TWI516952B - Adaptive fuzzy rule controlling system for software defined storage system for controlling performance parameter - Google Patents

Adaptive fuzzy rule controlling system for software defined storage system for controlling performance parameter Download PDF

Info

Publication number
TWI516952B
TWI516952B TW103123390A TW103123390A TWI516952B TW I516952 B TWI516952 B TW I516952B TW 103123390 A TW103123390 A TW 103123390A TW 103123390 A TW103123390 A TW 103123390A TW I516952 B TWI516952 B TW I516952B
Authority
TW
Taiwan
Prior art keywords
fuzzy rule
adaptive
control system
rule control
storage
Prior art date
Application number
TW103123390A
Other languages
Chinese (zh)
Other versions
TW201602797A (en
Inventor
黃明仁
黃純芳
石宗民
陳文賢
Original Assignee
先智雲端數據股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先智雲端數據股份有限公司 filed Critical 先智雲端數據股份有限公司
Priority to TW103123390A priority Critical patent/TWI516952B/en
Application granted granted Critical
Publication of TWI516952B publication Critical patent/TWI516952B/en
Publication of TW201602797A publication Critical patent/TW201602797A/en

Links

Description

用於軟體定義儲存系統控制性能參數的自適應 模糊規則控制系統 Adaptive for controlling performance parameters of software-defined storage systems Fuzzy rule control system

本發明關於一種用於軟體定義儲存的自適應模糊規則控制系統,特別是關於一種用於軟體定義儲存,以控制特定的性能參數的自適應模糊規則控制系統。該特定的性能參數是服務層級協議所要求的。 The present invention relates to an adaptive fuzzy rule control system for software defined storage, and more particularly to an adaptive fuzzy rule control system for software defined storage to control specific performance parameters. This particular performance parameter is required by the service level agreement.

雲端服務在最近十年中發展得非常普及。雲端服務是基於雲端計算,在不增加客戶端的負擔情形下,提供相關的服務或商品。雲端計算涉及了大量的電腦主機,這些電腦主機彼此經由一個通信網路,比如網際網路,而連接。它依賴資源的分享,以達成一致性與經濟規模。雲端計算的概念乃是融合了網路基礎設施以及資源分享的服務等形成的基礎架構。在所有分享的服務中,記憶體與儲存設備絕對是兩個需求最大的項目。這是因為某些熱門的應用,比如視頻串流,需要巨大的資料量儲存。當雲端服務運作時,記憶體和 儲存設備管理是非常重要的,以為客戶維持正常的服務品質。 Cloud services have grown very popular in the last decade. Cloud services are based on cloud computing and provide related services or products without increasing the burden on the client. Cloud computing involves a large number of computer hosts that are connected to each other via a communication network, such as the Internet. It relies on the sharing of resources to achieve consistency and economic size. The concept of cloud computing is an infrastructure formed by a combination of network infrastructure and resource sharing services. Among all the shared services, memory and storage devices are definitely the two most demanding projects. This is because some popular applications, such as video streaming, require huge amounts of data storage. When the cloud service works, the memory and Storage device management is very important to ensure that customers maintain normal service quality.

舉例而言,用來提供雲端服務的伺服器通常管理或連接到數個硬式磁碟上。客戶使用該伺服器,資料自該硬式磁碟讀出或寫入其中。肇因於硬式磁碟系統的限制而產生回應時間的延遲,會引起服務需求上的問題。在正常的硬式磁碟系統的操作下,當應用面所需求(即工作量)的存取速度超過硬式磁碟系統所能提供時,延遲時間通常因此而產生。從而,硬式磁碟系統所能提供的最大負載量通常是整個雲端服務系統裡運作的瓶頸。換句話說,硬式磁碟系統的每秒輸入輸出操作次數無法滿足外在需求。針對此問題,有必要移除或減少工作量以達成及改善伺服器的效能。實作上,部分的工作量能由其它伺服器(如果有的話)或硬式磁碟所分擔,而該些伺服器或硬式磁碟會自動或手動地上線加入支援現有的硬式磁碟。不管上述哪種方法用來解決該問題,其所增加的成本,是因應無法預期工作情況而事先多儲備的大量硬式磁碟,以及為了額外的硬體設備而必要增添的電力消耗。從經濟面來看,實在不值得如此做。然而,由於系統的服務層級協議通常會規定最短的延遲時間或最小的每秒輸入輸出操作次數,因此必需要達成。對於以有限的資金來維持雲服務的運營商而言,如何降低成本是一個重要的問題。 For example, servers used to provide cloud services typically manage or connect to several hard disks. The client uses the server and the data is read from or written to the hard disk. The delay in response time due to the limitations of the hard disk system can cause problems in service requirements. Under the operation of a normal hard disk system, the delay time is usually generated when the access speed required by the application surface (ie, the workload) exceeds that provided by the hard disk system. Thus, the maximum amount of load that a hard disk system can provide is often the bottleneck in the operation of the entire cloud service system. In other words, the number of input/output operations per second of the hard disk system cannot meet the external requirements. In response to this problem, it is necessary to remove or reduce the workload to achieve and improve the performance of the server. In practice, part of the workload can be shared by other servers (if any) or hard disks, and these servers or hard disks will be automatically or manually added to support existing hard disks. Regardless of which of the above methods is used to solve the problem, the added cost is a large number of hard disks that are reserved in advance due to unpredictable work conditions, and the necessary power consumption for additional hardware devices. From an economic perspective, it is really not worth doing. However, since the system's service level protocol usually specifies the shortest delay time or the minimum number of input/output operations per second, it must be achieved. For operators that maintain cloud services with limited funds, how to reduce costs is an important issue.

值得注意的是伺服器(硬式磁碟系統)的工作量或多或少可以根據歷史記錄來預測未來一段時間內的演變,雲端服務工作量的需求的發展趨勢是可以預見的。因此,可以藉著重新配置在硬式磁碟系統內的硬式磁碟,以用最小代價達到工作量的需求。然而,一台機器是不能學會如何與何時進行硬式磁碟的重新配置。在許多情況下,這項工作是由授權人員,根據及時狀態或按照固定的進度表來完成,實行效果可能不是很好。 It is worth noting that the workload of the server (hard disk system) can more or less predict the evolution in the future based on historical records, and the development trend of the demand for cloud service workload is predictable. Therefore, the workload can be achieved with minimal effort by reconfiguring the hard disk in the hard disk system. However, a machine cannot learn how and when to reconfigure a hard disk. In many cases, this work is done by authorized personnel, depending on the status of time or on a fixed schedule, and the effect may not be very good.

另一個和雲端服務一樣快速地增長的需求是軟體定義儲存。軟體定義儲存指的是可從管理儲存基礎架構的軟體中,獨立出儲存硬體的計算機資料儲存技術。在軟體定義儲存下,可以啟動一些功能選項,如重複數據刪除、複製、自動精簡配置、快照,和備份,提供策略管理。藉由軟體定義儲存技術,有幾個前案可提供上述問題的解決方案。舉例而言,在美國專利公開第20130297907號中,揭露了一種用於重新配置儲存系統的方法。該方法包含兩個主要的步驟:接收使用者對儲存裝置的需求資訊,並由使用者的需求資訊,自動產生儲存裝置的功能設定及用於該儲存裝置的設備設定檔;及使用該功能設定,以自動重新配置該儲存裝置為一或多個具有獨立行為特徵的邏輯裝置。該公開案的內容指出了一種藉由軟體定義儲存觀念來重新配置儲存裝置的新方法。依照該公開案的方法與系統也能允許使用者動態調整一或多 個邏輯裝置的配置,以更彈性地滿足使用者的需求資訊。然而,該公開案並未揭露該些功能設定是如何產生的。同時,那些功能設定也無法依照不同應用(即工作量)的變化而改變。 Another requirement for growing as fast as cloud services is software definition storage. Software definition storage refers to computer data storage technology that can separate storage hardware from the software that manages the storage infrastructure. Under Software Definition Storage, you can launch some functional options such as deduplication, replication, thin provisioning, snapshots, and backups to provide policy management. With software-defined storage technology, there are several previous cases that provide solutions to the above problems. A method for reconfiguring a storage system is disclosed, for example, in U.S. Patent No. 20,130,297,907. The method comprises two main steps: receiving user demand information of the storage device, and automatically generating a function setting of the storage device and a device setting file for the storage device by using the user's demand information; and setting the function using the function device; To automatically reconfigure the storage device as one or more logical devices with independent behavioral characteristics. The content of this publication points to a new way to reconfigure storage devices by software definition storage concepts. The method and system according to the disclosure also allows the user to dynamically adjust one or more The configuration of the logic devices to more flexibly meet the user's needs information. However, this publication does not disclose how these functional settings are generated. At the same time, those function settings cannot be changed according to changes in different applications (ie, workload).

因此,本發明揭露了一種新的系統,用以實現一軟體定義儲存配置,以便解決上述問題。它利用一自適應模糊規則控制,並無需人為干預地進行運作。藉應用本發明,滿足任何工作量的儲存設備之配置能動態地計算出,儲存設備的重配置能在未來特定的時間點完成。 Accordingly, the present invention discloses a new system for implementing a software defined storage configuration to address the above problems. It utilizes an adaptive fuzzy rule control and operates without human intervention. By applying the present invention, the configuration of a storage device that satisfies any workload can be dynamically calculated that the reconfiguration of the storage device can be completed at a particular point in time in the future.

如前所述,習知技術並無提供動態地依照不同應用(即工作量)的變化而重新配置儲存裝置之方法,故需要一種新的方法與系統來滿足該需求。 As mentioned previously, the prior art does not provide a means to dynamically reconfigure the storage device in response to changes in different applications (ie, workload), so a new method and system is needed to meet this need.

依照本發明的一種態樣,一種用於軟體定義儲存系統,控制儲存節點中性能參數的自適應模糊規則控制系統,包含:一流量監測模組,用於取得該儲存節點中性能參數的觀察值;一自適應神經模糊推理模組,用以學習於該儲存節點中複數個儲存設備配置及於一段時間內的性能參數間的一動態關係,及輸出模糊規則,該模糊規則依照該動態關係而建立;一流量預測模組,用以在未來某一特定的時間點,提供性能參數的預測值;及一模糊規則控制模組,用以在未來該特定的時間點,於該儲存節點中,依照模糊規則與該預測 值安排該儲存設備的配置,以便一特定的性能參數的特定值能在未來該特定的時間點達成。該儲存節點由軟體定義儲存軟體所運作。 According to an aspect of the present invention, an adaptive fuzzy rule control system for a software defined storage system for controlling performance parameters in a storage node includes: a flow monitoring module for obtaining an observation value of performance parameters in the storage node An adaptive neuro-fuzzy inference module for learning a dynamic relationship between a plurality of storage device configurations and performance parameters over a period of time in the storage node, and outputting a fuzzy rule according to the dynamic relationship Establishing; a traffic prediction module for providing a predicted value of the performance parameter at a specific time point in the future; and a fuzzy rule control module for using the storage node at the specific time point in the future According to fuzzy rules and the prediction The value arranges the configuration of the storage device so that a particular value of a particular performance parameter can be reached at that particular point in time in the future. The storage node is operated by a software defined storage software.

依照本案構想,該性能參數包含每秒輸入輸出操作次數、延遲時間,或流通量(throughput)。該自適應神經模糊推理模組產生複數個隸屬函數,每一隸屬函數用以界定一性能參數的程度或在一特定的級別下該儲存設備的配置。該模糊規則連接用於一特定的級別下的性能參數之隸屬函數至用於另一特定的級別下的該儲存設備的配置之隸屬函數。一模糊推論法藉由該隸屬函數界定的程度,被使用來以至少一給定的性能參數,獲得該儲存設備的配置。該模糊推論法為Mamdani推論法或Sugeno推論法。該自適應神經模糊推理模組進一步檢查該特定的性能參數的特定值與該特定的性能參數的觀察值間的一差異值。 According to the concept of the present case, the performance parameter includes the number of input and output operations per second, the delay time, or the throughput. The adaptive neuro-fuzzy inference module generates a plurality of membership functions, each of which is used to define a degree of performance parameters or a configuration of the storage device at a particular level. The fuzzy rule joins the membership function of the performance parameter for a particular level to the membership function of the configuration of the storage device for another particular level. The degree to which a fuzzy inference method is defined by the membership function is used to obtain the configuration of the storage device with at least a given performance parameter. The fuzzy inference method is the Mamdani inference method or the Sugeno inference method. The adaptive neuro-fuzzy inference module further checks a difference between a particular value of the particular performance parameter and an observed value of the particular performance parameter.

