TWI547014B - Planar dual polarization antenna and complex antenna - Google Patents

Planar dual polarization antenna and complex antenna Download PDF

Info

Publication number
TWI547014B
TWI547014B TW103126252A TW103126252A TWI547014B TW I547014 B TWI547014 B TW I547014B TW 103126252 A TW103126252 A TW 103126252A TW 103126252 A TW103126252 A TW 103126252A TW I547014 B TWI547014 B TW I547014B
Authority
TW
Taiwan
Prior art keywords
slots
antenna
transmission line
microstrip
feed transmission
Prior art date
Application number
TW103126252A
Other languages
Chinese (zh)
Other versions
TW201605120A (en
Inventor
徐杰聖
詹長庚
Original Assignee
啟碁科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 啟碁科技股份有限公司 filed Critical 啟碁科技股份有限公司
Priority to TW103126252A priority Critical patent/TWI547014B/en
Priority to US14/700,150 priority patent/US9490538B2/en
Publication of TW201605120A publication Critical patent/TW201605120A/en
Application granted granted Critical
Publication of TWI547014B publication Critical patent/TWI547014B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Description

平板雙極化天線及複合天線 Flat dual-polarized antenna and composite antenna

本發明係指一種平板雙極化天線及複合天線,尤指一種具寬頻、較寬波束、高天線增益、高同極化對正交極化(Co/Cx)值、較小天線尺寸且可產生傾斜45度正交雙極化天線場型之平板雙極化天線及複合天線。 The invention relates to a flat-plate dual-polarized antenna and a composite antenna, in particular to a wide frequency band, a wide beam, a high antenna gain, a high co-polarization pair orthogonal polarization (Co/Cx) value, a small antenna size and A flat-plate dual-polarized antenna and a composite antenna are generated which are inclined at a 45-degree orthogonal dual-polarized antenna field.

具有無線通訊功能的電子產品,如筆記型電腦、個人數位助理(Personal Digital Assistant)等,係透過天線來發射或接收無線電波,以傳遞或交換無線電訊號,進而存取無線網路。因此,為了讓使用者能更方便地存取無線通訊網路,理想天線的頻寬應在許可範圍內儘可能地增加,而尺寸則應儘量減小,以配合電子產品體積縮小之趨勢。此外,隨著無線通訊技術不斷演進,電子產品所配置的天線數量可能增加。舉例來說,長期演進(Long Term Evolution,LTE)無線通訊系統支援多輸入多輸出(Multi-input Multi-output,MIMO)通訊技術,亦即相關電子產品可透過多重(或多組)天線同步收發無線訊號,以在不增加頻寬或總發射功率耗損(Transmit Power Expenditure)的情況下,大幅地增加系統的資料吞吐量(Throughput)及傳送距離,進而有效提升無線通訊系統之頻譜效率及傳輸速率,改善通訊品質。此外,多輸入多輸出通訊技術可搭配空間分工(Spatial Multiplexing)、波束成型(Beam forming)、空間分集(Spatial Diversity)、預編碼(Precoding)等技術,進一步減少訊號干擾及增加通道容量。 Electronic products with wireless communication functions, such as a notebook computer, a personal digital assistant, etc., transmit or receive radio waves through an antenna to transmit or exchange radio signals to access a wireless network. Therefore, in order to make it easier for users to access the wireless communication network, the bandwidth of the ideal antenna should be increased as much as possible within the allowable range, and the size should be minimized to match the trend of shrinking electronic products. In addition, as wireless communication technologies continue to evolve, the number of antennas configured for electronic products may increase. For example, the Long Term Evolution (LTE) wireless communication system supports Multi-input Multi-output (MIMO) communication technology, that is, related electronic products can be synchronously transmitted and received through multiple (or multiple groups of) antennas. Wireless signal to greatly increase the system's data throughput (Throughput) and transmission distance without increasing the bandwidth or total transmission power loss (Transmit Power Expenditure), thereby effectively improving the spectrum efficiency and transmission rate of the wireless communication system. Improve communication quality. In addition, multi-input and multi-output communication technology can be combined with spatial multiplexing, beam forming, spatial diversity, and precoding to further reduce signal interference and increase channel capacity.

此外,長期演進無線通訊系統共採用44個頻段,涵蓋的頻率從最低的698MHz,到最高的3800MHz。由於頻段的分散和雜亂,即使在同一國家或地區,系統業者仍可能同時使用多個頻段。在此情形下,如何設計符合 傳輸需求的天線,同時兼顧尺寸及功能,已成為業界所努力的目標之一。 In addition, the long-term evolution wireless communication system uses a total of 44 frequency bands, covering frequencies from the lowest 698MHz to the highest 3800MHz. Due to the dispersion and clutter of frequency bands, system operators may use multiple frequency bands simultaneously, even in the same country or region. In this case, how to design conformity The transmission of the required antenna, while taking into account the size and function, has become one of the goals of the industry.

因此,本發明主要提供一種平板雙極化天線,以解決習知天線波束寬較窄的缺點。 Therefore, the present invention mainly provides a flat-panel dual-polarized antenna to solve the disadvantage that the conventional antenna beam width is narrow.

本發明揭露一種平板雙極化天線,用來收發至少一無線電訊號,包含有一第一微帶金屬片;一接地金屬板,包含有一第一圖案槽孔與一第二圖案槽孔,其中,該第一圖案槽孔之一形狀係由相隔一角度之一第一長方形與一第二長方形組成,該第一長方形與該第二長方形於一頂點重合,且該第一圖案槽孔與該第二圖案槽孔相互對稱於該第一微帶金屬片之一中心軸;以及一第一介質層,形成於該第一微帶金屬片與該接地金屬板之間。 The present invention discloses a flat-panel dual-polarized antenna for transmitting and receiving at least one radio signal, comprising a first microstrip metal piece; a grounded metal plate comprising a first pattern slot and a second pattern slot, wherein the One of the first pattern slots is formed by a first rectangle and a second rectangle separated by an angle, the first rectangle and the second rectangle coincide with a vertex, and the first pattern slot and the second The pattern slots are mutually symmetric with respect to a central axis of the first microstrip metal sheet; and a first dielectric layer is formed between the first microstrip metal sheet and the grounded metal plate.

