TWI530015B - Low frequency surface plasma waveguide structure - Google Patents

Low frequency surface plasma waveguide structure Download PDF

Info

Publication number
TWI530015B
TWI530015B TW102139246A TW102139246A TWI530015B TW I530015 B TWI530015 B TW I530015B TW 102139246 A TW102139246 A TW 102139246A TW 102139246 A TW102139246 A TW 102139246A TW I530015 B TWI530015 B TW I530015B
Authority
TW
Taiwan
Prior art keywords
unit cell
surface plasma
low frequency
periodic structure
waveguide structure
Prior art date
Application number
TW102139246A
Other languages
Chinese (zh)
Other versions
TW201517370A (en
Inventor
Chia Ho Wu
Tzong Jer Yang
Da Jun Hou
Original Assignee
Univ Chung Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chung Hua filed Critical Univ Chung Hua
Priority to TW102139246A priority Critical patent/TWI530015B/en
Publication of TW201517370A publication Critical patent/TW201517370A/en
Application granted granted Critical
Publication of TWI530015B publication Critical patent/TWI530015B/en

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Description

低頻表面電漿波導結構 Low frequency surface plasma waveguide structure

本發明係有關於一種低頻表面電漿波導結構,特別是關於一種以特殊空心金屬方塊週期結構表面所構成之新型漏波波導,使該金屬表面可更有效率的傳輸電磁波,並可作為提供高指向性輻射的元件。 The present invention relates to a low frequency surface plasma waveguide structure, and more particularly to a novel leaky wave waveguide formed by a special hollow metal square periodic structure surface, which enables the metal surface to transmit electromagnetic waves more efficiently and can provide high supply. A component that directs radiation.

使用表面電漿的概念可以操縱電磁波使之能在亞波長的線路中傳輸,對於有效提升光子迴路系統與積體電路中器件密度是當前重要的主題。表面電漿極化子(Surface Plasmon Polaritons,SPPs)是在金屬與介質(通常是空氣)界面上的一種電子和光子的混合激發態,SPPs的場幅度在界面上有最大值,並在金屬與介質內呈指數衰減。SPPs可以提供超越繞射極限導引電磁波的可能性,因此在表面電漿光子學的領域引起了廣泛的興趣。 The concept of using surface plasma can manipulate electromagnetic waves to transmit in sub-wavelength lines, which is currently an important topic for effectively increasing the density of devices in photonic loop systems and integrated circuits. Surface Plasmon Polaritors (SPPs) are a mixed excited state of electrons and photons at the interface between metal and medium (usually air). The field amplitude of SPPs has a maximum at the interface and is in the metal and The medium is exponentially decaying. SPPs offer the possibility of directing electromagnetic waves beyond the diffraction limit and thus have attracted wide interest in the field of surface plasma photonics.

由於它的電磁場被高度地約束在金屬與介質界面的附近範圍內,SPPs固有的二維空間(即表面)的傳播特性成為光積體迴路高度積體化和設計亞波長尺寸的光子器件最為優先的選擇。為了在較為低頻的電路系統中傳輸訊號,並且將表面電漿極化子的概念推廣到更低的頻段,例如在太赫茲和微波波段中進行訊號傳輸之課題,有著迫切需求。 Since its electromagnetic field is highly constrained in the vicinity of the interface between metal and medium, the propagation characteristics of the two-dimensional space (ie, surface) inherent in SPPs become the highest priority for the integration of the optical system and the design of sub-wavelength photonic devices. s Choice. In order to transmit signals in relatively low frequency circuits and to extend the concept of surface plasma polarons to lower frequency bands, such as the problem of signal transmission in the terahertz and microwave bands, there is an urgent need.

一般金屬的表面電漿頻率都在紫外波段,因此金屬在太赫茲波段的表現為近似理想導體(Perfect Electric Conductor,PEC),使得SPPs在金屬表面對於電磁場的約束性很差,無法有效集中電磁波,從而限制了一般結構之漏波天線在太赫茲和微波波段中的 應用。 Generally, the surface plasma frequency of the metal is in the ultraviolet range, so the metal in the terahertz band behaves as a Perfect Electric Conductor (PEC), which makes the SPPs have poor binding to the electromagnetic field on the metal surface, and cannot effectively concentrate the electromagnetic waves. Thereby limiting the general structure of the leaky wave antenna in the terahertz and microwave bands application.

然而,由於表面電漿模式的情況在低頻例如微波和太赫茲(THz)的波段是無法實現。因此,為了在低頻波段實現類似的物理現象,可以在金屬上置入高密度的週期性金屬方塊或週期槽孔,以達成對電磁場高度約束的目的。先前技術中所使用的波導結構係將複數個彼此間隔一預定間距的單胞方塊列置在一平板狀金屬基板的上表面。在此種實心金屬方塊排列的週期結構中,其電磁場分佈係高度地約束於相鄰兩個單胞方塊中間。 However, the situation due to the surface plasma mode cannot be achieved in the low frequency bands such as microwave and terahertz (THz). Therefore, in order to achieve similar physical phenomena in the low frequency band, high-density periodic metal blocks or periodic slots can be placed on the metal to achieve a high degree of constraint on the electromagnetic field. The waveguide structure used in the prior art is to arrange a plurality of unit cells spaced apart from each other by a predetermined pitch on the upper surface of a flat metal substrate. In the periodic structure in which such solid metal squares are arranged, the electromagnetic field distribution is highly constrained to the middle of the adjacent two unit cell blocks.

