TWI571064B - Time domain switched analog-to-digital converter apparatus and methods - Google Patents

Time domain switched analog-to-digital converter apparatus and methods Download PDF

Info

Publication number
TWI571064B
TWI571064B TW104124527A TW104124527A TWI571064B TW I571064 B TWI571064 B TW I571064B TW 104124527 A TW104124527 A TW 104124527A TW 104124527 A TW104124527 A TW 104124527A TW I571064 B TWI571064 B TW I571064B
Authority
TW
Taiwan
Prior art keywords
signal
adc
carrier
input signal
input
Prior art date
Application number
TW104124527A
Other languages
Chinese (zh)
Other versions
TW201622361A (en
Inventor
理查 華特斯
布萊德 齊桑
馬克 福瑞力克
約翰 賈克斯
里卡多 道爾
大衛 卡邦拿利
傑克斯 萊維利
Original Assignee
路梅戴尼科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 路梅戴尼科技公司 filed Critical 路梅戴尼科技公司
Publication of TW201622361A publication Critical patent/TW201622361A/en
Application granted granted Critical
Publication of TWI571064B publication Critical patent/TWI571064B/en

Links

Description

時域切換之類比至數位轉換器設備與方法 Analog to digital converter device and method for time domain switching 〔優先權及相關申請書〕 [Priority and related applications]

本申請書主張對相同標題之申請於2011/8/19的美國臨時專利申請書第61/525,596號的優先權,特此須合併參考其全部內容。 The present application claims priority to U.S. Provisional Patent Application Serial No. 61/525,596, the entire disclosure of which is incorporated herein by reference.

本申請書亦關於申請於2011/6/24且標題為「APPARATUS AND METHODS FOR TIME DOMAIN MEASUREMENT OF OSCILLATION PERTURBATIONS」的美國專利申請書第13/168,603號,特此須合併參考其全部內容。 The present application is also related to U.S. Patent Application Serial No. 13/168,603, filed on Jan.

本發明係一般關於使用於信號轉換應用的振盪方法與設備,且尤其是一種時域切換之類比至數位轉換器設備的示範性態樣、以及實作和利用其的方法。 The present invention relates generally to oscillating methods and apparatus for signal conversion applications, and more particularly to an exemplary aspect of a time domain switching analog to digital converter device, and methods of implementing and utilizing the same.

類比至數位轉換器(ADC)(一種將連續量轉換成離散時間數位表示的設備)通常用於信號測量及其它應用。 一般來說,ADC係為一種將輸入類比信號(例如,電壓或電流)轉換成與輸入信號量成比例之數位值的電子裝置。 Analog to digital converters (ADCs), a device that converts continuous quantities into discrete time digital representations, are commonly used for signal measurement and other applications. In general, an ADC is an electronic device that converts an input analog signal (eg, voltage or current) into a digital value that is proportional to the amount of input signal.

類比至數位轉換器的效能一般係使用取樣率(通常所選擇之以兩倍最大頻率的一個想要根據奈奎斯定理來偵測);解析度(位元):用來表示類比輸入信號值之在數位化位元流中的位元數;以及最低有效位元(LSB):數位化位元流中的最低權重位元來描繪。對應於ADC LSB的類比信號值(例如,電壓或電流)亦稱為信號解析度、或ADC電解析度。LSB表示改變ADC的輸出碼級所需之輸入電壓的最小變化。關於最先進的ADC技術,現代ADC的解析度之範圍一般約介於8位元至24位元間。 The performance of an analog-to-digital converter is generally based on the sampling rate (usually chosen to be twice the maximum frequency wanted to be detected according to Nyquist's theorem); resolution (bit): used to represent the analog input signal value The number of bits in the digitized bit stream; and the least significant bit (LSB): the lowest weight bit in the digitized bit stream is depicted. The analog signal value (eg, voltage or current) corresponding to the ADC LSB is also referred to as signal resolution, or ADC electrical resolution. LSB represents the minimum change in the input voltage required to change the output code level of the ADC. With regard to state-of-the-art ADC technology, the resolution of modern ADCs typically ranges from 8 bits to 24 bits.

現有ADC技術概括在表格1中且包括:delta-sigma轉換器;delta調變轉換器;逐步逼近(SAR)轉換器、直接轉換或快閃式ADC、Wilkinson ADC、積分式ADC(如雙斜率、四斜率);以及管線式ADC。表格1呈現出關於一些典型ADC技術之精選的效能概括和價值指標。 The existing ADC techniques are summarized in Table 1 and include: delta-sigma converters; delta modulation converters; step-by-step approximation (SAR) converters, direct conversion or flash ADCs, Wilkinson ADCs, integral ADCs (eg dual slope, Four slopes); and pipelined ADCs. Table 1 presents a selection of performance summaries and value metrics for some typical ADC technologies.

各種誤差來源因取決於轉換器所使用之技術的主要誤差來源而影響現存商業上可用之ADC的效能。一般來說,所有類型的ADC會有非線性的量化誤差以及時脈抖動,這些都會影響用於一特定應用之ADC技術的選擇。這些雜訊來源一般降低定義如下的有效位元數(ENOB)(用於一原尺寸的正弦輸入波形):ENOB=(SINAD-1.76)/6.02, (方程式1)這裡的信號對雜訊及失真比(SINAD)(一般以dB表 示)係為正弦波ADC輸入的均方根(RMS)值和轉換器雜訊加失真(無正弦波)的RMS值之比。除了基本和DC偏移外,RMS雜訊加失真包括所有接近奈奎斯頻率的光譜成分。 Various sources of error affect the performance of existing commercially available ADCs depending on the primary source of error in the technology used by the converter. In general, all types of ADCs have nonlinear quantization errors and clock jitter that affect the choice of ADC technology for a particular application. These sources of noise generally reduce the number of effective bits (ENOB) defined for the original sinusoidal input waveform: ENOB=(SINAD-1.76)/6.02, (Equation 1) where the signal is noise and distortion Ratio (SINAD) (generally in dB table Shown is the ratio of the root mean square (RMS) value of the sine wave ADC input to the RMS value of the converter noise plus distortion (no sine wave). In addition to the basic and DC offsets, RMS noise plus distortion includes all spectral components close to the Nyquist frequency.

因此,24位元ADC可例如只具有包括在每個樣本之前21或22位元(即,ENOB=21)中的有意義資料。 Thus, a 24-bit ADC can, for example, only have meaningful data included in 21 or 22 bits (ie, ENOB=21) before each sample.

大部分現有的ADC實作具有多個缺點,如固定動態範圍和解析度。尤其是,現有的技術並不良好適用於測量具有寬動態範圍和非一致之信號振幅分佈(即,當高振幅或低振幅信號不如平均信號般常見時)的信號。當測量這類信號時,使用者通常必須對高振幅信號部分(限幅)或低振幅信號部分(解析度)妥協,或以信號振幅範圍的多個ADC取樣分開部分來實作專門的多通道解決方式。這樣的實作會增加成本和複雜性,因而侷限其較廣的利用性。此外,現存商業上可用之低成本ADC的準確性一般都不會太高,而較高準確性的ADC通常都相當貴,因而限制其廣泛的可應用性。 Most existing ADC implementations have several drawbacks, such as fixed dynamic range and resolution. In particular, the prior art is not well suited for measuring signals having a wide dynamic range and a non-uniform signal amplitude distribution (i.e., when high amplitude or low amplitude signals are not as common as average signals). When measuring such signals, the user must usually compromise the high-amplitude signal portion (limiter) or the low-amplitude signal portion (resolution), or separate the portions of the ADC with a range of signal amplitudes to implement a dedicated multi-channel. The solution. Such implementations add cost and complexity and thus limit their wider use. In addition, the accuracy of existing commercially available low cost ADCs is generally not too high, and higher accuracy ADCs are typically quite expensive, thus limiting their wide applicability.

因此,明顯需要一種增進之高準確性且高解析度的類比至數位轉換器設備,其相較於現有的解決方案,具有增加的動態範圍,同時降低成本和複雜性,且能使用在各式各樣的感測和測量應用中。 Therefore, there is a clear need for an improved high accuracy and high resolution analog to digital converter device that has an increased dynamic range compared to existing solutions while reducing cost and complexity and can be used in a variety of ways. A variety of sensing and measurement applications.

本發明尤其揭露基於由一循環載波波形來時域加閘之 類比至數位轉換器的設備與方法。 The invention is particularly disclosed based on time domain clamping by a cyclic carrier waveform Analog to digital converter devices and methods.

在本發明之第一態樣中,揭露一種類比至數位轉換器設備。在一實施例中的類比至數位轉換器設備包括:(i)一第一介面,配置以接收一輸入信號和一載波信號、及(ii)處理邏輯。處理邏輯係配置以:(i)識別一或多個參考準位、(ii)基於輸入信號和載波信號來產生一調變信號、(iii)藉由調變信號偵測一或多個參考準位的相交、(iv)基於偵測到的相交,決定複數個時序週期、及(v)至少部分基於時序週期,產生輸入信號的一或多個估計。 In a first aspect of the invention, an analog to digital converter device is disclosed. The analog to digital converter device in an embodiment comprises: (i) a first interface configured to receive an input signal and a carrier signal, and (ii) processing logic. The processing logic is configured to: (i) identify one or more reference levels, (ii) generate a modulated signal based on the input signal and the carrier signal, and (iii) detect one or more reference levels by the modulated signal Intersection of bits, (iv) determining a plurality of timing periods based on the detected intersections, and (v) generating one or more estimates of the input signal based at least in part on the timing period.

在本發明之第二態樣中,揭露一種將一類比波形轉換成一數位信號的方法。在一實施例中,方法包括:(i)接收類比波形、(ii)混合類比波形與一循環信號,以產生一混合波形、(iii)基於循環信號定義一週期、(iv)基於混合波形相交至少一預定振幅準位,來決定一或多個時序值、及(v)至少部分基於一或多個時序值與所定義之週期的比較來估計類比波形的振幅。 In a second aspect of the invention, a method of converting an analog waveform into a digital signal is disclosed. In one embodiment, the method comprises: (i) receiving an analog waveform, (ii) mixing a analog waveform with a cyclic signal to generate a hybrid waveform, (iii) defining a period based on the cyclic signal, and (iv) intersecting based on the mixed waveform At least a predetermined amplitude level to determine one or more timing values, and (v) estimating an amplitude of the analog waveform based at least in part on a comparison of the one or more timing values to the defined period.

在本發明之第三態樣中,揭露一種非暫態電腦可讀設備,其配置以儲存一或多個程序於其上。在一實施例中,此一或多個程序包括複數個指令,指令當被執行時配置以:(i)接收從一輸入信號和一載波得到的一調變波形,載波具有一已知頻率、(ii)決定複數個事件的相對時序,複數個事件包括調變波形與一參考準位的相交、(iii)比較相對時序與從已知頻率得到的一週期、及 (iv)至少基於比較,計算輸入信號的估計。 In a third aspect of the invention, a non-transitory computer readable device is disclosed that is configured to store one or more programs thereon. In one embodiment, the one or more programs include a plurality of instructions that, when executed, are configured to: (i) receive a modulated waveform derived from an input signal and a carrier, the carrier having a known frequency, (ii) determining the relative timing of the plurality of events, the plurality of events including the intersection of the modulated waveform and a reference level, (iii) comparing the relative timing with a period derived from the known frequency, and (iv) Calculate an estimate of the input signal based at least on the comparison.

在本發明之第四態樣中,揭露一種時域切換之類比至數位轉換器設備。在一實施例中,類比至數位轉換器設備包括:(i)一第一埠,配置以接收具有一載波週期之特徵的一週期載波信號、(ii)一輸入埠,配置以接收一輸入類比信號、及(iii)邏輯方塊。邏輯方塊係配置以:(i)基於載波信號和輸入信號來產生一調變信號、(ii)比較調變信號與一第一參考信號、(iii)至少部分基於比較,產生一第一複數個觸發事件,第一複數個觸發事件係關聯於第一參考信號、(iv)至少部分基於第一複數個觸發事件和一參考時脈,決定一第一時間間隔、及(v)至少部分基於第一時間間隔和載波週期,產生輸入信號的一數位表示。 In a fourth aspect of the invention, an analog to digital converter device for time domain switching is disclosed. In an embodiment, the analog to digital converter device comprises: (i) a first frame configured to receive a periodic carrier signal having a characteristic of a carrier period, (ii) an input port configured to receive an input analogy Signal, and (iii) logic blocks. The logic block is configured to: (i) generate a modulated signal based on the carrier signal and the input signal, (ii) compare the modulated signal to a first reference signal, and (iii) based at least in part on the comparison, to generate a first plurality of a triggering event, the first plurality of trigger events being associated with the first reference signal, (iv) being based at least in part on the first plurality of trigger events and a reference clock, determining a first time interval, and (v) being based at least in part on the A time interval and carrier period produce a digital representation of the input signal.

在本發明之第五態樣中,揭露一種補償在一類比至數位轉換過程中產生的失真之方法。在一實施例中,在一持續期間取樣一時間變化輸入波形並將其保持在一固定值。補償由時間變化所引起的諧波貢獻。 In a fifth aspect of the invention, a method of compensating for distortion produced during a analog to digital conversion process is disclosed. In one embodiment, a time varying input waveform is sampled and held at a fixed value for a duration. Compensate for harmonic contributions caused by time variations.

在另一實施例中,一輸入信號與一載波混合以產生一調變輸入信號。調變輸入信號觸發複數個取樣事件。取樣事件被用以產生一合適曲線,表示調變輸入信號。失真項係使用此表示來量化,並接著被移除。 In another embodiment, an input signal is mixed with a carrier to produce a modulated input signal. The modulated input signal triggers a plurality of sampling events. The sampling event is used to generate a suitable curve representing the modulated input signal. The distortion term is quantified using this representation and then removed.

在又一實施例中,利用不同的技術來移除來自雜訊的貢獻。 In yet another embodiment, different techniques are utilized to remove contributions from noise.

在本發明之第六態樣中,揭露一種基於波形整流的類 比至數位轉換器。在一實施例中,轉換器包括處理邏輯,配置以將一信號的負部分反映到正軸上。這個反映增加與某些波形相交的參考準位數量。 In a sixth aspect of the invention, a class based on waveform rectification is disclosed Compared to digital converters. In an embodiment, the converter includes processing logic configured to reflect a negative portion of a signal onto the positive axis. This reflection increases the number of reference levels that intersect certain waveforms.

本發明的其他特徵、其本質、及各種優點將從附圖和接下來的詳細說明中而顯而易見。 Other features, aspects, and advantages of the invention will be apparent from the drawings and appended claims.

101‧‧‧前端處理 101‧‧‧ front-end processing

103‧‧‧時序辨別 103‧‧‧Timing discrimination

109‧‧‧控制邏輯 109‧‧‧Control logic

111‧‧‧時間至數位轉換 111‧‧‧Time to digital conversion

113‧‧‧演算法元件 113‧‧‧ algorithm components

115‧‧‧信號 115‧‧‧ signal

110‧‧‧觸發事件 110‧‧‧Trigger event

112‧‧‧觸發事件 112‧‧‧Trigger events

T1‧‧‧時間間隔 T 1 ‧‧ ‧ time interval

T2‧‧‧時間間隔 T 2 ‧‧ ‧ time interval

V1‧‧‧電壓 V 1 ‧‧‧ voltage

V2‧‧‧電壓 V 2 ‧‧‧ voltage

121‧‧‧設備 121‧‧‧ Equipment

123‧‧‧ADC方塊 123‧‧‧ADC block

210‧‧‧觸發事件 210‧‧‧Trigger event

212‧‧‧觸發事件 212‧‧‧Trigger event

Tr1‧‧‧時間間隔 T r1 ‧‧ ‧ time interval

Tr2‧‧‧時間間隔 T r2 ‧‧ ‧ time interval

131‧‧‧曲線 131‧‧‧ Curve

133‧‧‧曲線 133‧‧‧ Curve

139‧‧‧偏移量 139‧‧‧Offset

141‧‧‧箭頭 141‧‧‧ arrow

143‧‧‧箭頭 143‧‧‧ arrow

T3‧‧‧時間間隔 T 3 ‧‧ ‧ time interval

T4‧‧‧時間間隔 T 4 ‧‧ ‧ time interval

230‧‧‧觸發事件 230‧‧‧ Triggering event

232‧‧‧觸發事件 232‧‧‧Trigger event

234‧‧‧觸發事件 234‧‧‧Trigger event

P‧‧‧週期 P‧‧ cycle

T5-T10‧‧‧週期 T 5 -T 10 ‧‧ cycle

161‧‧‧ADC設備 161‧‧‧ADC equipment

163‧‧‧結合方塊 163‧‧‧Combination block

171‧‧‧設備 171‧‧‧ Equipment

173‧‧‧ADC方塊 173‧‧‧ADC block

175‧‧‧ADC方塊 175‧‧‧ADC block

181‧‧‧ADC設備 181‧‧‧ADC equipment

191‧‧‧ADC設備 191‧‧‧ADC equipment

193‧‧‧上板 193‧‧‧Upper board

195‧‧‧下板 195‧‧‧ Lower board

222‧‧‧信號參考準位 222‧‧‧Signal reference level

224‧‧‧整流信號波 224‧‧‧Rectified signal wave

226‧‧‧整流信號波 226‧‧‧Rectified signal wave

T11‧‧‧時序參數 T 11 ‧‧‧ Timing parameters

T12‧‧‧時序參數 T 12 ‧‧‧ Timing parameters

t1‧‧‧時序參數 t 1 ‧‧‧ Timing parameters

t2‧‧‧時序參數 t 2 ‧‧‧ Timing parameters

t3‧‧‧時序參數 t 3 ‧‧‧ Timing parameters

t4‧‧‧時序參數 t 4 ‧‧‧ Timing parameters

t5‧‧‧時序參數 t 5 ‧‧‧ Timing parameters

t6‧‧‧時序參數 t 6 ‧‧‧ Timing parameters

P‧‧‧週期 P‧‧ cycle

234‧‧‧取樣和保持命令 234‧‧‧Sampling and keeping orders

332‧‧‧輸入信號 332‧‧‧ input signal

334‧‧‧諧波 334‧‧‧Harmonic

350‧‧‧系統 350‧‧‧ system

352‧‧‧類比信號 352‧‧‧ analog signal

354‧‧‧取樣和保持裝置 354‧‧‧Sampling and holding device

356‧‧‧整流器/比較器方塊 356‧‧‧Rectifier/Comparator Block

358‧‧‧時間至數位轉換裝置 358‧‧‧Time to digital converter

360‧‧‧TDS ADC演算法元件 360‧‧‧TDS ADC algorithm components

370‧‧‧S/H電路 370‧‧‧S/H circuit

372‧‧‧開關 372‧‧‧Switch

374‧‧‧開關 374‧‧‧Switch

376‧‧‧差動放大器 376‧‧‧Differential Amplifier

378‧‧‧保持電容器 378‧‧‧ Holding capacitors

380‧‧‧輸入信號 380‧‧‧ input signal

382‧‧‧測量放大器 382‧‧‧Measurement amplifier

386‧‧‧S/H控制裝置 386‧‧‧S/H control unit

412‧‧‧載波信號輸入 412‧‧‧Carrier signal input

414‧‧‧諧波 414‧‧‧Harmonic

602‧‧‧ADC方塊 602‧‧‧ADC block

604‧‧‧ADC方塊 604‧‧‧ADC block

610‧‧‧ADC設備 610‧‧‧ADC equipment

680‧‧‧ADC設備 680‧‧‧ADC equipment

682‧‧‧ADC方塊 682‧‧‧ADC block

684‧‧‧ADC方塊 684‧‧‧ADC block

722‧‧‧信號輸入 722‧‧‧Signal input

724‧‧‧偶數諧波 724‧‧‧ even harmonics

726‧‧‧奇數諧波 726‧‧‧odd harmonics

782‧‧‧路徑 782‧‧‧ Path

784‧‧‧路徑 784‧‧‧ Path

786‧‧‧電壓加法器 786‧‧‧Voltage Adder

788‧‧‧電壓減法器 788‧‧‧Voltage subtractor

790‧‧‧TDS ADC 790‧‧‧TDS ADC

902‧‧‧觸發點 902‧‧‧ trigger point

904‧‧‧全部調變信號 904‧‧‧All modulation signals

906‧‧‧載波 906‧‧‧ Carrier

908‧‧‧外部信號輸入 908‧‧‧External signal input

1050‧‧‧固定參考準位電路 1050‧‧‧Fixed reference level circuit

1302‧‧‧鋸齒波形 1302‧‧‧Sawtooth waveform

1304‧‧‧三角形波形 1304‧‧‧Triangular waveform

1306‧‧‧波形 1306‧‧‧ waveform

1308‧‧‧波形 1308‧‧‧ waveform

1402-1420‧‧‧箭頭 1402-1420‧‧‧ arrow

當一併採用圖示時,本發明的特徵、目的、及優點將從下面提出的詳細說明而變得更顯而易見,其中:第1圖係為顯示與本發明一致的TDS ADC之示範實施例的功能方塊圖。 The features, objects, and advantages of the present invention will become more apparent from the detailed description of the appended claims. Functional block diagram.