本發明另揭露一種複合天線,用來收發至少一無線電訊號,包含有一第一平板雙極化天線層,包含有複數個第一微帶金屬片;一接地金屬板,包含有複數個矩形區塊,每一矩形區塊對應該複數個第一微帶金屬片之一第一微帶金屬片設置,每一矩形區塊包含有一第一圖案槽孔與一第二圖案槽孔,其中,該第一圖案槽孔之一形狀係由相隔一角度之一第一長方形與一第二長方形組成,該第一長方形與該第二長方形於一頂點重合,且該第一圖案槽孔與該第二圖案槽孔相互對稱於對應的該第一微帶金屬片之一中心軸;以及一第一介質層,形成於該第一平板雙極化天線層與該接地金屬板之間。 The invention further discloses a composite antenna for transmitting and receiving at least one radio signal, comprising a first planar dual-polarized antenna layer, comprising a plurality of first microstrip metal sheets; and a grounded metal plate comprising a plurality of rectangular blocks Each of the rectangular blocks is disposed corresponding to the first microstrip metal piece of the plurality of first microstrip metal pieces, and each of the rectangular blocks includes a first pattern slot and a second pattern slot, wherein the One of the pattern slots is formed by a first rectangle and a second rectangle separated by an angle, the first rectangle and the second rectangle coincide with a vertex, and the first pattern slot and the second pattern The slots are mutually symmetrical with respect to a central axis of the corresponding first microstrip metal sheet; and a first dielectric layer is formed between the first flat dual polarized antenna layer and the grounded metal plate.

10‧‧‧平板雙極化天線 10‧‧‧Single dual polarized antenna

20‧‧‧迴力鏢形狀 20‧‧‧ Back to the shape of the dart

30、40、61~66、70‧‧‧複合天線 30, 40, 61~66, 70‧‧‧ composite antenna

100、300‧‧‧饋入傳輸線層 100, 300‧‧‧Feed into the transmission line layer

102a、102b、FTL_1a、FTL_1b、FTL_2a、FTL_2b‧‧‧饋入傳輸線 102a, 102b, FTL_1a, FTL_1b, FTL_2a, FTL_2b‧‧‧ feed transmission line

110、130、150、310、330、350‧‧‧介質層 110, 130, 150, 310, 330, 350‧‧‧ dielectric layers

120、320、420、720‧‧‧接地金屬板 120, 320, 420, 720‧‧‧ grounded metal plates

122a、122b、SL_1a、SL_1b、SL_2a、SL_2b‧‧‧槽孔 122a, 122b, SL_1a, SL_1b, SL_2a, SL_2b‧‧‧ slots

124a、124b、PSL_1a、PSL_1b、PSL_2a、PSL_2b、PSL_5a、PSL_5b、PSL_6a、PSL_6b‧‧‧圖案槽孔 124a, 124b, PSL_1a, PSL_1b, PSL_2a, PSL_2b, PSL_5a, PSL_5b, PSL_6a, PSL_6b‧‧‧ pattern slot

140、160、UPP_1、UPP_2、DPP_1、DPP_2‧‧‧微帶金屬片 140, 160, UPP_1, UPP_2, DPP_1, DPP_2‧‧‧ microstrip metal sheets

200a、200b、210a、210b‧‧‧長方形 200a, 200b, 210a, 210b‧‧‧ rectangle

340、360‧‧‧平板雙極化天線層 340, 360‧‧‧ flat dual-polarized antenna layer

L‧‧‧總長度 L‧‧‧ total length

L1、L7‧‧‧長度 L1, L7‧‧‧ length

W1、W7‧‧‧寬度 W1, W7‧‧‧ width

L2‧‧‧邊長 L2‧‧‧Bianchang

W2‧‧‧邊寬 W2‧‧‧ side width

axis_y‧‧‧對稱軸線 Axis_y‧‧‧ axis of symmetry

P1‧‧‧頂點 P1‧‧‧ apex

θ1、θ2‧‧‧角度 Θ1, θ2‧‧‧ angle

SC1、SC2、SC3、SC4、SC5、SC6‧‧‧矩形區塊 SC1, SC2, SC3, SC4, SC5, SC6‧‧‧ rectangular blocks

CL_1、CL_2‧‧‧中心軸 CL_1, CL_2‧‧‧ central axis

D‧‧‧距離 D‧‧‧Distance

第1A圖為本發明實施例一平板雙極化天線之上視示意圖。 FIG. 1A is a top view of a flat dual-polarized antenna according to an embodiment of the present invention.

第1B圖為平板雙極化天線沿第1A圖之剖線A-A’之截面示意圖。 Fig. 1B is a schematic cross-sectional view of the flat double-polarized antenna taken along line A-A' of Fig. 1A.

第2圖為本發明實施例一迴力鏢形狀之示意圖。 FIG. 2 is a schematic view showing the shape of a back-dart according to an embodiment of the present invention.

第3圖為本發明實施例一複合天線之上視示意圖。 FIG. 3 is a top view of a composite antenna according to an embodiment of the present invention.

第4A圖為本發明實施例一複合天線之上視示意圖。 4A is a top view of a composite antenna according to an embodiment of the present invention.

第4B圖為第4A圖所示的複合天線之等視角示意圖。 Fig. 4B is a schematic isometric view of the composite antenna shown in Fig. 4A.

第5A圖為第4A圖所示的複合天線之天線共振模擬結果示意圖。 Fig. 5A is a schematic diagram showing the result of antenna resonance simulation of the composite antenna shown in Fig. 4A.

第5B~5E圖為第4A圖所示的複合天線之天線場型特性模擬結果示意圖。 Fig. 5B~5E is a schematic diagram showing the simulation results of the antenna field characteristics of the composite antenna shown in Fig. 4A.

第6A圖為本發明實施例一複合天線之上視示意圖。 FIG. 6A is a top view of a composite antenna according to an embodiment of the present invention.

第6B圖為本發明實施例一複合天線之上視示意圖。 FIG. 6B is a top view of a composite antenna according to an embodiment of the present invention.

第6C圖為本發明實施例一複合天線之上視示意圖。 FIG. 6C is a top view of a composite antenna according to an embodiment of the present invention.

第6D圖為本發明實施例一複合天線之上視示意圖。 FIG. 6D is a top view of a composite antenna according to an embodiment of the present invention.

第6E圖為本發明實施例一複合天線之上視示意圖。 FIG. 6E is a top view of a composite antenna according to an embodiment of the present invention.

第6F圖為本發明實施例一複合天線之上視示意圖。 FIG. 6F is a top view of a composite antenna according to an embodiment of the present invention.

第7圖為本發明實施例一複合天線之上視示意圖。 FIG. 7 is a top view of a composite antenna according to an embodiment of the present invention.

