TWI569847B - Positioning Method of Proton Beam in Proton Treatment Equipment - Google Patents

Positioning Method of Proton Beam in Proton Treatment Equipment Download PDF

Info

Publication number
TWI569847B
TWI569847B TW103133179A TW103133179A TWI569847B TW I569847 B TWI569847 B TW I569847B TW 103133179 A TW103133179 A TW 103133179A TW 103133179 A TW103133179 A TW 103133179A TW I569847 B TWI569847 B TW I569847B
Authority
TW
Taiwan
Prior art keywords
proton beam
coordinate
proton
rotating arm
rotating
Prior art date
Application number
TW103133179A
Other languages
Chinese (zh)
Other versions
TW201611862A (en
Inventor
陳鎰鋒
鄧炳坤
林志勳
Original Assignee
中央研究院
國立中央大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中央研究院, 國立中央大學 filed Critical 中央研究院
Priority to TW103133179A priority Critical patent/TWI569847B/en
Publication of TW201611862A publication Critical patent/TW201611862A/en
Application granted granted Critical
Publication of TWI569847B publication Critical patent/TWI569847B/en

Links

Landscapes

  • Radiation-Therapy Devices (AREA)

Description

質子治療設備之質子束的定位方法Proton beam positioning method for proton therapy equipment

本發明為有關一種發射一質子束以治療癌症的質子治療設備,尤指一種調校定位該質子束的方法。The present invention relates to a proton therapy device that emits a proton beam to treat cancer, and more particularly to a method of aligning the proton beam.

癌症為全球人類之主要死因之一,除腫瘤切除、化療、標靶治療等治療方法外,近來,亦有採用放射治療法,即利用放射線將惡性腫瘤(即癌症)之部位進行照射,藉此抑制或殺死癌細胞,達到治療的效果。一般的放射治療,是於治療時利用放射治療機將高能射線或粒子瞄準癌症腫瘤進行體外照射,主要包括X 光、伽傌射線(鈷60)、電子、質子和重粒子等。由於放射治療在殺死或破壞癌細胞的同時,也可能會對於周圍部位的正常細胞產生破壞,因此,需要根據腫瘤的形狀或位置,精確地制定照射的劑量與位置分布。 例如在中華民國發明專利公開第201315507號中,即揭示一種模擬裝置,模擬帶電粒子束照射到被照射體的情況,將該帶電粒子束假設為具有錐形擴展之虛擬形狀,並且利用導出該被照射體內的該帶電粒子束之擴展的劑量分佈核,模擬該被照射體內的帶電粒子束之劑量分佈。據此,提前算出該帶電粒子束之劑量分佈,令裝設有該模擬裝置的一質子束治療裝置,能依據該劑量分佈進行照射,有效提高精確度。 然而,一般的該質子束治療裝置,整個設備重量高達上百噸,用以發射一質子束的噴嘴亦高達上百公斤,在使用的過程中,可能會因重量的影響使得所發射的該質子束與所設定的發射位置之間產生偏移,而有校正需求。Cancer is one of the leading causes of death in humans worldwide. In addition to treatments such as tumor resection, chemotherapy, and target therapy, radiation therapy has recently been used to irradiate the site of malignant tumors (ie, cancer) with radiation. Inhibit or kill cancer cells to achieve therapeutic effects. In general, radiation therapy is performed by using a radiotherapy machine to target high-energy rays or particles to cancer tumors for external irradiation, including X-rays, gamma rays (cobalt 60), electrons, protons, and heavy particles. Since radiotherapy may kill or destroy cancer cells, it may also cause damage to normal cells in the surrounding area. Therefore, it is necessary to accurately determine the dose and position distribution of the irradiation according to the shape or position of the tumor. For example, in the Republic of China Patent Publication No. 201315507, a simulation device is disclosed which simulates a case where a charged particle beam is irradiated onto an object to be irradiated, and the charged particle beam is assumed to have a virtual shape having a conical expansion, and the derivation is utilized. An extended dose distribution core of the charged particle beam that illuminates the body simulates the dose distribution of the charged particle beam within the illuminated body. According to this, the dose distribution of the charged particle beam is calculated in advance, so that a proton beam treatment device equipped with the simulation device can be irradiated according to the dose distribution, thereby effectively improving the accuracy. However, in the general proton beam treatment device, the weight of the whole device is as high as hundreds of tons, and the nozzle for emitting a proton beam is also up to hundreds of kilograms. During use, the proton emitted may be caused by the weight. There is an offset between the beam and the set firing position, and there is a correction requirement.