第1A圖係為顯示根據本發明之使用單一參考準位時域切換(TDS)類比至數位轉換器(ADC)來測量一輸入調變信號的方法之一實施例的繪圖。 1A is a diagram showing one embodiment of a method of measuring an input modulated signal using a single reference level time domain switching (TDS) analog to digital converter (ADC) in accordance with the present invention.

第1B圖係為描繪根據本發明之一實施例的單一參考準位時域切換ADC之配置的方塊圖。 1B is a block diagram depicting a configuration of a single reference level time domain switching ADC in accordance with an embodiment of the present invention.

第1C圖係為顯示使用根據本發明之兩參考準位TDS ADC來測量一輸入調變信號的方法之一實施例的繪圖。 1C is a plot showing one embodiment of a method of measuring an input modulated signal using two reference level TDS ADCs in accordance with the present invention.

第1D圖係為顯示根據本發明之兩參考準位TDS ADC之實施例之針對比第1圖所示之資料更大的輸入信號之連續參考準位相交之間的時間間隔變化作為一函數的繪圖。 1D is a function showing the variation of the time interval between the intersections of successive reference levels of an input signal larger than the data shown in FIG. 1 according to an embodiment of the two reference level TDS ADCs of the present invention. Drawing.

第1E圖係為顯示本發明之兩參考準位TDS ADC之第二實施例的方塊圖。 Figure 1E is a block diagram showing a second embodiment of the two reference level TDS ADCs of the present invention.

第1F圖係為詳述第1E圖之TDS ADC的電路圖。 Fig. 1F is a circuit diagram detailing the TDS ADC of Fig. 1E.

第1G圖係為描繪根據習知之時間至數位轉換器的方塊圖,用於與第1E和1F圖之示範ADC實作一起使用。 The 1G diagram is a block diagram depicting a time-to-digital converter according to the prior art for use with the exemplary ADC implementations of Figures 1E and 1F.

第1H圖係為詳述第1E圖之單一通道兩參考準位TDS ADC實施例的實作之方塊圖。 Figure 1H is a block diagram of an implementation of a single channel two reference level TDS ADC embodiment detailing Figure 1E.

第1I圖係為顯示第1E圖所示之實施例的時域切換ADC設備之示範操作順序的時序圖。 Fig. 1I is a timing chart showing an exemplary operational sequence of the time domain switching ADC device of the embodiment shown in Fig. 1E.

第1J圖係為顯示根據本發明之一實施例的對載波信號波形軌道之調變影響的一實例之繪圖。 The 1J diagram is a diagram showing an example of the effect of modulation on the waveform of a carrier signal waveform in accordance with an embodiment of the present invention.

第1K圖係為顯示根據本發明之使用三參考準位TDS ADC來測量一輸入調變信號之方法的一實施例之繪圖。 1K is a plot showing an embodiment of a method of measuring an input modulated signal using a three reference level TDS ADC in accordance with the present invention.

第1L圖係為顯示根據本發明之使用兩參考準位TDS ADC來測量一輸入調變信號之方法的各種實施例之繪圖。 The 1L diagram is a plot showing various embodiments of a method of measuring an input modulated signal using a two reference level TDS ADC in accordance with the present invention.

第1M圖係為描繪根據本發明之一實施例之包含獨立載波測量的兩通道兩參考準位時域切換ADC之配置的方塊圖。 1M is a block diagram depicting a configuration of a two-channel two-reference level time domain switching ADC including independent carrier measurements in accordance with an embodiment of the present invention.

第1N圖係為描繪根據本發明之一實施例之三參考準位時域切換ADC之配置的方塊圖。 The 1Nth diagram is a block diagram depicting the configuration of a three reference level time domain switching ADC in accordance with an embodiment of the present invention.

第1O圖係為描繪本發明之三參考準位時域切換ADC之另一實施例的方塊圖。 Figure 10 is a block diagram depicting another embodiment of a three reference level time domain switching ADC of the present invention.

第1P圖係為描繪本發明之反向載波三參考準位時域切換ADC之一實施例的方塊圖。 1P is a block diagram depicting one embodiment of a reverse carrier three reference level time domain switching ADC of the present invention.

第1Q圖係為描繪本發明之三參考準位時域切換ADC之另一實施例的方塊圖。 The 1Q diagram is a block diagram depicting another embodiment of a three reference level time domain switching ADC of the present invention.

第1R圖係為描繪根據本發明之與第1Q和1R圖之ADC實施例一致的調變信號波形測量之一實施例的繪圖。 The 1R diagram is a plot depicting one embodiment of modulated signal waveform measurements consistent with the ADC embodiments of the 1Q and 1R diagrams in accordance with the present invention.

第2圖係為顯示根據本發明之使用單一參考準位波形整流TDS ADC來測量一輸入調變信號的方法之一實施例的繪圖。 2 is a plot showing one embodiment of a method of measuring an input modulated signal using a single reference level waveform rectified TDS ADC in accordance with the present invention.

第2A圖係為顯示第2圖所示之方法之實施例的細部區域。 Fig. 2A is a detail area showing an embodiment of the method shown in Fig. 2.

第3圖係為顯示根據本發明之時間變化調變信號波形測量之一實施例的繪圖。 Figure 3 is a plot showing one embodiment of a time varying modulated signal waveform measurement in accordance with the present invention.

第3A圖係為顯示與本發明一致之對TDS ADC運用一取樣保持技術的廣義方法之一實施例的邏輯流程圖。 Figure 3A is a logic flow diagram showing one embodiment of a generalized method of applying a sample and hold technique to a TDS ADC consistent with the present invention.

第3B圖係為顯示根據本發明之不利用取樣和保持的示範TDS ADC測量方法之模擬結果的繪圖。 Figure 3B is a plot showing the simulation results of an exemplary TDS ADC measurement method that does not utilize sampling and hold in accordance with the present invention.

第3C圖係為顯示根據本發明之利用取樣和保持的示範TDS ADC測量方法之模擬結果的繪圖。 Figure 3C is a plot showing the simulation results of an exemplary TDS ADC measurement method utilizing sampling and holding in accordance with the present invention.

第3D圖係為描繪與本發明之一實施例一致的取樣和保持波形整流TDS ADC之配置的方塊圖。 Figure 3D is a block diagram depicting the configuration of a sample and hold waveform rectified TDS ADC consistent with one embodiment of the present invention.

第3E圖係為顯示與本發明一致的示範取樣和保持電路之功能方塊圖。 Figure 3E is a functional block diagram showing an exemplary sample and hold circuit consistent with the present invention.

第3F圖係為根據本發明之第3D圖之TDS ADC實施例的電路圖。 Figure 3F is a circuit diagram of an embodiment of a TDS ADC in accordance with Figure 3D of the present invention.

第3G圖係為顯示根據本發明之利用取樣和保持的時間變化輸入信號之TDS ADC測量方法之模擬結果的繪 圖。 Figure 3G is a plot showing the simulation results of a TDS ADC measurement method using a time varying input signal for sampling and holding in accordance with the present invention. Figure.

第4圖係為顯示根據本發明之對TDS ADC測量運用一多項式校正的廣義方法之一實施例的邏輯流程圖。 Figure 4 is a logic flow diagram showing one embodiment of a generalized method of applying a polynomial correction to a TDS ADC measurement in accordance with the present invention.

第4A圖係為顯示根據本發明之以一信號載波輸入來說明利用多項式校正的示範TDS ADC測量方法之效果的模擬結果之繪圖。 Figure 4A is a plot showing simulation results illustrating the effect of an exemplary TDS ADC measurement method utilizing polynomial correction with a signal carrier input in accordance with the present invention.

第4B和4C圖係為顯示根據本發明之以多個載波輸入來說明利用多項式校正的示範TDS ADC測量方法之效果的模擬結果之繪圖。 4B and 4C are plots showing simulation results illustrating the effects of an exemplary TDS ADC measurement method utilizing polynomial correction with multiple carrier inputs in accordance with the present invention.

第5圖係為顯示根據本發明之利用載波波形過濾的示範TDS ADC測量方法之模擬結果的繪圖。 Figure 5 is a plot showing the simulation results of an exemplary TDS ADC measurement method utilizing carrier waveform filtering in accordance with the present invention.

第6圖係為顯示根據本發明之利用差動信號雜訊補償的示範TDS ADC測量方法之模擬結果的繪圖。 Figure 6 is a plot showing the simulation results of an exemplary TDS ADC measurement method utilizing differential signal noise compensation in accordance with the present invention.

第6A圖係為描繪根據本發明之一實施例之包含獨立載波測量的兩通道單一參考準位時域切換ADC之配置的方塊圖。 6A is a block diagram depicting a configuration of a two-channel single reference level time domain switching ADC including independent carrier measurements in accordance with an embodiment of the present invention.

第6B圖係為描繪根據本發明之一實施例之單一通道兩參考準位時域切換ADC之配置的方塊圖。 6B is a block diagram depicting the configuration of a single channel two reference level time domain switching ADC in accordance with an embodiment of the present invention.

第6C圖係為描繪根據本發明之一實施例之包含獨立載波測量的三參考準位時域切換ADC之配置的方塊圖。 6C is a block diagram depicting a configuration of a three-reference level time domain switching ADC including independent carrier measurements in accordance with an embodiment of the present invention.

第7圖係為顯示與本發明一致之在TDS ADC中利用差動調變信號測量的廣義方法之一實施例的邏輯流程圖。 Figure 7 is a logic flow diagram showing one embodiment of a generalized method of utilizing differential modulation signal measurements in a TDS ADC consistent with the present invention.

第7A圖係為顯示根據本發明之利用差動ADC歪斜補償的示範TDS ADC測量方法之模擬結果的繪圖。 Figure 7A is a plot showing the simulation results of an exemplary TDS ADC measurement method utilizing differential ADC skew compensation in accordance with the present invention.

第7B圖係為顯示根據本發明之一實施例之差動測量TDS ADC的功能方塊圖。 Figure 7B is a functional block diagram showing a differential measurement TDS ADC in accordance with an embodiment of the present invention.

第7C圖係為顯示與本發明一致之用於差動信號測量之各種示範信號和載波組合的功能方塊圖。 Figure 7C is a functional block diagram showing various exemplary signal and carrier combinations for differential signal measurements consistent with the present invention.

第7D圖係為詳述各種失真成分對本發明之各種示範實施例的影響之繪圖。 Figure 7D is a plot detailing the effects of various distortion components on various exemplary embodiments of the present invention.

第8圖係為顯示與本發明一致之對基於產生時序間隔之多個不相關測量的各種示範TDS ADC平均技術之雜訊準位之影響的繪圖。 Figure 8 is a plot showing the effect of noise levels on various exemplary TDS ADC averaging techniques based on generating a plurality of uncorrelated measurements of timing intervals consistent with the present invention.

第8A圖係為顯示與本發明一致之基於加倍TDS ADC的取樣週期之示範平均方法的繪圖。 Figure 8A is a plot showing an exemplary averaging method based on the sampling period of a doubled TDS ADC consistent with the present invention.

第8B圖係為顯示與本發明一致之用於改變TDS ADC的取樣週期之示範方法的繪圖。 Figure 8B is a plot showing an exemplary method for changing the sampling period of a TDS ADC consistent with the present invention.

第9圖係為顯示根據本發明之用於在TDS ADC中實作曲線配適之方法之示範實施例的繪圖。 Figure 9 is a drawing showing an exemplary embodiment of a method for implementing a curve fit in a TDS ADC in accordance with the present invention.

第9A圖係為描繪根據本發明之利用曲線配適之示範TDS ADC之模擬輸出的繪圖。 Figure 9A is a plot depicting the analog output of an exemplary TDS ADC utilizing a curve fit in accordance with the present invention.

第10圖係為顯示在TDS ADC中利用一輸入信號作為一非固定參考之示範過程的功能方塊圖。 Figure 10 is a functional block diagram showing an exemplary process for utilizing an input signal as a non-fixed reference in a TDS ADC.

第11圖係為顯示利用輸入調變信號之變化DC準位的時間間隔測量方法之一實施例的繪圖,用於與根據本發明的兩參考準位時域切換ADC一起使用。 Figure 11 is a plot showing one embodiment of a time interval measurement method utilizing varying DC levels of an input modulation signal for use with a two reference level time domain switching ADC in accordance with the present invention.

第12圖係為顯示根據本發明之一實施例之調變信號測量對載波振幅的不變性之繪圖。 Figure 12 is a graph showing the invariance of modulated signal measurements to carrier amplitude in accordance with an embodiment of the present invention.

第12A圖係為顯示根據本發明之一實施例之調變信號測量對載波頻率的不變性之繪圖。 Figure 12A is a diagram showing the invariance of modulated signal measurements to carrier frequency in accordance with an embodiment of the present invention.

第13圖係為顯示用於與本發明之TDS ADC設備和測量方法一起使用的載波信號波形之各種實施例的繪圖。 Figure 13 is a plot showing various embodiments of carrier signal waveforms for use with the TDS ADC devices and measurement methods of the present invention.

第14-14H圖係為描繪根據本發明之一實施例之雙電壓TDS ADC測量相對誤差作為調變振幅和電壓分離之不同值的輸入電壓量之函數的模擬之一連串繪圖。 Figures 14-14H are a series of plots depicting a simulation of a two-voltage TDS ADC measuring relative error as a function of the input voltage magnitude of the different values of the modulated amplitude and voltage separation, in accordance with an embodiment of the present invention.

第14I圖係為描繪一示範TDS ADC系統之輸出雜訊對抖動效能的繪圖。 Figure 14I is a plot depicting the jitter performance of the output noise of an exemplary TDS ADC system.

本文所揭露之所有圖示皆為©版權2011-2012 Lumedyne Technologies公司的專用所有權。 All illustrations disclosed herein are the exclusive ownership of Lumedyne Technologies, Inc. Copyright © 2011-2012.

現在參考圖示,其中從頭到尾的相同數字是指相同部分。 Reference is now made to the drawings, in which like reference

如本文所使用,「載波」和「載波頻率」之詞是指,但並未侷限,對例如在輸入信號測量期間與輸入信號結合有用的內部或外部產生週期信號。 As used herein, the terms "carrier" and "carrier frequency" mean, but are not limited to, generating periodic signals internally or externally useful, for example, in conjunction with an input signal during measurement of an input signal.

如本文所使用,「電腦」、「計算裝置」、和「電腦裝置」之詞包括,但不限於,大型電腦、工作站、伺服器、個人電腦(PC)和微型電腦(不管是桌上型電腦、膝上型電腦或其他)、個人數位助理(PDA)、手持式電腦、嵌入式電腦、可編程邏輯裝置、數位信號處理系統、個人通訊機、平板電腦、可攜式助航設備、J2ME裝備裝 置、行動電話、智慧型手機、個人整合通訊或娛樂裝置、或任何能夠執行指令集且處理進來之資料信號的其他裝置。 As used herein, the terms "computer", "computing device" and "computer device" include, but are not limited to, large computers, workstations, servers, personal computers (PCs) and microcomputers (whether desktop computers). , laptop or other), personal digital assistant (PDA), handheld computer, embedded computer, programmable logic device, digital signal processing system, personal communication device, tablet computer, portable navigation aid, J2ME equipment Loading A device, a mobile phone, a smart phone, a personal integrated communication or entertainment device, or any other device capable of executing an instruction set and processing incoming data signals.

如本文所使用,「電腦程式」或「軟體」之詞表示包括進行一功能的任何連續或人類或機器可認知的步驟。這類程式可虛擬地在包括例如C/C++、C#、Fortran、COBOL、MATLABTM、PASCAL、Python、Verilog、VHDL、組合語言、標示語言(例如,HTML、SGML、XML、VoXML)等的任何程式語言或環境中、以及如公用物件代理請求架構(CORBA)、JavaTM(包括J2ME、Java Beans等等)、二進位執行環境(例如BREW)等的物件導向環境中呈現。 As used herein, the terms "computer program" or "software" are meant to include any continuous or human or machine-aware step of performing a function. Such programs can virtually include, for example, to any program C / C ++, C #, Fortran, COBOL, MATLAB TM, PASCAL, Python, Verilog, VHDL, assembly language, markup language (eg, HTML, SGML, XML, VoXML ) , etc. Presented in a language or environment, and in an object-oriented environment such as the Common Object Proxy Architecture (CORBA), JavaTM (including J2ME, Java Beans, etc.), binary execution environment (eg, BREW).

如本文所使用,「記憶體」之詞包括適用於儲存數位資料的任何類型之積體電路或其他儲存裝置,包括(沒有侷限)ROM、PROM、EEPROM、DRAM、SDRAM、DDR/2 SDRAM、EDO/FPMS、RLDRAM、SRAM、「快閃」記憶體(例如NAND/NOR)、憶阻器記憶體、及PSRAM。 As used herein, the term "memory" includes any type of integrated circuit or other storage device suitable for storing digital data, including (without limitation) ROM, PROM, EEPROM, DRAM, SDRAM, DDR/2 SDRAM, EDO. /FPMS, RLDRAM, SRAM, "flash" memory (eg NAND/NOR), memristor memory, and PSRAM.

如本文所使用,「微處理器」和「數位處理器」之詞一般表示包括所有類型的數位處理裝置,包括(沒有侷限)數位信號處理器(DSP)、精簡指令集計算機(RISC)、通用(CISC)處理器、微處理器、閘陣列(例如FPGA)、PLD、可重組態計算結構(RCF)、陣列處理器、安全微處理器、及專用積體電路(ASIC)。 這類數位處理器可內含在單一IC晶片上、或分散遍及多個元件。 As used herein, the terms "microprocessor" and "digital processor" are generally meant to include all types of digital processing devices, including (without limitation) digital signal processor (DSP), reduced instruction set computer (RISC), general purpose. (CISC) processors, microprocessors, gate arrays (eg FPGAs), PLDs, reconfigurable computing structures (RCFs), array processors, secure microprocessors, and dedicated integrated circuits (ASICs). Such digital processors can be contained on a single IC wafer or distributed across multiple components.

如本文所使用,「頂部」、「底部」、「側邊」、「向上」、「向下」、「左」、「右」等之詞只意味著一元件對另一元件的相對位置或幾何,決不意味著絕對的參照標準或任何必須的定向。例如,一元件的「頂部」實際上當此元件被固定到另一裝置上時可能位在一「底部」的下面(例如,固定到PCB的底面)。 As used herein, the terms "top", "bottom", "side", "upward", "downward", "left", "right" and the like mean only the relative position of one element to another or Geometry does not mean absolute reference standards or any necessary orientation. For example, the "top" of an element may actually be positioned underneath a "bottom" when the component is attached to another device (eg, to the underside of the PCB).

如本文所使用,「參考信號」之詞是指(沒有侷限)用以例如在輸入信號測量期間產生觸發事件的內部或外部產生信號。 As used herein, the term "reference signal" means (without limitation) internally or externally generated signals used to generate a triggering event, for example, during input signal measurements.

概要 summary

在一顯著態樣中,本發明提出一種健全、低成本且高解析度之具有一可調整測量動態範圍(如可能使用在感測或測量應用中)的類比至數位轉換器設備、以及實作和使用其的方法。 In a significant aspect, the present invention provides a robust, low cost, high resolution analog to digital converter device with an adjustable measurement dynamic range (as may be used in sensing or measurement applications), and implementation And the method of using it.

在一實作中,設備使用一已知週期的週期載波信號來調變一類比輸入,並比較經調變的信號與已知參考信號準位。在一變異中,單一參考準位會與一已知載波頻率和振幅一起使用。在其他變異中,係使用多個參考準位以能夠測量載波振幅和頻率都不變的輸入信號。當調變波形與每個參考信號準位相交時,ADC設備產生對應之觸發事件。藉由合併對應至與連續觸發事件位置相交的調變波形 之時間間隔,來估計調變波形的週期和振幅,由此得到類比輸入信號的一數位表示。 In one implementation, the device uses a periodic signal of a known period to modulate an analog input and compares the modulated signal to a known reference signal level. In a variant, a single reference level is used with a known carrier frequency and amplitude. In other variations, multiple reference levels are used to enable measurement of input signals with constant carrier amplitude and frequency. When the modulated waveform intersects each reference signal level, the ADC device generates a corresponding trigger event. By merging the modulated waveform corresponding to the position of the continuous trigger event The time interval is used to estimate the period and amplitude of the modulated waveform, thereby obtaining a digital representation of the analog input signal.

