TWI557261B - Precursor delivery system - Google Patents

Precursor delivery system Download PDF

Info

Publication number
TWI557261B
TWI557261B TW100113130A TW100113130A TWI557261B TW I557261 B TWI557261 B TW I557261B TW 100113130 A TW100113130 A TW 100113130A TW 100113130 A TW100113130 A TW 100113130A TW I557261 B TWI557261 B TW I557261B
Authority
TW
Taiwan
Prior art keywords
source container
base
gas
valve
container
Prior art date
Application number
TW100113130A
Other languages
Chinese (zh)
Other versions
TW201209216A (en
Inventor
凱勒 方杜魯利亞
艾瑞克 席羅
摩希茲E 佛吉斯
卡爾L 懷特
Original Assignee
Asm美國公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/763,037 external-priority patent/US8986456B2/en
Application filed by Asm美國公司 filed Critical Asm美國公司
Publication of TW201209216A publication Critical patent/TW201209216A/en
Application granted granted Critical
Publication of TWI557261B publication Critical patent/TWI557261B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)

Description

先質輸送系統 Precursor delivery system 【相關申請案交互參照】 [Related application cross-reference]

本發明主張於2006年10月10日提出申請的美國臨時專利申請案第60/850,886號之優先權,並且主張20007年10月10日提出申請的申請案號第11/870,374號的優先權,且本案是11/870,374的部分連續申請案。 The present invention claims the priority of U.S. Provisional Patent Application Serial No. 60/850,886, filed on October 10, 2006, and the priority of the application Serial No. 11/870,374, filed on October 10, 2000, And this case is part of the continuous application of 11/870,374.

本發明大體上有關半導體加工設備,且更特別地有關用於輸送反應氣體到加工室的設備。 The present invention relates generally to semiconductor processing equipment, and more particularly to apparatus for transporting reactive gases to a processing chamber.

化學蒸氣沉積(CVD)在半導體工業中係為習知的加工,用於形成材質薄膜於像是矽晶圓的基材上。在化學氣相沉積中,具有不同反應物的反應氣體(在本文中亦稱為「先質氣體」〝precursor gases〞)被輸送到反應室中的一個或多個基材。在許多情況中,該反應室僅包含單一的基材,其被支撐在一基材固持件上(例如是一基座),其中該基材和基材固持件被維持在理想的加工溫度。該反應氣體彼此反應以形成薄膜於基材上,其成長率由溫度或是反應氣體來控制。 Chemical vapor deposition (CVD) is a well-known process in the semiconductor industry for forming thin films of materials such as tantalum wafers. In chemical vapor deposition, reactive gases having different reactants (also referred to herein as "precursor gases") are delivered to one or more substrates in the reaction chamber. In many cases, the reaction chamber contains only a single substrate that is supported on a substrate holder (e.g., a susceptor) wherein the substrate and substrate holder are maintained at a desired processing temperature. The reaction gases react with each other to form a film on the substrate, and the growth rate is controlled by temperature or a reaction gas.

在某些應用中,反應氣體係以氣體形式被儲存在一反應源容器中。在此種應用中,該反應蒸氣通常是在周圍(也就是正常)壓力和溫度的氣體。此種氣體的範例包含氮、 氧、氫和氨。然而,在某些例子中,係使用來源化學物(先質)的蒸氣,該來源化學物在周圍壓力和溫度是液體或固體(例如:氯化鉿)。這些來源化學物可能需要被加熱以產生用於反應程序的足夠的蒸氣量。對於某些固體物質而言(在本文中稱為〝固體來源先質〞),在室溫的蒸氣壓力很低,因此它們必須被加熱以產生足夠量的反應物蒸氣和/或保持在相當低的壓力。一旦蒸發,很重要的是,蒸氣相反應物經由加工系統而保持在蒸發溫度或高於蒸發溫度,以便防止與輸送蒸氣相反應物到反應室有關的閥、過濾器、導管和其它構件中不需要的凝結。來自此種天生固體或液體物質的蒸氣相反應物係有益於用在多種其它工業中的化學反應。 In some applications, the reaction gas system is stored as a gas in a reaction source vessel. In such applications, the reaction vapor is typically a gas at ambient (i.e., normal) pressure and temperature. Examples of such gases include nitrogen, Oxygen, hydrogen and ammonia. However, in some instances, a source chemical (precursor) is used which is a liquid or solid (eg, barium chloride) at ambient pressure and temperature. These source chemicals may need to be heated to produce a sufficient amount of vapor for the reaction procedure. For certain solid materials (referred to herein as ruthenium solid source precursors), the vapor pressure at room temperature is very low, so they must be heated to produce a sufficient amount of reactant vapor and/or remain relatively low. pressure. Once vaporized, it is important that the vapor phase reactants remain at or above the evaporation temperature via the processing system in order to prevent valves, filters, conduits, and other components associated with transporting the vapor phase reactants to the reaction chamber. Condensation required. Vapor phase reactants from such natural solid or liquid materials are beneficial for use in chemical reactions in a variety of other industries.

原子層沉積(ALD)是另一種用於形成薄膜於基材上的習知程序。在多種應用中,原子層沉積使用如上所述的固體或液體來源化學物。原子層沉積是一種蒸氣沉積的型式,其中薄膜係經由循環執行的自飽和反應建立。薄膜的厚度係由所執行的循環次數決定。在一原子層沉積程序中,氣體先質被交替地且重複地提供至基材或晶圓以形成在晶圓上的材料薄膜。在一自限制程序中,一反應物吸收於晶圓上。一不同的、隨後產生脈波的反應物與被吸收的材料反應,以形成所需要的材料的單分子層。以適當地選擇的試劑,分解可能經由反應發生,例如在一配位基交換(ligand exchange)或一吸氣反應中(gettering reaction)。在典型的原子層沉積反應中,每一循環不會形成多於一單 分子層。較厚的薄膜係經由重複增長的循環而產生,直到達到目標厚度。 Atomic Layer Deposition (ALD) is another conventional procedure for forming thin films on substrates. In various applications, atomic layer deposition uses solid or liquid source chemicals as described above. Atomic layer deposition is a form of vapor deposition in which a thin film is established via a self-saturation reaction performed cyclically. The thickness of the film is determined by the number of cycles performed. In an atomic layer deposition process, gas precursors are alternately and repeatedly provided to a substrate or wafer to form a thin film of material on the wafer. In a self-limiting procedure, a reactant is absorbed on the wafer. A different, subsequently pulsed, reactant reacts with the absorbed material to form a monolayer of the desired material. With appropriately selected reagents, decomposition may occur via a reaction, such as in a ligand exchange or a gettering reaction. In a typical atomic layer deposition reaction, each cycle does not form more than one single Molecular layer. Thicker films are produced through repeated cycles of growth until the target thickness is reached.

典型的固體或液體來源先質輸送系統包含一固體或液體來源先質容器和加熱機構(例如輻射加熱燈、電阻加熱器等等)。容器包含固體(例如成粉末形式)或液體來源先質。加熱機構加熱容器,以增加容器中的先質氣體的蒸氣壓力。容器具有一入口和一出口,用於讓一惰性載體氣體(例如N2)流動通過容器。該載體氣體將先質蒸氣與其掃除在一起,通過容器出口且最終到達一基材反應室。該容器典型地包含隔離閥,用於將容器的內容物與容器外部流體地隔離。通常地,一個隔離閥係設在容器入口上游,而另一隔離閥設在容器出口下游。先質來源容器一般係提供有從入口和出口延伸的管路、位於管路上的隔離閥,以及位於閥上的配件,該配件被建構成連接到剩餘的基材加工設備的氣體流動管線。其經常須要提供數個額外的加熱器,以用於加熱位於先質來源容器和反應室之間的多種閥和氣體流動管線,以防止先質氣體凝結和沉積在這些構件上。於是,介於來源容器和反應室之間的氣體輸送構件有時稱為〝熱區域〞,其中溫度保持高於先質的蒸發/凝結溫度。 A typical solid or liquid source precursor delivery system comprises a solid or liquid source precursor container and a heating mechanism (e.g., a radiant heat lamp, a resistive heater, etc.). The container contains a solid (for example in powder form) or a liquid source precursor. The heating mechanism heats the vessel to increase the vapor pressure of the precursor gas in the vessel. A container having an inlet and an outlet, for letting an inert carrier gas (e.g. N 2) flow through the vessel. The carrier gas sweeps the precursor vapor together, exits the vessel and eventually reaches a substrate reaction chamber. The container typically includes an isolation valve for fluidly isolating the contents of the container from the exterior of the container. Typically, one isolation valve is located upstream of the vessel inlet and another isolation valve is located downstream of the vessel outlet. The precursor source vessel is typically provided with a conduit extending from the inlet and outlet, an isolation valve located on the conduit, and an accessory located on the valve that is constructed to connect to the gas flow line of the remaining substrate processing equipment. It is often necessary to provide several additional heaters for heating various valve and gas flow lines between the precursor source vessel and the reaction chamber to prevent condensation and deposition of precursor gases on these components. Thus, the gas delivery member between the source vessel and the reaction chamber is sometimes referred to as a hot zone, wherein the temperature remains above the evaporation/condensation temperature of the precursor.

已知提供一彎曲或蜿蜒流動路徑,用於載體氣體的流動,同時其係暴露於一固體或液體先質來源。舉例而言,美國專利第4,883,362號、7,122,085號,以及7,156,380號各揭露此種蜿蜒路徑。 It is known to provide a curved or meandering flow path for the flow of carrier gas while it is exposed to a solid or liquid precursor source. For example, U.S. Patent Nos. 4,883,362, 7,122,085, and 7,156,380 each disclose such a meandering path.

在本發明的一態樣中,一先質來源容器係被提供。該先質來源容器包含一蓋子,其具有一入口埠口、一出口埠口和一打嗝埠口。該先質來源容器進一步包含一底座,其可移除地附接至該蓋子。該底座包含形成於其中的一凹陷區域。 In one aspect of the invention, a precursor source container is provided. The precursor source container includes a lid having an inlet opening, an outlet opening, and a smashing opening. The precursor source container further includes a base that is removably attached to the lid. The base includes a recessed region formed therein.

在本發明的另一種態樣中,一先質來源容器係被提供。該先質來源容器包含一底座,其具有形成於其中的一凹陷區域。該凹陷區域建構成接收一先質材料。該先質來源容器亦包含一蓋子,其可移除地附接至該底座。該蓋子具有一入口埠口、一出口埠口,以及一打嗝埠口。一打嗝閥係可運作地附接至該蓋子。該打嗝閥係可運作地連接至該打嗝埠口。 In another aspect of the invention, a precursor source container is provided. The precursor source container includes a base having a recessed region formed therein. The recessed area is constructed to receive a precursor material. The precursor source container also includes a lid that is removably attached to the base. The lid has an inlet opening, an outlet opening, and a smashing opening. A snoring valve is operatively attached to the lid. The snoring valve is operatively coupled to the snoring port.

在本發明的另一種實施例中,一先質來源容器係被提供。該先質來源容器包含一底座,其具有一底部表面、一接觸表面、一延伸於該接觸表面和底部表面之間的側表面,以及一從該接觸表面延伸的內表面,以界定位於該底座中的一凹陷區域。該先質來源容器亦包含一蓋子,其可移除地附接至該底座。該蓋子包含一入口埠口、一出口埠口,以及一打嗝埠口。 In another embodiment of the invention, a precursor source container is provided. The precursor source container includes a base having a bottom surface, a contact surface, a side surface extending between the contact surface and the bottom surface, and an inner surface extending from the contact surface to define the base A recessed area in the middle. The precursor source container also includes a lid that is removably attached to the base. The lid includes an inlet opening, an outlet opening, and a smashing opening.

在本發明的另一種態樣中,一先質來源容器係被提供。該先質來源容器包含一蓋子,其具有一第一埠口、一第二埠口,以及一第三埠口。該先質來源容器亦包含一底 座,其可移除地附接至該蓋子。該底座包含形成於其中的一凹陷區域。 In another aspect of the invention, a precursor source container is provided. The precursor source container includes a lid having a first cornice, a second cornice, and a third cornice. The precursor source container also includes a bottom a seat that is removably attached to the cover. The base includes a recessed region formed therein.

在另一種態樣中,一用於連接一化學反應物來源容器至用於基材的蒸氣加工的蒸氣相反應器的氣體界面組件的設備係被提供。該設備包含一容器、蒸氣相反應器的一氣體界面組件,以及用於將容器連接至氣體界面組件的連接組件。該容器具有用於容納固體或液體化學反應物的容室。該容器包含與該容室流體連通的一入口和一出口。該氣體界面組件具有一氣體入口,其用於連接至容器容室的出口。該連接組件包含一軌道構件和一舉升組件。該軌道構件包含一個或多個長形的軌道,其用於可移動地耦合容器的一個或多個軌道耦合元件。該舉升組件係建構成將該軌道構件垂直地移動於一下方位置和一升起位置之間。當容器的一個或多個軌道耦合元件耦合於軌道構件的一個或多個軌道時,並且當該舉升組件將該軌道構件移動到它的升起位置時,該容器的出口變成定位成實質上與氣體界面組件的氣體入口直接地流體連通。 In another aspect, an apparatus for connecting a chemical reactant source vessel to a gas interface assembly of a vapor phase reactor for vapor processing of a substrate is provided. The apparatus includes a vessel, a gas interface assembly of the vapor phase reactor, and a connection assembly for connecting the vessel to the gas interface assembly. The container has a chamber for holding solid or liquid chemical reactants. The container includes an inlet and an outlet in fluid communication with the chamber. The gas interface assembly has a gas inlet for connection to an outlet of the container chamber. The connection assembly includes a track member and a lift assembly. The track member includes one or more elongate tracks for movably coupling one or more track coupling elements of the container. The lifting assembly is configured to vertically move the track member between a lower position and a raised position. When the one or more rail coupling elements of the container are coupled to one or more tracks of the track member, and when the lifting assembly moves the track member to its raised position, the outlet of the container becomes positioned substantially Directly in fluid communication with the gas inlet of the gas interface assembly.

為了總括本發明以其所達成超越先前技藝的優點的目的,本發明的某些目的和優點已說明於上述文中。當然,其可了解的是,根據本發明的任何特定實施例,並不是所有的目標和優點都需要被達成。因此,舉例而言,在此技術領域中具有通常知識者將可理解,本發明可藉由達到或最佳化本文中所教示的其中一優點或是一組優點,而不需要達到文中所教示或建議的其它目標或優點的方式被實施 或實現。 Some objects and advantages of the present invention have been set forth above for the purpose of summarizing the advantages of the present invention. Of course, it will be appreciated that not all of the objects and advantages need to be achieved in accordance with any particular embodiment of the invention. Thus, for example, it will be understood by those of ordinary skill in the art that the present invention may be used to achieve or optimize one of the advantages or a set of advantages disclosed herein without departing from the teachings herein. Or other ways of suggesting goals or advantages are implemented Or achieve.

所有的這些實施例係意圖涵蓋在本文所揭露的發明的範圍中。經由以下參照附加圖式的較佳實施例的詳細說明,本發明這些或其它實施例對於在此技術領域中具有通常知識者將變得更為明顯,本發明不限於所揭露的任何特定較佳實施例。 All of these embodiments are intended to be included within the scope of the invention disclosed herein. These and other embodiments of the present invention will become more apparent to those of ordinary skill in the art in the <RTIgt; Example.

用於申請專利的本申請案揭露改進的先質來源容器、設備和方法,用於將該容器裝載和連接到一反應器,並且干涉以將容器與蒸氣加工反應器使用。所揭露的實施例提供出色的通達至反應蒸氣、反應器的氣體輸送系統的污染減少,以及先質來源容器的改進的可維修性(例如,替換或是再裝填)。 The present application for patent application discloses an improved precursor source container, apparatus and method for loading and connecting the container to a reactor and interfering with the use of the container with a vapor processing reactor. The disclosed embodiments provide excellent access to the reaction vapor, reduced gas delivery of the reactor gas delivery system, and improved maintainability (e.g., replacement or refilling) of the precursor source container.

以下的較佳實施例和方法的詳細說明詳述了一些特定的實施例,有幫助了解申請專利範圍。然而,在此技術領域中具有通常知識者可以多種不同實施例和方法實現本發明,如申請專利範圍所界定和涵蓋。 The detailed description of the preferred embodiments and methods below are set forth in detail in the description of the specific embodiments. However, those skilled in the art can implement the invention in a variety of different embodiments and methods, as defined and covered by the scope of the claims.

氣體輸送系統概要Gas delivery system overview

圖1示意地繪示一種傳統的先質輸送系統6,用於將來自固體或液體先質來源容器10所產生的氣相反應物進給至一氣相反應室12中。在此技術領域中具有通常知識者將可了解本發明的先質輸送系統可合併圖1的氣體輸送系統6 的許多態樣。因此,現在說明傳統的輸送系統6,以便能夠更了解本發明。 1 schematically illustrates a conventional precursor transport system 6 for feeding a gas phase reactant from a solid or liquid precursor source vessel 10 into a gas phase reaction chamber 12. Those of ordinary skill in the art will appreciate that the precursor delivery system of the present invention can incorporate the gas delivery system 6 of FIG. Many aspects of it. Therefore, the conventional delivery system 6 will now be described in order to be able to better understand the present invention.

請參照圖1,固體或液體來源容器10含有固體或氣體來源先質(圖中未顯示)。一固體來源先質是一來源化學物,其在標準條件下(也就是室溫和大氣壓力)為固體。同樣地,一液體來源先質是一來源化學物,其在標準條件下為液體。該先質在來源容器10之中汽化,其可被維持在蒸氣溫度或高於蒸氣溫度。蒸發後的反應物隨後被進給至反應室12之中。該反應物來源容器10以及反應室12可被分別地定位在一反應物來源櫃16和一反應室容器18之中,其較佳地係個別地排氣和/或熱控制。此可藉由將這些構件設有分開的冷卻和加熱裝置、隔熱、隔離閥和/或相關的管路來達成,如此技術領域中所習知者。 Referring to Figure 1, the solid or liquid source container 10 contains a solid or gas source precursor (not shown). A solid source precursor is a source chemical that is solid under standard conditions (ie, room temperature and atmospheric pressure). Similarly, a liquid source precursor is a source chemical that is liquid under standard conditions. The precursor is vaporized in the source vessel 10, which can be maintained at or above the vapor temperature. The evaporated reactant is then fed to the reaction chamber 12. The reactant source vessel 10 and reaction chamber 12 can be positioned separately in a reactant source cabinet 16 and a reaction chamber vessel 18, which are preferably individually vented and/or thermally controlled. This can be achieved by providing these components with separate cooling and heating means, thermal insulation, isolation valves and/or associated piping, as is known in the art.

所繪示的氣體輸送系統6特別適合用於輸送將被使用在蒸氣相反應室中的蒸氣相反應物。該蒸氣相反應物可被用於沉積(例如化學蒸氣沉積)或是原子層沉積(ALD)。 The illustrated gas delivery system 6 is particularly suitable for conveying vapor phase reactants to be used in a vapor phase reaction chamber. The vapor phase reactant can be used for deposition (eg, chemical vapor deposition) or atomic layer deposition (ALD).

如顯示於圖1中,該反應物來源容器10以及該反應室12係適合經由一第一導管而20彼此選擇性流體連通,以便將氣相反應物從反應物來源容器10進給至反應室12(例如一ALD反應室)。第一導管20包含一個或多個隔離閥22a、22b,其可用於在抽空和/或在反應物來源容器10和反應室容器18的保養期間分開反應物來源容器10和反應室12的氣體空間。 As shown in FIG. 1, the reactant source vessel 10 and the reaction chamber 12 are adapted to be in selective fluid communication with each other via a first conduit 20 to feed the gas phase reactant from the reactant source vessel 10 to the reaction chamber. 12 (for example, an ALD reaction chamber). The first conduit 20 includes one or more isolation valves 22a, 22b that can be used to separate the gas space of the reactant source vessel 10 and the reaction chamber 12 during evacuation and/or during maintenance of the reactant source vessel 10 and the reaction chamber vessel 18. .

非活性或是惰性氣體較佳地被用於當作載體氣體,用 於蒸發的先質。該惰性氣體(例如氮或氬)可經由一第二導管24被進給至該先質來源容器10之中。該反應物來源容器10包含至少一個用於連接至第二導管24的入口,以及至少一個用於將氣體從容器10抽出的出口。容器10的出口係連接至第一導管20。容器10可以在超過反應室12之壓力的壓力下運作。因此,該第二導管24包含至少一個隔離閥26,其可用於在容器10的保養或替換期間流體地隔離容器10的內部。一控制閥27較佳地位在第二導管24中,於反應物來源櫃16的外側。 Inactive or inert gas is preferably used as a carrier gas, The precursor to evaporation. The inert gas (e.g., nitrogen or argon) can be fed to the precursor source vessel 10 via a second conduit 24. The reactant source container 10 includes at least one inlet for connection to the second conduit 24 and at least one outlet for withdrawing gas from the vessel 10. The outlet of the container 10 is connected to the first conduit 20. The container 10 can operate at a pressure that exceeds the pressure of the reaction chamber 12. Accordingly, the second conduit 24 includes at least one isolation valve 26 that can be used to fluidly isolate the interior of the container 10 during maintenance or replacement of the container 10. A control valve 27 is preferably positioned in the second conduit 24 outside of the reactant source cabinet 16.

在另一種變化中(其可被使用於本發明的實施例中),該先質蒸氣可藉由施加真空於反應物來源容器10而被抽出至反應室12,而不需使用載體氣體。此種技術有時候稱作「蒸氣抽出」(vapor draw)。 In another variation, which can be used in embodiments of the present invention, the precursor vapor can be withdrawn to the reaction chamber 12 by applying a vacuum to the reactant source vessel 10 without the use of a carrier gas. This technique is sometimes referred to as "vapor draw."