依照本發明,如果該差異值超過一容忍值,該自適應神經模糊推理模組學習新的模糊規則與隸屬函數。該段時間範圍由數十秒到整個歷史記錄期間。該觀察值在該段時間內不是連續地被記錄。該學習動態關係是由神經網路演算法達成。該特定值為一服務層級協議(Service Level Agreement)或一服務品質(Quality of Service)需求之要求。該儲存設備是硬式磁碟、固態硬碟、隨機存取記憶體,或其混成組合。該配置為不同型態儲存設備的百分比或單一型態儲存設備使 用中的固定數量。該流量監測模組、自適應神經模糊推理模組、流量預測模組,或模糊規則控制模組是硬體,或是於該儲存節點中的至少一個處理器上執行的軟體。 According to the present invention, if the difference value exceeds a tolerance value, the adaptive neuro-fuzzy inference module learns a new fuzzy rule and membership function. This period of time ranges from tens of seconds to the entire history period. The observation is not continuously recorded during this period of time. The learning dynamic relationship is achieved by a neural network algorithm. The specific value is a service level agreement or a quality of service requirement. The storage device is a hard disk, a solid state hard disk, a random access memory, or a hybrid combination thereof. The configuration is a percentage of different types of storage devices or a single type of storage device A fixed amount in use. The flow monitoring module, the adaptive neuro-fuzzy inference module, the traffic prediction module, or the fuzzy rule control module is a hardware or a software executed on at least one of the storage nodes.

本發明利用一自適應模糊規則控制,並無需人為干預地進行運作。滿足任何工作量的儲存設備讀之配置能動態地計算出,儲存設備的重配置能在未來特定的時間點完成。 The present invention utilizes an adaptive fuzzy rule control and operates without human intervention. A storage device read configuration that satisfies any workload can dynamically calculate that the reconfiguration of the storage device can be completed at a particular point in time in the future.

10‧‧‧自適應模糊規則控制系統 10‧‧‧Adaptive fuzzy rule control system

100‧‧‧儲存節點 100‧‧‧ storage node

102‧‧‧管理伺服器 102‧‧‧Management Server

104‧‧‧硬式磁碟 104‧‧‧hard disk

106‧‧‧固態硬碟 106‧‧‧ Solid State Drive

120‧‧‧流量監測模組 120‧‧‧Flow Monitoring Module

140‧‧‧自適應神經模糊推理模組 140‧‧‧Adaptive Neuro-Fuzzy Inference Module

160‧‧‧流量預測模組 160‧‧‧Traffic prediction module

180‧‧‧模糊規則控制模組 180‧‧‧Fuzzy Rule Control Module

第1圖說明依照本發明的實施例,一自適應模糊規則控制系統的方框圖。 Figure 1 illustrates a block diagram of an adaptive fuzzy rule control system in accordance with an embodiment of the present invention.

第2圖顯示一儲存節點的架構。 Figure 2 shows the architecture of a storage node.

第3圖說明用於每秒輸入輸出操作次數的隸屬函數。 Figure 3 illustrates the membership function for the number of input and output operations per second.

第4圖說明用於流通量的隸屬函數。 Figure 4 illustrates the membership function for the flux.

第5圖說明用於固態硬碟百分比的隸屬函數。 Figure 5 illustrates the membership function for the percentage of solid state hard disks.

第6圖表列由自適應模糊規則控制系統使用的模糊規則。 The sixth chart column is a fuzzy rule used by the adaptive fuzzy rule control system.

第7圖顯示當每秒輸入輸出操作次數為70,000及流通量為7GB/s時,用於計算固態硬碟百分比的一面積。 Figure 7 shows an area used to calculate the percentage of solid state hard disk when the number of input/output operations per second is 70,000 and the throughput is 7 GB/s.

第8圖以4個分拆的子面積描述該面積。 Figure 8 depicts this area in four sub-areas.

第9圖表列基於該子面積,用於固態硬碟百分比的計算步驟。 The ninth chart column is based on the sub-area for the calculation step of the solid-state hard disk percentage.

本發明將藉由參照下列的實施方式而更具體地描述。 The invention will be more specifically described by reference to the following embodiments.

請參照第1圖至第9圖。依照本發明的一實施例揭露於此。第1圖為一自適應模糊規則控制系統10的方框圖。系統10能被用來於一網路中,對一軟體定義儲存系統,控制性能參數於可接受區間。在本實施例中,性能參數包括每秒輸入輸出操作次數、延遲時間,與流通量(throughput)。該網路可以是網際網路。如此一來,儲存節點100可以是一資料庫伺服器,管理眾多的儲存設備及提供客戶雲端服務,它也可以是一個檔案伺服器或郵件伺服器,具有專屬使用的儲存設備。該網路也可能用於實驗室的區域網路,或用於跨國企業的廣域網路,本發明並未限定儲存節點100的應用。然而,儲存節點100必須是軟體定義儲存。換句話說,儲存節點100的硬體(儲存裝置)應該能與管理儲存節點100的軟體分離。儲存節點100由軟體定義儲存之軟體所運作。因此,儲存節點100中儲存裝置的重配置能藉由各別的軟體或硬體來實現。 Please refer to Figures 1 to 9. An embodiment of the invention is disclosed herein. 1 is a block diagram of an adaptive fuzzy rule control system 10. System 10 can be used in a network to define a storage system for a software that controls performance parameters in an acceptable range. In this embodiment, the performance parameters include the number of input and output operations per second, the delay time, and the throughput. The network can be the internet. In this way, the storage node 100 can be a database server, manages a large number of storage devices and provides a client cloud service, and can also be a file server or a mail server, and has a dedicated storage device. The network may also be used in a regional network of a laboratory, or a wide area network for a multinational enterprise, and the present invention does not limit the application of the storage node 100. However, storage node 100 must be a software definition store. In other words, the hardware (storage device) of the storage node 100 should be separable from the software managing the storage node 100. The storage node 100 is operated by a software defined by the software definition storage. Therefore, the reconfiguration of the storage device in the storage node 100 can be implemented by a separate software or hardware.

請見第2圖。第2圖顯示儲存節點100的架構。儲存節點100包括1個管理伺服器102、10個硬式磁碟104,與10個固態硬碟106。管理伺服器102能接收指令,以進行硬式磁碟104與固態硬碟106的重配置。儲存節點100的不同配置,即使用之硬式磁碟104與固態硬碟106的百分比,能在不同工作 量下維持一定的延遲時間。固態硬碟106具有較硬式磁碟104更快的儲存速度。然而,相同的容量下,固態硬碟106的價格較硬式磁碟104貴出許多。正常來說,同樣的成本,硬式磁碟104的儲存容量約為固態硬碟106的十倍。對這樣的儲存節點100而言,因為固態硬碟106的生命週期將下降非常快,提供全以固態硬碟106待機的服務是不經濟的,且當固態硬碟106都用上時,儲存容量會成為一個問題。當儲存節點100的配置包含一些硬式磁碟104與固態硬碟106時,只要延遲時間能滿足服務層級協議(Service Level Agreement)或服務品質(Quality of Service)需求之要求,該儲存節點100仍能順利運行及避免前述的問題。 Please see Figure 2. Figure 2 shows the architecture of the storage node 100. The storage node 100 includes a management server 102, 10 hard disks 104, and 10 solid state disks 106. The management server 102 can receive instructions to reconfigure the hard disk 104 and the solid state disk 106. The different configurations of the storage node 100, that is, the percentage of the hard disk 104 and the solid state disk 106 used, can work differently. Maintain a certain delay time. The solid state hard disk 106 has a faster storage speed than the hard disk 104. However, at the same capacity, the price of the solid state drive 106 is much more expensive than the hard disk 104. Normally, at the same cost, the hard disk 104 has a storage capacity that is about ten times that of the solid state disk 106. For such a storage node 100, since the life cycle of the solid state hard disk 106 will drop very fast, it is uneconomical to provide a service in which the solid state hard disk 106 is standby, and when the solid state hard disk 106 is used, the storage capacity Will become a problem. When the configuration of the storage node 100 includes some hard disks 104 and solid state disks 106, the storage node 100 can still meet the requirements of Service Level Agreement or Quality of Service requirements as long as the delay time can meet the requirements of Service Level Agreement or Quality of Service requirements. Run smoothly and avoid the aforementioned problems.

自適應模糊規則控制系統10包括一流量監測模組120、一自適應神經模糊推理模組140、一流量預測模組160,及一模糊規則控制模組180。流量監測模組120被用來取得儲存節點100性能參數的觀察值。自適應神經模糊推理模組140能學習於該儲存節點100中數個儲存設備配置及於一段時間內的性能參數間的一動態關係,及輸出模糊規則,該模糊規則是依照該動態關係而建立的。此處,延遲時間的特定值指在服務層級協議或服務品質需求中所要求的數值,它是儲存節點100最長的延遲時間,應於正常使用下所提供的服務中實行(例外於儲存節點100開機時或超大工作量發生時)。對本實施例而言,延遲時間的特定值為2秒。任何的特定值皆可行, 本發明並未限定之。此外,該段時間範圍由數十秒到整個歷史記錄期間。因而,自適應神經模糊推理模組140能有足夠的資料來學習及分析。實作上,在該段時間內觀察值可能不會連續地被記錄。這意味著自適應神經模糊推理模組140將以來自不同時段的資料,學習該動態關係。學習動態關係可由許多方法達成,在本實施例中應用了神經網路演算法。 The adaptive fuzzy rule control system 10 includes a flow monitoring module 120, an adaptive neuro-fuzzy inference module 140, a flow prediction module 160, and a fuzzy rule control module 180. The flow monitoring module 120 is used to obtain an observation of the performance parameters of the storage node 100. The adaptive neuro-fuzzy inference module 140 can learn a dynamic relationship between a plurality of storage device configurations and performance parameters in the storage node 100, and output a fuzzy rule, and the fuzzy rule is established according to the dynamic relationship. of. Here, the specific value of the delay time refers to the value required in the service level agreement or the quality of service requirement, which is the longest delay time of the storage node 100, and should be implemented in the service provided under normal use (except for the storage node 100). At boot time or when a large workload occurs). For the present embodiment, the specific value of the delay time is 2 seconds. Any specific value is possible, The invention is not limited. In addition, the period of time ranges from tens of seconds to the entire history period. Thus, the adaptive neuro-fuzzy inference module 140 can have sufficient data to learn and analyze. In practice, observations may not be continuously recorded during this period of time. This means that the adaptive neuro-fuzzy inference module 140 will learn the dynamic relationship with data from different time periods. Learning dynamic relationships can be achieved in a number of ways, and in this embodiment a neural network algorithm is applied.

自適應神經模糊推理模組140產生數個隸屬函數。隸屬函數被用來界定一性能參數的程度或在一特定的級別下該儲存設備的配置。模糊規則連接用於一特定的級別下的性能參數之隸屬函數至用於另一特定的級別下的該儲存設備的配置之隸屬函數。請參閱第3圖至第5圖,該些圖式用來描述在本實施例中的隸屬函數與模糊規則。 The adaptive neuro-fuzzy inference module 140 generates a number of membership functions. The membership function is used to define the extent of a performance parameter or the configuration of the storage device at a particular level. A fuzzy rule joins a membership function for a performance parameter at a particular level to a membership function for the configuration of the storage device at another particular level. Please refer to Figures 3 to 5, which are used to describe the membership function and the fuzzy rule in this embodiment.

第3圖說明用於每秒輸入輸出操作次數的隸屬函數。依照模糊邏輯,變數會有真值介於程度0與1間。模糊邏輯已延伸到處理部分真值的觀念中,在其中真值可能介於完全真實及完全錯誤之間。因此,當每秒輸入輸出操作次數大於或等於0但小於20,000時,描述每秒輸入輸出操作次數程度於低級別時的隸屬函數是1.0;當每秒輸入輸出操作次數大於或等於20,000但小於40,000時,該隸屬函數由1.0線性地下降到0;及當每秒輸入輸出操作次數大於或等於40,000但小於或等於100,000時,該隸屬函數為0。相似地,當每秒輸入輸出操作次數大於或等於0但小於20,000時,描述每秒輸入輸出操作 次數程度於中級別時的隸屬函數是0;當每秒輸入輸出操作次數大於或等於20,000但小於50,000時,該隸屬函數由0線性地上升到1.0;當每秒輸入輸出操作次數大於或等於50,000但小於80,000時,該隸屬函數由1.0線性地下降到0;及當每秒輸入輸出操作次數大於或等於80,000但小於或等於100,000時,該隸屬函數為0。當每秒輸入輸出操作次數大於或等於0但小於60,000時,描述每秒輸入輸出操作次數程度於高級別時的隸屬函數是0;當每秒輸入輸出操作次數是大於或等於60,000但小於80,000時,該隸屬函數由0線性地上升到1.0;及當每秒輸入輸出操作次數大於或等於80,000但小於或等於100,000時,該隸屬函數為1.0。 Figure 3 illustrates the membership function for the number of input and output operations per second. According to fuzzy logic, variables have a true value between 0 and 1. Fuzzy logic has been extended to the notion of dealing with partial truth values, where the true value may be between full truth and complete error. Therefore, when the number of input/output operations per second is greater than or equal to 0 but less than 20,000, the membership function describing the degree of input/output operations per second to the low level is 1.0; when the number of input/output operations per second is greater than or equal to 20,000 but less than 40,000 When the membership function linearly drops from 1.0 to 0; and when the number of input/output operations per second is greater than or equal to 40,000 but less than or equal to 100,000, the membership function is zero. Similarly, when the number of input/output operations per second is greater than or equal to 0 but less than 20,000, the input/output operation per second is described. The membership function is 0 in the middle level; when the number of input/output operations per second is greater than or equal to 20,000 but less than 50,000, the membership function linearly rises from 0 to 1.0; when the number of input and output operations per second is greater than or equal to 50,000 However, when less than 80,000, the membership function linearly drops from 1.0 to 0; and when the number of input/output operations per second is greater than or equal to 80,000 but less than or equal to 100,000, the membership function is zero. When the number of input/output operations per second is greater than or equal to 0 but less than 60,000, the membership function describing the degree of input/output operations per second to the high level is 0; when the number of input/output operations per second is greater than or equal to 60,000 but less than 80,000 The membership function linearly rises from 0 to 1.0; and when the number of input/output operations per second is greater than or equal to 80,000 but less than or equal to 100,000, the membership function is 1.0.

第4圖說明用於流通量的隸屬函數。當流通量大於或等於0GB/s但小於2GB/s時,描述流通量程度於低級別時的隸屬函數是1.0;當流通量大於或等於2GB/s但小於4GB/s時,該隸屬函數由1.0線性地下降到0;及當流通量大於或等於4GB/s但小於或等於10GB/s時,該隸屬函數為0。相似地,當流通量大於或等於0GB/s但小於2GB/s時,描述流通量程度於中級別時的隸屬函數是0;當流通量大於或等於2GB/s但小於4GB/s時,該隸屬函數由0線性地上升到1.0;當流通量大於或等於4GB/s但小於6GB/s時,該隸屬函數為1.0;當流通量大於或等於6GB/s但小於8GB/s時,該隸屬函數由1.0線性地下降到0;及當流通量大於或等於8GB/s但小於或等於10GB/s時, 該隸屬函數為0。當流通量大於或等於0GB/s但小於6GB/s時,描述流通量程度於高級別時的隸屬函數是0;當流通量大於或等於6GB/s但小於9GB/s時,該隸屬函數由0線性地上升到1.0;及當流通量大於或等於9GB/s但小於或等於10GB/s時,該隸屬函數為1.0。 Figure 4 illustrates the membership function for the flux. When the liquidity is greater than or equal to 0 GB/s but less than 2 GB/s, the membership function describing the degree of liquidity at a low level is 1.0; when the liquidity is greater than or equal to 2 GB/s but less than 4 GB/s, the membership function is 1.0 linearly drops to 0; and when the throughput is greater than or equal to 4 GB/s but less than or equal to 10 GB/s, the membership function is zero. Similarly, when the throughput is greater than or equal to 0 GB/s but less than 2 GB/s, the membership function describing the degree of liquidity at the intermediate level is 0; when the throughput is greater than or equal to 2 GB/s but less than 4 GB/s, The membership function linearly rises from 0 to 1.0; when the throughput is greater than or equal to 4 GB/s but less than 6 GB/s, the membership function is 1.0; when the throughput is greater than or equal to 6 GB/s but less than 8 GB/s, the membership is The function linearly drops from 1.0 to 0; and when the throughput is greater than or equal to 8 GB/s but less than or equal to 10 GB/s, This membership function is 0. When the flux is greater than or equal to 0 GB/s but less than 6 GB/s, the membership function describing the degree of flux at a high level is 0; when the flux is greater than or equal to 6 GB/s but less than 9 GB/s, the membership function is 0 linearly rises to 1.0; and when the throughput is greater than or equal to 9 GB/s but less than or equal to 10 GB/s, the membership function is 1.0.

第5圖說明在儲存節點100中,用於固態硬碟百分比的隸屬函數(其它部分為硬式磁碟)。當固態硬碟的百分比大於或等於0%但小於20%時,描述固態硬碟百分比的程度於低級別時的隸屬函數是1.0;當固態硬碟的百分比大於或等於20%但小於40%時,該隸屬函數由1.0線性地下降到0;及當固態硬碟的百分比大於或等於40%但小於或等於100%時,該隸屬函數為0。相似地,當固態硬碟的百分比大於或等於0%但小於20%時,描述固態硬碟百分比的程度於中級別時的隸屬函數是0;當固態硬碟的百分比大於或等於20%但小於40%時,該隸屬函數由0線性地上升到1.0,當固態硬碟的百分比大於或等於40%但小於60%時,該隸屬函數為1.0;當固態硬碟的百分比大於或等於60%但小於80%時,該隸屬函數由1.0線性地下降到0;及當固態硬碟的百分比大於或等於80%但小於或等於100%時,該例數函數為0。當固態硬碟的百分比大於或等於0%但小於60%時,描述固態硬碟百分比的程度於高級別時的隸屬函數是0;當固態硬碟的百分比大於或等於60%但小於80%時, 該隸屬函數由0線性地上升到1.0;及當固態硬碟的百分比大於或等於80%但小於或等於100%時,該例數函數為1.0。 Figure 5 illustrates the membership function for the percentage of solid state hard disks in the storage node 100 (other portions are hard disks). When the percentage of the solid state hard disk is greater than or equal to 0% but less than 20%, the membership function describing the percentage of the solid state hard disk at the low level is 1.0; when the percentage of the solid state hard disk is greater than or equal to 20% but less than 40% The membership function linearly drops from 1.0 to 0; and when the percentage of solid state hard disks is greater than or equal to 40% but less than or equal to 100%, the membership function is zero. Similarly, when the percentage of the solid state hard disk is greater than or equal to 0% but less than 20%, the membership function describing the percentage of the solid state hard disk at the middle level is 0; when the percentage of the solid state hard disk is greater than or equal to 20% but less than At 40%, the membership function rises linearly from 0 to 1.0. When the percentage of solid state hard disk is greater than or equal to 40% but less than 60%, the membership function is 1.0; when the percentage of solid state hard disk is greater than or equal to 60% but When less than 80%, the membership function linearly drops from 1.0 to 0; and when the percentage of solid state hard disks is greater than or equal to 80% but less than or equal to 100%, the example number function is zero. When the percentage of the solid state hard disk is greater than or equal to 0% but less than 60%, the membership function describing the percentage of the solid state hard disk at the high level is 0; when the percentage of the solid state hard disk is greater than or equal to 60% but less than 80% , The membership function linearly rises from zero to 1.0; and when the percentage of solid state hard disks is greater than or equal to 80% but less than or equal to 100%, the example number function is 1.0.

模糊規則連接用於一特定的級別下的性能參數之隸屬函數至用於另一特定的級別下的該儲存設備的配置之隸屬函數,顯示於第6圖。每一規則各自連接每秒輸入輸出操作次數的隸屬函數與特定的級別下的流通量的隸屬函數,到一特定的級別下固態硬碟百分比的隸屬函數。舉例而言,規則5是用於中級別下的固態硬碟的百分比,其被連接到中級別下的每秒輸入輸出操作次數與中級別下的流通量。規則5意味著如果用於每秒輸入輸出操作次數的隸屬函數是中級別,且用於流通量的隸屬函數是中級別,則對應的應用的隸屬函數也是屬於中級別的。相似的,所有其他的模糊規則之對應關係能在第6圖中找到。模糊規則的應用將於稍後說明。 The fuzzy rule joins the membership function for the performance parameters at a particular level to the membership function for the configuration of the storage device at another particular level, as shown in Figure 6. Each rule is connected to the membership function of the number of input and output operations per second and the membership function of the liquidity at a specific level, to the membership function of the percentage of solid state hard disk at a specific level. For example, rule 5 is the percentage of solid state hard drives used in the middle level, which is connected to the number of input and output operations per second and the middle level. Rule 5 means that if the membership function for the number of input/output operations per second is a medium level and the membership function for the throughput is a medium level, the membership function of the corresponding application is also of the medium level. Similarly, the correspondence of all other fuzzy rules can be found in Figure 6. The application of fuzzy rules will be explained later.

流量預測模組160用來在未來某一特定的時間點,提供性能參數的預測值。例如,流量預測模組160能基於分析的歷史資料,預測十分鐘後的每秒輸入輸出操作次數、延遲時間,與流通量。接著,性能參數被提供到模糊規則控制模組180中。模糊規則控制模組180接收這些值,並能在十分鐘後進行相關處理。當然,流量預測模組160能持續地預測及提供每秒輸入輸出操作次數與流通量。本發明未限定用以提供性能參數的預測值,由流量預測模組160使用的方法或設備。 The traffic prediction module 160 is configured to provide predicted values of performance parameters at a particular point in time in the future. For example, the traffic prediction module 160 can predict the number of input/output operations per second, the delay time, and the throughput after ten minutes based on the historical data analyzed. The performance parameters are then provided to the fuzzy rule control module 180. The fuzzy rule control module 180 receives these values and can perform related processing after ten minutes. Of course, the traffic prediction module 160 can continuously predict and provide the number of input and output operations and throughput per second. The present invention does not limit the method or apparatus used by the traffic prediction module 160 to provide predictive values for performance parameters.

模糊規則控制模組180用以在未來特定的時間點,於該儲存節點100中,依照模糊規則與該預測值安排該儲存設備的配置。從而,一特定的性能參數的特定值能在未來該特定的時間點達成。為了解釋自適應模糊規則控制系統10如何運作,在本實施例中的一個例子說明如下。 The fuzzy rule control module 180 is configured to arrange the configuration of the storage device in the storage node 100 according to the fuzzy rule and the predicted value at a specific time point in the future. Thus, a particular value of a particular performance parameter can be achieved at that particular point in time in the future. To explain how the adaptive fuzzy rule control system 10 operates, an example in this embodiment is explained below.

當流量預測模組160預測十分鐘後的每秒輸入輸出操作次數與流通量可能各為70,000與7GB/s,它將送出這些資料到自適應神經模糊推理模組140中。模糊推論法藉由該隸屬函數界定的程度,被使用來以至少一給定的性能參數,獲得該儲存設備的配置。有許多的推論法,諸如Mamdani推論法或Sugeno推論法,能於模糊邏輯的領域被使用,本發明並未限定使用何者。本實施例中以Mamdani推論法做為說明。請再次參見第3圖。當每秒輸入輸出操作次數是70,000時,A與B兩個點能各自在中級別與高級別隸屬函數中找到。因而,對應的程度各是0.33與0.5。相似地,在第4圖中,當流通量為7GB/s時,C與D兩點能各自在中級別與高級別隸屬函數中找到。是故,對應的程度各為0.5與0.33。 When the traffic prediction module 160 predicts that the number of input and output operations per second and the throughput may be 70,000 and 7 GB/s after ten minutes, it will send the data to the adaptive neuro-fuzzy inference module 140. The degree to which the fuzzy inference method is defined by the membership function is used to obtain the configuration of the storage device with at least a given performance parameter. There are many inferences, such as Mamdani inference or Sugeno inference, that can be used in the field of fuzzy logic, and the invention does not limit which one is used. In the present embodiment, the Mamdani inference method is taken as an explanation. Please refer to Figure 3 again. When the number of input and output operations per second is 70,000, the two points A and B can be found in the middle and high level membership functions. Thus, the degree of correspondence is 0.33 and 0.5, respectively. Similarly, in Fig. 4, when the throughput is 7 GB/s, the two points C and D can be found in the middle and high level membership functions, respectively. Therefore, the degree of correspondence is 0.5 and 0.33, respectively.

規則5、規則6、規則8與規則9應用於上述的4個點。舉例而言,對於規則5,如果用於每秒輸入輸出操作次數的隸屬函數是在中級別,且流通量的隸屬函數是在中級別,用於固態硬碟的百分比的隸屬函數就在中級別。固態硬碟百分比的程度是用於每秒輸入輸出操作次數與流通量的程度中 最小的,即是0.33。相似地,在規則6中,用於固態硬碟百分比的程度為0.33;在規則8中,用於固態硬碟百分比的程度為0.5;在規則9中,用於固態硬碟百分比的程度為0.33。藉由Mamdani推論法,來自上面模糊規則的控制規則能由第7圖中計算交錯線面積質心距橫軸原點的位置而獲得。為了簡化計算與說明,質心位置的計算首先切割該交錯線面積為4個簡單形狀的子面積,即第8圖中的A1、A2、A3,與A4。在自適應神經模糊推理模組140中的計算表列於第9圖中。輸出的控制規則,對十分鐘後固態硬碟的百分比來說為66%的固態硬碟(以34%硬式磁碟)。在模糊規則控制模組180接收固態硬碟的百分比之後,它能相應地安排十分鐘後儲存節點100的配置。 Rule 5, Rule 6, Rule 8 and Rule 9 are applied to the above four points. For example, for rule 5, if the membership function for the number of input/output operations per second is at the medium level, and the membership function of the liquidity is at the medium level, the membership function for the percentage of the solid state hard disk is at the medium level. . The percentage of solid state hard disk is used for the number of input and output operations per second and the amount of liquidity The smallest is 0.33. Similarly, in rule 6, the degree for the solid state hard disk percentage is 0.33; in rule 8, the degree for the solid state hard disk percentage is 0.5; in rule 9, the degree for the solid state hard disk percentage is 0.33 . With the Mamdani inference method, the control rule from the above fuzzy rule can be obtained from the calculation of the position of the interlaced line area centroid from the origin of the horizontal axis in Fig. 7. In order to simplify the calculation and description, the calculation of the centroid position first cuts the sub-area of the area of the staggered line into four simple shapes, that is, A1, A2, A3, and A4 in Fig. 8. The calculation table in the adaptive neuro-fuzzy inference module 140 is shown in FIG. The output control rule is 66% solid state hard disk (34% hard disk) for the percentage of solid state hard disk after ten minutes. After the fuzzy rule control module 180 receives the percentage of the solid state hard disk, it can arrange the configuration of the storage node 100 after ten minutes.

需要注意的是隸屬函數與相關的模糊規則,能依照軟體定義儲存系統的運作經驗或該動態關係而設定。亦即,隸屬函數與相關的模糊規則來自一可導出最佳延遲時間控制的來源。使用的隸屬函數在不同區間內不是線性的,只要控制規則導出較好的延遲時間之控制,也可以使用其它類型的關係。當然,自適應神經模糊推理模組140能檢查延遲時間的特定值與來自流量監測模組120之延遲時間的觀察值間的一差異值。一但該差異值超過一容忍值,自適應神經模糊推理模組140學習新的模糊規則與隸屬函數。例如,如果對於儲存節點100的一允許的延遲時間為2秒,容忍值為1秒,當該差異值是2秒時,實際的延遲時間是4秒。這樣不能為服務層級協 議所接受。當下的模糊規則與隸屬函數不適用於儲存節點100的新狀態,新的模糊規則與隸屬函數必須再次從學習及分析儲存節點100的新狀態而設立。在本實施例中,2個性能參數(流通量與每秒輸入輸出操作次數)連接到儲存設備(固態硬碟的百分比)的配置。實作上,1個、2個,或所有3個性能參數都能連接到儲存設備的配置。 It should be noted that the membership function and related fuzzy rules can be set according to the operating experience of the software definition storage system or the dynamic relationship. That is, the membership function and associated fuzzy rules come from a source that can derive the optimal delay time control. The membership functions used are not linear in different intervals, and other types of relationships can be used as long as the control rules derive better control of the delay time. Of course, the adaptive neuro-fuzzy inference module 140 can check for a difference between the specific value of the delay time and the observed value of the delay time from the flow monitoring module 120. Once the difference value exceeds a tolerance value, the adaptive neuro-fuzzy inference module 140 learns the new fuzzy rule and membership function. For example, if an allowed delay time for the storage node 100 is 2 seconds, the tolerance value is 1 second, and when the difference value is 2 seconds, the actual delay time is 4 seconds. This cannot be a service level association Accepted by the council. The current fuzzy rules and membership functions are not applicable to the new state of the storage node 100, and the new fuzzy rules and membership functions must be established again from learning and analyzing the new state of the storage node 100. In the present embodiment, two performance parameters (flow amount and number of input/output operations per second) are connected to the configuration of the storage device (percentage of solid state hard disks). In practice, one, two, or all three performance parameters can be connected to the configuration of the storage device.

要強調的是儲存設備不限定於硬式磁碟與固態硬碟,隨機存取記憶體也能被使用,硬式磁碟與隨機存取記憶體的混合組合,或固態硬碟與隨機存取記憶體的混合組合也可應用。在本實施例中的配置是使用中不同型態儲存設備的百分比,它也能是單一型態儲存設備使用中的固定數量(例如,儲存節點僅包含固態硬碟,重配置則由是啟動待機中的固態硬碟而達成)。最重要的,流量監測模組120、自適應神經模糊推理模組140、流量預測模組160,或模糊規則控制模組180是硬體,或是於該儲存節點100中的至少一個處理器上執行的軟體。 It should be emphasized that the storage device is not limited to hard disks and solid state disks, random access memory can be used, mixed combination of hard disk and random access memory, or solid state hard disk and random access memory. The hybrid combination is also applicable. The configuration in this embodiment is the percentage of different types of storage devices in use, and it can also be a fixed number of uses in a single type of storage device (for example, the storage node only contains solid state drives, and the reconfiguration is initiated by standby). In the solid state hard disk to achieve). Most importantly, the traffic monitoring module 120, the adaptive neuro-fuzzy inference module 140, the traffic prediction module 160, or the fuzzy rule control module 180 are hardware or on at least one processor in the storage node 100. The software that is executed.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

10‧‧‧自適應模糊規則控制系統 10‧‧‧Adaptive fuzzy rule control system

100‧‧‧儲存節點 100‧‧‧ storage node

120‧‧‧流量監測模組 120‧‧‧Flow Monitoring Module

140‧‧‧自適應神經模糊推理模組 140‧‧‧Adaptive Neuro-Fuzzy Inference Module

160‧‧‧流量預測模組 160‧‧‧Traffic prediction module

180‧‧‧模糊規則控制模組 180‧‧‧Fuzzy Rule Control Module

Claims (13)

一種用於軟體定義儲存系統,控制儲存節點中性能參數的自適應模糊規則控制系統,包含:一流量監測模組,用於取得該儲存節點中性能參數的觀察值;一自適應神經模糊推理模組,用以學習於該儲存節點中複數個儲存設備配置及於一段時間內的性能參數間的一動態關係,及輸出模糊規則,該模糊規則依照該動態關係而建立;一流量預測模組,用以在未來某一特定的時間點,提供性能參數的預測值;及一模糊規則控制模組,用以在未來該特定的時間點,於該儲存節點中,依照模糊規則與該預測值安排該儲存設備的重配置,以便一特定的性能參數的特定值能在未來該特定的時間點達成,其中該儲存節點由軟體定義儲存軟體所運作;其中該性能參數包含每秒輸入輸出操作次數、延遲時間,或流通量(throughput);及其中該配置為不同型態儲存設備的百分比或單一型態儲存設備使用中的固定數量。 An adaptive fuzzy rule control system for a software defined storage system for controlling performance parameters in a storage node, comprising: a flow monitoring module for obtaining an observation value of performance parameters in the storage node; an adaptive neural fuzzy inference module a group for learning a dynamic relationship between a plurality of storage device configurations and performance parameters over a period of time in the storage node, and outputting a fuzzy rule, the fuzzy rule being established according to the dynamic relationship; a traffic prediction module, For providing a predicted value of the performance parameter at a specific time point in the future; and a fuzzy rule control module for arranging the predicted value according to the fuzzy rule in the storage node at the specific time point in the future Reconfiguration of the storage device such that a particular value of a particular performance parameter can be achieved at a particular point in time in the future, wherein the storage node is operated by a software-defined storage software; wherein the performance parameter includes the number of input and output operations per second, Delay time, or throughput; and the percentage of the configuration for different types of storage devices A fixed number of single type storage devices in use. 如申請專利範圍第1項所述之自適應模糊規則控制系統,其中該自適應神經模糊推理模組產生複數個隸屬函數,每 一隸屬函數用以界定一性能參數的程度或在一特定的級別下該儲存設備的配置。 The adaptive fuzzy rule control system according to claim 1, wherein the adaptive neural fuzzy inference module generates a plurality of membership functions, each A membership function is used to define the extent of a performance parameter or the configuration of the storage device at a particular level. 如申請專利範圍第2項所述之自適應模糊規則控制系統,其中該模糊規則連接用於一特定的級別下的性能參數之隸屬函數至用於另一特定的級別下的該儲存設備的配置之隸屬函數。 The adaptive fuzzy rule control system according to claim 2, wherein the fuzzy rule is connected to a membership function of a performance parameter at a specific level to a configuration of the storage device for another specific level. Membership function. 如申請專利範圍第3項所述之自適應模糊規則控制系統,其中一模糊推論法藉由該隸屬函數界定的程度,被使用來以至少一給定的性能參數,獲得該儲存設備的配置。 The adaptive fuzzy rule control system of claim 3, wherein a fuzzy inference method is used to determine the configuration of the storage device with at least a given performance parameter by the extent defined by the membership function. 如申請專利範圍第4項所述之自適應模糊規則控制系統,其中該模糊推論法為Mamdani推論法或Sugeno推論法。 The adaptive fuzzy rule control system according to claim 4, wherein the fuzzy inference method is a Mamdani inference method or a Sugeno inference method. 如申請專利範圍第1項所述之自適應模糊規則控制系統,其中該自適應神經模糊推理模組進一步檢查該特定的性能參數的特定值與該特定的性能參數的觀察值間的一差異值。 The adaptive fuzzy rule control system according to claim 1, wherein the adaptive neuro-fuzzy inference module further checks a difference between a specific value of the specific performance parameter and an observed value of the specific performance parameter. . 如申請專利範圍第6項所述之自適應模糊規則控制系統,其中如果該差異值超過一容忍值,該自適應神經模糊推理模組學習新的模糊規則與隸屬函數。 The adaptive fuzzy rule control system according to claim 6, wherein the adaptive neuro-fuzzy inference module learns a new fuzzy rule and a membership function if the difference value exceeds a tolerance value. 如申請專利範圍第1項所述之自適應模糊規則控制系統,其中該段時間範圍由數十秒到整個歷史記錄期間。 The adaptive fuzzy rule control system of claim 1, wherein the period of time ranges from tens of seconds to the entire history period. 如申請專利範圍第1項所述之自適應模糊規則控制系統,其中該觀察值在該段時間內不是連續地被記錄。 The adaptive fuzzy rule control system of claim 1, wherein the observation value is not continuously recorded during the period of time. 如申請專利範圍第1項所述之自適應模糊規則控制系統,其中該學習動態關係是由神經網路演算法達成。 The adaptive fuzzy rule control system according to claim 1, wherein the learning dynamic relationship is achieved by a neural network algorithm. 如申請專利範圍第1項所述之自適應模糊規則控制系統,其中該特定值為一服務層級協議(Service Level Agreement)或一服務品質(Quality of Service)需求之要求。 The adaptive fuzzy rule control system of claim 1, wherein the specific value is a service level agreement or a quality of service requirement. 如申請專利範圍第1項所述之自適應模糊規則控制系統,其中該儲存設備是硬式磁碟、固態硬碟、隨機存取記憶體,或其混成組合。 The adaptive fuzzy rule control system of claim 1, wherein the storage device is a hard disk, a solid state hard disk, a random access memory, or a mixture thereof. 如申請專利範圍第1項所述之自適應模糊規則控制系統,其中該流量監測模組、自適應神經模糊推理模組、流量預測模組,或模糊規則控制模組是硬體,或是於該儲存節點中的至少一個處理器上執行的軟體。 The adaptive fuzzy rule control system according to claim 1, wherein the flow monitoring module, the adaptive neuro-fuzzy inference module, the flow prediction module, or the fuzzy rule control module are hardware or Software executed on at least one of the storage nodes.
TW103123390A 2014-07-08 2014-07-08 Adaptive fuzzy rule controlling system for software defined storage system for controlling performance parameter TWI516952B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103123390A TWI516952B (en) 2014-07-08 2014-07-08 Adaptive fuzzy rule controlling system for software defined storage system for controlling performance parameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103123390A TWI516952B (en) 2014-07-08 2014-07-08 Adaptive fuzzy rule controlling system for software defined storage system for controlling performance parameter

Publications (2)

Publication Number Publication Date
TWI516952B true TWI516952B (en) 2016-01-11
TW201602797A TW201602797A (en) 2016-01-16

Family

ID=55640340

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103123390A TWI516952B (en) 2014-07-08 2014-07-08 Adaptive fuzzy rule controlling system for software defined storage system for controlling performance parameter

Country Status (1)

Country Link
TW (1) TWI516952B (en)

Also Published As

Publication number Publication date
TW201602797A (en) 2016-01-16

Similar Documents

Publication Publication Date Title
US9928312B2 (en) Dynamic window adjustments in a streaming environment
US20190173752A1 (en) Automated Adjustment of Subscriber Policies
US10116507B2 (en) Method of and system for managing computing resources
Lu et al. Fault-tolerant service level agreement lifecycle management in clouds using actor system
US10079750B2 (en) Limiting data output from windowing operations
US11023133B2 (en) Systems and methods for modifying storage system configuration using artificial intelligence
US10942769B2 (en) Elastic load balancing prioritization
US20150317556A1 (en) Adaptive quick response controlling system for software defined storage system for improving performance parameter
Falatah et al. Cloud scalability considerations
US20180150234A1 (en) Cloud volume storage
US20150186256A1 (en) Providing virtual storage pools for target applications
US20170322834A1 (en) Compute instance workload monitoring and placement
US20170255505A1 (en) Application abnormality detection
US9424510B2 (en) Adaptive fuzzy rule controlling system for software defined storage system for controlling performance parameter
Deochake Cloud cost optimization: A comprehensive review of strategies and case studies
TWI516952B (en) Adaptive fuzzy rule controlling system for software defined storage system for controlling performance parameter
US10027544B1 (en) Detecting and managing changes in networking devices
Liu et al. Bwman: Bandwidth manager for elastic services in the cloud
TWI516956B (en) Adaptive quick response controlling system for software defined storage system for improving performance parameter
US11178181B2 (en) System and method for managing security-relevant information in a computer network
US20140122722A1 (en) Allocation of resources in a networked computing environment
CN105279560B (en) Adaptive fuzzy rule control system for software definition stocking system
TWI556604B (en) Method and system for storage traffic modeling
US10680970B1 (en) Stack-based resource management system and method for a distributed computing environment
CN105320461B (en) Adaptive quick-response control system for software definition stocking system