在另一實作中,使用額外的參考信號準位來增進轉換器設備的頻率響應及準確性。 In another implementation, additional reference signal levels are used to increase the frequency response and accuracy of the converter device.

示範兩參考準位時域切換類比至數位轉換器設備的準確性有利於不會依載波信號振幅或頻率而定,因此能即時感測動態範圍調整。這樣的配置更確保裝置的準確性只會依觸發事件的一致性、參考信號準位差的準確性、及前後觸發事件之時間測量的準確性而定。此外,本發明的各種實作利用雜訊及/或失真補償技術,以減輕來自導致準確性降低的各種影響之貢獻。 The accuracy of the exemplary two reference level time domain switching analog to digital converter device is advantageous not to depend on the carrier signal amplitude or frequency, so that dynamic range adjustment can be sensed instantly. This configuration ensures that the accuracy of the device will only depend on the consistency of the trigger event, the accuracy of the reference signal level difference, and the accuracy of the time measurement of the front and rear trigger events. Moreover, various implementations of the present invention utilize noise and/or distortion compensation techniques to mitigate contributions from various effects that result in reduced accuracy.

示範裝置亦有利於能測量在一寬動態範圍上的參數變化。在一變異中,上述寬動態範圍能力係透過載波信號振幅的變化來實現。再者,藉由調整載波週期來控制輸入信號轉換率,藉此易於即時調整ADC頻寬和準確性/解析度。 The demonstration device is also advantageous for measuring parameter variations over a wide dynamic range. In a variant, the wide dynamic range capability described above is achieved by a change in the amplitude of the carrier signal. Furthermore, by adjusting the carrier period to control the input signal conversion rate, it is easy to adjust the ADC bandwidth and accuracy/resolution immediately.

以此方式,根據本發明的單一ADC能被用來測量寬範圍的信號值(振幅和頻率兩者),因此避免使用被調諧至如習知技術中之特定(較窄)範圍的多個ADC。 In this way, a single ADC in accordance with the present invention can be used to measure a wide range of signal values (both amplitude and frequency), thus avoiding the use of multiple ADCs tuned to a specific (narrower) range as in the prior art. .

示範實施例的詳細說明 Detailed Description of Exemplary Embodiments

現在提出本發明之設備和方法之各種實施例及變異的詳細說明。 Detailed descriptions of various embodiments and variations of the apparatus and methods of the present invention are now presented.

信號轉換 Signal conversion

時域切換(TDS)ADC概念係基於對應至與預定信號準位相交之調變信號波形的測量時間間隔,以重建輸入信號。在一實施例中,調變信號包含:(i)一時間變化電壓或電流輸入信號(這是未知的且是測量的目標);及(ii)載波信號(電壓或電流)信號。關於一DC輸入信號,調變信號V能表示成:V(t)=V c (t)+V input =A c cos(ω c t)+V input (方程式2) The time domain switching (TDS) ADC concept is based on a measurement time interval corresponding to a modulated signal waveform that intersects a predetermined signal level to reconstruct an input signal. In an embodiment, the modulated signal comprises: (i) a time varying voltage or current input signal (which is unknown and is the target of the measurement); and (ii) a carrier signal (voltage or current) signal. Regarding a DC input signal, the modulation signal V can be expressed as: V ( t ) = V c ( t ) + V input = A c cos ( ω c t ) + V input (Equation 2)

這裡:V(t) 是調變信號;VC(t) 是載波信號;Vinput 是待測量的未知輸入信號;Ac 是載波信號振幅;及ωc 是載波信號徑向頻率ωc=2πfcHere: V(t) is the modulation signal; V C (t) is the carrier signal; V input is the unknown input signal to be measured; A c is the carrier signal amplitude; and ω c is the carrier signal radial frequency ω c = 2πf c .

為了實作TDS ADC,輸入信號Vinput會加到載波信號VC,藉此調變載波信號的偏移量。載波信號能從外部來源來供應或藉由ADC設備(例如,FPGA/MCU、共振迴路電路、壓控振盪器等)的邏輯電路於內部產生。 To implement the TDS ADC, the input signal V input is applied to the carrier signal V C , thereby shifting the offset of the carrier signal. The carrier signal can be supplied from an external source or internally generated by a logic circuit of an ADC device (eg, an FPGA/MCU, a resonant loop circuit, a voltage controlled oscillator, etc.).

現在參考第1圖,方塊圖顯示時域切換(TDS)類比至數位轉換器(ADC)的廣義架構包括前端處理101、時序辨別103、控制邏輯109、時間至數位轉換111、及定義與其關聯之技術的演算法元件113。系統可接受複數個類比輸入,包括:待數位化的信號115(信號1...信號N, 亦稱為調變信號)、可能是固定或時間變化的參考信號(Ref1...RefM)、及在本質上通常振盪的載波信號(載波1...載波P)。例如,一組典型的輸入信號包括:一個輸入調變信號、兩個或多個固定參考準位、及一個正弦載波信號。上述元件可實作成硬體電路及/或在積體電路上執行的軟體元件。 Referring now to Figure 1, a block diagram showing a generalized architecture of a time domain switching (TDS) analog to digital converter (ADC) includes front end processing 101, timing discrimination 103, control logic 109, time to digital conversion 111, and definition associated therewith. Algorithmic component 113 of the technology. The system can accept a plurality of analog inputs, including: a signal 115 to be digitized (signal 1 ... signal N , also known as a modulated signal), possibly a fixed or time varying reference signal (Ref 1 ... Ref M ), and carrier signals (carrier 1 ... carrier P ) that normally oscillate in nature. For example, a typical set of input signals includes: an input modulated signal, two or more fixed reference levels, and a sinusoidal carrier signal. The above components can be implemented as a hardware circuit and/or as a software component that is executed on an integrated circuit.

前端類比信號處理101係設置以接受並使輸入信號115符合其參數/特性(例如,頻寬、濾波準位、衰退等),以確保適當操作TDS ADC的後續功能。前端操作可包括:放大、濾波、差動信號轉換、信號總平均、線性/非線性組合、及信號轉換。示範的前端處理實施例包括輸入調變信號低通濾波(去鋸齒)、取樣保持功能、信號總合部、及對載波信號進行帶通濾波。 The front end analog signal processing 101 is configured to accept and conform the input signal 115 to its parameters/characteristics (e.g., bandwidth, filtering level, decay, etc.) to ensure proper operation of the subsequent functions of the TDS ADC. Front-end operations can include: amplification, filtering, differential signal conversion, total signal averaging, linear/nonlinear combination, and signal conversion. Exemplary front end processing embodiments include input modulation signal low pass filtering (de-aliasing), sample hold function, signal summing, and band pass filtering of the carrier signal.

時序辨別器元件103接收來自於前端處理輸出的任意數量之類比和數位信號。根據這些輸出,時序辨別器元件產生一組具有反映出輸入調變信號與參考信號之相交之轉變的數位脈衝。藉由舉例,功能實作包括,但不限於,信號比較器、及/或限制輸出高增益放大。 Timing discriminator component 103 receives any number of analog and digital signals from the front end processing output. Based on these outputs, the timing discriminator component produces a set of digital pulses having a transition that reflects the intersection of the input modulation signal and the reference signal. By way of example, functional implementations include, but are not limited to, signal comparators, and/or limiting output high gain amplification.

時序辨別可例如藉由用於時域振盪測量的健全和穩定設備來進行,例如在於2011/6/24申請且標題為「APPARATUS AND METHODS FOR TIME DOMAIN MEASUREMENT OF OSCILLATION PERTURBATIONS」之共同未決的美國專利申請書第13/168,603號中所述的設備,全面地藉由參考來事先合併之。如本文所述,在一示 範實施例中,振盪裝置包括耦接至一開關設備(具有至少一第一元件和至少一第二元件,其形成一個(或多個)關閉的開關狀態)的一控制振盪器、一驅動電路、及一感測電路。驅動電路提供一驅動信號,其配置以引起依次替代有關一個(或多個)第二元件之一個(或多個)第一元件的振盪動作。在一方法中,驅動信號包括打開或關閉(例如週期性地)的時間閘控(或「砰」)信號。在另一方法中,振盪器係以連續方式來驅動,如透過一時間變化波函數。當開關的第一元件與第二元件排成一行時,感測電路便產生一觸發信號,指示關閉的開關狀態。在一示範實作中,使用兩個電子穿隧電極(一個固定的和一個可移動的)作為開關,且當把電極排列在關閉的開關位置中時,信號包括由接近電極端所造成的穿隧放電脈衝。藉由測量連續觸發事件(指示振盪器通過一參考位置)之間的時間間隔來決定振盪週期,藉此可得到對設備作用的外力。 Time-series discrimination can be performed, for example, by a robust and stable device for time domain oscillation measurements, such as the co-pending U.S. patent application filed in the 2011/6/24 application entitled "APPARATUS AND METHODS FOR TIME DOMAIN MEASUREMENT OF OSCILLATION PERTURBATIONS" The equipment described in the book No. 13/168, 603 is incorporated in advance by reference in its entirety. As described herein, in one indication In an exemplary embodiment, the oscillating device includes a control oscillator, a driving circuit coupled to a switching device (having at least one first component and at least one second component forming one (or more) closed switching states) And a sensing circuit. The drive circuit provides a drive signal configured to cause an oscillating action in turn to replace one (or more) of the first element(s) of the second element(s). In one method, the drive signal includes a time-gated (or "砰") signal that is turned on or off (eg, periodically). In another method, the oscillator is driven in a continuous manner, such as by a time varying wave function. When the first component of the switch and the second component are aligned, the sensing circuit generates a trigger signal indicating the closed switch state. In an exemplary implementation, two electron tunneling electrodes (one fixed and one movable) are used as switches, and when the electrodes are arranged in a closed switch position, the signal includes the wear caused by the proximity of the electrodes. Tunnel discharge pulse. The oscillation period is determined by measuring the time interval between consecutive trigger events (indicating that the oscillator passes through a reference position), whereby an external force acting on the device can be obtained.

控制邏輯109提供數位脈衝信號的信號仲裁和數位處理。例如,功能方塊可將輸入信號轉成一或多個需要的數位邏輯類型(LVDS、PECL等)、或對任何信號組合運用組合邏輯(AND、OR、XOR、NOT等)。 Control logic 109 provides signal arbitration and digital processing of the digital pulse signals. For example, a function block can convert an input signal into one or more desired digital logic types (LVDS, PECL, etc.), or use combinational logic (AND, OR, XOR, NOT, etc.) for any combination of signals.

時間至數位轉換(TDC)元件111將複數個輸入數位脈衝轉成以一數位值(整數、浮點數等)表示的相關時序事件。藉由舉例,此元件可包括專用積體電路及/或場域可編程閘陣列(ASIC/FPGA)基礎裝置和基於游標尺內插技術(例如,ACAM Messelectronic gmbh,Friedrich-List- Strasse 4,76297 Stutensee-Blankenloch,德國;裝置部件號碼:GP21)的商業解決方案。 Time to digital conversion (TDC) component 111 converts a plurality of input digital pulses into associated time-series events represented by a digital value (integer, floating point number, etc.). By way of example, the components may include dedicated integrated circuit and/or field programmable gate array (ASIC/FPGA) infrastructure and vernier-scale interpolation techniques (eg, ACAM Messelectronic gmbh, Friedrich-List- Strasse 4, 76297 Stutensee-Blankenloch, Germany; installation part number: GP21) commercial solution.

TDS ADC包括演算法處理邏輯113,其處理TDC數位時序值和從其他系統元件確定的其他資訊,並即時產生表示在特定點之輸入調變資料的數位值。使用者的應用可指定所使用的特定演算法。例如,TDS演算法可包括特定方程式(例如表格2的方程式)的應用,其結合各種時序間隔的比例以用規律的取樣間隔產生輸入調變來源的表示。作為額外的實例,TDS演算法亦可採用曲線適配常式的形式,其中可使用時序和參考相交資訊來重建輸入調變來源的模型或表示。 The TDS ADC includes algorithm processing logic 113 that processes the TDC digital timing values and other information determined from other system components and instantly produces digital values representing the input modulation data at a particular point. The user's application can specify the specific algorithm to use. For example, the TDS algorithm may include the application of a particular equation (e.g., the equation of Table 2) that combines the ratios of the various timing intervals to produce a representation of the input modulation source at regular sampling intervals. As an additional example, the TDS algorithm can also take the form of a curve adaptation routine in which timing and reference intersection information can be used to reconstruct a model or representation of the input modulation source.

現在參考第1A圖,詳細說明時域切換類比至數位轉換方法。為了重建輸入信號對載波的影響,並因而測量輸入信號,將調變信號(即,載波加上輸入)與一已知參考準位比較。在一實施例中,參考準位包含一預先選擇的電壓V1(以實線104表示),其在調變信號的總電壓範圍之內。每當調變信號波形與參考電壓準位之任一者相交時,便發生一觸發事件。在一變異中,每個觸發事件造成待產生的一脈衝以及待打開或關閉的一計數器。這是藉由任何能夠產生一數位脈衝或從二進位0切換至1(反之亦然)的機制來達到。計數器能接著藉由所產生的脈衝或藉由從數位0至1(反之亦然)之轉變的前緣來觸發打開/關閉。第1A圖所述之TDS測量方法需要知道載波振幅和頻率(週期),以解析輸入信號,如從方程式2所見。 Referring now to Figure 1A, a time domain switching analog to digital conversion method will be described in detail. To reconstruct the effect of the input signal on the carrier, and thus the input signal, the modulated signal (ie, carrier plus input) is compared to a known reference level. In one embodiment, the reference level includes a preselected voltage V 1 (indicated by solid line 104) that is within the total voltage range of the modulated signal. A trigger event occurs whenever the modulated signal waveform intersects any of the reference voltage levels. In a variant, each trigger event causes a pulse to be generated and a counter to be turned on or off. This is achieved by any mechanism capable of generating a digital pulse or switching from binary 0 to 1 (and vice versa). The counter can then be triggered on/off by the generated pulse or by the leading edge of the transition from digital 0 to 1 (and vice versa). The TDS measurement method described in Figure 1A requires knowledge of the carrier amplitude and frequency (period) to resolve the input signal as seen from Equation 2.

第1B圖的示範實施例包含一結合電路,其結合了輸入信號和載波信號並使用單一參考準位。加總的調變信號會送至例如一比較器或一視窗偵測器(如以下關於第1E圖所示及所述)。每個比較器比較收到的調變信號V(t)和各自參考信號(例如第1B圖中的V1)。參考信號V1係配置在選自適當合宜值的穩定準位,且具有在加總調變信號之電壓範圍內的準位值。控制邏輯方塊接收比較器輸出並產生各自觸發事件(如先前關於第1A圖所述的觸發事件110)。對觸發事件作反應,控制邏輯開始/停止計數器方塊,其配置以使用輸入時脈來估計時間間隔T1的期間。計數器方塊的輸出會送至時間至數位轉換器,其提供連續觸發脈衝之間之時間間隔的數位表示。根據方程式2,需要載波振幅和頻率以根據用於第1B圖所示之單一參考準位TDS ADC實作之時間間隔T1測量來重建輸入信號。載波振幅和頻率可藉由各種方式來決定,例如,使用校準資料或專用測量通道。 The exemplary embodiment of Figure 1B includes a combining circuit that combines the input signal and the carrier signal and uses a single reference level. The summed modulation signal is sent to, for example, a comparator or a window detector (as shown and described below with respect to FIG. 1E). Each comparator compares the received modulated signal V (t) and the respective reference signal (e.g. FIG. 1B in V 1). The reference signal V 1 is arranged at a stable level selected from suitable suitable values and has a level value within the voltage range of the summed modulation signal. The control logic block receives the comparator outputs and generates respective trigger events (such as the trigger event 110 previously described with respect to FIG. 1A). As a reaction to a trigger event, control logic start / stop counter block, which is configured to use the input clock to estimate the time interval of the period T 1. The output of the counter block is sent to the time to digital converter, which provides a digital representation of the time interval between successive trigger pulses. According to Equation 2, the carrier amplitude and frequency required in accordance with a single reference level as shown in FIG. 1B TDS of the implementation of time T 1 ADC interval measurements to reconstruct the input signal. The carrier amplitude and frequency can be determined in a variety of ways, for example, using calibration data or dedicated measurement channels.

第1C-1D圖顯示使用兩個已知參考信號準位的時域切換類比至數位轉換。在一實施例中,參考準位包含預先選擇的電壓V1和V2(以第1C圖中的實線104、106表示),其在調變信號的總電壓範圍之內。每當調變信號波形與參考電壓準位之任一者相交時,便發生一觸發事件。在一變異中,每個觸發事件造成待產生的一脈衝以及待打開或關閉的一計數器。這是藉由任何能夠產生一數位脈衝或從二進位0切換至1(反之亦然)的機制來達到。計數 器能接著藉由所產生的脈衝或藉由從數位0至1(反之亦然)之轉變的前緣來觸發打開/關閉。 The 1C-1D plot shows a time domain switching analog to digital conversion using two known reference signal levels. In one embodiment, the reference level comprises a preselected voltage V 1 is and V 2 (FIG. 1C solid line represents 104, 106), within the range of the total voltage of the modulated signal. A trigger event occurs whenever the modulated signal waveform intersects any of the reference voltage levels. In a variant, each trigger event causes a pulse to be generated and a counter to be turned on or off. This is achieved by any mechanism capable of generating a digital pulse or switching from binary 0 to 1 (and vice versa). The counter can then be triggered on/off by the generated pulse or by the leading edge of the transition from digital 0 to 1 (and vice versa).

第1C和1D圖顯示分別對兩個不同的輸入信號Vinput1和Vinput2值改變對應至與參考準位相交之調變波形的測量週期。第一輸入(如第1C圖所示)產生分別對應與準位V1和V2相交並產生觸發事件210、212的時間間隔Tr1和Tr2。第二輸入(如第1D圖所示)往正振幅方向偏移調變波形,因此產生分別對應至觸發事件220、222的時間間隔T1>Tr1和T2>Tr2。相反地,向下(往負振幅方向,未顯示)偏移調變波形的輸入信號會產生較小的時間間隔(未顯示)。對應至與參考準位相交之調變波形的時間週期會被合併以得到調變波形振幅(及輸入信號),如下面詳述。 The 1C and 1D diagrams show the measurement periods corresponding to the modulation waveforms of the two different input signals V input1 and V input2 respectively corresponding to the modulation waveform intersecting the reference level. The first input (as shown in FIG. 1C) produces time intervals T r1 and T r2 that respectively correspond to the levels V 1 and V 2 and generate trigger events 210, 212, respectively. A second input (as shown on FIG. 1D) to the positive waveform amplitude direction shift key, thus producing a corresponding trigger event 220, 222, respectively, to the time interval T 1> T r1 and T 2> T r2. Conversely, shifting the input signal of the modulated waveform down (to the negative amplitude direction, not shown) produces a small time interval (not shown). The time periods corresponding to the modulated waveforms that intersect the reference level are combined to obtain the modulated waveform amplitude (and input signal) as detailed below.

第1E圖呈現受讓人所實作且用於先前所述之時域切換類比至數位轉換方法之實驗性示範之示範TDS ADC電路的一實施例之功能方塊圖。設備127包含一配置以模擬調變信號V(t)的任意波形產生器(例如Agilent 33522A)。調變信號會從波形產生器送至一視窗偵測器,其使用一示範雙比較器LM319來實作,並配置以偵測參考準位相交且產生觸發事件(例如,脈衝)。視窗偵測器的輸出會送至進行時間間隔T1、T2、T3、T4測量的時間至數位轉換器(TDC)ACAM GP21。 Figure 1E presents a functional block diagram of an embodiment of an exemplary exemplary TDS ADC circuit implemented by the assignee and used in the previously described time domain switching analog to digital conversion method. Device 127 includes an arbitrary waveform generator (e.g., Agilent 33522A) configured to simulate a modulated signal V(t). The modulated signal is sent from the waveform generator to a window detector, which is implemented using an exemplary dual comparator LM319 and configured to detect the intersection of the reference levels and generate a triggering event (eg, a pulse). The output of the window detector is sent to the time-to-digital converter (TDC) ACAM GP21 for the time interval T 1 , T 2 , T 3 , T 4 measurement.