本發明的主要目的,在於解決一質子束治療裝置,在使用的過程中,可能因自身重量使得所射出的一質子束產生偏移的問題。 為達上述目的,本發明提供一種質子治療設備之質子束的定位方法,包含有以下步驟: 步驟1:提供一質子治療設備,該質子治療設備包括一高能質子射源、一與該高能質子射源連接的旋轉臂、一設置於該旋轉臂並與該旋轉臂連動的質子束噴嘴以及一和該旋轉臂及該質子束噴嘴電性連接的控制系統; 步驟2:命令該旋轉臂移動至一預設旋轉座標,並利用一光學立體座標追蹤模組,以量測該旋轉臂所移動之一實際旋轉座標,比較該預設旋轉座標和該實際旋轉座標後取得一有關該旋轉臂的機械誤差; 步驟3:命令該質子束噴嘴朝一預設座標射出一質子束,並利用一質子束偵測器量測該質子束的一實際座標,比較該預設座標和該實際座標後取得一有關該質子束噴嘴的磁場誤差;以及 步驟4:根據該機械誤差與該磁場誤差調校該控制系統,令該旋轉臂得依照該控制系統的一第一指令移動至一校正後旋轉座標,且搭配該質子束噴嘴依照該控制系統的一第二指令發射一校正後質子束至一正確座標。 如此一來,本發明利用該光學立體座標追蹤模組量測該旋轉臂的該實際旋轉座標以取得該機械誤差,再以該質子束偵測器量測該質子束的該實際座標以取得該磁場誤差,將該機械誤差與該磁場誤差作為調校該控制系統的依據,令該質子束噴嘴所射出的該校正後質子束,可以校正偏移而至該正確座標。SUMMARY OF THE INVENTION A primary object of the present invention is to solve the problem that a proton beam treatment device may shift a shot of a proton beam due to its own weight during use. To achieve the above object, the present invention provides a method for locating a proton beam of a proton therapy device, comprising the steps of: Step 1: providing a proton therapy device comprising a high energy proton source, and a high energy proton shot a source-connected rotating arm, a proton beam nozzle disposed on the rotating arm and interlocking with the rotating arm, and a control system electrically connected to the rotating arm and the proton beam nozzle; Step 2: commanding the rotating arm to move to a Presetting a rotating coordinate, and using an optical stereo coordinate tracking module to measure an actual rotating coordinate of the rotating arm, comparing the preset rotating coordinate with the actual rotating coordinate to obtain a mechanical error about the rotating arm Step 3: command the proton beam nozzle to emit a proton beam toward a predetermined coordinate, and measure a real coordinate of the proton beam by using a proton beam detector, and compare the preset coordinate with the actual coordinate to obtain a relevant Magnetic field error of the proton beam nozzle; and step 4: adjusting the control system according to the mechanical error and the magnetic field error, so that the rotating arm is in accordance with A first control instruction to move the rotating coordinate system after a correction, and with the nozzle of the proton beam emitted after a proper calibration of the proton beam to a second coordinate according to an instruction of the control system. In this way, the present invention uses the optical stereo coordinate tracking module to measure the actual rotational coordinate of the rotating arm to obtain the mechanical error, and then measure the actual coordinate of the proton beam by the proton beam detector to obtain the The magnetic field error, the mechanical error and the magnetic field error are used as a basis for adjusting the control system, so that the corrected proton beam emitted by the proton beam nozzle can be corrected to the correct coordinate.