請參考第1A、1B圖,第1A圖為本發明實施例一平板雙極化天線10之上視示意圖,第1B圖為平板雙極化天線10沿第1A圖之剖線A-A’之截面示意圖。平板雙極化天線10可用來收發寬頻或多個頻段之無線電訊號,如長期演進無線通訊系統中Band 40與41之訊號(其頻段大致介於2.3GHz~2.4GHz及2.496GHz~2.690GHz)。如第1A、1B圖所示,平板雙極化天線10大致為一七層架構且相對對稱軸線axis_y具有一軸對稱結構,包含有一饋入傳輸線層100、介質層110、130、150、一接地金屬板120及微帶金屬片140、160。微帶金屬片140為主要輻射體,其形狀大致呈十字形,以產生線性極化並避免產生圓極化的電磁波。微帶金屬片160用來增加天線共振的頻寬,並藉由介質層150而不與微帶金屬片140直接接觸。較佳地,微帶金屬片140之中心與微帶金屬片160之中心對齊至微帶金屬片140之一中心軸CL_1,且中心軸CL_1垂直於對稱軸線axis_y設置。饋入傳輸線層100包含有饋入傳輸線102a、102b,其對稱於對稱軸線axis_y設置且相互正交,以饋入兩種無線電訊號(如不同極化方向)。接地金屬板120用來提供接地,並包含有槽孔122a、122b及圖案槽孔124a、124b。槽孔122a、122b分別與饋入 傳輸線102a、102b正交且對稱於對稱軸線axis_y,以產生正交之雙極化天線場型。 Please refer to FIG. 1A and FIG. 1B. FIG. 1A is a top view of a flat dual-polarized antenna 10 according to an embodiment of the present invention, and FIG. 1B is a cross-sectional line A-A' of the flat dual-polarized antenna 10 along the first FIG. Schematic diagram of the section. The flat-panel dual-polarized antenna 10 can be used to transmit and receive radio signals in broadband or multiple frequency bands, such as the signals of Band 40 and 41 in the long-term evolution wireless communication system (the frequency band is roughly between 2.3 GHz and 2.4 GHz and 2.496 GHz to 2.690 GHz). As shown in FIGS. 1A and 1B, the planar dual-polarized antenna 10 is substantially a seven-layer structure and has an axisymmetric structure with respect to the axis of symmetry axis_y, and includes a feed transmission line layer 100, dielectric layers 110, 130, 150, and a grounded metal. Plate 120 and microstrip metal sheets 140, 160. The microstrip sheet metal 140 is the primary radiator and is generally shaped like a cross to create linear polarization and to avoid the generation of circularly polarized electromagnetic waves. The microstrip metal sheet 160 serves to increase the bandwidth of the antenna resonance and is not in direct contact with the microstrip metal sheet 140 by the dielectric layer 150. Preferably, the center of the microstrip metal piece 140 is aligned with the center of the microstrip metal piece 160 to a central axis CL_1 of the microstrip metal piece 140, and the central axis CL_1 is disposed perpendicular to the axis of symmetry axis_y. The feed transmission line layer 100 includes feed transmission lines 102a, 102b that are symmetric about the axis of symmetry axis_y and orthogonal to each other to feed two types of radio signals (e.g., different polarization directions). The grounded metal plate 120 is used to provide grounding and includes slots 122a, 122b and pattern slots 124a, 124b. Slots 122a, 122b are respectively fed Transmission lines 102a, 102b are orthogonal and symmetrical about the axis of symmetry axis_y to produce an orthogonal dual-polarized antenna pattern.

簡單來說,接地金屬板120沿對稱軸線axis_y之長度L1大於接地金屬板120沿x方向之寬度W1,因此可增加波束寬(3dB beamwidth)。並且,接地金屬板120的圖案槽孔124a、124b可平衡長度L1與寬度W1的不對稱性,以改善同極化對正交極化(Co/Cx)值。 In short, the length L1 of the grounded metal plate 120 along the axis of symmetry axis_y is greater than the width W1 of the grounded metal plate 120 in the x direction, so that the beam width (3dB beamwidth) can be increased. Also, the pattern slots 124a, 124b of the grounded metal plate 120 can balance the asymmetry of the length L1 and the width W1 to improve the co-polarization versus orthogonal polarization (Co/Cx) values.

詳細而言,為了增加水平切面(xz平面)中的波束寬,需縮短接地金屬板120沿x方向之寬度W1,以使水平方向的輻射場形更為發散,因此,適當設計平板雙極化天線10後,接地金屬板120沿對稱軸線axis_y之長度L1大於接地金屬板120沿x方向之寬度W1。由於長度L1與寬度W1不相等將使得垂直方向與水平方向的共振長度不同,因此可透過圖案槽孔124a、124b來平衡長度L1大於寬度W1帶來的不對稱性。其中,圖案槽孔124a、124b大致具有一迴力鏢(Boomerang)形狀20。請參考第2圖,第2圖為本發明實施例一迴力鏢形狀20之示意圖。迴力鏢形狀20係由形狀尺寸相同之長方形210a、210b組成,而長方形210a、210b有重合之一頂點P1。更進一步來看,長方形210a、210b可視為原先並排的長方形200a、200b以頂點P1為一旋轉支點,並自對稱軸線axis_y分別向外旋轉角度θ 1、θ 2而形成。較佳地,角度θ 1、θ 2為20°,但不限於此。如第1A圖及第2圖所示,迴力鏢形狀20相對於對稱軸線axis_y對稱,且圖案槽孔124a、124b相對微帶金屬片140之中心軸CL_1對稱。此外,由於介質層110、130使饋入傳輸線層100、接地金屬板120及平板雙極化天線層140彼此隔離,因此,無線電訊號係由饋入傳輸線(如102a)耦合至槽孔(如122a),並藉由槽孔(如122a)產生共振,再耦合至微帶金屬片140,以增加天線頻寬。並且,十字形之微帶金屬片140之共振方向相對接地金屬板120傾斜,以有效減小天線尺寸,並同時符合極化傾斜45度的需求。 In detail, in order to increase the beam width in the horizontal section (xz plane), it is necessary to shorten the width W1 of the grounded metal plate 120 in the x direction so that the radiation field shape in the horizontal direction is more divergent, and therefore, the plate double polarization is appropriately designed. After the antenna 10, the length L1 of the grounded metal plate 120 along the axis of symmetry axis_y is greater than the width W1 of the grounded metal plate 120 in the x direction. Since the length L1 and the width W1 are not equal, the resonance lengths of the vertical direction and the horizontal direction are different, so that the asymmetry caused by the length L1 being larger than the width W1 can be balanced by the pattern slots 124a and 124b. Wherein, the pattern slots 124a, 124b generally have a Boomerang shape 20. Please refer to FIG. 2, which is a schematic view of the shape of the back-dart body 20 according to an embodiment of the present invention. The bounce shape 20 is composed of rectangles 210a and 210b having the same shape and size, and the rectangles 210a and 210b have one apex P1. Further, the rectangles 210a and 210b can be regarded as the original side-by-side rectangles 200a and 200b formed by the apex P1 being a rotation fulcrum and rotating outward from the axis of symmetry axis_y by angles θ 1 and θ 2 , respectively. Preferably, the angles θ 1 and θ 2 are 20°, but are not limited thereto. As shown in FIGS. 1A and 2, the bounce shape 20 is symmetrical with respect to the axis of symmetry axis_y, and the pattern slots 124a, 124b are symmetrical with respect to the central axis CL_1 of the microstrip sheet metal 140. In addition, since the dielectric layers 110, 130 isolate the feed transmission line layer 100, the ground metal plate 120, and the planar dual polarized antenna layer 140 from each other, the radio signal is coupled to the slot by a feed transmission line (eg, 102a) (eg, 122a). And resonating through the slots (e.g., 122a) and coupling to the microstrip metal sheet 140 to increase the antenna bandwidth. Moreover, the resonance direction of the cruciform microstrip metal piece 140 is inclined with respect to the grounded metal plate 120 to effectively reduce the size of the antenna and at the same time meet the requirement of polarization tilt of 45 degrees.