TDC的輸出在串列資料鏈上轉交至一計算方塊(微晶片微控制器(MCU)PIC24F),其亦接收高通濾波調變信 號作為同步指示器。MCU使用例如以下方程式5-18之任一者來實作輸入信號估計。 The output of the TDC is forwarded to a computation block (microchip microcontroller (MCU) PIC24F) on the serial data link, which also receives the high pass filter modulation signal The number is used as a synchronization indicator. The MCU implements an input signal estimate using, for example, any of Equations 5-18 below.

第1F圖顯示對應至第1E圖所示之實施例之TDS ADC的電路圖。 Fig. 1F shows a circuit diagram of a TDS ADC corresponding to the embodiment shown in Fig. 1E.

第1G圖顯示使用作為第1E圖之部分之示範ADC實施例的一個商業上可利用之時間至數位轉換器TDC GP-21的方塊圖。 Figure 1G shows a block diagram of a commercially available time-to-digital converter TDC GP-21 using an exemplary ADC embodiment as part of Figure 1E.

第1H圖顯示取樣設備的一示範實作,用於與第1E圖所示之實施例的ADC設備一起使用。時域切換ADC取樣設備包含一可編程邏輯方塊(以第1E圖中充滿點狀圖案的多邊形所繪),如場域可編程閘陣列FPGA、可編程邏輯裝置(PLD)、微控制器、或配置以執行機器可讀碼的任何其他電腦設備。在一變異中,控制邏輯係實作在支援嵌入式微處理器或數位處理器的FPGA內。 Figure 1H shows an exemplary implementation of a sampling device for use with the ADC device of the embodiment shown in Figure 1E. The time domain switching ADC sampling device includes a programmable logic block (depicted by a polygon filled with a dot pattern in Figure 1E), such as a field programmable gate array FPGA, a programmable logic device (PLD), a microcontroller, or Any other computer device configured to execute machine readable code. In one variation, the control logic is implemented in an FPGA that supports an embedded microprocessor or digital processor.

現在參考第1I圖,係為顯示關於第1H圖之時域切換類比至數位轉換器配置之示範操作順序的時序圖。 Referring now to Figure 1I, there is shown a timing diagram showing an exemplary sequence of operations for the time domain switching analog to digital converter configuration of Figure 1H.

第1J圖顯示藉由不同輸入信號調變的載波波形,其中相較於對應至曲線133的輸入信號Vin0,曲線131對應至輸入信號Vin1的較大正值。在Vin0=0的組態中,偏移量(139)符合Vin1。第1J圖中的資料顯示由於輸入信號的改變(DC偏移)而造成連續觸發事件(對每個參考準位)之間之時間間隔的改變,如第1J圖中的水平箭頭141、143所指。 FIG. 1J show by the first carrier waveform modulation on the input signal, wherein the input signal is compared to the V in0 corresponds to curve 133 and curve 131 corresponds to a greater value of the input signal V in1. In the configuration with V in0 =0, the offset (139) corresponds to V in1 . The data in Figure 1J shows the change in the time interval between successive trigger events (for each reference level) due to a change in the input signal (DC offset), as indicated by the horizontal arrows 141, 143 in Figure 1J. Refers to.

在另一實施例中,使用三個參考信號準位(V1、V2、 和V3)來測量調變信號振幅,如第1K圖所示。在一變異中,三個參考準位的調變波形相交產生四個時間間隔T1、T2、T3、和T4,對應於觸發事件230、232、及234。亦即,時間間隔T1、T2、T3、和T4係基於無關於其他參考準位之每個參考準位的相交來構成。在另一變異中(未顯示),時間間隔係基於連續觸發事件之組合來構成,例如,藉由與第1K圖中的參考準位V1、V2、V3相交之調變波形132來產生。亦即,觸發事件122可與觸發事件120結合,以測量調變波形等等。雖然參考準位V1和V3係顯示成對稱於準位V2,但若參考準位V1、V2、V3在調變信號的預期最大振幅範圍內,則可使用其他參考信號準位配置。亦即,針對第1K圖的實施例,V1係小於(低於)Amax,且V3係大於(高於)AminIn another embodiment, three reference signal levels (V 1 , V 2 , and V 3 ) are used to measure the amplitude of the modulated signal, as shown in FIG. 1K. In one variation, the modulation waveforms of the three reference levels intersect to produce four time intervals T 1 , T 2 , T 3 , and T 4 , corresponding to trigger events 230, 232, and 234. That is, the time intervals T 1 , T 2 , T 3 , and T 4 are constructed based on the intersection of each of the reference levels without respect to other reference levels. In another variation (not shown), is based on continuous time interval of the event triggering composition constituted, e.g., by reference to the level of FIG. 1K V 1, V 2, V 3 intersect modulated waveform 132 produce. That is, the trigger event 122 can be combined with the trigger event 120 to measure the modulated waveform and the like. Although the reference levels V 1 and V 3 are shown to be symmetric to the level V 2 , other reference signals may be used if the reference levels V 1 , V 2 , V 3 are within the expected maximum amplitude range of the modulated signal. Bit configuration. That is, for the example of the embodiment of FIG. 1K, V 1 lines smaller (lower) A max, and V 3 is greater than the system (above) A min.

在可應用於單極信號測量的另一實作中,所有參考準位必須是正的(或負的)且與載波信號的極性相同。在一變異中,倘若調變信號偏移不足以防止在任何電壓參考下切換,則具有足夠振幅的正載波電壓就可使用與負輸入信號結合。 In another implementation that can be applied to unipolar signal measurements, all reference levels must be positive (or negative) and the same as the polarity of the carrier signal. In a variant, a positive carrier voltage with sufficient amplitude can be used in conjunction with a negative input signal if the modulation signal offset is not sufficient to prevent switching under any voltage reference.

在第1C、1D、和1K圖所示之轉換方法的實施例中,載波信號Ac的振幅不必是已知的。時間間隔T1、T2、T3、和T4提供調變信號振幅的兩個獨立估計:一個接近波形最大值A+,而另一個接近波形最小值A-In the embodiment of the conversion method shown in Figures 1C, 1D, and 1K, the amplitude of the carrier signal A c need not be known. The time intervals T 1 , T 2 , T 3 , and T 4 provide two independent estimates of the amplitude of the modulated signal: one near the waveform maximum A + and the other near the waveform minimum A .

振盪最大值周圍的載波振幅係藉由結合上揚參考準位V1相交週期T1和參考準位V2相交週期T2來求得,如 下: The carrier amplitude around the oscillation maximum is obtained by combining the rising reference level V 1 intersecting period T 1 and the reference level V 2 intersecting period T 2 as follows:

這裡:d0係為參考觸發點與正觸發點之間的距離(觸發間隔);P係為振盪的週期,定義為P=T1+T3;A+係為振盪最大值周圍的載波振幅;T1係為上揚參考準位V1相交週期;及T2係為參考準位V2相交週期。 Here: d 0 is the distance between the reference trigger point and the positive trigger point (trigger interval); P is the period of oscillation, defined as P = T 1 + T 3 ; A + is the carrier amplitude around the oscillation maximum ; T 1 is the upward reference level V 1 intersection period; and T 2 is the reference level V 2 intersection period.

同樣地,振盪最小值周圍的載波振幅係藉由結合下降參考準位V1週期T3和參考準位V3相交週期T4來求得,如下: Similarly, the carrier amplitude around the oscillation minimum is obtained by combining the falling reference level V 1 period T 3 with the reference level V 3 crossing period T 4 as follows:

這裡:P係為振盪的週期,定義為P=T1+T3;A-係為振盪最小值周圍的載波振幅估計;T3係為下降參考準位V1相交週期;及T4係為參考準位V3相交週期。 Here: P is the period of oscillation, defined as P = T 1 + T 3 ; A - is the carrier amplitude estimate around the oscillation minimum; T 3 is the falling reference level V 1 intersection period; and T 4 is Reference level V 3 intersection period.

結合方程式2至4,得到兩個獨立輸入信號估計,如下: Combining equations 2 through 4 gives two independent input signal estimates as follows:

方程式5和6提供根據本發明之一實施例的時域切換類比至數位轉換的基礎。輸入信號測量需要時間間隔T1、T2、T3、和T4的準確估計量,如先前第1C圖和方程式5和6所示。從方程式5和6了解到,TDS ADC測量的準確性係取決於參考信號準位之間差的準確性,而不是取決於每個個別參考準位的絕對準確性。TDS ADC的這個特徵有利於提高轉換器長期準確性和穩定性,因為消除了由於衰老、溫度、或其他影響造成的潛在個別參考信號漂移。 Equations 5 and 6 provide the basis for time domain switching analog to digital conversion in accordance with an embodiment of the present invention. The input signal measurement requires an accurate estimate of the time intervals T 1 , T 2 , T 3 , and T 4 as shown in the previous 1C and Equations 5 and 6. It is understood from Equations 5 and 6 that the accuracy of the TDS ADC measurement depends on the accuracy of the difference between the reference signal levels, rather than on the absolute accuracy of each individual reference level. This feature of the TDS ADC helps to improve the long-term accuracy and stability of the converter by eliminating potential individual reference signal drift due to aging, temperature, or other effects.

在一變異中,載波頻率的週期係藉由測量2個連續觸發點以及兩個電壓準位V1和V2(或V2和V3)之間的電壓差來得到。關於接近DC輸入信號(如先前方程式2所述),可使用任兩個連續時間間隔(對應至相同參考準位)以測量載波信號的週期。關於時間變化輸入信號(有關下方方程式20和21所述),係使用零相交方法以決定載波週期。這是必須的,因為對應於參考準位(除了0)的時間間隔將由於輸入信號的時間變化而會「歪斜」。 In one variant, the period of the carrier frequency is obtained by measuring the voltage difference between two consecutive trigger points and two voltage levels V 1 and V 2 (or V 2 and V 3 ). Regarding proximity to the DC input signal (as previously described in Equation 2), any two consecutive time intervals (corresponding to the same reference level) can be used to measure the period of the carrier signal. Regarding the time varying input signal (described in Equations 20 and 21 below), a zero crossing method is used to determine the carrier period. This is necessary because the time interval corresponding to the reference level (except 0) will be "skewed" due to the time variation of the input signal.

在另一變異中,載波週期係藉由平均超過時間週期(亦即比載波週期長10至100倍)之任兩個連續參考準位相交(其相當於相同參考準位)調變信號來測得。上述方法對DC和時間變化輸入信號提供載波週期的準確估計。 In another variation, the carrier period is measured by modulating the signal by any two consecutive reference levels (which are equivalent to the same reference level) over an average time period (ie, 10 to 100 times longer than the carrier period). Got it. The above method provides an accurate estimate of the carrier period for the DC and time varying input signals.

現在參考第1L圖,顯示用於正弦波的取樣參數。使用這些參數來建構與載波結合之信號輸入之振幅的估計。 接著使用這些估計來得到信號輸入振幅而不使用方程式2中的關係。在本發明的各種實施例中,使用輸入電壓(Vinput)信號之估計的替代和獨立公式化。這類方程式包括,但不限於,如下表格2中的方程式: Referring now to Figure 1L, the sampling parameters for the sine wave are shown. These parameters are used to construct an estimate of the amplitude of the signal input combined with the carrier. These estimates are then used to derive the signal input amplitude without using the relationship in Equation 2. In various embodiments of the invention, an alternative and independent formulation of the estimate of the input voltage ( Vinput ) signal is used. Such equations include, but are not limited to, the equations in Table 2 below:

這裡:Vinput係為輸入電壓 Here: V input is the input voltage

P係為載波之振盪週期(第1L圖的151,等於T5+T8) P is the oscillation period of the carrier (151 of the 1st L diagram, equal to T 5 +T 8 )

V4係為較上或較下參考電壓準位的量(第1L圖的152) V 4 is the amount of the upper or lower reference voltage level (152 of 1L)

T5-T10係為準位相交之間的週期(第1L圖的153-158) The T 5 -T 10 system is the period between the intersections of the levels (153-158 of Figure 1L)

表格2的方程式可協同方程式5和6來使用,或在其間使用以產生輸入信號電壓的單獨估計。 The equation of Table 2 can be used in conjunction with Equations 5 and 6, or used therebetween to produce a separate estimate of the input signal voltage.

可編程邏輯方塊包含比較器狀態暫存器,其耦接對應於V1和V2參考信號的兩個比較器之輸出通道。比較器的 邏輯狀態會送至計數器有限狀態機(FSM)、第1D圖之控制分別對應於週期T1至T4之四個週期計數器之操作的後半部。計數器輸出耦接至四個暫存器,其配置以分別儲存週期期間計數T1至T4。在操作期間,調變波形由於輸入信號Vinput的影響而改變,因此產生對應於參考信號準位的觸發事件(如第1C和1D圖所示)。感測方塊係配置以測量連續觸發事件(例如,第1A圖中的觸發事件(210和212))之間的時間間隔,並使用上述方程式2-6來決定輸入信號。第1M圖的TDC和MCU方塊相當於第1N圖所示之ADC的數位部分。 The programmable logic block includes a comparator state register coupled to the output channels of the two comparators corresponding to the V 1 and V 2 reference signals. The logic state of the comparator is sent to the counter finite state machine (FSM), and the control of the 1D map corresponds to the second half of the operation of the four cycle counters of the periods T 1 to T 4 , respectively. The counter output is coupled to four registers configured to store the period periods T 1 through T 4 , respectively . During operation, the modulated waveform changes due to the influence of the input signal V input , thus generating a triggering event corresponding to the reference signal level (as shown in Figures 1C and 1D). The sensing block is configured to measure the time interval between successive trigger events (eg, trigger events (210 and 212) in Figure 1A) and to determine the input signal using Equations 2-6 above. The TDC and MCU blocks of Figure 1M correspond to the digital portion of the ADC shown in Figure 1N.

第1N圖呈現根據本發明之包含三個參考信號的TDS ADC設備的一個示範實施例。使用兩個參考準位(如第1C和1D圖所示)提供額外的觸發事件(第1C圖中的觸發事件114),因此加倍時間間隔取樣點的數量(即,每週期2個取樣)。當處理搖晃或時間變化輸入時,三個電壓方法是有用的。 Figure 1N presents an exemplary embodiment of a TDS ADC device incorporating three reference signals in accordance with the present invention. The use of two reference levels (as shown in Figures 1C and 1D) provides additional trigger events (trigger events 114 in Figure 1C), thus doubling the number of sample points in the time interval (i.e., 2 samples per cycle). Three voltage methods are useful when dealing with shaking or time varying inputs.

再參考第1N圖,ADC設備161包含一結合方塊163,其結合了輸入信號和載波並產生加總的調變信號。調變信號會送至一排比較器或視窗偵測器、或能夠產生脈衝或從1至0或0至1之狀態改變的任何裝置。每個比較器比較收到的調變信號V(t)和各自參考信號(例如,V1、V2、V3)。電壓V1、V2、和V3理想上應是穩定的,且能設成在加總信號之電壓範圍內之合宜的任何值。控制邏輯方塊接收比較器輸出並產生各自觸發事件(如先前關 於第1K圖所述的觸發事件210、212、214)。對觸發事件作反應,控制邏輯開始/停止計數器方塊,其配置以使用參考時脈來估計時間間隔T1、T2、T3、和T4的期間。計數器方塊的輸出會送至時間至數位轉換器,其使用各種可應用的實作(例如,FPGA或MCU實作)來提供時間週期測量。 Referring again to FIG. 1N, ADC device 161 includes a combining block 163 that combines the input signal with the carrier and produces a summed modulated signal. The modulated signal is sent to a row of comparators or window detectors, or to any device capable of generating pulses or changing from 1 to 0 or 0 to 1. Each comparator compares the received modulation signal V(t) with a respective reference signal (eg, V 1 , V 2 , V 3 ). The voltages V 1 , V 2 , and V 3 should ideally be stable and can be set to any suitable value within the voltage range of the summed signal. The control logic blocks receive the comparator outputs and generate respective trigger events (such as the trigger events 210, 212, 214 previously described with respect to FIG. 1K). As a reaction to a trigger event, control logic start / stop counter block, which is configured to be estimated using the reference clock during a time interval T 1, T 2, T 3 , and T 4 in. The output of the counter block is sent to a time to digital converter that provides time period measurements using various applicable implementations (eg, FPGA or MCU implementation).

在第1O圖所示的另一實施例中,設備171的ADC方塊173係配置以接收和測量未修改的輸入信號,而設備171的ADC方塊175係配置以接收和測量加總的調變信號。 In another embodiment, shown in FIG. 10, ADC block 173 of device 171 is configured to receive and measure an unmodified input signal, while ADC block 175 of device 171 is configured to receive and measure the summed modulated signal. .

第1P圖描繪TDS ADC設備的另一實施例,其中ADC設備181的ADC方塊175接收反向的載波信號,而ADC方塊173接收加總的調變信號。 FIG. 1P depicts another embodiment of a TDS ADC device in which ADC block 175 of ADC device 181 receives the inverted carrier signal and ADC block 173 receives the aggregated modulated signal.

第1Q圖描繪TDS ADC設備的又一實施例,其類似於第1P圖的ADC實施例。在第1Q圖的實施例中,ADC設備191的ADC方塊175接收載波信號,而ADC方塊173接收反向的加總調變信號。 Figure 1Q depicts yet another embodiment of a TDS ADC device similar to the ADC embodiment of Figure 1P. In the embodiment of Figure 1Q, ADC block 175 of ADC device 191 receives the carrier signal and ADC block 173 receives the inverted summed modulation signal.

第1P和1Q圖的ADC設備配置能夠根據第1R圖所示的方法直接重建輸入信號。第1R圖所示的方法使用兩個ADC方塊(例如,第1P圖的ADC 181之方塊173、175)所測得之時間間隔(例如,間隔T1、T2、T3、T4)的差分化,以得到輸入信號的數位表示。第1R圖中的上板193顯示關於輸入信號Vinput為0V之送至ADC設備181之ADC方塊173、175的信號波形。第1R圖中的下板195顯示關於輸入信號Vinput為0.3V之送至ADC設備 181之ADC方塊173、175的信號波形。 The ADC device configuration of the 1P and 1Q diagrams can directly reconstruct the input signal according to the method shown in Figure 1R. The method shown in FIG. 1R uses the time interval (eg, intervals T 1 , T 2 , T 3 , T 4 ) measured by two ADC blocks (eg, blocks 173, 175 of ADC 181 of FIG. 1P). Differentiate to get a digital representation of the input signal. The upper board 193 in FIG. 1R shows the signal waveforms sent to the ADC blocks 173, 175 of the ADC device 181 with respect to the input signal V input being 0V. The lower panel 195 in FIG. 1R shows the signal waveforms sent to the ADC blocks 173, 175 of the ADC device 181 with respect to the input signal V input being 0.3V.

本領域之熟知技藝者將能理解當使用三個準位TDS ADC來實作第1N-1Q圖所示的實施例。然而,亦能使用利用單一準位、兩個準位(例如,第1B、1M圖的ADC實施例)、或任何其他可實施數量之參考準位的任何轉換設備。 Those skilled in the art will appreciate that when three level TDS ADCs are used to implement the embodiment shown in the 1N-1Q diagram. However, any conversion device that utilizes a single level, two levels (e.g., an ADC embodiment of the 1B, 1M map), or any other reference level that can implement a number can also be used.