有關本發明的詳細說明及技術內容,現就配合圖式說明如下: 請搭配參閱『圖1』至『圖3』所示,『圖1』為本發明一實施例質子治療設備的示意圖,『圖2』為本發明一實施例旋轉臂的轉動示意圖,『圖3』為本發明一實施例質子束噴嘴射出質子束示意圖,如圖所示,本發明為一種質子治療設備之質子束的定位方法,包含有以下步驟: 步驟1:提供一質子治療設備10,該質子治療設備10包括一高能質子射源11、一與該高能質子射源11連接的旋轉臂12、一設置於該旋轉臂12並與該旋轉臂12連動的質子束噴嘴13以及一和該旋轉臂12及該質子束噴嘴13電性連接的控制系統14。請參閱『圖1』所示,該高能質子射源11是一種使帶電粒子增加速度(動能)的裝置,可包含一迴旋加速器系統(cyclotron system)、一能量選擇系統(energy selection system)以及一射束傳導系統(beam transport system)。該旋轉臂12可進行旋轉移動,而帶動該質子束噴嘴13,該控制系統14可設定該旋轉臂12與該質子束噴嘴13的運作。 步驟2:命令該旋轉臂12移動至一預設旋轉座標C1,並利用一光學立體座標追蹤模組20,以量測該旋轉臂12所移動之一實際旋轉座標C2,比較該預設旋轉座標C1和該實際旋轉座標C2後取得一有關該旋轉臂12的一機械誤差。如『圖2』所示,在本實施例中,由該控制系統14驅動該旋轉臂12,令該旋轉臂12圍繞著一治療平台40,朝著所設定的該預設旋轉座標C1移動,然而,由於該旋轉臂12與設置於其上的該質子束噴嘴13具有重量,使得該旋轉臂12在移動時可能產生了偏移,實際上為朝著該實際旋轉座標C2移動,因此,利用該光學立體座標追蹤模組20,透過其所具有的一雷射追蹤器21,定位該旋轉臂12,量測該旋轉臂12的該實際旋轉座標C2,進而與該預設旋轉座標C1比較,以取得該旋轉臂12關於該預設旋轉座標C1與該實際旋轉座標C2之間所產生的該機械誤差,在『圖2』之中,該光學立體座標追蹤模組20的設置位置僅為示意,而不以此為限制,可依實際量測需求進行調整設置,該雷射追蹤器21亦可根據所需偵測方向進行轉動。 步驟3:命令該質子束噴嘴13朝一預設座標射出一質子束131,並利用一質子束偵測器30量測該質子束131的一實際座標,比較該預設座標和該實際座標後取得一有關該質子束噴嘴13的一磁場誤差。如『圖3』所示,將可活動設置的該質子束偵測器30設置於該質子束噴嘴13上,由該控制系統14驅動該質子束噴嘴13,設定該質子束噴嘴13面向一第一方向D1射出該質子束131以座落於該預設座標,然而,實際上該質子束噴嘴13受到本身重量以及處於不同位置所造成的重力影響,使得該質子束131在射出時產生了偏移,實際上為面向一第二方向D2射出該質子束131而座落於該實際座標,因此,利用該質子束偵測器30量測該實際座標,並進一步與該預設座標比較,以取得該質子束噴嘴13在發射該質子束131對於所預設的該預設座標和實際座落的該實際座標之間所產生的該磁場誤差。 步驟4:根據該機械誤差與該磁場誤差調校該控制系統14,令該旋轉臂12得依照該控制系統14的一第一指令移動一校正後旋轉座標,且搭配該質子束噴嘴13依照該控制系統14的一第二指令發射一校正後質子束至一正確座標。在此說明如下,該控制系統14於得到該機械誤差後,即可根據該機械誤差進行調校,例如以補償的方式產生該第一指令為適當的位移原先的該預設旋轉座標C1以形成該校正後旋轉座標,使得該旋轉臂12依據該校正後旋轉座標移動,並且該控制系統14再依據該磁場誤差,調校控制該質子束131之發射的磁場,以搭配產生該第二指令調整原先該質子束131的發射方向,而最終令該質子束噴嘴13,發射該校正後質子束,令該校正後質子束座落於所需的該正確座標,據而完成定位。 綜上所述,由於本發明分別利用該光學立體座標追蹤模組與該質子束偵測器,分別量測該旋轉臂所產生的該機械誤差與該質子束噴嘴所產生的該磁場誤差,並將該機械誤差與該磁場誤差作為調校該控制系統的依據,令該質子束噴嘴所射出的該校正後質子束,可以校正偏移而精準控制,座落於該正確座標,而得以繼續使用,因此本發明極具進步性及符合申請發明專利的要件,爰依法提出申請,祈  鈞局早日賜准專利,實感德便。 以上已將本發明做一詳細說明,惟以上所述者,僅爲本發明的一較佳實施例而已,當不能限定本發明實施的範圍。即凡依本發明申請範圍所作的均等變化與修飾等,皆應仍屬本發明的專利涵蓋範圍內。The detailed description and technical contents of the present invention will now be described with reference to the following drawings: Please refer to the accompanying drawings, FIG. 1 and FIG. 3, FIG. 1 is a schematic diagram of a proton therapy device according to an embodiment of the present invention, 2 is a schematic view showing the rotation of a rotating arm according to an embodiment of the present invention, and FIG. 3 is a schematic view showing a proton beam emitted from a proton beam nozzle according to an embodiment of the present invention. As shown in the figure, the present invention is a proton beam positioning of a proton therapy device. The method comprises the following steps: Step 1: providing a proton therapy device 10, the proton therapy device 10 comprising a high energy proton source 11, a rotating arm 12 connected to the high energy proton source 11, and a rotating arm 12 and a proton beam nozzle 13 associated with the rotating arm 12 and a control system 14 electrically connected to the rotating arm 12 and the proton beam nozzle 13. Referring to FIG. 1 , the high-energy proton source 11 is a device for increasing the velocity (kinetic energy) of charged particles, and may include a cyclotron system, an energy selection system, and a Beam transport system. The rotating arm 12 is rotatable to drive the proton beam nozzle 13, and the control system 14 can set the operation of the rotating arm 12 and the proton beam nozzle 13. Step 2: Command the rotating arm 12 to move to a preset rotating coordinate C1, and use an optical stereo coordinate tracking module 20 to measure an actual rotating coordinate C2 of the rotating arm 12, and compare the preset rotating coordinates. A mechanical error associated with the rotating arm 12 is obtained after C1 and the actual rotational coordinate C2. As shown in FIG. 2, in the embodiment, the rotating arm 12 is driven by the control system 14, and the rotating arm 12 is moved around the treatment platform 40 toward the preset rotating coordinate C1. However, since the rotating arm 12 has a weight with the proton beam nozzle 13 disposed thereon, the rotating arm 12 may be displaced when moving, actually moving toward the actual rotating coordinate C2, thus utilizing The optical stereo tracking module 20 is configured to position the rotating arm 12 through a