為解決這個問題,如果能利用特殊的結構設計,改良金屬材質對於電磁場的約束的表現,則應具備高度的產業利用價值。 In order to solve this problem, if the special structural design can be used to improve the performance of the metal material for the constraints of the electromagnetic field, it should have a high industrial utilization value.

因此,本發明之一目的是設計一低頻表面電漿波導結構,其係在一金屬基板的上表面佈設有由複數個單胞方塊以亞波長週期(每個單胞方塊間隔是小於傳輸波的波長)沿著一維排列方向排列而形成一空心金屬方塊週期結構。每一個單胞方塊中包括有一凹槽空間。在該空心金屬方塊週期結構的禁帶區內引入一低頻表面電漿極化子的傳輸模式。在該低頻表面電漿極化子的該傳輸模式下,每一個單胞方塊的電磁場分佈係大部份局限在該每一個單胞方塊中之該凹槽空間中。 Accordingly, it is an object of the present invention to design a low frequency surface plasma waveguide structure which is provided with a plurality of unit cell blocks at a sub-wavelength period on the upper surface of a metal substrate (each cell block spacing is smaller than the transmission wave) The wavelengths are arranged along a one-dimensional arrangement direction to form a hollow metal square periodic structure. Each cell block includes a groove space. A transmission mode of a low frequency surface plasma polaron is introduced in the forbidden zone of the hollow metal block periodic structure. In the transmission mode of the low frequency surface plasma polaron, the electromagnetic field distribution of each cell block is mostly confined to the groove space in each of the cell blocks.

本發明較佳實施例中,每一個單胞方塊包括有一基體、一貫通部及一開口狹槽。貫通部以垂直於該一維排列方向之貫通方向形成於該單胞方塊,而在該單胞方塊中定義出一凹槽空間。在該低頻表面電漿極化子的傳輸模式下,若作為天線的結構時,該每一個單胞方塊的電磁場分佈係大部份局限在該單胞方塊中之凹槽空間中,若作為波導用途時,則電磁場大部份分佈於相鄰兩個單胞方塊之間,少量分佈於單胞方塊的凹槽空間內。 In a preferred embodiment of the invention, each unit cell includes a base, a through portion and an open slot. The through portion is formed in the unit cell in a through direction perpendicular to the one-dimensional array direction, and a recess space is defined in the unit cell. In the transmission mode of the low-frequency surface plasma polaron, if the structure is used as an antenna, the electromagnetic field distribution of each cell block is mostly confined in the groove space in the cell block, as a waveguide In use, the electromagnetic field is mostly distributed between two adjacent cell blocks, and a small amount is distributed in the groove space of the cell block.

本發明較佳實施例中,金屬基板係由導電佳的金屬(例如鋁、銅、金之一)所製成,而空心金屬方塊週期結構的該工作頻段係為微波頻段或太赫茲頻段之一。 In a preferred embodiment of the present invention, the metal substrate is made of a metal having good conductivity (for example, aluminum, copper, and gold), and the working frequency band of the hollow metal square periodic structure is one of a microwave band or a terahertz band. .

在效果方面,先前技術中的實心金屬方塊週期結構與本發明的空心金屬方塊週期結構的磁場分佈對比下,在本發明空心金屬方塊週期結構的傳輸模式中,低頻表面電漿極化子模式的電磁場分佈大部分集中於單胞方塊的凹槽空間內與兩單胞方塊之間,因而可以實現電磁場的更高度約束,比起實心金屬方塊週期結構陣列波導有著更好的傳輸效果。 In terms of effects, the solid metal square periodic structure in the prior art is compared with the magnetic field distribution of the hollow metal square periodic structure of the present invention, in the transmission mode of the hollow metal square periodic structure of the present invention, the low frequency surface plasma polaron mode The electromagnetic field distribution is mostly concentrated in the groove space of the cell block and between the two cell blocks, so that the electromagnetic field can be more highly constrained, and has better transmission effect than the solid metal block periodic structure array waveguide.

本發明之設計,可以實現電磁場的高度約束,並提供隨頻率變換主波束方向的掃描元件,在操作中選擇使用相對應之結構尺寸,調整使用頻率。 The design of the invention can realize the height constraint of the electromagnetic field and provide the scanning element for changing the direction of the main beam with the frequency, and select the corresponding structure size in operation to adjust the frequency of use.

由於這個結構擁有其他許多低頻表面電漿波導所沒有的優越特性。在適當的選擇結構的幾何參數,可以在指定的頻率範圍實現高約束導波的功能,另一方面這個結構可以提供隨頻率變換主波束方向的掃描元件。 This structure has many of the superior features not found in many other low frequency surface plasma waveguides. The geometric parameters of the appropriate selection structure can achieve the function of highly constrained guided waves in the specified frequency range. On the other hand, this structure can provide scanning elements that change the direction of the main beam with frequency.

本發明在應用時,可以將波導結構進行一定程度的縮小化,並用於太赫茲(THz)波段的導波傳輸,可以提供對於電磁場更為有效的約束。除此之外,調整結構的幾何參數,可以使波導本身提供定向的窄波束的輻射。 When applied, the waveguide structure can be reduced to a certain extent and used for guided wave transmission in the terahertz (THz) band, which can provide more effective constraints on the electromagnetic field. In addition to this, adjusting the geometry of the structure allows the waveguide itself to provide directional narrow beam radiation.

本發明所採用的具體技術,將藉由以下之實施例及附呈圖式作進一步之說明。 The specific techniques used in the present invention will be further illustrated by the following examples and the accompanying drawings.

