TWI506672B - Method for fracturing and forming circular patterns on a surface and for manufacturing a semiconductor device - Google Patents

Method for fracturing and forming circular patterns on a surface and for manufacturing a semiconductor device Download PDF

Info

Publication number
TWI506672B
TWI506672B TW098128360A TW98128360A TWI506672B TW I506672 B TWI506672 B TW I506672B TW 098128360 A TW098128360 A TW 098128360A TW 98128360 A TW98128360 A TW 98128360A TW I506672 B TWI506672 B TW I506672B
Authority
TW
Taiwan
Prior art keywords
circular
pattern
illuminations
illumination
patterns
Prior art date
Application number
TW098128360A
Other languages
Chinese (zh)
Other versions
TW201021091A (en
Inventor
Akira Fujimura
Michael Tucker
Original Assignee
D2S Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/202,364 external-priority patent/US7759026B2/en
Priority claimed from US12/473,241 external-priority patent/US7754401B2/en
Priority claimed from US12/540,322 external-priority patent/US8057970B2/en
Priority claimed from US12/540,321 external-priority patent/US8017288B2/en
Application filed by D2S Inc filed Critical D2S Inc
Publication of TW201021091A publication Critical patent/TW201021091A/en
Application granted granted Critical
Publication of TWI506672B publication Critical patent/TWI506672B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/70Adapting basic layout or design of masks to lithographic process requirements, e.g., second iteration correction of mask patterns for imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/76Patterning of masks by imaging
    • G03F1/78Patterning of masks by imaging by charged particle beam [CPB], e.g. electron beam patterning of masks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70433Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

用於在表面碎化及形成圓形圖案與用於製造半導體裝置之方法Method for shredding and forming a circular pattern on a surface and for manufacturing a semiconductor device 相關申請案Related application

本申請案宣告:1)2009年8月12日申請,標題為「用以碎化圓形圖案以及用以製造一半導體裝置之方法」的美國專利申請案12/540,321號;2)2009年8月12日申請,標題為「用以在一表面上形成圓形圖案之方法與系統」的美國專利申請案12/540,322號;以及3)2008年9月1日申請,標題為「用以利用字符投影粒子束微影術製造一標線片之方法與系統」的美國專利申請案12/202,364號;4)2009年5月27日申請,標題為「用以使用可變形狀光束微影術製造一表面以及積體電路之方法」;以及5)2009年7月10日申請,標題為「用以在一表面與積體電路上製造圓形圖案之方法與系統」之美國專利臨時申請案第61/224,849號的優先權,所有專利案係以參考方式併入本文中。This application is hereby incorporated by reference in its entirety in its entirety, the entire disclosure of the entire disclosure of the entire disclosure of the entire disclosure of U.S. Patent Application Serial No. 12/540,322, entitled "Method and System for Forming a Circular Pattern on a Surface", and Application No. 12/540,322, filed on September 12, 2008, entitled "Using U.S. Patent Application Serial No. 12/202,364, the disclosure of which is incorporated herein by reference. Method of manufacturing a surface and integrated circuit"; and 5) US Patent Provisional Application entitled "Method and System for Making Circular Patterns on a Surface and Integrated Circuit", filed on July 10, 2009 Priority to 61/224,849, all of which are hereby incorporated by reference.

本發明係有關於用於表面碎化及形成圓形圖案與用於製造半導體裝置之方法。This invention relates to methods for surface fragmentation and formation of circular patterns and for the fabrication of semiconductor devices.

發明背景Background of the invention

本發明揭露內容係有關於微影術,且更特別在於使用帶電粒子束微影術設計與製造一表面,該表面可為一標線片、一晶圓,或是任何其他表面。The present disclosure relates to lithography, and more particularly to the design and fabrication of a surface using charged particle beam lithography, which may be a reticle, a wafer, or any other surface.

在諸如積體電路之半導體裝置的生產與製造方面,能夠利用光學微影術製造該等半導體裝置。光學微影術係為一種列印程序,其中係使用由一標線片加以製造之一微影遮罩或是光罩將圖案轉印到諸如半導體或是矽晶圓之一基板,以產生積體電路。其他基板能夠包括平板顯示器或者甚至為其他的標線片。此外,超紫外光(EUV)或是X射線微影術係為光學微影術之考量類型。標線片或多個標線片能包括一對應到該積體電路之一個別層之電路圖案,且此圖案能夠成像到位於基板上的一特定區域上,該基板塗佈有一層熟知為光阻劑(photoresist或是resist)之輻射敏感材料。一旦圖案層經過轉印,該層便能夠進行各種其他程序,諸如蝕刻、離子植入(摻雜)、金屬化、氧化以及研磨。這些程序係用以在基板中完成一個別層。如果需要數個層,則該等程序或是其變化形式對於各個新層而言將重複實行。最後,在基板上將會形成多重裝置或積體電路之一組合。這些積體電路接著能夠藉著切割(dicing)或鋸開(sawing)而彼此分開,且接著能夠安置入個別的封裝件。在更為普遍的案例中,基板上之圖案能夠用以界定諸如顯示像素或是記錄磁頭之人工產品。In the production and manufacture of semiconductor devices such as integrated circuits, such semiconductor devices can be fabricated using optical lithography. Optical lithography is a printing process in which a lithography mask or a reticle is used to transfer a pattern to a substrate such as a semiconductor or a germanium wafer to produce a product. Body circuit. Other substrates can include flat panel displays or even other reticle. In addition, ultra-ultraviolet light (EUV) or X-ray lithography is a type of optical lithography. The reticle or the plurality of reticle can include a circuit pattern corresponding to an individual layer of the integrated circuit, and the pattern can be imaged onto a specific area on the substrate coated with a layer of light known as light Radiation sensitive material for resists (photoresist or resist). Once the patterned layer is transferred, the layer is capable of various other procedures such as etching, ion implantation (doping), metallization, oxidation, and grinding. These programs are used to complete a separate layer in the substrate. If several layers are required, the programs or their variations will be repeated for each new layer. Finally, a combination of multiple devices or integrated circuits will be formed on the substrate. These integrated circuits can then be separated from one another by dicing or sawing and can then be placed into individual packages. In a more general case, the pattern on the substrate can be used to define an artificial product such as a display pixel or a recording head.

在諸如積體電路之半導體裝置的生產與製造方面,亦能夠使用無遮罩直接寫入法製造該等半導體裝置。無遮罩直接寫入係為一種列印程序,其中係使用帶電粒子束微影術將圖案轉印到諸如一半導體或是矽晶圓之一基板,以產生積體電路。其他基板能夠包括平板顯示器、用於奈米壓印之壓印遮罩、或者甚至為標線片。一層之所需圖案係直接寫在表面上,在此案例中該表面亦為基板。一旦具有圖案之層經過轉印,該層便能夠進行各種其他程序,諸如蝕刻、離子植入(摻雜)、金屬化、氧化以及研磨。這些程序係用以在基板中完成一個別層。如果需要數個層,則對於各個新層將重複實行整個程序或是其變化形式。該等層其中某些層能夠使用光學微影術加以寫入,而其他層則能夠使用無遮罩直接寫入方式加以寫入,以製造出相同的基板。最後,在基板上便會形成多重裝置或是積體電路之一組合。這些積體電路接著能夠藉著切割或鋸開而彼此分開,且接著能夠安置入個別的封裝件。在更為普遍的案例中,基板上之圖案能夠用以界定諸如顯示像素或是記錄磁頭之人工產品。In the production and manufacture of semiconductor devices such as integrated circuits, such semiconductor devices can also be fabricated using a maskless direct writing method. Unmasked direct writing is a printing process in which a charged particle beam lithography is used to transfer a pattern to a substrate such as a semiconductor or germanium wafer to produce an integrated circuit. Other substrates can include flat panel displays, embossed masks for nanoimprinting, or even reticle. The desired pattern of one layer is written directly on the surface, which in this case is also the substrate. Once the patterned layer has been transferred, the layer is capable of various other procedures such as etching, ion implantation (doping), metallization, oxidation, and grinding. These programs are used to complete a separate layer in the substrate. If several layers are required, the entire program or its variations will be repeated for each new layer. Some of these layers can be written using optical lithography, while other layers can be written using unmasked direct writing to create the same substrate. Finally, a combination of multiple devices or integrated circuits is formed on the substrate. These integrated circuits can then be separated from one another by cutting or sawing and can then be placed into individual packages. In a more general case, the pattern on the substrate can be used to define an artificial product such as a display pixel or a recording head.

在半導體製造方面,可靠地製造接點與通孔係相當困難且重要,尤其是當使用光學微影術製造小於80奈米半節距之圖案時,其中該半節距係為二分之一最小接點或通孔尺寸加上二分之一接點或通孔之間所需的最小間隔。接點與通孔將位於一層上之一傳導材料連接到位於另一層上的傳導材料。在相對較現今普遍使用技術節點為大的先前技術節點中,曾經試圖在晶圓上製造方形通孔與接點。需要方形接點與通孔,以便使位於下方層中之傳導材料與位於上方層中的傳導材料之間得到最大的連接區域。但是隨著減少字符尺寸,在半導體晶圓上產生大量方形圖案便成為花費昂貴或不可行之舉。尤其是80奈米或更小之半節距,從上方觀視,半導體製造商之目標係在晶圓上形成近似的圓形,其產生近似圓柱之接點或通孔。訂定所需晶圓形狀之設計資料仍然將所需形狀定為一方形。然而,製造商與設計師期許假設光學微影術程序之限制將會使在晶圓上實際產生的形狀變成一近似圓形。對於所有形狀而言,此效應之一般案例有時係稱之為角落導圓。In semiconductor manufacturing, reliable fabrication of contacts and vias is quite difficult and important, especially when optical lithography is used to create patterns of less than 80 nm half pitch, where the half pitch is one-half Minimum contact or via size plus one-half contact or minimum required spacing between vias. The contacts and vias connect one of the conductive materials on one layer to the conductive material on the other. In prior art nodes that are relatively large in today's commonly used technology nodes, attempts have been made to make square vias and contacts on the wafer. Square contacts and vias are required to maximize the area of connection between the conductive material located in the underlying layer and the conductive material located in the upper layer. But as character size is reduced, the creation of a large number of square patterns on a semiconductor wafer becomes expensive or infeasible. In particular, a half pitch of 80 nm or less, viewed from above, the semiconductor manufacturer's goal is to form an approximately circular shape on the wafer that produces approximately cylindrical contacts or vias. The design data for the desired wafer shape still sets the desired shape as a square. However, manufacturers and designers expect that the limitations of the optical lithography procedure will cause the shape actually produced on the wafer to become an approximately circular shape. For all shapes, the general case of this effect is sometimes referred to as a corner guide.

習用上在設計資料方面將接點與通孔訂定為方形之一顯著優點係在於,方形圖案能夠相對快速地形成在一標線片上。然而,對於位在標線片上之接點與通孔使用方形圖案卻會使在半導體裝置上製造通孔與接點變得更為困難。排除在光罩上使用方形圖案用於接點與通孔相關的困難係具有優點,尤其是對於半節距小於80奈米更是如此。Conventionally, one of the advantages of designing a contact and a through hole as a square in terms of design data is that a square pattern can be formed relatively quickly on a reticle. However, the use of a square pattern for the contacts and vias located on the reticle makes it more difficult to fabricate vias and contacts on the semiconductor device. The exclusion of the use of square patterns on the reticle for the difficulties associated with the contacts is advantageous, especially for half pitches less than 80 nm.