本發明之各種實作利用全波整流。全波整流係為將信號之負進行部分反射到對應之僅正值(即,信號的絕對值)的過程。此過程係應用於TDS ADC以減半信號比較的所需數量,因此減少用於參考相交時間辨別的硬體。第2和2A圖顯示以全整流波為特色的圖。反射和正的波兩者皆與信號參考準位(222,VReference)相交。從擴大細部的部分(第2圖的220),能看出藉由測量與整流信號波(第2A圖的224、226)相交的參考準位之間之週期來取得時序參數(T11、T12、t1、t2、t3、t4、t5、t6)。在這些實施例中,可使用單一參考準位來代替給定可能準位相交之增加數量的兩個或多個準位。在一示範實施例中,輸入信號可使用下列來估計: Various implementations of the invention utilize full wave rectification. Full-wave rectification is the process of partially reflecting the negative of a signal to a corresponding positive value (ie, the absolute value of the signal). This process is applied to the TDS ADC to reduce the required number of signal comparisons, thus reducing the hardware used for reference intersection time discrimination. Figures 2 and 2A show graphs featuring full rectified waves. Both the reflection and the positive wave intersect the signal reference level (222, V Reference ). From the portion in which the detail is enlarged (220 in Fig. 2), it can be seen that the timing parameter (T 11 , T is obtained by measuring the period between the reference levels intersecting the rectified signal wave (224, 226 of Fig. 2A). 12 , t 1 , t 2 , t 3 , t 4 , t 5 , t 6 ). In these embodiments, a single reference level may be used instead of an increased number of two or more levels for a given possible level of intersection. In an exemplary embodiment, the input signal can be estimated using the following:

這裡:Vinput係為輸入電壓 Here: V input is the input voltage

P係為載波之振盪週期(第2A圖的228) P is the oscillation period of the carrier (228 of Figure 2A)

VReference係為參考電壓準位的量(第2和2A圖的222) V Reference is the amount of reference voltage level (222 of Figures 2 and 2A)

T11和T12係為如第2A圖所定義的週期(230、232) T 11 and T 12 are periods as defined in Figure 2A (230, 232)

應注意到係藉由舉例來提出方程式19,且可使用輸入電壓的其他單獨估計,包括但不限於那些根據使用單一參考電壓之方程式5-18修改的方程式。此外,全波整流系統可使用兩個或多個參考準位以產生增加數量的單獨信號準位估計(例如,增加測量準確性、實作平均技術、或執行如以下所述的雜訊補償方法)。全波整流基礎系統亦簡化/減少電子需求。這樣減少了關聯雜訊貢獻。另外,參考準位漂移影響可因為減少數量的所需參考準位而降低。在第2和2A圖所示的實施例中,使用取樣和保持命令234以在取樣週期期間保持整流波的量不變。使用這個過程以減緩在波形取樣過程中的某些失真,如下所述。 It should be noted that Equation 19 is presented by way of example, and other separate estimates of the input voltage may be used, including but not limited to those that are modified according to Equations 5-18 using a single reference voltage. In addition, a full-wave rectification system may use two or more reference levels to generate an increased number of individual signal level estimates (eg, increase measurement accuracy, implement averaging techniques, or perform noise compensation methods as described below) ). The full wave rectification basic system also simplifies/reduces electronics requirements. This reduces the associated noise contribution. In addition, the reference level drift effect can be reduced by reducing the number of required reference levels. In the embodiment shown in Figures 2 and 2A, the sample and hold command 234 is used to maintain the amount of rectified wave constant during the sampling period. Use this process to slow down some of the distortion during waveform sampling, as described below.

失真和雜訊補償 Distortion and noise compensation

在各種實作中,輸出諧波失真會透過使用取樣和保持(S/H)功能來減輕。S/H功能規定一特定的取樣準位持續最小時間間隔而不會回到一預設準位(例如,零準位),或被視為單點樣本。取樣準位的持續從不斷變化輸入產生分段常數輸出。在一些變異中,最小持續時間會參考取樣週期來調諧。替代地,持續時間可基於其它因素(如關於取樣信號的時間常數、TDS載波週期、或系統雜訊成分等)。給定一純粹地正弦載波信號,當輸入調變信號在特定取樣間隔期間是不固定時,會因使用某些TDS ADC演算法方程式(例如方程式7)來處理時序資料而引起失真。S/H操作從一特定輸入信號和取樣時脈來產生分段常數輸出(S/H亦被稱為零階保持、及/或追蹤和保持裝置)。S/H的一些實作能夠完全消除有關時間變化輸入調變信號的諧波失真結果。 In various implementations, output harmonic distortion is mitigated by using the sample and hold (S/H) function. The S/H function specifies that a particular sampling level lasts for a minimum time interval without returning to a predetermined level (eg, zero level) or as a single point sample. The sampling level continues to produce a piecewise constant output from the constantly changing input. In some variations, the minimum duration is tuned with reference to the sampling period. Alternatively, the duration may be based on other factors (such as time constants for the sampled signal, TDS carrier period, or system noise components, etc.). Given a purely sinusoidal carrier signal, when the input modulated signal is not fixed during a particular sampling interval, some TDS will be used The ADC algorithm equation (such as Equation 7) processes the timing data to cause distortion. The S/H operation produces a piecewise constant output from a particular input signal and sampling clock (S/H is also referred to as zero-order hold, and/or tracking and holding device). Some implementations of S/H can completely eliminate harmonic distortion results for time-varying input modulation signals.

以上所述之時域切換類比至數位轉換方法論假設是虛擬固定(接近DC)輸入信號Vinput(參見方程式2)。在一實作中,為了使上述方法適合測量時間變化輸入信號(其在可媲美載波信號週期之時間刻度上變化),便模型化時間變化輸入信號隨著載波信號的一個週期P成線性變化,如下: The time domain switching analog to digital conversion methodology described above assumes a virtual fixed (near DC) input signal V input (see Equation 2). In an implementation, in order to adapt the above method to measure a time varying input signal (which varies over a time scale comparable to the carrier signal period), the time varying input signal is modeled to vary linearly with a period P of the carrier signal. as follows:

這裡:V(t) 是調變信號;VDC_input 是待測量的輸入信號之DC成分;V AC_input(t) 是待測量的輸入信號之時間依賴(AC)成分;φc 是有關參考時脈的載波信號相位;Ac 是載波信號振幅;及ωc 是載波信號徑向頻率ωc=2πfcHere: V(t) is the modulation signal; V DC_input is the DC component of the input signal to be measured; V AC _input ( t ) is the time dependent (AC) component of the input signal to be measured; φ c is the reference clock Carrier signal phase; A c is the carrier signal amplitude; and ω c is the carrier signal radial frequency ω c = 2πf c .

給定一小時間增量dt,連續的方程式20會表現成離散形式,如下: Given a small time increment dt, the continuous equation 20 will appear as a discrete form, as follows:

這裡:t it i-1 是連續的離散時間例子,t i>t i-1;Vi 是時間t i時的調變信號;A ci 是時間t i時的載波信號振幅;VDC_input 是輸入信號的DC成分;V AC_input_i 是時間t i時的輸入信號之時間依賴(AC)成分;P 是載波週期;φci 是時間t i時的載波信號相位。 Where: t i, t i-1 is a discrete time instances continuous, t i> t i-1 ; V i time t modulated signal at i; A ci is the time the carrier signal amplitude at the time i t; V DC_input Is the DC component of the input signal; V AC _input_i is the time dependent (AC) component of the input signal at time t i ; P is the carrier period; φ ci is the carrier signal phase at time t i .

ωci 是時間t i時的載波信號徑向頻率。 ω ci is the carrier signal radial frequency at time t i .

針對時間變化輸入信號,方程式20和21說明由於輸入信號隨著時間Vinput(t)變化而改變全部調變信號V(t)。 For time varying input signals, equations 20 and 21 illustrate input signals with time V input (t) changes to change all modulated signal V (t) due.

第3圖顯示使用離散方程式21的時間變化輸入信號測量方法之一實施例。綠色線是載波信號,只用於對照。藍色信號是顯示時間變化輸入信號的調變信號。這作用會「歪斜」時間週期,於是必須使用更多通用的方程式21來解決(或具有方程式5和6的取樣和保持電路)。 Figure 3 shows an embodiment of a time varying input signal measurement method using discrete equation 21. The green line is the carrier signal and is used only for comparison. The blue signal is a modulated signal that displays the time varying input signal. This effect "skews" the time period and must be solved using more general equations 21 (or sample and hold circuits with equations 5 and 6).

在本發明的另一實施例中,使用結合方程式5和6的取樣和保持電路來準確地測量時間變化輸入信號。取樣和保持方塊的目的在於在連續ADC樣本之間產生準DC準位,使得方程式5和6有效。假設輸入信號本質上在任兩個連續樣本之間不會改變(例如,超過時間間隔△t=t i-t i-1)。注意,解答方程式20和21並不需要取樣和保持電 路。 In another embodiment of the invention, the sample and hold circuit in conjunction with Equations 5 and 6 is used to accurately measure the time varying input signal. The purpose of the sample and hold block is to generate a quasi-DC level between successive ADC samples, making Equations 5 and 6 valid. It is assumed that the input signal does not substantially change between any two consecutive samples (eg, exceeding the time interval Δt = t i - t i-1 ). Note that solving equations 20 and 21 does not require a sample and hold circuit.

現在參考第3A圖,顯示用於實作S/H技術之廣義方法320的一實施例。在步驟322,在S/H電路中接收包括由載波調變之輸入信號的類比信號。在步驟324,發生一觸發事件(例如,參考電壓準位相交等)。一旦發生觸發事件,就測量類比信號準位(步驟326),並保持測量波形在測量準位達S/H電路的持續時間(例如,直到採用另一樣本、載波週期之部分等)(步驟326)。接著將測量波形傳到其他其他TDC電路,用於進一步地分析(步驟328)。一旦得到TDC輸出,時序值就從時域中轉成使用參考準位和載波頻率之已知值的電壓準位當量。可例如與以下第3E圖之示範電路370一起使用來運用廣義方法320。 Referring now to Figure 3A, an embodiment of a generalized method 320 for implementing S/H techniques is shown. At step 322, an analog signal comprising an input signal modulated by a carrier is received in the S/H circuit. At step 324, a trigger event occurs (eg, reference voltage level intersection, etc.). Once a trigger event occurs, the analog signal level is measured (step 326) and the measurement waveform is maintained at the measurement level for the duration of the S/H circuit (eg, until another sample, portion of the carrier cycle, etc.) (step 326) ). The measurement waveform is then passed to other other TDC circuits for further analysis (step 328). Once the TDC output is obtained, the timing value is converted from the time domain to a voltage level equivalent using a known value of the reference level and carrier frequency. The generalized method 320 can be utilized, for example, in conjunction with the exemplary circuit 370 of FIG. 3E below.

現在參考第3B和3C圖,顯示取樣和保持技術320之示範實施例的功效。第3B圖顯示不實作S/H技術的模擬。輸入信號332和諧波334兩者皆在輸出信號中。在第3C圖所示之模擬結果中,實作方法320且完全抑制諧波334,而輸入信號332仍存在。 Referring now to Figures 3B and 3C, the efficacy of an exemplary embodiment of the sample and hold technique 320 is shown. Figure 3B shows a simulation of a non-realistic S/H technique. Both input signal 332 and harmonic 334 are in the output signal. In the simulation results shown in FIG. 3C, method 320 is implemented and harmonics 334 are completely suppressed, while input signal 332 still exists.

在第3D圖中顯示TDS ADC的另一實施例350。提供外部類比信號352至系統350。對輸入信號運用取樣和保持裝置354導致分段常數值被保持達固定間隔(具有載波信號的兩倍週期)。與取樣間隔同步的正弦載波信號(為了方便)會與取樣輸入信號相加。此結果是全波形,其使用整流器/比較器方塊356來整流且與一固定參考準位比 較以產生數位時序脈衝。脈衝被時間至數位轉換裝置358(例如,ACAM Messelectronic gmbh,Friedrich-List-Strasse 4,76297 Stutensee-Blankenloch,德國;部件號碼:GP21)接收,並轉成一組等量的數位時間值(t1、t2、t3、t4、t5、t6);使用以方程式19表示的TDS ADC演算法元件360來處理測得的時間序列,以產生一輸出數位值。在此例中,演算法係實作在軟體中,且輸出值係為浮點數。 Another embodiment 350 of the TDS ADC is shown in Figure 3D. An external analog signal 352 is provided to system 350. Applying the sample and hold means 354 to the input signal causes the piecewise constant value to be maintained at a fixed interval (with twice the period of the carrier signal). A sinusoidal carrier signal synchronized with the sampling interval (for convenience) is added to the sampled input signal. This result is a full waveform that is rectified using rectifier/comparator block 356 and compared to a fixed reference level to produce a digital timing pulse. The pulses are received by time to digital conversion device 358 (eg, ACAM Messelectronic gmbh, Friedrich-List-Strasse 4, 76297 Stutensee-Blankenloch, Germany; part number: GP21) and converted into a set of equal digit time values (t 1 , t 2 , t 3 , t 4 , t 5 , t 6 ); the measured time series is processed using the TDS ADC algorithm component 360 represented by Equation 19 to produce an output digit value. In this example, the algorithm is implemented in software and the output values are floating point numbers.

S/H裝置的高信號真實性確保最大的信噪比以及低失真轉換。參考第3E圖,顯示示範的S/H電路370。第3E圖所示的S/H電路可例如與先前所述之第3A圖的示範方法320或其他一起使用。 The high signal authenticity of the S/H device ensures maximum signal to noise ratio and low distortion conversion. Referring to Figure 3E, an exemplary S/H circuit 370 is shown. The S/H circuit shown in FIG. 3E can be used, for example, with the exemplary method 320 of FIG. 3A described above or others.

透過兩個關閉的開關(372和374)(第3E圖中的開關係描繪在打開位置),差動放大器376差動地驅動保持電容器378負載。以最小失真來追蹤輸入信號380並加入由於差動放大器和保持電容器造成的雜訊。測量放大器382將具有很少或無壓降失真的電容器之電荷傳送至電路的低阻抗輸出驅動裝置。 The differential amplifier 376 differentially drives the hold capacitor 378 load through the two closed switches (372 and 374) (the open relationship in Figure 3E is depicted in the open position). The input signal 380 is tracked with minimal distortion and noise due to the differential amplifier and the holding capacitor is added. The measurement amplifier 382 delivers the charge of the capacitor with little or no voltage drop distortion to the low impedance output driver of the circuit.

透過兩個打開的開關(372和374),由於保持電容器378的高耗散率以及測量放大器的高阻抗輸入而維持保持電容器378上的電荷。電容器上保持的電荷會被測量放大器持續地傳送至輸出驅動裝置(同樣具有很少或無壓降)。 Through the two open switches (372 and 374), the charge on the holding capacitor 378 is maintained due to the high dissipation rate of the holding capacitor 378 and the high impedance input of the measuring amplifier. The charge held on the capacitor is continuously transmitted by the measuring amplifier to the output drive (also with little or no voltage drop).

在一示範實施例中,藉由S/H控制裝置386來打開或 關閉開關(372和374)以產生頻率切割信號。使用保持電容器來積分切割信號結果,造成信號的微分加總。 In an exemplary embodiment, it is turned on by S/H control device 386 or The switches (372 and 374) are turned off to generate a frequency cut signal. The use of a holding capacitor to integrate the result of the cut signal results in a differential summation of the signal.

第3F圖顯示有關第3D圖所示且所述之TDS ADC設備實施例的電路圖。 Figure 3F shows a circuit diagram of an embodiment of the TDS ADC device shown in Figure 3D.

第3G圖呈現有關利用取樣和保持方法以在每個振盪週期中產生準靜態DC調變信號的TDS ADC模擬之資料。得到第3G圖中的資料如下:調變(50Hz之振幅的20%)、載波信號:1.5V峰值、1.5V DC、頻率500Hz。每兩個載波週期(對應於雙參考準位ADC配置)就計算信號樣本,如前面第1B圖所述。 Figure 3G presents data on a TDS ADC simulation using a sample and hold method to generate a quasi-static DC modulation signal in each oscillation cycle. The data in the 3G graph is obtained as follows: modulation (20% of the amplitude of 50 Hz), carrier signal: 1.5 V peak, 1.5 V DC, frequency 500 Hz. Signal samples are calculated every two carrier cycles (corresponding to a dual reference level ADC configuration) as described in Figure 1B above.

在一變異中,實作兩個取樣和保持電路,一個用於正的且另一個用於負的振盪週期,藉此加倍TDS ADC的取樣率。 In one variation, two sample and hold circuits are implemented, one for positive and the other for negative oscillation periods, thereby doubling the sampling rate of the TDS ADC.

可使用S/H技術來對付由測得的信號、或在測量本身中所引起的失真。然而,其他失真可由載波波形本身引起。載波的任何不希望失真將導致計算之信號的對應失真。透過演算法失真的消除,可使用具有關於載波之失真的特定係數之多項式補償來消除來自載波的失真。例如,校正信號V’係藉由下式而有關失真值V:V'=V-a1V2-a2V3-a3V4-a4V5...-anVn+1 (方程式22) S/H technology can be used to deal with the distortion caused by the measured signal or in the measurement itself. However, other distortions can be caused by the carrier waveform itself. Any unwanted distortion of the carrier will result in a corresponding distortion of the calculated signal. By eliminating the distortion of the algorithm, polynomial compensation with specific coefficients on the distortion of the carrier can be used to eliminate distortion from the carrier. For example, the correction signal V' is related to the distortion value V by the following equation: V ' = Va 1 V 2 - a 2 V 3 - a 3 V 4 - a 4 V 5 ... - a n V n+1 ( Equation 22)

校正係數能根據載波失真的測量來估計。可初始設定並校準載波失真和校正係數,或在裝置的使用期間可監控載波失真以週期性地校正來改變時間上的載波失真。另外,校正係數係決定性地有關載波振幅。當監控載波振幅 時,能相應地更新係數。載波振幅能例如計算成: The correction factor can be estimated from the measurement of carrier distortion. Carrier distortion and correction coefficients may be initially set and calibrated, or carrier distortion may be monitored during use of the device to periodically correct to change carrier distortion over time. In addition, the correction factor is decisively related to the carrier amplitude. When the carrier amplitude is monitored, the coefficients can be updated accordingly. The carrier amplitude can be calculated, for example, as:

令R表示載波振幅從初始振幅A0的改變: Let R denote the change in carrier amplitude from the initial amplitude A 0 :

可藉由在校正方程式中包括R的關係來在測得的輸入信號值中補償載波的最初三個諧波。作為一實例,校正載波的三個諧波,並考慮到載波振幅的改變: The first three harmonics of the carrier can be compensated for in the measured input signal value by including the relationship of R in the correction equation. As an example, the three harmonics of the carrier are corrected and the change in carrier amplitude is taken into account:

為了校正載波的四個諧波,可使用下列校正方程式: To correct the four harmonics of the carrier, the following correction equations can be used:

只要載波(載波諧波的數量和大小)的失真是已知的,可校正計算之信號產生的失真。 As long as the distortion of the carrier (the number and magnitude of carrier harmonics) is known, the distortion produced by the calculated signal can be corrected.

現在參考第4圖,顯示用於載波失真補償的廣義方法400之一實施例。在步驟402,在輸入處接收調變信號。估計時間變化振幅,並依次使用其來估計輸入電壓(步驟404,即,未加入載波的輸入信號)。加至信號之載波成分中的時間變化在估計輸入電壓的過程中可引起諧波失真。這個與取樣和保持方法320相比,說明了由輸入電壓本身中的時間變化或其測量引起的失真。因此,在步驟406,對減輕載波之諧波成分之影響的測得信號運用具有 預定校正係數之載波的多項式表式(參見方程式26)。 Referring now to Figure 4, an embodiment of a generalized method 400 for carrier distortion compensation is shown. At step 402, a modulation signal is received at the input. The time varying amplitude is estimated and used in turn to estimate the input voltage (step 404, i.e., the input signal to which no carrier is added). The time variation added to the carrier component of the signal can cause harmonic distortion during the estimation of the input voltage. This illustrates the distortion caused by the time variation in the input voltage itself or its measurement as compared to the sample and hold method 320. Therefore, in step 406, the measured signal application to mitigate the effects of the harmonic components of the carrier has A polynomial expression of the carrier of the predetermined correction factor (see Equation 26).

第4A-4C中顯示這個失真校正之方法的示範結果。第4A圖顯示兩個模擬輸出,一個沒有校正失真,且一個有校正由具有單一輸入頻率之載波引起的失真。在兩個模擬輸出中,呈現載波信號輸入貢獻412。然而,諧波414會存在原本輸出中,但無法在補償輸出中看見。第4B和4C圖顯示成對資料組,其展示以多個輸入載波頻率(多個峰值412)和以改變載波振幅來校正失真。 Exemplary results of this method of distortion correction are shown in Figures 4A-4C. Figure 4A shows two analog outputs, one with no corrected distortion and one with distortion corrected by a carrier with a single input frequency. In both analog outputs, a carrier signal input contribution 412 is presented. However, harmonics 414 will exist in the original output but cannot be seen in the compensation output. Figures 4B and 4C show pairs of data sets that exhibit distortion at multiple input carrier frequencies (multiple peaks 412) and to change the carrier amplitude.

在一些實作中,可結合方法320和400以隨著對輸入/測量失真和載波波形失真兩者的補償來估計。 In some implementations, methods 320 and 400 can be combined to estimate with compensation for both input/measure distortion and carrier waveform distortion.