100‧‧‧空心金屬方塊週期結構 100‧‧‧ hollow metal square periodic structure

1‧‧‧單胞方塊 1‧‧‧ unit cell

10‧‧‧基體 10‧‧‧ base

11‧‧‧貫通部 11‧‧‧through department

12‧‧‧左側部 12‧‧‧ left side

13‧‧‧右側部 13‧‧‧ right side

14‧‧‧水平頂部 14‧‧‧ horizontal top

141‧‧‧左水平頂部 141‧‧‧ left horizontal top

142‧‧‧右水平頂部 142‧‧‧right horizontal top

2‧‧‧金屬基板 2‧‧‧Metal substrate

21‧‧‧上表面 21‧‧‧ upper surface

3‧‧‧開口狹槽 3‧‧‧Open slot

4‧‧‧凹槽空間 4‧‧‧ Groove space

a‧‧‧單胞方塊之間隔 A‧‧‧single cell spacing

a1‧‧‧凹槽寬度 A1‧‧‧ groove width

a2‧‧‧開口狹槽寬度 A2‧‧‧Open slot width

C1‧‧‧空心結構色散曲線 C1‧‧‧ hollow structure dispersion curve

C2‧‧‧實心結構色散曲線 C2‧‧‧solid structural dispersion curve

C3‧‧‧電磁波自由空氣色散曲線 C3‧‧‧Electromagnetic wave free air dispersion curve

d‧‧‧單胞方塊排列週期長度 D‧‧‧ unit cell array period length

h‧‧‧單胞方塊高度 H‧‧‧ unit cell height

h1‧‧‧凹槽深度 H1‧‧‧ groove depth

I1‧‧‧一維排列方向 I1‧‧‧1D alignment

I2‧‧‧水平貫通方向 I2‧‧‧ horizontal direction

L‧‧‧單胞方塊長度 L‧‧‧ unit cell length

第1圖顯示本發明低頻表面電漿波導結構之立體圖。 Figure 1 is a perspective view showing the low frequency surface plasma waveguide structure of the present invention.

第2圖顯示本發明單胞方塊之擴大立體圖。 Fig. 2 is an enlarged perspective view showing the unit cell of the present invention.

第3圖顯示第2圖中3-3斷面的剖視圖。 Fig. 3 is a cross-sectional view showing the section 3-3 in Fig. 2.

第4圖顯示本發明具有空心凹槽空間的低頻表面電漿波導結構與實心低頻表面電漿波導結構的工作頻率與傳播常數間的色散關係曲線圖。 Fig. 4 is a graph showing the dispersion relationship between the operating frequency and the propagation constant of the low-frequency surface plasma waveguide structure and the solid low-frequency surface plasma waveguide structure having the hollow groove space of the present invention.

請參閱第1圖,其顯示本發明低頻表面電漿波導結構之立體圖。本發明低頻表面電漿波導結構包括有複數個彼此間隔一預定間距的單胞方塊1列置在一平板狀金屬基板2的上表面21上。各個單胞方塊1係以亞波長週期(subwave length periodic)沿著一維排列方向I1在該金屬基板2的上表面21上排列成一直線而形成一空心金屬方塊週期結構100(metallic hollow blocks periodic structure)。 Referring to Figure 1, there is shown a perspective view of a low frequency surface plasma waveguide structure of the present invention. The low frequency surface plasma waveguide structure of the present invention comprises a plurality of unit cell blocks 1 spaced apart from each other by a predetermined pitch, which are arranged on the upper surface 21 of a flat metal substrate 2. Each unit cell 1 is arranged in a line in a one-dimensional array direction I1 along the one-dimensional array direction I1 on the upper surface 21 of the metal substrate 2 to form a hollow hollow block periodic structure. ).

參閱第2-3圖,分別為本發明中具體實施例單胞方塊1之擴大立體圖及剖面圖。單胞方塊1之基體10中形成有一貫通部11,該貫通部11係以垂直於該一維排列方向I1之水平貫通方向I2貫通單胞方塊1,使單胞方塊1形成一左側部12、一相對應於該左側部12之右側部13以及一跨置在該左側部12與該右側部13間之水平頂部14。該貫通部11在該單胞方塊1中定義出一由左側部12、右側部13及水平頂部14所構成之一凹槽空間4,而構成了本發明的空心金屬方塊週期結構100。 Referring to Figures 2-3, respectively, are enlarged perspective and cross-sectional views of a unit cell 1 of a specific embodiment of the present invention. A through portion 11 is formed in the base 10 of the unit cell 1. The through portion 11 penetrates the cell block 1 in a horizontal through direction I2 perpendicular to the one-dimensional array direction I1, so that the cell block 1 forms a left side portion 12, A corresponding to the right side portion 13 of the left side portion 12 and a horizontal top portion 14 spanning between the left side portion 12 and the right side portion 13. The through portion 11 defines a recessed space 4 formed by the left side portion 12, the right side portion 13 and the horizontal top portion 14 in the unit cell block 1 to constitute the hollow metal square periodic structure 100 of the present invention.

此外,一開口狹槽3(Open slot)以該水平貫通方向I2形成在該水平頂部14,將該水平頂部14分隔形成一左水平頂部141及一相對應的右水平頂部142。 In addition, an open slot 3 is formed in the horizontal through portion 14 at the horizontal top portion 14, and the horizontal top portion 14 is partitioned to form a left horizontal top portion 141 and a corresponding right horizontal top portion 142.