需注意的是,第1A、1B圖之平板雙極化天線10係為本發明之實 施例,本領域具通常知識者當可據以做不同之修飾,而不限於此。舉例來說,為提高天線增益,可進一步利用平板雙極化天線10組成陣列天線。請參考第3圖,第3圖為本發明實施例一複合天線30之上視示意圖。類似於平板雙極化天線10,複合天線30也大致為七層架構,包含有一饋入傳輸線層300、三層介質層(圖未示)、一接地金屬板320及平板雙極化天線層340、360。不同之處在於,平板雙極化天線層340包含有十字形之微帶金屬片DPP_1、DPP_2。饋入傳輸線層300的饋入傳輸線FTL_1a、FTL__1b、FTL_2a、FTL_2b分別對應微帶金屬片DPP_1、DPP_2設置,以饋入(兩種極化之)無線電訊號。平板雙極化天線層360的微帶金屬片UPP_1、UPP_2亦分別對應微帶金屬片DPP_1、DPP_2設置,而接地金屬板320可分為矩形區塊SC1、SC2,且矩形區塊SC1、SC2上的槽孔SL_1a、SL_1b及SL_2a、SL_2b則分別對應饋入傳輸線FTL_1a、FTL_1b、FTL_2a、FTL_2b設置。 It should be noted that the flat dual-polarized antenna 10 of FIGS. 1A and 1B is the embodiment of the present invention. The embodiments are generally modified by those skilled in the art and are not limited thereto. For example, to increase the antenna gain, the planar dual-polarized antenna 10 can be further utilized to form an array antenna. Please refer to FIG. 3, which is a top view of a composite antenna 30 according to an embodiment of the present invention. Similar to the flat dual-polarized antenna 10, the composite antenna 30 also has a substantially seven-layer architecture, including a feed transmission line layer 300, three dielectric layers (not shown), a grounded metal plate 320, and a planar dual-polarized antenna layer 340. 360. The difference is that the planar dual-polarized antenna layer 340 includes cross-shaped microstrip metal sheets DPP_1, DPP_2. The feed transmission lines FTL_1a, FTL__1b, FTL_2a, and FTL_2b fed to the transmission line layer 300 are respectively disposed corresponding to the microstrip metal pieces DPP_1, DPP_2 to feed the (two polarized) radio signals. The microstrip metal sheets UPP_1 and UPP_2 of the planar dual-polarized antenna layer 360 are also respectively disposed corresponding to the microstrip metal sheets DPP_1 and DPP_2, and the grounded metal plate 320 can be divided into rectangular blocks SC1 and SC2, and the rectangular blocks SC1 and SC2 are disposed. The slots SL_1a, SL_1b, and SL_2a, SL_2b are respectively provided corresponding to the feed transmission lines FTL_1a, FTL_1b, FTL_2a, and FTL_2b.

詳細而言,由於長期演進無線通訊系統的基地站大致位於地表附近,並且基於基地站和接收者的距離,較佳地應將複合天線30之輻射能量集中於垂直切面(yz平面)中相對水平線(z軸)上正負10度的仰角範圍內,因此可藉由上下垂直排列微帶金屬片DPP_1、DPP_2來形成1x2陣列天線,以達到系統需求之天線增益值。並且,藉由使矩形區塊SC1、SC2沿對稱軸線axis_y之長度L1大於矩形區塊SC1、SC2沿x方向之寬度W1,可增加水平切面(xz平面)中的波束寬。表一為複合天線30之天線特性表,由表一可知,複合天線30仍可大致滿足長期演進無線通訊系統對最大增益值、前後場型比(F/B)之要求,並且,當接地金屬板320的寬度W1由100mm縮減為70mm時,水平方向的波束寬可增加至69.5°-73.0°。 In detail, since the base station of the long term evolution wireless communication system is located substantially near the earth's surface, and based on the distance between the base station and the receiver, the radiant energy of the composite antenna 30 should preferably be concentrated in the relative horizontal line in the vertical section (yz plane). (z-axis) is within the range of plus or minus 10 degrees of elevation, so the 1x2 array antenna can be formed by vertically arranging the microstrip metal sheets DPP_1, DPP_2 up and down to achieve the antenna gain value required by the system. Further, by making the length L1 of the rectangular blocks SC1, SC2 along the axis of symmetry axis_y larger than the width W1 of the rectangular blocks SC1, SC2 in the x direction, the beam width in the horizontal slice (xz plane) can be increased. Table 1 is an antenna characteristic table of the composite antenna 30. As can be seen from Table 1, the composite antenna 30 can still substantially meet the requirements of the long-term evolution wireless communication system for the maximum gain value and the front-rear field ratio (F/B), and when the ground metal is When the width W1 of the plate 320 is reduced from 100 mm to 70 mm, the beam width in the horizontal direction can be increased to 69.5°-73.0°.

為進一步提高複合天線30之同極化對止交極化(Co/Cx)值,可適當調整接地金屬板320之結構。請參考第4A、4B圖,第4A圖為本發明實施例一複合天線40之上視示意圖,第4B圖為複合天線40之等視角示意圖。複合天線40包含有饋入傳輸線層300、介質層310、330、350、一接地金屬板420及平板雙極化天線層340、360。換言之,複合天線40之架構大致與複合天線30相似,故相同元件以相同符號表示,以求簡潔。不同的是,接地金屬板420之矩形區塊SC3、SC4另分別包含有圖案槽孔PSL_1a、PSL_1b及PSL_2a、PSL_2b,以平衡長度L1大於寬度W1帶來的不對稱性。圖案槽孔PSL_1a、PSL_1b及PSL_2a、PSL_2b分別具有第2圖所示的迴力鏢形狀20,且分別相對微帶金屬片DPP_1、DPP_2之中心軸CL_1、CL_2對稱。 In order to further increase the co-polarization versus the discontinuous polarization (Co/Cx) value of the composite antenna 30, the structure of the grounded metal plate 320 can be appropriately adjusted. Please refer to FIG. 4A and FIG. 4B. FIG. 4A is a top view of the composite antenna 40 according to the embodiment of the present invention, and FIG. 4B is a schematic view of the composite antenna 40. The composite antenna 40 includes a feed transmission line layer 300, dielectric layers 310, 330, 350, a grounded metal plate 420, and planar dual polarized antenna layers 340, 360. In other words, the structure of the composite antenna 40 is substantially similar to that of the composite antenna 30, so the same components are denoted by the same reference numerals for simplicity. The difference is that the rectangular blocks SC3 and SC4 of the grounded metal plate 420 further include patterned slots PSL_1a, PSL_1b, and PSL_2a, PSL_2b, respectively, to balance the asymmetry of the length L1 greater than the width W1. The pattern slots PSL_1a, PSL_1b, and PSL_2a, PSL_2b respectively have the bounce shape 20 shown in FIG. 2, and are respectively symmetrical with respect to the central axes CL_1 and CL_2 of the microstrip metal sheets DPP_1 and DPP_2.

換句話說,複合天線40藉由陣列天線結構而能增加天線增益值,並藉由縮短矩形區塊SC3、SC4之寬度W1,以增加波束寬。而為了平衡長度L1與寬度W1的不對稱性,矩形區塊SC3、SC4另分別包含有圖案槽孔PSL_1a、PSL_1b及PSL_2a、PSL_2b,以改善同極化對正交極化(Co/Cx)值。 In other words, the composite antenna 40 can increase the antenna gain value by the array antenna structure and increase the beam width by shortening the width W1 of the rectangular blocks SC3, SC4. In order to balance the asymmetry between the length L1 and the width W1, the rectangular blocks SC3 and SC4 respectively include pattern slots PSL_1a, PSL_1b and PSL_2a, PSL_2b to improve the co-polarization versus orthogonal polarization (Co/Cx) values. .

透過模擬及量測可進一步判斷複合天線40是否符合系統需求。詳細來說,請參考第5A圖。第5A圖為複合天線40之天線共振模擬結果示意圖,其中,點線代表複合天線40之45度極化傾斜之天線共振模擬結果,實線代表複合天線40之135度極化傾斜之天線共振模擬結果,虛線代表複合天線40之45度極化傾斜與135度極化傾斜之天線隔離度模擬結果。如第5A 圖所示,複合天線40在Band 40與41的45度極化傾斜和135度極化傾斜天線的返回損耗(S11值)均在-11.8dB以下,並且,45度極化傾斜和135度極化傾斜之間的隔離度都至少在22.5dB以上。另外,表二為複合天線40之天線特性表,第5B~5E圖為複合天線40應用於長期演進無線通訊系統而分別操作於2.3GHz、2.4GHz、2.496GHz、2.69GHz時之天線場型特性模擬結果示意圖,其中,實線代表複合天線40之同極化在水平切面(Phi=0度角)之輻射場型,點線代表複合天線40之同極化在垂直切面(Phi=90度角)之輻射場型,長虛線代表複合天線40之正交極化在水平切面(Phi=0度角)之輻射場型,短虛線代表複合天線40之正交極化在垂直切面(Phi=90度角)之輻射場型。由表二及第5B~5E圖可知,複合天線40不但在水平方向具有較寬之波束寬,並且,可滿足長期演進無線通訊系統對最大增益值、前後場型比(F/B)之要求,而且同極化對正交極化(Co/Cx)值至少大於16.3dB。 Through the simulation and measurement, it can be further judged whether the composite antenna 40 meets the system requirements. In detail, please refer to Figure 5A. FIG. 5A is a schematic diagram of the antenna resonance simulation result of the composite antenna 40, wherein the dotted line represents the antenna resonance simulation result of the 45 degree polarization tilt of the composite antenna 40, and the solid line represents the antenna resonance simulation of the 135 degree polarization tilt of the composite antenna 40. As a result, the broken line represents the simulation result of the antenna isolation of the 45-degree polarization tilt and the 135-degree polarization tilt of the composite antenna 40. Like 5A As shown, the composite antenna 40 has a 45-degree polarization tilt of the Band 40 and 41 and a return loss (S11 value) of the 135-degree polarization tilt antenna below -11.8 dB, and a 45-degree polarization tilt and a 135-degree pole. The isolation between the tilts is at least 22.5dB. In addition, Table 2 is an antenna characteristic table of the composite antenna 40, and FIGS. 5B-5E are antenna field characteristics of the composite antenna 40 applied to the long-term evolution wireless communication system and operating at 2.3 GHz, 2.4 GHz, 2.496 GHz, and 2.69 GHz, respectively. A schematic diagram of the simulation results, wherein the solid line represents the radiation pattern of the same polarization of the composite antenna 40 in the horizontal section (Phi = 0 degree angle), and the dotted line represents the same polarization of the composite antenna 40 in the vertical section (Phi = 90 degree angle) The radiation field type, the long dashed line represents the radiation pattern of the orthogonal polarization of the composite antenna 40 in the horizontal section (Phi = 0 degree angle), and the short dashed line represents the orthogonal polarization of the composite antenna 40 in the vertical section (Phi=90) Radiation pattern of degree angle). As can be seen from Table 2 and Figures 5B to 5E, the composite antenna 40 not only has a wide beam width in the horizontal direction, but also satisfies the requirements of the long-term evolution wireless communication system for the maximum gain value and the front-rear field ratio (F/B). And the co-polarization versus orthogonal polarization (Co/Cx) value is at least greater than 16.3 dB.

值得注意的是,平板雙極化天線10及複合天線30、40係為本發明之實施例,本領域具通常知識者當可據以做不同之變化。舉例來說,饋入傳輸線102a、102b、FTL_1a、FTL_1b、FTL_2a、FTL_2b與槽孔122a、122b、SL_1a、SL_1b、SL_2a、SL_2b之分段折彎情形可視不同設計考量而適當變化,如調整角度而形成鈍角或銳角,或調整各分段之間的長度比例關係以及寬度比例關係,或調整分段的形狀與分段段數。此外,「大致呈十字形」係指 微帶金屬片140、160、UPP_1、UPP_2、DPP_1、DPP_2之外觀係由兩個長方形微帶金屬片重疊且交錯所組成,但不限於此,例如,微帶金屬片可另延伸出正方形側板、鋸齒狀側板或弧形側板,或者,微帶金屬片之邊緣為圓弧狀。介質層110、130、150、310、330、350可為各種電性隔離材料,如空氣,並且,微帶金屬片160、平板雙極化天線層360及介質層150、350可視頻寬要求而選擇性設置。此外,複合天線30、40為1x2陣列天線,但不限於此,亦可為1x3、2x4或mxn陣列天線。 It should be noted that the flat dual-polarized antenna 10 and the composite antennas 30, 40 are embodiments of the present invention, and those skilled in the art can make different changes. For example, the segmentation bending conditions of the feed transmission lines 102a, 102b, FTL_1a, FTL_1b, FTL_2a, FTL_2b and the slots 122a, 122b, SL_1a, SL_1b, SL_2a, SL_2b may be appropriately changed according to different design considerations, such as adjusting the angle. Form an obtuse or acute angle, or adjust the length proportional relationship between the segments and the width ratio relationship, or adjust the shape of the segment and the number of segment segments. In addition, "substantially cross-shaped" means The appearance of the microstrip metal sheets 140, 160, UPP_1, UPP_2, DPP_1, DPP_2 is composed of two rectangular microstrip metal sheets overlapping and staggered, but is not limited thereto. For example, the microstrip metal sheet may extend out of the square side plate. The serrated side plate or the curved side plate, or the edge of the microstrip metal piece is arc-shaped. The dielectric layers 110, 130, 150, 310, 330, 350 can be various electrical isolation materials, such as air, and the microstrip metal sheet 160, the flat dual polarized antenna layer 360, and the dielectric layers 150, 350 can be video wide. Selective settings. Further, the composite antennas 30 and 40 are 1×2 array antennas, but are not limited thereto, and may be 1×3, 2×4 or mxn array antennas.

另一方面,第2、4A、4B圖所示之迴力鏢形狀20之長方形200a之邊長L2為25mm,邊寬W2為2.5mm,迴力鏢形狀20之頂點P1相距中心軸(如CL_1或CL_2)之距離D為47.449mm,但本發明不以此為限,而可視不同系統需求適當調整。舉例來說,請參考第6A至6F圖及表三,第6A至6F圖為本發明實施例複合天線61~66之上視示意圖,表三為複合天線61~66之天線特性表。如表三所示,藉由適當調整複合天線61~66的圖案槽孔之尺寸,可調整天線特性,其中,同極化對正交極化(Co/Cx)值均大於15.8dB。 On the other hand, the side length L2 of the rectangle 200a of the bounce back shape 20 shown in Figs. 2, 4A, and 4B is 25 mm, the side width W2 is 2.5 mm, and the apex P1 of the back dart shape 20 is from the central axis (e.g., CL_1 or CL_2). The distance D is 47.449 mm, but the invention is not limited thereto, and can be appropriately adjusted according to different system requirements. For example, please refer to FIG. 6A to FIG. 6F and Table 3. FIG. 6A to FIG. 6F are schematic diagrams of the composite antennas 61-66 according to the embodiment of the present invention, and Table 3 is an antenna characteristic table of the composite antennas 61-66. As shown in Table 3, the antenna characteristics can be adjusted by appropriately adjusting the size of the pattern slots of the composite antennas 61-66, wherein the co-polarization versus orthogonal polarization (Co/Cx) values are greater than 15.8 dB.

此外,若欲減少水平切面(xz平面)中的波束寬,則可加長接地金屬板沿x方向之寬度。請參考第7圖,第7圖為本發明實施例一複合天線70之上視示意圖。複合天線70之架構大致與複合天線40相似,故相同元件以相同符號表示,以求簡潔。不同的是,接地金屬板720沿x方向之寬度W7經適當設計而加長,以使水平方向的輻射場形更為集中,因此,接地金屬板720之矩形區塊SC5、SC6沿對稱軸線axis_y之長度L7小於矩形區塊SC5、SC6沿x方向之寬度W7。並且,接地金屬板720之矩形區塊SC5、SC6另分別包含有圖案槽孔PSL_5a、PSL_5b及PSL_6a、PSL_6b,以平衡長度L7小於寬度W7帶來的不對稱性。 In addition, if the beam width in the horizontal slice (xz plane) is to be reduced, the width of the grounded metal plate in the x direction can be lengthened. Please refer to FIG. 7. FIG. 7 is a top view of a composite antenna 70 according to an embodiment of the present invention. The structure of the composite antenna 70 is substantially similar to that of the composite antenna 40, so the same components are denoted by the same symbols for the sake of brevity. The difference is that the width W7 of the grounded metal plate 720 along the x direction is appropriately designed to be lengthened so that the radiation field shape in the horizontal direction is more concentrated. Therefore, the rectangular blocks SC5 and SC6 of the grounded metal plate 720 are along the axis of symmetry axis_y. The length L7 is smaller than the width W7 of the rectangular blocks SC5 and SC6 in the x direction. Further, the rectangular blocks SC5 and SC6 of the grounded metal plate 720 further include patterned slots PSL_5a, PSL_5b, and PSL_6a, PSL_6b, respectively, so that the balance length L7 is smaller than the width W7.

綜上所述,本發明藉由調整微帶金屬片對應接地金屬板之區塊的 長寬比例,來增加波束寬。並且,接地金屬板包含有圖案槽孔,以平衡區塊長寬比例不同引發的不對稱性,而能確保同極化對正交極化(Co/Cx)值。 In summary, the present invention adjusts the block of the microstrip metal piece corresponding to the grounded metal plate. Length to width ratio to increase beam width. Moreover, the grounded metal plate includes patterned slots to balance the asymmetry caused by the difference in length and width of the block, and to ensure the co-polarization versus orthogonal polarization (Co/Cx) value.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10‧‧‧平板雙極化天線 10‧‧‧Single dual polarized antenna

100‧‧‧饋入傳輸線層 100‧‧‧Feed into the transmission line layer

102a、102b‧‧‧饋入傳輸線 102a, 102b‧‧‧Feed into the transmission line

120‧‧‧接地金屬板 120‧‧‧Grounded metal plate

122a、122b‧‧‧槽孔 122a, 122b‧‧‧ slots

124a、124b‧‧‧圖案槽孔 124a, 124b‧‧‧ pattern slots

140、160‧‧‧微帶金屬片 140, 160‧‧‧Microstrip metal sheet

L1‧‧‧長度 L1‧‧‧ length

W1‧‧‧寬度 W1‧‧‧Width

axis_y‧‧‧對稱軸線 Axis_y‧‧‧ axis of symmetry

P1‧‧‧頂點 P1‧‧‧ apex

CL_1‧‧‧中心軸 CL_1‧‧‧ center axis

D‧‧‧距離 D‧‧‧Distance

Claims (14)

一種平板雙極化天線,用來收發至少一無線電訊號,包含有:一第一微帶金屬片;一接地金屬板,包含有一第一圖案槽孔與一第二圖案槽孔,其中,該第一圖案槽孔之一形狀係由相隔一角度之一第一長方形與一第二長方形組成,該第一長方形與該第二長方形於一頂點重合,且該第一圖案槽孔與該第二圖案槽孔相互對稱於該第一微帶金屬片之一中心軸;以及一第一介質層,形成於該第一微帶金屬片與該接地金屬板之間。 A flat-panel dual-polarized antenna for transmitting and receiving at least one radio signal, comprising: a first microstrip metal piece; a grounded metal plate comprising a first pattern slot and a second pattern slot, wherein the One of the pattern slots is formed by a first rectangle and a second rectangle separated by an angle, the first rectangle and the second rectangle coincide with a vertex, and the first pattern slot and the second pattern The slots are mutually symmetrical with respect to a central axis of the first microstrip metal sheet; and a first dielectric layer is formed between the first microstrip metal sheet and the grounded metal plate. 如請求項1所述之平板雙極化天線,其中該接地金屬板沿一對稱軸線之一長度與該接地金屬板之一寬度不相等,以調整波束寬,並且,該對稱軸線垂直於該中心軸。 The flat-panel dual-polarized antenna according to claim 1, wherein the length of one of the grounded metal plates along one of the axes of symmetry is not equal to the width of one of the grounded metal plates to adjust the beam width, and the axis of symmetry is perpendicular to the center. axis. 如請求項2所述之平板雙極化天線,其中該第一圖案槽孔與該第二圖案槽孔分別對稱於該對稱軸線。 The flat-panel dual-polarized antenna of claim 2, wherein the first pattern slot and the second pattern slot are respectively symmetric with respect to the axis of symmetry. 如請求項1所述之平板雙極化天線,其中該第一微帶金屬片之形狀呈一十字形。 The flat-panel dual-polarized antenna according to claim 1, wherein the first microstrip metal piece has a shape of a cross. 如請求項2所述之平板雙極化天線,另包含有:一饋入傳輸線層,包含有一第一饋入傳輸線及一第二饋入傳輸線,該第一饋入傳輸線與該第二饋入傳輸線對稱於該對稱軸線;以及一第二介質層,形成於該饋入傳輸線層與該接地金屬板之間。 The flat dual-polarized antenna of claim 2, further comprising: a feed transmission line layer, including a first feed transmission line and a second feed transmission line, the first feed transmission line and the second feed The transmission line is symmetrical to the axis of symmetry; and a second dielectric layer is formed between the feed transmission line layer and the grounded metal plate. 如請求項5所述之平板雙極化天線,其中該接地金屬板包含有一第一槽孔及一第二槽孔,該第一槽孔與該第二槽孔對稱於該對稱軸線,該第一槽孔與該第一饋入傳輸線產生耦合作用,該第二槽孔與該第二饋入傳輸線產生耦合作用,以增加該平板雙極化天線之頻寬。 The flat-panel dual-polarized antenna of claim 5, wherein the grounded metal plate comprises a first slot and a second slot, the first slot and the second slot being symmetric with the axis of symmetry, the first A slot is coupled to the first feed transmission line, and the second slot is coupled to the second feed transmission line to increase the bandwidth of the planar dual polarization antenna. 如請求項1所述之平板雙極化天線,另包含有一第二微帶金屬片,形成 於該第一微帶金屬片之上,且未接觸該第一微帶金屬片。 The flat dual-polarized antenna according to claim 1 further comprising a second microstrip metal sheet formed And over the first microstrip metal sheet, and not contacting the first microstrip metal sheet. 一種複合天線,用來收發至少一無線電訊號,包含有:一第一平板雙極化天線層,包含有複數個第一微帶金屬片;一接地金屬板,包含有複數個矩形區塊,每一矩形區塊對應該複數個第一微帶金屬片之一第一微帶金屬片設置,每一矩形區塊包含有一第一圖案槽孔與一第二圖案槽孔,其中,該第一圖案槽孔之一形狀係由相隔一角度之一第一長方形與一第二長方形組成,該第一長方形與該第二長方形於一頂點重合,且該第一圖案槽孔與該第二圖案槽孔相互對稱於對應的該第一微帶金屬片之一中心軸;以及一第一介質層,形成於該第一平板雙極化天線層與該接地金屬板之間。 A composite antenna for transmitting and receiving at least one radio signal includes: a first flat dual-polarized antenna layer including a plurality of first microstrip metal sheets; and a grounded metal plate including a plurality of rectangular blocks, each A rectangular block is disposed corresponding to the first microstrip metal piece of the plurality of first microstrip metal pieces, each rectangular block includes a first pattern slot and a second pattern slot, wherein the first pattern One of the slots is formed by a first rectangle and a second rectangle separated by an angle, the first rectangle and the second rectangle are coincident with a vertex, and the first pattern slot and the second pattern slot And a first dielectric layer is formed between the first planar dual polarized antenna layer and the grounded metal plate. 如請求項8所述之複合天線,其中每一矩形區塊沿一對稱軸線之一長度與該矩形區塊之一寬度不相等,以調整波束寬,並且,該對稱軸線垂直於該矩形區塊對應的該第一微帶金屬片之該中心軸。 The composite antenna according to claim 8, wherein each of the rectangular blocks has a length unequal to one of the rectangular blocks along a length of the symmetry axis to adjust the beam width, and the symmetry axis is perpendicular to the rectangular block. Corresponding to the central axis of the first microstrip metal piece. 如請求項8所述之複合天線,其中該複數個第一圖案槽孔與該複數個第二圖案槽孔分別對稱於該對稱軸線。 The composite antenna according to claim 8, wherein the plurality of first pattern slots and the plurality of second pattern slots are respectively symmetric with respect to the axis of symmetry. 如請求項8所述之複合天線,其中該複數個第一微帶金屬片之形狀呈一十字形。 The composite antenna according to claim 8, wherein the plurality of first microstrip metal sheets have a shape of a cross. 如請求項9所述之複合天線,另包含有:一饋入傳輸線層,包含有複數個第一饋入傳輸線及複數個第二饋入傳輸線,每一第一饋入傳輸線與每一第二饋入傳輸線分別對應該複數個第一微帶金屬片之一第一微帶金屬片設置,該第一饋入傳輸線與該第二饋入傳輸線對稱於該對稱軸線;以及一第二介質層,形成於該饋入傳輸線層與該接地金屬板之間。 The composite antenna of claim 9, further comprising: a feed transmission line layer, comprising a plurality of first feed transmission lines and a plurality of second feed transmission lines, each of the first feed transmission lines and each second The feed transmission lines are respectively disposed corresponding to the first microstrip metal piece of the plurality of first microstrip metal pieces, the first feed transmission line and the second feed transmission line being symmetric with the axis of symmetry; and a second dielectric layer, Formed between the feed transmission line layer and the grounded metal plate. 如請求項12所述之複合天線,其中該接地金屬板包含有複數個第一槽孔及複數個第二槽孔,每一第一槽孔與每一第二槽孔分別對應該複數個第一微帶金屬片之一第一微帶金屬片設置,該複數個第一槽孔與該複數個 第二槽孔分別對稱於該對稱軸線,每一第一槽孔與對應的該第一饋入傳輸線產生耦合作用,每一第二槽孔與對應的該第二饋入傳輸線產生耦合作用,以增加該複合天線之頻寬。 The composite antenna of claim 12, wherein the grounded metal plate comprises a plurality of first slots and a plurality of second slots, each of the first slots and each of the second slots respectively corresponding to the plurality of slots a first microstrip metal piece of one of the microstrip metal pieces, the plurality of first slots and the plurality of The second slots are respectively symmetric with the axis of symmetry, and each of the first slots is coupled with the corresponding first feed transmission line, and each of the second slots is coupled with the corresponding second feed transmission line to Increase the bandwidth of the composite antenna. 如請求項8所述之複合天線,另包含有一第二平板雙極化天線層,該第二平板雙極化天線層包含有複數個第二微帶金屬片,該複數個第二微帶金屬片分別對應形成於該複數個第一微帶金屬片之上,且未接觸該複數個第一微帶金屬片。 The composite antenna of claim 8, further comprising a second flat dual-polarized antenna layer, the second flat dual-polarized antenna layer comprising a plurality of second microstrip metal pieces, the plurality of second microstrip metal The sheets are respectively formed on the plurality of first microstrip metal sheets and are not in contact with the plurality of first microstrip metal sheets.
TW103126252A 2014-07-31 2014-07-31 Planar dual polarization antenna and complex antenna TWI547014B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103126252A TWI547014B (en) 2014-07-31 2014-07-31 Planar dual polarization antenna and complex antenna
US14/700,150 US9490538B2 (en) 2014-07-31 2015-04-30 Planar dual polarization antenna and complex antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103126252A TWI547014B (en) 2014-07-31 2014-07-31 Planar dual polarization antenna and complex antenna

Publications (2)

Publication Number Publication Date
TW201605120A TW201605120A (en) 2016-02-01
TWI547014B true TWI547014B (en) 2016-08-21

Family

ID=55180971

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103126252A TWI547014B (en) 2014-07-31 2014-07-31 Planar dual polarization antenna and complex antenna

Country Status (2)

Country Link
US (1) US9490538B2 (en)
TW (1) TWI547014B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI540791B (en) 2014-11-05 2016-07-01 啟碁科技股份有限公司 Planar dual polarization antenna and complex antenna
CN106299688B (en) * 2016-08-20 2019-05-07 南京理工大学 The micro-strip antenna array of the small frequency ratio of broadband dual-frequency double-circle polarization
US11233310B2 (en) * 2018-01-29 2022-01-25 The Boeing Company Low-profile conformal antenna
CN109066079B (en) * 2018-08-21 2023-10-13 深圳市信维通信股份有限公司 Millimeter wave dual-polarized slot antenna system suitable for 5G communication and mobile terminal
US10938121B2 (en) * 2018-09-04 2021-03-02 Mediatek Inc. Antenna module of improved performances
KR102160966B1 (en) * 2019-06-12 2020-09-29 삼성전기주식회사 Antenna apparatus
US11276933B2 (en) 2019-11-06 2022-03-15 The Boeing Company High-gain antenna with cavity between feed line and ground plane
TWI774135B (en) * 2019-11-27 2022-08-11 立積電子股份有限公司 Wireless signal transceiver device with dual-polarized antenna with at least two feed zones
CN112531335B (en) * 2020-11-16 2021-09-28 珠海格力电器股份有限公司 Square three-frequency antenna device and communication equipment
TWI765755B (en) * 2021-06-25 2022-05-21 啟碁科技股份有限公司 Antenna module and wireless transceiver device
US11843184B1 (en) * 2022-06-15 2023-12-12 General Dynamics Mission Systems, Inc. Dual band, singular form factor, transmit and receive GNSS antenna with passively shaped antenna pattern

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4903033A (en) * 1988-04-01 1990-02-20 Ford Aerospace Corporation Planar dual polarization antenna
GB9410994D0 (en) * 1994-06-01 1994-07-20 Alan Dick & Company Limited Antennae
DE59501555D1 (en) 1995-04-20 1998-04-09 Fuba Automotive Gmbh Flat antenna arrangement
SE515453C2 (en) * 1999-10-29 2001-08-06 Ericsson Telefon Ab L M Double-polarized antenna element method for supplying power to two orthogonal polarizations in such an antenna element and method for obtaining said element
US6335703B1 (en) 2000-02-29 2002-01-01 Lucent Technologies Inc. Patch antenna with finite ground plane
WO2006000116A1 (en) 2004-06-23 2006-01-05 Huber+Suhner Ag Broadband patch antenna
US7253770B2 (en) 2004-11-10 2007-08-07 Delphi Technologies, Inc. Integrated GPS and SDARS antenna
FI20055637A0 (en) 2005-12-02 2005-12-02 Nokia Corp Kaksipolarisaatio-microstrip patch antenna structure
US7277056B1 (en) 2006-09-15 2007-10-02 Laird Technologies, Inc. Stacked patch antennas
US7825867B2 (en) 2007-04-26 2010-11-02 Round Rock Research, Llc Methods and systems of changing antenna polarization
TWI473347B (en) 2011-02-22 2015-02-11 Wistron Neweb Corp Planar dual polarization antenna
US8890750B2 (en) 2011-09-09 2014-11-18 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Symmetrical partially coupled microstrip slot feed patch antenna element
CN202363587U (en) 2011-12-05 2012-08-01 上海海积信息科技有限公司 Satellite micro-strip receiving antenna for receiving multiple frequency bands of GPS (Global Position System), GLONASS (Global Navigation Satellite System) and Beidou II

Also Published As

Publication number Publication date
US9490538B2 (en) 2016-11-08
TW201605120A (en) 2016-02-01
US20160036130A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
TWI547014B (en) Planar dual polarization antenna and complex antenna
TWI540791B (en) Planar dual polarization antenna and complex antenna
TWI473347B (en) Planar dual polarization antenna
TWI583145B (en) Radio-frequency transceiver system
US9590313B2 (en) Planar dual polarization antenna
CN102055072B (en) Multiple ring antenna module with wide wave packet
WO2021104191A1 (en) Antenna unit and electronic device
US11936116B2 (en) Dual polarized omni-directional antenna and base station including same
CN110957576B (en) Ultra-low profile microstrip laminated dual-polarized base station antenna and array
KR102022610B1 (en) Structure of single band dual polarization antenna module
US9735473B2 (en) Compact radiation structure for diversity antennas
US7994985B2 (en) Isolation enhancement technique for dual-polarized probe-fed patch antenna
WO2018028162A1 (en) Decoupling assembly, multi-antenna system and terminal
US20160006132A1 (en) Dual-feed dual-polarization high directivity array antenna system
CN110265773A (en) A kind of double horizontally polarized omnidirectional antennas of double frequency
TW201712949A (en) Complex antenna
Chattha Compact high isolation wideband 4G and 5G multi‐input multi‐output antenna system for handheld and internet of things applications
TWI491105B (en) Broadband dual polarization antenna
Filgueiras et al. A 64-element and dual-polarized SICL-based slot antenna array development applied to TDD massive MIMO
CN105406190B (en) Flat board dual polarized antenna and combined antenna
CN106549231A (en) Combined antenna
US10892562B1 (en) Multi-beam Yagi-based MIMO antenna system
CN105633564B (en) Plate dual polarized antenna and combined antenna
Su et al. Dual-polarized dual-loop-antenna system for 2.4/5 GHz WLAN access points
TWI464962B (en) Hybrid multi-antenna system and wireless communication apparatus using the same