laser tracker 21, and measure the actual rotating coordinate C2 of the rotating arm 12, and then compare with the preset rotating coordinate C1. In order to obtain the mechanical error generated by the rotating arm 12 between the preset rotating coordinate C1 and the actual rotating coordinate C2, in the "FIG. 2", the optical stereo coordinate tracking module 20 is only set in the position. Without limitation, the adjustment can be made according to actual measurement requirements, and the laser tracker 21 can also be rotated according to the required detection direction. Step 3: command the proton beam nozzle 13 to emit a proton beam 131 toward a predetermined coordinate, and measure an actual coordinate of the proton beam 131 by using a proton beam detector 30, and compare the preset coordinates with the actual coordinates to obtain A magnetic field error associated with the proton beam nozzle 13. As shown in FIG. 3, the proton beam detector 30, which is movably disposed, is disposed on the proton beam nozzle 13, and the proton beam nozzle 13 is driven by the control system 14, and the proton beam nozzle 13 is set to face. The proton beam 131 is emitted in a direction D1 to be seated on the preset coordinates. However, in fact, the proton beam nozzle 13 is affected by gravity caused by its own weight and at different positions, so that the proton beam 131 is deflected when it is emitted. Moving, actually, the proton beam 131 is emitted toward the second direction D2 and is located at the actual coordinate. Therefore, the proton beam detector 30 is used to measure the actual coordinate and further compared with the preset coordinate to The magnetic field error produced by the proton beam nozzle 13 between the emission of the proton beam 131 for the preset preset coordinates and the actual coordinates of the actual seat is obtained. Step 4: Align the control system 14 according to the mechanical error and the magnetic field error, so that the rotating arm 12 moves a corrected rotational coordinate according to a first command of the control system 14, and the proton beam nozzle 13 is used in accordance with the A second command of control system 14 transmits a corrected proton beam to a correct coordinate. Herein, after the mechanical error is obtained, the control system 14 can perform calibration according to the mechanical error, for example, generating the first command as a suitable displacement of the original preset rotary coordinate C1 in a compensated manner to form After the correction, the coordinate is rotated, so that the rotating arm 12 moves according to the corrected rotating coordinate, and the control system 14 adjusts the magnetic field of the emitted proton beam 131 according to the magnetic field error to match the second command adjustment. The original direction of the proton beam 131 is emitted, and finally the proton beam nozzle 13 is caused to emit the corrected proton beam, so that the corrected proton beam is seated at the desired correct coordinate, and the positioning is completed. In summary, the present invention separately utilizes the optical stereo coordinate tracking module and the proton beam detector to respectively measure the mechanical error generated by the rotating arm and the magnetic field error generated by the proton beam nozzle, and The mechanical error and the magnetic field error are used as a basis for adjusting the control system, so that the corrected proton beam emitted by the proton beam nozzle can be accurately controlled by correcting the offset, and is located at the correct coordinate, and can be used continuously. Therefore, the present invention is highly progressive and conforms to the requirements for applying for an invention patent, and the application is filed according to law, and the praying office grants a patent at an early date. The present invention has been described in detail above, but the foregoing is only a preferred embodiment of the present invention, and is not intended to limit the scope of the invention. That is, the equivalent changes and modifications made by the scope of the present application should remain within the scope of the patent of the present invention.

10‧‧‧質子治療設備
11‧‧‧高能質子射源
12‧‧‧旋轉臂
13‧‧‧質子束噴嘴
131‧‧‧質子束
14‧‧‧控制系統
20‧‧‧光學立體座標追蹤模組
21‧‧‧雷射追蹤器
30‧‧‧質子束偵測器
40‧‧‧治療平台
C1‧‧‧預設旋轉座標
C2‧‧‧實際旋轉座標
D1‧‧‧第一方向
D2‧‧‧第二方向
10‧‧‧Proton therapy equipment
11‧‧‧High-energy proton source
12‧‧‧Rotating arm
13‧‧‧Proton beam nozzle
131‧‧‧Proton beam
14‧‧‧Control system
20‧‧‧Optical Stereo Tracking Module
21‧‧‧Laser Tracker
30‧‧‧Proton beam detector
40‧‧‧Treatment platform
C1‧‧‧Preset Rotary Coordinates
C2‧‧‧ actual rotating coordinates
D1‧‧‧ first direction
D2‧‧‧ second direction

圖1,為本發明一實施例質子治療設備的示意圖。 圖2,為本發明一實施例旋轉臂的轉動示意圖。 圖3,為本發明一實施例質子束噴嘴射出質子束示意圖。1 is a schematic view of a proton therapy device according to an embodiment of the present invention. 2 is a schematic view showing the rotation of a rotating arm according to an embodiment of the present invention. 3 is a schematic view showing a proton beam emitted from a proton beam nozzle according to an embodiment of the present invention.

12‧‧‧旋轉臂 12‧‧‧Rotating arm

13‧‧‧質子束噴嘴 13‧‧‧Proton beam nozzle

131‧‧‧質子束 131‧‧‧Proton beam

30‧‧‧質子束偵測器 30‧‧‧Proton beam detector

D1‧‧‧第一方向 D1‧‧‧ first direction

D2‧‧‧第二方向 D2‧‧‧ second direction

Claims (1)

一種質子治療設備之質子束的定位方法,包含有以下步驟: 步驟1:提供一質子治療設備,該質子治療設備包括一高能質子射源、一與該高能質子射源連接的旋轉臂、一設置於該旋轉臂並與該旋轉臂連動的質子束噴嘴以及一和該旋轉臂及該質子束噴嘴電性連接的控制系統; 步驟2:命令該旋轉臂移動至一預設旋轉座標,並利用一光學立體座標追蹤模組,以量測該旋轉臂所移動之一實際旋轉座標,比較該預設旋轉座標和該實際旋轉座標後取得一有關該旋轉臂的機械誤差; 步驟3:命令該質子束噴嘴朝一預設座標射出一質子束,並利用一質子束偵測器量測該質子束的一實際座標,比較該預設座標和該實際座標後取得一有關該質子束噴嘴的磁場誤差;以及 步驟4:根據該機械誤差與該磁場誤差調校該控制系統,令該旋轉臂得依照該控制系統的一第一指令移動至一校正後旋轉座標,且搭配該質子束噴嘴依照該控制系統的一第二指令發射一校正後質子束至一正確座標。A method for positioning a proton beam of a proton therapy device comprises the following steps: Step 1: providing a proton therapy device comprising a high energy proton source, a rotating arm connected to the high energy proton source, and a setting a proton beam nozzle coupled to the rotating arm and coupled to the rotating arm and a control system electrically connected to the rotating arm and the proton beam nozzle; Step 2: commanding the rotating arm to move to a preset rotating coordinate, and utilizing a An optical stereo coordinate tracking module is configured to measure an actual rotating coordinate of the rotating arm, and compare the preset rotating coordinate with the actual rotating coordinate to obtain a mechanical error about the rotating arm; Step 3: command the proton beam The nozzle emits a proton beam toward a predetermined coordinate, and uses a proton beam detector to measure an actual coordinate of the proton beam, and compares the preset coordinate with the actual coordinate to obtain a magnetic field error related to the proton beam nozzle; Step 4: Align the control system according to the mechanical error and the magnetic field error, so that the rotating arm is moved according to a first command of the control system After the rotating coordinate to a correction, and with the nozzle of the proton beam emitted after a proper calibration of the proton beam to a second coordinate according to an instruction of the control system.
TW103133179A 2014-09-25 2014-09-25 Positioning Method of Proton Beam in Proton Treatment Equipment TWI569847B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103133179A TWI569847B (en) 2014-09-25 2014-09-25 Positioning Method of Proton Beam in Proton Treatment Equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103133179A TWI569847B (en) 2014-09-25 2014-09-25 Positioning Method of Proton Beam in Proton Treatment Equipment