在圖式中,實心金屬方塊週期結構的幾何參數分別表示如下:單胞方塊之間隔a=5公釐(mm) In the figure, the geometric parameters of the solid metal square periodic structure are respectively expressed as follows: the spacing of the unit cells is a = 5 mm (mm)

單胞方塊排列週期長度d=10公釐(mm) Single cell array period length d=10 mm (mm)

單胞方塊高度h=4公釐(mm) Single cell height h=4 mm (mm)

單胞方塊長度L=5公釐(mm) Single cell length L = 5 mm (mm)

對於本發明具有空心凹槽空間的實施例空心金屬方塊週期結構則是在前述實心金屬方塊結構中額外引入如下尺寸的凹槽空間:凹槽寬度a1=3.0公釐(mm) For the hollow metal square periodic structure of the embodiment having the hollow groove space of the present invention, the groove space of the following size is additionally introduced in the solid metal block structure: the groove width a1=3.0 mm (mm)

開口狹槽寬度a2=1.0公釐(mm) Opening slot width a2=1.0 mm (mm)

凹槽深度h1=2.0公釐(mm) Groove depth h1=2.0 mm (mm)

藉由每一個單胞方塊1中之凹槽空間4及該開口狹槽3,在空心金屬方塊週期結構100的禁帶區內引入一低頻表面電漿極化子(low frequency spoof surface plasmon polaritons)的傳輸模式。在低頻表面電漿極化子的傳輸模式下,本發明若作為天線的結構時,該每一個單胞方塊的電磁場分佈係大部份局限在單胞方塊的凹槽空間中,若作為波導用途時,則電磁場大部份分佈於相鄰兩個單胞方塊之間,少量分佈於單胞方塊的凹槽空間內。 A low frequency spoof surface plasmon polaritons is introduced in the forbidden zone of the hollow metal block periodic structure 100 by the recessed space 4 in each unit cell 1 and the open slot 3 Transmission mode. In the transmission mode of the low-frequency surface plasma polaron, when the invention is used as the structure of the antenna, the electromagnetic field distribution of each cell block is mostly confined in the groove space of the unit cell, if used as a waveguide. When the electromagnetic field is mostly distributed between two adjacent cell blocks, a small amount is distributed in the groove space of the cell block.

本發明之較佳實施例中,金屬基板2係由導電佳的金屬(例如鋁、銅、金之一)所製成。而該空心金屬方塊週期結構100的工作頻段係設定為微波(microwave)頻段或在太赫茲頻段(THz)。 In a preferred embodiment of the invention, the metal substrate 2 is made of a highly conductive metal such as one of aluminum, copper, and gold. The working frequency band of the hollow metal block periodic structure 100 is set to a microwave frequency band or a terahertz frequency band (THz).

參閱第4圖所示,其係顯示本發明空心金屬方塊週期結構與先前技術實心金屬方塊週期結構的工作頻率與傳播常數(propagation constant)間的色散(dispersion)關係曲線圖。圖式中的縱座標係表示工作頻率,而橫座標係表示傳播常數β。圖式中顯示之空心結構色散曲線C1係表示本發明空心金屬方塊週期結構的色散曲線,而實心結構色散曲線C2係表示先前技術中實心金屬方塊週期結構的色散曲線。 Referring to Fig. 4, there is shown a graph showing the relationship between the operating period of the hollow metal square of the present invention and the propagation constant of the prior art solid metal square periodic structure and the propagation constant. The ordinate in the figure represents the operating frequency, and the abscissa indicates the propagation constant β . The hollow structure dispersion curve C1 shown in the drawing represents the dispersion curve of the hollow metal square periodic structure of the present invention, and the solid structure dispersion curve C2 represents the dispersion curve of the solid metal square periodic structure in the prior art.

數值模擬與實驗的結果主要將聚焦於波導結構中的基 模,這類模式很容易在微波的X頻段來激勵,並且電磁場高度地約束於金屬波導的週期結構中。數值結果發現,對於實心金屬方塊週期結構的表面電漿波導而言,基模的截止頻率9.72GHz,而漸進頻率是11.506GHz,工作頻帶的寬度是1.786GHz。實心金屬方塊週期結構的工作頻率落在這個範圍電磁場高度地約束於相鄰兩個單胞方塊中間。 The results of numerical simulations and experiments will mainly focus on the bases in the waveguide structure. Mode, such a mode is easily excited in the X-band of the microwave, and the electromagnetic field is highly constrained in the periodic structure of the metal waveguide. The numerical results show that for the surface plasma waveguide of the solid metal square periodic structure, the cutoff frequency of the fundamental mode is 9.72 GHz, and the progressive frequency is 11.506 GHz, and the width of the operating band is 1.786 GHz. The operating frequency of the solid metal square periodic structure falls within this range. The electromagnetic field is highly constrained to the middle of two adjacent cell blocks.

對於空心金屬方塊的陣列結構而言,其截止頻率為9.0GHz,而漸進頻率則為11.504GHz,工作頻帶的寬度是2.504GHz。而空心金屬方塊週期結構在這個頻率範圍其電磁場分佈,大部分的能量均進入空心金屬方塊的槽孔區而少量位於空心區外,以至於可以在更寬頻的區間內有效地約束電磁場於亞波長的尺寸下。 For the array structure of hollow metal blocks, the cutoff frequency is 9.0 GHz, while the progressive frequency is 11.504 GHz, and the width of the operating band is 2.504 GHz. The hollow metal square periodic structure has an electromagnetic field distribution in this frequency range, and most of the energy enters the slot area of the hollow metal block and a small amount is located outside the hollow area, so that the electromagnetic field can be effectively confined in the wider frequency range at the sub-wavelength. Under the size.

對於空心金屬方塊週期結構而言,由於將每一個單胞方塊挖空後,會在原本實心金屬方塊週期結構的禁帶範圍內引入額外的傳輸模式。週期排列空心金屬方塊的結構色散曲線中禁帶底部在β=0.5(頻率11.504GHz)的電磁場分佈幾乎完全約束於相鄰兩個單胞方塊之間,由於場分佈的方式極為不同因此存在新的禁帶結構。由於形成空心金屬方塊而額外引入的禁帶區的寬度為0.451GHz。漏波區的頻率範圍將從12.3279GHz到13.068GHz,掃描頻寬是0.7401GHz。 For the hollow metal square periodic structure, since each unit cell is hollowed out, an additional transmission mode is introduced within the forbidden band of the original solid metal square periodic structure. In the structural dispersion curve of the periodic arrangement of hollow metal squares, the electromagnetic field distribution at the bottom of the forbidden band at β = 0.5 (frequency 11.504 GHz) is almost completely confined between adjacent two unit cells. Since the field distribution is very different, there is a new Forbidden band structure. The width of the forbidden zone additionally introduced due to the formation of the hollow metal blocks is 0.451 GHz. The frequency range of the leakage region will range from 12.3279 GHz to 13.068 GHz, and the scanning bandwidth is 0.7401 GHz.

藉由在金屬表面挖出以亞波長週期分佈的孔洞(孔洞的尺寸和深度均小於波長),不僅可以增強電磁波的傳輸作用,還可以實現電磁場的亞波長的高度約束,與真實表面電漿極化子非常相似,並且在實際應用上spoof SPPs(SSPPs)有著更大的操作靈活性,結構表面層的等效表面電漿頻率僅與表面結構的幾何參數有關。從而在金屬平面上傳播太赫茲波或更低頻的微波頻段開闢了一條有效途徑。SSPPs的存在在微波波段和太赫茲波段均獲得了實驗驗證。 By excavating holes with a subwavelength period on the surface of the metal (the size and depth of the holes are smaller than the wavelength), not only the electromagnetic wave transmission effect can be enhanced, but also the subwavelength of the electromagnetic field can be highly constrained, and the real surface plasma electrode The chemistries are very similar, and in practical applications, spoof SPPs (SSPPs) have greater operational flexibility. The equivalent surface plasmon frequency of the surface layer of the structure is only related to the geometric parameters of the surface structure. Therefore, an effective way is to spread the terahertz wave or lower frequency microwave band on the metal plane. The existence of SSPPs has been experimentally verified in both the microwave and terahertz bands.

進一步的研究表明,在金屬表面和金屬線上刻一維週期分佈的凹槽可以支持太赫茲波段SSPPs的傳播。並且SSPPs的色散關 係可以通過改變金屬表面凹槽的週期結構進行任意調控,其場約束、損耗等性能也僅依賴於週期表面結構的幾何參數。由於低頻表面電漿極化子波導的導波特性是由其波導本身的幾何結構來決定,因此就設計導波元件上來講有更多的優越性。因此有許多基於低頻表面電漿極化子傳輸機制的許多波導方案被研究工作者提出,特別是金屬方塊的週期陣列最為容易在低頻波段實現。其中一個結構的每一個單胞方塊均存在凹槽,這些金屬週期結構均可以支持表面波。 Further research has shown that one-dimensional periodic distribution of grooves on metal surfaces and metal lines can support the propagation of SSPPs in the terahertz band. And the dispersion of SSPPs The system can be arbitrarily adjusted by changing the periodic structure of the groove on the metal surface, and its field constraint, loss and other properties are only dependent on the geometric parameters of the periodic surface structure. Since the guided wave characteristics of the low-frequency surface plasma polariton waveguide are determined by the geometry of the waveguide itself, there are more advantages in designing the waveguide component. Therefore, many waveguide schemes based on the low-frequency surface plasma polaron transport mechanism have been proposed by researchers, especially the periodic array of metal blocks is most easily realized in the low frequency band. There is a groove in each cell block of one of the structures, and these metal periodic structures can support surface waves.

在本發明中,在週期排列的每一個單胞方塊結構中引入凹槽,將原本無凹槽的金屬方塊週期結構的帶隙內引入額外的傳輸模式。在這個新的傳輸模式中的電磁場大部分將集中於單胞方塊的凹槽內部。此外由於這個模式對應的色散曲線將與電磁波自由空氣色散曲線C3(Light line)相交,並進入週期結構的輻射區。藉由實驗量測驗證了金屬週期結構在這個頻段中可以提供隨著頻率而掃描的鉛筆波束,其掃描的角度超過30度以上。 In the present invention, a recess is introduced into each of the unit cell structures of the periodic arrangement to introduce an additional transmission mode into the band gap of the originally recessed metal square periodic structure. Most of the electromagnetic fields in this new transmission mode will be concentrated inside the grooves of the unit cell. In addition, since the dispersion curve corresponding to this mode will intersect the electromagnetic wave free air dispersion curve C3 (Light line) and enter the radiation region of the periodic structure. It was verified by experimental measurements that the metal periodic structure can provide a pencil beam scanned with frequency in this frequency band, and the scanning angle exceeds 30 degrees.