在另一種變化中(其亦可被使用於本發明的實施例中),該先質蒸氣可藉由一外部氣流從容器10抽出,該外部氣流在容氣的外部產生較低的壓力,像是在一文土里效應中(Venturi effect)。舉例而言,該先質蒸氣可藉由將一載體氣體沿著容器10下游的路徑朝著反應室12流動而被抽出。在某些情況下,這可產生容器10和載體氣體流動路徑之間的壓力差。這個壓力差造成先質蒸氣朝著反應室12流動。 In another variation (which may also be used in embodiments of the invention), the precursor vapor may be withdrawn from the vessel 10 by an external gas stream that produces a lower pressure on the exterior of the gas, such as It is in the Venturi effect. For example, the precursor vapor can be withdrawn by flowing a carrier gas along the path downstream of the vessel 10 toward the reaction chamber 12. In some cases, this can create a pressure differential between the vessel 10 and the carrier gas flow path. This pressure differential causes the precursor vapor to flow toward the reaction chamber 12.

當使用固體來源先質時,為了移除分散的固體顆粒,氣體輸送系統6包含一淨化器28,該蒸發的反應物經由淨化器被引導。該淨化器28可包含一個或多個廣泛多樣化的 淨化裝置,像是機械過濾器、陶瓷分子篩,以及靜電過濾器,能夠將分散固體或顆粒或最小分子尺寸的分子從反應物氣流分離。亦被熟知的是,可提供額外的淨化器在容器10中。特別地,美國公開專利申請案第2005/0000428A1號揭露一種容器,其包含一玻璃坩堝,該玻璃坩堝被封在一鋼容器之中,該坩堝含有反應物來源且具有附帶過濾器的蓋子。該蓋子與一容器蓋子分開,該容器蓋子附接至鋼容器。 When a solid source precursor is used, in order to remove the dispersed solid particles, the gas delivery system 6 includes a purifier 28 that is directed via a purifier. The purifier 28 can comprise one or more of a wide variety of Purification devices, such as mechanical filters, ceramic molecular sieves, and electrostatic filters, are capable of separating dispersed solids or particles or molecules of the smallest molecular size from the reactant gas stream. It is also well known that an additional purifier can be provided in the container 10. In particular, U.S. Patent Application Publication No. 2005/0000428 A1 discloses a container comprising a glass crucible enclosed in a steel container containing a source of reactants and having a lid with a filter attached thereto. The lid is separated from a container lid that is attached to the steel container.

繼續參照圖1,該反應物來源容器10是被定位在反應物來源櫃16之中。櫃16的內部空間30可保持在減少的壓力下(例如1mTorr到10Torr,且通常大約為500mTorr),以促進櫃16之中的構件的輻射加熱,並且將這些構件彼此熱隔離以幫助均勻的溫度場。在其他變化中,櫃沒有被排空並且包含對流增進裝置(例如風扇、交叉流等等)。所繪示的櫃16包含一個或多個加熱裝置32,像是輻射加熱器。並且,可設有反射器薄片34,其可建構成環繞櫃16之中的構件,以反射由加熱裝置32所產生的輻射熱。反射器薄片34櫃16的內壁40上,櫃的頂板7和底板9上。在所繪示的設備中,第一導管20的實質長度係控制在反應物來源櫃16之中。因此,該第一導管20將固有地接收一些熱以防止反應物蒸氣的凝結。 With continued reference to FIG. 1, the reactant source container 10 is positioned within the reactant source cabinet 16. The interior space 30 of the cabinet 16 can be maintained under reduced pressure (e.g., 1 mTorr to 10 Torr, and typically about 500 mTorr) to facilitate radiant heating of the components within the cabinet 16 and to thermally isolate these components from each other to help even temperature. field. In other variations, the cabinet is not emptied and contains convection boosting devices (eg, fans, crossflows, etc.). The illustrated cabinet 16 includes one or more heating devices 32, such as radiant heaters. Also, a reflector sheet 34 can be provided that can be constructed to surround the components in the cabinet 16 to reflect the radiant heat generated by the heating device 32. The inner wall 40 of the reflector sheet 34 cabinet 16 is on the top plate 7 and the bottom plate 9 of the cabinet. In the illustrated apparatus, the substantial length of the first conduit 20 is controlled within the reactant source cabinet 16. Thus, the first conduit 20 will inherently receive some heat to prevent condensation of reactant vapors.

該反應物來源櫃16可以包含一冷卻套36,其形成在櫃的外壁38和內壁40之間。該冷卻套36可以含有水或其他冷卻劑。該冷卻套36容許櫃16的外表面38保持在周圍溫 度或接近周圍溫度。 The reactant source cabinet 16 can include a cooling jacket 36 formed between the outer wall 38 and the inner wall 40 of the cabinet. The cooling jacket 36 can contain water or other coolant. The cooling jacket 36 allows the outer surface 38 of the cabinet 16 to remain at ambient temperature Degree or near ambient temperature.

為了防止或減少在原子層沉積加工的交替脈波之間來自反應物來源容器10的氣流,其可能在第一導管20中形成非活性氣體障壁。此有時候亦稱作「惰氣閥調」(inert gas valving)或是「擴散屏障」(diffusion barrier),其在第一導管20的一部位中,藉由形成一氣相障壁,藉由在第一導管20中的正常反應物流的對立方向中流動氣體,以防止來自反應物來源容器10的反應物流至反應室12。該氣體障壁可以經由一第三導管50進給非活性氣體到第一導管20之中而形成,第三導管50在連接點52連接至第一導管20。該第三導管50可以被連接至一惰氣源54,其供給第二導管24。在介於來反應物來源容器10的蒸氣相脈波的進給之間的時間間隔期間,非活性氣體較佳地係經由第三導管50被被進給至第一導管20之中。此氣體可經由一第四導管58被抽回,該第四導管在第二連接點60處連接至第一導管20,該第二連接點60位在第一連接點52的上游處(也就是較接近反應物來源容器10)。以此方式,正常反應物氣流的對立方向的惰氣流係實現於(介於反應物脈波之間)第一導管20之中,介於第一連接點52和第二連接點60之間。第四導管58可與一抽空源64連通(例如為真空泵)。亦可設有限制器61和閥56、63、70。氣體輸送系統6的進一步細節係繪示和說明在美國公開專利申請案US 2005/0000428A1之中。 In order to prevent or reduce the flow of gas from the reactant source vessel 10 between alternating pulse waves of the atomic layer deposition process, it is possible to form an inert gas barrier in the first conduit 20. This is sometimes referred to as "inert gas valving" or "diffusion barrier" in which a portion of the first conduit 20 is formed by forming a gas barrier barrier. Gas flows in the opposite direction of the normal reactant stream in a conduit 20 to prevent reactant streams from the reactant source vessel 10 from flowing to the reaction chamber 12. The gas barrier may be formed by feeding an inert gas into the first conduit 20 via a third conduit 50, and the third conduit 50 is coupled to the first conduit 20 at a junction 52. The third conduit 50 can be coupled to an inert gas source 54 that is supplied to the second conduit 24. The inert gas is preferably fed into the first conduit 20 via the third conduit 50 during a time interval between the feed of the vapor phase pulse waves from the reactant source vessel 10. This gas can be withdrawn via a fourth conduit 58 that is connected to the first conduit 20 at a second connection point 60 that is located upstream of the first connection point 52 (ie, Closer to the reactant source container 10). In this manner, the inert gas flow in the opposite direction of the normal reactant gas stream is achieved (between reactant pulse waves) in the first conduit 20 between the first junction 52 and the second junction 60. The fourth conduit 58 can be in communication with an evacuation source 64 (e.g., a vacuum pump). A limiter 61 and valves 56, 63, 70 may also be provided. Further details of the gas delivery system 6 are illustrated and described in U.S. Patent Application Serial No. US 2005/0000428 A1.

現有的固體或液體先質來源輸送系統,諸如顯示在圖1 中的系統6,具有許多缺點和限制。其中一個缺點為,其有些時候須要提供大量額外的加熱器以加熱介於先質來源容器(諸如容器10)和反應室(諸如反應室12)之間的氣體管線和閥。特別地,其通常須要將這些中間氣體輸送構件(例如閥22a、22b、70,淨化器28,導管20)保持在高於先質之凝結溫度的溫度,以防止先質蒸氣沉積在這些構件上。典型地,這些中間構件藉由管線加熱器(line heaters)、彈筒式加熱器(cartridge heaters)、加熱燈(heat lamps)或類似物分別地加熱。某些系統(例如美國專利申請案公開號2005/0000428A1)利用這些額外的加熱器以迫使中間構件的溫度上升至高於來源容器的溫度。此種溫度偏移(temperature biasing)有助於防止先質在冷卻期間凝結在中間構件中。因為來源容器典型地具有比中間氣體輸送構件更高的熱質量,這些構件存在著比來源容器更快冷卻到凝結溫度的風險。此可能導致不希望發生的狀況,其中來源容器仍在產生先質蒸氣,其可能流動到較冷的中間構件並且沉積於其上。該溫度偏移能夠克服此問題。然而,額外的加熱器的需求增加設備的整體尺寸和運作成本。 Existing solid or liquid precursor source delivery systems, such as shown in Figure 1 System 6, has many shortcomings and limitations. One of the disadvantages is that it is sometimes necessary to provide a large number of additional heaters to heat the gas lines and valves between the precursor source vessel (such as vessel 10) and the reaction chamber (such as reaction chamber 12). In particular, it is generally necessary to maintain these intermediate gas delivery members (e.g., valves 22a, 22b, 70, purifier 28, conduit 20) at a temperature above the condensation temperature of the precursor to prevent precursor vapor deposition on these components. . Typically, these intermediate members are separately heated by line heaters, cartridge heaters, heat lamps or the like. Some systems (e.g., U.S. Patent Application Publication No. 2005/0000428 A1) utilize these additional heaters to force the temperature of the intermediate member to rise above the temperature of the source vessel. This temperature biasing helps prevent the precursor from condensing in the intermediate member during cooling. Because the source containers typically have a higher thermal mass than the intermediate gas delivery members, these members present a risk of cooling to the condensation temperature faster than the source container. This may result in an undesired condition in which the source container is still producing precursor vapors that may flow to the cooler intermediate member and deposit thereon. This temperature offset can overcome this problem. However, the need for additional heaters increases the overall size and operating cost of the device.

再者,傳統的固體來源輸送系統典型地利用介在來源容器出口和基質反應室之間的過濾器(例如圖1的淨化器28),以便防止固體先質顆粒(例如,挾帶在載體氣體流中的粉末)進入反應室。此種過濾器亦增加設備的整體尺寸,並且可能需要額外的加熱器以防止在其中的凝結。同樣地,此種過濾器典型地位在來源容器出口的下游,其包 含風險為,先質顆粒可能沉積在容器出口下游的氣體運輸構件,諸如在氣體導管中或是容器出口閥本身之中。這些顆粒可能損害像是閥的構件,其可能危及他們完全密封的能力。 Furthermore, conventional solid source delivery systems typically utilize a filter (e.g., purifier 28 of Figure 1) interposed between the outlet of the source vessel and the substrate reaction chamber to prevent solid precursor particles (e.g., enthalpy in the carrier gas stream). The powder in the) enters the reaction chamber. Such filters also increase the overall size of the device and may require additional heaters to prevent condensation therein. Similarly, such filters are typically located downstream of the source container outlet, and their packages The risk is that the precursor particles may deposit in the gas transport member downstream of the vessel outlet, such as in the gas conduit or in the vessel outlet valve itself. These particles can damage components such as valves that can jeopardize their ability to completely seal.

傳統的固體或液體來源輸送系統的另一個缺點為,通常很困難再裝填或是替換先質來源容器。圖2顯示典型的先質來源容器31,其包含一容器本體33和一蓋子35。蓋子35包含入口管路43a、43b和出口管路45a、45b,其從蓋子向上延伸。一隔離閥37係被插入在入口管路43a、43b之間,而一隔離閥39被插入在出口管路45a、45b之間。另一個隔離閥41插入於連接管路43a和45a的氣體管線之間。入口管路43a、43b和出口管路45a、45b提供惰性載體氣體流動通過容器本體33。管路43a、45a典型地包含配件47,其建構成連接至反應物氣體輸送系統的其他氣體流管線。當固體或液體來源先質耗盡且需要更換時,習慣上將整個來源容器31替換成新的來源容器,具有充滿的來源化學物。替換來源容器31需要關閉隔離閥37和39、將配件47與剩下的基材加工設備分離、完全地移除容器31、將新的容器31安置在合適的位置,並且將新的容器31的配件47連接至剩下的基材加工設備。通常,此程序亦包含拆卸多種熱電耦、管線加熱器、夾具、以及類似者。這些程序稍微費力。 Another disadvantage of conventional solid or liquid source delivery systems is that it is often difficult to refill or replace a precursor source container. 2 shows a typical precursor source container 31 comprising a container body 33 and a lid 35. The cover 35 includes inlet conduits 43a, 43b and outlet conduits 45a, 45b that extend upwardly from the cover. An isolation valve 37 is inserted between the inlet lines 43a, 43b, and an isolation valve 39 is inserted between the outlet lines 45a, 45b. Another isolation valve 41 is inserted between the gas lines connecting the lines 43a and 45a. The inlet lines 43a, 43b and the outlet lines 45a, 45b provide an inert carrier gas flow through the container body 33. The lines 43a, 45a typically include fittings 47 that are constructed to form other gas flow lines that are connected to the reactant gas delivery system. When the solid or liquid source is depleted and needs to be replaced, it is customary to replace the entire source container 31 with a new source container with a full source of chemicals. Replacing the source container 31 requires closing the isolation valves 37 and 39, separating the fitting 47 from the remaining substrate processing equipment, completely removing the container 31, placing the new container 31 in place, and placing the new container 31 The fitting 47 is attached to the remaining substrate processing equipment. Typically, this procedure also includes the removal of multiple thermocouples, line heaters, fixtures, and the like. These procedures are a little laborious.

傳統的固體或液體來源輸送系統的另一個缺點為,該氣體輸送系統可能產生停滯流動區(亦稱為死水區〝dead legs〞)。死水區易於發生在當來自先質來源容器的氣體流動路徑係較長且較為複雜時。用於來源容器的傳統式入口和出口隔離閥(如上文所述)可能產生死水區。一般而言,死水區增加在輸送系統的氣體輸送構件上的不需要的先質沉積的風險。此種不需要的先質沉積可能因為與失效容積有關的冷點的原因而產生,其中先質在低於昇華/熔化溫度的溫度下凝固。此種不需要的先質沉積亦可能因為與失效容積相關的熱點而產生,其中先質在高溫下分解。針對此原因,通常希望將反應物氣流的停滯減少或最小化。其通常亦希望減少欲被溫度控制的表面區域,以便減少產生熱點或冷點的機會。 Another disadvantage of conventional solid or liquid source delivery systems is that the gas delivery system may create stagnant flow zones (also known as dead water zones). The dead water zone is prone to occur when the gas flow path from the precursor source vessel is long and complex. Conventional inlet and outlet isolation valves for source vessels (as described above) may create dead water zones. In general, the dead water zone increases the risk of unwanted precursor deposits on the gas delivery components of the delivery system. Such unwanted precursor deposits may result from cold spots associated with the failure volume, where the precursor Solidification at temperatures below the sublimation/melting temperature. Such unwanted precursor deposition may also occur due to hot spots associated with the failure volume, where the precursor decomposes at elevated temperatures. For this reason, it is generally desirable to have the reactant gas stream The stagnation is reduced or minimized. It is also generally desirable to reduce the surface area to be temperature controlled in order to reduce the chance of creating hot spots or cold spots.

將死水區的量和體積最小化的另一個原因係為將插置在先質來源容器和基材反應室之間的氣體輸送系統的整體體積減少。當氣體輸送系統的整體體積增加,經常使最小脈波時間倍化,且與ALD加工有關的最小清洗時間也增加。該最小脈波時間係為,被注入的反應物將被加工的基材的表面浸透(saturate)所需要的脈波時間。該小清洗時間係為,在反應物脈波之間清洗基材反應室和氣體輸送系統的過剩反應物所需的時間。當最小脈波時間和最小清洗時間減少時,基材生產率(基材可被加工過的速率)係增加。於是,其希望減少死水區的量和體積以增加生產率。 Another reason for minimizing the amount and volume of the dead water zone is to reduce the overall volume of the gas delivery system interposed between the precursor source vessel and the substrate reaction chamber. As the overall volume of the gas delivery system increases, the minimum pulse time is often doubled and the minimum cleaning time associated with ALD processing is also increased. The minimum pulse time is the pulse time required for the injected reactant to saturate the surface of the substrate being processed. This small cleaning time is the time required to purge excess reactants in the substrate reaction chamber and gas delivery system between reactant pulse waves. When the minimum pulse time and the minimum cleaning time are reduced, the substrate productivity (the rate at which the substrate can be processed) is increased. Thus, it is desirable to reduce the amount and volume of the dead water zone to increase productivity.

減少氣體輸送系統的整體體積的另一個優點係為改進反應物氣體脈波的「脈波形狀」。脈波形狀係指,對於一反應物氣體脈波,在反應物/載體混合物中的反應物的化 學濃度的曲線的形狀。圖3顯示一理想反應物濃度曲線80,以及小於理想值的曲線82。兩個曲線包含反應物氣體脈波84,其藉由實質上零反應物濃渡的時間週期86分開。理想曲線80像是直線形波,例如方形波。實質上直線形波是較佳的,因為對於每個反應物氣體脈波其高度需要在最少的時間中輸送反應物形式到基材表面(飽和)上的所有可得的反應站,以便將基材生產率最佳化。直線形的脈波形狀,例如在曲線80中,將生產率最佳化,因為每個脈波的持續時間具有高濃度的反應物,因此隨後減少需要輸送足夠的反應物形式到基材表面的脈波持續時間。同樣地,直線的脈波形狀的減少的分散減少了在不同先質的連續脈波之間的〝脈波重疊〞的量,其減少了不希望的化學蒸氣沉積成長模型的可能性。相對地,不理想的曲線82的每個脈波84的脈波集中(pulse concentration)需要更長的時間達到其最大層級,其增加了需要完全地浸透基材表面的脈波持續時間。因此,曲線80的頻率小於曲線82的頻率。當氣體輸送系統的整體體積增加,脈波形狀便惡化。因此,理想的是藉由將死水區最小化而改進脈波形狀(也就是,使其更像方形波)。 Another advantage of reducing the overall volume of the gas delivery system is to improve the "pulse shape" of the reactant gas pulse. Pulse shape refers to the reaction of reactants in a reactant/carrier mixture for a reactant gas pulse wave. Learn the shape of the curve of the concentration. Figure 3 shows an ideal reactant concentration curve 80, and a curve 82 that is less than the desired value. The two curves contain a reactant gas pulse wave 84 that is separated by a time period 86 of substantially zero reactant concentration. The ideal curve 80 is like a linear wave, such as a square wave. Substantially linear waves are preferred because the height of each reactant gas pulse requires the delivery of the reactant form to all available reaction sites on the substrate surface (saturation) in a minimum amount of time to Material productivity is optimized. The linear pulse shape, for example in curve 80, optimizes productivity because the duration of each pulse has a high concentration of reactants, thus subsequently reducing the need to deliver sufficient reactant form to the surface of the substrate. Wave duration. Similarly, the reduced dispersion of the pulse shape of the line reduces the amount of helium pulse overlap between successive pulse waves of different precursors, which reduces the likelihood of an undesirable chemical vapor deposition growth model. In contrast, the pulse concentration of each pulse 84 of the undesired curve 82 takes longer to reach its maximum level, which increases the duration of the pulse wave that needs to completely saturate the surface of the substrate. Therefore, the frequency of curve 80 is less than the frequency of curve 82. As the overall volume of the gas delivery system increases, the pulse shape deteriorates. Therefore, it is desirable to improve the shape of the pulse wave by minimizing the dead water zone (i.e., making it more like a square wave).

傳統的固體來源輸送系統的另一個缺點係為牽涉到在加工之前將先質來源容器排氣之污染的風險。先質來源容器典型地被供給在容器中氣體的頭壓。舉例而言,一填充有先質粉末的來源容器通常與氦或其他惰氣在稍微高於周圍壓力的壓力(例如5psi)下一起裝運。氦通常用於能夠 使用氦洩漏偵測器進行〝向外〞(out-bound)氦洩漏測試,以便在裝運之前確保容器完整性。氦通常保留或以氮或其他惰氣替換,因此如果存在少量洩漏,氣體從容器往外洩漏,防止在容器中的先質的大氣污染。在容器被用於基材加工之前,惰氣的頭壓一般會被移除。典型地,容器的內部氣體經由容器的出口隔離閥被排出,經過反應物氣體輸送系統,而最終通過反應器的排氣裝置/洗滌器。在某些系統中,容器的內部氣體經由基材反應室被排出。其他的系統利用與反應室並聯的氣體管線(也就是,從恰好在反應室上游的一點處延伸至恰好在反應室的下游的點處),使得容器的內部氣體可以被引導至排氣裝置/洗滌器,而不會流過反應室。在任一種例子中,當容器被解除頭壓時,現有的容器設計牽涉到顆粒產生的風險。此可導致先質粉末變得被挾帶在排氣流之中(也就是容器的內部加壓氣體的排出),其可污染且可能損害氣體輸送系統的下游元件,包含容器出口本身。甚至在一般加工期間,先質材料(例如粉末)可能被挾帶在流過先質來源容器的載體氣體之中,其牽涉到在氣體傳輸系統之中不希望的先質沉積的風險。 Another disadvantage of conventional solid source delivery systems is the risk of contamination of the precursor source vessel prior to processing. The precursor source vessel is typically supplied with the head pressure of the gas in the vessel. For example, a source container filled with a precursor powder is typically shipped with helium or other inert gas at a pressure slightly above ambient pressure (eg, 5 psi).氦 usually used to Use the helium leak detector to perform an out-bound leak test to ensure container integrity prior to shipment. Helium is usually retained or replaced with nitrogen or other inert gases, so if there is a small amount of leakage, the gas leaks out of the container, preventing atmospheric contamination of the precursors in the container. The head pressure of the inert gas is generally removed before the container is used for substrate processing. Typically, the internal gas of the vessel is discharged through the outlet isolation valve of the vessel, through the reactant gas delivery system, and ultimately through the exhaust/scrubber of the reactor. In some systems, the internal gas of the container is discharged through the substrate reaction chamber. Other systems utilize a gas line in parallel with the reaction chamber (i.e., from a point just upstream of the reaction chamber to a point just downstream of the reaction chamber) so that the internal gas of the vessel can be directed to the exhaust/ The scrubber does not flow through the reaction chamber. In either case, the existing container design involves the risk of particle generation when the container is relieved of head pressure. This can result in the precursor powder becoming entrained in the exhaust stream (ie, the discharge of pressurized gas inside the vessel), which can contaminate and potentially damage the downstream components of the gas delivery system, including the vessel outlet itself. Even during normal processing, precursor materials (e.g., powders) may be entrained in the carrier gas flowing through the precursor source vessel, which involves the risk of undesirable precursor deposition in the gas delivery system.

藉由利用用於將容器從輸送系統的其餘部分快速地連接和分離的改進的先質來源容器和設備,前文所揭露的先質輸送系統的實施例實質地克服了這些問題。 Embodiments of the foregoing precursor delivery system substantially overcome these problems by utilizing improved precursor source containers and apparatus for rapidly connecting and separating containers from the remainder of the delivery system.

與來源容器緊密熱接觸的氣體板Gas plate in close thermal contact with the source container

圖4至圖6繪示三種不同的氣體板配置。氣體板典型地包含一個或多個閥,其位在先質來源容器的下游,並且亦可包含一個或多個在容器上游的閥。圖4繪示一傳統配置,其中一來源化學物係被容納在一來源容器10之中。一氣體板90包含數個閥,其可運作以從一載體氣體來源(圖中未顯示)輸送載體氣體經過容器10並且進入一反應室之中(未顯示)。一入口閥91係藉由管路93連接在容器10,而一出口閥92係藉由管路94連接在容器10的下游。在此傳統配置中,入口閥91、出口閥92,以及氣體板90的閥和管路典型地並非與容器10成緊密熱接觸。 Figures 4 through 6 illustrate three different gas plate configurations. The gas plate typically contains one or more valves located downstream of the precursor source vessel and may also contain one or more valves upstream of the vessel. 4 illustrates a conventional configuration in which a source chemical system is contained within a source container 10. A gas plate 90 includes a plurality of valves operable to deliver carrier gas from a carrier gas source (not shown) through the vessel 10 and into a reaction chamber (not shown). An inlet valve 91 is connected to the vessel 10 by a line 93, and an outlet valve 92 is connected downstream of the vessel 10 by a line 94. In this conventional configuration, the inlet valve 91, the outlet valve 92, and the valves and tubing of the gas plate 90 are typically not in intimate thermal contact with the container 10.

圖5繪示一種配置,相對於圖4的配置係稍微地改進。在圖5的配置中,一先質來源容器100具有表面安裝的入口閥108和一表面安裝的出口閥110。閥108和110係藉由管路95和96與一傳統的氣體板90分離。在此配置中,閥108和110係與容器100緊密熱接觸,但未與氣體板90的閥和管路緊密熱接觸。 Figure 5 illustrates a configuration that is slightly modified relative to the configuration of Figure 4. In the configuration of FIG. 5, a precursor source container 100 has a surface mounted inlet valve 108 and a surface mounted outlet valve 110. Valves 108 and 110 are separated from a conventional gas plate 90 by lines 95 and 96. In this configuration, valves 108 and 110 are in intimate thermal contact with vessel 100, but are not in intimate thermal contact with the valves and tubing of gas plate 90.

圖6繪示一種配置,其相對於圖5的配置係稍微地改進。在圖6的配置中,來源容器100具有大體上平坦的表面,具有表面安裝的入口閥108和表面安裝的出口閥110。此外,一氣體板97係被配置成使得氣體板的閥和管路係沿著一平面定位,該平面大體上平行於容器100的大體上平坦的表面。為了增加容器100和氣體板閥和管路之間的熱接觸,氣體板閥和管路的平面以及容器100的大體上平坦的表面之間的距離較佳地係不大於約10.0公分,更佳地不 大於約7.5公分,甚至更佳地不大於約5.3公分。 FIG. 6 illustrates a configuration that is slightly modified relative to the configuration of FIG. In the configuration of Figure 6, the source container 100 has a generally flat surface with a surface mounted inlet valve 108 and a surface mounted outlet valve 110. Additionally, a gas plate 97 is configured such that the valve and tubing of the gas plate are positioned along a plane that is generally parallel to the generally planar surface of the container 100. In order to increase the thermal contact between the vessel 100 and the gas plate valve and the conduit, the distance between the plane of the gas plate valve and the conduit and the substantially flat surface of the vessel 100 is preferably no greater than about 10.0 cm, more preferably Land not Greater than about 7.5 cm, and even more preferably no more than about 5.3 cm.

具有表面安裝的閥和蜿蜒路徑的來源容器Source container with surface mounted valve and helium path

圖7顯示一改進的固體和液體先質來源容器100和一快速連接組件102的實施例。該來源容器100包含一容器本體104和一蓋子106。蓋子106包含表面安裝的隔離閥108和110,在下文將更詳細地說明。 FIG. 7 shows an embodiment of an improved solid and liquid precursor source container 100 and a quick connect assembly 102. The source container 100 includes a container body 104 and a lid 106. Cover 106 includes surface mounted isolation valves 108 and 110, as will be explained in greater detail below.

圖8至圖10更詳細地顯示圖7的來源容器100。圖8係來源容器100的分解圖,而圖9和圖10係為來源容器100的後剖面圖。所繪示的容器100包含容器本體104、一位在本體104之中的蜿蜒路徑插入件112,幾及蓋子構件106。所繪示的組件係藉由緊固元件124緊固在一起,緊固元件124諸如為螺絲和是螺帽和螺栓組合。緊固元件124係用於延伸進入本體104的凸緣126之中對齊的孔洞。在此技術領域中具有通常知識者將可了解該組件可藉由多種替代方法緊固在一起。 Figures 8 through 10 show the source container 100 of Figure 7 in more detail. 8 is an exploded view of the source container 100, and FIGS. 9 and 10 are rear cross-sectional views of the source container 100. The illustrated container 100 includes a container body 104, a pair of 蜿蜒 path inserts 112 in the body 104, and a cover member 106. The illustrated components are fastened together by fastening elements 124, such as screws and are a combination of nuts and bolts. The fastening elements 124 are for extending into aligned holes in the flange 126 of the body 104. Those of ordinary skill in the art will appreciate that the assembly can be secured together by a variety of alternative methods.

蜿蜒路徑插入件112較佳地界定一迂迴曲折或是蜿蜒路徑111,當載體氣體流過容器100時,其必須移動通過該路徑111。蜿蜒路徑112較佳地含有先質來源,例如是粉末或是液體。蜿蜒路徑111遠長於在傳統先質來源容器之中的載體氣體流動路徑。閥108和110(在下文說明)和閥210(在下文參照圖26至圖28作說明)係承受到較不苛刻的環境,藉此增加它們的可靠性。 The meandering path insert 112 preferably defines a meandering meandering or meandering path 111 through which the carrier gas must move as it flows through the container 100. The crucible path 112 preferably contains a precursor source, such as a powder or a liquid. The crucible path 111 is much longer than the carrier gas flow path in a conventional precursor source vessel. Valves 108 and 110 (described below) and valve 210 (described below with reference to Figures 26-28) are subjected to less harsh environments, thereby increasing their reliability.

較佳地設有一彈簧114以將蜿蜒路徑插入件112對著 蓋子106壓迫,以防止反應物氣體從插入件112和蓋子106之間的交界處逸出。換句話說,彈簧114傾向於減少氣體繞過部分或全部的蜿蜒路徑的風險。合適的彈簧114包含扁平線壓縮彈簧,像是由位在伊利諾州蘇黎士湖的Smalley Steel Ring公司販售的Spirawave®波形彈簧。 A spring 114 is preferably provided to face the 蜿蜒 path insert 112 The lid 106 is pressed to prevent reactant gases from escaping from the interface between the insert 112 and the lid 106. In other words, the spring 114 tends to reduce the risk of gas bypassing some or all of the meandering path. A suitable spring 114 includes a flat wire compression spring, such as a Spirawave® wave spring sold by Smalley Steel Ring, Inc., Lake Zurich, Ill.

圖11A顯示改進的固體或液體先質來源容器400的另一種實施例,其包含一容器底座402、一密封件404,和一蓋子406。蓋子406包含複數個整合的氣閥,或是表面安裝閥,在下文更詳細地說明。圖11B至圖11C繪示蓋子406的示範性實施例。圖11D至圖11G顯示來源容器400的底座402的實施例。圖11H至圖11I顯示來源容器400的底座402的其他實施例。 FIG. 11A shows another embodiment of a modified solid or liquid precursor source container 400 that includes a container base 402, a seal 404, and a cover 406. Cover 406 includes a plurality of integrated air valves, or surface mount valves, as described in more detail below. 11B-11C illustrate an exemplary embodiment of a cover 406. 11D-11G show an embodiment of a base 402 of the source container 400. 11H-11I show other embodiments of the base 402 of the source container 400.

如顯示於圖11A中,底座402係是由一實心元件形成,其包含凹陷區域408,其係直接地加工在實心底座402之中。當蓋子406可移除地附接至底座402時,一密封件404在蓋子406被固定至底座402之前被安置在其間,以確保來源容器400之中的內容物封閉在其中。在一實施例中,底座402和蓋子406係由相同的材料形成,使得這兩個元件之間具有實質上相同的熱傳導性和相同的熱膨脹係數。在另一種實施例中,底座402係由不同於用於形成蓋子406之材料的材料形成。在一實施例中,底座402和蓋子406係由不銹鋼形成。在其他實施例中,底座402和/或蓋子406可由高鎳合金、鋁或是鈦形成。在此技術領域中具有通常知識者可了解的是,底座402和蓋子406可由任何其他 材料形成,其能夠容許足夠的熱傳遞以蒸發位在來源容器400之中的先質,同時為惰性,或者不與來源容器400之中的先質或內容物反應。 As shown in FIG. 11A, the base 402 is formed from a solid element that includes a recessed region 408 that is directly machined into the solid base 402. When the cover 406 is removably attached to the base 402, a seal 404 is placed therebetween before the cover 406 is secured to the base 402 to ensure that the contents of the source container 400 are enclosed therein. In one embodiment, base 402 and cover 406 are formed from the same material such that the two elements have substantially the same thermal conductivity and the same coefficient of thermal expansion. In another embodiment, the base 402 is formed from a different material than the material used to form the cover 406. In an embodiment, the base 402 and the cover 406 are formed from stainless steel. In other embodiments, the base 402 and/or cover 406 may be formed from a high nickel alloy, aluminum, or titanium. It will be appreciated by those of ordinary skill in the art that base 402 and cover 406 can be any other The material is formed that is capable of permitting sufficient heat transfer to evaporate the precursors located in the source container 400 while being inert or not reacting with precursors or contents in the source container 400.

密封件404係被設在來源容器400的底座402和蓋子406之間,如顯示於圖11A中。在一實施例中,密封件404係一O形環,其係配置在形成於底座402中的溝槽410之中。在另一種實施例中,密封件404可以形成為金屬墊圈或是V形密封件,其建構成可配置在底座402和蓋子406之間。在此技術領域中具有通常知識者可了解的是,密封件404可以由足以在蓋子406係附接至底座402時提供密封並且確保來源容器400之中的內容物封閉在其中的任何形狀、尺寸或是構造形成。在一實施例中,密封件404係由彈性體形成,但在此技術領域中具有通常知識者可了解的是,密封件404可以由足夠提供密封的任何其他材料形成,像是,但不限制於,聚合物或金屬。 Seal 404 is disposed between base 402 of source container 400 and cover 406 as shown in Figure 11A. In one embodiment, the seal 404 is an O-ring disposed in a groove 410 formed in the base 402. In another embodiment, the seal 404 can be formed as a metal washer or a V-shaped seal that can be configured to be disposed between the base 402 and the cover 406. It will be appreciated by those of ordinary skill in the art that the seal 404 can be of any shape, size sufficient to provide a seal when the cover 406 is attached to the base 402 and to ensure that the contents of the source container 400 are enclosed therein. Or a structure. In an embodiment, the seal 404 is formed from an elastomer, but it will be appreciated by those of ordinary skill in the art that the seal 404 can be formed of any other material sufficient to provide a seal, such as, but not limited to, , polymer or metal.

如繪示在圖11A至圖11C中,其顯示來源容器400的蓋子406的實施例。蓋子406形成為單一元件,具有上表面412、下表面414,以及延伸於上表面412和下表面414之間的滑動表面413。在一實施例中,上表面412和下表面414實質上為平坦的表面。在此技術領域中具有通常知識者可了解的是,平坦的上表面412和下表面414可進一步包含形成於其中的壓痕、溝槽、孔洞或是插入部。在一實施例中,該上表面412和下表面414實質上彼此平行,藉此提供蓋子406具有橫越整個蓋子406的一致厚度T1。如顯 示於圖11B中,上表面412可包含高公差區416,其被加工以提供相對於上表面412其餘部位而言實質上平滑的表面。這些高公差區416容許閥組件418安裝成與蓋子406的上表面412齊平,以確保閥組件418和蓋子406之間的同等程度的直接熱接觸。在這些構件之間構多的表面區域接觸,這些構件之間的熱傳遞可被最大化,藉此減少對於提供熱到閥組件418以防止蒸發的先質凝結在其中的分開的加熱器或加熱套的需求。 As shown in Figures 11A-11C, an embodiment of a cover 406 of the source container 400 is shown. The cover 406 is formed as a single component having an upper surface 412, a lower surface 414, and a sliding surface 413 extending between the upper surface 412 and the lower surface 414. In an embodiment, upper surface 412 and lower surface 414 are substantially planar surfaces. It will be appreciated by those of ordinary skill in the art that the flat upper surface 412 and lower surface 414 can further include indentations, grooves, holes or inserts formed therein. In an embodiment, the upper surface 412 and the lower surface 414 are substantially parallel to one another, thereby providing the cover 406 with a uniform thickness T1 across the entire cover 406. Such as As shown in FIG. 11B, the upper surface 412 can include a high tolerance zone 416 that is machined to provide a substantially smooth surface relative to the remainder of the upper surface 412. These high tolerance zones 416 allow the valve assembly 418 to be mounted flush with the upper surface 412 of the cover 406 to ensure an equal degree of direct thermal contact between the valve assembly 418 and the cover 406. With a plurality of surface area contacts between the members, heat transfer between the members can be maximized, thereby reducing the separation of heaters or heating in which the precursors that provide heat to the valve assembly 418 to prevent evaporation are condensed therein. Set of needs.

如顯示在圖11B中,該蓋子406包含入口埠口420、出口埠口422,以及一打嗝埠口424(burp port)。入口埠口420係建構成容許載體氣體,或是惰氣,經由入口埠口420被導入至來源容器400之中。出口埠口422被建構成容許氣體經過出口埠口422離開來源容器400。打嗝埠口424可包含任何埠口,像是傳統入口/出口埠口,其可被建構成在來源容器400的首次填充或安裝之後,或是在來源容器400之後的再填充或安裝之後釋放來源容器400之中的頭壓。通過打嗝埠口424之頭壓的釋放係在來源容器400提供蒸發的先質材料到反應室162(圖25)以用於半導體基材加工之前完成。在一實施例中,一界面構件426係可運作地附接至蓋子406的上表面412,於每個埠口420、422、424。每個界面構件426係建構成被連接至一閥組件418。在此技術領域中具有通常知識者可了解的是,每個閥組件418和界面構件426可以任何方式可運作地連接至蓋子406的上表面412。 As shown in FIG. 11B, the cover 406 includes an inlet port 420, an outlet port 422, and a burp port 424. The inlet port 420 is constructed to allow carrier gas or inert gas to be introduced into the source container 400 via the inlet port 420. The outlet port 422 is constructed to allow gas to exit the source container 400 through the outlet port 422. The snoring port 424 can include any mouthpiece, such as a conventional inlet/outlet port, which can be constructed to be released after the first filling or installation of the source container 400, or after refilling or installation after the source container 400. The head pressure in the container 400. The release by the head of the sipe 424 provides the vaporized precursor material to the reaction chamber 162 (Fig. 25) in the source vessel 400 for completion prior to processing of the semiconductor substrate. In an embodiment, an interface member 426 is operatively attached to the upper surface 412 of the cover 406 at each of the ports 420, 422, 424. Each interface member 426 is constructed to be coupled to a valve assembly 418. It will be appreciated by those of ordinary skill in the art that each valve assembly 418 and interface member 426 can be operatively coupled to the upper surface 412 of the cover 406 in any manner.

如顯示在圖11A和11C中,閥組件418的其中之一包含排氣閥,或是打嗝閥428(burp valve),其係可運作地連接至蓋子406的上表面412。打嗝閥428可以是氣動閥或任何其他的閥,其調節進入和離開來源容器400的氣體的流動。在一實施例中,打嗝閥428保持關閉,除了在半導體加工系統中使用來源容器400之前為了釋放氣體以釋放來源容器400之中的頭壓而開啟。在來源容器400的製造和初次填充先質的期間,或是在來源容器400係再次填充先質之後,一惰氣係被導入至來源容器400之中,以便產生來源容器400之中的頭壓。此頭壓係用於一旦來源容器400係被填充(或再填充)容許執行洩漏測試,如上文所解釋。當來源容器400係被安裝時,來源容器400之中產生頭壓的氣體需要被移除和替換成惰性載體氣體,該載體氣體將被用於在加工期間運載蒸發的先質。傳統地,在此技術領域中習知,頭壓係藉由通過一出口埠口排出產生初始頭壓的氣體而從來源容器釋放,該出口埠口與在基材的加工期間先質材料通過離開的出口埠口是相同的。然而,靠近出口埠口的過濾器通常變成被先質顆粒堵塞,該先質顆粒在初始的〝打嗝〞程序或釋放期間係伴隨著氣體。雖然一些先質顆粒被出口過濾器阻擋,一些顆粒能夠繞過過濾器,或是由過濾器捕獲的顆粒隨後變成可移動,並且進入通往至反應室的管路之中。這些游走的先質顆粒可能造成反應室之中不均勻的沉積,或是堵塞來源容器和反應室之間的氣體管線。游走的顆粒亦可能造成顆粒附著於正被加 工的半導體基材上,因而造成基材可產生的裝置、晶片或電路的數量的減少。本發明的打嗝埠口424和對應的打嗝閥428容許在〝打隔〞程序期間釋放頭壓,其中離開打嗝埠口424的氣體和顆粒在被轉向通過一打嗝氣體管線432之前首先藉由一打嗝過濾器430被過濾,打嗝氣體管線432係直接地連接至排氣管線466(圖25),藉此繞過反應室162,以便防止任何不希望的顆粒干涉反應室162之中的加工。 As shown in Figures 11A and 11C, one of the valve assemblies 418 includes an exhaust valve or a burping valve 428 that is operatively coupled to the upper surface 412 of the cover 406. The snoring valve 428 can be a pneumatic valve or any other valve that regulates the flow of gas into and out of the source vessel 400. In an embodiment, the snoring valve 428 remains closed except for the release of gas to release the head pressure in the source container 400 prior to use of the source container 400 in a semiconductor processing system. An inert gas system is introduced into the source container 400 during manufacture of the source container 400 and during the initial filling of the precursor, or after the source container 400 is refilled with the precursor, to produce a head pressure in the source container 400. . This head pressure is used to allow the leak test to be performed once the source container 400 is filled (or refilled), as explained above. When the source container 400 is installed, the gas that produces head pressure in the source container 400 needs to be removed and replaced with an inert carrier gas that will be used to carry the vaporized precursor during processing. Conventionally, it is known in the art that head pressure is released from a source container by expelling a gas that produces an initial head pressure through an outlet port that passes through the precursor material during processing of the substrate. The export pass is the same. However, the filter near the exit vent typically becomes clogged with precursor particles that are accompanied by gas during the initial snoring procedure or release. While some of the precursor particles are blocked by the outlet filter, some of the particles can bypass the filter, or the particles captured by the filter can then become movable and enter the conduit leading to the reaction chamber. These migrated precursor particles may cause uneven deposition in the reaction chamber or block the gas line between the source vessel and the reaction chamber. Swept particles may also cause particles to adhere to being added The semiconductor substrate, on the semiconductor substrate, thus results in a reduction in the number of devices, wafers or circuits that the substrate can produce. The snoring port 424 of the present invention and the corresponding snoring valve 428 permit release of the head pressure during the slamming barrier procedure, wherein the gas and particles exiting the snoring port 424 are first snored before being diverted through a snoring gas line 432. The filter 430 is filtered and the helium gas line 432 is directly connected to the exhaust line 466 (Fig. 25), thereby bypassing the reaction chamber 162 to prevent any unwanted particles from interfering with processing in the reaction chamber 162.

如顯示在圖11C中,一過濾設備434可運作地連接至蓋子406的下表面414。過濾設備434,例如更詳細地顯示在圖18中且在下文說明,係建構成過濾被導入通過蓋子406進入來源容器400之中的載體氣體,以及通過打嗝埠口424和出口埠口422離開來源容器400的氣體。在繪示的實施例中,一過濾設備434係附接至蓋子406的下方鄰近入口埠口420、出口埠口422和打嗝埠口424。該過濾設備434係直接地附接至蓋子406以容許來自蓋子406的足夠量的熱傳遞以防止先質材料在每個過濾設備434之中凝結。每個過濾設備434較佳地具有低外形,因為低外形的過濾設備提供橫越過濾包媒介(圖17)良好的熱均勻性。 As shown in FIG. 11C, a filter device 434 is operatively coupled to the lower surface 414 of the cover 406. Filtration device 434, such as shown in more detail in Figure 18 and described below, is constructed to construct a carrier gas that is introduced into the source container 400 through the cover 406 and exits the source through the snoring port 424 and the outlet port 422. The gas of the container 400. In the illustrated embodiment, a filter device 434 is attached to the lower portion of the cover 406 adjacent the inlet port 420, the outlet port 422, and the snoring port 424. The filter device 434 is attached directly to the lid 406 to allow a sufficient amount of heat transfer from the lid 406 to prevent the precursor material from condensing within each of the filter devices 434. Each filter device 434 preferably has a low profile because the low profile filter device provides good thermal uniformity across the filter bag media (Fig. 17).

底座402的實施例係顯示在圖11E至圖11G。底座402包含一本體436和一凸緣438,凸緣438係整合地連接至本體436並且從本體436延伸。在一實施例中,本體436和凸緣438係由單件材料形成。如上文所解釋,溝槽410係形成在本體436之中,其中溝槽410係建構成接收密封件 404。凸緣438係建構成從本體436的上部分徑向地向外延伸。底座402係藉由一上方接觸表面440、底部表面442、側表面444和內表面446所界定,該內表面446界定和形成凹陷區域408。接觸表面440實質上係為平坦表面,其形成底座402的整個上表面。接觸表面440係建構成直接地接觸蓋子406的下表面414c。 An embodiment of the base 402 is shown in Figures 11E-11G. The base 402 includes a body 436 and a flange 438 that is integrally connected to and extends from the body 436. In an embodiment, body 436 and flange 438 are formed from a single piece of material. As explained above, the trenches 410 are formed in the body 436, wherein the trenches 410 are constructed to form a receiving seal. 404. The flange 438 is configured to extend radially outward from the upper portion of the body 436. The base 402 is defined by an upper contact surface 440, a bottom surface 442, a side surface 444, and an inner surface 446 that defines and forms a recessed region 408. Contact surface 440 is substantially a flat surface that forms the entire upper surface of base 402. The contact surface 440 is constructed to directly contact the lower surface 414c of the cover 406.

在一實施例中,底座402係一實心材料或金屬,凹陷區域408係加工(或被移除)於底座402之中,如繪示在圖11D至圖11G中。在另一個實施例,底座402形成為一體鑄件,其中凹陷區域408係在鑄造或鍛造期間形成在底座402之中。該凹陷區域408係建構成接收一固體或液體先質於其中。於顯示在圖11D至圖11I的實施例中,該凹陷區域408係形成為長形、蜿蜒路徑,其從底座402的接觸表面440延伸。內表面446從接觸表面440延伸到本體436的厚度之中。凹陷區域408形成到本體436之中的深度可以改變。I在此技術領域中具有通常知識者可以了解的是,凹陷區域408的形狀、深度和寬度可以改變,只要凹陷區域408容許在入口埠口420和出口埠口422之間延伸的流動路徑,以增加設置於凹陷區域408之中帶有先質材料的氣體的停留時間。 In one embodiment, the base 402 is a solid material or metal and the recessed regions 408 are machined (or removed) into the base 402, as shown in Figures 11D-11G. In another embodiment, the base 402 is formed as an integral casting in which the recessed regions 408 are formed in the base 402 during casting or forging. The recessed region 408 is constructed to receive a solid or liquid precursor therein. In the embodiment shown in FIGS. 11D-11I, the recessed region 408 is formed as an elongate, meandering path that extends from the contact surface 440 of the base 402. Inner surface 446 extends from contact surface 440 into the thickness of body 436. The depth at which the recessed regions 408 are formed into the body 436 can vary. It will be appreciated by those of ordinary skill in the art that the shape, depth and width of the recessed regions 408 can be varied as long as the recessed regions 408 permit flow paths extending between the inlet and outlet ports 420, 422, The residence time of the gas with the precursor material disposed in the recessed region 408 is increased.

在一實施例中,如顯示在圖11E至圖11G,該凹陷區域408包含一入口凹陷墊448、一出口凹陷墊450、一打嗝凹陷墊452,以及一通道454,該通道454流體地連接凹陷墊448、450、452。凹陷墊448、450、452大體上係為三角 形凹陷區域,其係從底座402的接觸表面440向下地延伸。凹陷墊448、450、452的形狀與對應的過濾設備434的部位實質上是相同形狀和尺寸,過濾設備434的部位係指由蓋子406的下表面414延伸到底座402之中,使得每個過濾設備434的一部位係接收於對應的凹陷墊448、450、452之中。凹陷墊448、450、452從接觸表面440向下地延伸到一預定的深度。在一實施例中,所有凹陷墊448、450、452的深度是相同的。在另一種實施例中,至少其中之一的凹陷墊448、450、452的深度與其他凹陷墊的深度不同。當底座402填充先質,每個凹陷墊448、450、452之中的容積並未填充先質。當載體氣體係通過與蓋子406的入口埠口420相鄰的過濾設備434而被導入至底座402之中時,在通過凹陷區域408的剩餘部位之前,該載體氣體接觸並且係散佈於入口凹陷墊448之中。因為較佳地在任何凹陷墊448、450、452之中不具有先質,導入載體氣體至入口凹陷墊448之中防止載體氣體直接地接觸先質,其可能抑制先質或是造成先質的顆粒與載體氣體混合。凹陷區域408的每個凹陷墊448、450、452係藉由形成在本體436之中的通道454流體地連接。 In one embodiment, as shown in FIGS. 11E-11G, the recessed region 408 includes an inlet recessed pad 448, an exit recessed pad 450, a snoring recessed pad 452, and a channel 454 that fluidly connects the recesses Pads 448, 450, 452. The recessed pads 448, 450, 452 are generally triangular A recessed region that extends downwardly from the contact surface 440 of the base 402. The shape of the recessed pads 448, 450, 452 is substantially the same shape and size as the location of the corresponding filtering device 434, and the portion of the filtering device 434 is referred to by the lower surface 414 of the cover 406 extending into the base 402 such that each filtering A portion of device 434 is received within corresponding recessed pads 448, 450, 452. The recessed pads 448, 450, 452 extend downwardly from the contact surface 440 to a predetermined depth. In an embodiment, the depths of all of the recessed pads 448, 450, 452 are the same. In another embodiment, at least one of the recessed pads 448, 450, 452 has a different depth than the other recessed pads. When the base 402 is filled with the precursor, the volume of each of the recessed pads 448, 450, 452 is not filled with the precursor. When the carrier gas system is introduced into the base 402 through the filter device 434 adjacent the inlet port 420 of the cover 406, the carrier gas contacts and is interspersed with the inlet recess pad before passing through the remaining portion of the recessed region 408. Among 448. Since it is preferred that there is no precursor among any of the recessed pads 448, 450, 452, the introduction of the carrier gas into the inlet recessed pad 448 prevents the carrier gas from directly contacting the precursor, which may inhibit the precursor or cause the precursor. The particles are mixed with a carrier gas. Each of the recessed pads 448, 450, 452 of the recessed region 408 is fluidly coupled by a channel 454 formed in the body 436.

如繪示在圖11F至圖11G中,凹陷區域408的通道454從接觸表面440延伸,其中通道454是一連續的路徑,氣體可延著通道454在入口凹陷墊448和出口凹陷墊450之間移動。在另一種實施例中,該凹陷區域408不包含凹陷墊,使得通道454延伸於鄰近入口埠口420的過濾設備434 和鄰近出口埠口422及打嗝埠口424的過濾設備434之間的整個距離。通道454形成於本體436之中,使得通道454具有之深度係大於凹陷墊448、450、452的深度。在一實施例中,通道454的深度沿著介於入口凹陷墊448和出口凹陷墊450之間的通道454的整個長度係為固定的。在另一個實施例中,通道454的深度沿著在入口凹陷墊448和出口凹陷墊450之間的通道454的長度改變。 As shown in FIGS. 11F-11G, the channel 454 of the recessed region 408 extends from the contact surface 440, wherein the channel 454 is a continuous path through which the gas can extend between the inlet recess pad 448 and the exit recess pad 450. mobile. In another embodiment, the recessed region 408 does not include a recessed pad such that the channel 454 extends beyond the filtering device 434 adjacent the inlet port 420. The entire distance between the filter device 434 adjacent the exit hopper 422 and the snoring port 424. Channel 454 is formed in body 436 such that channel 454 has a depth that is greater than the depth of recessed pads 448, 450, 452. In an embodiment, the depth of the channel 454 is fixed along the entire length of the channel 454 between the inlet recess pad 448 and the exit recess pad 450. In another embodiment, the depth of the channel 454 varies along the length of the channel 454 between the inlet recess pad 448 and the exit recess pad 450.

當來源容器400係填充液體或固體先質材料(未顯示)時,該先質材料較佳地只配置在形成於本體436中的凹陷區域408的通道454之中。通道454應該填充至低於凹陷墊448、450、452的底部表面的深度,以防止任何先質材料被留置在凹陷墊448、450、452之中。再者,出口凹陷墊450的底部表面係位於先質材料的上表面,使得任何先質材料顆粒保持在通道454之中。 When the source container 400 is filled with a liquid or solid precursor material (not shown), the precursor material is preferably disposed only in the channel 454 formed in the recessed region 408 in the body 436. Channel 454 should be filled to a depth below the bottom surface of recessed pads 448, 450, 452 to prevent any precursor material from being retained in recessed pads 448, 450, 452. Further, the bottom surface of the exit recess pad 450 is located on the upper surface of the precursor material such that any precursor material particles remain in the channel 454.

在顯示於圖11E的底座402的實施例中,通道454延伸於入口凹陷墊448和出口凹陷墊450之間,並且具有蜿蜒的形狀。通道454形成介於入口埠口420和出口埠口422之間的蜿蜒路徑,載體氣體可沿著該蜿蜒路徑移動。換句話說,介於入口凹陷墊448和出口凹陷墊450之間的通道454在入口埠口420和出口埠口422之間並非直線狀。在繪示於圖11E至圖11G的實施例中,通道454包含複數個直線區段456。再者,至少兩個鄰近的直線區段456實質上彼此平行。通道454具有一寬度。在一實施例中,通道454沿著其整體長度具有固定的寬度。在另一種實施例中,通 道454的寬度沿著其長度改變。通道454的蜿蜒形狀將時間量以及被導入至來源容器400之中的載體氣體與設置在凹陷區域408之中的先質材料接觸的距離最大化。 In the embodiment of the base 402 shown in FIG. 11E, the channel 454 extends between the inlet recess pad 448 and the exit recess pad 450 and has a meandering shape. Channel 454 forms a meandering path between inlet port 420 and outlet port 422 along which the carrier gas can move. In other words, the passage 454 between the inlet pocket 448 and the outlet pocket 450 is not linear between the inlet port 420 and the outlet port 422. In the embodiment illustrated in Figures 11E-11G, the channel 454 includes a plurality of linear segments 456. Furthermore, at least two adjacent straight line segments 456 are substantially parallel to each other. Channel 454 has a width. In an embodiment, the channel 454 has a fixed width along its entire length. In another embodiment, the pass The width of the track 454 varies along its length. The meandering shape of the channel 454 maximizes the amount of time and the distance that the carrier gas introduced into the source container 400 contacts the precursor material disposed in the recessed region 408.

在來源容器400的底座402的另一種實施例中,通道454延伸於入口凹陷墊448和出口凹陷墊450之間,並且與其流體連通,如繪示在圖11H中。通道454包含複數個弧形區段458。在一實施例中,通道454包含至少兩個弧形區段458,其實質上相對於彼此是同心的。在另一實施例中,通道454包含複數個弧形區段458而不是線性區段456。在底座402的另一種實施例中(未顯示),通道454係為延伸於入口凹陷墊448和出口凹陷墊450之間或是入口埠口420和出口埠口422之間的完全無規則、蜿蜒路徑。 In another embodiment of the base 402 of the source container 400, the channel 454 extends between and is in fluid communication with the inlet recess pad 448 and the outlet recess pad 450, as shown in Figure 11H. Channel 454 includes a plurality of curved segments 458. In an embodiment, the channel 454 includes at least two curved segments 458 that are substantially concentric with respect to each other. In another embodiment, the channel 454 includes a plurality of arcuate segments 458 instead of a linear segment 456. In another embodiment of the base 402 (not shown), the passage 454 is a completely irregular, 蜿 extending between the inlet recessed pad 448 and the outlet recessed pad 450 or between the inlet and outlet 420 and the outlet opening 422.蜒 path.

圖11H繪示底座402的實施例,其進一步包含一加入組件460,其設置在底座402之中。在一實施例中,加熱組件460係整合於底座402的壁部之中,介於側表面444和底部表面442以及內表面446之間。該加熱組件460係建構成提供直接的熱給底座402,以便設置於其中的蒸發先質材料464。在一實施例中,加熱組件460可以是整合地形成在底座之中的線材加熱器,或者是任何其他型式的加熱機構,其足以提供直接熱至底座402,同時整合在其中。在另一種實施例中,加熱組件460埋置在底座402之中的電阻性元件。在其他的實施例中,加熱組件460可以是埋置在底座402之中的薄箔加熱元件。在此技術領域中具有通常知識者可知,加熱組件460可包含任何加熱手段,其提供 直接加熱給底座402的本體436,以便提供足夠的熱量以蒸發先質材料464。 FIG. 11H illustrates an embodiment of a base 402 that further includes an add-on assembly 460 disposed within the base 402. In one embodiment, the heating assembly 460 is integrated into the wall of the base 402 between the side surface 444 and the bottom surface 442 and the inner surface 446. The heating assembly 460 is constructed to provide direct heat to the base 402 for the evaporative precursor material 464 disposed therein. In an embodiment, the heating assembly 460 can be a wire heater integrally formed in the base, or any other type of heating mechanism sufficient to provide direct heat to the base 402 while being integrated therein. In another embodiment, the heating component 460 is embedded in a resistive element in the base 402. In other embodiments, the heating assembly 460 can be a thin foil heating element embedded in the base 402. As is known to those of ordinary skill in the art, heating assembly 460 can include any heating means that provide The body 436 of the base 402 is heated directly to provide sufficient heat to evaporate the precursor material 464.

在來源容器400的底座402的另一種實施例中,一凹陷區域408係形成在底座402之中,以提供底座402之中大體上的中空體積以接收先質材料,如顯示於圖11J中。雖然繪示在圖11J中的實施例並未包含類似於上述實施例的通道或是蜿蜒路徑,該凹陷區域408提供在底座402之中介於入口埠口420和出口埠口422之間的延伸、非線性路徑。 In another embodiment of the base 402 of the source container 400, a recessed region 408 is formed in the base 402 to provide a substantially hollow volume within the base 402 to receive the precursor material, as shown in Figure 11J. Although the embodiment illustrated in FIG. 11J does not include a channel or a meandering path similar to the embodiment described above, the recessed region 408 provides an extension between the inlet port 420 and the outlet port 422 in the base 402. , non-linear path.

當來源容器400被組裝時,該蓋子406係可移除地附接至底座402,其中密封件404配置在其間。當蓋子406係被附接至底座402時,一內部容積468係被界定在形成底座402中的凹陷區域408的內表面446以及蓋子406的下表面414之間。蓋子406包含複數個孔洞462,該孔洞462形成貫穿蓋子406的整個厚度T1,如顯示在圖11B中。形成貫穿蓋子406的孔洞462係位於與蓋子406的外邊緣相鄰。底座402亦包含形成貫穿凸緣438的整體厚度的複數個孔洞462,如顯示在圖11D中。蓋子406係與底座402對齊,使得附接至蓋子406的每個過濾設備434係被接收在底座402的對應的凹陷墊448、450、452之中。密封件404係被配置在形成於底座402中的溝槽410之中。當蓋子406和底座402對齊時,形成在蓋子406中的孔洞462同樣地與形成在底座402中的孔洞462對齊。一連接元件(未顯示)係插入穿過底座402和蓋子406中的每對相對應的 孔洞462,使得蓋子406係可移除地密封至底座402。在此技術領域中具有通常知識者可知的是,可使用任何形式的連接元件以可移除地將蓋子406附接至底座402,包含,但不限制於,螺絲、螺栓或夾具。當完整地組裝後,蓋子406的下表面414與底座402的接觸表面440成緊密接觸。蓋子406與底座402的接觸表面440的接觸提供蓋子406和本體436直接地位於凹陷區域408附近的部位之間的直接熱傳遞,以便傳遞熱經過底座402到配置在內部容積468之中的先質材料。在此技術領域中具有通常知識者可了解的是,蓋子406的下表面414以及底座402的接觸表面440兩者皆實質上平坦的,使得當這些表面414、440彼此接觸時,蓋子406和底座402之間的緊鄰關係提供通道454的鄰近部位之間的密封(圖11E和圖11I),因此載體氣體和蒸發的先質材料藉著通過蓋子406和底座402之間而不會繞過通道454的該部位。 When the source container 400 is assembled, the cover 406 is removably attached to the base 402 with the seal 404 disposed therebetween. When cover 406 is attached to base 402, an interior volume 468 is defined between inner surface 446 that forms recessed area 408 in base 402 and lower surface 414 of cover 406. The cover 406 includes a plurality of holes 462 that form the entire thickness T1 through the cover 406, as shown in Figure 11B. A hole 462 formed through the cover 406 is located adjacent the outer edge of the cover 406. The base 402 also includes a plurality of apertures 462 that form an overall thickness through the flange 438, as shown in Figure 11D. The cover 406 is aligned with the base 402 such that each filter device 434 attached to the cover 406 is received within a corresponding recessed pad 448, 450, 452 of the base 402. The seal 404 is disposed in a groove 410 formed in the base 402. When the cover 406 and the base 402 are aligned, the holes 462 formed in the cover 406 are likewise aligned with the holes 462 formed in the base 402. A connecting element (not shown) is inserted through each of the pair of base 402 and cover 406. The aperture 462 is such that the cover 406 is removably sealed to the base 402. It will be appreciated by those of ordinary skill in the art that any form of connecting element can be used to removably attach the cover 406 to the base 402, including, but not limited to, screws, bolts or clamps. When fully assembled, the lower surface 414 of the cover 406 is in intimate contact with the contact surface 440 of the base 402. Contact of the cover 406 with the contact surface 440 of the base 402 provides direct heat transfer between the cover 406 and the portion of the body 436 directly adjacent the recessed region 408 to transfer heat through the base 402 to a precursor disposed within the interior volume 468. material. It will be appreciated by those of ordinary skill in the art that both the lower surface 414 of the cover 406 and the contact surface 440 of the base 402 are substantially flat such that when the surfaces 414, 440 are in contact with each other, the cover 406 and the base The close relationship between 402 provides a seal between adjacent portions of the channel 454 (Figs. 11E and 11I) so that the carrier gas and the vaporized precursor material do not bypass the channel 454 by passing between the cover 406 and the base 402. The part.

在加工反應室162中的半導體基材的運作中(圖25),一載體氣體係經過蓋子406中的入口埠口420被導入至來源容器400之中。一先質材料464係被配置在來源容器400之中,且來源容器400被加熱,藉此蒸發先質材料。載體氣體隨後通過位於入口埠口420附近的過濾設備434,並且隨後進入底座402藉由形成凹陷區域408的內表面446和蓋子406的下表面414所界定的內部容積468之中。當進入內部容積468時,載體氣體進入到入口凹陷墊448並且隨後經由通道454散佈。當載體氣體移動通過內部容積 468,載體氣體與蒸發的先質材料464混合(圖11H)以形成一氣體混合物,其充滿蒸發的先質材料。載體氣體保持在內部容積468之中的滯留時間越長,載體氣體變得更為充滿蒸發的先質材料。在此技術領域中具有通常知識者可知道的是,載體氣體被蒸發的先質材料充滿的飽和度是有限制的,而內部容積468之間介在入口埠口420和出口埠口422之間的路徑的長度係被最佳化,以將載體氣體的飽和量最大化。此氣體混合物最後可藉由通過可運作地連接至蓋子406且位於出口埠口422附近的過濾設備434而離開內部容積468。在通過過濾設備434之後,氣體混合物經由出口埠口422離開來源容器400並且進入出口氣體管線470(圖25),該氣體管線470係與一反應室162流體連通。 In operation of the semiconductor substrate in processing chamber 162 (Fig. 25), a carrier gas system is introduced into source container 400 through inlet port 420 in lid 406. A precursor material 464 is disposed in the source container 400, and the source container 400 is heated, thereby evaporating the precursor material. The carrier gas then passes through a filtering device 434 located adjacent the inlet port 420 and then into the base 402 by forming an interior volume 468 defined by the inner surface 446 of the recessed region 408 and the lower surface 414 of the cover 406. Upon entering the interior volume 468, the carrier gas enters the inlet recess pad 448 and is subsequently dispersed via the channel 454. When the carrier gas moves through the internal volume 468, the carrier gas is mixed with the vaporized precursor material 464 (Fig. 11H) to form a gas mixture that is filled with the vaporized precursor material. The longer the residence time of the carrier gas remaining in the internal volume 468, the more the carrier gas becomes filled with the vaporized precursor material. It will be appreciated by those of ordinary skill in the art that the saturation of the carrier gas with the vaporized precursor material is limited, while the internal volume 468 is intermediate between the inlet port 420 and the outlet port 422. The length of the path is optimized to maximize the amount of saturation of the carrier gas. This gas mixture can ultimately exit the interior volume 468 by passing through a filtering device 434 that is operatively coupled to the lid 406 and located adjacent the outlet port 422. After passing through the filtration device 434, the gas mixture exits the source vessel 400 via an outlet port 422 and enters an outlet gas line 470 (Fig. 25) that is in fluid communication with a reaction chamber 162.

在一打嗝程序中,來源容器400的內部容積468之中的氣體產生在其中的頭壓,其係在來源容器400的首次填充或再填充被移除之後添加。在一打嗝程序中,如顯示在圖25的示意圖中,打嗝閥428係被開啟以容許在來源容器400之中的氣體經由打嗝埠口424離開內部容積468。頭壓係通過可運轉地連接至與打嗝埠口424相鄰的蓋子406的打嗝過濾器430。在通過打嗝過濾器430之後,頭壓氣體經由打嗝埠口424離開來源容器400並且進入一打嗝氣體管線432,其繞過反應室162並且係流體地且可運作地連接至一排氣管線466,來自反應室162的流出物流動通過該氣管線466。一旦產生初始頭壓的氣體離開來源容器400,使得在來源容器400之中的壓力均等,載體氣體係被引導通過 附接於蓋子406位於入口埠口420附近的過濾設備434,並且隨後進入底座402的內部容積468之中,以將凹陷區域408填充載體氣體到預定的運作壓力。 In a snoring procedure, the gas within the internal volume 468 of the source container 400 produces a head pressure therein that is added after the first fill or refill of the source container 400 is removed. In a snoring procedure, as shown in the schematic of FIG. 25, the snoring valve 428 is opened to allow gas in the source container 400 to exit the interior volume 468 via the snoring port 424. The head pressure is passed through a snoring filter 430 operatively coupled to a cover 406 adjacent the snoring port 424. After passing through the snoring filter 430, the head gas exits the source vessel 400 via the snoring port 424 and enters a snoring gas line 432 that bypasses the reaction chamber 162 and is fluidly and operatively coupled to an exhaust line 466. The effluent from reaction chamber 162 flows through the gas line 466. Once the gas that produced the initial head pressure exits the source vessel 400 such that the pressure in the source vessel 400 is equal, the carrier gas system is directed through A filter device 434 attached to the cover 406 near the inlet port 420 and then into the interior volume 468 of the base 402 to fill the recessed region 408 with the carrier gas to a predetermined operating pressure.

在另一種替代實施例中,繪示在圖12至16,蜿蜒路徑插入件112包含複數個堆疊的托盤,其共同地界定一蜿蜒氣體流動路徑。舉例而言,圖12顯示複數個堆疊的托盤230、240,其係建構成可移除地插入於一容器本體104(圖7至圖10)之中,並且共同地界定一螺旋氣體流動路徑,其包含容器100的蜿蜒路徑的至少一部分。在圖12至圖16中,托盤230、240的高度被放大以清楚地顯示。其可了解的是,托盤可以製成垂直上較薄,因此容器100具有遠大於其整體高度的直徑。 In another alternative embodiment, illustrated in Figures 12 through 16, the meandering path insert 112 includes a plurality of stacked trays that collectively define a helium gas flow path. For example, Figure 12 shows a plurality of stacked trays 230, 240 that are structurally removably inserted into a container body 104 (Figures 7-10) and collectively define a spiral gas flow path, It contains at least a portion of the meandering path of the container 100. In FIGS. 12 to 16, the heights of the trays 230, 240 are enlarged to be clearly displayed. It will be appreciated that the tray can be made relatively thin vertically so that the container 100 has a diameter that is much larger than its overall height.

在繪示的實施例中,四個托盤被堆疊:三個上托盤230和一個下托盤240。托盤的數量可以根據參數改變,像是揮發率、載體流動等等。 In the illustrated embodiment, four trays are stacked: three upper trays 230 and one lower tray 240. The number of trays can vary depending on parameters such as volatility, carrier flow, and the like.

請參照圖13和圖14,每個上托盤230包含一實心分隔器231,其防止氣體流動通過並且延伸托盤230的整個高度,以及一部分分隔器232,其容許氣體流動通過。較佳地,該部分分隔器包含一濾網233,其建構成固持大的先質顆粒,同時容許自由氣體流動通過。在繪示的實施例中,濾網233延伸通過部分分隔器232的頂部部分,而一實心板完成部分分隔器232的高度。一環狀緣234亦延伸上托盤230的高度。實心分隔器231和部分分隔器232一起界定用於保持固體來源材料(未顯示)的一主要隔間235和一外 通道隔間236,該外通道隔間236在托盤230的下表面係為開放。所繪示的上托盤230具有一中央核心237,其包含一中央通道238以容納輸送載體氣體到底部托盤240的氣體入口管。所繪示的上托盤230在其上表面上亦具有複數個釘椿239,且在其下表面上具有對應的複數個孔洞(未顯示)以用於接收在其下方的其他的托盤的釘椿。鑑於操作時將可更詳細了解,如在以下說明,中央核心237的下表面上的孔洞理想地可相對於上表面上的釘樁239旋轉地偏移,作為正確地將複數個托盤對齊在另一托盤上,以界定彎曲的流動路徑。在某些較佳實施例中,主要隔間中的流體會暴露的角落係被倒成圓角,以便將在具尖銳角的角落的流體停滯最小化。 Referring to Figures 13 and 14, each upper tray 230 includes a solid divider 231 that prevents gas from flowing therethrough and extends the entire height of the tray 230, as well as a portion of divider 232 that allows gas to flow therethrough. Preferably, the partial divider comprises a screen 233 which is constructed to hold large precursor particles while allowing free gas to flow therethrough. In the illustrated embodiment, the screen 233 extends through the top portion of the partial divider 232, while a solid panel completes the height of the portion divider 232. An annular rim 234 also extends the height of the upper tray 230. The solid divider 231 and the partial divider 232 together define a primary compartment 235 and an outer space for holding solid source material (not shown) Channel compartment 236, which is open on the lower surface of tray 230. The illustrated upper tray 230 has a central core 237 that includes a central passage 238 for receiving a gas inlet tube that carries carrier gas to the bottom tray 240. The illustrated upper tray 230 also has a plurality of magazines 239 on its upper surface and a corresponding plurality of holes (not shown) on its lower surface for receiving staples of other trays thereunder. . In view of the more detailed understanding of the operation, as explained below, the apertures in the lower surface of the central core 237 are desirably rotationally offset relative to the pegs 239 on the upper surface as a correct alignment of the plurality of trays in another On a tray to define a curved flow path. In certain preferred embodiments, the exposed corners of the fluid in the primary compartment are rounded to minimize fluid stagnation at corners with sharp corners.

請參照圖15和圖16,最下方的托盤240包含一實心分隔器241和一部分分隔器242,實心分隔器241防止氣體流動通過,並且延伸托盤的全部高度,部分分隔器242容許氣體流動通過上方。較佳地,部分分隔器242僅提供通往至重疊的上托盤230之中間處的中央通道238的開口,其將參照圖12的說明有更詳細的了解。一環狀緣244亦延伸下托盤240的高度。環狀緣244、實心分隔器241和部分分隔器242一起界定用於保持固體來源材料(未顯示)的主要隔間245以及一外通道隔間246。在一較佳實施例中,該固體來源材料僅填充主要隔間245高達外通道隔間246且與外通道隔間246齊平。在替代實施例中,固體來源材料填充至主要隔間的三分之一到三分之二的高度之間。所繪 示的下托盤240亦具有:一中央核心247,外通道隔間246突伸至中央核心247之中;複數個釘樁249,位於下托盤240的上表面;以及對應的複數個孔洞(未顯示),位於下托盤240的底部表面,用於接收從容器本體104(圖7至圖10)的底層往上突伸的釘樁。 Referring to Figures 15 and 16, the lowermost tray 240 includes a solid divider 241 that prevents gas flow therethrough and extends the full height of the tray, and a portion of the divider 242 allows gas to flow through the upper portion. . Preferably, the partial divider 242 provides only an opening to the central passage 238 to the middle of the overlapping upper tray 230, which will be more fully understood with reference to the description of FIG. An annular rim 244 also extends the height of the lower tray 240. Annular edge 244, solid divider 241 and partial divider 242 together define a primary compartment 245 and an outer channel compartment 246 for holding solid source material (not shown). In a preferred embodiment, the solid source material fills only the primary compartment 245 up to the outer channel compartment 246 and is flush with the outer channel compartment 246. In an alternate embodiment, the solid source material is filled between one-third to two-thirds of the height of the primary compartment. Painted The illustrated lower tray 240 also has a central core 247 with an outer channel compartment 246 projecting into the central core 247; a plurality of pegs 249 located on the upper surface of the lower tray 240; and corresponding plurality of holes (not shown) ), located on the bottom surface of the lower tray 240 for receiving the studs projecting upward from the bottom layer of the container body 104 (Figs. 7 to 10).

托盤230、240的堆疊係如顯示在圖12的分解圖中被組裝。對於每個上托盤230和下托盤240的主要隔間235、245係填載先質來源化學物,較佳地是粉末的形式。下托盤240和複數個上托盤230彼此堆疊在上,並且裝進外容器本體104之中。托盤230、240係藉由釘樁239、249以及對應的孔洞對齊,使得氣體流進每個托盤之中,較佳地至少流動環繞主要隔間200度到355度之間的一段行程,且隨後上達重疊的上托盤230的外通道隔間236之中。容器蓋子106(圖7和圖8)隨後被關閉且密封在容器本體104上,且一中央管路215從蓋子向下延伸通過上托盤230的中央通道238以開放至下托盤240的通道隔間246。圖12顯示中央管路215而非蓋子106。中央管路係建構成輸送被運送至容器100的一入口的載體氣體。在特定較佳實施例中,一彈簧或是其他壓迫機構(未顯示)通常係定位在下托盤240下方以將所有托盤壓迫在一起,防止從中央核心到不同高度的洩漏。 The stack of trays 230, 240 is assembled as shown in the exploded view of FIG. The primary compartments 235, 245 for each of the upper and lower trays 230, 240 are filled with a precursor chemical, preferably in the form of a powder. The lower tray 240 and the plurality of upper trays 230 are stacked on each other and loaded into the outer container body 104. The trays 230, 240 are aligned by the pegs 239, 249 and corresponding holes such that gas flows into each of the trays, preferably at least a stroke of between 200 and 355 degrees around the main compartment, and subsequently The upper channel compartment 236 of the upper tray 230 is overlapped. The container lid 106 (Figs. 7 and 8) is then closed and sealed to the container body 104, and a central conduit 215 extends downwardly from the lid through the central passage 238 of the upper tray 230 to open to the passage compartment of the lower tray 240. 246. Figure 12 shows the central line 215 instead of the cover 106. The central piping system constitutes a carrier gas that transports an inlet that is transported to the vessel 100. In a particularly preferred embodiment, a spring or other compression mechanism (not shown) is typically positioned below the lower tray 240 to force all of the trays together to prevent leakage from the central core to different heights.

在運作中,惰氣較佳地係被輸送到托盤230、240的堆疊,且水平地經歷長和捲繞的流動路線,較佳地在離開每個托盤230、240之前,通過在每個托盤中的主要隔間的大 約200度到350度的弧線。在繪示的實施例中,惰性載體氣體係被提供通過一中央入口215,其向下延伸通過上托盤230之對齊的中央通道238以開放至下托盤240的通道隔間246之中。惰氣蜿蜒通過在主要間隔245中的先質來源化學物,直到碰到重疊的上托盤230的下表面中的一開口。此開口容許該載體氣體,以及其所運載的蒸發的先質,通往至重疊的上托盤230的通道隔間236之中,從該處氣體通過濾網233(圖13)並且進入主要隔間235之中。氣體蜿蜒通過在該主要隔間235中的固體先質,較佳地在碰到重疊的上托盤等的下表面中的開口之前通過大約200度至350度的弧線。在最上方的上托盤230,氣體容許離開容器100,較佳地通過在容器蓋子106處的一表面安裝出口閥110(在以下說明)。當然,其將可了解的是,如果需要的話,流動路徑可以反向。換句話說,惰性載體氣體可以從一頂部托盤開始,並且向下流動通過托盤的堆疊。 In operation, inert gas is preferably delivered to the stack of trays 230, 240 and horizontally undergoes long and winding flow paths, preferably before each tray 230, 240, past each tray Large in the main compartment An arc of about 200 to 350 degrees. In the illustrated embodiment, the inert carrier gas system is provided through a central inlet 215 that extends downwardly through the aligned central passages 238 of the upper tray 230 to open into the passage compartments 246 of the lower tray 240. The inert gas passes through the precursor source chemical in the primary space 245 until it encounters an opening in the lower surface of the overlapping upper tray 230. This opening allows the carrier gas, as well as the vaporized precursor it carries, to pass into the channel compartment 236 of the overlapping upper tray 230, from which the gas passes through the screen 233 (Fig. 13) and into the main compartment. 235. The gas enthalpy passes through a solid precursor in the primary compartment 235, preferably through an arc of about 200 to 350 degrees before encountering an opening in the lower surface of the overlapping upper tray or the like. At the uppermost upper tray 230, gas is allowed to exit the container 100, preferably by installing an outlet valve 110 (described below) at a surface at the container lid 106. Of course, it will be appreciated that the flow path can be reversed if needed. In other words, the inert carrier gas can begin from a top tray and flow down through the stack of trays.

請再次參照圖8至圖10,在所繪示的實施例中,該容器蓋子106包含一入口閥108和一出口閥110。入口閥108具有一入口末端,其經由導管121接收載體氣體。導管121具有一配件122,用於連接至一氣體界面組件180(在下文說明)的一氣體管線133的配件131(圖7)。入口閥108亦具有一出口末端,其較佳地與插入件112的蜿蜒路徑111的第一部分117(諸如末端部分)流體連通。出口閥110具有一入口末端,其較佳地與蜿蜒路徑111的一第二部分119(諸如末端部分)流體連通,以及與蓋子106的合適的氣 體出口流體連通的一出口末端,例如一孔口128。在使用中,載體氣體流進導管121之中,並且在離開孔口128之前通過入口閥108、蜿蜒路徑111,以及出口閥110。因此,導致可藉由此實施例達成者包括安裝該隔離閥於蓋子106上,並且造成載體氣體沿著一蜿蜒或是彎曲的路徑流動,同時其暴露於先質來源。在此技術領域中具有通常知識者將可知道容器200可用不同方式建構。 Referring again to FIGS. 8-10, in the illustrated embodiment, the container lid 106 includes an inlet valve 108 and an outlet valve 110. The inlet valve 108 has an inlet end that receives a carrier gas via a conduit 121. The conduit 121 has a fitting 122 for attachment to a fitting 131 (Fig. 7) of a gas line 133 of a gas interface assembly 180 (described below). The inlet valve 108 also has an outlet end that is preferably in fluid communication with a first portion 117 (such as an end portion) of the weir path 111 of the insert 112. The outlet valve 110 has an inlet end that is preferably in fluid communication with a second portion 119 (such as an end portion) of the weir path 111, and a suitable gas with the cover 106. An outlet end of the body outlet in fluid communication, such as an orifice 128. In use, the carrier gas flows into the conduit 121 and passes through the inlet valve 108, the weir path 111, and the outlet valve 110 before exiting the orifice 128. Thus, the result that can be achieved by this embodiment includes installing the isolation valve on the cover 106 and causing the carrier gas to flow along a meandering or curved path while it is exposed to the precursor source. Those of ordinary skill in the art will recognize that container 200 can be constructed in different ways.

如上文所解釋,傳統的固體或液體先質來源容器包含分離的管路,其從容器本體或蓋子延伸,具有與此管路附接在線內的閥。舉例而言,圖2中傳統的容器31包含分離的管路43b和45b,其從蓋子35向上延伸,具有附接至此管路的閥37和39。容器31的閥37和39並非直接地附接至或與蓋子35接處。結果,來自容器31的反應物氣體流出出口管路45b且隨後進入出口閥39,其可能包含具有停滯或失效的氣體容積的流動路徑。除此之外,傳統的容器31的隔離閥37、39和41係與容器蓋子35和本體33大量地熱隔離。不管有沒有失效容積或是「死水區」的存在,管路和閥兩者都非常困難以三維幾何結構有效地加熱。閥具有比蓋子35和本體33更小的熱質量,且因此傾向於更快速的加熱和冷卻。這也是為什麼,在傳統系統中,額外的加熱器(諸如管線加熱器、彈筒式加熱器,直接的加熱燈等等)經常被用來在系統冷卻期間特定地提供熱給閥以及相關的管路,以防止這些構件比容器31更快的冷卻(其可能造成不想要的情況,其中反應物蒸氣流到這些構件中 且沉積於其上)。伴隨著傳統的閥和管路的另一個問題為,其可能比容器31更快的加熱。對於某些先質而言,此可能造成一種情況,其中閥和管路比先質的分解溫度還要暖,造成先質分解並沉積於其上。 As explained above, conventional solid or liquid precursor source containers contain separate tubing that extends from the vessel body or lid and has a valve attached to the tubing in the line. For example, the conventional container 31 of Figure 2 includes separate conduits 43b and 45b that extend upwardly from the cover 35 with valves 37 and 39 attached to the conduit. The valves 37 and 39 of the container 31 are not directly attached to or joined to the lid 35. As a result, the reactant gases from the vessel 31 exit the outlet line 45b and then enter the outlet valve 39, which may contain a flow path with a stagnant or failed gas volume. In addition to this, the isolation valves 37, 39 and 41 of the conventional container 31 are largely thermally isolated from the container lid 35 and the body 33. Both the pipeline and the valve are very difficult to effectively heat with a three-dimensional geometry, with or without a failure volume or the presence of a "dead water zone." The valve has a lower thermal mass than the cover 35 and the body 33 and therefore tends to heat and cool more quickly. This is also why, in conventional systems, additional heaters (such as line heaters, cartridge heaters, direct heat lamps, etc.) are often used to specifically provide heat to the valve and associated tubes during system cooling. Roads to prevent these components from cooling faster than the vessel 31 (which may cause unwanted conditions in which reactant vapors flow into these components) And deposited on it). Another problem associated with conventional valves and tubing is that it may heat up faster than the container 31. For some precursors, this may result in a situation where the valve and tubing are warmer than the decomposition temperature of the precursor, causing the precursor to decompose and deposit thereon.

相對地,來源容器100的隔離閥108和110(圖7至圖10)較佳地係直接地安裝於容器100的蓋子106的表面。此種表面安裝技術可以稱為一種整合式氣體系統。相較於傳統的先質來源容器(例如圖2),表面安裝的閥108和110可以藉由消除閥和容器100之間的管路而減少在氣體輸送系統中的死水區(停滯的反應物氣體流)的體積,這簡化且縮短反應物氣體的移動路徑。因為壓縮的幾何形狀和改進的熱接觸,閥和管路更加容易被加熱,其減少了溫度梯度。所繪示的表面安裝閥108和110分別具有閥埠口塊118和120,其較佳地包含閥座和可調整的流量限制器(例如隔膜)用於選擇地控制氣體流動通過閥座。此種閥108和110藉由限制所有的氣體流動通過閥座而隔離容器100。埠口塊118、120可與蓋子106整合地形成,或是可分開地形成且安裝於其上。在任一種情況中,埠口塊118、120較佳地具有與容器蓋子106相當高度的熱接觸。此造成在容器100的溫度改變期間,閥108和110的溫度保持接近於蓋子106和容器本體104的溫度。這種表面安裝閥結構可減少需要用來防止蒸發的先質氣體凝結的加熱器的整體數量。當容器100係高於先質來源化學物的汽化溫度時,蒸發的先質可以自由地流動到閥108和110。因為在溫度上升 期間,閥108、110緊緊地跟著容器100的溫度,閥亦同樣地高於汽化溫度,因此減少需要防止先質在閥中凝結的加熱器的需求。縮短的氣體流動路徑亦較佳的適合於控制的加熱。表面安裝的閥108和110亦具有較小的裝配空間需求。 In contrast, the isolation valves 108 and 110 (FIGS. 7-10) of the source container 100 are preferably mounted directly to the surface of the lid 106 of the container 100. This surface mount technology can be referred to as an integrated gas system. Compared to conventional precursor source containers (eg, Figure 2), surface mount valves 108 and 110 can reduce dead water in the gas delivery system by eliminating tubing between the valve and vessel 100 (stagnation of reactants) The volume of the gas stream) which simplifies and shortens the path of movement of the reactant gases. Because of the compressed geometry and improved thermal contact, valves and tubing are more easily heated, which reduces the temperature gradient. The surface mount valves 108 and 110 are shown with valve port blocks 118 and 120, respectively, which preferably include a valve seat and an adjustable flow restrictor (e.g., a diaphragm) for selectively controlling the flow of gas through the valve seat. Such valves 108 and 110 isolate vessel 100 by restricting all of the gas flow through the valve seat. The mouthpiece blocks 118, 120 may be formed integrally with the lid 106 or may be separately formed and mounted thereon. In either case, the mouthpiece blocks 118, 120 preferably have a substantial height of thermal contact with the container lid 106. This causes the temperatures of the valves 108 and 110 to remain close to the temperature of the lid 106 and the vessel body 104 during temperature changes of the vessel 100. This surface mount valve structure reduces the overall number of heaters needed to prevent condensation of the vaporized precursor gas. When the vessel 100 is at a vaporization temperature above the precursor source chemical, the vaporized precursor can flow freely to the valves 108 and 110. Because it rises in temperature During this time, the valves 108, 110 closely follow the temperature of the vessel 100, and the valve is also higher than the vaporization temperature, thus reducing the need for a heater that prevents the precursor from condensing in the valve. The shortened gas flow path is also preferably suitable for controlled heating. Surface mounted valves 108 and 110 also have a small assembly space requirement.

在另一實施例中,埠口塊118、120(圖8)的閥調元件可以整合地形成在來源容器400的蓋子406之中,藉此容許入口閥108和出口閥110以及打嗝閥428直接地附接至蓋子406,使得入口閥108、打嗝閥428和出口閥110係安裝成與蓋子406的上表面412齊平,如繪示在圖11J中。直接地安裝閥且與蓋子406的上表面412齊平增加了他們之間的熱傳遞,並且進一步減少惰氣和蒸發的先質混合物必須從底座402的內部容積468移動到反應室162的距離(圖25)。 In another embodiment, the valve regulating elements of the mouthpiece blocks 118, 120 (Fig. 8) may be integrally formed in the cover 406 of the source container 400, thereby allowing the inlet valve 108 and the outlet valve 110 and the snoring valve 428 to be directly The ground is attached to the cover 406 such that the inlet valve 108, the snoring valve 428, and the outlet valve 110 are mounted flush with the upper surface 412 of the cover 406, as shown in Figure 11J. Directly mounting the valve and flushing with the upper surface 412 of the cover 406 increases heat transfer therebetween and further reduces the distance that the inert gas and vaporized precursor mixture must move from the interior volume 468 of the base 402 to the reaction chamber 162 ( Figure 25).

每個閥108和110較佳地包含一閥埠口塊,閥埠口塊包含氣體流動通道,氣體流動通道可以藉由閥被限制或開啟。舉例而言,請參照圖9和圖10,閥108的埠口塊118較佳地包含一內部氣體流動通道,其由導管121延伸通過埠口塊118的其中一側123到一區域113。區域113較佳地包含一內部設備(未顯示)用於限制氣體的流動,像是一閥座和一可移動的限制器或隔膜。在一實施例中,可移動的內部限制器或是隔膜可以藉由旋轉一旋柄(例如,閥108的較大上部分181)而移動,可以用手動或是自動化的方式。另一個內部氣體流動通道較佳地從區域113延伸通過 埠口塊118的相對側125到一入口通道,該入口通道延伸通过蓋子106到容器100之中。舉例來說,入口通道可以延伸到由蜿蜒插入件112所界定的蜿蜒路徑111之中。閥110和排氣閥210(在下文參照圖26至圖28說明)可以建構成類似於閥108。在一實施例中,閥108和110為氣動閥。特別地,較佳的是將閥埠口塊118和120與容器蓋子106整合地形成。此消除了在它們之間的分離的密封件的需求。 Each of the valves 108 and 110 preferably includes a valve port block that includes a gas flow passage that can be restricted or opened by the valve. For example, referring to Figures 9 and 10, the mouthpiece block 118 of the valve 108 preferably includes an internal gas flow passage that extends from the conduit 121 through one of the sides 123 of the mouthpiece block 118 to a region 113. Zone 113 preferably includes an internal device (not shown) for restricting the flow of gas, such as a valve seat and a movable restrictor or diaphragm. In one embodiment, the movable internal limiter or diaphragm can be moved by rotating a knob (e.g., the upper upper portion 181 of the valve 108), either manually or automatically. Another internal gas flow passage preferably extends through region 113 Opposite side 125 of the mouthpiece block 118 to an inlet channel that extends through the lid 106 into the container 100. For example, the inlet channel can extend into the meandering path 111 defined by the helium insert 112. Valve 110 and exhaust valve 210 (described below with reference to Figures 26-28) may be constructed similar to valve 108. In an embodiment, valves 108 and 110 are pneumatic valves. In particular, it is preferred to integrally form the valve pockets 118 and 120 with the container lid 106. This eliminates the need for separate seals between them.

在另一實施例中,閥108、110和210(圖26至圖28)係形成不具有埠口塊,像是埠口塊118、120,且較佳地與容器100的一部分整合地形成,像是容器蓋子106。 In another embodiment, valves 108, 110, and 210 (Figs. 26-28) are formed without a mouthpiece block, such as mouthpiece blocks 118, 120, and are preferably integrally formed with a portion of container 100, Like the container lid 106.

過濾器filter

較佳地,該先質來源容器包含一過濾設備,用於過濾通過容器的氣體流動,以防止粒狀物質(例如,來源化學物的粉末)離開容器。該過濾設備可以設在容器的一蓋子中,較佳地係位在表面安裝閥118、110和/或210(讀26至圖28)的下方。較佳地,該過濾設備包含用於容器的每個入口和出口的個別的過濾器。 Preferably, the precursor source container comprises a filtration device for filtering the flow of gas through the container to prevent particulate matter (eg, powder of source chemicals) from leaving the container. The filter device can be located in a lid of the container, preferably below the surface mount valves 118, 110 and/or 210 (read 26 to Figure 28). Preferably, the filtration device comprises individual filters for each inlet and outlet of the container.

圖17是過濾設備130的一實施例的剖面圖,其可被安裝在一反應物來源容器的本體或蓋子中(例如圖8的蓋子106)。所繪示的設備130係一過濾器,其係由一凸緣132、一過濾媒介134,以及一緊固器元件136形成。在此實施例中,該過濾器130的尺寸和形狀係緊密地配接在容器的蓋子(例如圖8的蓋子106)的一凹部138之中。凸緣132的 周圍可以是圓形、矩形或是其他形狀,且該形狀較佳地緊密地配合凹部138的周圍。該過濾材料134係建構成限制附在氣體中大於一特定尺寸的顆粒通過由凸緣132的一環狀內壁部140所界定的一開口。該材料134較佳地阻擋由壁部140所界定的整個開口。材料134可以包含任何多種不同的材料,且在一實施例中是一高流動燒結鎳纖維媒介。在其他實施例中,該過濾媒介係由其他金屬(例如不銹鋼)、陶瓷(例如氧化鋁)、石英或是其他典型地包含在氣體或液體過濾器中的材料製成。該材料134較佳地係被焊接或黏接至環狀壁部140。在一實施例中,該過濾器130包含一表面安裝夾層過濾器,例如由在加州聖克拉拉的TEM Products公司所販售者。 17 is a cross-sectional view of an embodiment of a filtration device 130 that can be mounted in a body or lid of a reactant source container (eg, lid 106 of FIG. 8). The illustrated device 130 is a filter formed by a flange 132, a filter media 134, and a fastener element 136. In this embodiment, the filter 130 is sized and shaped to fit snugly within a recess 138 of the lid of the container (e.g., the lid 106 of Figure 8). Flange 132 The circumference may be circular, rectangular or other shape, and the shape preferably closely fits around the recess 138. The filter material 134 is constructed to limit the passage of particles larger than a particular size in the gas through an opening defined by an annular inner wall portion 140 of the flange 132. This material 134 preferably blocks the entire opening defined by the wall portion 140. Material 134 can comprise any of a variety of different materials, and in one embodiment is a high flow sintered nickel fiber media. In other embodiments, the filter media is made of other metals (e.g., stainless steel), ceramic (e.g., alumina), quartz, or other materials typically contained in a gas or liquid filter. The material 134 is preferably welded or bonded to the annular wall portion 140. In one embodiment, the filter 130 includes a surface mount sandwich filter, such as that sold by TEM Products, Inc. of Santa Clara, California.

在繪示的實施例中,該緊固器元件136包含一彈簧扣環,其壓迫凸緣132抵住蓋子106的一壁部146。環136較佳地緊密地配接在凹部138的周圍中的一環狀凹部142之中。該扣環136可包含,例如,一扁平線壓縮彈簧,像是由位在伊利諾州蘇黎士湖的Smalley Steel Ring公司販售的Spirawave®波形彈簧。額外和不同形式的緊固器元件可被提供以將過濾器130緊固至蓋子106。較佳地,該緊固器元件136防止載體氣體和反應物蒸氣的流動通過凸緣132和蓋子106之間的交界面,使得所有的氣體必須流過過濾材料134。次凹部147可被提供用來界定位在過濾器130的出口側上的一充氣部148,其可改進被過濾的氣體流的品質。所繪示的過濾器130係可容易替換,單純地藉由將扣環136 從環狀凹部142移除,將過濾器130從凹部138移除,插入新的過濾器130,並且將扣環136再次插入於環狀凹部142之中。 In the illustrated embodiment, the fastener element 136 includes a spring retainer that presses against the flange 132 against a wall portion 146 of the cover 106. The ring 136 is preferably closely mated into an annular recess 142 in the periphery of the recess 138. The buckle 136 can include, for example, a flat wire compression spring, such as a Spirawave® wave spring sold by Smalley Steel Ring, Inc., Lake Zurich, Ill. Additional and different forms of fastener elements can be provided to secure the filter 130 to the cover 106. Preferably, the fastener element 136 prevents the flow of carrier gas and reactant vapor through the interface between the flange 132 and the cover 106 such that all of the gas must flow through the filter material 134. Secondary recess 147 can be provided to define an inflator 148 positioned on the outlet side of filter 130 that can improve the quality of the filtered gas stream. The illustrated filter 130 is easily replaceable by simply using the buckle 136 Removal from the annular recess 142 removes the filter 130 from the recess 138, inserts a new filter 130, and reinserts the buckle 136 into the annular recess 142.

該過濾器凹部138較佳地係緊密地靠近先質來源容器的其中一個隔離閥。在圖17的實施例中,該凹部138直接地位於來源容器100的出口隔離閥110(圖1)的閥埠口塊120的下方。在此技術領域中具有通常知識者將可了解的是,個別的過濾器130可結合容器的每個隔離閥設置,包含入口閥108和排氣閥210(圖26至圖28)。一通道145從充氣部148延伸到閥埠口塊120的一通道144。在繪示的實施例中,該埠口塊120係與容器蓋子106分開地形成,且較佳地一密封件係設在其間。在另一實施例中,塊120係與蓋子106整合地形成,且通道144和145係在相同的鑽孔作業中形成。 The filter recess 138 is preferably in close proximity to one of the isolation valves of the precursor source container. In the embodiment of FIG. 17, the recess 138 is located directly below the valve port block 120 of the outlet isolation valve 110 (FIG. 1) of the source container 100. It will be appreciated by those of ordinary skill in the art that individual filters 130 can be incorporated with each isolation valve of the vessel, including inlet valve 108 and exhaust valve 210 (Figs. 26-28). A passage 145 extends from the plenum 148 to a passage 144 of the valve block 120. In the illustrated embodiment, the mouthpiece block 120 is formed separately from the container lid 106, and preferably a seal is disposed therebetween. In another embodiment, the block 120 is integrally formed with the cover 106 and the channels 144 and 145 are formed in the same drilling operation.

圖18係根據一實施例的一過濾材料134的表面部位的放大剖面圖。在此實施例中,該過濾材料134包含一大顆粒過濾層150和一小顆粒過濾層152。大顆粒過濾層150較佳地過濾相當大的顆粒,而小顆粒過濾層152較佳地過濾較小的顆粒。大顆粒過濾層150包含複數個孔隙151。在一實施例中,大顆粒過濾層150係有大約20%到60%孔隙,且更佳地有30%至50%孔隙。在一實施例中,該大顆粒過濾層150係有大約42%孔隙。該大顆粒過濾層150可包含,舉例來說,一不銹鋼材料。該大顆粒過濾層150較佳地包含大部分的過濾材料134。因為孔隙151,過濾材料134產 生相當低的壓力降。一個或多個支撐管154可以被提供用於改進大顆粒過濾層150的結構剛性。該小顆粒過濾層152可具有0.05到0.2微米的孔洞大小,且更佳地為大約0.10微米。小顆粒過濾層152可具有大約5到20微米的厚度,且更佳地為大約10微米。該小顆粒過濾層152可包含,舉例而言,氧化鋯的塗層。大顆粒過濾層150的每一側可被覆小顆粒過濾層152。合適的過濾材料係為類似於由Pall公司所販售的AccuSep過濾器。 Figure 18 is an enlarged cross-sectional view of a surface portion of a filter material 134, in accordance with an embodiment. In this embodiment, the filter material 134 comprises a large particle filter layer 150 and a small particle filter layer 152. The large particle filter layer 150 preferably filters relatively large particles, while the small particle filter layer 152 preferably filters smaller particles. The large particle filter layer 150 includes a plurality of pores 151. In one embodiment, the large particle filter layer 150 has about 20% to 60% porosity, and more preferably 30% to 50% porosity. In one embodiment, the large particle filter layer 150 has about 42% porosity. The large particle filter layer 150 can comprise, for example, a stainless steel material. The large particle filter layer 150 preferably contains a majority of the filter material 134. Because of the pores 151, the filter material 134 is produced Born a fairly low pressure drop. One or more support tubes 154 may be provided for improving the structural rigidity of the large particle filter layer 150. The small particle filter layer 152 may have a pore size of 0.05 to 0.2 microns, and more preferably about 0.10 microns. The small particle filter layer 152 can have a thickness of about 5 to 20 microns, and more preferably about 10 microns. The small particle filter layer 152 can comprise, for example, a coating of zirconia. Each side of the large particle filter layer 150 may be coated with a small particle filter layer 152. A suitable filter material is similar to the AccuSep filter sold by the company Pall.

氣體界面組件Gas interface component

圖19係一氣體輸送系統160的示意圖,其可用於將載體和反應物氣體流動通過先質來源容器100和一蒸氣相反應室162。輸送系統160包含該容器100、一載體氣體來源164、一下游淨化器或過濾器166,以及複數個額外的閥,如文中所描述者。隔離閥108、110較佳地係表面安裝在容器100上,如上文所述。該載體氣體來源164係可運作以輸送一惰性載體氣體到一連接點168。一閥170係插置在連接點168和容器入口閥108之間。一閥172係插置在連接點168和一連接點174之間。一閥176係插置在連接點174和容器出口閥110之間。淨化器166和一額外的閥178係插置於連接點174和反應室162之間。如圖所示,容器100可具有合適的控制和警報界面、顯示器、面板或類似者。 19 is a schematic illustration of a gas delivery system 160 that can be used to flow a carrier and reactant gases through a precursor source vessel 100 and a vapor phase reaction chamber 162. Delivery system 160 includes the vessel 100, a carrier gas source 164, a downstream purifier or filter 166, and a plurality of additional valves, as described herein. The isolation valves 108, 110 are preferably surface mounted on the container 100 as described above. The carrier gas source 164 is operable to deliver an inert carrier gas to a junction 168. A valve 170 is interposed between the connection point 168 and the container inlet valve 108. A valve 172 is interposed between the connection point 168 and a connection point 174. A valve 176 is interposed between the connection point 174 and the container outlet valve 110. A purifier 166 and an additional valve 178 are interposed between the connection point 174 and the reaction chamber 162. As shown, the container 100 can have a suitable control and alarm interface, display, panel, or the like.

當希望將載體氣體流動通過容器100並且流到反應室162時,閥170、108、110、176和178被開啟,且閥172 關閉。相反地,當需要讓載體氣體在其通往反應室162的路程上繞過容器100時,閥172和178開啟,且較佳地所有的閥170、108、110和176關閉。閥178可用來將反應室162與氣體輸送系統160隔離,例如,用於保養或修理。 When it is desired to flow the carrier gas through the vessel 100 and to the reaction chamber 162, the valves 170, 108, 110, 176 and 178 are opened and the valve 172 shut down. Conversely, when it is desired to bypass the vessel 100 on its way to the reaction chamber 162, the valves 172 and 178 are open and preferably all of the valves 170, 108, 110 and 176 are closed. Valve 178 can be used to isolate reaction chamber 162 from gas delivery system 160, for example, for maintenance or repair.

請再次參照圖7,一先質氣體輸送系統(例如顯示在圖19中者)可被實施在一氣體界面組件180中,其有助於控制載體氣體和反應物蒸氣的流動通過容器100和相關的蒸氣相反應室。所繪示的氣體界面組件180包含複數個閥182(其實質上可執行相同於圖19的閥170、172、176和178的功能)、一下游淨化器或過濾器184,以及一加熱板186。閥182可包含閥埠口塊188,其在原理上及操作上類似於閥埠口塊118和120。 Referring again to Figure 7, a precursor gas delivery system (e.g., as shown in Figure 19) can be implemented in a gas interface assembly 180 that facilitates control of the flow of carrier gas and reactant vapor through the vessel 100 and associated The vapor phase reaction chamber. The illustrated gas interface assembly 180 includes a plurality of valves 182 (which may substantially perform the same functions as valves 170, 172, 176, and 178 of FIG. 19), a downstream purifier or filter 184, and a heating plate 186. . Valve 182 may include a valve port block 188 that is similar in principle and operation to valve port blocks 118 and 120.

請參照圖7和圖19,一氣體管線133從其中一閥182延伸,其接收來自一載體氣體來源164的載體氣體。舉例而言,氣體管線133所延伸出的閥182可執行圖19的閥170實質上的功能。圖7並未顯示該氣體管線從載體氣體來源延伸到此閥之中,但其將可了解的是可這樣設置。氣體管線133包含一配件131,當該容器和氣體界面組件180連接時,該配件131連接至容器100的載體氣體入口配件122。氣體界面組件180的一出口135輸送氣體到反應室162。其將可了解的是該來源容器的載體氣體入口可被建構成類似於出口孔口128。 Referring to Figures 7 and 19, a gas line 133 extends from one of the valves 182 that receives carrier gas from a carrier gas source 164. For example, the valve 182 from which the gas line 133 extends can perform the substantially functioning of the valve 170 of FIG. Figure 7 does not show that the gas line extends from the carrier gas source into the valve, but it will be appreciated that this can be set. Gas line 133 includes an accessory 131 that is coupled to carrier gas inlet fitting 122 of container 100 when the container is coupled to gas interface assembly 180. An outlet 135 of the gas interface assembly 180 delivers gas to the reaction chamber 162. It will be appreciated that the carrier gas inlet of the source container can be constructed similar to the outlet orifice 128.

請繼續參照圖7,加熱板186將閥182和容器100加熱,較佳地加熱到高於先質的汽化溫度的溫度。較佳實施例的 不同的閥、閥埠口塊,以其氣體導管之間的高度熱接觸,以及加熱板186接近這些構件,減少了需要防止先質凝結在容器100下游的氣體傳輸構件中所需的熱。加熱板186可以藉由多種不同形式的加熱器被加熱,諸如一彈筒式加熱器或線加熱器。該加熱板可以由多種材料形成,諸如鋁、不銹鋼、鈦,或是多種鑷合金。熱箔式(Thermofoil-type)加熱器亦可用於加熱加熱該加熱板186和閥埠口塊188。使用熱箔式加熱器可容許可變的瓦特密度或多於一個的溫度控制區。加熱板186上的可變瓦特密度的併入或多個溫度控制區使其能夠引起沿著氣體的流動路徑的溫度梯度。當反應物蒸氣往下游移動時,此可提供反應物蒸氣的逐漸加熱,因此避免凝結。合適的熱箔式加熱器係由位於明尼蘇達州的明尼阿波里斯市的Minco公司販售。額外的加熱器(包含線加熱器、彈筒式加熱器、輻射加熱燈,熱箔式加熱器)亦可被提供來加熱容器蓋子106以及容器本體104。 With continued reference to Figure 7, the heater plate 186 heats the valve 182 and the vessel 100, preferably to a temperature above the vaporization temperature of the precursor. Preferred embodiment Different valves, valve jaw blocks, with high thermal contact between their gas conduits, and the heating plate 186 approaching these components reduce the heat required to prevent the precursor from condensing in the gas transport members downstream of the vessel 100. The heater plate 186 can be heated by a variety of different forms of heaters, such as a cartridge heater or line heater. The heating plate can be formed from a variety of materials such as aluminum, stainless steel, titanium, or a variety of niobium alloys. A Thermofoil-type heater can also be used to heat the heating plate 186 and the valve block 188. The use of a hot foil heater allows for a variable watt density or more than one temperature control zone. The incorporation or variable temperature control zones of the variable watt density on the heating plate 186 enable it to cause a temperature gradient along the flow path of the gas. This provides gradual heating of the reactant vapor as the reactant vapor moves downstream, thus avoiding condensation. Suitable hot foil heaters are sold by Minco Corporation of Minneapolis, Minnesota. Additional heaters (including line heaters, cartridge heaters, radiant heat lamps, hot foil heaters) may also be provided to heat the container lid 106 and the container body 104.

在某些實施例中,可提供專用的加熱器來加熱容器100。在一特定實施例中,顯示在圖18中(在下文更詳細的說明),一專用加熱裝置220係被提供於容器的容器本體104的下表面下方。 In certain embodiments, a dedicated heater can be provided to heat the container 100. In a particular embodiment, shown in Figure 18 (described in more detail below), a dedicated heating device 220 is provided below the lower surface of the container body 104 of the container.

如上文所提及,先質蒸氣亦可藉由「蒸氣抽取」和外部氣體流動方法從容器100抽出。在蒸氣抽取方法中,真空係施加到容器100以抽出蒸氣。舉例而言,真空可施加到反應室162的下游,其中閥110、176和178開啟,而閥108、170和172關閉。舉例而言,真空可藉由使用一真空 泵被施加。在外部氣體流動方法中,該先質蒸氣可藉由將載體氣體從來源164流動到反應室162而從容器100被抽出,其中閥110、172、176和178開啟,而閥108和170關閉。在某些情況下,此可產生容器100和載體氣體的流動路徑之間的壓力差,其造成先質蒸氣朝向反應室流動。 As mentioned above, the precursor vapor can also be withdrawn from the vessel 100 by "vapor extraction" and external gas flow methods. In the vapor extraction method, a vacuum system is applied to the vessel 100 to extract vapor. For example, a vacuum can be applied downstream of the reaction chamber 162 with valves 110, 176, and 178 open and valves 108, 170, and 172 closed. For example, vacuum can be achieved by using a vacuum The pump is applied. In the external gas flow method, the precursor vapor can be withdrawn from the vessel 100 by flowing carrier gas from the source 164 to the reaction chamber 162, with the valves 110, 172, 176, and 178 open and the valves 108 and 170 closed. In some cases, this can create a pressure differential between the flow path of the vessel 100 and the carrier gas that causes the precursor vapor to flow toward the reaction chamber.

快速連接組件Quick connect component

請繼續參照圖7,快速連接組件102較佳地幫助更快且更容易的將先質來源容器100裝載、對齊、以及連接到氣體界面組件180。該快速連接組件102係人體工學式的便利,且有助於容器100的替換、再填充以及可耐用性。多種不同形式的快速連接組件可被提供,需牢記的是這些目標,且在此技術領域中具有通常知識者將可了解的是,所繪示的組件102僅僅為一種實施例。該快速連接組件102可被合併在真空罩之中,其中封裝有來源容器100和支援控制硬體。 With continued reference to FIG. 7, the quick connect assembly 102 preferably facilitates loading, aligning, and connecting the precursor source container 100 to the gas interface assembly 180 faster and easier. The quick connect assembly 102 is ergonomically convenient and facilitates replacement, refilling, and durability of the container 100. A variety of different forms of quick connect components may be provided, and these objectives are to be kept in mind, and those of ordinary skill in the art will appreciate that the illustrated component 102 is merely one embodiment. The quick connect assembly 102 can be incorporated into a vacuum enclosure in which the source container 100 and the support control hardware are packaged.

請參照圖7、圖20和圖21,繪示的快速連接組件102包含:一底座190;一托架192,其從底座190的一邊緣向上延伸;一軌道構件194;以及一舉升組件196。該底座190較佳地可被固定至氣體輸送系統6(圖1)的一下方內表面,例如在反應物來源櫃16的底板9上。較佳地,該托架192係在底座190上方的一位置處連接至氣體界面組件180且支撐該氣體界面組件180。該軌道構件194包含一平台198以及兩個位於平台198相對置側上的滾輪軌道200。具有對 齊的滾輪204的一對滾輪組件202較佳地係固定至容器100的相對置的側邊。在此實施例中,滾輪204的大小和構造係作成在軌道構件194的軌道200之中滾動,因此容器100可以簡單地和快速地定位在平台198上。 Referring to FIG. 7, FIG. 20 and FIG. 21, the quick connect assembly 102 includes: a base 190; a bracket 192 extending upward from an edge of the base 190; a track member 194; and a lift assembly 196. The base 190 is preferably affixed to a lower inner surface of the gas delivery system 6 (FIG. 1), such as on the bottom plate 9 of the reactant source cabinet 16. Preferably, the bracket 192 is coupled to the gas interface assembly 180 and supports the gas interface assembly 180 at a location above the base 190. The track member 194 includes a platform 198 and two roller tracks 200 on opposite sides of the platform 198. Have a pair A pair of roller assemblies 202 of the roller 204 are preferably secured to opposite sides of the container 100. In this embodiment, the roller 204 is sized and configured to roll within the track 200 of the track member 194 so that the container 100 can be positioned simply and quickly on the platform 198.

當該容器100以滾輪組件202與軌道200耦接而被安裝於平台198上時,出口閥110的出口較佳地係垂直地對齊氣體界面組件180的其中一閥182的入口。該舉升組件196係建構成將平台198在下方位置(顯示於圖7中)和升起位置(顯示於圖20至圖21中)之間垂直地移動。當該容器100係裝載於平台198上且該平台係移動至其升起位置時,出口閥110的出口較佳地與其中一閥182的入口直接地或間接地連通。可能需要最小程度的手動調整以合適地將出口閥110的出口和閥182的入口之間的交界面密封。在繪示的實施例中,出口閥110的出口係為閥埠口塊120中的孔口128。以此方式,該快速連接組件102能夠讓先質來源容器100和氣體界面組件180快速的連接。 When the container 100 is mounted to the platform 198 with the roller assembly 202 coupled to the track 200, the outlet of the outlet valve 110 preferably vertically aligns the inlet of one of the valves 182 of the gas interface assembly 180. The lift assembly 196 is constructed to vertically move the platform 198 between a lower position (shown in Figure 7) and a raised position (shown in Figures 20-21). The outlet of the outlet valve 110 preferably communicates directly or indirectly with the inlet of one of the valves 182 when the container 100 is loaded onto the platform 198 and the platform is moved to its raised position. A minimal manual adjustment may be required to properly seal the interface between the outlet of the outlet valve 110 and the inlet of the valve 182. In the illustrated embodiment, the outlet of the outlet valve 110 is the orifice 128 in the valve block 120. In this manner, the quick connect assembly 102 enables rapid connection of the precursor source container 100 and the gas interface assembly 180.

如顯示在圖20中,所繪示的舉升組件196包含一舉升把手195,其可手動地致動剪形腳197以垂質地移動平台198。舉例而言,把手195和腳197可以使用類似於某些現有的自動千斤頂的方式運作。在一實施例中,當該把手195被旋轉將近180度時,該舉升組件196舉起平台198到它的升起位置。然而,其將可了解的是,可另外設置其它形式的舉升裝置。 As shown in FIG. 20, the illustrated lift assembly 196 includes a lift handle 195 that can manually actuate the scissor foot 197 to move the platform 198 vertically. For example, the handle 195 and the foot 197 can operate in a manner similar to some existing automatic jacks. In one embodiment, when the handle 195 is rotated nearly 180 degrees, the lift assembly 196 lifts the platform 198 to its raised position. However, it will be appreciated that other forms of lifting devices may be additionally provided.

該快速連接組件102使其更容易將一耗盡的容器100 更換成新的容器。除此之外,因為組件102簡化了容器移除和安裝,其也更容易地執行在容器100上的例行保養。較佳地,容器100的重量使得其能夠由單一技術人員簡單地處理。 The quick connect assembly 102 makes it easier to dispense a depleted container 100 Replace with a new one. In addition to this, because assembly 102 simplifies container removal and installation, it also performs routine maintenance on container 100 more easily. Preferably, the weight of the container 100 is such that it can be easily handled by a single technician.

圖22至圖24顯示快速連接組件102的替代性實施例。所繪示的組件102包含平台198和托架192。該平台198包含軌道200,其用於接收附接在容器100的相對置側邊的舌狀件206。一個或多個舉升裝置208係被提供以舉起平台198。在繪示的實施例中,該舉升裝置208包含位於平台198下方的螺栓。螺栓可被旋轉以造成平台198上升到與容器100聯結的連接位置。一引導設備(未顯示)可被提供以保持平台198的垂直對準。 22 through 24 illustrate an alternate embodiment of the quick connect assembly 102. The illustrated assembly 102 includes a platform 198 and a cradle 192. The platform 198 includes a track 200 for receiving a tongue 206 attached to opposite sides of the container 100. One or more lifting devices 208 are provided to lift the platform 198. In the illustrated embodiment, the lift device 208 includes a bolt located below the platform 198. The bolt can be rotated to cause the platform 198 to rise to a connected position with the container 100. A guiding device (not shown) can be provided to maintain vertical alignment of the platform 198.

排氣閥Vent

如上所述,先質來源容器典形地以在容器中的惰氣(例如氦)的頭壓供給。在此頭壓下降到典型加工壓力的排氣期間(或是〝打嗝〞期間),固體先質顆粒變得氣懸且挾帶在惰氣外流中。此可污染氣體輸送系統,因為此種氣體典型地通過容器的出口隔離閥、反應物氣體輸送系統、以及最後該反應器的排氣裝置/洗滌器被排出。之後,在基材加工期間,氣體板與先質輸送路徑和排氣路徑共用而被污染的部分可能在基材上的原子層沉積期間造成加工缺陷。 As mentioned above, the precursor source container is typically supplied with a head pressure of inert gas (e.g., helium) in the container. During this period of exhaust gas pressure drop to typical processing pressure (or during snoring), the solid precursor particles become aerosolized and entrained in the outflow of inert gas. This can contaminate the gas delivery system because such gases are typically expelled through the outlet isolation valve of the vessel, the reactant gas delivery system, and finally the venting/scrubber of the reactor. Thereafter, during the processing of the substrate, the portion of the gas plate that is shared with the precursor transport path and the exhaust path and contaminated may cause processing defects during atomic layer deposition on the substrate.

圖26顯示一先質來源容器100的範例,其包含一排氣 閥210。在此實施例中,該排氣閥210係被定位在入口隔離閥108和出口隔離閥110的中間。然而,在此技術領域中具有通常知識者將可了解,亦有可能其它的配置方式。較佳地,該排氣閥210包含一閥埠口塊212,其可實質上類似於閥埠口塊118和120。圖27顯示圖26的容器100連接至圖22至圖24的氣體界面組件,如上文所述。 Figure 26 shows an example of a precursor source container 100 that includes an exhaust gas Valve 210. In this embodiment, the exhaust valve 210 is positioned intermediate the inlet isolation valve 108 and the outlet isolation valve 110. However, those of ordinary skill in the art will appreciate that other configurations are possible. Preferably, the exhaust valve 210 includes a valve port block 212 that can be substantially similar to the valve port blocks 118 and 120. Figure 27 shows the container 100 of Figure 26 coupled to the gas interface assembly of Figures 22-24, as described above.

圖28是圖26的容器100的一實施例的剖面圖。如上所述,容器100包含一容器本體104、一蜿蜒插入件112、一彈簧114,以及一容器蓋子106。該容器蓋子106包含表面安裝的隔離閥108和110,以及較佳地表面安裝的隔離閥210。較佳地,閥108、210和110分別地包含閥埠口塊118、212和120。圖28亦顯示閥埠口塊的內部氣體通道214。如上所述,該閥埠口塊120包含一氣體出口128,其供給先質蒸氣和載體氣體到氣體界面組件180。 28 is a cross-sectional view of an embodiment of the container 100 of FIG. 26. As noted above, the container 100 includes a container body 104, a cassette insert 112, a spring 114, and a container lid 106. The container lid 106 includes surface mounted isolation valves 108 and 110, and a preferably surface mounted isolation valve 210. Preferably, valves 108, 210, and 110 include valve port blocks 118, 212, and 120, respectively. Figure 28 also shows the internal gas passage 214 of the valve block. As described above, the valve port block 120 includes a gas outlet 128 that supplies precursor vapor and carrier gas to the gas interface assembly 180.

一過濾器較佳地與每個閥108、210和110聯結。在繪示的實施例中,該容器蓋子106包含與每個閥聯結的過濾器130(例如顯示在圖17中且在上文說明者)。其將可了解的是,可使用多種不同形式的過濾器。過濾器防止先質顆粒離開容器100。 A filter is preferably coupled to each of the valves 108, 210 and 110. In the illustrated embodiment, the container lid 106 includes a filter 130 coupled to each valve (e.g., as shown in Figure 17 and described above). It will be appreciated that a variety of different forms of filters can be used. The filter prevents the precursor particles from leaving the container 100.

雖然本發明的較佳實施例已經被說明,其應該了解的是,本發明並不如此限制,且可在不違背本發明的情況下完成修飾。本發明的範圍係由隨附的申請專利範圍界定,且落在申請專利範圍之意義中的所有裝置、程序和方法,無論是文義或是均等範圍,係企圖包含在其中。 Although the preferred embodiment of the invention has been described, it should be understood that the invention is not limited thereto, and modifications may be made without departing from the invention. The scope of the present invention is defined by the scope of the appended claims, and all means, procedures, and methods in the meaning of

6‧‧‧先質輸送系統 6‧‧‧Precursor delivery system

7‧‧‧頂板 7‧‧‧ top board

9‧‧‧底板 9‧‧‧floor

10‧‧‧來源容器 10‧‧‧Source container

12‧‧‧反應室 12‧‧‧Reaction room

16‧‧‧反應物來源櫃 16‧‧‧Reagent source cabinet

18‧‧‧反應室容器 18‧‧‧Reaction chamber container

20‧‧‧第一導管 20‧‧‧First catheter

22a‧‧‧隔離閥 22a‧‧‧Isolation valve

22b‧‧‧隔離閥 22b‧‧‧Isolation valve

24‧‧‧第二導管 24‧‧‧second catheter

26‧‧‧隔離閥 26‧‧‧Isolation valve

27‧‧‧控制閥 27‧‧‧Control valve

28‧‧‧淨化器 28‧‧‧ Purifier

30‧‧‧內部空間 30‧‧‧Internal space

31‧‧‧先質來源容器 31‧‧‧ precursor source container

32‧‧‧加熱裝置 32‧‧‧ heating device

33‧‧‧容器本體 33‧‧‧ container body

34‧‧‧反射器薄片 34‧‧‧ reflector sheet

35‧‧‧蓋子 35‧‧‧ cover

36‧‧‧冷卻套 36‧‧‧Cooling sleeve

37‧‧‧隔離閥 37‧‧‧Isolation valve

38‧‧‧內壁 38‧‧‧ inner wall

39‧‧‧隔離閥 39‧‧‧Isolation valve

40‧‧‧外壁 40‧‧‧ outer wall

41‧‧‧隔離閥 41‧‧‧Isolation valve

43a‧‧‧入口管路 43a‧‧‧Inlet line

43b‧‧‧入口管路 43b‧‧‧Inlet pipe

45a‧‧‧出口管路 45a‧‧‧Export line

45b‧‧‧出口管路 45b‧‧‧Export line

47‧‧‧配件 47‧‧‧Accessories

50‧‧‧第三導管 50‧‧‧ third catheter

52‧‧‧第一連接點 52‧‧‧First connection point

54‧‧‧惰氣源 54‧‧‧Inert air source

56‧‧‧閥 56‧‧‧ valve

58‧‧‧第四導管 58‧‧‧fourth catheter

60‧‧‧第二連接點 60‧‧‧second connection point

61‧‧‧限制器 61‧‧‧Restrictor

63‧‧‧閥 63‧‧‧Valves

64‧‧‧抽空源 64‧‧‧ evacuated source

70‧‧‧閥 70‧‧‧ valve

80‧‧‧曲線 80‧‧‧ Curve

82‧‧‧曲線 82‧‧‧ Curve

84‧‧‧反應物氣體脈衝 84‧‧‧Reaction gas pulse

86‧‧‧時間週期 86‧‧‧ time period

90‧‧‧氣體板 90‧‧‧ gas board

91‧‧‧入口閥 91‧‧‧Inlet valve

92‧‧‧出口閥 92‧‧‧Export valve

93‧‧‧管路 93‧‧‧pipe

94‧‧‧管路 94‧‧‧pipe

95‧‧‧管路 95‧‧‧ pipeline

96‧‧‧管路 96‧‧‧pipe

97‧‧‧氣體板 97‧‧‧ gas plate

100‧‧‧先質來源容器 100‧‧‧ precursor source container

102‧‧‧快速連接組件 102‧‧‧Quick connection components

104‧‧‧本體 104‧‧‧Ontology

106‧‧‧蓋子 106‧‧‧ cover

108‧‧‧入口閥 108‧‧‧Inlet valve

110‧‧‧出口閥 110‧‧‧Export valve

111‧‧‧路徑 111‧‧‧ Path

112‧‧‧蜿蜒路徑插入件 112‧‧‧蜿蜒Path Inserts

113‧‧‧區域 113‧‧‧Area

114‧‧‧彈簧 114‧‧‧ Spring

117‧‧‧第一部分 117‧‧‧Part 1

118‧‧‧閥埠口塊 118‧‧‧ valve mouth block

119‧‧‧第二部分 119‧‧‧Part II

120‧‧‧閥埠口塊 120‧‧‧ valve mouth block

121‧‧‧導管 121‧‧‧ catheter

122‧‧‧配件 122‧‧‧Accessories

123‧‧‧側 123‧‧‧ side

124‧‧‧緊固元件 124‧‧‧ fastening elements

125‧‧‧相對側 125‧‧‧ opposite side

126‧‧‧凸緣 126‧‧‧Flange

128‧‧‧孔口 128‧‧‧孔口

130‧‧‧過濾設備 130‧‧‧Filter equipment

131‧‧‧配件 131‧‧‧Accessories

132‧‧‧凸緣 132‧‧‧Flange

133‧‧‧氣體管線 133‧‧‧ gas pipeline

134‧‧‧過濾媒介/材料 134‧‧‧Filter media/material

135‧‧‧出口 135‧‧‧Export

136‧‧‧緊固器元件 136‧‧‧fastener components

138‧‧‧凹部 138‧‧‧ recess

140‧‧‧環狀內壁部 140‧‧‧Ring inner wall

142‧‧‧環狀凹部 142‧‧‧ annular recess

144‧‧‧通道 144‧‧‧ channel

145‧‧‧通道 145‧‧‧ channel

146‧‧‧壁部 146‧‧‧ wall

147‧‧‧次凹部 147‧‧ times recess

148‧‧‧充氣部 148‧‧‧Inflatable Department

150‧‧‧大顆粒過濾層 150‧‧‧large particle filter

151‧‧‧孔隙 151‧‧‧ pores

152‧‧‧小顆粒過濾層 152‧‧‧Small particle filter

154‧‧‧支撐管 154‧‧‧Support tube

160‧‧‧氣體輸送系統 160‧‧‧ gas delivery system

162‧‧‧反應室 162‧‧‧Reaction room

164‧‧‧載體氣體來源 164‧‧‧Carrier gas source

166‧‧‧淨化器 166‧‧‧ purifier

168‧‧‧連接點 168‧‧‧ connection point

170‧‧‧閥 170‧‧‧ valve

172‧‧‧閥 172‧‧‧ valve

174‧‧‧連接點 174‧‧‧ Connection point

176‧‧‧閥 176‧‧‧ valve

178‧‧‧閥 178‧‧‧ valve

180‧‧‧氣體界面組件 180‧‧‧ gas interface components

181‧‧‧上部分 181‧‧‧上上

182‧‧‧閥 182‧‧‧ valve

184‧‧‧淨化器 184‧‧‧ purifier

186‧‧‧加熱板 186‧‧‧heating plate

188‧‧‧閥埠口塊 188‧‧‧ valve mouth block

190‧‧‧底座 190‧‧‧Base

192‧‧‧托架 192‧‧‧ bracket

194‧‧‧軌道構件 194‧‧‧ Track members

195‧‧‧舉升把手 195‧‧‧ Lifting handle

196‧‧‧舉升組件 196‧‧‧ Lifting components

197‧‧‧剪形腳 197‧‧‧Scissors

198‧‧‧平台 198‧‧‧ platform

200‧‧‧滾輪軌道 200‧‧‧Roll track

202‧‧‧滾輪組件 202‧‧‧Roll assembly

204‧‧‧滾輪 204‧‧‧Roller

206‧‧‧舌狀件 206‧‧‧ tongue

208‧‧‧舉升裝置 208‧‧‧ lifting device

210‧‧‧閥 210‧‧‧ valve

212‧‧‧閥埠口塊 212‧‧‧ valve mouth block

214‧‧‧氣體通道 214‧‧‧ gas passage

215‧‧‧中央管路 215‧‧‧Central Pipeline

220‧‧‧加熱裝置 220‧‧‧ heating device

230‧‧‧上托盤 230‧‧‧Upper tray

231‧‧‧實心分隔器 231‧‧‧solid separator

232‧‧‧部分分隔器 232‧‧‧Part divider

233‧‧‧濾網 233‧‧‧ Filter

234‧‧‧環狀緣 234‧‧‧ring edge

235‧‧‧主要隔間 235‧‧‧main compartment

236‧‧‧外通道隔間 236‧‧‧Outer access compartment

237‧‧‧中央核心 237‧‧‧Central Core

238‧‧‧中央通道 238‧‧‧Central Channel

239‧‧‧釘椿 239‧‧‧nails

240‧‧‧下托盤 240‧‧‧Down tray

241‧‧‧實心分隔器 241‧‧‧solid separator

242‧‧‧部分分隔器 242‧‧‧Part dividers

244‧‧‧環狀緣 244‧‧‧ring edge

245‧‧‧主要隔間 245‧‧‧main compartment

246‧‧‧外通道隔間 246‧‧‧Outer channel compartment

247‧‧‧中央核心 247‧‧‧Central Core

249‧‧‧釘樁 249‧‧‧Pegs

400‧‧‧先質來源容器 400‧‧‧ precursor source container

402‧‧‧底座 402‧‧‧Base

404‧‧‧密封件 404‧‧‧Seal

406‧‧‧蓋子 406‧‧‧ cover

408‧‧‧凹陷區域 408‧‧‧ recessed area

410‧‧‧溝槽 410‧‧‧ trench

412‧‧‧上表面 412‧‧‧ upper surface

413‧‧‧滑動表面 413‧‧‧Sliding surface

414‧‧‧下表面 414‧‧‧ lower surface

416‧‧‧高公差區 416‧‧‧High tolerance zone

418‧‧‧閥組件 418‧‧‧Valve assembly

420‧‧‧入口埠口 420‧‧‧ Entrance entrance

422‧‧‧出口埠口 422‧‧‧ Export import

424‧‧‧打嗝埠口 424‧‧‧ 嗝埠口口

426‧‧‧界面構件 426‧‧‧Interface components

428‧‧‧打嗝閥 428‧‧‧Snoring valve

430‧‧‧打嗝過濾器 430‧‧‧Snoring filter

432‧‧‧打嗝氣體管線 432‧‧‧Snoring gas pipeline

434‧‧‧過濾設備 434‧‧‧Filter equipment

436‧‧‧本體 436‧‧‧ Ontology

438‧‧‧凸緣 438‧‧‧Flange

440‧‧‧接觸表面 440‧‧‧Contact surface

442‧‧‧底部表面 442‧‧‧ bottom surface

444‧‧‧側表面 444‧‧‧ side surface

446‧‧‧內表面 446‧‧‧ inner surface

448‧‧‧入口凹陷墊 448‧‧‧ Entrance recessed cushion

450‧‧‧出口凹陷墊 450‧‧‧Exit recessed mat

452‧‧‧打嗝凹陷墊 452‧‧‧ 嗝 嗝 嗝

454‧‧‧通道 454‧‧‧ channel

456‧‧‧直線區段 456‧‧‧Line section

458‧‧‧弧形區段 458‧‧‧Arc section

460‧‧‧加熱組件 460‧‧‧heating components

462‧‧‧孔洞 462‧‧‧ hole

464‧‧‧先質材料 464‧‧‧Precursor materials

466‧‧‧排氣管線 466‧‧‧Exhaust line

468‧‧‧內部容積 468‧‧‧ internal volume

470‧‧‧氣體管線 470‧‧‧ gas pipeline

T1‧‧‧厚度 T1‧‧‧ thickness

參考以上說明、隨附申請專利範圍以及從圖式中,本發明的這些和其它態樣對於在此技術領域中具有通常知識者將更為明顯,圖式係用於說明而非限制本發明,其中:圖1是一傳統的先質來源組件和反應器室組件的示意圖。 These and other aspects of the present invention will be apparent to those skilled in the art in the <RTIgt; Wherein: Figure 1 is a schematic illustration of a conventional precursor source assembly and reactor chamber assembly.

圖2是一傳統的固體先質來源容器的立體圖。 Figure 2 is a perspective view of a conventional solid precursor source container.

圖3是用於原子層沉積的反應物氣體脈波中的理想來源化學物濃度的理想圖以及低於理想圖的圖式。 Figure 3 is an ideal plot of the chemical concentration of the desired source in the reactant gas pulse waves for atomic layer deposition and a lower than ideal plot.

圖4是傳統的先質來源容器和氣體板的示意圖。 Figure 4 is a schematic illustration of a conventional precursor source vessel and gas plate.

圖5是具有表面安裝閥和氣體板的先質來源容器的示意圖。 Figure 5 is a schematic illustration of a precursor source container having a surface mount valve and a gas plate.

圖6是具有與容器緊密熱接觸的表面安裝閥和氣體板的先質來源容器的示意圖。 Figure 6 is a schematic illustration of a precursor source container having a surface mount valve and a gas plate in intimate thermal contact with the container.

圖7是一先質來源容器、一用於與容器流體連通的氣體界面組件,以及用於將容器連接至氣體界面組件和分離的快速連接組件的一實施例的立體圖。 7 is a perspective view of a precursor source container, a gas interface assembly for fluid communication with the container, and an embodiment for connecting the container to the gas interface assembly and the separate quick connect assembly.

圖8是圖7之容器的分解立體圖。 Figure 8 is an exploded perspective view of the container of Figure 7.

圖9是圖7之容器的後立體剖面圖。 Figure 9 is a rear perspective view of the container of Figure 7.

圖10是圖7之容器的後剖面圖。 Figure 10 is a rear cross-sectional view of the container of Figure 7.

圖11A是先質來源容器另一實施例的分解圖。 Figure 11A is an exploded view of another embodiment of a precursor source container.

圖11B是用於顯示在圖1IA中的先質來源容器的蓋子的俯視立體圖。 Figure 11B is a top perspective view of the cover for the precursor source container shown in Figure 1IA.

圖11C是顯示在圖11B中的蓋子的仰視立體圖。 Figure 11C is a bottom perspective view of the cover shown in Figure 11B.

圖11D是用於顯示在圖11A中的先質來源容器的底座的實施例的立體圖。 Figure 11D is a perspective view of an embodiment of a base for the precursor source container shown in Figure 11A.

圖11E是顯示在圖11D中的底座的俯視圖。 Figure 11E is a top plan view of the base shown in Figure 11D.

圖11F是顯示在圖11E中的底座沿剖面線A-A的剖面圖。 Figure 11F is a cross-sectional view of the base shown in Figure 11E taken along section line A-A.

圖11G是顯示在圖11E中的底座沿剖面線B-B的剖面圖。 Figure 11G is a cross-sectional view of the base shown in Figure 11E taken along section line B-B.

圖11H是用於顯示在圖11A中的先質來源容器的底座的另一實施例的剖面圖。 Figure 11H is a cross-sectional view of another embodiment of a base for displaying the precursor source container of Figure 11A.

圖11I是用於顯示在圖11A中的先質來源容器的底座的再另一種實施例的俯視圖。 Figure 11I is a top plan view of still another embodiment of the base for the precursor source container shown in Figure 11A.

圖11J是來源容器另一種實施例的分解立體圖。 Figure 11J is an exploded perspective view of another embodiment of the source container.

圖12是包含托盤堆疊的蜿蜒插入件之實施例的分解立體圖。 Figure 12 is an exploded perspective view of an embodiment of a cassette insert including a stack of trays.

圖13是圖12的蜿蜒插入件的一上堆疊托盤的立體圖。 Figure 13 is a perspective view of an upper stacking tray of the cymbal insert of Figure 12;

圖14是圖13的上堆疊托盤的俯視圖。 Figure 14 is a top plan view of the upper stacking tray of Figure 13 .

圖15是圖12的蜿蜒插入件的下堆疊托磐的立體圖。 15 is a perspective view of the lower stacking tray of the cymbal insert of FIG.

圖16是圖15的下堆疊托盤的俯視圖。 Figure 16 is a top plan view of the lower stacking tray of Figure 15 .

圖17是安裝於先質來源容器的蓋子上的過濾器的剖面圖。 Figure 17 is a cross-sectional view of the filter attached to the lid of the precursor source container.

圖18是可使用於圖17的過濾器的過濾材料的一種實施例。 Figure 18 is an embodiment of a filter material that can be used in the filter of Figure 17.

圖19是用於將載體和反應物氣體流動通過一先質來源 容器和一蒸氣相反應室的氣體輸送系統的示意圖。 Figure 19 is used to flow the carrier and reactant gases through a precursor source Schematic representation of a gas delivery system for a vessel and a vapor phase reaction chamber.

圖20和圖21是圖7的氣體界面組件的前視立體圖,顯示成連接。 20 and 21 are front perspective views of the gas interface assembly of Fig. 7 shown connected.

圖22是圖7先質來源容器和氣體界面組件的前視立體圖,具有快速連接組件的另一種實施例。 22 is a front perspective view of the precursor source container and gas interface assembly of FIG. 7 with another embodiment of a quick connect assembly.

圖23是圖22氣體界面組件的俯視立體圖,顯示成連接。 23 is a top perspective view of the gas interface assembly of FIG. 22, shown in connection.

圖24是圖22氣體界面組件的仰視前立體圖,顯示成分離。 Figure 24 is a bottom front perspective view of the gas interface assembly of Figure 22, shown separated.

圖25是用於將載體和反應物氣體流動通過一先質來源容器和一反應室的氣體輸送系統的示意圖。 Figure 25 is a schematic illustration of a gas delivery system for flowing a carrier and reactant gases through a precursor source vessel and a reaction chamber.

圖26是具有排氣閥的先質來源容器的立體圖。 Figure 26 is a perspective view of a precursor source container having an exhaust valve.

圖27是連接至圖22至圖24的氣體界面組件的圖26的容器的立體圖。 Figure 27 is a perspective view of the container of Figure 26 coupled to the gas interface assembly of Figures 22-24.

圖28是圖26的容器的剖面圖,具有附加的用於容器的專用加熱裝置。 Figure 28 is a cross-sectional view of the container of Figure 26 with additional dedicated heating means for the container.

100‧‧‧先質來源容器 100‧‧‧ precursor source container

102‧‧‧快速連接組件 102‧‧‧Quick connection components

104‧‧‧本體 104‧‧‧Ontology

106‧‧‧蓋子 106‧‧‧ cover

108‧‧‧入口閥 108‧‧‧Inlet valve

110‧‧‧出口閥 110‧‧‧Export valve

118‧‧‧閥埠口塊 118‧‧‧ valve mouth block

120‧‧‧閥埠口塊 120‧‧‧ valve mouth block

121‧‧‧導管 121‧‧‧ catheter

122‧‧‧配件 122‧‧‧Accessories

128‧‧‧孔口 128‧‧‧孔口

131‧‧‧配件 131‧‧‧Accessories

133‧‧‧氣體管線 133‧‧‧ gas pipeline

135‧‧‧出口 135‧‧‧Export

180‧‧‧氣體界面組件 180‧‧‧ gas interface components

181‧‧‧上部分 181‧‧‧上上

182‧‧‧閥 182‧‧‧ valve

184‧‧‧淨化器 184‧‧‧ purifier

186‧‧‧加熱板 186‧‧‧heating plate

188‧‧‧閥埠口塊 188‧‧‧ valve mouth block

190‧‧‧底座 190‧‧‧Base

192‧‧‧托架 192‧‧‧ bracket

194‧‧‧軌道構件 194‧‧‧ Track members

195‧‧‧舉升把手 195‧‧‧ Lifting handle

196‧‧‧舉升組件 196‧‧‧ Lifting components

198‧‧‧平台 198‧‧‧ platform

200‧‧‧滾輪軌道 200‧‧‧Roll track

202‧‧‧滾輪組件 202‧‧‧Roll assembly

204‧‧‧滾輪 204‧‧‧Roller

Claims (25)

一種先質來源容器,其包含:一蓋子,其具有一上表面,包含一入口埠口、一出口埠口和一打嗝埠口;一表面安裝的入口閥,其與該入口埠口流體連通;一表面安裝的出口閥,其與該出口埠口流體連通;一表面安裝的打嗝閥,其與該打嗝埠口流體連通;以及一底座,其可移除地附接至該蓋子,該底座具有形成於其中的一凹陷區域,該凹陷區域包含一入口凹陷墊、一出口凹陷墊、一打嗝凹陷墊,以及整合地形成於該底座之中的一通道。 A precursor source container comprising: a lid having an upper surface including an inlet port, an outlet port and a snoring port; and a surface mounted inlet valve in fluid communication with the inlet port; a surface mounted outlet valve in fluid communication with the outlet port; a surface mounted snoring valve in fluid communication with the snoring port; and a base removably attached to the cover, the base having A recessed region formed therein, the recessed region including an inlet recessed pad, an outlet recessed pad, a snagging recessed pad, and a channel integrally formed in the base. 如申請專利範圍第1項的先質來源容器,其中該通道流體地連接該入口凹陷墊、該出口凹陷墊,以及該打嗝凹陷墊。 The precursor source container of claim 1, wherein the passage fluidly connects the inlet recess pad, the outlet recess pad, and the snoring recess pad. 如申請專利範圍第2項所述的先質來源容器,其中該通道包含複數個線性區段。 The precursor source container of claim 2, wherein the channel comprises a plurality of linear segments. 如申請專利範圍第3項所述的先質來源容器,其中至少兩個該線性區段係相鄰且實質上平行。 The precursor source container of claim 3, wherein at least two of the linear segments are adjacent and substantially parallel. 如申請專利範圍第2項所述的先質來源容器,其中該通道包含複數個弧形區段。 The precursor source container of claim 2, wherein the channel comprises a plurality of curved segments. 如申請專利範圍第5項所述的先質來源容器,其中至少兩個該弧形區段係相鄰且實質上同中心。 The precursor source container of claim 5, wherein at least two of the arcuate segments are adjacent and substantially concentric. 如申請專利範圍第1項所述的先質來源容器,進一步 包含連接至該蓋子的一底部表面的一過濾設備。 For example, the precursor source container described in the first paragraph of the patent application, further A filter device is included that is coupled to a bottom surface of the lid. 如申請專利範圍第1項所述的先質來源容器,其中該通道的深度大於入口凹陷墊、一出口凹陷墊以及一打嗝凹陷墊任一者的深度。 The precursor source container of claim 1, wherein the channel has a depth greater than a depth of any one of the inlet recess pad, an exit recess pad, and a snagging recess pad. 如申請專利範圍第1項所述的先質來源容器,進一步包含一閥,其可運作地連接到每個埠口,其中所述入口閥、出口閥以及打嗝閥的每一個係安裝成與蓋子的一上表面齊平。 The precursor source container of claim 1, further comprising a valve operatively coupled to each of the ports, wherein each of the inlet valve, the outlet valve, and the snoring valve are mounted and capped One of the upper surfaces is flush. 如申請專利範圍第1項所述的先質來源容器,其中所述通道被加工至該底座之中。 The precursor source container of claim 1, wherein the channel is processed into the base. 如申請專利範圍第1項所述的先質來源容器,其中該通道係一蜿蜒路徑。 The precursor source container of claim 1, wherein the channel is a path. 一種先質來源容器,其包含:一底座,其具有整合地形成於其中的一凹陷區域,該凹陷區域包含一入口凹陷墊、一出口凹陷墊、一打嗝凹陷墊,以及一通道,所述入口凹陷墊、出口凹陷墊,以及打嗝凹陷墊從該底座的一接觸表面向下地延伸;一蓋子,其可移除地附接至該底座,該蓋子具有上表面,包含一入口埠口、一出口埠口,以及一打嗝埠口;以及一打嗝閥,其可運作地附接至該蓋子,且其中該打嗝閥係可運作地連接至該打嗝埠口。 A precursor source container comprising: a base having a recessed area integrally formed therein, the recessed area comprising an inlet recessed pad, an outlet recessed pad, a snoring recessed pad, and a passage, the inlet a recessed pad, an outlet recessed pad, and a snoring recessed pad extending downwardly from a contact surface of the base; a cover removably attached to the base, the cover having an upper surface including an inlet opening, an outlet A mouthwash, and a dozen mouthpieces; and a snoring valve operatively attached to the lid, and wherein the snoring valve is operatively coupled to the snoring port. 如申請專利範圍第12項所述的先質來源容器,進一步包含一打嗝過濾器,其安裝成與鄰近該打嗝埠口的蓋子 的一上表面齊平。 The precursor source container of claim 12, further comprising a sputum filter installed to be adjacent to the sluice opening One of the upper surfaces is flush. 如申請專利範圍第12項所述的先質來源容器,其中該打嗝埠口係直接地流體連接到一打嗝氣體管線,該打嗝氣體管線繞過一反應室。 The precursor source container of claim 12, wherein the snoring port is directly fluidly connected to a snoring gas line, the snoring gas line bypassing a reaction chamber. 一種先質來源容器,其包含:一底座,其具有一底部表面、一接觸表面、一延伸於該接觸表面和底部表面之間的側表面,以及一從該接觸表面延伸的內表面,以界定位於該底座中的一凹陷區域,該凹陷區域包含一入口凹陷墊、一出口凹陷墊、一打嗝凹陷墊,以及整合地形成於該底座之中的一通道;一蓋子,其可移除地附接至該底座,該蓋子具有一上表面,包含一入口埠口、一出口埠口,以及一打嗝埠口。 A precursor source container comprising: a base having a bottom surface, a contact surface, a side surface extending between the contact surface and the bottom surface, and an inner surface extending from the contact surface to define a recessed area in the base, the recessed area comprising an inlet recessed pad, an outlet recessed pad, a snoring recessed pad, and a channel integrally formed in the base; a cover removably attached Attached to the base, the cover has an upper surface including an inlet opening, an outlet opening, and a smashing opening. 如申請專利範圍第15項所述的先質來源容器,其中該蓋子包含一上表面、一下表面,以及一延伸於該上表面和下表面之間的側表面,且其中當該蓋子附接至該底座時,該蓋子的下表面與該底座的接觸表面成緊鄰關係。 The precursor source container of claim 15, wherein the cover comprises an upper surface, a lower surface, and a side surface extending between the upper surface and the lower surface, and wherein the cover is attached to In the base, the lower surface of the cover is in close proximity to the contact surface of the base. 如申請專利範圍第16項所述的先質來源容器,進一步包含界定於該底座的內表面和蓋子的下表面之間的一內部容積。 The precursor source container of claim 16, further comprising an internal volume defined between an inner surface of the base and a lower surface of the cover. 如申請專利範圍第15項所述的先質來源容器,其中該凹陷區域提供介於入口埠口和出口埠口之間的流體路徑。 The precursor source container of claim 15 wherein the recessed region provides a fluid path between the inlet port and the outlet port. 如申請專利範圍第18項所述的先質來源容器,其中所述入口凹陷墊、所述出口凹陷墊,以及所述通道係被加 工至該底座之中。 The precursor source container of claim 18, wherein the inlet recess pad, the outlet recess pad, and the channel system are added Work in the base. 如申請專利範圍第19項所述的先質來源容器,其中該通道包含複數個線性區段。 The precursor source container of claim 19, wherein the channel comprises a plurality of linear segments. 如申請專利範圍第20項所述的先質來源容器,其中至少兩個線性區段係相鄰且實質平行。 The precursor source container of claim 20, wherein at least two of the linear segments are adjacent and substantially parallel. 如申請專利範圍第19項所述的先質來源容器,其中該通道包含複數個弧形區段。 The precursor source container of claim 19, wherein the channel comprises a plurality of curved segments. 如申請專利範圍第22項所述的先質來源容器,其中至少兩個弧形區段係相鄰且實質上同中心。 The precursor source container of claim 22, wherein at least two of the arcuate segments are adjacent and substantially concentric. 如申請專利範圍第15項所述的先質來源容器,進一步包含配置在該底座中的一加熱組件。 The precursor source container of claim 15, further comprising a heating assembly disposed in the base. 一種先質來源容器,其包含:一蓋子,其具有一上表面,包含一第一埠口、一第二埠口,以及一第三埠口;以及一底座,其可移除地附接至該蓋子,該底座具有形成於其中的一凹陷區域,該底座包含一入口凹陷墊、一出口凹陷墊、一打嗝凹陷墊,以及整合地形成於該底座之中的一通道。 A precursor source container comprising: a cover having an upper surface, including a first opening, a second opening, and a third opening; and a base removably attached to The cover has a recessed area formed therein, the base comprising an inlet recessed pad, an outlet recessed pad, a snagging recessed pad, and a channel integrally formed in the base.
TW100113130A 2010-04-19 2011-04-15 Precursor delivery system TWI557261B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/763,037 US8986456B2 (en) 2006-10-10 2010-04-19 Precursor delivery system

Publications (2)

Publication Number Publication Date
TW201209216A TW201209216A (en) 2012-03-01
TWI557261B true TWI557261B (en) 2016-11-11

Family

ID=44885899

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100113130A TWI557261B (en) 2010-04-19 2011-04-15 Precursor delivery system

Country Status (3)

Country Link
KR (1) KR101943099B1 (en)
CN (1) CN102234790B (en)
TW (1) TWI557261B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10876205B2 (en) 2016-09-30 2020-12-29 Asm Ip Holding B.V. Reactant vaporizer and related systems and methods
US11926894B2 (en) 2016-09-30 2024-03-12 Asm Ip Holding B.V. Reactant vaporizer and related systems and methods
US11634812B2 (en) 2018-08-16 2023-04-25 Asm Ip Holding B.V. Solid source sublimator
FI129627B (en) * 2019-06-28 2022-05-31 Beneq Oy Atomic layer deposition apparatus
FI129579B (en) * 2019-06-28 2022-05-13 Beneq Oy Precursor source arrangement and atomic layer deposition apparatus
US11624113B2 (en) 2019-09-13 2023-04-11 Asm Ip Holding B.V. Heating zone separation for reactant evaporation system
CN112144114A (en) * 2020-09-08 2020-12-29 巩义市泛锐熠辉复合材料有限公司 Precursor source gas conveying device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199603A (en) * 1991-11-26 1993-04-06 Prescott Norman F Delivery system for organometallic compounds
US20030232138A1 (en) * 2002-06-17 2003-12-18 Marko Tuominen System for controlling the sublimation of reactants
US20050000428A1 (en) * 2003-05-16 2005-01-06 Shero Eric J. Method and apparatus for vaporizing and delivering reactant
US20050008799A1 (en) * 2003-07-08 2005-01-13 Shizuo Tomiyasu Solid organometallic compound-filled container and filling method thereof
US20050072357A1 (en) * 2002-07-30 2005-04-07 Shero Eric J. Sublimation bed employing carrier gas guidance structures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7156380B2 (en) * 2003-09-29 2007-01-02 Asm International, N.V. Safe liquid source containers
WO2008045972A2 (en) * 2006-10-10 2008-04-17 Asm America, Inc. Precursor delivery system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199603A (en) * 1991-11-26 1993-04-06 Prescott Norman F Delivery system for organometallic compounds
US20030232138A1 (en) * 2002-06-17 2003-12-18 Marko Tuominen System for controlling the sublimation of reactants
US20050072357A1 (en) * 2002-07-30 2005-04-07 Shero Eric J. Sublimation bed employing carrier gas guidance structures
US20050000428A1 (en) * 2003-05-16 2005-01-06 Shero Eric J. Method and apparatus for vaporizing and delivering reactant
US20050008799A1 (en) * 2003-07-08 2005-01-13 Shizuo Tomiyasu Solid organometallic compound-filled container and filling method thereof

Also Published As

Publication number Publication date
KR20110117021A (en) 2011-10-26
CN102234790B (en) 2015-12-16
KR101943099B1 (en) 2019-01-28
TW201209216A (en) 2012-03-01
CN102234790A (en) 2011-11-09

Similar Documents

Publication Publication Date Title
US8986456B2 (en) Precursor delivery system
US9593416B2 (en) Precursor delivery system
TWI557261B (en) Precursor delivery system
US11377732B2 (en) Reactant vaporizer and related systems and methods
KR102445312B1 (en) Vessel and method for delivery of precursor materials
FI118342B (en) Apparatus for making thin films
US20050000428A1 (en) Method and apparatus for vaporizing and delivering reactant
KR102383971B1 (en) Cobalt precursors
US7584942B2 (en) Ampoules for producing a reaction gas and systems for depositing materials onto microfeature workpieces in reaction chambers
US20210071301A1 (en) Fill vessels and connectors for chemical sublimators
KR20210032279A (en) Heating zone separation for reactant evaporation system
KR20230086586A (en) Remote solid source reactant delivery systems for vapor deposition reactors