Publications (2)

Publication Number Publication Date
TW201611862A TW201611862A (en) 2016-04-01
TWI569847B true TWI569847B (en) 2017-02-11

Family

ID=56360663

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103133179A TWI569847B (en) 2014-09-25 2014-09-25 Positioning Method of Proton Beam in Proton Treatment Equipment

Country Status (1)

Country Link
TW (1) TWI569847B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112657072B (en) * 2021-01-05 2022-09-16 中国科学院上海高等研究院 Ultrahigh-dose-rate proton treatment device based on linear accelerator and scanning method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116749B2 (en) * 2003-06-25 2006-10-03 Besson Guy M Methods for acquiring multi spectral data of an object
US20140049629A1 (en) * 2011-04-29 2014-02-20 The Johns Hopkins University Sytem and method for tracking and navigation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116749B2 (en) * 2003-06-25 2006-10-03 Besson Guy M Methods for acquiring multi spectral data of an object
US20140049629A1 (en) * 2011-04-29 2014-02-20 The Johns Hopkins University Sytem and method for tracking and navigation

Also Published As

Publication number Publication date
TW201611862A (en) 2016-04-01

Similar Documents

Publication Publication Date Title
US20220161059A1 (en) X-ray imaging system with a combined filter and collimator positioning mechanism
US11712585B2 (en) Systems, methods, and devices for high-energy irradiation
JP7271425B2 (en) Apparatus and method for magnetic control of illuminating electron beam
JP5822167B2 (en) Charged particle irradiation apparatus and method
US8085899B2 (en) Treatment planning system and method for radiotherapy
US20110200170A1 (en) Method and System for Treating Moving Target
US9999787B1 (en) Beam limiting device for intensity modulated proton therapy
US10155123B2 (en) Neutron capture therapy system
US20150133713A1 (en) Method For Compensating The Deviation Of A Hadron Beam Produced By A Hadron-Therapy Installation
US10449385B2 (en) Radiation therapy device and quality control method for radiation therapy device
US20170087390A1 (en) Beam Delivery System For Proton Therapy For Laser-Accelerated Protons
TWI569847B (en) Positioning Method of Proton Beam in Proton Treatment Equipment
JP6878330B2 (en) Particle therapy device
US20160051844A1 (en) Particle beam irradiation room and particle beam therapy system
US10357665B2 (en) Radiation therapy apparatus and quality control method for radiation therapy apparatus
US11491349B2 (en) Patient irradiation treatment plan verification system and method
US20240024702A1 (en) Device and method for tuning a charged particle beam position
JP4402851B2 (en) Particle beam therapy device with separate snout
US8368042B2 (en) Physical wedge positioning
JP7233179B2 (en) Charged particle beam therapy system
Zhdanov et al. IMRT Verification, Analysis and Performance Evaluations: Modeling of Dose Delivery by Shifting MLC Angel and Phantom Position
WO2020012688A1 (en) Radiation treatment system and method for verifying treatment plan data
JP2022083625A (en) Charged particle beam treatment device
CN117427285A (en) Method and device for determining isocenter and sphere radius and electronic equipment
JP2019150254A (en) Charged particle beam treatment device and operation method of the charged particle beam treatment device