由於這個結構擁有其他許多低頻表面電漿波導所沒有的優越特性。在適當的選擇結構的幾何參數,可以在指定的頻率範圍實現高約束導波的功能,另一方面這個結構也可以提供隨頻率變換主波束方向的掃描元件。 This structure has many of the superior features not found in many other low frequency surface plasma waveguides. The geometric parameters of the appropriate selection structure can achieve the function of highly constrained guided waves in the specified frequency range. On the other hand, this structure can also provide scanning elements that change the direction of the main beam with frequency.

本發明結構所呈現的漏波輻射具有高度的方向性,主波束相對於z軸總是存在一定的仰角。根據理論分析的結果,具有明顯方向性的波束可以從12.5GHz的3040到12.9GHz的3360,共有320的仰角掃瞄範圍。 The leakage wave radiation presented by the structure of the present invention has a high degree of directivity, and the main beam always has a certain elevation angle with respect to the z-axis. According to the theoretical analysis, the beam with obvious directionality can range from 304 0 at 12.5 GHz to 336 0 at 12.9 GHz, with a total elevation range of 32 0 .

實心金屬方塊週期結構與本發明的空心金屬方塊週期結構的磁場分佈對比下,在本發明空心金屬方塊週期結構的傳輸模式中,低頻表面電漿極化子模式的電磁場分佈大部分集中於單胞方塊的凹槽空間內,因而可以實現電磁場的高度約束,比起實心金屬方塊週 期結構陣列波導有著更好的傳輸效果。 The solid metal square periodic structure is compared with the magnetic field distribution of the hollow metal square periodic structure of the present invention. In the transmission mode of the hollow metal square periodic structure of the present invention, the electromagnetic field distribution of the low frequency surface plasma polaron mode is mostly concentrated on the unit cell. Within the groove space of the square, thus the height of the electromagnetic field can be achieved, compared to the solid metal square The structure of the arrayed waveguide has a better transmission effect.

藉由上述之實施例說明,可知本發明確具產業利用價值,故本發明業已符合於專利之要件。以上之實施例說明,僅為本發明之較佳實施例說明,凡精於此項技術者當可依據本發明之上述實施例說明而作其它種種之改良及變化。然而這些依據本發明實施例所作的種種改良及變化,當仍屬於本發明之發明精神及以下所界定之專利範圍內。 It can be seen from the above embodiments that the present invention has industrial utilization value, and thus the present invention has been in conformity with the requirements of the patent. The above embodiments are merely illustrative of the preferred embodiments of the present invention, and those skilled in the art can make various other modifications and changes in accordance with the embodiments of the present invention. However, various modifications and changes made in accordance with the embodiments of the present invention are still within the scope of the invention and the scope of the invention as defined below.

1‧‧‧單胞方塊 1‧‧‧ unit cell

10‧‧‧基體 10‧‧‧ base

11‧‧‧貫通部 11‧‧‧through department

12‧‧‧左側部 12‧‧‧ left side

13‧‧‧右側部 13‧‧‧ right side

142‧‧‧右水平頂部 142‧‧‧right horizontal top

2‧‧‧金屬基板 2‧‧‧Metal substrate

21‧‧‧上表面 21‧‧‧ upper surface

3‧‧‧開口狹槽 3‧‧‧Open slot

4‧‧‧凹槽空間 4‧‧‧ Groove space

I1‧‧‧一維排列方向 I1‧‧‧1D alignment

I2‧‧‧水平貫通方向 I2‧‧‧ horizontal direction

Claims (14)

一種低頻表面電漿波導結構,包括:一金屬基板,具有一上表面;一空心金屬方塊週期結構,該空心金屬方塊週期結構係工作在一預定的工作頻段並定義有一禁帶區;該空心金屬方塊週期結構包括有複數個彼此間隔一預定間距的單胞方塊,各個單胞方塊係以一亞波長週期沿著一維排列方向排列在該金屬基板的該上表面,該每一個單胞方塊在該工作頻段下形成一電磁場分佈;在該空心金屬方塊週期結構的該禁帶區內引入一低頻表面電漿極化子的傳輸模式;該每一個單胞方塊中包括有一凹槽空間;在該低頻表面電漿極化子的該傳輸模式下,該空心金屬方塊週期結構係作為一天線的結構,該每一個單胞方塊的該電磁場分佈係大部份局限在該單胞方塊中之該凹槽空間中。 A low frequency surface plasma waveguide structure comprising: a metal substrate having an upper surface; a hollow metal square periodic structure, the hollow metal square periodic structure operating in a predetermined operating frequency band and defining a forbidden band; the hollow metal The block periodic structure includes a plurality of unit cells spaced apart from each other by a predetermined interval, and each unit cell is arranged on the upper surface of the metal substrate in a one-dimensional arrangement direction with a sub-wavelength period, and each unit cell is Forming an electromagnetic field distribution in the working frequency band; introducing a transmission mode of a low frequency surface plasma polaron in the forbidden band region of the hollow metal square periodic structure; each of the unit cell blocks includes a groove space; In the transmission mode of the low-frequency surface plasma polaron, the hollow metal square periodic structure is an antenna structure, and the electromagnetic field distribution of each of the unit cells is mostly confined to the concave in the unit cell. In the slot space. 如申請專利範圍第1項之低頻表面電漿波導結構,其中該每一個單胞方塊包括有:一基體;一貫通部,以一水平貫通方向貫通該基體,而在該基體中定義出該凹槽空間,該凹槽空間係由一左側部、一相對應於該左側部之右側部、以及跨置在該左側部與該右側部間之水平頂部所構成;一開口狹槽,以該水平貫通方向形成在該水平頂部,將該水平頂部分隔開而形成一左水平頂部及一右水平頂部;藉由該每一個單胞方塊中之該凹槽空間及該開口狹槽,在該空心金屬方塊週期結構的該禁帶區內引入該低頻表面電漿極化子的傳輸模 式。 The low frequency surface plasma waveguide structure of claim 1, wherein each of the unit cell blocks comprises: a base body; a through portion penetrating the base body in a horizontal through direction, wherein the concave body is defined in the base body a groove space, the groove space being constituted by a left side portion, a right side portion corresponding to the left side portion, and a horizontal top portion spanning between the left side portion and the right side portion; an open slot at the level a through direction formed at the top of the horizontal portion, the horizontal top portion being spaced apart to form a left horizontal top portion and a right horizontal top portion; wherein the recessed space in the unit cell block and the open slot are in the hollow a transfer mode of introducing the low frequency surface plasma polaron in the forbidden band region of the metal square periodic structure formula. 如申請專利範圍第1項之低頻表面電漿波導結構,其中該金屬基板係由導電佳的金屬(例如鋁、銅、金之一)所製成。 The low frequency surface plasma waveguide structure of claim 1, wherein the metal substrate is made of a conductive metal such as aluminum, copper or gold. 如申請專利範圍第1項之低頻表面電漿波導結構,其中該空心金屬方塊週期結構的該工作頻段係為微波頻段。 The low frequency surface plasma waveguide structure of claim 1, wherein the working frequency band of the hollow metal square periodic structure is a microwave frequency band. 如申請專利範圍第1項之低頻表面電漿波導結構,其中該空心金屬方塊週期結構的該工作頻段係為太赫茲頻段。 The low frequency surface plasma waveguide structure of claim 1, wherein the working frequency band of the hollow metal square periodic structure is a terahertz frequency band. 如申請專利範圍第1項之低頻表面電漿波導結構,其中該每一個單胞方塊之幾何參數為:單胞方塊之間隔a=5公釐單胞方塊排列週期長度d=10公釐單胞方塊高度h=4公釐單胞方塊長度L=5公釐凹槽寬度a1=3.0公釐開口狹槽寬度a2=1.0公釐凹槽深度h1=2.0公釐。 For example, in the low-frequency surface plasma waveguide structure of claim 1, wherein the geometric parameter of each unit cell is: the spacing of the unit cells a=5 mm unit cell arrangement period length d=10 mm unit cell Block height h = 4 mm unit cell length L = 5 mm groove width a1 = 3.0 mm opening slot width a2 = 1.0 mm groove depth h1 = 2.0 mm. 如申請專利範圍第1項之低頻表面電漿波導結構,其中該禁帶區的寬度為0.451GHz。 The low frequency surface plasma waveguide structure of claim 1, wherein the forbidden zone has a width of 0.451 GHz. 一種低頻表面電漿波導結構,包括:一金屬基板,具有一上表面;一空心金屬方塊週期結構,該空心金屬方塊週期結構係工作在一預定的工作頻段並定義有一禁帶區;該空心金屬方塊週期結構包括有複數個彼此間隔一預定間距的單胞方塊,各個單胞方塊係以一亞波長週期沿著一維排列方向排列在該金屬基板的該上表面,該每一個單胞方塊在該工作頻段下形成一電磁場分佈; 在該空心金屬方塊週期結構的該禁帶區內引入一低頻表面電漿極化子的傳輸模式;該每一個單胞方塊中包括有一凹槽空間;在該低頻表面電漿極化子的該傳輸模式下,該空心金屬方塊週期結構係作為一波導用途的結構,該電磁場分佈係大部份分佈於相鄰兩個單胞方塊之間,少量分佈於該單胞方塊的該凹槽空間內。 A low frequency surface plasma waveguide structure comprising: a metal substrate having an upper surface; a hollow metal square periodic structure, the hollow metal square periodic structure operating in a predetermined operating frequency band and defining a forbidden band; the hollow metal The block periodic structure includes a plurality of unit cells spaced apart from each other by a predetermined interval, and each unit cell is arranged on the upper surface of the metal substrate in a one-dimensional arrangement direction with a sub-wavelength period, and each unit cell is Forming an electromagnetic field distribution in the working frequency band; introducing a transmission mode of a low frequency surface plasma polaron in the forbidden band region of the hollow metal square periodic structure; each of the unit cell blocks includes a groove space; In the transmission mode of the low-frequency surface plasma polaron, the hollow metal square periodic structure is used as a waveguide structure, and the electromagnetic field distribution is mostly distributed between adjacent two unit cell blocks, and a small amount is distributed in the Within the groove space of the cell block. 如申請專利範圍第8項之低頻表面電漿波導結構,其中該每一個單胞方塊包括有:一基體;一貫通部,以一水平貫通方向貫通該基體,而在該基體中定義出該凹槽空間,該凹槽空間係由一左側部、一相對應於該左側部之右側部、以及跨置在該左側部與該右側部間之水平頂部所構成;一開口狹槽,以該水平貫通方向形成在該水平頂部,將該水平頂部分隔開而形成一左水平頂部及一右水平頂部;藉由該每一個單胞方塊中之該凹槽空間及該開口狹槽,在該空心金屬方塊週期結構的該禁帶區內引入該低頻表面電漿極化子的傳輸模式。 The low frequency surface plasma waveguide structure of claim 8 , wherein each of the unit cell blocks comprises: a base body; a through portion penetrating the base body in a horizontal through direction, wherein the concave body is defined in the base body a groove space, the groove space being constituted by a left side portion, a right side portion corresponding to the left side portion, and a horizontal top portion spanning between the left side portion and the right side portion; an open slot at the level a through direction formed at the top of the horizontal portion, the horizontal top portion being spaced apart to form a left horizontal top portion and a right horizontal top portion; wherein the recessed space in the unit cell block and the open slot are in the hollow The transmission mode of the low frequency surface plasma polaron is introduced into the forbidden zone of the metal square periodic structure. 如申請專利範圍第8項之低頻表面電漿波導結構,其中該金屬基板係由導電佳的金屬(例如鋁、銅、金之一)所製成。 The low frequency surface plasma waveguide structure of claim 8, wherein the metal substrate is made of a metal having good conductivity (for example, one of aluminum, copper, and gold). 如申請專利範圍第8項之低頻表面電漿波導結構,其中該空心金屬方塊週期結構的該工作頻段係為微波頻段。 The low frequency surface plasma waveguide structure of claim 8, wherein the working frequency band of the hollow metal square periodic structure is a microwave frequency band. 如申請專利範圍第8項之低頻表面電漿波導結構,其中該空心金屬方塊週期結構的該工作頻段係為太赫茲頻段。 The low frequency surface plasma waveguide structure of claim 8, wherein the working frequency band of the hollow metal square periodic structure is a terahertz frequency band. 如申請專利範圍第8項之低頻表面電漿波導結構,其中該每一個單胞方塊之幾何參數為:單胞方塊之間隔a=5公釐 單胞方塊排列週期長度d=10公釐單胞方塊高度h=4公釐單胞方塊長度L=5公釐凹槽寬度a1=3.0公釐開口狹槽寬度a2=1.0公釐凹槽深度h1=2.0公釐。 For example, the low-frequency surface plasma waveguide structure of claim 8 wherein the geometric parameter of each unit cell is: the spacing of the unit cells a=5 mm Unit cell arrangement period length d=10 mm unit cell height h=4 mm unit cell length L=5 mm groove width a1=3.0 mm opening slot width a2=1.0 mm groove depth h1 = 2.0 mm. 如申請專利範圍第8項之低頻表面電漿波導結構,其中該禁帶區的寬度為0.451GHz。 For example, the low frequency surface plasma waveguide structure of claim 8 wherein the forbidden zone has a width of 0.451 GHz.
TW102139246A 2013-10-30 2013-10-30 Low frequency surface plasma waveguide structure TWI530015B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102139246A TWI530015B (en) 2013-10-30 2013-10-30 Low frequency surface plasma waveguide structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102139246A TWI530015B (en) 2013-10-30 2013-10-30 Low frequency surface plasma waveguide structure

Publications (2)

Publication Number Publication Date
TW201517370A TW201517370A (en) 2015-05-01
TWI530015B true TWI530015B (en) 2016-04-11

Family

ID=53720513

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102139246A TWI530015B (en) 2013-10-30 2013-10-30 Low frequency surface plasma waveguide structure

Country Status (1)

Country Link
TW (1) TWI530015B (en)

Also Published As

Publication number Publication date
TW201517370A (en) 2015-05-01

Similar Documents

Publication Publication Date Title
Memarian et al. Dirac leaky-wave antennas for continuous beam scanning from photonic crystals
Han et al. Multibeam antennas based on spoof surface plasmon polaritons mode coupling
US8026854B2 (en) Stripline-type composite right/left-handed transmission line or left-handed transmission line, and antenna that uses same
CN105789800B (en) Terahertz waveguide based on artificial surface phasmon
US9188742B2 (en) Teraherz-wave connector and teraherz-wave integrated circuits, and wave guide and antenna structure
KR102224626B1 (en) Waveguide slot array antenna
JP2011099766A (en) Antenna device and radar device
Ge et al. Single-side-scanning surface waveguide leaky-wave antenna using spoof surface plasmon excitation
Wu et al. Propagation of low-frequency spoof surface plasmon polaritons in a bilateral cross-metal diaphragm channel waveguide in the absence of bandgap
US9140855B2 (en) Waveguide structure based on low frequency surface plasmon polaritons
Eleftheriades et al. Prospects of Huygens’ metasurfaces for antenna applications
Zhang et al. A unidirectional beam-scanning antenna excited by corrugated metal–insulator–metal ground supported spoof surface plasmon polaritons
Quevedo-Teruel Controlled radiation from dielectric slabs over spoof surface plasmon waveguides
CN110661069B (en) Plasma waveguide structure and leaky-wave antenna
Liu et al. Wideband circular patch antenna with I‐shaped structure for horizontal omnidirectional gain enhancement
TWI530015B (en) Low frequency surface plasma waveguide structure
Zhu et al. A directive patch antenna with a metamaterial cover
CN110212295A (en) A kind of slot array antenna generating quasi- Bezier wave beam
CN103094699A (en) Lens antenna based on metamaterial
TWM473027U (en) Cell cube structure for low frequency surface plasma waves device
CN104779426B (en) Low frequency surface plasmon waveguide structure
EP3918668B1 (en) Leaky wave antenna
JP2008028967A (en) Polarizing direction variable antenna composed of strip line type right-handed/left-handed system combination line or strip line type left-handed system line
Sarkhel et al. Enhanced-gain printed slot antenna using an electric metasurface superstrate
Zhu et al. A high directivity patch antenna using a PBG cover together with a PBG substrate

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees