 32 minimum OFDMA bandwidth units).

在一些實施例中,主站102可組配來在OFDMA控制週期期間,使用對160MHz之頻寬而言包含兩個非相連80MHz寬頻通道(亦即,80+80MHz通道)之寬頻通道來與排程站104通訊。對具有80+80MHz通道之每一80MHz寬頻通道而言,主站102可分配達十七(17)個各自具有十四(14)個副載波之最小OFDMA頻寬單元,總共達238個資料及導頻副載波、一個DC副載波及頻帶邊緣504處之七(7)個防護副載波。在使用具有160MHz之頻寬的包含兩個非相連80MHz寬頻通道(亦即,80+80頻寬通道)之寬頻通道的此等實施例中,每一80MHz通道可包含四個相連20MHz通道。在此等實施例中,空副載波可指定在每一80MHz通道之頻帶邊緣上。因此,可分配小於36個分配段的160MHz相連頻寬通道。例如,36個分配段中至少一者之副載波可空出用於防護頻帶及空副載波。在利用160MHz頻寬之一些實施例中,可使用三十五(35)個最小OFDMA頻寬單元,且額外的空副載波(其可用於另一最小OFDMA頻寬單元)可用於最小OFDMA頻寬單元之間的空副載波。 In some embodiments, the primary station 102 can be configured to use a wide frequency channel comprising two non-contiguous 80 MHz wideband channels (ie, 80+80 MHz channels) for the 160 MHz bandwidth during the OFDMA control period. Station 104 communication. For each 80 MHz wideband channel with 80+80 MHz channels, the primary station 102 can allocate up to seventeen (17) minimum OFDMA bandwidth units each having fourteen (14) subcarriers for a total of 238 data and Pilot subcarriers, one DC subcarrier, and seven (7) guard subcarriers at band edge 504. In such an embodiment using a wide frequency channel having a bandwidth of 160 MHz comprising two non-contiguous 80 MHz wide frequency channels (i.e., 80 + 80 bandwidth channels), each 80 MHz channel may include four connected 20 MHz channels. In such embodiments, null subcarriers may be specified on the band edges of each 80 MHz channel. Therefore, a 160 MHz connected bandwidth channel of less than 36 allocation segments can be allocated. For example, subcarriers of at least one of the 36 allocation segments may be vacated for guard bands and null subcarriers. In some embodiments utilizing a 160 MHz bandwidth, thirty-five (35) minimum OFDMA bandwidth units may be used, and additional null subcarriers (which may be used for another minimum OFDMA bandwidth unit) may be used for the minimum OFDMA bandwidth. Empty subcarriers between cells.

在一些實施例中,主站可基於最小OFDMA頻寬單元402分配頻寬至排程站104,以用於在控制週期期間與主站通訊。排程站104可為高效能無線(HEW)站104(亦即,IEEE 802.11ax),且主站102可為存取點,其組配來用於與HEW站104進行HEW通訊,且組配來用於與舊式站106(例如,IEEE 802.11ac)進行舊式通訊。在此等實施例中,在OFDMA控制週期期間,主站102可根據諸如排程OFDMA及/或分區多重存取(SDMA)技術之基於非爭奪的多重存取技術,使用最小OFDMA頻寬單元來與排程HEW站104通訊。在OFDMA控制週期外部,主站可組配來根據基於爭奪的通訊技術(習知IEEE 802.11、CSMA/CA)來與包括舊式站106之站通訊。 In some embodiments, the primary station may allocate a bandwidth to the scheduling station 104 based on the minimum OFDMA bandwidth unit 402 for communicating with the primary station during the control period. The scheduling station 104 can be a high performance wireless (HEW) station 104 (i.e., IEEE 802.11ax), and the primary station 102 can be an access point that is configured for HEW communication with the HEW station 104 and is configured Used for legacy communication with legacy stations 106 (eg, IEEE 802.11ac). In such embodiments, during an OFDMA control period, the primary station 102 may use a minimum OFDMA bandwidth unit based on a non-contention based multiple access technique such as scheduled OFDMA and/or partition multiple access (SDMA) techniques. Communicate with the scheduled HEW station 104. Outside the OFDMA control cycle, the primary station can be configured to communicate with stations including legacy stations 106 in accordance with contention-based communication techniques (known IEEE 802.11, CSMA/CA).

在一些實施例中,最小OFDMA頻寬單元402可組配來在控制週期內時間多工傳輸及頻率多工傳輸。在控制週期期間,封包可根據使用OFDMA之上行鏈路SDMA技術接收自排程站104,或封包可根據使用OFDMA之下行鏈路多工傳輸技術傳輸至排程站104。在一些實施例中,在控制週期期間,封包可根據使用OFDMA之上行鏈路SDMA技術接收自排程站104,儘管在此態樣中實施例之範疇不受限制。 In some embodiments, the minimum OFDMA bandwidth unit 402 can be configured to time multiplex transmission and frequency multiplex transmission during the control period. During the control period, the packet may be received from the scheduling station 104 in accordance with an uplink SDMA technique using OFDMA, or the packet may be transmitted to the scheduling station 104 in accordance with the downlink multiplex transmission technique using OFDMA. In some embodiments, during the control period, the packet may be received from the scheduling station 104 in accordance with an uplink SDMA technique using OFDMA, although the scope of the embodiments is not limited in this aspect.

在一些實施例中,主站102可在控制週期之初始部分期間傳輸主同步傳輸,其包括佈置來發信及識別用於多個排程站104之資料欄位的多裝置前文。主同步傳輸可識別最小OFDMA頻寬單元402之參數,該等參數藉由排程站 104在控制週期期間用於與主站102通訊。在控制週期期間的通訊使用最小OFDMA頻寬單元402。在一些實施例中,排程站104可分配一個以上最小OFDMA頻寬單元402,因為最小OFDMA頻寬單元402為可分配的最小量之頻寬。 In some embodiments, the primary station 102 can transmit primary synchronization transmissions during an initial portion of the control cycle, including multi-device preambles arranged to signal and identify data fields for the plurality of scheduling stations 104. The primary synchronization transmission can identify the parameters of the minimum OFDMA bandwidth unit 402, which are used by the scheduling station. 104 is used to communicate with the primary station 102 during the control period. Communication during the control period uses a minimum OFDMA bandwidth unit 402. In some embodiments, the scheduling station 104 can allocate more than one minimum OFDMA bandwidth unit 402 because the minimum OFDMA bandwidth unit 402 is the smallest amount of bandwidth that can be allocated.

在一些此等實施例中,小量額外功率放大器(PA)後移及濾波可幫助跨於所有頻寬一致地定義在頻帶邊緣404(圖4)及504(圖5)上為1250KHz之防護頻帶(在左側4個空副載波及在右側3個空副載波)。在一些替代實施例中,額外的空副載波可分配來提供與圖3所示的舊式分配類似的額外的防護頻帶。一些實施例可使用:對80MHz通道而言,17個可能的子通道中之僅16個(或36個可能的子通道中之僅35個),或對160MHz通道而言,36個可能的子通道中之僅35個,以便釋放一個OFDMA單元以用作14個額外的空副載波。在40、80及160MHz寬頻通道中額外的空副載波之可利用性可提供設計之靈活性。如早前所述,額外的空副載波可分配為防護段或可分配在DC周圍,以放寬對DC偏移取消之要求。額外的空副載波亦可分配在OFDMA單元之間以放寬對振盪器精確度之要求。 In some such embodiments, a small amount of additional power amplifier (PA) back-off and filtering can help define a guard band of 1250 KHz across band edges 404 (Fig. 4) and 504 (Fig. 5) consistently across all bandwidths. (4 null subcarriers on the left and 3 null subcarriers on the right). In some alternative embodiments, additional null subcarriers may be allocated to provide an additional guard band similar to the legacy allocation shown in FIG. Some embodiments may use: for an 80 MHz channel, only 16 of the 17 possible sub-channels (or only 35 of the 36 possible sub-channels), or for a 160 MHz channel, 36 possible sub-- Only 35 of the channels are used to release one OFDMA unit for use as 14 additional null subcarriers. The availability of additional null subcarriers in the 40, 80 and 160 MHz wideband channels provides design flexibility. As mentioned earlier, additional null subcarriers may be allocated as guard segments or may be allocated around the DC to relax the requirement for DC offset cancellation. Additional null subcarriers may also be allocated between the OFDMA units to relax the oscillator accuracy requirements.

圖6例示根據一些實施例之HEW通訊裝置。HEW裝置600可為HEW順應性裝置,其可佈置來與一或多個其他HEW裝置(諸如HEW站104(圖1)或主站102(圖1))通訊,以及與舊式裝置通訊。HEW裝置600可適合於作為主站102(圖1)或HEW站104(圖1)操作。根據實施例,HEW裝置600可尤其包括硬體處理電路,該硬體處理電路可包括實體層 (PHY)電路602及媒體存取控制層電路(MAC)604。PHY 602及MAC 604可為HEW順應層,且亦可順應於一或多個舊式IEEE 802.11標準。PHY 602可佈置來傳輸HEW訊框,諸如HEW訊框(圖4)。HEW裝置600亦可包括其他處理電路606及記憶體608,其組配來進行本文所述的各種操作。 FIG. 6 illustrates a HEW communication device in accordance with some embodiments. The HEW device 600 can be an HEW compliant device that can be arranged to communicate with one or more other HEW devices, such as the HEW station 104 (FIG. 1) or the primary station 102 (FIG. 1), and with legacy devices. HEW device 600 may be adapted to operate as primary station 102 (FIG. 1) or HEW station 104 (FIG. 1). According to an embodiment, the HEW device 600 may particularly include a hardware processing circuit that may include a physical layer (PHY) circuit 602 and medium access control layer circuit (MAC) 604. PHY 602 and MAC 604 may be HEW compliant layers and may also conform to one or more legacy IEEE 802.11 standards. The PHY 602 can be arranged to transmit HEW frames, such as HEW frames (Fig. 4). The HEW device 600 can also include other processing circuits 606 and memory 608 that are assembled to perform the various operations described herein.

根據一些實施例,MAC 604可佈置來在爭奪週期期間爭奪無線媒體,以接收對媒體之控制歷時HEW控制週期且組配HEW訊框。PHY 602可佈置來傳輸HEW訊框,如以上所論述。PHY 602亦可佈置來自HEW站接收HEW訊框。MAC 604亦可佈置來經由PHY 602進行傳輸及接收操作。PHY 602可包括用於調變/解調、升頻轉換/降頻轉換、濾波、放大等等之電路。在一些實施例中,處理電路606可包括一或多個處理器。在一些實施例中,兩個或兩個以上天線可耦接至實體層電路,其佈置用於發送及接收信號,包括傳輸HEW訊框。記憶體608可儲存資訊,以用於組配處理電路606來進行用於組配及傳輸HEW訊框之操作且進行本文所述的各種操作。 According to some embodiments, the MAC 604 may be arranged to contend for the wireless medium during the contention period to receive a control over the media HEW control period and to group the HEW frames. The PHY 602 can be arranged to transmit HEW frames as discussed above. The PHY 602 can also be arranged to receive HEW frames from the HEW station. The MAC 604 can also be arranged to transmit and receive operations via the PHY 602. PHY 602 may include circuitry for modulation/demodulation, upconversion/down conversion, filtering, amplification, and the like. In some embodiments, processing circuit 606 can include one or more processors. In some embodiments, two or more antennas may be coupled to a physical layer circuit that is arranged to transmit and receive signals, including transmitting HEW frames. Memory 608 can store information for assembly processing circuitry 606 for performing operations for assembling and transmitting HEW frames and performing the various operations described herein.

在一些實施例中,HEW裝置600可組配來使用OFDM通訊信號、經由多載波通訊通道來通訊。在一些實施例中,HEW裝置600可組配來根據諸如美國電機電子工程師學會(IEEE)標準之特定通訊標準接收信號,該等標準包括IEEE 802.11-2012、802.11n-2009及/或802.11ac-2013標準,及/或包括所建議HEW標準的用於WLAN之建議規範,儘管在此態樣中本發明之範疇不受限制,因為其可亦適合 於根據其他技術及標準來傳輸及/或接收通訊。在一些其他實施例中,HEW裝置600可組配來接收使用一或多個其他調變技術傳輸之信號,該等技術諸如展開頻譜調變(例如,直接序列分碼多重存取(DS-CDMA)及/或跳頻分碼多重存取(FH-CDMA))、分時多工(TDM)調變及/或分頻多工(FDM)調變,儘管在此態樣中實施例之範疇不受限制。 In some embodiments, HEW device 600 can be configured to communicate over a multi-carrier communication channel using OFDM communication signals. In some embodiments, HEW device 600 can be configured to receive signals in accordance with a particular communication standard, such as the Institute of Electrical and Electronics Engineers (IEEE) standards, including IEEE 802.11-2012, 802.11n-2009, and/or 802.11ac- 2013 standard, and/or recommended specifications for WLAN including the proposed HEW standard, although in this aspect the scope of the invention is not limited as it may also be suitable Transmit and/or receive communications in accordance with other technologies and standards. In some other embodiments, HEW device 600 can be configured to receive signals transmitted using one or more other modulation techniques, such as spread spectrum modulation (eg, direct sequence code division multiple access (DS-CDMA) And/or frequency hopping code division multiple access (FH-CDMA), time division multiplexing (TDM) modulation and/or frequency division multiplexing (FDM) modulation, although in this aspect the scope of the embodiment Unlimited.

在一些實施例中,HEW裝置600可為可攜式無線通訊裝置之一部分,諸如個人數位助理(PDA)、具有無線通訊能力之膝上型電腦或可攜式電腦、網路平板電腦、無線電話或智慧型電話、無線耳機、呼叫器、即時傳訊裝置、數位攝影機、存取點、電視、醫療器材(例如,心率監視器、血壓監視器等等)或可無線接收及/或傳輸資訊的其他裝置。在一些實施例中,HEW裝置600可包括以下一或多者:鍵盤、顯示器、非依電性記憶體埠、多個天線、圖形處理器、應用處理器、揚聲器及其他行動裝置元件。顯示器可為包括觸控螢幕之LCD螢幕。 In some embodiments, the HEW device 600 can be part of a portable wireless communication device, such as a personal digital assistant (PDA), a laptop or portable computer with wireless communication capabilities, a web tablet, a wireless telephone. Or smart phones, wireless headsets, pagers, instant messaging devices, digital cameras, access points, televisions, medical devices (eg heart rate monitors, blood pressure monitors, etc.) or other devices that can receive and/or transmit information wirelessly Device. In some embodiments, HEW device 600 can include one or more of the following: a keyboard, a display, a non-electric memory cartridge, a plurality of antennas, a graphics processor, an application processor, a speaker, and other mobile device components. The display can be an LCD screen including a touch screen.

HEW裝置600之天線可包含一或多個定向或全向天線,包括例如偶極天線、單極天線、塊狀天線、環形天線、微帶天線或適合於RF信號之傳輸的其他類型之天線。在一些多輸入多輸出(MIMO)實施例中,可將天線有效地分開以利用可發生在天線中每一者與發射台之天線之間的空間多樣性及不同的通道特性。 The antenna of HEW device 600 may include one or more directional or omnidirectional antennas including, for example, dipole antennas, monopole antennas, block antennas, loop antennas, microstrip antennas, or other types of antennas suitable for transmission of RF signals. In some multiple input multiple output (MIMO) embodiments, the antennas can be effectively separated to take advantage of the spatial diversity and different channel characteristics that can occur between each of the antennas and the antennas of the transmitting stations.

儘管HEW裝置600係例示為具有若干單獨功能元件,但功能元件之一或多者可組合且可由軟體組配的元 件(諸如包括數位信號處理器(DSP)之處理元件)及/或其他硬體元件之組合實行。例如,一些元件可包含一或多個微處理器、DSP、現場可規劃閘陣列(FPGA)、特定應用集體電路(ASIC)、射頻集體電路(RFIC)以及用於至少進行本文所述之功能的各種硬體與邏輯電路之組合。在一些實施例中,HEW裝置600之功能元件可涉及在一或多個處理元件上操作之一或多個過程。 Although the HEW device 600 is illustrated as having a number of individual functional elements, one or more of the functional elements may be combined and may be assembled by a software. A combination of components, such as processing elements including a digital signal processor (DSP), and/or other hardware components is implemented. For example, some components may include one or more microprocessors, DSPs, field programmable gate arrays (FPGAs), application specific collective circuits (ASICs), radio frequency collective circuits (RFICs), and at least for performing the functions described herein. A combination of various hardware and logic circuits. In some embodiments, the functional elements of HEW device 600 may involve operating one or more processes on one or more processing elements.

實施例可實行於硬體、韌體及軟體之一或組合中。實施例亦可實行為儲存在電腦可讀儲存裝置上之指令,該等指令可由至少一個處理器讀取且執行來進行本文所述之操作。電腦可讀儲存裝置可包括用於以可由機器(例如,電腦)讀取之形式儲存資訊之任何非暫時性機構。例如,電腦可讀儲存裝置可包括唯讀記憶體(ROM)、隨機存取記憶體(RAM)、磁碟儲存媒體、光儲存媒體、快閃記憶體裝置及其他儲存裝置及媒體。一些實施例可包括一或多個處理器且可以儲存在電腦可讀儲存裝置上之指令來組配。 Embodiments can be implemented in one or a combination of hardware, firmware, and software. Embodiments can also be implemented as instructions stored on a computer readable storage device, which can be read and executed by at least one processor for performing the operations described herein. The computer readable storage device can include any non-transitory mechanism for storing information in a form readable by a machine (eg, a computer). For example, computer readable storage devices may include read only memory (ROM), random access memory (RAM), disk storage media, optical storage media, flash memory devices, and other storage devices and media. Some embodiments may include one or more processors and may be stored in an instruction stored on a computer readable storage device.

提供摘要來遵守37 C.F.R.章節1.72(b),其要求將允許讀者確定本技術揭示內容之性質及要旨的摘要。應當理解為摘要將不用來限制或闡釋申請專利範圍之範疇或意義。以下申請專利範圍據此併入詳細描述中,其中每一申請專利範圍自身即為獨立實施例。 The Abstract is provided to comply with 37 C.F.R. Section 1.72(b), which requires the reader to determine an abstract of the nature and gist of the present disclosure. It should be understood that the abstract will not be used to limit or clarify the scope or meaning of the scope of the claims. The scope of the following patent application is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety herein

402‧‧‧OFDMA頻寬單元/最小OFDMA頻寬單元 402‧‧‧OFDMA bandwidth unit/minimum OFDMA bandwidth unit

501‧‧‧頻寬/寬頻頻寬 501‧‧‧Bandwidth/Broadband Bandwidth

504‧‧‧頻帶邊緣 504‧‧‧ Band edge

Claims (23)

一種主站,其包含硬體處理電路,該硬體處理電路包括實體層電路及媒體存取控制層電路,且組配來在一無線區域網路(WLAN)中通訊,該硬體處理電路組配來進行下列動作:在一正交分頻多重存取(OFDMA)控制週期期間,在包含使用多個最小OFDMA頻寬單元之一或多個通道的一頻寬內與排程站通訊,在該OFDMA控制週期期間,該主站具有對於一無線媒體之專用控制,其中每一最小OFDMA頻寬單元包含帶有78.125KHz之一副載波間隔的一預定數量之副載波,其不包括該通道之防護副載波,其中該頻寬被分成該等最小OFDMA頻寬單元之一最大數量,且其中該等最小OFDMA頻寬單元之該最大數量之每一者係可排程至一分開的已排程站。 A primary station includes a hardware processing circuit including a physical layer circuit and a medium access control layer circuit, and is configured to communicate in a wireless local area network (WLAN), the hardware processing circuit group Configuring to perform communication with a scheduled station within a bandwidth including one or more of the plurality of minimum OFDMA bandwidth units during an orthogonal frequency division multiple access (OFDMA) control period, During the OFDMA control period, the primary station has dedicated control for a wireless medium, wherein each minimum OFDMA bandwidth unit includes a predetermined number of subcarriers with a subcarrier spacing of 78.125 KHz, which does not include the channel a guard subcarrier, wherein the bandwidth is divided into a maximum number of one of the minimum OFDMA bandwidth units, and wherein each of the maximum number of the minimum OFDMA bandwidth units is scheduled to a separate scheduled station. 如請求項1之主站,其中該等防護副載波係提供在該頻寬之頻帶邊緣處,除該等最小OFDMA頻寬單元中之每一者的該等副載波之外另有該等防護副載波,且其中在一通道之該等最小OFDMA頻寬單元之間不提供防護副載波。 The primary station of claim 1, wherein the guard subcarriers are provided at a frequency band edge of the bandwidth, in addition to the subcarriers of each of the minimum OFDMA bandwidth units Subcarriers, and wherein no guard subcarriers are provided between the minimum OFDMA bandwidth units of a channel. 如請求項1之主站,其中每一通道為一20MHz通道,且其中當該通道為一寬頻通道且包含兩個或兩個以 上相鄰20MHz通道時,在該兩個或兩個以上相鄰20MHz通道之相鄰最小OFDMA頻寬單元之間不提供防護副載波。 The primary station of claim 1, wherein each channel is a 20 MHz channel, and wherein the channel is a broadband channel and includes two or two When an adjacent 20 MHz channel is upstream, no guard subcarriers are provided between adjacent minimum OFDMA bandwidth units of the two or more adjacent 20 MHz channels. 如請求項3之主站,其中對於處理具有一64-點FFT之一20MHz通道之信號而言,用於每一最小OFDMA頻寬單元之資料及導頻副載波之預定數量為十四(14)個帶有一副載波間隔為312.5KHz之副載波,且其中每一最小OFDMA頻寬單元佔據4.375MHz之一頻寬。 The primary station of claim 3, wherein for processing a signal having a 20 MHz channel of a 64-point FFT, the predetermined number of data and pilot subcarriers for each of the minimum OFDMA bandwidth units is fourteen (14) A subcarrier with a subcarrier spacing of 312.5 kHz, and each of the smallest OFDMA bandwidth units occupies a bandwidth of 4.375 MHz. 如請求項3之主站,其中對於處理具有一256-點FFT之一20MHz通道而言,用於每一最小OFDMA頻寬單元之資料及導頻副載波之預定數量為十四個(14),且其中每一最小OFDMA頻寬單元佔據1.09375MHz之一頻寬。 The primary station of claim 3, wherein for processing a 20 MHz channel having a 256-point FFT, the predetermined number of data and pilot subcarriers for each of the smallest OFDMA bandwidth units is fourteen (14) And each of the minimum OFDMA bandwidth units occupies one of the bandwidths of 1.09375 MHz. 如請求項4之主站,其中每一通道為包含四個最小OFDMA頻寬單元之一20MHz通道,其中在該OFDMA控制週期期間藉由該主站利用來與該等排程站通訊的該通道,包含一或多個相鄰20MHz通道,其中對在該OFDMA控制週期期間使用包含一單一20MHz通道之一通道來與排程站通訊而言,該單一20MHz通道係組配來提供四個最小OFDMA頻寬單元,除一個DC副載波及在該等頻帶邊緣處之七(7)個防護副載波之外總共56個資料副載波。 The primary station of claim 4, wherein each channel is a 20 MHz channel comprising one of four minimum OFDMA bandwidth units, wherein the channel communicated with the scheduling stations by the primary station during the OFDMA control period Included in one or more adjacent 20 MHz channels, wherein the single 20 MHz channel is configured to provide four minimum OFDMAs for communicating with the scheduled station using one channel comprising a single 20 MHz channel during the OFDMA control period The bandwidth unit has a total of 56 data subcarriers in addition to one DC subcarrier and seven (7) guard subcarriers at the edges of the bands. 如請求項6之主站,其中對在該OFDMA控制週期期間使用包含兩個或兩個以上相鄰20MHz通道之一寬頻通道來與排程站通訊而言,該主站係組配來配置該兩個或兩個以上相鄰20MHz通道之該等最小OFDMA頻寬單元,而其之間無防護副載波。 The primary station of claim 6, wherein the primary station is configured to configure the broadband station with one or more adjacent 20 MHz channels for communication with the scheduled station during the OFDMA control period The minimum OFDMA bandwidth units of two or more adjacent 20 MHz channels with no guard subcarriers therebetween. 如請求項7之主站,其中對在該OFDMA控制週期期間,針對40MHz之一頻寬使用包含兩個相連20MHz通道之一寬頻頻寬來與排程站通訊而言,該主站係組配來分配達八個各自具有十四(14)個副載波之最小OFDMA頻寬單元,總共112個資料及導頻副載波、一個DC副載波及在該等頻帶邊緣處之七(7)個防護副載波。 The primary station of claim 7, wherein the primary station is configured to communicate with the scheduled station using one of the two connected 20 MHz channels for one bandwidth of 40 MHz during the OFDMA control period. To allocate up to eight minimum OFDMA bandwidth units each having fourteen (14) subcarriers, a total of 112 data and pilot subcarriers, one DC subcarrier, and seven (7) guards at the edges of the bands Subcarrier. 如請求項8之主站,其中對於在該OFDMA控制週期期間,針對80MHz之一頻寬使用包含四個相連20MHz通道之一寬頻通道來與排程站通訊而言,該主站係組配來分配達十七(17)個各自具有十四(14)個副載波之最小OFDMA頻寬單元,總共達238個資料及導頻副載波、一個DC副載波及在該等頻帶邊緣處之七(7)個防護副載波。 The primary station of claim 8, wherein the primary station is configured to communicate with the scheduled station using one of four connected 20 MHz channels for one bandwidth of 80 MHz during the OFDMA control period Allocating up to seventeen (17) minimum OFDMA bandwidth units each having fourteen (14) subcarriers, for a total of 238 data and pilot subcarriers, one DC subcarrier, and seven at the edge of the bands ( 7) protective subcarriers. 如請求項9之主站,其中對於在該OFDMA控制週期期間,針對160MHz之一頻寬使用包含八個相連20MHz通道之一頻寬的一寬頻通道來與排程站通訊而言,該主站係組配來分配達三十六(36)個各自具有十四(14)個副載波之最小OFDMA頻寬單元,總共達504個資料及導 頻副載波、一個DC副載波及在頻帶邊緣處之七(7)個防護副載波。 The primary station of claim 9, wherein the primary station communicates with the scheduled station for a bandwidth of one of the eight connected 20 MHz channels for one of the 160 MHz bandwidths during the OFDMA control period The system is configured to allocate up to thirty-six (36) minimum OFDMA bandwidth units each having fourteen (14) subcarriers, for a total of 504 data and leads. Frequency subcarrier, one DC subcarrier, and seven (7) guard subcarriers at the edge of the band. 如請求項9之主站,其中對於在該OFDMA控制週期期間,針對160MHz之一頻寬使用包含兩個非相連80MHz寬頻通道之一寬頻通道來與排程站通訊而言,其中對每一80MHz寬頻通道而言,該主站係組配來分配達十七(17)個各自具有十四(14)個副載波之最小OFDMA頻寬單元,總共達238個資料及導頻副載波、一個DC副載波及在該等頻帶邊緣處之七(7)個防護副載波。 The primary station of claim 9, wherein for one of the 160 MHz bandwidths, one of the two non-contiguous 80 MHz wideband channels is used for communication with the scheduled station during the OFDMA control period, wherein each of the 80 MHz In the case of a wideband channel, the primary station is configured to allocate up to seventeen (17) minimum OFDMA bandwidth units each having fourteen (14) subcarriers, for a total of 238 data and pilot subcarriers, one DC Subcarriers and seven (7) guard subcarriers at the edges of the bands. 如請求項2之主站,其中該主站係組配來基於該最小OFDMA頻寬單元分配頻寬至該等排程站,以用於在該控制週期期間與該主站通訊,其中該排程站為高效能無線(HEW)站,且該主站為一存取點,其組配來用於與該HEW站進行HEW通訊,且組配來用於與舊式站進行舊式通訊,其中該等最小OFDMA頻寬單元可組配來在該控制週期內時間多工傳輸及頻率多工傳輸,且其中在該控制週期期間:封包係根據使用OFDMA之一上行鏈路SDMA技術而接收自該等排程站,或封包係根據使用OFDMA之下行鏈路多工傳輸技術而傳輸至該等排程站,其中該主站進一步經組配來: 在該控制週期之一初始部分期間傳輸一主同步傳輸,其包括佈置來發信及識別用於該等多個排程站之資料欄位的一多裝置前文,其中該主同步傳輸識別該等最小OFDMA頻寬單元之參數,該等參數藉由該等排程站在該控制週期期間用於該與主站通訊,且其中在該控制週期期間的通訊使用該最小OFDMA頻寬單元。 The primary station of claim 2, wherein the primary station is configured to allocate a bandwidth to the scheduled stations based on the minimum OFDMA bandwidth unit for communicating with the primary station during the control period, wherein the primary station The station is a high-performance wireless (HEW) station, and the primary station is an access point, which is configured to perform HEW communication with the HEW station, and is configured to perform legacy communication with the legacy station, where The equal minimum OFDMA bandwidth unit can be configured to time multiplex transmission and frequency multiplex transmission during the control period, and wherein during the control period: the packet is received from the uplink SDMA technique using one of OFDMA The scheduling station, or packet, is transmitted to the scheduling stations in accordance with the use of downlink multiplex transmission techniques under OFDMA, wherein the primary stations are further configured to: Transmitting a primary synchronization transmission during an initial portion of the control period, comprising a multi-device preamble arranged to signal and identify data fields for the plurality of scheduling stations, wherein the primary synchronization transmission identifies such A parameter of a minimum OFDMA bandwidth unit, the parameters being used by the scheduling station to communicate with the primary station during the control period, and wherein the communication during the control period uses the minimum OFDMA bandwidth unit. 如請求項1之主站,其中該等防護副載波係提供在該頻寬之頻帶邊緣處,除該等最小OFDMA頻寬單元中之每一者的該等副載波之外另有該等防護副載波,且其中在一通道之該等最小OFDMA頻寬單元之間提供額外的副載波。 The primary station of claim 1, wherein the guard subcarriers are provided at a frequency band edge of the bandwidth, in addition to the subcarriers of each of the minimum OFDMA bandwidth units Subcarriers, and wherein additional subcarriers are provided between the minimum OFDMA bandwidth units of a channel. 一種用於在一無線區域網路(WLAN)中藉由一主站進行的通訊的方法,該方法包含:在一正交分頻多重存取(OFDMA)控制週期期間,在包含使用多個最小OFDMA頻寬單元之一或多個通道的一頻寬內與排程站通訊,在該OFDMA控制週期期間,該主站具有對一無線媒體之專用控制,其中每一最小OFDMA頻寬單元包含帶有78.125KHz之一副載波間隔的一預定數量之副載波,其不包括該通道之防護副載波,其中該頻寬被分成該等最小OFDMA頻寬單元之一最大數量,且其中該等最小OFDMA頻寬單元之該最大數量每一者係可排程至一分 開的已排程站。 A method for communication by a primary station in a wireless local area network (WLAN), the method comprising: using a plurality of minimums during an orthogonal frequency division multiple access (OFDMA) control period The one or more channels of the OFDMA bandwidth unit communicate with the scheduling station within a bandwidth during which the primary station has dedicated control over a wireless medium, wherein each minimum OFDMA bandwidth unit includes a band a predetermined number of subcarriers having a subcarrier spacing of 78.125 KHz, which does not include guard subcarriers of the channel, wherein the bandwidth is divided into a maximum number of one of the minimum OFDMA bandwidth units, and wherein the minimum OFDMA The maximum number of bandwidth units can be scheduled to one point each Opened scheduled station. 如請求項14之方法,其中該等防護副載波係提供在該頻寬之頻帶邊緣處,除該等最小OFDMA頻寬單元中之每一者的該等副載波之外另有該等防護副載波,且其中在一通道之該等最小OFDMA頻寬單元之間不提供防護副載波。 The method of claim 14, wherein the guard subcarriers are provided at a frequency band edge of the bandwidth, in addition to the subcarriers of each of the minimum OFDMA bandwidth units. Carrier, and wherein no guard subcarriers are provided between the minimum OFDMA bandwidth units of a channel. 如請求項14之方法,其中每一通道為一20MHz通道,且其中當該通道為一寬頻通道且包含兩個或兩個以上相鄰20MHz通道時,在該兩個或兩個以上相鄰20MHz通道之相鄰最小OFDMA頻寬單元之間不提供防護副載波。 The method of claim 14, wherein each channel is a 20 MHz channel, and wherein the channel is a broadband channel and comprises two or more adjacent 20 MHz channels, in the two or more adjacent 20 MHz No guard subcarriers are provided between adjacent minimum OFDMA bandwidth units of the channel. 如請求項16之方法,其中對處理具有一64-點FFT之一20MHz通道之信號而言,用於每一最小OFDMA頻寬單元之資料及導頻副載波之該預定數量為十四(14)個,其中一副載波間隔為312.5KHz,且其中每一最小OFDMA頻寬單元佔據4.375MHz之一頻寬。 The method of claim 16, wherein for processing a signal having a 20 MHz channel of a 64-point FFT, the predetermined number of data and pilot subcarriers for each of the minimum OFDMA bandwidth units is fourteen (14) One of the subcarrier spacings is 312.5 kHz, and each of the smallest OFDMA bandwidth units occupies one of the 4.375 MHz bandwidths. 一種非暫時性電腦可讀儲存媒體,其儲存指令以藉由一或多個處理器執行,以便進行用於在一無線區域網路(WLAN)中藉由一主站進行的通訊之操作,該等操作組配該主站以進行下列動作:在一正交分頻多重存取(OFDMA)控制週期期間,在包含使用多個最小OFDMA頻寬單元之一或多個通道的 一頻寬內與排程站通訊,在該OFDMA控制週期期間,該主站具有對於一無線媒體之專用控制,其中每一最小OFDMA頻寬單元包含帶有78.125KHz之一副載波間隔的一預定數量之副載波,其不包括該通道之防護副載波,其中該頻寬被分成該等最小OFDMA頻寬單元之一最大數量,且其中該等最小OFDMA頻寬單元之該最大數量之每一者係可排程至一分開的已排程站。 A non-transitory computer readable storage medium storing instructions for execution by one or more processors for performing communication operations by a primary station in a wireless local area network (WLAN), The operations are grouped with the primary station to perform the following actions: during an orthogonal frequency division multiple access (OFDMA) control period, including one or more channels using a plurality of minimum OFDMA bandwidth units Communicating with the scheduling station within a bandwidth, during the OFDMA control period, the primary station has dedicated control for a wireless medium, wherein each minimum OFDMA bandwidth unit includes a predetermined one of the subcarrier spacings of 78.125 KHz a quantity of subcarriers that does not include guard subcarriers of the channel, wherein the bandwidth is divided into a maximum number of one of the minimum OFDMA bandwidth units, and wherein each of the maximum number of the minimum OFDMA bandwidth units The system can be scheduled to a separate scheduled station. 如請求項18之非暫時性電腦可讀儲存媒體,其中該等防護副載波係提供在該頻寬之頻帶邊緣處,除該等最小OFDMA頻寬單元中之每一者的該等副載波之外另有該等防護副載波,且其中在一20MHz通道內之該等最小OFDMA頻寬單元之間不提供防護副載波。 The non-transitory computer readable storage medium of claim 18, wherein the guard subcarriers are provided at a frequency band edge of the bandwidth, except for the subcarriers of each of the minimum OFDMA bandwidth units The guard subcarriers are additionally provided, and no guard subcarriers are provided between the minimum OFDMA bandwidth units within a 20 MHz channel. 如請求項19之非暫時性電腦可讀儲存媒體,其中對於處理具有一64-點FFT之一20MHz通道之信號而言,用於每一最小OFDMA頻寬單元之資料及導頻副載波之該預定數量為十四(14)個帶有一副載波間隔為312.5KHz之副載波,且其中每一最小OFDMA頻寬單元佔據4.375MHz之一頻寬。 The non-transitory computer readable storage medium of claim 19, wherein for processing a signal having a 20 MHz channel of a 64-point FFT, the data for each of the minimum OFDMA bandwidth units and the pilot subcarriers The predetermined number is fourteen (14) subcarriers with a subcarrier spacing of 312.5 kHz, and each of the smallest OFDMA bandwidth units occupies one of the 4.375 MHz bandwidths. 一種主站,其包含:一或多個無線電;一記憶體; 實體層電路及媒體存取控制層電路,且組配來在一無線區域網路(WLAN)中根據一高效能(HE)技術通訊,該電路係組配來進行下列動作:在一正交分頻多重存取(OFDMA)控制週期期間,在包含使用多個最小OFDMA頻寬單元之一或多個20MHz Wi-Fi通道的一頻寬內使用該等天線與排程站通訊,在該OFDMA控制週期期間,該主站具有對一無線媒體之專用控制,其中每一最小OFDMA頻寬單元包含一預定數量之副載波,其不包括該通道之防護副載波;其中該等防護副載波係提供在該頻寬之頻帶邊緣處,除該等最小OFDMA頻寬單元中之每一者的該等副載波之外另有該等防護副載波,其中在一20MHz通道內之該等最小OFDMA頻寬單元之間不提供防護副載波,其中對處理具有一256點FFT及副載波間隔為78.125KHz之每一20MHz通道之信號而言,每一最小OFDMA頻寬單元佔據4.375MHz之一頻寬,其中該頻寬被分成該等最小OFDMA頻寬單元之一最大數量,且其中該等最小OFDMA頻寬單元之該最大數量之每一者係可排程至一分開的已排程站。 A primary station comprising: one or more radios; a memory; The physical layer circuit and the medium access control layer circuit are configured to communicate in a wireless local area network (WLAN) according to a high performance (HE) technology, and the circuit is assembled to perform the following actions: During the frequency multiple access (OFDMA) control period, the antennas are used to communicate with the scheduling station within a bandwidth comprising one or more 20 MHz Wi-Fi channels using a plurality of minimum OFDMA bandwidth units, in the OFDMA control During the period, the primary station has dedicated control over a wireless medium, wherein each minimum OFDMA bandwidth unit includes a predetermined number of subcarriers that do not include guard subcarriers for the channel; wherein the guard subcarriers are provided At the edge of the bandwidth of the bandwidth, the guard subcarriers are provided in addition to the subcarriers of each of the minimum OFDMA bandwidth units, wherein the minimum OFDMA bandwidth units in a 20 MHz channel No guard subcarriers are provided, wherein for each signal of a 20 MHz channel having a 256-point FFT and a subcarrier spacing of 78.125 KHz, each minimum OFDMA bandwidth unit occupies a bandwidth of 4.375 MHz, where Bandwidth is divided The maximum number of one of the minimum OFDMA bandwidth units, and wherein each of the maximum number of the minimum OFDMA bandwidth units can be scheduled to a separate scheduled station. 如請求項21之主站,其中對於在該OFDMA控制週期期間使用包含兩個或兩個以上相鄰20MHz通道之一寬頻通道來與排程站通訊而言,該主站係組配來配置該兩 個或兩個以上相鄰20MHz通道之該等最小OFDMA頻寬單元,而其之間無防護副載波。 The primary station of claim 21, wherein for communicating with the scheduled station using one of two or more adjacent 20 MHz channels during the OFDMA control period, the primary station is configured to configure the Two The minimum OFDMA bandwidth units of one or more adjacent 20 MHz channels with no guard subcarriers therebetween. 如請求項22之主站,其進一步包含耦接至該一或多個無線電之一或多個天線。 The primary station of claim 22, further comprising one or more antennas coupled to the one or more radios.
TW104106272A 2014-04-01 2015-02-26 Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit TWI572173B (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201461973376P 2014-04-01 2014-04-01
US201461976951P 2014-04-08 2014-04-08
US201461986250P 2014-04-30 2014-04-30
US201461986256P 2014-04-30 2014-04-30
US201461991730P 2014-05-12 2014-05-12
US201462013869P 2014-06-18 2014-06-18
US201462024801P 2014-07-15 2014-07-15
US14/447,254 US20150139118A1 (en) 2013-11-19 2014-07-30 Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit
PCT/US2014/064509 WO2015077049A1 (en) 2013-11-19 2014-11-07 Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit

Publications (2)

Publication Number Publication Date
TW201540029A TW201540029A (en) 2015-10-16
TWI572173B true TWI572173B (en) 2017-02-21

Family

ID=54851529

Family Applications (4)

Application Number Title Priority Date Filing Date
TW105113980A TWI578838B (en) 2014-04-01 2015-02-26 Wireless apparatus for high-efficiency (he) communication with additional subcarriers
TW105134097A TWI611721B (en) 2014-04-01 2015-02-26 Wireless apparatus for high-efficiency (he) communication with additional subcarriers
TW104106275A TWI566633B (en) 2014-04-01 2015-02-26 High-efficiency wlan (hew) master station and methods to increase information bits for hew communication
TW104106272A TWI572173B (en) 2014-04-01 2015-02-26 Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit

Family Applications Before (3)

Application Number Title Priority Date Filing Date
TW105113980A TWI578838B (en) 2014-04-01 2015-02-26 Wireless apparatus for high-efficiency (he) communication with additional subcarriers
TW105134097A TWI611721B (en) 2014-04-01 2015-02-26 Wireless apparatus for high-efficiency (he) communication with additional subcarriers
TW104106275A TWI566633B (en) 2014-04-01 2015-02-26 High-efficiency wlan (hew) master station and methods to increase information bits for hew communication

Country Status (1)