類比至數位轉換的解析度係與載波的光譜飽和度和雜訊特性有關。載波的頻率之不確定性(例如,因光譜和雜訊成分)造成準確性降低,其中在估計輸入信號振幅中使用的參數會基於此準確性。降低此因素的一個方法係為帶通過濾載波,這是使濾波器之預定通過頻寬外部的頻率成分減弱之過程。一般來說,選擇濾波器的通過頻帶與載波的中間頻率重疊。帶通濾波會減少從載波之基本頻率脫離之頻率成分的振幅(及失真貢獻)。 The resolution of the analog to digital conversion is related to the spectral saturation and noise characteristics of the carrier. The uncertainty of the frequency of the carrier (eg, due to spectral and noise components) results in reduced accuracy, where the parameters used in estimating the amplitude of the input signal are based on this accuracy. One method of reducing this factor is to pass the filtered carrier, which is the process of attenuating the frequency components outside the predetermined bandwidth of the filter. In general, the pass band of the selection filter overlaps with the intermediate frequency of the carrier. Bandpass filtering reduces the amplitude (and distortion contribution) of the frequency components that are separated from the fundamental frequency of the carrier.

第5圖顯示在實作帶通濾波之系統中的測得輸入信號振幅解析度中的模擬縮減。計算之輸入信號係使用測得的載波輸入雜訊作為模擬的輸入來模擬。對載波輸入運用數位濾波。 Figure 5 shows the simulated reduction in the amplitude resolution of the measured input signal in a system implemented with bandpass filtering. The calculated input signal is simulated using the measured carrier input noise as an analog input. Digital filtering is applied to the carrier input.

多個輸入信號可藉由將每個輸入信號加上一共同載波波形來實作。加上共同載波的輸入信號可例如是經時間、 相位、或頻率多工。替代地,可使用多重相位或頻率偏移載波。每個輸入信號/載波組合可各以分開的ADC來測量,或以單一ADC裝置來時間交錯。 Multiple input signals can be implemented by adding a common carrier waveform to each input signal. The input signal of the common carrier can be, for example, time, Phase, or frequency multiplexing. Alternatively, multiple phase or frequency offset carriers can be used. Each input signal/carrier combination can each be measured as a separate ADC or time interleaved with a single ADC device.

使用多個ADC通道可有利於信號的測量準確性。例如,多個同時測得的載波會與輸入信號、測量不同相位之載波的各通道結合。替代地,輸入信號的多個相移式例子可加入一共同載波。多個ADC通道能夠進行差動信號技術,以及減去載波雜訊。多個ADC通道亦允許額外的平均,而增進某些類型之輸入信號的測量準確性。 Using multiple ADC channels can facilitate measurement accuracy of the signal. For example, multiple simultaneously measured carriers are combined with input signals, channels that measure carriers of different phases. Alternatively, multiple phase shifting examples of the input signal can be added to a common carrier. Multiple ADC channels are capable of differential signaling techniques and subtracting carrier noise. Multiple ADC channels also allow for additional averaging, which improves the measurement accuracy of certain types of input signals.

載波雜訊對轉換解析度的影響能藉由實作兩個或多個同時ADC測量通道來降低。在一示範實施例中,由輸入信號加上載波所產生的時間間隔之測量係在一個通道上測量,而使用第二通道來測量同一個沒有輸入信號的載波。在兩ADC通道中的時間間隔中測得的不確定性可與來自載波的共模雜訊相關。一旦量化,就可移除這個不確定成分。第6圖中顯示對一示範模擬系統的轉換解析度改善。在此例中,取樣並使用實際的載波波形作為模擬結果的基礎。針對此實例,明顯發現載波不確定性減去的好處會與適當預先過濾載波波形有關聯。 The effect of carrier noise on the conversion resolution can be reduced by implementing two or more simultaneous ADC measurement channels. In an exemplary embodiment, the measurement of the time interval produced by the input signal plus the carrier is measured on one channel and the second channel is used to measure the same carrier without the input signal. The uncertainty measured in the time interval between the two ADC channels can be related to the common mode noise from the carrier. Once quantified, this uncertainty can be removed. The conversion resolution improvement for an exemplary simulation system is shown in FIG. In this example, the actual carrier waveform is sampled and used as the basis for the simulation results. For this example, it is clear that the benefits of carrier uncertainty subtraction are associated with appropriate pre-filtered carrier waveforms.

第6A圖呈現TDS ADC的一實施例,其配置以提供載波頻率和振幅同時地且獨立於輸入信號測量的測量。第6A圖的ADC設備包含兩個ADC方塊602和604(如在前第1B圖所示的ADC方塊123)。ADC方塊602係配置以接收並測量加總的調變信號,而方塊604係配置以只接收 載波信號。ADC設備610更包含一TDS ADC處理方塊,其實作共模雜訊估計和拒斥以及輸入信號估計演算法(例如,根據方程式5和6)。如第6A圖所示之ADC配置有利於提供方便的手段來測量皆在方程式5和6中使用之載波的週期和振幅。 Figure 6A presents an embodiment of a TDS ADC configured to provide measurements of carrier frequency and amplitude simultaneously and independently of input signal measurements. The ADC device of Figure 6A includes two ADC blocks 602 and 604 (as in the ADC block 123 shown in the previous Figure 1B). ADC block 602 is configured to receive and measure the summed modulated signal, and block 604 is configured to receive only Carrier signal. The ADC device 610 further includes a TDS ADC processing block that is used for common mode noise estimation and rejection and input signal estimation algorithms (e.g., according to Equations 5 and 6). The ADC configuration as shown in Figure 6A facilitates providing a convenient means of measuring the period and amplitude of the carriers used in Equations 5 and 6.

第6B圖顯示使用兩個參考信號準位的時域類比至數位轉換設備之一實施例的方塊圖。第1B圖的設備121包含一結合電路,其結合了輸入信號和載波。加總的調變信號會送至一排比較器(或如在前第1E圖所示的視窗偵測器)。每個比較器比較收到的調變信號V(t)和各自參考信號(例如,V1、V2)。如上所述,參考準位V1和V2理想上應是穩定的,且能設成在加總調變信號之電壓範圍內之合宜的任何值。控制邏輯方塊接收比較器輸出並產生各自觸發事件(如先前關於第1C圖所述的觸發事件110、112)。對觸發事件作反應,控制邏輯開始/停止計數器方塊,其配置以使用輸入時脈來估計時間間隔T1和T2的期間。計數器方塊的輸出會送至時間至數位轉換器,其提供連續觸發脈衝之間之時間間隔的數位表示。 Figure 6B shows a block diagram of one embodiment of a time domain analog to digital conversion device using two reference signal levels. The device 121 of Figure 1B includes a combining circuit that combines the input signal and the carrier. The summed modulation signal is sent to a row of comparators (or the window detector as shown in Figure 1E above). Each comparator compares the received modulation signal V(t) with a respective reference signal (eg, V 1 , V 2 ). As mentioned above, the reference levels V 1 and V 2 should ideally be stable and can be set to any suitable value within the voltage range of the summed modulation signal. The control logic blocks receive the comparator outputs and generate respective trigger events (such as the trigger events 110, 112 previously described with respect to FIG. 1C). As a reaction to a trigger event, control logic start / stop counter block, which is configured to use the input clock is estimated during a time interval T 1 and T 2 are the. The output of the counter block is sent to the time to digital converter, which provides a digital representation of the time interval between successive trigger pulses.

第6C圖呈現TDS ADC的一實施例,其配置以同時提供載波頻率和振幅的量測及無關於輸入信號測量。ADC設備680包含兩個ADC方塊682和684。ADC方塊682係配置以接收並測量加總的調變信號,而方塊684係配置以只接收載波信號。ADC設備680更包含一TDSA處理方塊,其實作共模雜訊估計和拒斥演算法。第6C圖的 ADC實施例有利於使用如上所述之方程式5和6來允許計算載波的正和負週期。雖然亦可能只使用兩個參考來測量正和負的調變信號週期,但由於調變振盪的對稱性和參考信號配置,會希望是三個參考。這樣的配置有利於能夠準確地測量調變信號之各側的斜率以預測速度和加速項目(假設電壓取代y軸),因而能夠更準確地測量快速變化的輸入信號。 Figure 6C presents an embodiment of a TDS ADC configured to provide both carrier frequency and amplitude measurements and no input signal measurements. ADC device 680 includes two ADC blocks 682 and 684. The ADC block 682 is configured to receive and measure the summed modulated signal, and block 684 is configured to receive only the carrier signal. The ADC device 680 further includes a TDSA processing block, which is actually used as a common mode noise estimation and rejection algorithm. Figure 6C The ADC embodiment facilitates the use of Equations 5 and 6 as described above to allow calculation of the positive and negative periods of the carrier. Although it is also possible to use only two references to measure the positive and negative modulated signal periods, it is desirable to have three references due to the symmetry of the modulated oscillations and the reference signal configuration. Such a configuration facilitates accurate measurement of the slope of each side of the modulated signal to predict speed and acceleration items (assuming the voltage replaces the y-axis), thereby enabling more accurate measurement of rapidly changing input signals.

如第6C圖所示的ADC配置能有利於藉由比較載波的時間間隔(例如,以ADC方塊684測量)與調變載波的時間間隔(以ADC方塊682測量)來進行共模雜訊估計(及補償)。因為兩ADC方塊682、684皆使用相同的信號參考,因此能估計並移除共模雜訊。再者,第6C圖的ADC配置有利於提供方便的手段來測量皆在方程式5和6中使用之載波的週期和振幅。 The ADC configuration as shown in Figure 6C can facilitate common mode noise estimation by comparing the time interval of the carrier (e.g., measured at ADC block 684) with the time interval of the modulated carrier (measured by ADC block 682) ( And compensation). Since both ADC blocks 682, 684 use the same signal reference, common mode noise can be estimated and removed. Furthermore, the ADC configuration of Figure 6C facilitates providing a convenient means of measuring the period and amplitude of the carriers used in Equations 5 and 6.

各種其他實作憑靠其他類型的兩通道測量。現在參考第7圖,顯示一示範差動信號技術700。在步驟702,在第一通道上,測量載波加上輸入波形的時間間隔(即,參考準位相交之間的週期)。在平行步驟704中,在第二通道上測量對應於載波減去輸入波形的時間間隔。接著互相減去此結果而產生兩倍信號輸入準位的估計(步驟706)。在一些變異中,係在估計輸入信號準位之後減去此結果。在其他變異中,係在估計輸入信號準位之前減去此結果。現在參考第7A圖,顯示方法700的效果。已透過模擬來顯示方法700以保有信號輸入722並消除所有偶 數諧波724、以及產生諧波失真的重要部分。然而,仍留下奇數諧波726。 Various other implementations rely on other types of two-channel measurements. Referring now to Figure 7, an exemplary differential signaling technique 700 is shown. At step 702, on the first channel, the time interval at which the carrier plus the input waveform is measured (ie, the period between the intersections of the reference levels) is measured. In parallel step 704, the time interval corresponding to the carrier minus the input waveform is measured on the second channel. This result is then subtracted from each other to produce an estimate of twice the signal input level (step 706). In some variations, this result is subtracted after estimating the input signal level. In other variations, this result is subtracted before the input signal level is estimated. Referring now to Figure 7A, the effect of method 700 is shown. Method 700 has been shown through simulation to preserve signal input 722 and eliminate all even The harmonics 724, as well as the important part of generating harmonic distortion. However, odd harmonics 726 are still left.

參考第7B圖,功能方塊圖顯示關於差動測量電路之示範實施例780的線路圖案。在此實施例中,載波和信號被分成兩條平行路徑(782和784)。一個路徑使用電壓加法器786,而另一個使用電壓減法器788。接著將調變波形輸入至TDS ADC 790中來單獨地測量,並比較兩路徑的輸出。包括兩個或更多通道的其他差動架構、及輸入信號和載波的各種組合可更降低諧波,而不需要曲線適配或取樣和保持。 Referring to Figure 7B, the functional block diagram shows the line pattern for an exemplary embodiment 780 of the differential measurement circuit. In this embodiment, the carrier and signal are split into two parallel paths (782 and 784). One path uses voltage adder 786 and the other uses voltage subtractor 788. The modulated waveform is then input into the TDS ADC 790 to measure separately and compare the outputs of the two paths. Other differential architectures including two or more channels, and various combinations of input signals and carriers can reduce harmonics without the need for curve adaptation or sampling and hold.

在一些變異中,使用其它差動信號/載波組合。在這些例子中,將正或負的(反向的振幅)輸入信號混合正或負的載波波形。這產生四個可能性(732、734、736、738),顯示在第7C圖中。這些不同的組合產生變化獨立時間事件測量,其可使用在方法700中以減緩在ADC過程之各種階段(例如,取樣、測量、載波影響等)中出現的失真。 In some variations, other differential signal/carrier combinations are used. In these examples, a positive or negative (reverse amplitude) input signal is mixed with a positive or negative carrier waveform. This produces four possibilities (732, 734, 736, 738), which are shown in Figure 7C. These different combinations produce varying independent time event measurements that can be used in method 700 to mitigate distortion that occurs in various stages of the ADC process (eg, sampling, measurement, carrier effects, etc.).

現在參考第7D圖,圖顯示了可使用差動信號技術來指出參考準位漂移之情況的示範過程。差動技術(例如第7圖的過程700)區別載波偏移或信號偏移和參考準位漂移。差動測量不易因載波或信號偏移的改變而受影響(即,時序值對正/正調變信號和負/負調變信號會以相同的方式改變)。然而,時序值藉由使參考準位漂移量(用於各種差動組合)不同來偏移。比較這些偏移可用來指出 參考準位漂移。 Referring now to Figure 7D, there is shown an exemplary process in which differential signal techniques can be used to indicate the reference level drift. Differential techniques (e.g., process 700 of Figure 7) distinguish between carrier offset or signal offset and reference level drift. Differential measurements are not susceptible to changes in carrier or signal offset (ie, timing values are changed in the same way for positive/positive modulated signals and negative/negative modulated signals). However, the timing values are offset by making the reference level shift amount (for various differential combinations) different. Compare these offsets to indicate Reference level drift.

本發明的一些實施例實作平均方法。示範的平均技術包括例如:(i)一種結合由TDS ADC演算法產生的資料點之技術、(ii)另一種涉及在運用信號估計演算法之前平均時間間隔之技術、和(iii)基於多個參考準位的技術。 Some embodiments of the invention implement an averaging method. Exemplary averaging techniques include, for example: (i) a technique for combining data points generated by a TDS ADC algorithm, (ii) another technique involving an average time interval prior to applying a signal estimation algorithm, and (iii) based on multiple Reference level technology.

結合由TDS ADC產生的點包含產生信號準位的多個估計值(例如,在反覆/固定信號上或在單一信號上平行的許多測量),並接著平均結果。 Combining the points produced by the TDS ADC includes a plurality of estimates that produce signal levels (eg, many measurements that are parallel on a repeated/fixed signal or on a single signal) and then average the results.

平均時間間隔包含在過程中早先移動平均距離,而不是等到完成估計之後才移動。平均間隔本身的多個測量,並從平均時間間隔值產生信號輸入的估計。在此例中,平均亦基於相同信號的多個平行測量、及/或反覆/固定信號的多個連續測量。應注意到在一些情況中,比取樣率大很多之時間變化的信號可視為固定信號。 The average time interval consists of moving the average distance earlier in the process instead of waiting until the estimate is completed. The average interval itself is measured multiple times, and an estimate of the signal input is generated from the average time interval value. In this example, the averaging is also based on multiple parallel measurements of the same signal, and/or multiple consecutive measurements of the repeated/fixed signal. It should be noted that in some cases, a signal that changes much more time than the sampling rate can be considered a fixed signal.

多個參考準位允許不與雜訊相關地使用時間間隔來進行輸入信號的計算。參考準位的數量增加,測量之數量以及平均之數量便隨之增加。在多個參考準位的情況中,會因增加一些電路複雜度來增進測量準確性。然而,必須根據實作多個平均而不減少系統頻寬之能力來權衡複雜度與利益。 Multiple reference levels allow the calculation of the input signal to be performed using time intervals in association with noise. As the number of reference levels increases, the number of measurements and the average number increase. In the case of multiple reference levels, measurement accuracy is increased by adding some circuit complexity. However, the complexity and benefits must be weighed against the ability to implement multiple averaging without reducing the system bandwidth.

第8圖係為顯示使用基於產生時序間隔之多個不相關測量的平均技術之雜訊準位改善的圖。圖顯示雜訊準位的改善接近其理論的限度。顯示在第8A圖中的另一平均技 術係基於增加取樣週期。這能夠增加點的數量來平均。然而,會增加系統可取樣之最小特徵的期間。因此,這樣相當於減少系統頻寬。更一般來說,取樣週期可關於載波週期來調整。取樣週期可壓縮到載波的一半週期。這可用來增加平均點。在其它實作中,亦可使用此半個週期測量來減少系統的啟動時間,以降低資源消耗。 Figure 8 is a graph showing the improvement in noise level using an averaging technique based on a plurality of uncorrelated measurements that produce timing intervals. The figure shows that the improvement in the noise level is close to the limit of its theory. Another average technique shown in Figure 8A The system is based on increasing the sampling period. This can increase the number of points to average. However, it will increase the period during which the system can sample the smallest features. Therefore, this is equivalent to reducing the system bandwidth. More generally, the sampling period can be adjusted with respect to the carrier period. The sampling period can be compressed to half the period of the carrier. This can be used to increase the average point. In other implementations, this half-cycle measurement can also be used to reduce system startup time to reduce resource consumption.

現在參考第8B圖,顯示使用較短測量週期的取樣方法之示範實施例。此實施例能比其他補償方法增加測量頻寬,因為不需要濾波或頻寬限制電路。以測量之間的電力週期性可達到節省電力,因為增加的系統頻寬允許較短的測量週期。替代地,這些較短週期可用來在偶數較短時間間隔上測量時序參數(例如,半週期測量)以增加取樣頻率。此外,可控制系統遭受的降低雜訊來達到增加解析度。 Referring now to Figure 8B, an exemplary embodiment of a sampling method using a shorter measurement period is shown. This embodiment can increase the measurement bandwidth over other compensation methods because no filtering or bandwidth limiting circuitry is required. Power savings can be achieved by periodically measuring the power between measurements because the increased system bandwidth allows for shorter measurement periods. Alternatively, these shorter periods can be used to measure timing parameters (eg, half-cycle measurements) over even shorter time intervals to increase the sampling frequency. In addition, the system can be controlled to reduce noise to achieve increased resolution.

曲線適配 Curve adaptation

本發明之各種實作利用曲線適配技術。這些技術的各種實作被用來達到降低演算法失真、增進輸入估計準確性、及/或及時估計在任一點上的輸入準位。上述曲線適配技術包括,但不限於,Levenberg-Marquardt估計、Nelder-Mead單體分析、及多項式曲線適配技術。 Various implementations of the invention utilize curve adaptation techniques. Various implementations of these techniques are used to achieve algorithmic distortion reduction, improved input estimation accuracy, and/or timely estimation of input levels at any point. The above curve adaptation techniques include, but are not limited to, Levenberg-Marquardt estimation, Nelder-Mead monomer analysis, and polynomial curve adaptation techniques.

藉由舉例,多項式適配過程說明如下。在此例中,載波是正弦波形,且觸發次數是根據載波與待測之輸入信號相加來產生。相關函數和參數顯示在第9圖中。觸發點 902被用來產生表現全部調變信號(904,全部多項式擬合)的適配曲線。將載波906模型化成正弦函數的多項式估計。將全部多項式擬合減去載波以產生外部信號輸入908。針對此過程,全部調變信號904(信號和載波)被定義成:V total (t)=A sin(ωt+φ)+V input (t) (方程式27) By way of example, the polynomial adaptation process is described below. In this example, the carrier is a sinusoidal waveform and the number of triggers is generated based on the addition of the carrier to the input signal to be tested. The related functions and parameters are shown in Figure 9. Trigger point 902 is used to generate an adaptation curve that represents all modulated signals (904, all polynomial fits). Carrier 906 is modeled as a polynomial estimate of a sinusoidal function. All polynomial fits are subtracted from the carrier to produce an external signal input 908. For this process, all modulated signals 904 (signal and carrier) are defined as: V total ( t ) = A sin( ωt + φ ) + V input ( t ) (Equation 27)

由於觸發事件,便對V total (t)產生「最小平方」多項式擬合904。測到的觸發點及其關聯參考準位形成一矩陣 A "least square" polynomial fit 904 is generated for V total (t) due to the trigger event. The measured trigger point and its associated reference level form a matrix :

使用下列關係來得到矩陣P: Use the following relationship to get the matrix P:

接著藉由下列來估計輸入信號908: The input signal 908 is then estimated by the following:

這裡的載波906是: The carrier 906 here is:

利用上述多項式擬合法的模擬結果係顯示在第9A圖中。關於接近觸發點的區域,在用於估計信號輸入的此例中達到1.5ppm的平均誤差。 The simulation results using the above polynomial fitting method are shown in Fig. 9A. Regarding the area close to the trigger point, an average error of 1.5 ppm is achieved in this example for estimating the signal input.