發明概要Summary of invention

揭露一種用以使用一光罩以及光學微影術製造一半導體裝置之方法,其中位於該半導體晶圓上之圓形圖案係藉著使用光罩上的圓形圖案所形成,其係使用一帶電粒子束寫入器加以製造。在一實施例中,可變尺寸的圓形圖案係使用一單獨字符投影(CP)字符改變帶電粒子束劑量而形成在光罩上。A method for fabricating a semiconductor device using a photomask and optical lithography, wherein a circular pattern on the semiconductor wafer is formed by using a circular pattern on a photomask, which is charged The particle beam writer is manufactured. In one embodiment, the variable size circular pattern is formed on the reticle using a single character projection (CP) character to change the charged particle beam dose.

另外亦揭露一種用以使用圓形CP字符或使用可變形狀光束(VSB)照射碎化圓形圖案之方法,其中該等多次VSB照射之結合係不同於所需圖案組。Also disclosed is a method for illuminating a shredded circular pattern using a circular CP character or using a variable shape beam (VSB), wherein the plurality of combinations of VSB illumination are different from the desired pattern set.

另外亦揭露一種用以使用一字符投影(CP)帶電粒子束寫入器在一表面上形成圓形圖案之方法,其中不同尺寸之圓形圖案能夠藉著改變劑量而使用一單獨CP字符加以形成。Also disclosed is a method for forming a circular pattern on a surface using a one-character projection (CP) charged particle beam writer, wherein circular patterns of different sizes can be formed using a single CP character by varying the dose. .

此外亦揭露一種用以使用一可變形狀光束(VSB)帶電粒子束寫入器在一表面上形成圓形圖案之方法,其中該照射劑量能夠改變,且其中照射之結合係不同於目標圖案組。Also disclosed is a method for forming a circular pattern on a surface using a variable shape beam (VSB) charged particle beam writer, wherein the dose of illumination can be varied, and wherein the combination of illumination is different from the target pattern group .

另外亦揭露一種用以使用一圖樣庫在一表面上形成圓形圖案之方法,其中該圖樣係為得自於一次或更多帶電粒子束照射之預先計算的劑量圖。Also disclosed is a method for forming a circular pattern on a surface using a pattern library, wherein the pattern is a pre-calculated dose map derived from one or more charged particle beam illuminations.

在考量以下之詳細說明,並結合所附圖式之後,本發明之這些與其他優點將會變得顯而易見。These and other advantages of the present invention will become apparent from the Detailed Description of the Drawing.

圖式簡單說明Simple illustration

第1圖顯示一種在一晶圓上形成諸如接點或通孔之圓形圖案的習用方法;Figure 1 shows a conventional method of forming a circular pattern such as a contact or a via on a wafer;

第2圖顯示一種藉由本發明在一晶圓上形成諸如接點或通孔之圓形圖案的方法;Figure 2 shows a method of forming a circular pattern such as a contact or a via on a wafer by the present invention;

第3圖顯示一具有字符投影(CP)能力之帶電粒子束寫入器;Figure 3 shows a charged particle beam writer with character projection (CP) capability;

第4圖顯示包含複數個圓形字符之一字符投影樣板;Figure 4 shows a character projection template containing one of a plurality of circular characters;

第5A圖顯示藉由一圓形字符投影字符之照射所形成的一圖案;Figure 5A shows a pattern formed by illumination of a circular character projection character;

第5B圖顯示改變劑量對於表面上藉由第5A圖之字符投影照射所對齊之圖案的尺寸之影響;Figure 5B shows the effect of changing the dose on the size of the pattern aligned on the surface by the projection projection of the character of Figure 5A;

第6圖顯示一流程圖,該圖顯示能夠利用一組圓形字符投影字符形成在一表面上之圓形圖案的直徑範圍;Figure 6 shows a flow chart showing the range of diameters of a circular pattern that can be formed on a surface using a set of circular character projection characters;

第7圖顯示如何能夠利用重疊VSB照射以寫入一圓形圖案;Figure 7 shows how overlapping VSB illumination can be utilized to write a circular pattern;

第8圖顯示如何能夠利用非重疊VSB照射以寫入一圓形圖案;Figure 8 shows how non-overlapping VSB illumination can be utilized to write a circular pattern;

第9圖顯示能夠利用一參數化圖樣產生在一表面上之一圓形圖案;Figure 9 shows that a parametric pattern can be used to create a circular pattern on a surface;

第10圖顯示使用本發明之一示範性方法製造一標線片以及製造一積體電路的概念流程圖;Figure 10 is a conceptual flow diagram showing the fabrication of a reticle and the fabrication of an integrated circuit using an exemplary method of the present invention;

第11A圖顯示一所需之一近似圓形的圖案;Figure 11A shows a pattern of one of the desired approximate circles;

第11B圖顯示一組能夠形成第11A圖之該圖案的非重疊VSB照射。Figure 11B shows a set of non-overlapping VSB illuminations capable of forming the pattern of Figure 11A.

較佳實施例之詳細說明Detailed description of the preferred embodiment

第1圖顯示用以利用光學微影術在一晶圓上形成接點與通孔圖案之習用方法。一光學微影術機器100包含一照明來源102,其發射光學輻射到一包含多種矩形孔隙圖案106之光罩104上。光學輻射係透過該孔隙圖案106以及透過一個或更多透鏡108加以傳遞,從而在諸如一半導體晶圓之一表面112上形成一圖案110。一般而言,與位於光罩104上之孔隙圖案106相較,位於表面112上之該圖案110的尺寸通常較小。由於光學微影術程序之限制,諸如藉由照明來源102所產生之輻射波長,對於諸如小於80奈米半節距之圖案的微小接點與通孔而言,光罩上之方形圖案將會在基板上形成一圓形或近似圓形的圖案。Figure 1 shows a conventional method for forming contacts and via patterns on a wafer using optical lithography. An optical lithography machine 100 includes an illumination source 102 that emits optical radiation onto a reticle 104 that includes a plurality of rectangular aperture patterns 106. Optical radiation is transmitted through the aperture pattern 106 and through one or more lenses 108 to form a pattern 110 on a surface 112 such as a semiconductor wafer. In general, the pattern 110 on the surface 112 is typically smaller in size than the aperture pattern 106 on the reticle 104. Due to limitations of the optical lithography procedure, such as the wavelength of radiation produced by the illumination source 102, for small contacts and vias such as patterns of less than 80 nanometers half pitch, the square pattern on the reticle will A circular or approximately circular pattern is formed on the substrate.

在半導體微影術中,有一重要觀念稱之為光罩誤差加強因子(MEEF)。在一使用光罩之典型的半導體製造程序中,該等光罩之尺寸係為晶圓尺寸的四倍。例如,在一表面上為一50奈米的目標形狀在光罩上則會成為一200奈米的形狀。如果MEEF係為1.0,則光罩上一個4奈米偏移誤差便會在晶圓上轉變為1奈米的偏移。然而,對於諸如位於互連或佈線層上之線段與空間而言,一典型之MEEF係為2。對於連接層而言,一典型之MEEF係為4,如此表示光罩上之一4奈米的偏移誤差會轉換成晶圓上的一4奈米偏移。在接點層小於80奈米半節距之先進技術節點方面,則可能投影出高達10之MEEF。在此一案例中,光罩上之一4奈米的偏移會轉變成晶圓上的一10奈米偏移。因此光罩,且尤其是對於接點層之光罩而言必須極為精確,以便使表面上乘上MEEF之誤差不會超過最大容許誤差。In semiconductor lithography, there is an important concept called the mask error enhancement factor (MEEF). In a typical semiconductor fabrication process using a reticle, the reticle is four times the size of the wafer. For example, a target shape of 50 nm on a surface would have a shape of 200 nm on the reticle. If the MEEF is 1.0, a 4 nm offset error on the mask will change to a 1 nm offset on the wafer. However, for a line segment and space such as on an interconnect or wiring layer, a typical MEEF is 2. For the connection layer, a typical MEEF is 4, which means that a 4 nm offset error on the reticle is converted to a 4 nm offset on the wafer. In the case of advanced technology nodes with a contact layer of less than 80 nm half pitch, it is possible to project MEEFs of up to 10. In this case, a 4 nm offset on the reticle translates into a 10 nm offset on the wafer. The reticle, and especially the reticle of the contact layer, must be extremely precise so that the error in multiplying the MEEF on the surface does not exceed the maximum tolerance.

一種用以改進MEEF之已知方法係為所謂的周長法則。周長法則陳述對於一特定之封閉形狀而言,較高之形狀周長對於形狀面積比會導致一較大的MEEF。在半導體製造方面,微影術中最重要的步驟係為對於光罩上之各個形狀以正確量之總能量使光阻劑曝光。因此,對於各個圖案或形狀而言,對於總面積之精確性需求係大過於該圖案或形狀之其他尺寸的要求。各種半導體製造程序中之誤差來源會作用在該周長,其係為圍住該形狀之邊緣組。與所需位置相較,這些邊緣可能會向內或向外移動。當周長對面積之比相當大時,整個周長向內移動一特定距離,假設為1奈米,則會使該封閉面積縮小量大於周長面積比較為小者。由於總面積係為總能量,且總能量對於各個形狀而言相當重要,對於各個形狀而言需要具有較小的周長面積比。在幾何形狀其中,對於任何形狀的單位面積而言,一圓形具有最小的周長。因此,圓形或圓形圖案將會較任何非圓形圖案具有一更小的MEEF。近似圓形將具有幾近於最佳的一MEEF。One known method for improving MEEF is the so-called perimeter rule. The rule of circumference states that for a particular closed shape, a higher shape perimeter will result in a larger MEEF for the shape to area ratio. In semiconductor manufacturing, the most important step in lithography is to expose the photoresist with the correct amount of total energy for each shape on the reticle. Thus, for each pattern or shape, the accuracy requirements for the total area are greater than the other dimensions of the pattern or shape. The source of error in various semiconductor fabrication processes acts on the perimeter, which is the set of edges that surround the shape. These edges may move inward or outward compared to the desired position. When the ratio of the circumference to the area is quite large, the entire circumference is moved inward by a certain distance, and if it is 1 nm, the area of the closed area is reduced to be smaller than the area of the circumference. Since the total area is the total energy and the total energy is quite important for each shape, it is necessary for each shape to have a smaller perimeter area ratio. Among the geometric shapes, a circle has a minimum circumference for a unit area of any shape. Thus, a circular or circular pattern will have a smaller MEEF than any non-circular pattern. An approximate circle will have a near-optimal MEEF.

第2圖顯示如何能夠藉由本發明在矽晶圓上產生接點或通孔。一光學微影術機器200包含一照明來源202,其發射光學輻射到包含多種圓形孔隙圖案206之一光罩204上。光學輻射係透過該孔隙圖案206以及透過一個或更多透鏡208加以傳遞,藉以在諸如一半導體晶圓之一表面212上形成一圖案210。由於上述之周長法則,在光罩204上使用圓形或近似圓形孔隙206會較於第1圖中之光罩104上使用方形孔隙106產生一較低(較佳)的MEEF。Figure 2 shows how contacts or vias can be created on a germanium wafer by the present invention. An optical lithography machine 200 includes an illumination source 202 that emits optical radiation onto a reticle 204 that includes a plurality of circular aperture patterns 206. Optical radiation is transmitted through the aperture pattern 206 and through one or more lenses 208 to form a pattern 210 on a surface 212 such as a semiconductor wafer. Due to the circumferential rule described above, the use of a circular or approximately circular aperture 206 on the reticle 204 produces a lower (better) MEEF than the use of the square aperture 106 in the reticle 104 of FIG.

今日之光罩製造係藉由一以雷射為主之光罩寫入器,或者是諸如一電子遮罩寫入器之一帶電粒子束光罩寫入器加以完成。現今用於具有小於80奈米半節距之微小字符的最先進技術節點之製造工具皆係使用一利用帶有一高壓電子槍(50KeV或更高)之可變形狀光束(VSB)技術的電子束遮罩寫入器加以完成。習用的標線片或遮罩寫入包括之步驟包括將所有所需遮罩形狀碎化成為成分矩形以及某一尺寸限制之45度三角形(例如,寬度在1奈米與1000奈米之間的三角形),以致於使所有形狀之結合係成為原始形狀,或許誤差在某一最低臨限值之內,並使該等成分形狀不會重疊。該等碎化形狀係個別藉由電子束遮罩寫入器以VSB照射加以寫入。標線片寫入典型涉及多重過程,藉以在標線片上寫入與覆寫該特定形狀。典型而言係利用兩次或四次過程寫入一標線片,以平均排除誤差,以便能夠產生更為精確的光罩。習用而言,成分形狀在一單次過程中並不會重疊。實際上,由於電子束遮罩寫入器並非完全精確,故某些設計成緊鄰之VSB照射將會稍微重疊。此外,在某些設計成緊鄰的VSB照射之間亦會產生細微間隙。電子束遮罩寫入器之位移準確性以及半導體設計係經過仔細調整,以避免由於這些重疊與間隙所產生的問題。對於1奈米或更小之微小誤差而言,該等產生之問題尤其輕微,因為進行傳播之電子束具有一天然模糊半徑(大小約為20到30奈米),使得超過該等形狀之描寫邊緣會產生一轉移能量的高斯分佈。用於各次VSB照射之劑量係在一稍後且獨立的步驟中加以指定。該等劑量訂定出快門速度,或是電子傳播到表面的時間量。鄰近效應校正以及其他校正方法訂定出何種劑量應施加到各次的VSB照射,以便使產生的光罩形狀儘可能接近原始所需的光罩形狀。Today's reticle fabrication is accomplished by a laser-based reticle writer or a charged particle beam reticle writer such as an electronic mask writer. Today's state-of-the-art technology nodes for tiny characters with a half-pitch of less than 80 nanometers use an electron beam shield using a variable shape beam (VSB) technique with a high voltage electron gun (50 KeV or higher). The cover writer is completed. Conventional reticle or mask writing includes the steps of shredding all desired mask shapes into a component rectangle and a 45 degree triangle of a certain size (eg, a width between 1 nm and 1000 nm) The triangles are such that the combination of all shapes becomes the original shape, perhaps with errors within a certain minimum threshold, and the shapes of the components do not overlap. The shredded shapes are individually written by VSB illumination by an electron beam mask writer. The reticle writing typically involves multiple processes whereby the particular shape is overwritten and overwritten on the reticle. Typically, a reticle is written using two or four passes to evenly eliminate the error so that a more accurate reticle can be produced. Conventionally, the shape of the ingredients does not overlap in a single pass. In fact, since the electron beam mask writer is not completely accurate, some of the VSB illuminations designed to be in close proximity will overlap slightly. In addition, fine gaps are created between certain VSB illuminations designed to be in close proximity. The displacement accuracy of the electron beam mask writer and the semiconductor design have been carefully adjusted to avoid problems due to these overlaps and gaps. For minor errors of 1 nm or less, these problems are particularly slight because the propagating electron beam has a natural blur radius (about 20 to 30 nm in size), making it more than the description of the shapes. The edge produces a Gaussian distribution of the transferred energy. The dose for each VSB exposure is specified in a later and separate step. These doses set the shutter speed or the amount of time that electrons travel to the surface. Proximity effect correction and other correction methods dictate which dose should be applied to each of the VSB illuminations in order to bring the resulting mask shape as close as possible to the original desired mask shape.

習用而言,對於形成一方形接點或通孔圖案而言需要進行一次VSB照射。使用習用遮罩寫入技術在一標線片上形成一圓形圖案需要多次的VSB照射。增加VSB之照射次數對於寫入該標線片所需的時間而言具有直接的衝擊,如此直接轉加到光罩成本。由於對於一典型的積體電路設計而言必須形成百萬個接點與通孔,經過考量,使用習用VSB照射在一標線片上形成圓形接點或通孔圖案並不實際。Conventionally, a VSB illumination is required for forming a square contact or via pattern. Forming a circular pattern on a reticle using conventional mask writing techniques requires multiple VSB illuminations. Increasing the number of exposures of the VSB has a direct impact on the time required to write the reticle, thus directly transferring to the cost of the reticle. Since it is necessary to form a million contacts and vias for a typical integrated circuit design, it is not practical to use a conventional VSB to illuminate a reticle to form a circular contact or via pattern.

第7圖顯示一微小圓形圖案700如何能夠藉著本發明揭露內容,利用多次重疊VSB照射而形成在諸如一標線片之一表面上的一範例。在第7圖中係顯示三次VSB照射-矩形照射702、矩形照射704以及方形照射706。使用重疊照射使得吾人能夠以較習用方法所需要之VSB照射次數更少的VSB照射寫入圖案。對於由帶電粒子之前向散射、庫倫效應,以及其他物理、化學與電磁效應所產生的帶電粒子束之模糊等於圓形之直徑等級的微小圓形而言,此重疊照射技術尤其有效。如同第7圖中所示,照射702、照射704以及照射706三次VSB照射之結合並不等於目標圓形圖案700。各次照射之劑量係顯示為「正常」VSB劑量之一部分:照射702與照射704具有之劑量為正常劑量的0.7倍,且照射706具有之劑量則為正常劑量的0.6倍。如圖所示,來自於所有照射在該圓形700之中間處710的總和劑量因此係為正常劑量的2.0倍。某些遮罩製造程序具有一最大劑量限制,諸如2.0或正常劑量的兩倍。欲對於低於正常照射劑量處進行補償,照射702、704與706之VSB照射邊界係延伸超過目標圓形700的邊界。能夠利用帶電粒子束模擬,以計算欲形成在該表面上的圖形,以便驗證產生之圖案係在目標圓形圖案700的一所需公差之內。Figure 7 shows an example of how a tiny circular pattern 700 can be formed on a surface such as a reticle by multiple overlapping VSB illuminations by the present disclosure. In Fig. 7, three VSB illumination-rectangular illuminations 702, rectangular illuminations 704, and square illuminations 706 are shown. The use of overlapping illumination allows us to illuminate the write pattern with a VSB illumination that requires fewer VSB shots than is customary. This overlapping illumination technique is particularly effective for small circles of the diameter of the charged particle beam produced by charged particles forward scatter, Coulomb effects, and other physical, chemical, and electromagnetic effects. As shown in FIG. 7, the combination of illumination 702, illumination 704, and illumination 706 three times of VSB illumination is not equal to the target circular pattern 700. The doses for each exposure are shown as part of the "normal" VSB dose: Irradiation 702 and Irradiation 704 have a dose that is 0.7 times the normal dose, and Irradiation 706 has a dose that is 0.6 times the normal dose. As shown, the total dose from all of the illumination 710 in the middle of the circle 700 is therefore 2.0 times the normal dose. Some mask manufacturing procedures have a maximum dose limit, such as 2.0 or twice the normal dose. To compensate for below the normal exposure dose, the VSB illumination boundary of illuminations 702, 704, and 706 extends beyond the boundary of the target circle 700. A charged particle beam simulation can be utilized to calculate a pattern to be formed on the surface to verify that the resulting pattern is within a desired tolerance of the target circular pattern 700.

第8圖顯示一微小圓形圖案802如何能夠藉著本發明揭露內容,利用多次非重疊VSB照射而形成在諸如一標線片之一表面上的一範例。在此範例中係使用五次照射:照射804、照射806、照射808、照射810以及照射812。如圖所示,照射804、806、808、810以及812之結合並不同於目標圖案802。與習用方法相較,使用五次照射以填滿該圖案仍然展現出照射次數減少,其中該等照射係產生使其儘可能符合目標圓形圖案之邊界。在第8圖之範例中,該等照射邊界並不會延伸成如同第7圖範例中一般遠超過目標圓形圖案的邊界,因為能夠使第8圖之個別VSB照射的劑量高於第7圖VSB照射之劑量,而無須在意超過一最大劑量限制,因為第8圖中之該等VSB照射並不會重疊。如同第7圖之範例,能夠使用帶電粒子束模擬,以計算即將形成在該表面上之形狀,以便驗證產生之圖案係在目標圓形圖案802的一所需公差之內Figure 8 shows an example of how a tiny circular pattern 802 can be formed on a surface such as a reticle by multiple non-overlapping VSB illuminations by the present disclosure. Five shots are used in this example: illumination 804, illumination 806, illumination 808, illumination 810, and illumination 812. As shown, the combination of illuminations 804, 806, 808, 810, and 812 is different than target pattern 802. The use of five shots to fill the pattern still exhibits a reduction in the number of shots compared to conventional methods, wherein the lines of illumination produce boundaries that make them as close as possible to the target circular pattern. In the example of Fig. 8, the illumination boundaries do not extend as much as the boundary of the target circular pattern as in the example of Fig. 7, because the dose of the individual VSB illumination of Fig. 8 can be made higher than that of Fig. 7. The dose of VSB exposure does not care to exceed a maximum dose limit because the VSB illumination in Figure 8 does not overlap. As in the example of Figure 7, a charged particle beam simulation can be used to calculate the shape to be formed on the surface to verify that the resulting pattern is within a desired tolerance of the target circular pattern 802.

第3圖顯示一具有字符投影(CP)能力之帶電粒子束寫入器300。如圖所示,一粒子或電子束來源302提供一粒子或電子束304到一第一遮罩308,其能夠以一形成在該第一遮罩308中之第一孔隙306而形成一矩形形狀310。該矩形光束310接著係導引到一第二遮罩或樣板312,並通過形成在該樣板312中之一第二孔隙或字符314。帶電粒子束310通過字符314之部分係導引到表面326,並於該處形成字符314之形狀的一圖案324。在第3圖之此示範性實施例中,樣板312亦包括不同尺寸的三種圓形字符:字符316、字符318以及字符320。樣板312亦包括一用於VSB照射之矩形孔隙322,使其能夠使用相同的樣板312產生VSB與CP照射。現有市售之CP帶電粒子束系統能夠用以直接在諸如矽晶圓之基板上形成圖案,但卻不適合用以寫入標線片以產生光罩。既使字符投影(CP)能力能夠適用於供標線片用之帶電粒子束寫入器,習用的遮罩寫入方法與系統僅能夠基於位於樣板上之圓形CP字符的尺寸,諸如位於樣板312上之字符316、字符318以及字符320的尺寸而寫入預先設計之圓形直徑。使用習用之方法,另擇尺寸之數量將會受限於能夠佈置在一樣板上的字符數量。Figure 3 shows a charged particle beam writer 300 with character projection (CP) capabilities. As shown, a particle or electron beam source 302 provides a particle or electron beam 304 to a first mask 308 that can be formed into a rectangular shape by a first aperture 306 formed in the first mask 308. 310. The rectangular beam 310 is then directed to a second mask or template 312 and passed through a second aperture or character 314 formed in the template 312. The charged particle beam 310 is directed through a portion of the character 314 to the surface 326 where a pattern 324 of the shape of the character 314 is formed. In this exemplary embodiment of FIG. 3, template 312 also includes three circular characters of different sizes: character 316, character 318, and character 320. The template 312 also includes a rectangular aperture 322 for VSB illumination that enables the same pattern 312 to be used to generate VSB and CP illumination. Existing commercially available CP charged particle beam systems can be used to form patterns directly on substrates such as germanium wafers, but are not suitable for writing reticle to create a reticle. Even if the character projection (CP) capability can be applied to a charged particle beam writer for a reticle, the conventional mask writing method and system can only be based on the size of a circular CP character located on the template, such as a template. The size of the character 316, the character 318, and the character 320 on 312 is written into a pre-designed circular diameter. Using conventional methods, the number of alternative sizes will be limited by the number of characters that can be placed on the same board.

第5A與5B圖顯示如何能夠使用一單次CP字符,藉著改變照射劑量而在一表面上形成不同直徑之圓形的一範例。第5A圖顯示一標稱圓形圖案500,其能夠使用諸如第3圖中所示之一CP帶電粒子束寫入器,利用諸如字符318之一圓形CP字符形成在一表面上。一線段502將該圓形圖案500等分成兩部分。第5B圖顯示沿著線段502通過圖案500之劑量分佈。水平軸線對應沿著線段502之直線部分,且垂直軸線則顯示劑量。圖式中顯示三種劑量分佈:用於照射劑量504、照射劑量506以及照射劑量508之劑量分佈。各個照射劑量曲線顯示帶電粒子束之高斯分佈。第5B圖亦顯示一光阻劑臨限值強度520,其係為一種超過該劑量強度則圖案將便會對齊在表面上之劑量強度。如圖所示,最大之照射劑量504將會對齊尺寸510之一圖案,中間照射劑量506將會對齊中間尺寸512之一圖案,且最低照射劑量508將會對齊最小尺寸514之一圖案。由於該圖案係為圓形,故尺寸差異係為一直徑差異。因此,便能夠藉著改變照射劑量使用一單獨CP字符在該表面上形成不同直徑之圓形。Figures 5A and 5B show an example of how a single-shot CP character can be used to form a circular shape of different diameters on a surface by varying the dose of radiation. Figure 5A shows a nominal circular pattern 500 that can be formed on a surface using a CP charged particle beam writer such as shown in Figure 3, using a circular CP character such as one of the characters 318. A line segment 502 divides the circular pattern 500 into two parts. Figure 5B shows the dose distribution through pattern 500 along line 502. The horizontal axis corresponds to the straight portion along line segment 502 and the vertical axis shows the dose. Three dose distributions are shown in the drawings: dose distribution for illumination dose 504, illumination dose 506, and illumination dose 508. Each illumination dose curve shows a Gaussian distribution of the charged particle beam. Figure 5B also shows a photoresist threshold intensity 520 which is a dose strength above which the pattern will align on the surface. As shown, the maximum illumination dose 504 will be aligned to one of the dimensions 510, the intermediate illumination dose 506 will be aligned to one of the intermediate dimensions 512, and the lowest illumination dose 508 will be aligned to one of the minimum dimensions 514. Since the pattern is circular, the difference in size is a difference in diameter. Therefore, it is possible to form circular circles of different diameters on the surface by using a single CP character by changing the irradiation dose.

第4圖顯示一包含多個不同尺寸之圓形CP字符的CP樣板之一示範性實施例。樣板402包含五種不同尺寸之CP字符:字符404、字符406、字符408、字符410以及字符412。此外,樣板402包含一用於VSB照射之矩形孔隙414以及一組同樣用於VSB照射的三角形孔隙416。在本發明之一實施例中,樣板402能夠不包含三角形孔隙416,但能夠僅包含矩形與圓形孔隙。各個圓形CP字符404、406、408、410與412能夠藉著如先前所述般改變照射劑量而在一表面上形成一直徑範圍之圓形圖案。在樣板設計期間藉著適當地選擇圓形CP字符之尺寸,便能夠在一表面上形成尺寸範圍廣泛之圓形圖案。第6圖顯示一流程圖,該圖顯示如何使用一個五種適當尺寸之圓形CP字符的群組,在一表面上形成大尺寸範圍之圓形的一範例。在第6圖之範例中,CP字符”A”能夠形成尺寸範圍602之圓形圖案。CP字符”B”能夠形成尺寸範圍604之圓形圖案。CP字符”C”能夠形成尺寸範圍606之圓形圖案。CP字符”D”能夠形成尺寸範圍608之圓形圖案。CP字符”E”能夠形成尺寸範圍610之圓形圖案。如圖所示,尺寸範圍602與尺寸範圍604相重疊,尺寸範圍604與尺寸範圍606相重疊,尺寸範圍606與尺寸範圍608相重疊,且尺寸範圍608與尺寸範圍610相重疊。因此,能夠僅使用五種CP字符形成完整範圍620中之任何尺寸的一圓形圖案。直徑範圍並無嚴格限制必須重疊到任何的充分程度,僅需要使以一個圓形CP字符所能夠形成之最大圓形至少與使用下個更大的圓形CP字符所能夠形成之最小圓形一樣大即可。在其他實施例中,可行直徑之範圍並不需要為連續範圍。能夠使用字符形成在樣板402上之可用的圓形圖案尺寸可為多個不連續的尺寸範圍。Figure 4 shows an exemplary embodiment of a CP template containing a plurality of circular CP characters of different sizes. Template 402 contains five different sized CP characters: character 404, character 406, character 408, character 410, and character 412. In addition, template 402 includes a rectangular aperture 414 for VSB illumination and a set of triangular apertures 416 for VSB illumination. In one embodiment of the invention, the template 402 can include no triangular apertures 416, but can include only rectangular and circular apertures. Each of the circular CP characters 404, 406, 408, 410, and 412 can form a circular pattern of a range of diameters on a surface by varying the amount of illumination as previously described. By appropriately selecting the size of the circular CP characters during the design of the template, it is possible to form a circular pattern having a wide range of sizes on one surface. Figure 6 shows a flow chart showing an example of how to form a circle of a large size range on a surface using a group of five appropriately sized circular CP characters. In the example of Figure 6, the CP character "A" is capable of forming a circular pattern of size range 602. The CP character "B" is capable of forming a circular pattern of size range 604. The CP character "C" is capable of forming a circular pattern of size range 606. The CP character "D" is capable of forming a circular pattern of size range 608. The CP character "E" is capable of forming a circular pattern of size range 610. As shown, the size range 602 overlaps the size range 604, the size range 604 overlaps the size range 606, the size range 606 overlaps the size range 608, and the size range 608 overlaps the size range 610. Thus, a circular pattern of any size in the full range 620 can be formed using only five CP characters. The diameter range is not strictly limited and must be overlapped to any sufficient degree. It is only necessary to have the largest circular shape that can be formed by a circular CP character at least the same as the smallest circular shape that can be formed by using the next larger circular CP character. Big enough. In other embodiments, the range of possible diameters need not be a continuous range. The available circular pattern size that can be formed on the template 402 using characters can be a plurality of discrete size ranges.

已知藉著單一帶電粒子束照射或帶電粒子束之照射組合形成在一表面上之二維劑量圖係稱之為圖樣。各個圖樣可能關連其位置以及用於包含該圖樣之各個帶電粒子束照射的照射劑量資訊。一圖樣庫能夠預先計算,且使其能夠具有碎化或遮罩資料製備功能。圖樣亦能夠加以參數化。第9圖顯示位於一表面上之一圓形的一範例,其表示一組能夠藉由一參數化圖樣加以形成的圖案。圖樣902之參數係為其直徑”d”,其中”d”可為50到100單位之間的任何數值。在一實施例中,該圖樣能夠利用一組圓形CP字符使用可變形狀照射劑量加以計算,其能夠產生任何表示50到100單位之尺寸範圍內的圓形圖案之劑量圖。It is known that a two-dimensional dose pattern formed by a single charged particle beam irradiation or a combination of irradiation of charged particle beams on a surface is called a pattern. Each pattern may be associated with its location and the exposure dose information used to include the respective charged particle beam illumination of the pattern. A pattern library can be pre-computed and enabled to have shred or mask data preparation functions. The pattern can also be parameterized. Figure 9 shows an example of a circle on a surface that represents a set of patterns that can be formed by a parametric pattern. The parameter of pattern 902 is its diameter "d", where "d" can be any value between 50 and 100 units. In one embodiment, the pattern can be calculated using a set of circular CP characters using a variable shaped illumination dose that is capable of producing any dose map representing a circular pattern in the size range of 50 to 100 units.

應注意到的是,如同半導體設計中所常見者,一諸如一圓形之二維形狀係代表在半導體晶圓上由上向下觀視的一形狀。在接點與通孔之案例中,實際的三維製造形狀可為圓柱形或近似圓柱形。It should be noted that as is common in semiconductor design, a two-dimensional shape, such as a circle, represents a shape that is viewed from the top down on the semiconductor wafer. In the case of joints and through holes, the actual three-dimensional manufacturing shape may be cylindrical or approximately cylindrical.

文中所提出使用VSB照射或是圓形CP字符用以在諸如標線片之表面上形成圓形的方法亦能夠使用無遮罩直接寫入方式用以直接在諸如矽晶圓上形成圖案。應注意到的是,對於直接寫入而言,MEEF並無關緊要。The method of using VSB illumination or circular CP characters for forming a circle on a surface such as a reticle can also be used to form a pattern directly on a wafer such as a germanium wafer using a maskless direct writing method. It should be noted that for direct writes, MEEF does not matter.

當欲形成在一表面上之所需圖案係為近似圓形時,亦能夠使用本發明揭露內容之技術。第11A圖顯示一可作為一用於接點或通道之所需遮罩圖案的近似圓形圖案1102。該圖案1102可為例如MEEF以及位於接點或通孔上之層中的傳導材料以及位於該接點或通孔下方之層中的傳導材料之間的最大接觸面積之間希望得到的妥協結果。第11B圖顯示一個五次VSB照射之照射群組1104,在此非重疊VSB照射範例中能夠以適當的劑量使一表面上之對齊圖案接近所需的圖案1102。照射群組1104包含照射1110、照射1112、照射1114、照射1116以及照射1118,該等照射於此示範性實施例中係為不同寬度與高度之矩形照射。照射群組中之該等照射的劑量能夠彼此相對改變。對齊在塗佈於該表面之光阻劑上的圖案係為形狀1120,其與形狀1102的相同程度在一預定公差之內。此範例顯示如何能夠以本揭露內容之技術形成近似圓形圖案。The technique of the present disclosure can also be used when the desired pattern to be formed on a surface is approximately circular. Figure 11A shows an approximate circular pattern 1102 that can be used as a desired mask pattern for a joint or channel. The pattern 1102 can be a desired compromise between the conductive material in the layer such as the MEEF and the layer on the contact or via and the maximum contact area between the conductive materials in the layer below the contact or via. Figure 11B shows an illumination group 1104 of five VSB illuminations in which the alignment pattern on a surface can be brought close to the desired pattern 1102 at an appropriate dose in the non-overlapping VSB illumination example. The illumination group 1104 includes an illumination 1110, an illumination 1112, an illumination 1114, an illumination 1116, and an illumination 1118, which are rectangular illuminations of different widths and heights in the exemplary embodiment. The doses of the illuminations in the illumination group can be varied relative to each other. The pattern aligned on the photoresist applied to the surface is shaped 1120 to the same extent as shape 1102 within a predetermined tolerance. This example shows how an approximately circular pattern can be formed using the techniques of the present disclosure.

在一表面上形成圓形能夠藉由諸如一多邊形之一非圓形形狀加以近似。在諸如一矽晶圓之一表面或是一基板上需要形成圓形時,其結果可為一近似圓形,諸如非常近似一圓形之一曲線形狀Forming a circle on a surface can be approximated by a non-circular shape such as a polygon. When a circle needs to be formed on a surface such as a wafer or a substrate, the result may be an approximately circular shape, such as a curve shape that closely approximates a circle.

第10圖係為本發明揭露內容之一實施例的一概略流程圖1000,其使用光學微影術用以製備用於製造諸如位於一矽晶圓上之一積體電路的一基板之一表面。用於此程序之輸入資料係為一組欲形成在一光罩上之所需圖案1002。該組所需圖案1002能夠包括一組所需圓形圖案,其係藉由一輸入裝置加以接收。步驟1004係為一遮罩資料製備(MDP)步驟。MDP步驟1004能夠包括一碎化操作,其中係容許或不容許照射重疊,且其中係容許不同於正常的劑量指定方式。該碎化能夠包含訂定一組VSB照射,或是能夠包含使用CP樣板資訊1006訂定一CP字符與照射劑量,或者能夠包含訂定一VSB與CP照射之組合。MDP步驟1004亦能夠包含由一圖樣庫1008選定一種或更多圖樣,以符合一所需圖案。該選定之圖樣能夠包括參數化圖樣。MDP步驟1004亦能夠包括一訂定用於各個所需圖案之最佳化方法(VSB照射、一CP照射,或是一圖樣)的操作。最佳化標準例如可為使照射次數或是帶電粒子束系統寫入時間減到最低。MDP步驟1004亦能夠包含使用粒子束模擬,以計算欲藉由一組照射形成在表面上之圖案,且若經過計算得到的圖案與所需圖案之不同程度超過一預定的公差,則亦能夠包含更新照射組與重新計算圖案。粒子束模擬能夠包括前向散射、光阻劑擴散、庫倫效應、後向散射、負荷、模糊以及蝕刻模擬其中任何模擬,且能夠使用帶電粒子束系統以及程序資訊1010。MDP步驟1004將一包含VSB與CP照射以及來自於樣板之照射的組合清單之訂定照射清單1012輸出到一輸出裝置。該等在照射清單1012中之照射包含劑量資訊。在步驟1014中,能夠實行鄰近效應校正(PEC)且/或其他校正,或是由較早估算之校正進行改良。步驟1014使用照射清單1012作為輸入,並且產生一確定照射清單1016,其中之照射劑量係經過調整。該確定照射清單1016係藉由帶電粒子束系統1018加以使用,以便使先前塗佈在標線片之光阻劑曝光,藉以在光阻劑上形成一組圖案1020。經過各種不同的步驟1022之後,標線片係轉變成為一光罩1024。光罩1024係用於一光學微影術機器1026中,以便將諸如圓形圖案之該組所需圖案轉印到諸如一矽晶圓的基板上,產生一晶圓影像1028,由其生產矽晶圓。10 is a schematic flow diagram 1000 of an embodiment of the present disclosure for using optical lithography to prepare a surface for fabricating a substrate such as an integrated circuit on a germanium wafer. . The input data for this procedure is a set of desired patterns 1002 to be formed on a reticle. The set of desired patterns 1002 can include a desired set of circular patterns that are received by an input device. Step 1004 is a mask data preparation (MDP) step. The MDP step 1004 can include a shredding operation in which the illumination overlap is allowed or not allowed, and wherein a different dose specification manner is allowed. The shred can include setting a set of VSB illuminations, or can include using a CP template information 1006 to set a CP character and an exposure dose, or can include setting a combination of VSB and CP illumination. The MDP step 1004 can also include selecting one or more patterns from a pattern library 1008 to conform to a desired pattern. The selected pattern can include a parametric pattern. The MDP step 1004 can also include an operation for determining an optimization method (VSB illumination, a CP illumination, or a pattern) for each desired pattern. The optimization criteria can be, for example, to minimize the number of shots or the charged particle beam system write time. The MDP step 1004 can also include using a particle beam simulation to calculate a pattern to be formed on the surface by a set of illumination, and can also include if the calculated pattern differs from the desired pattern by a predetermined tolerance. Update the illumination group and recalculate the pattern. Particle beam simulation can include forward scatter, photoresist diffusion, coulomb effect, back scatter, load, blur, and etch simulation of any of these simulations, as well as the use of charged particle beam systems and program information 1010. The MDP step 1004 outputs a predetermined illumination list 1012 containing a combined list of VSB and CP illumination and illumination from the template to an output device. The illumination in the illumination list 1012 includes dose information. In step 1014, proximity effect correction (PEC) and/or other corrections can be performed, or improved by an earlier estimated correction. Step 1014 uses illumination list 1012 as an input and generates a determined illumination list 1016 in which the illumination dose is adjusted. The determined illumination list 1016 is used by the charged particle beam system 1018 to expose the photoresist previously coated on the reticle to form a set of patterns 1020 on the photoresist. After a variety of different steps 1022, the reticle is transformed into a reticle 1024. A reticle 1024 is used in an optical lithography machine 1026 to transfer a desired set of patterns, such as a circular pattern, onto a substrate, such as a wafer, to produce a wafer image 1028 from which to produce 矽Wafer.

第10圖中之一圖樣產生步驟1030由一帶有一特定劑量的CP字符照射或是由一組具有可能不同劑量之VSB照射加以計算劑量圖。圖樣產生步驟1030使用CP樣板資訊1006。該CP樣板資訊能夠包括有關於多個不同尺寸圓形CP字符之資訊。圖樣產生步驟1030亦能夠包含使用帶電粒子束模擬以計算該圖樣。圖樣之粒子束模擬能夠包括前向散射、光阻劑擴散、庫倫效應,以及蝕刻模擬其中任何一者,且能夠使用帶電粒子束系統以及程序資訊1010。圖樣產生步驟1030亦能夠包含一組圖樣之計算,以產生一參數化圖樣。A pattern generation step 1030 in Fig. 10 calculates a dose map from a CP character with a particular dose or from a set of VSB illuminations with potentially different doses. Pattern generation step 1030 uses CP template information 1006. The CP template information can include information about a plurality of circular CP characters of different sizes. Pattern generation step 1030 can also include using charged particle beam simulation to calculate the pattern. The particle beam simulation of the pattern can include any of forward scattering, photoresist diffusion, coulombic effects, and etch simulation, and can use a charged particle beam system and program information 1010. Pattern generation step 1030 can also include calculations for a set of patterns to produce a parametric pattern.

在本發明揭露內容中所描述之各種流程能夠使用一般電腦以及適當的電腦軟體作為運算裝置加以實行。由於需要進行大量的計算,亦能夠平行使用多部電腦或處理器核心。在一實施例中,對於流程中的一個或更多計算頻繁步驟而言,能夠將該等計算分成多個二維幾何區域,以便支援平行處理。在另一實施例中,能夠使用一單獨或多個專用硬體裝置,以較使用一般電腦或處理器核心更快之速度進行一個或更多步驟的計算。在本發明揭露內容中所描述之最佳化與模擬程序能夠包括一反覆最佳化程序,諸如模擬退火,或者能夠僅由一建設性、渴望、決定性或其他無須反覆改良的程序所構成。The various processes described in the present disclosure can be implemented using a general computer and a suitable computer software as an arithmetic device. Multiple computers or processor cores can be used in parallel because of the large amount of computation required. In an embodiment, for one or more computational frequent steps in the process, the computations can be divided into a plurality of two-dimensional geometric regions to support parallel processing. In another embodiment, a single or multiple dedicated hardware devices can be used to perform one or more steps of calculations at a faster rate than with a typical computer or processor core. The optimization and simulation procedures described in the present disclosure can include a repetitive optimization procedure, such as simulated annealing, or can be constructed from only a constructive, eager, decisive, or other program that does not require rework.

所有在本發明揭露內容中所提及之圓形應解釋為亦包括近似圓形。同樣地,所有提及之圓形圖案、圓形孔隙、圓形字符,或是圓形CP字符應解釋為亦包括近似圓形圖案、孔隙、字符或是CP字符。此外,所有提及之圓柱應解釋為包括近似圓柱,且所有提及之圓柱狀應包括近似圓柱狀。All circles referred to in the context of the present invention are to be interpreted as including also approximately circular. Likewise, all references to circular patterns, circular apertures, circular characters, or circular CP characters should be interpreted to also include approximately circular patterns, apertures, characters, or CP characters. In addition, all references to cylinders are to be construed as including approximately cylinders, and all references to the cylinders should include approximately cylindrical shapes.

儘管本說明書已經針對特定實施例進行詳細描述,能夠體認到的是,對於熟諳此技藝之人士而言,一旦瞭解先前敘述,便能夠立即想像出這些實施例之另擇、變化以及相等形式。用以在一表面上製造圓形圖案或是用以製造一積體電路之方法,或者是用於碎化或遮罩資料製備的方法或系統之本發明的系統與方法之這些與其他修改與變化型式能夠由普通熟諳此技藝之人士加以實行,而不會脫離本發明主題的精神與範疇,其係更具體地提出於所附申請專利範圍中。此外,普通熟諳此技藝之人士將會體認到的是,先前描述僅作為範例之用,且並非旨在作為限制之用。因此,本發明主題旨在涵蓋此等修正與變化形式,使其屬於所附申請專利範圍以及其相等項目之範疇。Although the specification has been described in detail with reference to the specific embodiments, it will be understood that those skilled in the art are able to immediately understand alternative, alternative, and equivalent forms of the embodiments. These and other modifications of the system and method of the present invention for making a circular pattern on a surface or for making an integrated circuit, or for a method or system for shredding or masking data preparation Variations can be made by those skilled in the art without departing from the spirit and scope of the present invention, which is more specifically set forth in the appended claims. In addition, it will be appreciated by those skilled in the art that the foregoing description is for illustrative purposes only and is not intended to be limiting. Therefore, the subject matter of the present invention is intended to cover such modifications and variations as fall within the scope of the appended claims.

100...光學微影術機器100. . . Optical lithography machine

102...照明來源102. . . Source of illumination

104...光罩104. . . Mask

106...孔隙圖案106. . . Pore pattern

108...透鏡108. . . lens

110...圖案110. . . pattern

112...表面112. . . surface

200...光學微影術機器200. . . Optical lithography machine

202...照明來源202. . . Source of illumination

204...光罩204. . . Mask

206...孔隙圖案206. . . Pore pattern

208...透鏡208. . . lens

210...圖案210. . . pattern

212...表面212. . . surface

300...帶電粒子束寫入器300. . . Charged particle beam writer

302...粒子或電子束來源302. . . Particle or electron beam source

304...粒子或電子束304. . . Particle or electron beam

306...第一孔隙306. . . First pore

308...第一遮罩308. . . First mask

310...矩形光束310. . . Rectangular beam

312...第二遮罩或樣板312. . . Second mask or template

314...第二孔隙或字符314. . . Second aperture or character

316...字符316. . . character

318...字符318. . . character

320...字符320. . . character

322...矩形孔隙322. . . Rectangular aperture

324...圖案324. . . pattern

326...表面326. . . surface

402...樣板402. . . Template

404...字符404. . . character

406...字符406. . . character

408...字符408. . . character

410...字符410. . . character

412...字符412. . . character

414...矩形孔隙414. . . Rectangular aperture

416...三角形孔隙416. . . Triangular pore

500...標稱圓形圖案500. . . Nominal circular pattern

502...線段502. . . Line segment

504...照射劑量504. . . Irradiation dose

506...照射劑量506. . . Irradiation dose

508...照射劑量508. . . Irradiation dose

510...尺寸510. . . size

512...中間尺寸512. . . Intermediate size

514...最小尺寸514. . . smallest size

520...光阻劑臨限值520. . . Photoresist threshold

602...尺寸範圍602. . . Size range

604...尺寸範圍604. . . Size range

606...尺寸範圍606. . . Size range

608...尺寸範圍608. . . Size range

610...尺寸範圍610. . . Size range

620...完整尺寸範圍620. . . Full size range

700...圓形圖案700. . . Circular pattern

702...矩形照射702. . . Rectangular illumination

704...矩形照射704. . . Rectangular illumination

706...方形照射706. . . Square illumination

710...中間710. . . intermediate

802...圓形圖案802. . . Circular pattern

804...照射804. . . Irradiation

806...照射806. . . Irradiation

808...照射808. . . Irradiation

810...照射810. . . Irradiation

812...照射812. . . Irradiation

1000...概略流程圖1000. . . Summary flow chart

1002...所需圖案1002. . . Required pattern

1104...遮罩資料製備步驟1104. . . Mask data preparation step

1006...CP樣板資訊1006. . . CP template information

1008...圖樣庫1008. . . Pattern library

1010...程序資訊1010. . . Program information

1012...訂定照射清單1012. . . Setting up an irradiation list

1016...確定照射清單1016. . . Determine the exposure list

1018...帶電粒子束系統1018. . . Charged particle beam system

1020...圖案1020. . . pattern

1022...步驟1022. . . step

1024...光罩1024. . . Mask

1026...光學微影術機器1026. . . Optical lithography machine

1028...晶圓影像1028. . . Wafer image

1030...圖樣產生步驟1030. . . Pattern generation step

1102...近似圓形圖案1102. . . Approximate circular pattern

1104...照射群組1104. . . Illumination group

1110...照射1110. . . Irradiation

1112...照射1112. . . Irradiation

1114...照射1114. . . Irradiation

1116...照射1116. . . Irradiation

1118...照射1118. . . Irradiation

1120...形狀1120. . . shape

第1圖顯示一種在一晶圓上形成諸如接點或通孔之圓形圖案的習用方法;Figure 1 shows a conventional method of forming a circular pattern such as a contact or a via on a wafer;

第2圖顯示一種藉由本發明在一晶圓上形成諸如接點或通孔之圓形圖案的方法;Figure 2 shows a method of forming a circular pattern such as a contact or a via on a wafer by the present invention;

第3圖顯示一具有字符投影(CP)能力之帶電粒子束寫入器;Figure 3 shows a charged particle beam writer with character projection (CP) capability;

第4圖顯示包含複數個圓形字符之一字符投影樣板;Figure 4 shows a character projection template containing one of a plurality of circular characters;

第5A圖顯示藉由一圓形字符投影字符之照射所形成的一圖案;Figure 5A shows a pattern formed by illumination of a circular character projection character;

第5B圖顯示改變劑量對於表面上藉由第5A圖之字符投影照射所對齊之圖案的尺寸之影響;Figure 5B shows the effect of changing the dose on the size of the pattern aligned on the surface by the projection projection of the character of Figure 5A;

第6圖顯示一流程圖,該圖顯示能夠利用一組圓形字符投影字符形成在一表面上之圓形圖案的直徑範圍;Figure 6 shows a flow chart showing the range of diameters of a circular pattern that can be formed on a surface using a set of circular character projection characters;

第7圖顯示如何能夠利用重疊VSB照射以寫入一圓形圖案;Figure 7 shows how overlapping VSB illumination can be utilized to write a circular pattern;

第8圖顯示如何能夠利用非重疊VSB照射以寫入一圓形圖案;Figure 8 shows how non-overlapping VSB illumination can be utilized to write a circular pattern;

第9圖顯示能夠利用一參數化圖樣產生在一表面上之一圓形圖案;Figure 9 shows that a parametric pattern can be used to create a circular pattern on a surface;

第10圖顯示使用本發明之一示範性方法製造一標線片以及製造一積體電路的概念流程圖;Figure 10 is a conceptual flow diagram showing the fabrication of a reticle and the fabrication of an integrated circuit using an exemplary method of the present invention;

第11A圖顯示一所需之一近似圓形的圖案;Figure 11A shows a pattern of one of the desired approximate circles;

第11B圖顯示一組能夠形成第11A圖之該圖案的非重疊VSB照射。Figure 11B shows a set of non-overlapping VSB illuminations capable of forming the pattern of Figure 11A.

200...光學微影術機器200. . . Optical lithography machine

202...照明來源202. . . Source of illumination

204...光罩204. . . Mask

206...孔隙圖案206. . . Pore pattern

208...透鏡208. . . lens

210...圖案210. . . pattern

212...表面212. . . surface

Claims (37)

一種用以在一基板上製造一半導體裝置之方法,該方法包含:設置一光罩,其中該光罩包含數個圓形圖案,其中該光罩係使用一帶電粒子束系統加以製造,其中在該光罩上的該等圓形圖案係使用來自於一帶電粒子束系統的可變形狀光束(VSB)之多數照射加以製造,其中該等多數照射中之照射係能夠容許彼此重疊,其中該等多數照射之結合係不同於數個所需圖案,且其中該等多數照射中之照射的劑量係相對於彼此而改變;及使用光學微影術,以利用該光罩中之該等圓形圖案在該基板上形成多數圓形圖案。 A method for fabricating a semiconductor device on a substrate, the method comprising: providing a reticle, wherein the reticle comprises a plurality of circular patterns, wherein the reticle is fabricated using a charged particle beam system, wherein The circular patterns on the reticle are fabricated using a plurality of illuminations from a variable shape beam (VSB) of a charged particle beam system, wherein the plurality of illuminations are capable of allowing each other to overlap each other, wherein The combination of the plurality of illuminations is different from the plurality of desired patterns, and wherein the doses of the illumination in the plurality of illuminations are varied relative to each other; and optical lithography is used to utilize the circular patterns in the mask A plurality of circular patterns are formed on the substrate. 一種供帶電粒子束微影術使用之用於碎化或遮罩資料製備的方法,該方法包含:輸入一組欲在一表面上形成數個圓形之圖案;訂定一組能夠在該表面上形成該組圓形圖案之照射,其中該組照射中之照射的劑量能夠相對於彼此而改變,其中該組照射中之各照射係選自於由可變形狀光束(VSB)照射及字符投影(CP)照射所組成的群組;及輸出包括劑量資訊之該組照射。 A method for the preparation of shredded or masked data for use in charged particle beam lithography, the method comprising: inputting a set of patterns to form a plurality of circles on a surface; Irradiating the set of circular patterns, wherein the doses of the illumination in the set of illuminations are changeable relative to each other, wherein each of the illuminations in the set of illuminations is selected from a variable shape beam (VSB) illumination and a character projection (CP) illuminating the group; and outputting the group of illumination including dose information. 如申請專利範圍第2項之方法,其中該組照射包括一字符投影(CP)字符照射。 The method of claim 2, wherein the set of illumination comprises a one-shot projection (CP) character illumination. 如申請專利範圍第2項之方法,其中該組照射包括數個照射而其係將利用一單獨CP字符、並藉著使用不同的劑 量而形成不同尺寸之多數圓形圖案。 The method of claim 2, wherein the group of illuminations comprises a plurality of illuminations and the system will utilize a single CP character and by using a different agent A large number of circular patterns of different sizes are formed in quantities. 如申請專利範圍第2項之方法,其中該訂定之步驟包含:對於經輸入之該組圖案中之一選定圖案,訂定可變形狀光束(VSB)之數個照射,且其中該等VSB照射係容許彼此重疊,且其中該組照射之結合係不同於該選定圖案。 The method of claim 2, wherein the step of determining comprises: setting a plurality of illuminations of the variable shape beam (VSB) for one of the selected patterns of the input set of patterns, and wherein the VSBs The illumination systems are allowed to overlap each other, and wherein the combination of the illumination of the set is different from the selected pattern. 如申請專利範圍第2項之方法,其中該訂定之步驟包含:對於經輸入之該組圖案中之一選定圖案,訂定非重疊VSB之數個照射,且其中該組照射之結合係不同於該選定圖案。 The method of claim 2, wherein the step of determining comprises: setting a plurality of illuminations of the non-overlapping VSB for one of the selected patterns of the set of patterns, and wherein the combination of the groups of illuminations is different In the selected pattern. 如申請專利範圍第2項之方法,其中經訂定之該組照射係依序使用,以便在一光罩上製造一圓形,且其中該光罩稍後係用以在一晶圓上製造一圓柱。 The method of claim 2, wherein the set of illuminations are sequentially used to make a circle on a reticle, and wherein the reticle is later used to fabricate a wafer. cylinder. 一種用以在一表面上形成多數圓形圖案之方法,該方法包含:設置一帶電粒子束來源;對於該等多數圓形圖案中的各個所需圓形圖案,訂定出可變形狀光束(VSB)之多數照射,其中該等照射可彼此重疊,且其中該等照射之劑量可相對於彼此而改變,且其中該等多數照射之聯合係不同於所需圓形圖案;及使用經訂定的該等多數VSB照射,在該表面上形成多數圓形圖案。 A method for forming a plurality of circular patterns on a surface, the method comprising: providing a source of charged particle beams; and defining a variable shape beam for each desired circular pattern in the plurality of circular patterns ( a plurality of illuminations of VSB), wherein the illuminations may overlap each other, and wherein the doses of the illuminations may be varied relative to each other, and wherein the combination of the plurality of illuminations is different from the desired circular pattern; The majority of the VSB illuminations form a plurality of circular patterns on the surface. 如申請專利範圍第8項之方法,其進一步包含: 由該等多數VSB照射加以計算位於該表面上之一經過計算的圖案;如果該經過計算所得圖案與所需的圓形圖案的差異超過一預定公差,則更新該等多數VSB照射,並重新計算該經過計算的圖案。 For example, the method of claim 8 of the patent scope further includes: Calculating a calculated pattern on the surface by the plurality of VSB illuminations; if the difference between the calculated pattern and the desired circular pattern exceeds a predetermined tolerance, updating the majority of the VSB illumination and recalculating The calculated pattern. 如申請專利範圍第9項之方法,其中該計算步驟係使用帶電粒子束模擬。 The method of claim 9, wherein the calculating step is performed using a charged particle beam simulation. 如申請專利範圍第10項之方法,其中該帶電粒子束模擬包括由前向散射、後向散射、光阻劑擴散、庫倫效應、蝕刻、模糊、負載以及光阻劑帶電所構成的群組其中的至少一種模擬。 The method of claim 10, wherein the charged particle beam simulation comprises a group consisting of forward scatter, back scatter, photoresist diffusion, coulomb effect, etching, blurring, loading, and photoresist charging. At least one simulation. 如申請專利範圍第8項之方法,其中該等多數VSB照射係以一建設性或決定性方式加以訂定,而無須重複(iteration)。 For example, the method of claim 8 wherein the majority of the VSB illuminations are set in a constructive or decisive manner without the need for iteration. 如申請專利範圍第8項之方法,其中在該等多數VSB照射之訂定步驟中,該等多數VSB照射係為非重疊。 The method of claim 8, wherein the majority of the VSB illumination systems are non-overlapping during the set of steps of the majority of the VSB illumination. 一種用以在一表面上形成多數圓形圖案之系統,該系統包含:一帶電粒子束來源;一包含一孔隙的第一遮罩,其可被該帶電粒子束來源所照明以形成一成形光束;一樣板,其包含不同尺寸之多數圓形字符投影(CP)字符,該帶電粒子束可被照射穿過該樣板;一導引裝置,其導引該成形光束以照明該樣板上之 該等多數CP字符中的一CP字符;及一運算裝置,其中該運算裝置係能夠訂定使用何種劑量、並利用一單獨CP字符,而在該表面上形成不同尺寸的多數圓形圖案。 A system for forming a plurality of circular patterns on a surface, the system comprising: a source of charged particle beams; a first mask comprising an aperture illuminable by the source of charged particles to form a shaped beam a same board comprising a plurality of circular character projection (CP) characters of different sizes, the charged particle beam being illuminable through the template; a guiding device guiding the shaped beam to illuminate the template One of the plurality of CP characters; and an arithmetic device, wherein the arithmetic device is capable of setting which dose to use and using a single CP character to form a plurality of circular patterns of different sizes on the surface. 如申請專利範圍第14項之系統,其中該樣板包含多數圓形CP字符,且其中該等字符之尺寸係經過計算,以便能夠藉著使用數個可變劑量,而在該表面上形成有最小CP字符與最大CP字符之間任何尺寸的圓形圖案。 The system of claim 14, wherein the template comprises a plurality of circular CP characters, and wherein the sizes of the characters are calculated so that a minimum of the number of variable doses can be formed on the surface. A circular pattern of any size between the CP character and the largest CP character. 一種用以在一表面上形成多數圓形圖案之系統,該系統包含:一帶電粒子束來源;一樣板,其包含可變形狀光束(VSB)之數個孔隙;及一運算裝置,其中該運算裝置係能夠對於多數圓形圖案中之一選定圓形圖案來訂定出可變形狀光束(VSB)之多數照射,其中該等多數照射能夠重疊,且其中該等多數照射之聯合係不同於該選定圓形圖案。 A system for forming a plurality of circular patterns on a surface, the system comprising: a source of charged particle beams; a plate comprising a plurality of apertures of a variable shape beam (VSB); and an arithmetic device, wherein the operation The device is capable of arranging a circular pattern for one of a plurality of circular patterns to define a plurality of illuminations of a variable shape beam (VSB), wherein the plurality of illuminations can overlap, and wherein the plurality of illuminations are different from the Select a circular pattern. 如申請專利範圍第16項之系統,其中該運算裝置係進一步能夠:由該等多數VSB照射加以計算位於該表面上之一經過計算的圖案;及如果該經過計算所得圖案與所需的圓形圖案的差異超過一預定公差,則更新該等多數VSB照射,並重新計算該經過計算的圖案。 The system of claim 16, wherein the computing device is further capable of: calculating, by the plurality of VSBs, a calculated pattern on the surface; and if the calculated pattern and the desired circle are If the difference in pattern exceeds a predetermined tolerance, then the majority of the VSB illumination is updated and the calculated pattern is recalculated. 一種用以在一表面上形成多數圓形圖案之系統,該系統包含:一帶電粒子束來源;一樣板,包含可變形狀光束(VSB)之數個孔隙以及一組字符投影(CP)字符中的二者;一圖樣庫;及一運算裝置,其中無論VSB照射、或一次或更多次的CP照射、或者是一個或更多圖樣中的何者能夠提供一形成該圖案的最佳方法,該運算裝置皆能夠訂定出該表面上之各個圓形圖案。 A system for forming a plurality of circular patterns on a surface, the system comprising: a source of charged particle beams; a plate comprising a plurality of apertures of a variable shape beam (VSB) and a set of character projection (CP) characters Both; a pattern library; and an arithmetic device, wherein the VSB illumination, or one or more CP illuminations, or one or more of the patterns can provide an optimal method of forming the pattern, The arithmetic device is capable of setting each circular pattern on the surface. 如申請專利範圍第18項之系統,其中該運算裝置對於照射次數或是帶電粒子束寫入時間進行最佳化。 The system of claim 18, wherein the computing device optimizes the number of shots or the charged particle beam write time. 如申請專利範圍第18項之系統,其中該運算裝置對於那些訂定來欲以VSB照射加以形成之數個圖案,訂定出包括數個劑量的VSB照射組。 The system of claim 18, wherein the computing device defines a VSB illumination group comprising a plurality of doses for a plurality of patterns defined to be formed by VSB illumination. 如申請專利範圍第18項之系統,其中該運算裝置對於那些訂定來欲以VSB照射加以形成之數個圖案,訂定出包括數個劑量的CP照射或是CP照射組。 The system of claim 18, wherein the computing device specifies a number of CP illumination or CP illumination groups for a plurality of patterns that are to be formed by VSB illumination. 一種用於製造一樣板的方法,該樣板係用於字符投影(CP)之帶電粒子束微影術,且用來在一表面上形成不同尺寸之多數圓形或近似圓形圖案,該方法包含以下步驟:訂定一具有一第一直徑的第一圓形或近似圓形字符,其中該第一圓形或近似圓形字符能夠藉由使用不同 劑量,而形成在一第一尺寸範圍中的數個圖案於該表面上;訂定一具有一第二直徑的第二圓形或近似圓形字符,該第二直徑係大於該第一直徑,其中該第二圓形或近似圓形字符能夠藉由使用不同劑量,而形成在一第二尺寸範圍中的數個圖案於該表面上;且其中能夠以該第一圓形或近似圓形字符來形成的最大圖案,係與能夠以該第二圓形或近似圓形字符來形成的最小圖案至少一樣大;及製造一包含該第一圓形或近似圓形字符、及該第二圓形或近似圓形字符的樣板。 A method for fabricating a same plate for charged particle beam lithography of character projection (CP) and for forming a plurality of circular or nearly circular patterns of different sizes on a surface, the method comprising The following step: setting a first circular or approximately circular character having a first diameter, wherein the first circular or approximately circular character can be different by using a plurality of patterns formed in a first size range on the surface; a second circular or approximately circular character having a second diameter, the second diameter being greater than the first diameter, Wherein the second circular or approximately circular character is capable of forming a plurality of patterns in a second size range on the surface by using different doses; and wherein the first circular or approximately circular character can be Forming a maximum pattern that is at least as large as a minimum pattern that can be formed by the second circular or approximately circular character; and fabricating a first circular or approximately circular character, and the second circular shape Or a template of approximate circular characters. 如申請專利範圍第22項之方法,其中更包含以下步驟:使用該樣板,來形成不同尺寸之多數圓形或近似圓形圖案於該表面上。 The method of claim 22, further comprising the step of using the template to form a plurality of circular or approximately circular patterns of different sizes on the surface. 一種用於字符投影(CP)之帶電粒子束微影術的樣板,其包含:具有一第一直徑之圓形或近似圓形的一第一孔隙,其中該第一孔隙能夠藉由改變照射劑量,而在一照射中形成在一第一尺寸範圍中的數個圖案於一表面上;及具有一第二直徑之圓形或近似圓形的一第二孔隙,該第二直徑係大於該第一直徑,其中該第二孔隙能夠藉由改變照射劑量,而在一照射中形成在一第二尺寸範圍中的數個圖案於該表面上; 其中該第一尺寸範圍係與該第二尺寸範圍呈連續。 A template for charged particle beam lithography for character projection (CP), comprising: a first aperture having a circular or approximately circular shape of a first diameter, wherein the first aperture is capable of changing an irradiation dose And forming, in an illumination, a plurality of patterns in a first size range on a surface; and a second aperture having a second diameter of a circular or approximately circular shape, the second diameter being greater than the first a diameter, wherein the second aperture is capable of forming a plurality of patterns in a second size range on the surface by changing an irradiation dose; Wherein the first size range is continuous with the second size range. 一種供帶電粒子束微影術使用之用於碎化或遮罩資料製備的方法,該方法包含以下步驟:輸入一待形成於一表面上的接點或通孔圖案,其中該接點或通孔圖案包含一總面積,且其中該接點或通孔圖案係表示成一方形或近似方形;及訂定用於一成形光束之帶電粒子束寫入器的一組照射,其中該組照射可形成一圓形或近似圓形圖案於該表面上,而該圓形或近似圓形圖案所具有的一面積係在該總面積的一預定公差之內。 A method for shredding or masking data preparation for use in charged particle beam lithography, the method comprising the steps of: inputting a contact or via pattern to be formed on a surface, wherein the contact or pass The pattern of holes comprises a total area, and wherein the pattern of contacts or vias is represented as a square or approximately square; and a set of illumination is provided for a charged particle beam writer for a shaped beam, wherein the set of illumination can be formed A circular or approximately circular pattern is on the surface, and the circular or nearly circular pattern has an area within a predetermined tolerance of the total area. 如申請專利範圍第25項之方法,其中該組照射包含一圓形或近似圓形之字符投影照射。 The method of claim 25, wherein the set of illumination comprises a circular or approximately circular character projection illumination. 如申請專利範圍第26項之方法,其中一單一圓形或近似圓形之字符投影照射,可形成該圓形或近似圓形圖案於該表面上。 The method of claim 26, wherein a single circular or approximately circular character is projected onto the surface to form the circular or approximately circular pattern on the surface. 如申請專利範圍第25項之方法,其中該組照射包含可變形狀光束(VSB)之多數照射。 The method of claim 25, wherein the group of illuminations comprises a plurality of illuminations of a variable shape beam (VSB). 如申請專利範圍第28項之方法,其中在該等多數VSB照射中的一對照射係重疊。 The method of claim 28, wherein the pair of illuminations in the plurality of VSB illuminations overlap. 如申請專利範圍第25項之方法,其中該訂定之步驟包含:計算該圓形或近似圓形圖案於該表面上的面積。 The method of claim 25, wherein the step of determining comprises: calculating an area of the circular or approximately circular pattern on the surface. 如申請專利範圍第30項之方法,其中該計算之步驟包含帶電粒子束模擬。 The method of claim 30, wherein the step of calculating comprises charged particle beam simulation. 如申請專利範圍第31項之方法,其中該帶電粒子束模擬 包括由前向散射、光阻劑擴散、庫倫效應、後向散射、負載、模糊、以及蝕刻所構成的群組其中的至少一種模擬。 The method of claim 31, wherein the charged particle beam simulation At least one of the group consisting of forward scatter, photoresist diffusion, coulomb effect, back scatter, load, blur, and etch is included. 如申請專利範圍第25項之方法,其中該組照射中之各照射包含一指定劑量,且其中該組照射中之兩照射的劑量為不同。 The method of claim 25, wherein each of the illuminations of the set of illuminations comprises a specified dose, and wherein the doses of the two of the set of illuminations are different. 一種用以在一基板上製造一半導體裝置之方法,該方法包含以下步驟:輸入一待形成於一光罩上的接點或通孔圖案,其中該接點或通孔圖案包含一總面積,且其中該接點或通孔圖案係表示成一方形或近似方形;及訂定用於一成形光束之帶電粒子束寫入器的一組照射,其中該組照射可形成一圓形或近似圓形圖案於該光罩上,而該圓形或近似圓形圖案所具有的一面積係在該總面積的一預定公差之內;使用經訂定的該組照射,來形成該圓形或近似圓形圖案於該光罩上;使用光學微影術,以利用該光罩上的該圓形或近似圓形在該基板上形成一圓形或近似圓形圖案。 A method for fabricating a semiconductor device on a substrate, the method comprising the steps of: inputting a contact or via pattern to be formed on a mask, wherein the contact or via pattern comprises a total area, And wherein the contact or via pattern is represented as a square or approximately square; and a set of illumination for a charged particle beam writer for a shaped beam, wherein the set of illumination forms a circular or approximately circular shape Patterned on the reticle, and the circular or nearly circular pattern has an area within a predetermined tolerance of the total area; using the set of illuminations to form the circle or approximate circle Forming a pattern on the reticle; using optical lithography to form a circular or nearly circular pattern on the substrate using the circular or approximately circular shape on the reticle. 如申請專利範圍第34項之方法,其中該組照射包含一圓形或近似圓形之字符投影照射。 The method of claim 34, wherein the set of illumination comprises a circular or approximately circular character projection illumination. 如申請專利範圍第35項之方法,其中一單一圓形或近似圓形之字符投影照射,可形成該圓形或近似圓形圖案於該表面上。 A method of claim 35, wherein a single circular or approximately circular character is projected onto the surface to form the circular or approximately circular pattern on the surface. 如申請專利範圍第34項之方法,其中該組照射包含可變形狀光束(VSB)之多數照射,其中在該等多數VSB照射中的一對照射係重疊。 The method of claim 34, wherein the set of illumination comprises a plurality of illuminations of a variable shape beam (VSB), wherein a pair of illuminations in the plurality of VSB illuminations overlap.
TW098128360A 2008-09-01 2009-08-24 Method for fracturing and forming circular patterns on a surface and for manufacturing a semiconductor device TWI506672B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US12/202,364 US7759026B2 (en) 2008-09-01 2008-09-01 Method and system for manufacturing a reticle using character projection particle beam lithography
US12/473,241 US7754401B2 (en) 2008-09-01 2009-05-27 Method for manufacturing a surface and integrated circuit using variable shaped beam lithography
US22484909P 2009-07-10 2009-07-10
US12/540,322 US8057970B2 (en) 2008-09-01 2009-08-12 Method and system for forming circular patterns on a surface
US12/540,321 US8017288B2 (en) 2008-09-01 2009-08-12 Method for fracturing circular patterns and for manufacturing a semiconductor device

Publications (2)

Publication Number Publication Date
TW201021091A TW201021091A (en) 2010-06-01
TWI506672B true TWI506672B (en) 2015-11-01

Family

ID=42178225

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098128360A TWI506672B (en) 2008-09-01 2009-08-24 Method for fracturing and forming circular patterns on a surface and for manufacturing a semiconductor device

Country Status (3)

Country Link
JP (1) JP5787473B2 (en)
KR (1) KR101690063B1 (en)
TW (1) TWI506672B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901850B2 (en) 2008-09-01 2011-03-08 D2S, Inc. Method and system for design of a reticle to be manufactured using variable shaped beam lithography
US9323140B2 (en) 2008-09-01 2016-04-26 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US20120219886A1 (en) 2011-02-28 2012-08-30 D2S, Inc. Method and system for forming patterns using charged particle beam lithography with variable pattern dosage
US9341936B2 (en) 2008-09-01 2016-05-17 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US9448473B2 (en) 2009-08-26 2016-09-20 D2S, Inc. Method for fracturing and forming a pattern using shaped beam charged particle beam lithography
FR2959028B1 (en) * 2010-04-15 2015-12-25 Commissariat Energie Atomique ELECTRONIC LITHOGRAPHY METHOD BY PROJECTING LARGE MESH CELLS
JP5464058B2 (en) * 2010-06-02 2014-04-09 大日本印刷株式会社 Nanoimprint mold manufacturing method, optical element manufacturing method, and resist pattern forming method
JP5672921B2 (en) * 2010-10-06 2015-02-18 大日本印刷株式会社 Pattern shape prediction program, pattern shape prediction system
US9612530B2 (en) 2011-02-28 2017-04-04 D2S, Inc. Method and system for design of enhanced edge slope patterns for charged particle beam lithography
KR102005083B1 (en) * 2011-02-28 2019-07-29 디2에스, 인코포레이티드 Method and system for forming patterns using charged particle beam lithography
US9034542B2 (en) 2011-06-25 2015-05-19 D2S, Inc. Method and system for forming patterns with charged particle beam lithography
JP5836002B2 (en) * 2011-08-12 2015-12-24 日本電子株式会社 Charged particle beam writing method and apparatus
WO2013158573A1 (en) 2012-04-18 2013-10-24 D2S, Inc. Method and system for forming patterns using charged particle beam lithograph
US9343267B2 (en) 2012-04-18 2016-05-17 D2S, Inc. Method and system for dimensional uniformity using charged particle beam lithography
FR2994749B1 (en) * 2012-08-24 2015-07-24 Commissariat Energie Atomique METHOD FOR PREPARING A PRINTING PATTERN ON PLATE OR MASK BY ELECTRON BEAM LITHOGRAPHY, PRINTED CIRCUIT DESIGN SYSTEM AND CORRESPONDING COMPUTER PROGRAM.
US8984451B2 (en) 2013-02-22 2015-03-17 Aselta Nanographics Free form fracturing method for electronic or optical lithography
KR102066320B1 (en) * 2013-05-29 2020-01-14 케이엘에이 코포레이션 Multi-layered target design
EP2869119A1 (en) * 2013-10-30 2015-05-06 Aselta Nanographics Free form fracturing method for electronic or optical lithography using resist threshold control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218671B1 (en) * 1998-08-31 2001-04-17 Nikon Corporation On-line dynamic corrections adjustment method
GB2367908A (en) * 2000-09-25 2002-04-17 Univ Houston Template mask
JP2002217092A (en) * 2001-01-22 2002-08-02 Nec Corp Method for forming resist pattern and method for fabricating semiconductor device
EP1429368A2 (en) * 2002-11-21 2004-06-16 FEI Company Fabrication of three dimensional structures
TWI222100B (en) * 2001-10-26 2004-10-11 Infineon Technologies Ag Method for obtaining elliptical and rounded shapes using beam shaping

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2837743B2 (en) * 1990-06-27 1998-12-16 富士通株式会社 Charged particle beam exposure method and stencil mask used therefor
JPH0496065A (en) * 1990-08-13 1992-03-27 Fujitsu Ltd Reticle
JP3295855B2 (en) * 1991-09-30 2002-06-24 富士通株式会社 Charged particle beam exposure method
JP2823418B2 (en) * 1992-03-24 1998-11-11 株式会社日立製作所 Figure decomposition equipment for charged particle drawing equipment
JP2000066366A (en) * 1998-08-19 2000-03-03 Nec Corp Photomask and its production
JP3831188B2 (en) * 2000-09-27 2006-10-11 株式会社東芝 Exposure processing apparatus and exposure processing method
JP3590388B2 (en) * 2001-03-23 2004-11-17 Hoya株式会社 Photomask defect correction method
JP2003347192A (en) * 2002-05-24 2003-12-05 Toshiba Corp Energy beam exposure method and exposure device
JP2004134574A (en) * 2002-10-10 2004-04-30 Renesas Technology Corp Manufacturing method of semiconductor device
JP4494221B2 (en) * 2003-02-28 2010-06-30 富士通マイクロエレクトロニクス株式会社 Photomask, manufacturing method thereof, and pattern forming method
JP4410075B2 (en) * 2004-09-28 2010-02-03 株式会社東芝 Semiconductor device and manufacturing method thereof
US20080248408A1 (en) 2005-09-07 2008-10-09 Macdonald Susan S Photomask and Method for Forming a Non-Orthogonal Feature on the Same
JP4866683B2 (en) * 2006-08-25 2012-02-01 富士通セミコンダクター株式会社 Semiconductor device manufacturing method, data creation apparatus, data creation method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218671B1 (en) * 1998-08-31 2001-04-17 Nikon Corporation On-line dynamic corrections adjustment method
GB2367908A (en) * 2000-09-25 2002-04-17 Univ Houston Template mask
JP2002217092A (en) * 2001-01-22 2002-08-02 Nec Corp Method for forming resist pattern and method for fabricating semiconductor device
TWI222100B (en) * 2001-10-26 2004-10-11 Infineon Technologies Ag Method for obtaining elliptical and rounded shapes using beam shaping
EP1429368A2 (en) * 2002-11-21 2004-06-16 FEI Company Fabrication of three dimensional structures

Also Published As

Publication number Publication date
JP2010062562A (en) 2010-03-18
TW201021091A (en) 2010-06-01
KR101690063B1 (en) 2016-12-27
JP5787473B2 (en) 2015-09-30
KR20100027072A (en) 2010-03-10

Similar Documents

Publication Publication Date Title
TWI506672B (en) Method for fracturing and forming circular patterns on a surface and for manufacturing a semiconductor device
TWI507812B (en) Method for design and manufacture of a reticle using a two-dimensional dosage map and charged particle beam lithography
US7799489B2 (en) Method for design and manufacture of a reticle using variable shaped beam lithography
US9268214B2 (en) Method for forming circular patterns on a surface
KR101688506B1 (en) Method for optical proximity correction, design and manufacturing of a reticle using variable shaped beam lithography
US8017288B2 (en) Method for fracturing circular patterns and for manufacturing a semiconductor device
TWI496182B (en) Method and system for manufacturing a surface using charged particle beam lithography with variable beam blur
US20130070222A1 (en) Method and System for Optimization of an Image on a Substrate to be Manufactured Using Optical Lithography
KR20110021698A (en) Method for fracturing and forming a pattern using curvilinear characters with charged particle beam lithography
TWI661265B (en) Method for forming a pattern on a surface using multi-beam charged particle beam lithography
KR102005083B1 (en) Method and system for forming patterns using charged particle beam lithography
TW201423287A (en) Method and system for dimensional uniformity using charged particle beam lithography
JP2013516070A (en) Method and system for fracturing a pattern using charged particle beam lithography utilizing multiple exposure paths
TWI567503B (en) Method and system for design of enhanced patterns for charged particle beam lithography