Country Link
TW (4) TWI578838B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9838961B2 (en) 2013-11-19 2017-12-05 Intel IP Corporation Communication station and method for communicating using minimum bandwidth units of various tone allocations for OFDMA HEW
US9867210B2 (en) 2013-11-19 2018-01-09 Intel IP Corporation Master station and method for HEW communication using a transmission signaling structure for a HEW signal field
US9900906B2 (en) 2013-11-19 2018-02-20 Intel IP Corporation Method, apparatus, and computer readable medium for multi-user scheduling in wireless local-area networks
US9961678B2 (en) 2013-11-19 2018-05-01 Intel IP Corporation Master station and method for HEW communication with signal field configuration for HEW OFDMA MU-MIMO wideband channel operation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106063146A (en) 2013-11-19 2016-10-26 英特尔Ip公司 HEW station and method for UL MU-MIMO HEW with improved receiver performance
US9271241B2 (en) 2013-11-19 2016-02-23 Intel IP Corporation Access point and methods for distinguishing HEW physical layer packets with backwards compatibility
US9680603B2 (en) 2014-04-08 2017-06-13 Intel IP Corporation High-efficiency (HE) communication station and method for communicating longer duration OFDM symbols within 40 MHz and 80 MHz bandwidth
US10292101B2 (en) * 2016-05-11 2019-05-14 Qualcomm Incorporated Peak-to-average power management in wireless local area network signaling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714552A (en) * 2002-11-19 2005-12-28 高通股份有限公司 Reduced complexity channel estimation for wireless communication systems
US20060067415A1 (en) * 2004-09-09 2006-03-30 Mujtaba Syed A Method and apparatus for increasing data throughput in a multiple antenna communication system using additional subcarriers
US20070060161A1 (en) * 2005-05-02 2007-03-15 Siemens Ag Radio communication using OFDMA and IFDMA
US20080240275A1 (en) * 2007-03-23 2008-10-02 Sean Cai Scalable OFDM and OFDMA bandwidth allocation in communication systems
US20120327915A1 (en) * 2010-03-05 2012-12-27 Lg Electronics Inc. Ppdu receiving method and apparatus based on the mimo technique in a wlan system
TW201349815A (en) * 2012-03-01 2013-12-01 Interdigital Patent Holdings Multi-user parallel channel access in WLAN systems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7809020B2 (en) * 2003-10-31 2010-10-05 Cisco Technology, Inc. Start of packet detection for multiple receiver combining and multiple input multiple output radio receivers
JP2007028602A (en) * 2005-07-15 2007-02-01 Sanyo Electric Co Ltd Wireless device
RU2400935C2 (en) * 2006-04-25 2010-09-27 Интердиджитал Текнолоджи Корпорейшн Operation of high throughput capacity channel in mesh wireless local network
CN102396186B (en) * 2009-04-13 2014-12-10 马维尔国际贸易有限公司 Physical layer frame format for wlan
US8184566B2 (en) * 2009-06-05 2012-05-22 Mediatek Inc. Systems for wireless local area network (WLAN) transmission and for coexistence of WLAN and another type of wireless transmission and methods thereof
KR101099345B1 (en) * 2010-12-01 2011-12-26 엘지전자 주식회사 Method for channel sounding in wireless local area network and apparatus for the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714552A (en) * 2002-11-19 2005-12-28 高通股份有限公司 Reduced complexity channel estimation for wireless communication systems
US20060067415A1 (en) * 2004-09-09 2006-03-30 Mujtaba Syed A Method and apparatus for increasing data throughput in a multiple antenna communication system using additional subcarriers
US20070060161A1 (en) * 2005-05-02 2007-03-15 Siemens Ag Radio communication using OFDMA and IFDMA
US20080240275A1 (en) * 2007-03-23 2008-10-02 Sean Cai Scalable OFDM and OFDMA bandwidth allocation in communication systems
US20120327915A1 (en) * 2010-03-05 2012-12-27 Lg Electronics Inc. Ppdu receiving method and apparatus based on the mimo technique in a wlan system
TW201349815A (en) * 2012-03-01 2013-12-01 Interdigital Patent Holdings Multi-user parallel channel access in WLAN systems

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9838961B2 (en) 2013-11-19 2017-12-05 Intel IP Corporation Communication station and method for communicating using minimum bandwidth units of various tone allocations for OFDMA HEW
US9867210B2 (en) 2013-11-19 2018-01-09 Intel IP Corporation Master station and method for HEW communication using a transmission signaling structure for a HEW signal field
US9882695B2 (en) 2013-11-19 2018-01-30 Intel IP Corporation Master station and method for HEW communication using a transmission signaling structure for a HEW signal field
US9900906B2 (en) 2013-11-19 2018-02-20 Intel IP Corporation Method, apparatus, and computer readable medium for multi-user scheduling in wireless local-area networks
US9961678B2 (en) 2013-11-19 2018-05-01 Intel IP Corporation Master station and method for HEW communication with signal field configuration for HEW OFDMA MU-MIMO wideband channel operation
US10177888B2 (en) 2013-11-19 2019-01-08 Intel IP Corporation Wireless apparatus for high-efficiency (HE) communication with additional subcarriers
US10348469B2 (en) 2013-11-19 2019-07-09 Intel IP Corporation Hew master station and method for communicating in accordance with a scheduled OFDMA technique on secondary channels
US10368368B2 (en) 2013-11-19 2019-07-30 Intel IP Corporation Method, apparatus, and computer readable medium for multi-user scheduling in wireless local-area networks

Also Published As

Publication number Publication date
TWI611721B (en) 2018-01-11
TWI566633B (en) 2017-01-11
TW201724904A (en) 2017-07-01
TW201540118A (en) 2015-10-16
TWI578838B (en) 2017-04-11
TW201540029A (en) 2015-10-16
TW201632022A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
US20150139118A1 (en) Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit
TWI572173B (en) Master station and method for high-efficiency wi-fi (hew) communication with a minimum ofdma bandwidth unit
CN106797659B (en) Method for signaling of channel resource allocation, and high-efficiency WI-FI station and access point
US9775147B2 (en) Master station and method for high-efficiency Wi-Fi (HEW) communication using a multiple access technique
CN106464652B (en) Master station and method for HEW communication with signal field configuration for HEW OFDMA MU-MIMO wideband channel operation
CN107409407B (en) High efficiency WI-fi (hew) station, access point and method for random access contention
WO2016081126A1 (en) High-efficiency wi-fi (hew) station and access point (ap) and method for random access contention
TW201608927A (en) Wireless device, method, and computer-readable media for transmitting and receiving high-efficiency signal fields
KR102506116B1 (en) High Efficiency WI-FI (HEW) Station and Access Point (AP) and Method for Signaling Resource Allocation
JP2022501955A (en) Downlink control for unlicensed subbands
JP7343452B2 (en) wireless device
WO2016010578A1 (en) Method, apparatus, and computer readable medium for transmitting pilots in wireless local area networks
US10014994B2 (en) Wireless devices, computer-readable media, and methods for high-efficiency local-area network (HEW) distributed sub-carrier allocation
KR102305631B1 (en) Method for transmitting preamble in wireless lan system