參考準位 Reference level

在各種實施例中,可使用輸入信號本身(或經處理的輸入)作為參考來代替一固定參考源。輸入可加上或減去、乘以或除以一固定參考源。替代地,相移式載波可結合或取代一固定參考。這些可能性之各者造成能用來計算輸入信號的時間間隔。非固定參考可提供減少由載波或參考引起之共模雜訊、以及由於參考漂移造成之誤差的優點。第10圖顯示以使用輸入信號本身作為一參考來代替一固定參考準位電路1050的示範實施例。在信號參考實施例1000中,藉由載波與信號輸入電壓準位相交的事件來定義時序週期。這些相交事件之間的時序隨著信號輸入的電壓準位上升或下降來改變。相反地,若信號的電壓準位保持不變,則時序亦保持不變。因此,這些時序值可被用來估計目前的信號準位。 In various embodiments, the input signal itself (or processed input) can be used as a reference instead of a fixed reference source. The input can be added or subtracted, multiplied or divided by a fixed reference source. Alternatively, the phase shifted carrier can incorporate or replace a fixed reference. Each of these possibilities creates a time interval that can be used to calculate the input signal. Non-fixed references provide the advantage of reducing common mode noise caused by carrier or reference, as well as errors due to reference drift. Figure 10 shows an exemplary embodiment in which a fixed reference level circuit 1050 is replaced with the input signal itself as a reference. In signal reference embodiment 1000, the timing period is defined by an event where the carrier intersects the signal input voltage level. The timing between these intersecting events changes as the voltage level of the signal input rises or falls. Conversely, if the voltage level of the signal remains the same, the timing will remain the same. Therefore, these timing values can be used to estimate the current signal level.

雖然在前所述的一些實施例使用兩個或三個參考信號準位,但本領域之熟知技藝者將了解本發明之實作並不限於上述實施例,且可使用任何可行數量的參考準位。額外的參考準位提供額外的時序資訊,藉此增進調變和輸入信號的測量。再者,額外的信號準位增進轉換器頻率響應。時間變化輸入信號會「歪斜」調變載波信號而可能影響信號波形擬合函數的品質(例如,參見方程式5和6)。關聯於額外參考準位的額外觸發事件能夠得到較好的信號波形擬合。 While some of the previously described embodiments use two or three reference signal levels, those skilled in the art will appreciate that the practice of the present invention is not limited to the embodiments described above, and any feasible number of reference levels may be used. . Additional reference levels provide additional timing information to enhance modulation and input signal measurements. Furthermore, additional signal levels increase the converter frequency response. The time varying input signal will "skew" the modulated carrier signal and may affect the quality of the signal waveform fitting function (see, for example, Equations 5 and 6). Additional trigger events associated with additional reference levels result in better signal waveform fit.

波形分析 Waveform analysis

第11圖顯示繪示兩連續觸發事件之間之時間間隔的視窗偵測器之示範螢幕抓圖。這些間隔可隨著輸入調變信號的輸入信號DC偏壓準位之函數而變化。 Figure 11 shows an exemplary screen capture of a window detector showing the time interval between two consecutive trigger events. These intervals may vary as a function of the input signal DC bias level of the input modulation signal.

由在前方程式5和6所述的時域切換類比至數位轉換法能夠測量無關載波信號振幅及/或頻率的輸入信號。第12和12A圖呈現以第11圖之實施例的示範ADC設備所得到的模擬結果。第12圖顯示所取得之輸入信號的RMS電壓(以伏特(V)為單位)作為載波振幅(以V為單位)的函數。第12圖所示的資料說明本發明之TDS ADC測量方法不易受載波振幅影響。第12A圖顯示所取得之輸入信號的RMS電壓(以V為單位)作為載波頻率(以Hz為單位)的函數。第12A圖所示的資料說明本發明之TDS ADC測量方法不易受載波頻率影響。 The input signal of the amplitude and/or frequency of the unrelated carrier signal can be measured by the time domain switching analog to digital conversion method described in the preceding equations 5 and 6. Figures 12 and 12A present simulation results obtained with an exemplary ADC device of the embodiment of Figure 11. Figure 12 shows the RMS voltage (in volts (V)) of the input signal taken as a function of carrier amplitude (in V). The data shown in Fig. 12 illustrates that the TDS ADC measurement method of the present invention is not susceptible to carrier amplitude. Figure 12A shows the RMS voltage (in V) of the acquired input signal as a function of carrier frequency (in Hz). The data shown in Fig. 12A illustrates that the TDS ADC measurement method of the present invention is not susceptible to carrier frequency.

第12和12A圖所示的模擬結果證實重建的(測量)信號不易受載波信號的振幅及/或頻率的時間變化而影響。這些本發明之測量方法的特性有利於能使本發明的TDS ADC設備在操作期間動態地調整測量特性。具體來說,載波振幅的變化能夠調整信號的取樣範圍,藉此能藉由確保時間間隔T2和T4保持超過所需最小值來即時地調整ADC動態範圍。再者,載波頻率的變化能夠調整ADC取樣率而不會影響重建的信號。這樣使能夠即時地調整ADC的靈敏度(較低的載波頻率考慮到更多位元的解析 度)。 The simulation results shown in Figures 12 and 12A confirm that the reconstructed (measured) signal is not susceptible to time variations in the amplitude and/or frequency of the carrier signal. The characteristics of these measurement methods of the present invention are advantageous for enabling the TDS ADC device of the present invention to dynamically adjust measurement characteristics during operation. In particular, a change in carrier amplitude can adjust the sampling range of the signal, whereby the ADC dynamic range can be adjusted instantaneously by ensuring that the time intervals T 2 and T 4 remain above the required minimum. Furthermore, changes in the carrier frequency can adjust the ADC sampling rate without affecting the reconstructed signal. This allows the sensitivity of the ADC to be adjusted on the fly (lower carrier frequencies allow for more bit resolution).

在一實施例中,參考信號準位會隨著載波信號振幅縮放,因此能夠調整在TDS ADC設備之電的限制內的任何輸入信號。 In one embodiment, the reference signal level is scaled with the carrier signal amplitude, and thus any input signal within the limits of the power of the TDS ADC device can be adjusted.

藉由使用者透過外部輸入至ADC或藉由自動地監控每週期之加速改變的最大速率並適當地調整頻率能調整載波的頻率。 The frequency of the carrier can be adjusted by the user inputting to the ADC externally or by automatically monitoring the maximum rate of acceleration change per cycle and adjusting the frequency appropriately.

第13圖顯示對本文所述之時域切換類比至數位轉換設備和方法有用的載波信號波形(除了在前所述的正弦信號之外)之各種實施例。鋸齒1302或三角形1304波形在測得之時間週期和由於輸入信號造成的偏移量之間提供一線性關係。波形1306、1308對小的輸入信號偏移量可能是有用的,因為載波波形的斜率會小到接近原點(相當於小偏移量)。當取樣低頻率信號而不必犧牲感測器取樣頻寬(會關聯於降低取樣頻率)時,小斜率有利於增進準確性,因為當調變信號緩慢變化穿過一臨界準位時,能比具有陡斜率之調變信號更準確地測量時間週期。第13圖所示的波形在本質上係為示範性地。可使用具有以預料方式重覆之定義明確的波形特性之各種載波信號來產生能夠進行TDS ADC操作所需之功能的演算法。 Figure 13 shows various embodiments of carrier signal waveforms (other than the sinusoidal signals previously described) useful for the time domain switching analog to digital conversion apparatus and methods described herein. The sawtooth 1302 or triangle 1304 waveform provides a linear relationship between the measured time period and the offset due to the input signal. Waveforms 1306, 1308 may be useful for small input signal offsets because the slope of the carrier waveform will be small enough to be close to the origin (equivalent to a small offset). When sampling a low frequency signal without sacrificing the sensor sampling bandwidth (which is associated with reducing the sampling frequency), a small slope helps to improve accuracy, because when the modulation signal slowly changes through a critical level, the energy ratio has The steep slope modulation signal measures the time period more accurately. The waveform shown in Fig. 13 is exemplary in nature. Algorithms capable of performing the functions required for TDS ADC operation can be generated using various carrier signals having well-defined waveform characteristics that are expected to be repeated.

示範效能 Demonstration performance

第14-14H圖呈現關於對載波振幅之相對誤差靈敏度的示範資料、以及參考信號電壓準位差△V=V 2-V 1。以 1000Hz的固定載波頻率和10微秒(ps)的取樣時脈解析度來得到第14-14H圖中的資料。在第14-14H圖中分別以箭頭1402-1420標明的線係獲得如下:-第14-14B圖符合10V的載波振幅,且參考信號差分別為0.2V、0.4V和1V;及-第14C-14E圖符合5V的載波振幅,且參考信號差分別為0.25V、0.5V和1.25V;及-第14F-14H圖符合2.5V的載波振幅,且參考信號差分別為0.25V、0.5V和1.25V。 FIG 14-14H first exemplary presentation of the information on the amplitude of the carrier of the relative error sensitivity, and the reference voltage signal level difference △ V = V 2 - V 1 . The data in Figures 14-14H is obtained with a fixed carrier frequency of 1000 Hz and a sampling clock resolution of 10 microseconds (ps). The lines indicated by arrows 1402-1420 in Figures 14-14H are obtained as follows: - Figures 14-14B conform to the carrier amplitude of 10V, and the reference signal differences are 0.2V, 0.4V and 1V, respectively; and - 14C The -14E map satisfies the carrier amplitude of 5V, and the reference signal difference is 0.25V, 0.5V, and 1.25V, respectively; and - the 14F-14H map conforms to the carrier amplitude of 2.5V, and the reference signal difference is 0.25V, 0.5V, and 1.25V.

如從第14-14H圖所呈現的資料可知,較小的參考信號差△V通常對應於較高的相對誤差(例如如第14H圖中的曲線1420所示,其比第14G圖中的曲線1416更向上偏移),而較小的載波振幅對應於較低的相對誤差和較低的電壓測量範圍(例如如第14圖中的曲線1402所示,其比第14H圖中的曲線1420更向下並向左偏移)。 As can be seen from the data presented on FIG. 14-14H, a small reference signal corresponding to a difference △ V is typically high relative error (e.g., as shown in FIG. 14G thereof than the first curve in a graph of FIG. 14H 1420 1416 is more upward offset), while the smaller carrier amplitude corresponds to a lower relative error and a lower voltage measurement range (eg, as shown by curve 1402 in Figure 14, which is more than curve 1420 in Figure 14H) Off and to the left).

如從第14-14H圖中的資料可知,示範TDS ADC效能的特點是某些量化的雜訊層。亦即,有一些能被偵測並轉換(至準確性的一些準位)的可偵測電壓準位。藉由舉例,能以50奈米伏(nV)之準確性來測量0.2毫伏(mV)的電壓。這意味著TDS ADC可偵測出比此臨界值更低的輸入信號,雖然ADC解析度會高很多。在對測量低振幅信號有用的一實施例中,TDS ADC可配置以將(已知振幅之)小信號加至輸入信號,以能夠使用全部範圍的ADC降至50nV解析度準位。藉由減去「已知」輸入 信號,我們能直接測量對我們來說太小以致於無法偵測的小輸入信號。此實施例係藉由舉例來提出,且決不限制本發明之特定範圍的功能。 As can be seen from the data in Figures 14-14H, the performance of the exemplary TDS ADC is characterized by certain quantified noise layers. That is, there are some detectable voltage levels that can be detected and converted (to some level of accuracy). By way of example, a voltage of 0.2 millivolts (mV) can be measured with an accuracy of 50 nanovolts (nV). This means that the TDS ADC can detect input signals that are lower than this threshold, although the ADC resolution will be much higher. In an embodiment useful for measuring low amplitude signals, the TDS ADC can be configured to apply a small signal (of known amplitude) to the input signal to be able to use the full range of ADCs to drop to a 50 nV resolution level. By subtracting the "known" input Signals, we can directly measure small input signals that are too small for us to detect. This embodiment is presented by way of example and in no way limiting the scope of the invention.

現在參考第14I圖,顯示說明一示範TDS ADC系統之輸出雜訊對抖動效能的繪圖。 Referring now to Figure 14I, a plot showing the output noise of an exemplary TDS ADC system versus jitter performance is shown.

示範的使用及應用 Demonstration use and application

本發明的示範TDS ADC設備及方法能夠有利地轉換在一寬動態範圍上變化的信號。在一變異中,上述寬動態範圍能力係透過在ADC運作期間調整載波信號振幅來達到。再者,藉由調整載波週期來控制信號轉換率,因此易於即時調整ADC頻寬和準確性。 The exemplary TDS ADC apparatus and method of the present invention can advantageously convert signals that vary over a wide dynamic range. In one variation, the wide dynamic range capability described above is achieved by adjusting the carrier signal amplitude during operation of the ADC. Furthermore, by adjusting the carrier period to control the signal conversion rate, it is easy to adjust the ADC bandwidth and accuracy in real time.

這個特徵亦通俗地稱為「自動調量」,本發明之示範實施例的單一ADC能用來測量寬範圍的信號值(振幅和頻率兩者),因此拒斥如在習知技術中使用被調整至特定(較窄)範圍的多個感測器。 This feature is also commonly referred to as "automatic modulation," and a single ADC of an exemplary embodiment of the present invention can be used to measure a wide range of signal values (both amplitude and frequency), thus rejecting as used in conventional techniques. Adjust to multiple sensors in a specific (narrower) range.

再者,因為由輸入調變頻率和時脈解析度的比率來決定TDS ADC解析度,所以本發明的ADC設備能達到極高的解析度,例如,超過30位元,而不需要昂貴且高功率的實作(目前可用之ADC裝置的特點)。另外,TDS ADC解析度和頻寬能藉由調整載波頻率來即時地調整。 Furthermore, since the resolution of the TDS ADC is determined by the ratio of the input modulation frequency and the clock resolution, the ADC device of the present invention can achieve extremely high resolution, for example, more than 30 bits, without being expensive and high. Power implementation (characteristics of currently available ADC devices). In addition, the TDS ADC resolution and bandwidth can be adjusted instantaneously by adjusting the carrier frequency.

除了前端比較器,整個轉換方法是數位的,因此消除許多雜訊和漂移(例如類比成分漂移)來源。示範時域切換類比至數位轉換器設備的準確性有利於不依賴載波信號 振幅或頻率,因此拒斥校準的需要。上述配置更確保裝置的準確性只會依觸發事件的一致性、參考信號準位差的準確性、及前後觸發事件之時間測量的準確性而定。 In addition to the front-end comparator, the entire conversion method is digital, thus eliminating many sources of noise and drift (such as analog component drift). Demonstration of time domain switching analog to digital converter device accuracy is advantageous for carrier-independent signals Amplitude or frequency, therefore rejecting the need for calibration. The above configuration further ensures that the accuracy of the device is determined only by the consistency of the trigger event, the accuracy of the reference signal level difference, and the accuracy of the time measurement of the front and rear trigger events.

使用額外的信號參考準位被用來更加增進轉換器設備頻率響應及準確性。 The use of additional signal reference levels is used to further improve the frequency response and accuracy of the converter device.

如上所提及,本文所述之某些感測器實施例會基於時脈頻率和調變頻率的比率來測量輸入信號,因此使感測器準確性不易受時脈漂移(至第一層級)影響。此外,在多個振盪週期上平均的測量能夠濾除不需要的雜訊。 As mentioned above, some of the sensor embodiments described herein measure the input signal based on the ratio of the clock frequency to the modulation frequency, thus making the sensor accuracy less susceptible to clock drift (to the first level). . In addition, measurements averaged over multiple oscillation periods can filter out unwanted noise.

若如實地量化輸出,則平均就沒有幫助。在此例中,使用顫動來將小量的白噪音引進時脈或輸入信號中,使得能平均輸出。輸入顫動通常在相當於1/2時脈週期的規模上。 If the output is faithfully quantified, the average will not help. In this example, dithering is used to introduce a small amount of white noise into the clock or input signal, enabling an average output. Input jitter is typically on the scale equivalent to a 1/2 clock cycle.

本文所述的TDS ADC概念尤其使得功率轉換技術不能實行在其他ADC架構中。例如,若每週期時常小於一次地取樣資料,則在未計算資料之載波的週期期間可使TDC測量方塊處於低功率或「休眠」模式中。另外,可從被較長間隔(這裡沒有時間間隔資訊是必須的)分開的短時間間隔來計算輸入信號。在此情況中,有關在邏輯控制方塊中的輸入信號之數位邊可用來觸發TDC裝置以進入一主動模式。TDC可接著測量時間延遲之信號脈衝列的觸發時間。在測量特定數量的觸發點之後,在下一組脈衝邊到來之前,TDC可進入一低功率休眠模式。功率轉換的另一實例係為改變載波的頻率。較高頻率載波將能產生可從 其計算輸入信號的較小時間間隔,因此減少啟動TDC所需的總時間量。在此情況中,在準確性(隨著載波頻率增加而降低)和功率之間可能有折衷。 The TDS ADC concept described herein in particular makes power conversion techniques impractical in other ADC architectures. For example, if the data is sampled less often than once per cycle, the TDC measurement block can be placed in a low power or "sleep" mode during the period of the carrier where the data is not calculated. In addition, the input signal can be calculated from short time intervals separated by longer intervals (where no time interval information is necessary). In this case, the digital side of the input signal in the logic control block can be used to trigger the TDC device to enter an active mode. The TDC can then measure the trigger time of the signal pulse train of the time delay. After measuring a certain number of trigger points, the TDC can enter a low power sleep mode before the next set of pulse edges arrive. Another example of power conversion is to change the frequency of the carrier. Higher frequency carriers will be able to generate It calculates a small time interval of the input signal, thus reducing the total amount of time required to start the TDC. In this case, there may be a trade-off between accuracy (decreased as the carrier frequency increases) and power.

另外,TDS TDC技術可用來將數位脈衝轉成時序事件。使用TDS TDC技術的一個優點在於能以極低電力來做具有極佳解析度(在10微微秒之下)的時間測量。測量具有極佳解析度之時間事件的能力係為TDS ADC之高解析度優點的關鍵成分。例如,在1kHz頻寬下,信號可具有10-3秒級的特徵。然而,與本發明一致的TDS TDC實作提供以10-12秒級之解析度來測量這些特徵的能力。這表示在測量的信號和解析度之間有9個量級差。 In addition, TDS TDC technology can be used to convert digital pulses into time series events. One advantage of using TDS TDC technology is the ability to perform time measurements with excellent resolution (under 10 picoseconds) with very low power. The ability to measure time events with excellent resolution is a key component of the high resolution advantages of TDS ADCs. For example, at a 1 kHz bandwidth, the signal can have features of the order of 10 -3 seconds. However, the TDS TDC implementation consistent with the present invention provides the ability to measure these features with a resolution of 10-12 seconds. This means that there are 9 magnitude differences between the measured signal and the resolution.

在解決時間測量的傳統方法中,以高速時脈驅動的計數器係藉由ADC數位脈衝來閘控。為了達到極佳解析度(例如,在微微秒級),會需要以接近1THz之頻率振盪的高速時脈信號。此方法會超脫現代高速電子學的限制。 In the conventional method of solving time measurement, a counter driven by a high speed clock is gated by an ADC digital pulse. In order to achieve excellent resolution (eg, on the picosecond level), a high speed clock signal that oscillates at a frequency close to 1 THz may be required. This method will surpass the limitations of modern high-speed electronics.

在與本發明一致之TDS ADC技術的一實作中,係使用游標尺內插技術。類似於需要兩個刻度的機器游標尺刻度,需要兩個時脈信號。其一時脈係以比另一時脈還高的頻率來運作。較低頻率時脈被用來閘控「粗劣的」計數器,而較高頻率時脈被用來閘控「精細的」計數器(例如,計數器可計數其各自時脈信號與一電壓參考準位相交的次數)。在開始時間測量,便啟動「粗劣的」計數器。當結束事件發生時,便啟動「精細的」計數器。當低頻時脈和高頻時脈最終同時發生時(即,它們同時產生一閘事件) ,便停止兩計數器。接著使用計數器值來計算時間測量,並達到極佳的解析度。示範的游標尺時序技術係描述在Lange等人中(K.Lange和M.Kasnia,“Application of Vernier Interpolation for Digital Time Error Measurement,”Poznan Workshop on Telecommunications,2008 11 Dec.2008),在此藉由參考其全部內容來結合上述。用於使用少量延遲測量來測量時間間隔的示範設備係描述在申請於1969/4/30之標題為「APPARATUS FOR AUTOMATICALLY MEASURING TIME INTERVALS USING MULTIPLE INTERPOLATIONS OF ANY FRACTIONAL TIME INTERVAL」的美國專利第3,611,134號、以及申請於1978/6/23之標題為「DOUBLE VERINER TIME INTERVAL MEASUREMENT USING TRIGGERED PHASE-LOCKED OSCILLATORS」的第4,164,648號中,在此藉由參考其全部內容來結合這兩者。 In an implementation of the TDS ADC technique consistent with the present invention, a vernier interpolation technique is used. Similar to a machine vernier scale that requires two scales, two clock signals are required. One of the clocks operates at a higher frequency than the other clock. The lower frequency clock is used to gate the "poor" counter, while the higher frequency clock is used to gate the "fine" counter (for example, the counter can count its respective clock signal to intersect a voltage reference level) The number of times). At the start time measurement, the "poor" counter is started. When the end event occurs, the "fine" counter is started. When the low frequency clock and the high frequency clock finally occur simultaneously (ie, they simultaneously generate a gate event) Then stop the two counters. The counter value is then used to calculate the time measurement and achieve excellent resolution. An exemplary vernier timing technique is described in Lange et al. (K. Lange and M. Kasnia, "Application of Vernier Interpolation for Digital Time Error Measurement," Poznan Workshop on Telecommunications, 2008 11 Dec. 2008), by Reference is made to the above in its entirety. An exemplary apparatus for measuring time intervals using a small amount of delay measurement is described in U.S. Patent No. 3,611,134, entitled "APPARATUS FOR AUTOMATICALLY MEASURING TIME INTERVALS USING MULTIPLE INTERPOLATIONS OF ANY FRACTIONAL TIME INTERVAL", filed on 1969/4/30, and U.S. Patent No. 4,164,648, the entire disclosure of which is incorporated herein by reference in its entirety in its entirety in its entirety in the the the the the the the the the the the the the the the the the

游標尺內插技術的一個設計折衷為令兩個時脈同時發生的時間。較長的同時發生時間造成較佳的時間解析度測量。具體來說,若高和低頻率是近似的(但定義明確且清楚不同的),則可以高準確性來測量它們的相位偏移(若測量中有任何誤差分佈在許多時脈信號週期上的話)。注意到達到同時發生事件所需的時間會接近無限大,因為較高頻率接近較低頻率或其諧波之其一者(假設非零的相位偏移)。此相位偏移可用來計算當結束事件發生時會在何處循環較低頻率時脈。這造成過去週期的準確測量。游標 尺技術的優點包括在整個工作週期期間節省電力(即,時脈不必連續地運作,因此能暫時地關機以降低電力消耗)、以及有機會連續地校準兩個時脈中較失準時脈的電力和溫度變化。游標尺技術已實作在建有共同積體電路處理(如CMOS)之商業上可用的裝置中,用於飛行時間應用(即,超音波儀器)。此技術和其他TDC技術的應用對TDS ADC提供超過其他ADC技術之顯著的優點和綜效。 One design compromise of the vernier interpolation technique is the time at which the two clocks occur simultaneously. Longer simultaneous times result in better time resolution measurements. In particular, if the high and low frequencies are approximate (but well defined and distinct), their phase offsets can be measured with high accuracy (if any errors in the measurement are distributed over many clock periods) ). Note that the time required to reach a simultaneous event is close to infinity because the higher frequency is close to one of the lower frequencies or its harmonics (assuming a non-zero phase offset). This phase offset can be used to calculate where the lower frequency clock will cycle when the end event occurs. This results in an accurate measurement of past cycles. cursor Advantages of the ruler technology include saving power during the entire duty cycle (ie, the clock does not have to operate continuously, so it can be turned off temporarily to reduce power consumption), and has the opportunity to continuously calibrate the power of the misaligned clocks in the two clocks. And temperature changes. The vernier technique has been implemented in commercially available devices with common integrated circuit processing (e.g., CMOS) for time-of-flight applications (i.e., ultrasonic instruments). The application of this technology and other TDC technologies provides significant advantages and synergies over TDS ADCs over other ADC technologies.

在各種實作中,在相繼連接一連串暫存器之前,TDS ADC會運用一分接式延遲鏈,其中以等量來連續地延遲待測之輸入信號(或輸入時脈)。總延遲會設計成涵蓋在暫存器鏈中造成一轉變點(1-0或0-1)的至少一時脈週期。這表示在兩時脈週期之間的輸入邊時間,並可用來達到精細的時間測量。此外,可計數在兩輸入邊之間的時脈週期之數量以提供粗劣的測量。這兩個結合的測量以由延遲所設定之測量的準確性來提供兩邊之間之時間的總測量。在CMOS基礎實作中,延遲時間係相等的,且使用一測試脈衝來週期地再校準延遲時間以補償環境條件。此方法的優點在於只需要單一系統時脈。此方法已實作在受不相等分接延遲限制的場域可編程閘陣列(FPGA)技術中。已應用各種技術來補償不相等分接延遲。使用FPGA基礎方法來達到10微微秒準確性的示範技術係描述在Wu(J.Wu,“On-Chip processing for the wave union TDC implemented in FPGA,”in Real Time Conference,2009.RT '09.16th IEEE-NPSS,May 2009,頁:279-282)和Wu等人(J.Wu,Z.Shi,“The 10-ps Wave Union TDC:Improving FPGA TDC Resolution beyond Its Cell Delay,”in Nuclear Science Symposium Conference Record,2008 IEEE,19-25 Oct.2008頁:3440-3446)中,在此藉由參考其全部內容來結合這兩者。 In various implementations, the TDS ADC uses a tapped delay chain before successively connecting a series of registers, wherein the input signal (or input clock) to be tested is continuously delayed by an equal amount. The total delay is designed to cover at least one clock cycle that causes a transition point (1-0 or 0-1) in the scratchpad chain. This represents the input side time between two clock cycles and can be used to achieve fine time measurements. In addition, the number of clock cycles between the two input sides can be counted to provide a poor measurement. These two combined measurements provide a total measure of the time between the two sides with the accuracy of the measurement set by the delay. In CMOS based implementations, the delay times are equal and a test pulse is used to periodically recalibrate the delay time to compensate for environmental conditions. The advantage of this method is that only a single system clock is required. This method has been implemented in field programmable gate array (FPGA) technology that is limited by unequal tap delays. Various techniques have been applied to compensate for unequal tap delays. An exemplary technique for using FPGA based methods to achieve 10 picosecond accuracy is described in Wu (J. Wu, "On-Chip processing for the wave union TDC implemented in FPGA," in Real Time Conference, 2009. RT). '09.16th IEEE-NPSS, May 2009, pp. 279-282) and Wu et al. (J. Wu, Z. Shi, "The 10-ps Wave Union TDC: Improving FPGA TDC Resolution beyond Its Cell Delay," in Nuclear In Science Symposium Conference Record, 2008 IEEE, 19-25 Oct. 2008: 3440-3446, the two are hereby incorporated by reference in their entirety.

表格3總結依照本發明所配置之TDS ADC設備的示範效能參數。如從表格3中的資料可知,本發明之TDS ADC的示範實施例有利於比其它ADC技術以更低的成本來提供較高的動態範圍和較低的非線性誤差。 Table 3 summarizes exemplary performance parameters for a TDS ADC device configured in accordance with the present invention. As can be seen from the data in Table 3, the exemplary embodiment of the TDS ADC of the present invention facilitates providing a higher dynamic range and lower nonlinearity error at a lower cost than other ADC techniques.

儘管主要討論電壓轉換的內容,但本發明不以此為限。事實上,許多其它物理感測機制對本文所述的感測器設備和方法是有用的,包括但不限於:電流、壓縮波、地震活動、強度、頻率、相位等。 Although the content of the voltage conversion is mainly discussed, the present invention is not limited thereto. In fact, many other physical sensing mechanisms are useful for the sensor devices and methods described herein, including but not limited to: current, compression waves, seismic activity, intensity, frequency, phase, and the like.

要知道儘管本發明之某些態樣係敘述一方法的特定連續步驟,但這些敘述只是本發明之較廣方法的說明,且可依特定應用的需要來修改。在某些情況下可使某些步驟成為不必要或非必須的。此外,某些步驟或功能可加到所揭露的實施例,或兩個或多個步驟的進行順序可交換。考慮到所有上述變異以包含在本文之所揭露和所主張的發明內。 It is to be understood that while certain aspects of the invention are described as a particular sequential step of the method, these descriptions are only illustrative of the broader methods of the invention and may be modified as needed for the particular application. In some cases, certain steps may be made unnecessary or unnecessary. In addition, some steps or functions may be added to the disclosed embodiments, or the order of the two or more steps may be interchanged. All of the above variations are contemplated to be encompassed by the invention disclosed and claimed herein.

儘管上述詳細說明已顯示、說明、並指出適用於各種實施例的本發明之新穎特徵,但將了解本領域之熟知技藝者可作出所述之裝置或過程之形式和細節的各種省略、替換、和改變,而不會背離本發明。前述說明係為目前思考實行本發明的最佳模式。本說明決不表示限制的意思,反而應採用作為本發明之通用原理的說明。本發明的範疇應參考申請專利範圍而定。 While the foregoing detailed description has been shown and described, the embodiments of the present invention And changes without departing from the invention. The foregoing description is based on the best mode of practicing the invention. This description is in no way meant to be limiting, but rather to be construed as a generalized principle of the invention. The scope of the invention should be determined by reference to the scope of the patent application.

101‧‧‧前端處理 101‧‧‧ front-end processing

103‧‧‧時序辨別 103‧‧‧Timing discrimination

109‧‧‧控制邏輯 109‧‧‧Control logic

111‧‧‧時間至數位轉換 111‧‧‧Time to digital conversion

113‧‧‧演算法元件 113‧‧‧ algorithm components

115‧‧‧信號 115‧‧‧ signal

Claims (13)

一種類比至數位轉換器設備,包含:介面,配置以接收類比輸入信號,其中該類比輸入信號為來自慣性感應器的週期信號,該類比輸入信號係至少部分根據振盪元件的實體位移;及處理器與該介面作信號通訊並被配置用以:識別參考位準;偵測該參考位準與該類比輸入信號的相交;基於該偵測到的相交,決定複數個時序週期;至少部分基於該複數個時序週期,產生該類比輸入信號的一或多個數位估計。 An analog to digital converter device comprising: an interface configured to receive an analog input signal, wherein the analog input signal is a periodic signal from an inertial sensor, the analog input signal being at least partially based on an entity displacement of the oscillating element; and processing Communicating with the interface and configured to: identify a reference level; detect an intersection of the reference level with the analog input signal; determine a plurality of timing periods based on the detected intersection; based at least in part on the A plurality of timing cycles that produce one or more digital estimates of the analog input signal. 如申請專利範圍第1項所述之轉換器設備,其中各個該等時序週期包含在兩個所述偵測到的相交間的時間間隔。 The converter device of claim 1, wherein each of the timing periods comprises a time interval between two of the detected intersections. 如申請專利範圍第2項所述之轉換器設備,其中該慣性感應器包含:驗證塊;位置感應電極,設置於該驗證塊上;驅動電路,被配置以引起該驗證塊相對於該位置感應電極的振盪動作;感應電路,耦接至該位置感應電極並被配置以產生有關於第一時間值的第一脈衝,及有關於第二時間值的第二脈衝;該複數個時序週期係為該第二時間值與該第一時間值 間的差所決定;該差係被配置以至少部分根據該驗證塊的位移。 The converter device of claim 2, wherein the inertial sensor comprises: a verification block; a position sensing electrode disposed on the verification block; and a driving circuit configured to cause the verification block to be sensed relative to the position An oscillating action of the electrode; an inductive circuit coupled to the position sensing electrode and configured to generate a first pulse having a first time value, and a second pulse having a second time value; the plurality of timing cycles being The second time value and the first time value The difference is determined; the difference is configured to be based at least in part on the displacement of the verification block. 如申請專利範圍第3項所述之轉換器設備,更包含比較器,被配置以根據該類比輸入信號與該參考位準,產生基本上雙值信號。 The converter device of claim 3, further comprising a comparator configured to generate a substantially binary signal based on the analog input signal and the reference level. 如申請專利範圍第4項所述之轉換器設備,更包含:計數器,被配置以回應於為該比較器所產生的該基本上雙值信號而觸發打開與關閉;及其中該複數個時序週期係為該計數器所決定。 The converter device of claim 4, further comprising: a counter configured to trigger an on and off in response to the substantially binary signal generated for the comparator; and the plurality of timing periods It is determined by this counter. 如申請專利範圍第5項所述之轉換器設備,其中該計數器當該類比輸入信號相交該參考位準時觸發打開與關閉。 The converter device of claim 5, wherein the counter triggers an open and a close when the analog input signal intersects the reference level. 如申請專利範圍第3項所述之轉換器設備,其中該處理器更被配置以根據該複數個時序週期的至少之一,施加三角函數至自變數,以決定三角結果;及由該三角結果抽出該慣性感應器的慣性參數。 The converter device of claim 3, wherein the processor is further configured to apply a trigonometric function to the independent variable according to at least one of the plurality of timing periods to determine a triangular result; and the triangular result Extract the inertia parameter of the inertial sensor. 如申請專利範圍第7項所述之轉換器設備,其中該處理器更被配置以:接收第二時序週期;決定該第一與第二時序週期的總和;決定該第一與第二時序週期之一與該總和的比率;根據該比率,決定自變數;及對該自變數施加三角函數。 The converter device of claim 7, wherein the processor is further configured to: receive a second timing cycle; determine a sum of the first and second timing cycles; determine the first and second timing cycles a ratio of one to the sum; determining an independent variable based on the ratio; and applying a trigonometric function to the independent variable. 如申請專利範圍第8項所述之轉換器設備,其中該 處理器更配置用以:根據包含複數個三角結果的該比率,決定第二三角結果。 The converter device of claim 8, wherein the The processor is further configured to: determine the second triangular result based on the ratio comprising the plurality of triangular results. 如申請專利範圍第1項所述之轉換器設備,其中該介面更配置用以:接收第二類比輸入信號;根據該類比輸入信號與該第二類比輸入信號,產生調變信號;及偵測該一或更多參考位準與該調變信號的相交。 The converter device of claim 1, wherein the interface is further configured to: receive a second analog input signal; generate a modulated signal according to the analog input signal and the second analog input signal; and detect The one or more reference levels intersect the modulated signal. 如申請專利範圍第10項所述之轉換器設備,其中該轉換器設備更包含動態可調動態量測範圍;及基於至少一類比輸入信號的振幅,完成調整。 The converter device of claim 10, wherein the converter device further comprises a dynamically adjustable dynamic measurement range; and the adjusting is performed based on an amplitude of the at least one analog input signal. 如申請專利範圍第1項所述之轉換器設備,其中該轉換器設備更包含補償設備,被配置以減緩一或更多信號失真。 The converter device of claim 1, wherein the converter device further comprises a compensation device configured to mitigate one or more signal distortions. 如申請專利範圍第1項所述之轉換器設備,其中該轉換器設備更包含取樣與保持裝置,該取樣與保持裝置被配置以在該轉換器設備的取樣週期上提供固定取樣振幅。 The converter device of claim 1, wherein the converter device further comprises a sample and hold device configured to provide a fixed sampling amplitude over a sampling period of the converter device.
TW104124527A 2011-08-19 2012-08-17 Time domain switched analog-to-digital converter apparatus and methods TWI571064B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161525596P 2011-08-19 2011-08-19

Publications (2)

Publication Number Publication Date
TW201622361A TW201622361A (en) 2016-06-16
TWI571064B true TWI571064B (en) 2017-02-11

Family

ID=49225892

Family Applications (2)

Application Number Title Priority Date Filing Date
TW104124527A TWI571064B (en) 2011-08-19 2012-08-17 Time domain switched analog-to-digital converter apparatus and methods
TW101129980A TWI504160B (en) 2011-08-19 2012-08-17 Time domain switched analog-to-digital converter apparatus and methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW101129980A TWI504160B (en) 2011-08-19 2012-08-17 Time domain switched analog-to-digital converter apparatus and methods

Country Status (1)

Country Link
TW (2) TWI571064B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490783B (en) * 2019-01-25 2023-03-31 瑞昱半导体股份有限公司 Delta-sigma analog-to-digital converter
TWI770918B (en) * 2021-03-31 2022-07-11 新唐科技股份有限公司 Set value auto-adjusting device and method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307492B1 (en) * 1999-05-28 2001-10-23 Thomson-Csf Device to compensate for the non-linearity of an analog/digital converter
US20040160351A1 (en) * 2002-08-23 2004-08-19 Giuseppe Rossi Fully differential reference driver for pipeline analog to digital converter
US20060079191A1 (en) * 2001-10-11 2006-04-13 Aarno Parssinen Method and apparatus for continuously controlling the dynamic range from an analog-to-digital converter
US20060165198A1 (en) * 2005-01-26 2006-07-27 Lockheed Martin Corporation Direct RF complex analog to digital converter
TW200807887A (en) * 2006-07-17 2008-02-01 Fortemedia Inc Method for converting an ananalog signal to multiple different outputs with an analog-to-digital converter
TW200832932A (en) * 2007-01-30 2008-08-01 Univ Nat Chiao Tung A precisely self-calibrating, low power and high speed analog to digital converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307492B1 (en) * 1999-05-28 2001-10-23 Thomson-Csf Device to compensate for the non-linearity of an analog/digital converter
US20060079191A1 (en) * 2001-10-11 2006-04-13 Aarno Parssinen Method and apparatus for continuously controlling the dynamic range from an analog-to-digital converter
US20040160351A1 (en) * 2002-08-23 2004-08-19 Giuseppe Rossi Fully differential reference driver for pipeline analog to digital converter
US20060165198A1 (en) * 2005-01-26 2006-07-27 Lockheed Martin Corporation Direct RF complex analog to digital converter
TW200807887A (en) * 2006-07-17 2008-02-01 Fortemedia Inc Method for converting an ananalog signal to multiple different outputs with an analog-to-digital converter
TW200832932A (en) * 2007-01-30 2008-08-01 Univ Nat Chiao Tung A precisely self-calibrating, low power and high speed analog to digital converter

Also Published As

Publication number Publication date
TWI504160B (en) 2015-10-11
TW201330515A (en) 2013-07-16
TW201622361A (en) 2016-06-16

Similar Documents

Publication Publication Date Title
US8952838B2 (en) Time domain switched analog-to-digital converter apparatus and methods
US7532145B2 (en) High resolution and wide dynamic range integrator
US8614587B1 (en) Capacitance sensing circuits and methods
US20150145535A1 (en) Capacitive sensing interface for proximity detection
US8188896B2 (en) Digital converter for processing resolver signal
JP5000441B2 (en) Power measuring method and power measuring apparatus
JP2012141313A (en) Frequency measurement device and measurement method
US20120043972A1 (en) Method and circuit for reducing noise in a capacitive sensing device
US20200401294A1 (en) Frequency hopping for a capacitive touch screen controller
JP3838654B1 (en) Time interval measuring device and jitter measuring device
JP5877350B2 (en) Power measuring device
JP5841930B2 (en) Frequency measuring device
CN104155521A (en) Method and apparatus for determining phase difference
TWI571064B (en) Time domain switched analog-to-digital converter apparatus and methods
EP3220545B1 (en) Phase measuring device and apparatuses using phase measuring device
RU2294595C1 (en) Method for integration analog-digital conversion of voltage
CN106253905A (en) Time domain switching analog-digital converter apparatus and method for
JP2015122701A (en) Synchronization detection circuit and resistance measuring apparatus
JP7044184B2 (en) Time digital converter
RU2404438C1 (en) Signal real-time analysis device
JP6312062B2 (en) Power measuring apparatus and power measuring method
TWI275279B (en) Demodulation method based on delay sampling
JP2009145288A (en) Time measuring circuit
Makarov Analysis of the accuracy of wide-range measurements of sinusoidal alternating voltages
JP2002168894A (en) Transmission coefficient measuring method and measuring circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees